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Scalar–vector algorithm for the roots of

quadratic quaternion polynomials, and

the characterization of quintic rational

rotation–minimizing frame curves
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Petroula Dospra and Takis Sakkalis
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75 Iera Odos, Athens 11855, GREECE.

Abstract

The scalar–vector representation is used to derive a simple algorithm
to obtain the roots of a quadratic quaternion polynomial. Apart from
the familiar vector dot and cross products, this algorithm requires only
the determination of the unique positive real root of a cubic equation,
and special cases (e.g., double roots) are easily identified through the
satisfaction of algebraic constraints on the scalar/vector parts of the
coefficients. The algorithm is illustrated by computed examples, and
used to analyze the root structure of quadratic quaternion polynomials
that generate quintic curves with rational rotation–minimizing frames
(RRMF curves). The degenerate (i.e., linear or planar) quintic RRMF
curves correspond to the case of a double root. For polynomials with
distinct roots, generating non–planar RRMF curves, the cubic always
factors into linear and quadratic terms, and a closed–form expression
for the quaternion roots in terms of a real variable, a unit vector, a
uniform scale factor, and a real parameter τ ∈ [−1,+1 ] is derived.
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1 Introduction

In recent years, the characterization and computation of the quaternion roots
of algebraic equations with quaternion coefficients has attracted considerable
interest — see [3, 4, 13, 14, 12, 17, 18, 19, 24, 25, 28, 27, 30]. Perhaps the
earliest systematic studies of this problem can be found in the papers of Niven
[22, 23], Eilenberg and Niven [5], and Gordon & Motzkin [15]. Considerable
progress has subsequently been made in elucidating the fundamental nature
of quaternion roots, and formulating (numerical) schemes to compute them.

The simplest non–trivial instance of this problem concerns the roots of
a monic quadratic equation with quaternion coefficients. Although the non–
commutative nature of quaternion products makes this problem much more
subtle than its real counterpart, it nevertheless admits an essentially closed–
form solution. In the generic case, this solution involves the (unique) positive
real root of a cubic equation, which may be obtained by Cardano’s method.

This study adopts a different approach to computing the quaternion roots
of quadratic equations, based on the scalar–vector quaternion representation.
Widespread familiarity with the dot and cross products of vectors leads to
an accessible, easily–implemented, and efficient algorithm, accommodating
certain special–case instances through simple scalar branch conditions.

The motivation for this study stems from recent investigations of quintic
curves with rational rotation–minimizing frames [7, 8, 9, 10, 11] — or quintic
RRMF curves. An RRMF curve r(t) admits a rational adapted orthonormal
frame (f1(t), f2(t), f3(t)) in which f1 = r′/|r′| is the unit curve tangent, while
the normal–plane vectors f2, f3 exhibit no instantaneous rotation about f1 —
i.e., the frame angular velocity ω satisfies ω ·f1 ≡ 0. Such curves are useful in
diverse applications, such as computer animation, robotics, geometric design,
and spatial motion control. Quintic RRMF curves are generated by quadratic
quaternion polynomials with coefficients that satisfy algebraic constraints [7],
and the question arises as to whether the RRMF property can be alternatively
characterized in terms of the root structure of such polynomials.

The remainder of this paper is organized as follows. Section 2 introduces
the basic problem addressed herein, and briefly reviews earlier work on this
problem. The scalar–vector approach to computing the roots of a quadratic
quaternion polynomial is then described in Section 3, including identification
and treatment of certain special cases. The methodology of Section 3 is then
summarized in terms of a simple algorithm in Section 4, and illustrated by
representative computed examples. Section 5 applies these results to analyze

1



certain root properties of the quadratic quaternion polynomials that generate
quintic RRMF curves. Finally, Section 6 summarizes the key results of this
study, and identifies some open problems that deserve further investigation.

2 Quadratic quaternion polynomials

Throughout this paper, we shall work in the real division quaternion algebra

H — i.e., with quaternions of the form Q = q+qxi+qyj+qzk where q, qx, qy, qz
are real numbers and i, j,k satisfy i2 = j2 = k2 = −1 and i j = − j i = k, j k =
−k j = i, k i = − i k = j. Alternative quaternion algebras, based on different
conventions for these products, exist [1, 21] — in general, however, they are
not division algebras, and non–zero quaternions may not have inverses.

Because of widespread familiarity with the basic vector operations in R
3

(i.e., dot and cross products), the scalar–vector form of quaternions provides
a highly accessible approach [26] to performing computations on them.1 We
use calligraphic, bold, and italic characters to denote quaternions, vectors in
R

3, and scalars (real numbers), respectively. A quaternion Q is regarded as
comprising a scalar (or real) part q = scal(Q) and vector (or imaginary) part
q = vect(Q). Correspondingly, we write Q = (q,q) and define the conjugate,
modulus, and inverse of Q by

Q∗ = (q,−q) , | Q | =
√

q2 + |q|2 , Q−1 =
Q∗

| Q |2 .

The sum and product of given quaternions A = (a, a) and B = (b,b) may
be compactly expressed [26] as

A + B = (a+ b , a + b) , AB = (ab− a · b , ab + b a + a × b) ,

where · and × denote the usual vector dot and cross products, the latter being
responsible for the non–commutative property of quaternion multiplication.
For brevity, we shall henceforth simply write q and q for pure scalar and pure
vector quaternions of the form (q, 0) and (0,q).

We now consider, for given quaternion coefficients B and C, the solutions
to the quadratic equation

Q2 + BQ + C = 0 (1)

1It should be recognized, however, that this approach is anachronistic [2] — the concepts
of scalar and vector originated in the theory of quaternions, rather than vice–versa.
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in the quaternion variable Q. Since, in each term, the coefficients appear on
the left and powers of Q on the right, expression (1) defines a left polynomial

[15] and its solutions are the right roots of that polynomial — the algorithm
described below can be easily adapted to the case where the coefficients are
on the right and powers of Q on the left, but we shall not pursue this. The
existence of at least one root of (1) follows from the “fundamental theorem
of algebra” [5, 29] for real quaternions (and also octonions).

There is no loss of generality in assuming the quadratic equation (1) to
be monic. The equation AQ2 +BQ+C = 0 reduces to the form (1) through
(left) multiplication with A−1 when A 6= 0, and when A = 0 it is linear with
the trivial solution Q = −B−1C. We also assume that C 6= 0 in (1), since
otherwise this equation has the trivial solutions Q = 0 and Q = −B.

We note that, because of the non–commutative nature of the quaternion
product, the familiar “completing the square” process cannot be employed
to compute the roots of (1). In particular,

Q2 + BQ + C 6= (Q + 1

2
B)2 − 1

4
B2 + C ,

since, in general, we have

(Q + 1

2
B)2 − 1

4
B2 = Q2 + 1

2
(BQ + QB) 6= Q2 + BQ .

Moreover, although equation (1) has unique roots Q1, Q2 it does not admit
a factorization of the form

(Q−Q1)(Q−Q2) = 0 or (Q−Q2)(Q−Q1) = 0 .

Because of the non–commutative product, greater care must be exercised in
analyzing and interpreting the roots of quaternion polynomials [20].

It is still possible to uniquely reconstruct the polynomial from its roots if
Q1 6= Q2. From Q2

1
+ BQ1 + C = Q2

2
+ BQ2 + C = 0 we obtain

B = (Q2

1
−Q2

2
)(Q2 −Q1)

−1 =
(Q2

1
−Q2

2
)(Q∗

2
−Q∗

1
)

|Q2 −Q1|2
,

and from this we have C = −(Q1+B)Q1 = −(Q2+B)Q2. However, this is not
true in the case of double roots. The distinct polynomials Q2 − (i+ j)Q−k

and Q2 − (k + i)Q + j, for example, both have Q = i as a double root.
A few recent studies specifically address computation of the quaternion

roots of (1). Huang and So [17] present detailed case–by–case formulae for the
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roots, dependent on the nature of the coefficients. Jia et al. [19] approach the
problem through analysis of an equivalent real quadratic form. The solution
presented herein differs from prior studies by systematically employing the
scalar–vector quaternion representation, which yields simple formulae and
special–case conditions expressed in terms of the familiar vector dot and
cross products. The solution derived in this manner is amenable to analyzing
the root structure of those quadratic quaternion polynomials that generate
quintic space curves with rational rotation–minimizing frames (see Section 5).

3 Scalar–vector solution for roots

Setting B = (b,b), C = (c, c), and Q = (q,q), equation (1) may be reduced
to the scalar and vector components

q2 − |q|2 + b q − b · q + c = 0 , (2)

(2q + b)q + q b + b× q + c = 0 , (3)

which can be regarded as a system of four quadratic equations in the scalar
part q and (the three components of) the vector part q of Q.

Remark 1. As observed by Niven [22] one may also assume, without loss of
generality, that B in (1) is a pure vector (imaginary) quaternion, by making
the substitution (q,q) → (q − 1

2
b,q), so that (b,b) → (0,b) and (c, c) →

(c− 1

4
b2, c− 1

2
bb). However, we omit this assumption here, since it does not

significantly simplify the solution of equations (2)–(3).

Before analyzing the general solution of (1), we first treat the degenerate
special case in which B and C are pure scalars (i.e., real numbers).

Lemma 1. When the coefficients B and C are both real, i.e., b = c = 0, the

solutions of the quadratic equation (1) are

• the double real root Q = 1

2
(−b, 0) when b2 − 4c = 0;

• the two real roots Q = 1

2
(−b±

√
b2 − 4c, 0) when b2 − 4c > 0;

• the “spherical root” Q = 1

2
(−b,

√
4c− b2 (λ i +µ j+ ν k)), where λ, µ, ν

are real numbers satisfying λ2 + µ2 + ν2 = 1, when b2 − 4c < 0.

4



Proof. When b = c = 0, equations (2)–(3) reduce to

q2 − |q|2 + b q + c = 0 and (2q + b)q = 0 .

The second equation implies that q = 0 or q = − 1

2
b. In the former case, the

first equation reduces to q2 + b q + c = 0, with no real roots if b2 − 4c < 0; a
double root q = − 1

2
b if b2 − 4c = 0; and distinct roots q = 1

2
(−b±

√
b2 − 4c)

if b2−4c > 0. In the latter case, the first equation gives |q|2 = c− 1

4
b2, which

is satisfied by any vector of the form

q = 1

2

√
4c− b2 (λ i + µ j + ν k)

with λ2 + µ2 + ν2 = 1 when b2 − 4c < 0; by q = 0 when b2 − 4c = 0; and by
no real vector when b2 − 4c > 0.

Henceforth, we focus on equation (1) with B, C not both real. We consider
two categories of solutions (q,q) to the system (2)–(3), namely, roots with
(i) q 6= − 1

2
b; and (ii) q = − 1

2
b. We call roots in categories (i) and (ii) the

generic and singular quaternion roots of (1). We shall see that the singular
case corresponds to roots with identical scalar parts, and it encompasses the
case of double roots of (1) as a proper subset.

3.1 Generic roots

For category (i) roots with 2q+ b 6= 0, analysis through the MAPLE computer
algebra system reveals that equation (3) may be solved to express q in terms
of q, b, c and b, c as

q =
1

2q + b

[

(2q + b)b × c − (2q + b)2c − (b · c)b

(2q + b)2 + |b|2 − q b

]

. (4)

By writing x = (2q+ b)2 and substituting (4) into (2), further analysis using
MAPLE indicates that the latter equation can be factorized to obtain

(x+ |b|2)(x3 + a2x
2 + a1x+ a0) = 0 , (5)

where

a2 = 2 |b|2 − b2 + 4c ,

a1 = (|b|2 − b2 + 4c) |b|2 − |bb− 2 c|2 , (6)

a0 = − (b |b|2 − 2b · c)2 .
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For a category (i) solution of equation (1), we must have x = (2q + b)2 > 0.
So the first factor in (5) cannot vanish, and therefore the cubic

x3 + a2x
2 + a1x+ a0 (7)

must possess a positive real root. Cardano’s method [31] offers a closed–form
solution for the roots of this cubic. However, useful insight into the number
of its positive roots can be deduced, without actually computing them, by
inspection of the coefficients using Descartes Law of Signs [31].

Lemma 2. If a0 6= 0, the cubic defined by (6)–(7) has one positive real root.

Proof : Descartes Law of Signs states that the number of positive real roots
of a polynomial is less than the number of its coefficient sign changes by an
even amount. Now the cubic (7) is monic, and from (6) we have a0 < 0 when
a0 6= 0 (the case a0 = 0 is treated in Section 3.2 below). Hence, the number
of possible coefficient sign changes may be categorized2 as follows:

(a) there is one sign change if (a2, a1) have signature (+,+) or (+,−);

(b) there are two sign changes if (a2, a1) have signature (−,+).

We show that case (b) is impossible. From (6), the conditions a2 < 0 and
a1 > 0 are equivalent to

c <
b2 − 2 |b|2

4
and c >

b2|b|2 − |b|4 + | bb− 2 c |2
4 |b|2 .

In order for these inequalities to be consistent, we must have

b2|b|2 − 2 |b|4 > b2|b|2 − |b|4 + | bb− 2 c |2 ,

or, equivalently,
|b|4 + | bb− 2 c |2 < 0 .

Since this is clearly impossible, the cubic defined by (6)–(7) has one coefficient
sign change, and thus one positive real root, when a0 6= 0.

Let ρ be the positive root of (7) when a0 6= 0. Since ρ = (2q + b)2, this
yields two distinct values

q =
− b±√

ρ

2
(8)

2We do not explicitly address the cases a1 = 0 or a2 = 0, since in these instances the
number of sign changes cannot exceed the indicated amounts.
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for the scalar parts q of the roots Q of (1), with corresponding vector parts
q specified by (4). Now using (8) we can re–write (4) as

q =
b× c

ρ+ |b|2 − b

2
± 1√

ρ

[

bb

2
− ρ c + (b · c)b

ρ+ |b|2
]

, (9)

and thus from (8)–(9) the two quaternion roots of (1) can be expressed as

Q =

(

− b

2
,

b× c

ρ+ |b|2 − b

2

)

± 1√
ρ

(

ρ

2
,
bb

2
− ρ c + (b · c)b

ρ+ |b|2
)

, (10)

where ρ is the unique positive root of (7) with a0 6= 0.

Remark 2. If b and c are linearly dependent, the roots (10) reduce to

Q = − 1

2
(b,b) ± 1

2
√
ρ

(ρ, bb − 2 c) ,

so the vector parts of both roots are also linearly dependent on b and c.

3.2 Singular roots

For category (ii) with 2q+b = 0, we have q = − 1

2
b and equation (3) becomes

b× q = 1

2
bb − c .

Now the quantities b, b, c cannot be freely specified if this equation is to be
satisfied. Specifically, since b · (b × q) = 0, we must have

1

2
b |b|2 − b · c = 0 , (11)

which is equivalent to a0 = 0 in (6), i.e., x = 0 is a root of (7). Note that (11)
is automatically satisfied when b = 0. However, equation (3) with 2q+b = 0
and b = 0 can only be satisfied when we also have c = 0, which corresponds
to the case of real coefficients treated in Lemma 1. When condition (11) is
satisfied with b 6= 0, we have

q =
b× c

|b|2 + γ b , (12)

where γ is a free parameter. Substituting (12) and q = − 1

2
b into (2), and

noting that |b| 6= 0, then gives the quadratic equation

|b|6γ2 + |b|6γ + |b× c|2 + 1

4
b2|b|4 − c |b|4 = 0 (13)
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in γ. In order for (13) to have real roots, we require that

|b|6 − 4 |b× c|2 − b2|b|4 + 4 c |b|4 ≥ 0 , (14)

Now from (11) we have b2|b|4 = 4 (b · c)2, and using the identity

|b× c|2 + (b · c)2 = |b|2|c|2 ,
the condition (14) can be reduced to

|b|4 + 4 c |b|2 − 4 |c|2 ≥ 0 . (15)

In summary, category (ii) roots exist only when conditions (11) and (15) are
both satisfied, i.e., a0 = 0 and (13) has a real root γ. The quaternion roots
of (1) can then be expressed as

Q =

(

− b

2
,
b× c

|b|2 − b

2

)

±
(

0 ,

√

|b|4 + 4 c |b|2 − 4 |c|2
2 |b|2 b

)

. (16)

Comparing (10) and (16), we see that singular roots differ from generic roots
in having identical scalar parts. If b and c are linearly dependent, both roots
have vector parts linearly dependent on b (see Remark 2).

3.3 Double roots

In the generic case (a0 6= 0) the roots (10) are necessarily distinct, since ρ > 0
and hence the scalar parts differ. In the singular case (a0 = 0) the roots (16)
have coincident scalar parts, but their vector parts are usually different since
equation (13) generically yields two distinct γ values in expression (12).

Clearly, equation (1) admits a double root only in the singular case when
(11) is satisfied, with the further requirement that (13) has a double root γ,
so that the vector parts (12) of the roots coincide, as well as the scalar parts.
Now equation (13) has a double root when its discriminant vanishes, which
means that (15) holds with equality. Hence, the two conditions

1

2
b |b|2 = b · c and |b|4 + 4 c |b|2 = 4 |c|2 (17)

together specify when equation (1) has a double root. If these conditions are
satisfied, the double root is defined by the first term on the right in (16), and
using the first condition in (17) it can be expressed as

Q =

(

− b · c
|b|2 ,

b× c

|b|2 − b

2

)

. (18)
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Note that, although b and c do not appear explicitly in (18), the double root
depends on them implicitly through the satisfaction of conditions (17).

4 Algorithm & computed examples

The preceding analysis of the roots of the quadratic quaternion equation (1)
is summarized in the following algorithm.

Algorithm

input: quaternion coefficients B = (b,b) and C = (c, c)

1. if conditions (11) and (15) are both satisfied, go to step 4;

2. compute the unique positive real root ρ of the cubic (7);

3. compute two quaternion roots from (10) and go to output;

4. if condition (15) is satisfied with equality go to step 6;

5. compute two quaternion roots from (16) and go to output;

6. compute the double quaternion root from (18);

output: two quaternion roots Q = (q,q).

The following simple examples serve to illustrate the above algorithm.

Example 1. Consider the quadratic equation (1) with B = (0, j), C = (0,k).
Since b = c = 0 and b = j, c = k the cubic (7) becomes

x3 + 2x2 − 3x = 0 ,

with roots x = −3, 0, 1. Thus, from the positive root we obtain (2q+b)2 = 1,
and hence q = ±1

2
. Expression (4) then gives the corresponding vector parts

as q = 1

2
(i − j∓ k). Hence, in this case, we have the generic right roots

Q1 = 1

2
(1, i− j− k) and Q2 = 1

2
(− 1, i − j + k) , (19)

and one can easily verify that both satisfy Q2 + (0, j)Q + (0,k) = 0.
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Example 2. For equation (1) with the coefficients

B =

(

− 2,
j + k√

2

)

and C =

(

2,
j− k√

2

)

,

the cubic (7) becomes

x3 + 6x2 − 3x− 4 = 0 ,

with the positive root x = 1 and negative roots 1

2
(− 7 ±

√
33). The positive

root gives (2q + b)2 = 1, and since b = − 2 the roots have scalar parts q = 1

2

or 3

2
. From (4), the corresponding vector parts are then q = 1

2
(− i +

√
2 j)

and − 1

2
(i + 2

√
2 j +

√
2k). Hence, we have the generic right roots

Q1 = 1

2
(1,− i +

√
2 j) and Q2 = 1

2
(3,− i− 2

√
2 j −

√
2k)

and one can verify that, for the given coefficients, they both satisfy (1).

Example 3. Consider now equation (1) with B = (2, j) and C = (1, j). Since
b = 2, c = 1 and b = c = j, the cubic (7) becomes

x3 + 2x2 + x = 0 ,

with roots x = −1,−1, 0. Since none of these roots is positive, there are no
generic quaternion roots. For the root x = 0, we investigate the existence
of singular roots. Since b = 2 and b = c = j, condition (11) is satisfied.
Equation (13) then becomes γ2 + γ = 0, with real solutions γ = −1 and
0, for which (12) gives vector parts q = − j and q = 0 associated with the
scalar part q = − 1

2
b = − 1. Hence, we have the two singular right roots

Q1 = (−1,−j) and Q2 = (−1, 0) ,

which both satisfy Q2 + (2, j)Q + (1, j) = 0.

Example 4. For equation (1) with B = (2, j) and C = (7

4
, j + k) the cubic

(7) becomes
x3 + 5x2 = 0 ,

with roots x = − 5, 0, 0. Since this has no positive roots, equation (1) has no
generic quaternion roots in this case. For the singular root corresponding to
x = 0, the scalar part is q = − 1

2
b = −1, and one can verify that both of the
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conditions (17) are satisfied, so this must define a double quaternion root.
Equation (13) reduces to

γ2 + γ + 1

4
= 0 ,

and has, as expected, the double root γ = − 1

2
. The corresponding vector

part is then determined as q = i − 1

2
j from expression (12). Hence,

Q1 = (− 1, i− 1

2
j)

is the only quaternion root in this case, and it defines a double (right) root.

5 Analysis of quintic RRMF curves

A Pythagorean–hodograph (PH) curve r(t) = (x(t), y(t), z(t)) is a polynomial
curve with the distinctive property [6] that the components of its derivative
r′(t) = (x′(t), y′(t), z′(t)) satisfy the Pythagorean condition

x′2(t) + y′2(t) + z′2(t) = σ2(t) (20)

for some polynomial σ(t). A PH curve may be generated from a quaternion
polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k through the product3

r′(t) = A(t) iA∗(t) = [ u2(t) + v2(t) − p2(t) − q2(t) ] i

+ 2 [ u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t) − u(t)p(t) ]k . (21)

Remark 3. For any quaternion Q = (q,q) and vector v, the product QvQ∗

yields a pure vector ṽ, namely

ṽ = (q2 − |q|2)v + 2 (q · v)q + 2q (q × v) .

One can always express Q in the form |Q| (cos 1

2
θ, sin 1

2
θn), where n is a unit

vector, and ṽ is obtained geometrically by rotating v through angle θ about
an axis defined by the direction n, and scaling it by |Q|2.

Remark 3 allows one to interpret the hodograph (21) as being generated
through a continuum of rotations/scalings of the fixed unit vector i. It should
be kept in mind when interpreting the conditions (24) and (27) below.

3The use of the unit vector i in the product (21) is merely conventional — replacing it
with any other unit vector corresponds to only a change of coordinates.

11



There has been considerable recent interest [7, 9, 10, 11] in a special subset
of the PH curves, known as the rational rotation–minimizing frame (RRMF)
curves. These curves possess rational orthonormal adapted frames (t,u,v),
where t = r′/|r′| is the curve tangent and u, v span the curve normal plane
at each point, with a frame angular velocity ω that satisfies ω · t ≡ 0. The
angular velocity governs the frame variation through the relations

dt

ds
= ω × t ,

du

ds
= ω × u ,

dv

ds
= ω × v ,

where s is the curve arc length, and the condition ω · t implies that u and v

exhibit no instantaneous rotation about t — or, equivalently, the derivatives
of u and v are always parallel to t. It was shown in [16] that the existence
of polynomials a(t), b(t) such that

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
. (22)

is a sufficient and necessary condition for (21) to define an RRMF curve.
Planar PH curves are trivially RRMF curves, and we are concerned here

only with true space curves. The simplest non–planar RRMF curves are [8]
of degree 5. Quintic PH curves are conventionally defined by substituting a
quadratic Bernstein–form polynomial

A(t) = A0(1 − t)2 + A12(1 − t)t+ A2t
2 (23)

into (21), and integrating. Then satisfaction of the constraint

vect(A2 iA∗

0
) = A1 iA∗

1
(24)

by the coefficients of (23) was shown in [7] to be sufficient and necessary for
the PH quintic to be an RRMF curve satisfying (22) with deg(a(t), b(t)) = 2.

Remark 4. The existence of non–planar RRMF quintics satisfying (22) with
deg(a, b) = 1 was discovered in [11] — they are called Class II RRMF quintics,
as distinct from Class I RRMF quintics satisfying (22) with deg(a, b) = 2. We
focus on the latter here, since a characterization of Class II curves, analogous
to the coefficient constraint (24) for Class I curves, is not yet known.

Now the condition (24) on the coefficients of the polynomial (23) evidently
constrains its (quaternion) roots, and the question arises as to whether the

12



RRMF quintics can be alternatively characterized by means of a special root
structure of the quaternion polynomials generating them. The methodology
used in [7] to derive (24) does not easily extend to degree 7 or higher–order
PH curves, and a root–structure characterization of the RRMF curves may
offer an alternative approach to the study of higher–order curves.

In the formulation (21) of PH curves, the parameter t is interpreted as a
real variable. However, when we speak of the roots of A(t), this restriction
is relaxed to allow t to assume any quaternion value. To apply the methods
of Section 3 to determine the roots of (23), we convert it to the power form

A(t) = A t2 + B t+ C , (25)

where
A0 = C , A1 = 1

2
B + C , A2 = A + B + C . (26)

Lemma 3. If the polynomial A(t) is represented in power form, the condition

vect(A i C∗) = 1

4
B iB∗ (27)

on its coefficients is sufficient and necessary for the PH quintic specified by

(21) and (25) to be an RRMF curve.

Proof : Substitute (26) into (24) and simplify.

Now the derivation of the constraint (24) in [7] was facilitated by assuming
that A0 = (1, 0) in (23). This condition, achieved by (left) multiplication of
(23) with A−1

0
, amounts to imposing a scaling/rotation on r(t) that maps any

(non–zero) initial derivative r′(0) to the unit vector i — the curve r(t) is then
said to be in canonical form. Since the canonical–form assumption amounts
to choosing a particular coordinate system, it incurs no loss of generality and
does not alter whether or not a given PH quintic is an RRMF curve.

In the present context, it is convenient to employ a different normalization
for the polynomial A(t). In particular, to analyze its quaternion roots by the
methodology of Section 3, we convert (25) into a monic polynomial by (left)
multiplication with A−1. Again, this amounts to imposing a scaling/rotation
on r(t). Although its geometrical meaning is less evident than the canonical–
form transformation of (23), the assumption that (25) is monic likewise incurs
no loss of generality: it does not affect the RRMF nature of a given PH curve,
and does not alter the roots of (25). A PH curve generated by (21) is said
to be in normal form [11] when A(t) is a monic quaternion polynomial.

13



Henceforth, we confine our attention to curves specified by (21) and (25)
with leading coefficient A = (1, 0) and we write the scalar and vector parts
of B as b and b = bxi+ byj+ bzk, and of C as c and c = cxi+ cyj+ czk. With
this convention, the quintic RRMF curves may be characterized as follows.

Proposition 1. A PH quintic defined by (21) and (25) with A = (1, 0) is an

RRMF curve if and only if C = (c, c) can be expressed in terms of B = (b,b)
and a free scalar parameter ξ as

C =
(

1

4
(b2 − |b|2 + 2 b2x) ,

1

2
(ξ i + bb + bx i × b)

)

. (28)

Proof : For a PH quintic defined by (21) and (25) with A = (1, 0) the RRMF
condition (27) reduces to

c i + c × i = 1

4
( (b2 − |b|2) i + 2 bx b + 2 bb× i ) . (29)

Taking the dot product of both sides with i gives

c = 1

4
(b2 − |b|2 + 2 b2x) , (30)

and substituting this into (29) and making some re–arrangements, we obtain

(c − 1

2
bb− 1

2
bx i × b) × i = 0 .

Hence, we can express c in terms of b, b, and a real parameter ξ as

c = 1

2
(ξ i + bb + bx i × b) , (31)

and the quaternion coefficient C = (c, c) has the stated form (28).

Now any linear or planar locus is trivially an RRMF curve, and since we
are only interested in space curves, we first identify instances of b and ξ that
define straight lines or plane curves. These cases are discounted in analyzing
the roots of the polynomials (25) that generate spatial RRMF curves.

Proposition 2. With A = (1, 0) and C given by (28), substituting (25) into

(21) generates straight lines when (by, bz) = (0, 0), and planar curves other

than straight lines when bx = ξ = 0 and (by, bz) 6= (0, 0).

Proof : With A = (1, 0) and C specified by (28), the components of A(t) =
u(t) + v(t) i + p(t) j + q(t)k are given by

u(t) = t2 + b t + 1

4
(b2 + b2x − b2y − b2z) ,

v(t) = bxt + 1

2
(ξ + b bx) ,

p(t) = byt + 1

2
(b by − bxbz) ,

q(t) = bzt + 1

2
(b bz + bxby) .

14



Since deg(u) = 2 > deg(v, p, q) we say [11] that A(t) is in normal form, and
Proposition 1 of [11] then shows that the curve defined by (21) degenerates
to a straight line if and only if (p(t), q(t)) ≡ (0, 0) and to a planar curve other
than a straight line if and only if

(p2 + q2) (uv′ − u′v) + (u2 + v2) (pq′ − p′q) ≡ 0 (32)

with (p(t), q(t)) 6≡ (0, 0). Clearly, (by, bz) = (0, 0) is a sufficient and necessary
condition for (p(t), q(t) ≡ (0, 0). Conversely, (p(t), q(t)) 6≡ (0, 0) if (by, bz) 6=
(0, 0), and using MAPLE we find that (32) becomes

−
b2y + b2z

32
(c4t

4 + c3t
3 + c2t

2 + c1t+ c0) ≡ 0 , (33)

where

c4 = 48 bx , c3 = 32 (ξ + 3 b bx) ,

c2 = 24 (2 b ξ + 3 b2bx + b3x) , c1 = 24 (b2 + b2x)(ξ + b bx) ,

c0 = 4 bxξ
2 + 4 b (b2 + 3 b2x) ξ + bx [ 3 b4 + 6 b2b2x − b4x + (b2y + b2z)

2 ] .

From c4 we must have bx = 0 if (33) is satisfied. Substituting bx = 0, we find
using MAPLE that this condition reduces to

−
b2y + b2z

8
ξ (2t+ b)3 ≡ 0 .

Since b2y +b2z 6= 0, the condition for a planar curve (other than a straight line)
corresponds to bx = ξ = 0.

We make the following remarks concerning the degeneration of an RRMF
quintic to a straight line, or a plane curve other than a straight line.

Remark 5. The condition by = bz = 0 for degeneration to a straight line is
automatically satisfied if b = 0.

Remark 6. When A = (1, 0) and C is given by (28) with by = bz = 0, the
polynomial (25) reduces to

A(t) =
(

t2 + b t+ 1

4
(b2 + b2x) , [ bxt+ 1

2
(ξ + b bx) ] i

)

— i.e., the vector part of A(t) has no j or k component. Thus, degeneration
to a straight line occurs when A(t) is equivalent to a complex polynomial. If
bx = ξ = 0, on the other hand, we have

A(t) =
(

t2 + b t+ 1

4
(b2 − b2y − b2z) , (t+ 1

2
b)(byj + bzk)

)

,
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so degeneration to a plane curve other than a straight line occurs when the
vector part of A(t) has no i component.

From Proposition 1, it is evident that the roots of a quadratic quaternion
polynomial (25) with A = (1, 0) that defines an RRMF quintic curve depend
on only the quaternion coefficient B = (b,b) and the scalar parameter ξ. The
coefficients (6) of the cubic (7) can be expressed in terms of b, b, and ξ as

a2 = |b|2 + 2 b2x , a1 = b2x(|b|2 + b2x) − ξ2 , a0 = − b2x ξ
2 , (34)

and we observe that these coefficients do not depend on b. In fact, the cubic
(7) has a very special structure when the quaternion polynomial (25) satisfies
the condition (27), and thus generates a quintic RRMF curve through (21).

Lemma 4. For a quadratic quaternion polynomial (25) with A = (1, 0) and

C given by (28), the cubic equation (7) specified by the coefficients (34) admits

the factorization

(x2 + (|b|2 + b2x)x− ξ2) (x+ b2x) = 0 . (35)

Proof : Expanding (35) yields the cubic (7) with the coefficients (34).

Thus, computing the roots of the quadratic quaternion polynomials that
generate quintic RRMF curves does not require solution of a cubic equation,
indicating a special structure to these quaternion roots. If bx 6= 0 and ξ 6= 0,
the only positive root of (35) is

ρ =
√

ξ2 + 1

4
(|b|2 + b2x)

2 − 1

2
(|b|2 + b2x) , (36)

and this determines two generic quaternion roots of (25), specified by (10).
If bx = 0 or ξ = 0, however, then a0 = 0 and (25) may possess singular roots.
We consider first the case where x = 0 is a root of (35). The following result
characterizes the instance bx = ξ = 0.

Lemma 5. If the polynomial (25) with A = (1, 0) and C given by (28) has a

double root, the quintic RRMF curve specified by (21) degenerates to a planar

curve or a straight line.

Proof : With C given by (28), the conditions (17) for a double root become

bxξ = 0 and ξ2 + 2 bbxξ − b2x(2b
2

x + b2y + b2z) = 0 .
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The first condition implies that bx = 0 or ξ = 0, whereas the second condition
cannot be satisfied if bx = 0 6= ξ or bx 6= 0 = ξ, so we must have bx = ξ = 0.
By Proposition 2, the curve defined by (21) is a straight line when (by, bz) =
(0, 0) and a planar curve other than a straight line when (by, bz) 6= (0, 0) —
the double root of (25) in the former case is Q = (−1

2
b, 0), and in the latter

it is Q = (− 1

2
b,−1

2
(by j + bz k)).

Consider now the cases in which just one of bx and ξ is zero. If bx = 0 6= ξ,
we obtain c = 1

4
(b2 − |b|2) and c = 1

2
(ξ i+ bb) from (30) and (31), and thus

|b|4 + 4 c |b|2 − 4 |c|2 = − ξ2. Since condition (15) is obviously not satisfied,
there are no singular roots. On the other hand, the quadratic factor in (35)
has a single positive real root

ρ =
√

ξ2 + 1

4
|b|4 − 1

2
|b|2 ,

corresponding to the specialization bx = 0 of (36). There are then two generic
quaternion roots, defined with this ρ value in (10). Finally, when ξ = 0 6= bx,
equation (13) reduces to

|b|2
[

|b|4(γ + 1

2
)2 − 1

4
b2x(|b|2 + b2x)

]

= 0 ,

and assuming that b 6= 0 (See Remark 5) it has the two solutions

γ =
− |b|2 ± bx

√

|b|2 + b2x
2 |b|2 .

Expression (16) for the two singular roots thus reduces to

Q =

(

− b
2
,
bx|b|2i − (|b|2 + b2x)b

2 |b|2
)

±
(

0 ,
bx
√

|b|2 + b2x b

2 |b|2

)

. (37)

For the generic roots, with the positive root of (35) defined by (36) when
(bx, ξ) 6= (0, 0), we have

b · c = 1

2
(bxξ + b |b|2) ,

b× c = 1

2
(ξ b× i + bxb× (i × b)) = 1

2
(bx|b|2i − b2xb− ξ i × b) .

Substituting into (10) and simplifying then gives the roots as

Q =

(

− b
2
,
bx|b|2 i − b2x b − ξ i × b

2(ρ+ |b|2) − b

2

)

± 1√
ρ

(

ρ

2
, − ρ ξ i + bxξ b + ρ bx i × b

2(ρ+ |b|2)

)

. (38)
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Lemma 6. The singular roots (37) are the formal limit of the generic roots

(38), as ξ → 0.

Proof : First, note from (36) that ρ→ 0 as ξ → 0, and otherwise ρ increases
monotonically with |ξ|. Setting ξ = ρ = 0 in the first term of (38), it clearly
reduces to the first term of (37). Likewise, the scalar part of the second term
of (38) is zero when ρ = 0, and thus agrees with the scalar part of the second
term of (37). The vector part of the second term in (38) requires more careful
analysis. First, it is clear that the i and i×b terms in this vector part vanish
as ρ→ 0. For the b term, we use (36) to write ξ in terms of ρ as

ξ = ±
√

ρ2 + (|b|2 + b2x)ρ ,

and we then have

± lim
ρ→0

bxξ b

2
√
ρ (ρ+ |b|2) = ± lim

ρ→0

bx
√

ρ+ |b|2 + b2x b

2(ρ+ |b|2) = ± bx
√

|b|2 + b2x b

2 |b|2 .

Hence, the generic roots (38) converge to the singular roots (37) as ρ → 0
(and hence ξ → 0).

Lemma 7. For each ξ value, the roots (38) scale linearly with the quaternion

coefficient B = (b,b).

Proof : We invoke the parameter transformation ξ → ψ defined by

ξ = 1

2
(|b|2 + b2x) tanψ , (39)

specifying a one–to–one map between ξ ∈ (−∞,+∞) and ψ ∈ (−1

2
π,+1

2
π).

Then from (36) we have

ρ = 1

2
(|b|2 + b2x) (secψ − 1) . (40)

Hence ξ → λ2 ξ and ρ → λ2ρ for each ψ when B = (b,b) → λB = (λb, λb)
and we see that the roots (38) then scale as Q → λQ.

By Lemma 7, a particular scaling can be imposed on B = (b,b) without
altering the roots of equation (1) in an essential manner. For simplicity, we
assume henceforth that4 |b| = 1, i.e.,

b2x + b2y + b2z = 1 . (41)

4Recall from Remark 5 that we require b 6= 0 for a true space curve.
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Now setting τ = tan 1

2
ψ ∈ [−1,+1 ] we have

tanψ =
2 τ

1 − τ 2
and secψ =

1 + τ 2

1 − τ 2
, (42)

and we note that ρ = ξ τ . Using (39)–(42), the scalar part of (38) can then
be written as

q =
1

2

(

− b± |τ |
√

1 + b2x
1 − τ 2

)

, (43)

while the vector part reduces to

q =
− bx(b

2

x + τ 2) i − (1 + b2x) [ (by − bzτ) j + (bz + byτ)k ]

2 (1 + b2xτ
2)

(44)

∓ sign(τ)

√

1 + b2x
1 − τ 2

(b2x + τ 2) i + bx(1 − τ 2) [ (by − bzτ) j + (bz + byτ)k ]

2 (1 + b2xτ
2)

.

Note that q does not depend on b. When τ = 0, expressions (43)–(44) agree
with the singular roots (37) under the assumption |b| = 1. As τ → ±1, on
the other hand, q → ±∞ and q increases without bound in the direction ±i.
The preceding results may be summarized as follows.

Proposition 3. The quadratic quaternion polynomials that generate quintic

RRMF curves are characterized by roots of the form Q = λ(q,q) where λ > 0
is a scale factor, while q and q depend on a real value b, a unit vector b, and

a real parameter τ ∈ [−1,+1 ] through expressions (43)–(44).

The above arguments are illustrated by means of the following example.

Example 5. With the choices

b = −1 , b =
j + k√

2
, ξ = 1 ,

Proposition 1 gives, for a quintic RRMF curve,

c = 0 and c =

√
2 i − j − k

2
√

2
.

With A = (1, 0), B = (b,b), C = (c, c), the polynomial A(t) = u(t)+ v(t) i+
p(t) j + q(t)k defined by (25) has the components

u(t) = t2 − t , v(t) =
1

2
, p(t) =

2 t− 1

2
√

2
, q(t) =

2 t− 1

2
√

2
,
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and generates the Pythagorean hodograph

x′(t) = t4 − 2 t3 + t , y′(t) =
4 t3 − 6 t2 + 4 t− 1

2
√

2
, z′(t) =

− 4 t3 + 6 t2 − 1

2
√

2

which satisfies (20) with σ(t) = t4 − 2 t3 + 2 t2 − t+ 1

2
, and (22) with a(t) =

t2 − t+ 1

2
, b(t) = 1

2
. Since (r′ × r′′) · r′′′ 6≡ 0, the resulting RRMF quintic is a

true space curve. From (39) and (42) we obtain

tanψ = 2 and τ =

√
5 − 1

2
,

so the scalar and vector parts of the roots Q = (q,q) become

q =

√
2 ±

√√
5 − 1

2
√

2
, q =

∓ (
√

5 − 1)3/2 i − (3 −
√

5) j− (1 +
√

5)k

4
√

2
,

and one can verify that these roots satisfy (1) with

B =

(

−1,
j + k√

2

)

and C =

(

0,

√
2 i − j− k

2
√

2

)

.

Figure 1 illustrates the quintic RRMF curve r(t) constructed in this manner,
together with the normal–plane vectors for the Frenet frame and the rational
RMF (the curve tangent is common to both frames).

6 Closure

A simple algorithm to determine the (right) roots of a quadratic quaternion
polynomial has been developed, based on the scalar–vector representation of
quaternions. Widespread familiarity with the vector dot and cross products
makes the algorithm easy to understand and implement. Special cases (such
as double roots, or distinct roots with coincident scalar parts) are identified
and appropriately handled through simple branch conditions. The algorithm
is robust and computationally efficient, and the scalar–vector description of
the roots offers better geometrical insight into their structure.

As an alternative to existing coefficient constraints [7], the algorithm was
employed to characterize the quadratic quaternion polynomials that generate
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Frenet RMF

Figure 1: The quintic RRMF curve r(t) constructed in Example 1, comparing
the variation of the normal–plane vectors for the Frenet frame (left) and the
rational rotation–minimizing frame (right) over the parameter domain [ 0, 1 ].

quintic curves with rational rotation–minimizing frames (RRMF curves), in
terms of their root structure. Trivial (linear or planar) quintic RRMF curves
correspond to polynomials with a double root. For polynomials with distinct
roots, a closed–form description of the roots in terms of uniform scale factor, a
quaternion with unit vector part, and a parameter τ ∈ [−1,+1 ] was derived.
The five degrees of freedom embodied in the roots may prove useful in terms
of developing new methods to construct quintic RRMF curves that satisfy
geometrical constraints, such as rigid–body motion interpolants [9].

References

[1] E. Ata, Y. Kemer, A. Atasoy (2012), Quadratic formulas for
generalized quaternions,
http://www3.dpu.edu.tr/akademik/fbe/wp-content/uploads/2012/11/fbe-3.pdf

[2] M. J. Crowe (1967), A History of Vector Analysis, Dover Publications
(reprint), New York.

[3] A. Damiano, G. Gentili, and D. Struppa (2010), Computations in the
ring of quaternionic polynomials, Journal of Symbolic Computation 45,
38–45.

21



[4] S. de Leo, G. Ducati, and V. Leonardi (2006), Zeros of unilateral
quaternionic polynomials, Electronic Journal of Linear Algebra 15,
297–313.

[5] S. Eilenberg and I. Niven (1944), The “fundamental theorem of
algebra” for quaternions, Bulletin of the American Mathematical

Society 50, 246–248.

[6] R. T. Farouki (2008), Pythagorean–Hodograph Curves: Algebra and

Geometry Inseparable, Springer, Berlin.

[7] R. T. Farouki (2010), Quaternion and Hopf map characterizations for
the existence of rational rotation–minimizing frames on quintic space
curves, Advances in Computational Mathematics 33, 331–348.

[8] R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2009), Quintic
space curves with rational rotation–minimizing frames, Computer

Aided Geometric Design 26, 580–592.

[9] R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2012), Design of
rational rotation–minimizing rigid body motions by Hermite
interpolation, Mathematics of Computation 81, 879–903.

[10] R. T. Farouki and T. Sakkalis (2010), Rational rotation–minimizing
frames on polynomial space curves of arbitrary degree, Journal of

Symbolic Computation 45, 844–856.

[11] R. T. Farouki and T. Sakkalis (2012), A complete classification of
quintic space curves with rational rotation–minimizing frames, Journal

of Symbolic Computation 47, 214–226.

[12] G. Gentili and C. Stoppato (2008), Zeros of regular functions and
polynomials of a quaternionic variable, Michigan Mathematical Journal

56, 655–667.

[13] G. Gentili and D. C. Struppa (2008), On the multiplicity of zeroes of
polynomials with quaternionic coefficients, Milan Journal of

Mathematics 76, 15–25.

[14] G. Gentili, D. C. Struppa, and F. Vlacci (2008), The fundamental
theorem of algebra for Hamilton and Cayley numbers, Mathematische

Zeitschrift 259, 895–902.

22



[15] B. Gordon and T. S. Motzkin (1965), On the zeros of polynomials over
division rings, Transactions of the American Mathematical Society

116, 218–226.

[16] C. Y. Han (2008), Nonexistence of rational rotation–minimizing frames
on cubic curves, Computer Aided Geometric Design 25, 298–304.

[17] L. Huang and W. So (2002), Quadratic formulas for quaternions,
Applied Mathematics Letters 15, 533–540.
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