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We present the simulated photoelectron spectrum (PES) for cyanide-water CN(H2O)− based on 

quasiclassical trajectory molecular dynamics (QCT-MD). Using density functional theory to 

generate trajectories and to calculate vertical detachment energies, we obtain simulated spectra 

that are in qualitative agreement with experiment. We obtain a theoretical 12 K→300 K 

temperature red shift of 0.1 eV as compared to an experimental redshift of 0.25 eV. The 

calculated linewidths of 0.3 eV are in excellent agreement with experiment. Our trajectories 

show that the temperature red shift as being dominated by dynamics within the basin of the N-

bound minimum, however, at 300 K we predict conversion into the basin of the C-bound 

minimum, equilibrating at a 80:20 ratio of N- vs. C- bound mixture. We discuss the potential 

advantages of QCT-MD over anharmonic Franck-Condon analysis such as natural incorporation 

of anharmonicity (as necessary for weakly bound systems), and reduced computational scaling, 

but also drawbacks such as neglect of final-state (e.g. Duschinsky) effects. 
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INTRODUCTION  
Photoelectron spectroscopy (PES) offers unique insight into the chemistry and physics of 

charged gas-phase species [1–4]. Thanks to the ability to mass select, PES is especially suited to 

study the size dependence of molecular properties within a homologous set of chemical systems. 

An application of particular interest is investigation of solvation effects in nanodroplets, in which 

droplets contain solvent molecules in different extremes of environment, ranging from surface 

molecules exposed to the vacuum to buried molecules experiencing a more bulk-like 

environment. These nanodroplets span the size regime between small clusters and the bulk, thus 

providing insight into the formation and ultimate stabilization of particular solvation structures.  

Because of the increasing complexity of photoelectron spectra for large floppy clusters, it 

is very desirable to obtain simulated spectra in order to help interpret the experimental results. 

However, non-rigid molecules such as solvation clusters often exhibit large anharmonic effects 

[5], which are computationally costly to describe. Straightforward application of Franck-Condon 

analysis, the prevailing approach for PES simulation, exhibits an exponential scaling with the 

number of atoms if anharmonicity is fully included [6], and is thus only applicable to systems 

with only a few atoms (cf. Refs. [7,8]), although efficient new algorithms have been presented 

[9, 10]. Furthermore, dynamical effects may play an important role due to the flexible structure 

of the clusters, whereas Franck-Condon analysis is an inherently static method. 

In this paper we propose the application of molecular dynamics simulations based on 

quasiclassical trajectories (QCT-MD) [11, 12] to the simulation of PES spectra [see references 

13, 14 for reviews on the quasi-classical approximation]. While QCTs have been employed in 

the calculation of reactive scattering, vibrational spectra or quantum dots [11, 12, 15–17], to the 

best of our knowledge application of QCT-MD to PES calculation has not been presented before. 

We illustrate the QCT-MD approach for simulating the photoelectron spectra of the 

cyanide-water anion, CN(H2O)−, a relatively simple system that contains interesting chemistry. 

As discovered by Wang et al. [15], the PES of CN(H2O)− exhibits a remarkable red shift of 0.25 

eV when going from 12 to 300 K. The red shift was explained qualitatively using arguments 

based on the vibrational wave functions for a simple two-basin model describing the conversion 

between two minima, CN−---H1OH2 and CN−---H2OH1 (cf. Fig. 5 of Ref. [18]).  At low 

temperature the system resides in the (almost doubly degenerate) vibrational ground state, which 

has probability maxima at the equilibrium structure (4.54 eV detachment energy). At room 

temperature, the third and fourth excited states (v = 3, 4) are accessible, whose probability 



densities have maxima at positions with significantly decreased detachment energies (4.38 eV 

and 4.49 eV, respectively), thus lending to the idea that this model can explain a red shift of up to 

0.16 eV. Since it is claimed that vibrational effects are important in the explanation of the red 

shift, this is an ideal application for QCT-MD and subsequent analysis of trajectories to provide 

direct evidence for this proposed origin of peak positions and line widths of the photoelectron 

spectrum. 
However, a more refined explanation needs to go beyond a single-mode model since 

cyanide-water has several anharmonic, coupled modes. Also, dynamical effects may play a role, 

e.g. because the barrier height for conversion between the N- and the C-bound isomers (CN(H2 

O)− and NC(H2O)−) is similar to that of the CN−---H1OH2 to CN−---H2O conversion. One also 

has to ask whether the Boltzmann weight of the vibrationally excited states v = 3, 4 would be big 

enough to explain the observed red shift. Finally, it is hard to compare individual detachment 

energies to a full experimental spectrum. Our aim is therefore to simulate the full photoelectron 

spectrum from QCT-MD and to use the comparison of the simulated and the experimental 

photoelectron spectra to validate the trajectories. After the validation step, we use the trajectories 

to extract information on the structure and dynamics of the system. In summary, we obtain a 

theoretical 12 K→300 K temperature red shift of 0.1 eV as compared to an experimental red 

shift of 0.25 eV, while the calculated linewidths of 0.3 eV are in excellent agreement with 

experiment. Our trajectories support a previous model [18] that explains the temperature red shift 

as being dominated by dynamics within the basin of the N-bound minimum. However, our 

calculations lead to a refined picture: At 300 K we predict conversion into the basin of the C-

bound minimum, equilibrating at a 80:20 N- vs. C-bound mixture.  
 

II. COMPUTATIONAL METHODS  

A. Benchmarks of relative energies and vertical detachment energies 

In order to obtain reliable quasi-classical trajectories and photoelectron spectra, we need 

a method that yields reliable geometries, relative energies and detachment energies of the 

cyanide-water system. As a compromise between computational speed and accuracy we chose 

the popular B3LYP density functional [19, 20] in combination with a 6-311++G** Pople basis 

[21]. We used a development version of the Q-Chem program package [27] to generate all 

results.  

The stationary points of the cyanide-water system calculated at this level of theory are 



shown in Fig. 1. We observe that the structures compare well with high-level quantum 

mechanical results [18], although the TS1 structure is slightly different: in our structure both 

hydrogen atoms are facing the cyanide, whereas the reported structure [18] has one dangling 

hydrogen. The 6-311++G** basis is probably the minimum basis required to describe the system 

properly, because using the smaller 6-31+G* basis set led to a spurious transition state structure 

that cannot be found in any of the high-level calculations. Fig. 2 compares the B3LYP/6-

311++G** energies for the stationary points with high-level ab initio results up to the 

CCSD(T)/aug-cc-pVQZ level. The agreement between B3LYP/6-311++G** and the 

CCSD(T)/aug-cc-pVQZ reference energies is good except for a slight overestimation of the 

energy for TS1.  

MP2 also performs well on the stationary points compared to CCSD(T) provided that a 

sufficiently large basis is used (cf. weak MP2/6-31+G* performance). However, the MP2 

vertical detachment energies (VDEs) are in lesser agreement with the reference calculations, 

whereas B3LYP/6-311++G** yields a reasonable agreement of the VDEs with high-level 

coupled cluster results throughout (see Fig. 3(a)). Although B3LYP overestimates the CCSD(T) 

detachment energies of min1 and min2 by 0.23 and 0.19 eV, respectively, relative trends are 

reproduced satisfactorily (Fig. 3(b)). For example, the shift between the carbon- and the 

nitrogen-bound minima (min2 and min1) is reproduced to within 0.04 eV. Since the B3LYP 

errors are quite systematic, we shift all calculated spectra (described below) by -0.23 eV to 

obtain better comparability to experiment. The biggest B3LYP/6-311++G** error in relative 

detachment energies is observed for TS1 with up to 0.10 eV relative to the CCSD(T) level. We 

have recalculated the CCSD(T) energy at the B3LYP geometry and found that the agreement is 

much better (open black squares in Fig. 3(a) and 3(b)). This larger detachment energy of our 

B3LYP TS1 structure can be rationalized by recalling that two hydrogen atoms are facing the 

cyanide (as opposed to one dangling hydrogen), thus providing stronger stabilization of the 

excess electron. 

We also tested other density functionals such as the long-range corrected ωB97X and 

long-range + dispersion corrected ωB97X-D density functionals [24, 25], but observed only 

minor improvements, thus we employed the slightly faster B3LYP functional. It is possible, 

however, that the long-range correction becomes more important for larger clusters due to 

stronger self-interaction errors. This will be tested carefully for our upcoming calculations on 

larger clusters. Additionally we tested the B3LYP performance in combination with other basis 



sets including larger Pople-style and correlation consistent basis sets of up to aug-cc-pVTZ level. 

No significant advantages over the 6-311++G**basis was found. In fact, for very large basis sets 

a deterioration of the quality was found, which is a known defect of DFT for anionic systems 

[26]. Overall, the amounts by which the relative detachment energies vary between the different 

stationary points are smaller at the B3LYP level than for the CCSD(T) reference. It can therefore 

be expected that the B3LYP-simulated temperature shifts are smaller than the experimental or 

the CCSD(T) ones.  

We used a simple sanity check to test whether the experimental linewidths can also be 

reproduced at the chosen level of density functional theory. The experimental half-widths for 12 

K and 300 K are both on the order of 0.3 eV. While we expect that the red shift is mainly due to 

the solvation environment, the CN stretching mode should account for most of the linewidth, 

which would explain why essentially no broadening is observed when going from 12 K to 300 K. 

Indeed if we calculate the differences in detachment energies between the classical turning points 

of the CN stretch vibration, the min1 equilibrium structure and TS2, we can obtain a maximum 

linewidth on the order of 0.2 eV. While this is somewhat smaller than the experimental line 

width, it is encouraging to get such a reasonable estimate with such a crude model. 

 

B. Molecular dynamics simulation of photodetachment spectra  

In order to obtain a full comparison of theory and experiment on the cyanide-water anion, 

we performed quasiclassical molecular dynamics simulations to generate theoretical spectra at 12 

K and 300 K. As discussed in the literature [18], vibrational effects may be very important in the 

sampling of the transition state regions and thus the observation of a red shift. We therefore 

employ the quasiclassical approximation, which puts vibrational energy into each normal mode 

when setting up the initial velocities (as opposed to a purely classical MD, which uses a thermal 

Boltzmann distribution for the initial kinetic energy). The initial conditions are chosen such that 

the occupation numbers of the vibrational states for each mode follow a Boltzmann distribution 

for quantum harmonic oscillators at the simulation temperature (see Appendix A for a detailed 

account). The rest of the trajectory is then governed by classical mechanics.  

As shown in Figure 4, at least 500–1,000 trajectories are required to obtain a reasonably 

converged initial vibrational distribution. The fact that the cyanide-water system is still relatively 

small makes it feasible to generate reference trajectories using a first-principles approach. For the 

quantum chemical reference trajectories we use the B3LYP density functional with a 6-



311++G** basis set, which provides reasonable agreement with high-level ab initio approaches 

(see section II A). We use a time step of 0.48fs, which is short enough to give on the order of 20 

snapshots per period of the fastest vibration (OH stretch, 3878 cm−1, 8.8 fs). The maximum 

simulation time for each trajectory is 3 ps, which is long enough to capture approximately 10 

periods for the slowest mode (81 cm−1, 0.3 ps) and thus should be long enough to sample the 

most important motions of the system. The spectra are then generated by calculating histograms 

from the detachment energies calculated at the B3LYP/6-311++G** level of theory, sampling 

every fifth step (i.e. every 2.4 fs) along the MD trajectory. The sampling step size is chosen to 

avoid overly-correlated sampling but at the same time to give enough resolution for the fastest 

vibrations. The QCT method is part of a development version of the Q-Chem program package 

[15], and will be included in the upcoming Q-Chem 4.0 release. 

 

C. Validity of the quasiclassical approximation  

A problem in the application of the quasi-classical approximation is that when the system 

is being propagated classically, the quantum laws of energy quantization do not apply anymore. 

While in a full quantum calculation, energy exchange between modes can only occur when 

certain resonance conditions are met, or when the inter-mode coupling terms are big, the 

classical equations of motion allow for the transfer of arbitrary amounts of energy. That makes it 

much easier for kinetic energy to “spill” from one mode to another [28], typically from hard 

(high-energy) into soft (low-energy) modes. Unfortunately, the QCT breakdown becomes more 

pronounced as the number of modes increases, but correction schemes exist [28], but for the 

present application it appears safe to simply restrict the data sampling to a reduced time scale 

when the QCT is valid.  

To define the time scale over which the QCT remains valid, we monitor the percentage of 

TS1 barrier crossing (i.e. min1→min2 conversion) as a function of simulation time [36]. To that 

end we extract geometries from the MD trajectories every 0.12 ps and perform a geometry 

optimization. If the geometry relaxes into the min1 structure, we count the structure to the min1 

basin, and similarly for the min2 structures. The resulting basin populations are shown in Fig. 5 

for an average over 1,000 trajectories at 300 K and 100 trajectories at 12 K. With a barrier height 

on the order of 3kcal/mol and a vibrational period of 0.1-0.3 ps, it can be estimated from 

transition state theory that at 300 K the percentage of min1→min2 conversions can be on the 

order of 7-20% within 3 ps. For 12 K we expect 0% crossing during the whole simulation time. 



Comparing these numbers with Fig. 5, we observe that the 300 K results are within a reasonable 

range for the whole course of the simulation. The percentage population plot also reveals that it 

takes on the order of 1.4 ps for the 300 K population to equilibrate. The 12 K shows crossing 

rates of less than 2-3% for up to 2.1 ps, but after that the min1→min2 conversion is clearly too 

high, probably as a result of the breakdown of the quasiclassical approximation. We therefore 

conclude that data sampled in the time range from 1.4 ps to 2.1 ps is the valid regime of the 

quasiclassical approximation. 

  

D. Weighting of spectral data from quasiclassical trajectories  

For low temperatures, the classical trajectories differ significantly from the quantum 

distributions: while the square of the ground-state vibrational wave function is largest at zero 

displacement, the classical oscillator spends most of its time close to the classical turning points 

and the least time at the equilibrium distance. Classical and quasiclassical trajectories therefore 

over sample the classically preferred regions, whereas the region close to the equilibrium 

structure is under sampled. A very drastic example of the consequences is shown in Fig. 6. 

Without proper quantum weighting, the simulated photoelectron spectrum of CN- splits into two 

peaks that correspond to distributions about the two classical turning points. The experimental 

spectrum shows only one peak (peak center shown as dotted grey line).  

We have therefore weighted our spectral data such that data points corresponding to 

geometries with large vibrational probability receive stronger weights. This is achieved by 

multiplying the histogram intensities with a weight, w, that is calculated as the sum of the 

wavefunction squares for all minima at the corresponding geometry:  

w = Ψvib
2 Min( )

Min
∑      (1) 

For reasons of practicality, we use the harmonic vibrational wavefunctions for the weighting. 

Further details on the formalism can be found in Appendix B. The effect of the quantum 

weighting (wQCT) is shown for CN− in Fig. 6. The two peaks are transformed into essentially 

one peak centered about the experimental detachment energy. Although a small peak splitting 

remains, the agreement with experiment is much better.  

For the CN(H2O)− system, we consider two basins, min1 and min2 with two isomers 

each (H1 and H2), and 9 vibrational modes. For illustration, we show the wave function squares 

for 12 K and 300 K for the four softest normal modes in Fig. 7. The system has five rather soft 



intermolecular modes (81-887 cm−1) that can be envisioned as frustrated translations and 

rotations and 4 internal, rather hard modes (1696-3877 cm−1) that correspond to the water bend, 

CN stretch, and the symmetric and asymmetric OH stretch. As Fig. 7 shows, modes 1-4 clearly 

follow quantum distributions at 12 K. The corresponding classical distribution would be peaked 

at the classical turning points, ±1 in unitless displacement coordinates. At 300 K the distribution 

for the softest modes (1 and 2) is broadened considerably, but still rather resembles a quantum 

distribution (because the Boltzmann weight of the highly excited and thus “more classical” states 

is still quite small). However, the distribution is already closer to a classical distribution, i.e. the 

probability is spread out from the center to the corners. The distribution of the harder modes (5-

9) remains essentially unchanged when going from 12 K to 300 K.  

  

III. RESULTS  

The simulated 12 K and 300 K cyanide-water spectra are shown in Fig. 8 for trajectories 

originating in min1 (Fig. 8a), and for trajectories starting within min2 (Fig. 8b). For comparison 

we have also included the simulated CN− spectrum. Vertical dotted lines indicate the 

experimental VDEs for CN− at 3.86 eV and for min1 (CN(H2O)−) at 4.54 eV. At 4.63 eV we 

have marked the CCSD(T) VDE for min2 (NC(H2O)−). All simulated spectra are quantum-

weighted as described above. We note, however, that the unweighted and weighted 300 K 

spectra are essentially identical. This is an important result, as it suggests that unweighted QCT-

MD results can be used for high-temperature spectra, which enables a full anharmonic treatment 

at high temperstures (as opposed to harmonic quantum weights as currently employed). The 

overall agreement of the simulated min1 spectrum with the experimental spectrum is very good. 

We can reproduce a CN−→ CN(H2O)− solvation shift of 0.7 eV as compared to an experimental 

value of 0.68 eV. The temperature red shift is qualitatively correct, although with a value of 0.1 

eV it is smaller than the experimentally observed shift of 0.25 eV. However, this was already 

anticipated from the benchmark calculations, since B3LYP underestimated all relative shifts (see 

section IIA). Finally, the simulated peak widths at half maximum of 0.3 eV are in excellent 

agreement with experiment. We remark that purely classical MD simulations at 300 K yielded 

line widths of less than 0.1 eV, while the peaks from 12 K classical MD had essentially zero 

width.  

The spectra from trajectories starting in min2 (Fig. 8(b)) show less good agreement with 

experiment. This supports earlier claims [18] that the photoelectron spectrum is mainly 



determined by min1. However, with a min1→min2 conversion rate of 20% (see Fig. 5), our 

simulations suggest that the explanation that the system remains in the basin of min1 and that 

only TS2 gives rise to the red shift probably [18] has to be refined. The system does not remain 

solely in the basin of min1, and TS2 is not the only transition state that is sampled. Rather, our 

trajectories suggest that TS1 (converting min1 into min2 and vice versa) is also sampled to a 

certain extent.  It is interesting to see that, although the detachment energies for min2 are blue-

shifted rather than red shifted, the min1 spectrum still shows an overall temperature red shift. 

The observed overall red shift probably results from a superposition of a red shift associated with 

TS2 (and possibly TS1) sampling, and a smaller blue shift due to crossing into the min2 basin.  

Although the agreement with experiment is not yet fully satisfactory, the quality of the 

results is certainly surprising, given that a number of approximations had to be made in order to 

make the calculations feasible. The level of theory employed to calculate the detachment 

energies (B3LYP/6-311++G**) probably causes the biggest fraction of the remaining error, 

since the relative shifts are generally underestimated. Furthermore, the quasiclassical 

approximation can introduce kinetic energy spilling from high- to low-energy modes, thus 

leading to spurious TS1 crossing, which reduces the observed red shift. At least for the low-

energy spectra it would be desirable to include more quantum behavior in the trajectories, for 

example via centroid or ring polymer molecular dynamics (see [29] for an application in infrared 

spectroscopy). Also it would be desirable to go beyond the harmonic approximation for the low-

temperature quantum weights. However, the fact that the effect of quantum weighting is 

negligible for the 300 K spectra makes us optimistic for future applications to investigate 

solvation shifts (rather than temperature shifts). Another restriction was the total number of 

trajectories that we were able to run within a reasonable amount of time (on the order of 1,000 

trajectories per minimum). One would have to sample more trajectories to guarantee a better 

convergence of the vibrational distribution and phases. However, we did not observe qualitative 

changes when increasing the number of trajectories from a few 100’s to 1,000. In summary, we 

have demonstrated the feasibility of calculating photoelectron spectra and have demonstrated 

that it yields qualitatively correct results. 

 

IV. DISCUSSION AND CONCLUSIONS  

Using a quasiclassical molecular dynamics approach, we have calculated the theoretical 

photoelectron spectra for CN(H2O)− at 12 K and 300 K. Our approach yields qualitative 



agreement to the experimental spectra: the calculated redshift for going from 12 K to 300 K is 

0.1 eV compared to an experimental shift of 0.25 eV [18], while the calculated peak widths of 

0.3 eV are in excellent agreement with the experimental widths. Although the agreement with 

experiment is not yet fully satisfactory, the quality of the results is certainly surprising, given that 

a number of approximations had to be employed in order to make the calculations feasible. First, 

the quasiclassical approach is only an approximation to the full quantum dynamics and final-

state effects are neglected. Second, we used B3LYP to generate trajectories, which shows some 

deviations from high-level quantum potential energy surfaces. Third, while performing quite 

well for many geometries, the B3LYP VDEs show deviations from high-level results that are on 

the order of the experimental red shift. Finally, the total number of trajectories that we were able 

to run within a given amount of time was limited to on the order of 1,000.  

The QCT-MD approach has a number of advantages over Franck-Condon analysis for 

applications to floppy systems. Due to the steep computational scaling of anharmonic Franck-

Condon analysis, its applicability is limited to small systems comprising on the order of a few 

atoms [7]. In contrast, QCT-MD is tractable for any system size for which an MD simulation is 

possible, i.e. tens or even hundreds of atoms, and anharmonic effects are included naturally by 

propagating the system on the (untruncated) potential energy surface. QCT-MD is easy to 

implement using existing molecular dynamics code, exploiting all existing methodological and 

technical developments like linear-scaling methods (cf. [30] for a review) or parallelization [27].  

In addition to spectral information, QCT-MD delivers all information that can be extracted from 

MD simulations, like population of different minima or transition states and thus offers intuitive 

insight into the underlying chemistry and physics. The price for the decreased computational 

scaling of QCT-MD is that the calculated intensities do not include final-state effects (e.g. the 

Duschinsky effect [7]). As a result, the QCT-MD spectra lack some features, but this is not a 

major limitation since the experimental photoelectron spectra for solvation clusters are often not 

very highly resolved. We thus believe that QCT-MD is an important step toward the PES 

simulation of larger clusters, along with other approaches [31].  

To give the reader an impression of the computational cost to evaluate the PES of 

CN(H2O)−, the trajectory calculations took 6 weeks on an average of 50-80 cores. Detachment 

energies for 100 trajectories can be calculated within 2–3 days on a computer cluster with 24 

cores. However, it is also possible to generate the trajectories at a lower level of theory, e.g. 

using empirical force fields, and then to gather spectral information at a higher (quantum 



chemical) level of theory only for a relatively small number of points along the trajectory. The 

cost of such a joint MM/QM calculation could be roughly an order of magnitude lower than 

determining the trajectory on the QM potential energy. We will present such a joint approach in 

an upcoming publications, where we investigate a range of aqueous clusters with the help of the 

polarizable force field AMOEBA [32-35].  
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APPENDIX A: INITIAL CONDITIONS FOR QUASICLASSICAL TRAJECTORY 

CALCULATIONS  

We describe here in detail our procedure for initialization of quasiclassical trajectory 

calculations, hoping that this may be useful for others since we found the original literature [11, 

12] to be very terse regarding the practical aspects. In our implementation the initial velocities 

are chosen according to the vibrational Boltzmann distribution. Other degrees of freedom, like 

rotations, are currently neglected. 

 

1. Obtaining the initial distribution over vibrational states with temperature, θ  

We use the harmonic approximation throughout. The vibrational energy for normal mode 

m in state ν is then  

Evib
m (ν) = hνm ν +

1
2

⎛
⎝⎜

⎞
⎠⎟

      (A1)  

and the modes are uncoupled such that the assignment can be performed for all modes 

independently. The probability pν
m  that the mth mode is in state ν can be determined from the 

Boltzmann factor, 

pν
m =

1
Zm

e
−
Evib
m ν( )
kθ =

1
Zm

e
−
Θm ν+ 1

2
⎛
⎝⎜

⎞
⎠⎟

θ      (A2)  

where Θm is the vibrational temperature of the mode and Zm = e
−
Evib
m ν( )
kθ

ν∑  is the vibrational 

partition function.  

We generate a random number p ∈ [0, 1] and find ν according to  

ν = −
θ ln pν

m

Θm

+ lnZm

⎡

⎢
⎢

⎤

⎥
⎥,      (A3)  

where ⌈ ⌉ denotes the ceiling function. This assignment distributes the initial vibrational levels 

according to Boltzmann statistics at temperature θ.  



 

2. Obtaining initial normal-mode velocities  

For the classical harmonic oscillator the sum of the kinetic energy and potential energy V 

(qm) is equal to the total energy:  

 

Evib
m (ν) = 1

2
µm qm

2 +V qm( )      (A4)  

where µm is the reduced mass and qm (
 
qm ) is the normal-mode displacement (velocity). From the 

initial geometry and the vibrational energy we can therefore calculate the initial velocity along 

mode m as  

 

qm
0( ) = ± 2

Evib
m (ν) −V qm

0( )( )
µm

,      (A5)  

Note that the initial geometries have to be confined to within the classical turning points in order 

to obtain real-valued velocities.  

We choose the sign of the initial geometries at random and for the sake of simplicity start 

all trajectories from the equilibrium structure (i.e. V (q(0) m ) = 0). In future studies we will test 

whether it is beneficial to sample initial geometries according to the vibrational probability 

distribution, e.g. with respect to shorter equilibration times. 

  

3. Transformation to Cartesian coordinates  

The normal-mode velocities 
 
qm need to be transformed to Cartesian velocities 

 
ra = xa , ya , za( )T for each atom a. This is done using the matrix U = Um,ai( )  that diagonalizes the 

nuclear Hessian: 

UHUT = diag νn( ),   H( )ai,bj =
1
2

∂2E
∂ ′ra( )i ∂ ′rb( ) j

,     (A6)  

where ′rX = µX
1/2rX are mass-weighted coordinates of atom X ={a, b}. We use the indexes i, j ∈ 

{x, y, z} to denote Cartesian coordinate components. Taking Um to be the submatrix of all 

Um,ai for a given mode m, the normal-mode coordinates can then be conveniently obtained as  

qm = Um( )ai ′ra( )i
i= x,y,z
∑

a
∑     (A7)  

In order to convert from normal-mode to Cartesian velocities, we transform with UT and scale 

with the inverse square roots of the atomic masses:  



 

ra( )i = µa
−1/2 Ua

T( )im ⋅ q( )m
m
∑ i = x, y, z    (A8)  

We note that the conversion from Cartesian displacements into normal mode displacements (as 

needed in Appendix B) is done using the inverse transformation 

qm = µa
1/2 Uq( )ai ra( )i

i= x,y,z
∑

a
∑     (A9)  

 

APPENDIX B: DATA WEIGHTING  

As described in the text, the quasiclassical trajectories can be ”too classical” at low temperatures. 

We therefore weight all data points with the square of the quantum mechanical wave function to 

obtain greater weights in the quantum mechanical high probability regions. For reasons of 

practicality, we use the harmonic vibrational wave function,  

ψν ρ( ) = Nν ⋅Hν ρ( )e−
ρ2

2 ,     (B1) 

where ρ is a unit-less normal-mode displacement coordinate related to the normal-mode 

displacement coordinate by ρ = (2πν)−1/2q and the Hν(ρ) denote the physicists’ Hermite 

polynomials. The finite-temperature wave function is just a superposition of eigenfunctions with 

different levels of excitation,  

ψ m ρ;θ( ) = pν
m θ( )

ν
∑ ψν ρ( )     (B2) 

where pν
m  is the appropriate Boltzmann weight for temperature θ. Finally, the total N -mode 

wave function is given by the product of the single-mode wave functions:  

Ψvib ρ1,...ρN ;θ( ) = ψ m ρm;θ( )
m=1

N

∏     (B3) 

The calculation of the total probability density for a multi-well problem would involve 

expanding the single-well wave functions of eq. (B3) in a global coordinate system. However, if 

one assumes that the vibrational probability density is separable into contributions from 

individual wells, the quantum weight for a certain geometry simplifies to  

w ≈ wMin =
Min
∑ Ψvib

Min ρ1
Min ,....ρN

Min;θ( )⎡⎣ ⎤⎦
2
,

Min
∑    (B4) 

where the ρ1
Min ,....ρN

Min{ }  are unitless displacement coordinates w.r.t. the equilibrium structure of 

minimum ”Min”. We note that this approximation is best when tunneling through the potential 



barrier is small, i.e. when the energy of the impinging particle wave is well below the barrier 

height and the barrier is wide. This assumption is justified for the ground-state wave function; for 

higher excitations the quality of the approximation deteriorates (as does the harmonic 

approximation). In practice we first calculate the harmonic wave function parameters for one 

minimum and then calculate the weights wMin along the QCT-MD trajectory. The individual 

weights are finally summed up to yield the total weight according to eq. (B4). 

 
 

 



FIGURE CAPTIONS 

FIG. 1: Stationary points for the cyanide-water system as calculated at the B3LYP/6-311++G** 

level of theory. Only the ”left” path from min1 to min2 is shown; the ”right” path is simply a 

mirror image. Another transition state was reported [18] connecting TS2 and TS3, but we do not 

include it here because it is highest in energy.  

 

FIG. 2: Benchmark calculations: Comparison of B3LYP and MP2 relative energies to high-level 

CCSD(T) results. Shown basis sets are ”small Pople” (SP = 6-31+G*), ”larger Pople” (LP = 6-

311++G**) as well as Dunning’s aug-cc-pVnZ basis sets [22, 23]. 

 

FIG. 3: Benchmark calculations: Comparison of B3LYP and MP2 detachment energies to high-

level CCSD(T) results. (a) Shown basis sets are ”small Pople” (SP = 6-31+G*), ”larger Pople” 

(LP = 6-311++G**) as well as Dunning’s aug-cc-pVnZ basis sets [22, 23]. (b) Comparisons of 

VDE relative to min1 energy. 

 

FIG. 4: Convergence of vibrational distribution. 

 

FIG. 5: Population of the min1/min2 basins as a function of simulation time. The populations 

were obtained by geometry optimization along the trajectories starting in min1.  

 

FIG. 6: CN− photoelectron spectrum from raw vs. quantum-weighted data (QCT vs. wQCT).  

 

FIG. 7: Monte Carlo sampling of the square of the harmonic vibrational wave function for min1 

(left two columns) and min2 (right two columns) at 12 K (blue) and 300 K (red). The x-axis is in 

dimensionless normal-mode displacement coordinates, and Ψ2 is plotted on the y-axis. We show 

here only the four modes that are lowest in energy and thus show the strongest temperature 

effects. 

 

FIG. 8: Spectra obtained from QCT-MD trajectories starting in min1 and min2, respectively. 

Detachment energies have been weighted with the square of the (harmonic) vibrational 

wavefunction for min1 and min2. The 12(300)K spectra are averaged over 400(1,000) 

trajectories.  
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