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New Constitutive Model for Interface Elements in Finite-Element Modeling of 
Masonry 

Nitin Kumar1, S.M.ASCE; and Michele Barbato2, M.ASCE 

ABSTRACT 

A new interface element’s constitutive model is proposed in this study for analyzing masonry using 

simplified micro-modeling (SMM) approach, in which mortar and two unit-mortar interfaces are 

lumped into a zero-thickness joint (modeled using an interface element) between expanded 

masonry units. The new model is capable of simulating tension cracking, shear slipping, and 

compression failure and is defined by a convex composite failure surface consisting of a tension-

shear and a compression cap failure criterion. It removes the singularity in the tension-shear region 

but not in the compression-shear region. In addition, the proposed model is based on the hypothesis 

of strain hardening. The robustness and computational cost of the proposed model are compared 

to different constitutive models (which are based on three, two and single failure criterion) that 

have been widely used in the literature to describe masonry behavior through a series of one-

element tests and through the comparison of finite element (FE) response simulation of an 

unreinforced masonry shear wall. The FE response results indicates that the proposed constitutive 

model is more efficient than and at least as accurate as the other constitutive models for analyzing 

masonry using SMM approach. 

Keywords: Finite element method; Simplified micro-modeling; Interface element; Constitutive 

model; Masonry walls. 
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Finite element (FE) modeling of masonry structures is a very complex problem in 

computational mechanics, which continues to attract the interest of the research community after 

several decades of investigations. Several FE approaches have been proposed, with different levels 

of accuracy, computational cost, and information details (Lourenço 1996; Pelà 2009). The highest 

level of accuracy and detail on the mechanical behavior of masonry could be achieved using the 

FE micro-modeling approach, in which different masonry components, i.e., masonry units 

(bricks/blocks) and mortar, are distinctly represented through continuum elements, and the unit-

mortar interface is represented by interface elements (Lourenço 1996). Thus, micro-modeling 

explicitly addresses the intrinsic discontinuity and heterogeneity of masonry elements. However, 

it is also computationally very intensive and, thus, rarely employed for analysing masonry. The 

computational cost can be reduced by lumping mortar and two unit-mortar interfaces into a zero-

thickness joint (generally modeled using an interface element) between expanded masonry units 

(Page 1978; Lourenço 1996). This modelling approach is referred to as simplified micro-modeling 

(SMM) and has been widely employed to investigate the local behavior of masonry (Page 1978; 

Lourenço 1996; Giambanco et al. 2001; Spada et al. 2009; Dolatshahi and Aref 2011; Macorini 

and Izzuddin 2011; Aref and Dolatshahi 2013; Kumar et al. 2014a). 

The capability of the SMM approach to simulate the mechanical response of masonry properly 

relies upon the accuracy and robustness of the employed interface element, which relates the 

traction vector with the relative displacement vector. In fact, in most SMM approaches, the 

nonlinearity of the system is often concentrated in the interface element, and masonry units are 

assumed to be elastic in nature (Page 1978; Lotfi and Shing 1994; Lourenço 1996; Chaimoon and 

Attard 2007; Dolatshahi and Aref 2011; Macorini and Izzuddin 2011). Hence, interface elements 

should be able to describe all major failure mechanisms of masonry under multi-axial stress 



conditions (Page 1983; Dhanasekar et al. 1985; Andreaus 1996; Lourenço 1996; Cuellar-Azcarate 

2016), which include: (a) cracking of masonry units in direct tension, (b) cracking of mortar joints, 

(c) bed or head joint failure due to sliding under normal stress, (d) diagonal tension cracking of 

masonry units, and (e) masonry crushing.  

Zero-thickness interface elements formulated in terms of traction-separation relationships were 

originally introduced by Goodman et al. (1968) to model discontinuity in rock mechanics. Page 

(1978) introduced the use of interface elements between elastic continuum elements (representing 

expanded masonry units) in failure analysis of masonry. The non-linear behavior of masonry was 

simulated through the interface behavior, which was modeled through a constitutive model that 

included a brittle failure in tension and hardening in shear/compression. However, compression 

(crushing) failure was not included in the interface elements (e.g., Page 1978; Lotfi and Shing 

1994; Anand and Yalamanchili 1996; Giambanco and Di Gati 1997), until an appropriate 

constitutive model for analysis of masonry shear walls was developed by Lourenco and Rots 

(1997) to simulate/predict the ultimate strength and post-peak behavior of masonry. The Lourenco 

and Rots’ model is a multi-surface composite interface model (CIM) that consists of three different 

failure criteria (failure surfaces), i.e., a Rankine failure criterion (tension cut-off criterion) for 

mode-I failure (opening in tension), a Mohr-Coulomb failure criterion for mode-II failure (in plane 

shearing or sliding), and a compression cap failure criterion for compression failure. The Rankine 

and the Mohr-Coulomb failure surfaces are coupled through internal softening parameters, 

whereas the Mohr-Coulomb and the compression cap failure surfaces are uncoupled. This multi-

surface CIM has been used by many researchers to investigate the behavior of masonry structures 

(Oliveira and Lourenço 2004; Furukawa et al. 2010; Dolatshahi and Aref 2011; Tarque 2011; 

Miccoli et al. 2015).  



Numerous interface element’s constitutive models (based on numbers of failure surfaces, 

different failure criteria, and softening/hardening hypotheses) have been proposed to investigate 

the behavior of masonry by using the SMM approach. The simplest approach in defining an 

interface element’s constitutive model is to adopt one failure surface to describe each of the three 

major failure mechanisms, i.e., tension, shear, and compression, (Lourenço 1996; Oliveira and 

Lourenço 2004; Chaimoon and Attard 2007; Minga et al. 2018). However, the use of multiple 

failure surfaces leads to singularity problems at the intersections between two of these surfaces 

(Abbo and Sloan 1995). Therefore, several constitutive models were developed with failure 

surfaces representing two (Lourenço 1994; Macorini and Izzuddin 2011) or three (Citto 2008; 

Bakeer 2009; Kumar et al. 2014b) failure mechanisms at a time. The usage of these more complex 

failure surfaces can introduce issues of robustness and may increase the computational cost of the 

constitutive model (Lourenço 1994).  

This paper proposes a new interface element’s constitutive model that is capable of simulating 

tension cracking, shear slipping, and compression failure for masonry analysis using the SMM 

approach. The proposed constitutive model is developed within the framework of non-associative 

elastoplastic materials with softening. It is noted here that other approaches could be used to 

improve the efficiency and robustness of masonry modeling based on the SMM approach, e.g.,  

the plasticity-damage approach (Gambarotta and Lagomarsino 1997a, 1997b; Minga et al. 2018), 

the variational approach (Khisamitov and Meschke 2018), the damage approach (Greco et al. 2017; 

Khisamitov and Meschke 2018), and the elasto-viscoplastic modeling approach (Shing and 

Manzouri 2004; Tang et al. 2007). However, the consideration of these alternative approaches is 

beyond the scope of this study. The robustness and computational cost of the proposed constitutive 

model are compared to those of different constitutive models that have been widely used in the 



literature to describe masonry behavior through a one-element test. In addition, the performance 

of the different constitutive models is investigated in terms of accuracy and computational cost by 

simulating an unreinforced masonry shear wall for which well-documented experimental results 

are available in the literature. Finally, conclusions are made based on the results obtained in the 

present study. 

Research significance 

This paper introduces a novel mechanical constitutive model for interface elements used in the 

context of the SMM approach for masonry structures. The proposed constitutive model achieves 

robustness, computational efficiency, and accuracy in modeling masonry structures under multi-

axial stress conditions by (1) overcoming the singularity problem that arises from the interaction 

between the Mohr-Coulomb failure criterion and the Rankine failure criterion, and (2) using the 

strain hardening/softening hypothesis  to improve the numerical robustness of the solution during 

the evolution of the yield surfaces. In addition, the proposed constitutive model is easily extendable 

to cyclic/hysteretic behavior. Therefore, the constitutive model developed here for interface 

elements can extend the usage of the SMM approach to investigate the behavior of masonry 

components and structures.  

This paper also investigates the advantages and disadvantages of different constitutive models 

for interface elements when using the same integration scheme. This comparison provides useful 

information for further development of interface element’s constitutive models to simulate the 

mechanical behavior of masonry and other quasi-brittle materials. 

Proposed coupled tension-shear interface model (CTSIM) 

Interface elements permit discontinuities in the displacement field, and their behavior can be 

described in terms of a relation between the traction, σ , and relative displacements, u , across the 



interface. Thus, the generalized elastic behavior of the interface element’s constitutive model can 

be written in standard form as 

 = ⋅σ k u   (1) 

where, for a 3D configuration, { }, , T
s tσ τ τ=σ , { }, , T

n s tu u u=u , and [ ]diag , ,n s tk k k=k , [ ]diag •  

denotes the diagonal matrix operator, n  denotes the normal components, and s  and t  denote the 

shear components in two orthogonal directions. The component of the elastic stiffness matrix, k , 

for the constitutive model in the SMM approach can be obtained from the properties of the masonry 

components (i.e., masonry units and mortar), and can be written as follows (Rots and Picavet 

1997): 

 1 1 1,m m m m

n m b s t m b

h h h h
k E E k k G G

   
= − = = −   
   

  (2) 

where mE  and uE  are Young’s modulus for mortar and masonry units, respectively; mG  and uG  

denote the shear modulus for mortar and masonry units, respectively; and mh  is the thickness of 

the mortar joints. It is noted that Eq. (2) may significantly overestimate the elastic stiffness of the 

masonry joint’s interface, particularly when the masonry units are weaker than the mortar or when 

the bond surface between mortar and units presents gaps (Rots and Picavet 1997; Chisari et al. 

2018). Thus, several approaches have been proposed to obtain a better representation of the actual 

response of unreinforced masonry, e.g., by introducing a reduction factor in the calculation of the 

elastic stiffness based on Eq. (2) (Rots and Picavet 1997; Chaimoon and Attard 2007; da Porto et 

al. 2010), or by proposing more refined model parameter calibration strategies (Chisari et al. 

(2015). 

The inelastic behavior of the proposed constitutive model for interface elements, referred to as 

coupled tension-shear interface model (CTSIM) hereafter, is defined by a convex composite failure 



surface (shown in Fig. 1), which consists of a tension-shear failure criterion 1 1 2( , , )F κ κσ  and a 

compression cap failure criterion 2 3( , )F κσ , where 1κ , 2κ , and 3κ  are the scalar softening/ hardening 

parameters. The selection of this composite failure surface, which removes the singularity in the 

tension-shear region but not in the compression-shear region, is based on the fact the shear and 

tensile behaviors of mansonry are coupled while the compression and shear behaviors can be 

considered as uncoupled (Lourenço 1996). Thus, removing the singularity in the tension-shear 

region can reduce the computational cost of the interface element, whereas removing the 

singularity in the compression-shear region is not effective in reducing the computational cost of 

the interface element (Lourenço 1994). It is noteworthy that the specific form of 1 1 2( , , )F κ κσ  used 

in this study presents several novel characteristics when compared to other existing models, and 

has been used here for the first time in the context of interface elements for masonry modeled 

using the SMM approach. 

Tension-shear failure criterion 

A single hyperbolic surface is used for representing pressure-dependent shear failure and 

tensile cracking. The usage of this surface overcomes the singularity problem that occurs in multi-

surfaces failure criteria, i.e., in the combination of the Mohr-Coulomb and Rankine failure criterion 

(Abbo and Sloan 1995) and it enables the proposed interface element’s constitutive model to 

converge faster for larger load steps at the Gauss point level. The failure criterion originally 

proposed by Caballero et al. (2008) for concrete fracture problem is adopted here for the first time 

to describe the tension-shear yield surface, which is given as: 

 2 2
1 1 2 1 2 1 2 1 2 1 2 1 2( , , ) [ ( , ) tan ( , )] [ ( , ) ( , ) tan ( , )]

tf
F C Cκ κ κ κ σ φ κ κ τ κ κ σ κ κ φ κ κ= − − ⋅ + + − ⋅σ   (3) 

where 2 2 2
s tτ τ τ= + , φ  is the frictional angle, 1 2( , )

tf
σ κ κ  is the tensile yield stress, and 1 2( , )C κ κ  

is the cohesive yield stress. This hyperbolic failure criterion represents an improvement with 



respect to other criteria described by quadratic terms (Caballero 2005; Citto 2008; Macorini and 

Izzuddin 2011), which consist of two hyperbolic branches, only one of which has physical 

meaning. Therefore, this modified yield function relaxes the requirement for small load steps at 

the Gauss point level, which otherwise would be needed to guarantee that the computed stress is 

associated with the correct branch of the hyperbolic surface (Caballero et al. 2008). A strain-

softening hypothesis is considered for this failure criterion, in which the normal and shear plastic 

relative displacements jointly control the softening of both tensile and cohesive yield stresses. The 

tensile and cohesive yield stresses are implicitly coupled and softening in the tensile yield stress 

produces a proportional softening in the cohesive yield stress and vice versa. Thus, the rates of the 

scalar softening parameters are defined as follows by adapting the expressions originally derived 

in Lourenco (1996) to satisfy simultaneously the Mohr-Coulomb and Rankine failure criteria at 

their singularity point: 

 
2 20

1

I
fp p p

n s tII
f t

G Cu u u
G f

κ = + ⋅ ⋅ +      (4) 

 
2 2

2
0

II
f p p pt

n s tI
f

G f u u u
G C

κ = ⋅ ⋅ + +      (5) 

respectively, where tf  is the tensile strength; 0C  is the initial cohesion; I
fG  is the mode-I fracture 

energy; II
fG  is the mode-II fracture energy; p

nu , p
su , and p

tu  denote the plastic relative displacements 

in the n , s  and t  directions, respectively; •  denotes the Macaulay brackets; and a superposed 

dot indicates differentiation with respect to (pseudo-)time. This form of the rates of the softening 

parameters allows their efficient computation when using a single smooth yield surface. In fact, 

the usage of the Macaulay brackets ensures that the softening parameters are affected by tensile 

stresses in the shear-tension region, whereas they are not affected by compression stresses in the 



shear-compression region, consistently with the typical behavior of masonry joints (which are 

damaged by tension and shear stresses, but not by low compression stresses).  The tensile yield 

stress 1 2( , )
tf

σ κ κ  and cohesive yield stress 1 2( , )C κ κ  are defined as 

 
2 2

0
1 2 1 2(    , )   exp

t

t
f t I II

f f

f Cf
G G

σ κ κ κ κ
     = ⋅ − ⋅ + ⋅            

  (6) 

 
2 2

0
1 2 0 1 2( , ) exp t

I II
f f

f CC C
G G

κ κ κ κ
     = ⋅ − ⋅ + ⋅            

  (7) 

respectively. The exponential terms are defined so to ensure that the tensile and cohesive yield 

stresses evolve in a proportional fashion (i.e., the shape of the yield function remains the same 

during the analysis) and include the effects of both softening parameters. The softening of the 

friction angle is assumed proportional to the softening of the cohesive yield stress, i.e. 

 ( ) 1 2
1 2 0

0

( , )tan ( , ) tan tan tanr r
C

C
κ κφ κ κ φ φ φ= + − ⋅   (8) 

where 0φ  is the initial friction angle and rφ  is the residual friction angle. A non-associative 

formulation is assumed for the tension-shear failure criterion because the friction angle, φ , and the 

dilatancy angle, ψ , are generally considerably different for masonry (Atkinson et al. 1989; Van 

der Pluijm et al. 2000). The plastic potential function 1 1 2( , , )Q κ κσ  is defined as (Caballero 2005): 

2 2 2
1 1 2 1 2 1 2 1 2 1 2 1 2( , , ) [ ( , ) tan ( , )] [ ( , ) ( , ) tan ( , )]

tQ Q fQ C Cκ κ κ κ σ ψ κ κ τ κ κ σ κ κ ψ κ κ= − − ⋅ + + − ⋅σ   (9) 

where 1 2( , )QC κ κ  is the apparent cohesive yield stress. The behavior of parameters QC  and ψ  are 

obtained by substituting QC  and 0QC  to C  and 0C , respectively, in Eq. (7), and, 0ψ  and rψ  

to φ , 0φ  and rφ , respectively, in Eq. (8). The plastic potential function in Eq. (9) consists of 

quadratic terms and, thus, of two hyperbolic branches, similar to the failure yield criterion used, 



e.g., in Caballero (2005), Macorini and Izzuddin (2011), and Citto (2008), in which the same 

functional form was employed for both yield criterion and plastic potential function. However, 

since for the proposed CTSIM the yield criterion functional form is different from that of the plastic 

potential function, the existance of a non-physically meaningful branch does not introduce 

convergence issues, because only the physically meaningful branch is actually used due to the 

constraints imposed by the consistency condition during the plastic-corrector step of the CTSIM’s 

return mapping algorithm (Simo and Hughes 2006). The plastic potential function defined by Eq. 

(9) presents several computational advantages when compared to other existing expressions, e.g., 

the derivatives of the plastic potential function with respect to stress are simpler than those for the 

plastic potential function proposed in Caballero et al. (2008).   

Compression cap failure criterion  

The compression cap model used in the proposed constitutive model used here is described by 

an elliptical yield function originally introduced for orthotropic plasticity of soil materials 

(Schellekens 1992), which is given by 

 2 2 2
2 3 3( , ) ( )nn ss n compF C C Cκ σ τ σ σ κ= ⋅ + ⋅ + ⋅ −σ   (10) 

where nnC  and nC  are parameters that control the coordinates of the center of the compression 

cap failure surface, ssC  is a parameter that controls the width of the cap failure surface in the shear 

stress axis, and 2
3( )compσ κ  is the compressive yield stress, which determines the width of the cap 

failure surface in the compressive stress axis. In the present study, the center of the cap failure 

surface is assumed to coincide with the origin of the σ τ−  plane with 1nnC =  and 0nC = , in order 

to avoid the activation of this surface in the tension-shear region, which is controlled by the 

tension-shear failure criterion described in the previous subsection. A strain hardening/softening 



hypothesis is introduced for the compressive yield stress, which describes the rate of the 

corresponding scalar softening parameter as 

 ( ) ( ) ( )2 2 2

3
p p p
n s tu u uκ = + +      (11) 

and the compressive yield stress is defined as 
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where 2( ) / ( )m p m pm σ σ κ κ= − − ; 0σ , pσ , mσ , and rσ  are initial (i.e., corresponding to the 

transition from linear to nonlinear behavior), peak, intermediate (i.e., corresponding to the 

inflection point in the softening branch), and residual compressive yield stress, respectively;  and 

pκ  and mκ  denote the total plastic strain at peak and intermediate compressive yield stress. Fig. 

2 illustrates the evolution of the compressive yield stress, compσ , as a function of the parameter 3.κ  

In Eq. (12), the first branch was taken from Lotfi and Shing (1991), whereas the second and third 

branches were taken from Lourenço (1996). An associative flow rule is assumed for the 

compression cap failure criterion, thus, 2 3 2 3( , ) ( , )Q Fκ κ=σ σ . 

The CTSIM has been implemented in the commercial finite element software package 

ABAQUS (Dassault Systémes 2013a) through an user-defined material subroutine (UMAT) 

written in FORTRAN (Metcalf et al. 2011) for an implicit integration scheme (Bathe 2006). The 

implicit backward Euler integration method (Simo and Hughes 2006) is used to integrate the 

different constitutive equations of the CTSIM, which leads to a system of nonlinear algebraic 



equations. These nonlinear equations are solved monolithically with the local/global Newton-

Raphson technique as described in Ottosen and Ristinmaa (2005), Caballero et al. (2008), and 

Macorini and Izzuddin (2011) which leads to a combined local and global solution strategy. In 

addition, the CTSIM is combined with an adaptive sub-stepping strategy to ensure convergence 

and accuracy of the final solution at both local and global levels (Pérez-Foguet et al. 2001; 

Caballero et al. 2008; Macorini and Izzuddin 2011). 

Comparison of constitutive models using one-element test 

In this section, the robustness, computational cost, and accuracy of the CTSIM are compared 

with three interface element’s constitutive models that are available in the literature, namely the 

constitutive models proposed by Lourenco and Rots (1997), Macorini and Izzuddin (2011) and 

Citto (2008).  Fig. 3 shows the typical failure surfaces corresponding to each of these constitutive 

models and compares them with the failure surface corresponding to the CTSIM. These failure 

surfaces are plotted using the following values of the material parameters: 0.35  M PaC = , 

0.25 MPa
tf

σ = , 3.50 MPacompσ = , and tan 0.65φ = . The Lourenco’s model consists of three failure 

surfaces, as previously described in the Introduction section. The Macorini’s model is defined by 

two hyperbolic failure surfaces (failure criteria), i.e., a tension-shear failure surface that represents 

Mode-I and Mode-II fracture, and a compression failure surface. Both failure surfaces shrink when 

the plastic work (which drives the softening of the material parameters) increases. The Citto’s 

model is comprised of a single failure surface (failure criteria), which represents all three failure 

mechanisms of the interface element, i.e., Mode-I, Mode-II, and compression failure. The 

evolution of the hardening parameters is governed by a set of work hardening/softening rules and 

the rate of plastic work (Citto 2008). It is also observed that the CTSIM and Lourenco’s model use 

the hypothesis of strain hardening for the evolution of the hardening/softening parameters; 



whereas, the Macorini’s and Citto’s models use the hypothesis of work hardening. All these 

constitutive models were also implemented in the FE software ABAQUS (Dassault Systémes 

2013a) by using a UMAT subroutine, similar to the implementation of the CTSIM, in order to 

provide a common platform for the comparison of these models with the CTSIM by removing the 

bias that could arise from the usage of different integration schemes. 

One-element test  

In the following section, the performance of the different models is assessed through a one-

element test. A single zero-thickness interface element is subjected to thirteen different load paths 

defined by the angle ( )arctan / nu uτθ =  , where 2 2
s tu u uτ = +  (as shown in Fig. 4), i.e., by 

considering a proportional increase of axial and shear relative displacements corresponding to θ  

= 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 165°, and 180°. The relative displacement 

magnitude was incremented from 0 mm=u  to 0.2 mm=u  using a displacement control 

analysis. Four different load step sizes were considered by dividing the final relative displacements 

into 5, 10, 50, and 100 equal increments (designated as N5, N10, N50, and N100 respectively). 

The material parameters corresponding to the joints of a shear wall described in Vermeltfoort and 

Raijmakers (1993a, 1993b) and given in  

 

Table 1 and  

 

Table 2 were used in these one-element tests. The adaptive sub-stepping algorithm was not 

activated in any of the considered constitutive models during these analyses to ensure a consistent 

(i.e., fixed) load step size for all constitutive models during each set of analyses. A total of 52 finite 

element response simulations (corresponding to 13 load paths each with four load step sizes) were 



carried out for each constitutive model, and these simulations were performed in ABAQUS 

(Dassault Systémes 2013a) with one CPU on a computer having an Intel(R) Core(TM) i5-2400S 

CPU @ 2.50 GHz processor and 12.0 GB RAM. 

For determining the accuracy of the constitutive models, a base load step size corresponding 

to 1,000 relative displacement increments (i.e., N1000 with 42 10  mm−Δ = ×u ) is used to compare 

the results of the one-element tests. This load step size is considered sufficiently small to serve as 

an accurate reference solution for estimating the percentage error, δ , which is evaluated through 

the expression (Simo and Taylor 1986): 

 
( ) ( )

100
T

n exact n exact

T
exact exact

δ
− ⋅ −

= ×
⋅

σ σ σ σ

σ σ
  (13) 

in which nσ  denotes the numerical traction response of the single interface element obtained 

by using different relative displacement increments, and exactσ  denotes the reference solution of the 

traction response corresponding to the same constitutive model used to evaluate nσ  with 1000 

relative displacement increments (i.e., for N1000 load step sizes). The CPU time ratio (CTR) of 

the simulations for the different constitutive models with respect to the CPU time of the reference 

solution obtained using the CTSIM for each load path is also calculated. The results in terms of 

CTR and δ  for the different constitutive models are reported in  

Table 3 and Table 4 for the tension-shear region (load paths θ  = 0°, 15°, 30°, 45°, 60°, 75°, 90°) 

and compression-shear region (load paths θ  = 105°, 120°, 135°, 150°, 165°, and 180°), 

respectively. Simulation results having  percentage errors δ  higher than 5% are identified by 

underlines in these tables. Some simulations did not converge to a solution for large (fixed) load 

step sizes and are identified by a hyphen. As expected, the presented results indicate that the δ  

increase for decreasing CTR along all load paths for all constitutive models. 



Tension-shear region 

In the tension-shear region, nine simulations (out of 28 simulations) did not converge for both 

Macorini’s and Citto’s models, whereas all simulations for the CTSIM and Lourenco’s model 

reached convergence for all load step sizes. Among the converged simulations, 27 simulations 

converged with less than 5% errors for the CTSIM (i.e., only one simulation had δ  larger than 

5%), 25 simulations converged with less than 5% errors for the Lourenco’s model (i.e., three 

simulations had δ  larger than 5%), 17 simulations converged with less than 5% errors for the 

Macorini’s model (i.e., two simulations had δ  larger than 5% in addition to the nine simulations 

that did not converge), and 13 simulations converged with less than 5% errors for the Citto’s model 

(i.e., six simulations had δ  larger than 5% in addition to the nine simulations that did not 

converge). Considering only the converged cases, the CPU time used by the simulation based on 

the CTSIM is less than or equal to the CPU time corresponding to the Lourenco's, Macorini’s, and 

Citto’s models in 25 (out of 28), 17 (out of 19), and 12 (out of 19) simulations, respectively.  

The results presented in  

Table 3 for the tension-shear region indicate that the CTSIM is: (1) computationally robust for 

all load step sizes except for case N5 of load path θ = 90º, (2) generally more accurate and 

computationally robust than the other three constitutive models considered here, and (3) 

computationally efficient, since for all considered load paths it can provide accurate results with 

load step sizes that are larger than or equal to those needed for any other constitutive models.  

In order to understand better the mechanical differences among the different models, iso-error 

maps (Simo and Taylor 1986; De Borst and Feenstra 1990; Fuschi et al. 1992) were developed for 

all four constitutive models at the point on the yield surfaces corresponding to load path θ  = 

36.13° (see Fig. 5). This point was selected as representative of the tension-shear region because 



it corresponds to the singularity point between the Rankine and Mohr-Coulomb failure criteria in 

the Lourenco’s model and, thus, can be used to illustrate the advantages of using a single surface 

failure criterion by eliminating the singularity in the tension-shear region. The iso-error maps plot 

the error defined in Eq. (13) as a function of the normalized increment of relative displacement in 

the axial direction, nu , and in the shear direction, uτ . The normalization parameter for each of 

these relative displacement increments corresponds to the elastic relative displacement associated 

with the initial yielding in each of the two directions, respectively. Fig. 5(a) through 5(d) plot the 

iso-error maps for the CTSIM, Lourenco’s, Macorini’s, and Citto’s models, respectively. The inset 

in each subfigure shows the location on the corresponding yield surface of the point selected as 

the origin of the iso-error map. The shaded region in each subfigure indicates the combinations of 

relative displacement increments for which the corresponding model cannot achieve convergence. 

It is observed that, within the range of normalized relative displacement increments considered 

here, the CTSIM is the only model that can always achieve convergence. The Lourenco’s model 

does not converge within a region that corresponds approximately to 1n nyu uΔ ≥  and 

y n nyu u u uτ τΔ ≥ Δ . This result was first qualitatively observed in Lourenço (1994) and is due both 

to the presence of a singularity in the yield surface and to the heuristic (i.e., trial-and-error) 

approach adopted in the Lourenco’s model to identify the active yield surface(s), which cannot 

guarantee convergence of the analysis for large load step sizes (Lourenço 1994). The Macorini’s 

and Citto’s models also present a region of non-convergence, corresponding approximately to 

2n nyu uΔ ≥  and 3n nyu uΔ ≥ , respectively. This non-convergence region for these two models is 

due to the presence of a non-physically meaningful branch of the yield surface having a quadratic 

functional form, as previously discussed. In particular, the convergence of these models is 

impaired as soon as the imposed relative displacement increment intercepts the non-physically 



meaningful branch of the corresponding yield surface. It is observed that, when the models 

converge, the magnitude of the errors is smallest for the Lourenco’s model (i.e., less than 0.01%), 

followed by the CTSIM (i.e., less than or equal to approximately 2%), and then by the Macorini’s 

and Citto’s models (i.e., less than 10%). These error’s magnitudes increase with the complexity of 

the functional form used for the corresponding yield surfaces (i.e., the Lourenco’s model is 

represented by linear yield functions, which correspond to the simplest functional form and the 

smallest percentage errors). The errors also depend on the hardening/softening hypothesis used in 

each model (i.e., the Macorini’s and Citto’s models use a work hardening/softening hypothesis, 

which negatively affects the accuracy of their solutions when compared with the results obtained 

using the CTSIM and Lourenco’s model, which adopt a strain hardening/softening hypothesis). 

Finally, it is also observed that the percentage error for all models is more sensitive to the size of 

the relative displacement increments in the axial direction than to that of the relative displacement 

increments in the shear direction. Based on these results, it is concluded that the CTSIM provides 

the best compromise between accuracy and robustness in the tension-shear region among all 

models considered in this study. 

Compression-shear region 

In the compression-shear region, two simulations (out of 24 simulations) did not converge for 

both Macorini’s and Citto’s models, whereas all simulations for the CTSIM and Lourenco’s model 

reached convergence. Among the converged simulations, 19 simulations converged with less than 

5% errors for the CTSIM and Lourenco’s model (i.e., five simulations had δ  larger than 5%), 18 

simulations converged with less than 5% errors for the Macorini’s model (i.e., four simulations 

had δ  larger than 5% in addition to the two simulations that did not converge), and 12 simulations 

converged with less than 5% errors for the Citto’s model (i.e., nine simulations had δ  larger than 



5% in addition to the three simulations that did not converge). Considering only the converged 

cases, the CPU time used by the simulation based on the CTSIM is less than or equal to the CPU 

time corresponding to the Lourenco's, Macorini’s, and Citto’s models in 21 (out of 24), 16 (out of 

22), and 18 (out of 22). 

The results presented in Table 4 indicate that the performance of CTSIM in the compression-

shear region is practically identical to that of the Lourenco's model since both models use the same 

compression cap model for representing the compression failure. These models are: (1) 

computationally robust for all load step sizes except for the N5 (load paths θ  = 120º, 135º, 150º, 

165º, and 180º) and N10 (load paths θ  = 150º and 165º); (2) more accurate and computationally 

robust than the Macorini’s, and Citto’s models; and (3) computationally efficient, since both 

models provide accurate results with load step sizes that are larger than or equal to those for the 

Macorini’s and Citto’s models. 

Discussion of one-element test results 

The different performance of the constitutive models cosidered here can be more easily 

interpreted by analyzing the properties of the integration algorithm (i.e., the elastic predictor-

plastic corrector strategy with local/global Newton-Raphson integration) and its interaction with 

the constitutive models’ equations. During the plastic-corrector step, different sets of equations are 

solved in the different constitutive models depending upon which failure surface(s) is(are) 

violated, leading to different sizes of the Jacobian matrix that needs to be inverted. The size of this 

Jacobian matrix and the complexity of each Jacobian component both contribute towards the 

computational cost and accuracy of the different constitutive models in the different regions (i.e., 

tension, shear, and compression cap regions). For the CTSIM, three different cases can be 

encountered during the plastic-corrector step: (1) violation of the tension-shear failure surface, 



which involves a 6×6 Jacobian matrix (see Eq. (14) in Appendix); (2) violation of the compression 

cap failure surface, which involves a 5×5 Jacobian matrix (see Eq. (15) in Appendix); and (3) 

violation of both failure surfaces, which involves an 8×8 Jacobian matrix (see Eq. (16) in 

Appendix). Fig. 6 illustrates the size of the Jacobian matrix used in the different regions of the 

different constitutive models.  

The CTSIM is at least as efficient as the Lourenco's model along load paths θ  = 0º, 15º, 30º, 

45º, and 60º. In this region, the return mapping algorithm for the Lourenco’s model requires 

inverting a 3×3, 5×5, and/or 7×7 Jacobian matrix, depending on which failure surface(s) is(are) 

violated, whereas the the CTSIM requires the inversion of a 6×6 Jacobian matrix. However, the 

Jacobian matrix for the Lourenco’s model mainly assumes a 7×7 dimension because, in most of 

the cases, both the Rankine and the Mohr-Coulomb failure surfaces are simultaneously violated, 

generally for large load steps or even for small load steps after the failure surfaces have 

experienced softening of their scalar parameters. The accuracy of the results obtained using the 

Lourenco's model is very similar or slightly lower than the accuracy of the CTSIM’s results for 

load paths 15º, 30º, 45º, and 60º since the Lourenco’s model requires the solution of a multi-surface 

plasticity problem (with a singularity located along the load path θ  = 33.02º for the specific 

problem considered in this study), whereas the CTSIM uses a single surface in the same region. 

For load paths θ  = 75º and 90º, the Lourenco’s model is slightly more efficient than the CTSIM 

because the Jacobian matrix has dimensions 5×5 for the Lourenco’s model and 6×6 for the CTSIM. 

However, the CTSIM is consistently more accurate than the Lourenco’s model along these load 

paths, particularly for large load step sizes. In the shear-tension region, the Macorini’s and the 

Citto’s models are very similar, because they use the same equation to define the failure surface 

and the hypothesis of work hardening. When compared to the CTSIM, the Macorini’s and Citto's 



model perform poorly for load paths with small angles, i.e., θ ≤ 60º.  These two models perform 

better for load paths θ  = 75º and 90º, and Citto’s model is the most efficient and accurate model 

for θ  = 90º. 

In the compression-shear region, both the CTSIM and Lourenco’s model have a similar 

efficient and accurate behaviour, with the exception of cases corresponding to large load step sizes. 

This is due to the fact that in this region the two models use the same failure criteria. In the 

compression-shear region, the Macorini’s and Citto's model are very different from each other and 

from the other constitutive models. In general, the Macorini’s model is generally more efficient 

than the CTSIM and Lourenco’s model for small load step sizes, but is less accurate (or lacks 

convergence) for large load step sizes. The Citto’s model generally performs poorly, both in terms 

of efficiency and accuracy. The efficiency of the Macorini’s model for small load step sizes can 

be attributed to its evolution model for the compressive yield stress, which assumes a linear 

behavior up to the peak compressive yield stress, after which softening of the compressive yield 

stress takes place (Macorini and Izzuddin 2011). By contrast, the CTSIM and Lourenco’s model 

assume a linear behavior only up to an initial compressive yield stress that is significantly lower 

than the peak compressive yield stress (e.g., approximately 1/3 of it for quasi-brittle materials 

(Bakeer 2009)), which is followed by hardening till the peak compressive yield stress and by 

softening afterward (see Fig. 2 and Eq. (12)). In addition, it appears that the lower accuracy of the 

Macorini’s and Citto's models may be related to their use of the work hardening hypothesis, in 

contrast with the CTSIM and Lourenco’s model that use the hypothesis of strain hardening. In 

particular, for the specific problem considered in this paper of interface element’s constitutive 

models for masonry analysis based on the SMM approach, the hypothesis of strain 

hardening/softening appears to improve the robustness of the numerical response for yield surfaces 



that evolve for increasing plastic deformation, as assumed by the softening plasticity framework 

adopted in this study. 

Constitutive model comparison using masonry shear wall experimental data 

The performance of the proposed CTSIM is compared with the other constitutive models 

considered in this study through the numerical response analysis of an unreinforced masonry shear 

wall for which experimental data are available in Vermeltfoort and Raijmakers (1993a, 1993b). 

The numerical analyses were performed for all constitutive models using the FE software 

ABAQUS (Dassault Systémes 2013a). 

The masonry shear wall consisted of a pier with a width to height ratio approximately equal to 

one, i.e., with dimensions 990 mm × 1000 mm, as shown in Fig. 7(a). The wall was built using 

wire cut solid clay blocks of dimensions 210 mm × 52 mm × 100 mm and mortar layers of 

thickness equal to 10 mm, and consisted of 18 courses of blocks, two of which (the bottom and 

top ones) were clamped to steel beams that were used to transfer the lateral load to the system, as 

shown in Fig. 7(a). The mortar was prepared with one part of cement, two parts of lime, and nine 

parts of sand. The experimental test involved a uniformly distributed normal pressure (

0.30 MPap = ), followed by a monotonically increasing horizontal loading phase, in which a 

horizontal displacement Δ  was applied quasi-statically to the top of the wall through a steel beam 

while keeping the bottom boundary fixed horizontally. The material properties of blocks and 

mortar were obtained from experimental results of tension, shear, and compression tests reported 

in the literature Vermeltfoort and Raijmakers (1993a, 1993b) and are the same as those reported 

in  

 

Table 1 (elastic properties) and  

 



Table 2 (inelastic properties). 

Definition of FE models for unreinforced masonry shear wall 

The SMM approach with elastic masonry units and non-linear joints was adopted here for the 

FE modeling of the unreinforced masonry shear wall described above. Plane stress conditions were 

assumed, and geometric non-linearity (i.e., large strains and large displacements (Dassault 

Systèmes 2013b)) was also included in the simulation of the FE models. The FE model consisted 

a set of elastic masonry units bonded by potential crack, potential slip, and crushing planes at 

joints, see Fig. 7(b). For modelling cracking of the masonry units, a potential crack was placed 

vertically in the middle of each unit as shown in Fig. 7(b). All the degrees of freedoms are 

restrained at the bottom of the FE model, and a monotonically increasing horizontal displacement 

is applied on the side of the top course of the FE model while keeping the top edge of the FE model 

vertically fixed, see Fig. 7. A general procedure for static loading based on an incremental-iterative 

globally-convergent Newton-Raphson method with the line search technique was used in 

ABAQUS (Dassault Systémes 2013a) for solving the nonlinear system of equilibrium equations 

for the different FE models (Dassault Systèmes 2013b). In addition, an automatic load step 

increment technique was adopted for efficient and robust simulation of the response of the different 

FE models with initial, minimum, and maximum normalized increment sizes equal to 1×10-4, 

1×10-9, 5×10-4, respectively. 

In the FE models of the masonry shear wall, the masonry units were modeled using a 4-node 

bilinear plane stress quadrilateral element with reduced integration and hourglass control (CPS4R 

element (Dassault Systèmes 2013b)), and the joints and potential cracks were modeled by using a 

4-node two-dimensional cohesive element (CPS4R element (Dassault Systèmes 2013b)). A mesh 

sensitivity analysis of the FE Model was performed to ensure a good compromise between 



accuracy and computational costs for all the constitutive models. The mesh used in this study 

consisted of six interface elements employed for each bed joints (i.e., three interface elements for 

the bed joint of each half masonry unit), two interface elements employed for each head joint and 

for potential vertical cracks, and six CPS4R elements for each half masonry unit. One FE model 

was built for each of the constitutive models considered in this study, i.e., CTSIM, Lourenco’s, 

Macorini’s, and Citto’s models. The adaptive sub-stepping algorithm was activated for all 

considered constitutive models to achieve maximum computational efficiency in all FE analyses. 

It should be noted here that the behavior of the potential vertical cracks did not include the 

compression failure mechanism. Thus, the compression failure surface of the CTSIM, Lourenco’s 

model, and Macorini’s model was deactivated for the interface element of potential vertical cracks, 

and a high ‘dummy’ value in the Citto’s model was used for the compressive yield stress to avoid 

activation of the failure surface in the compression region of this constitutive model. 

Comparison of FE responses and experimental data 

The comparison of the experimental load-displacement curves with their numerical 

counterparts for all constitutive models is shown in Fig. 8. The FE response results obtained using 

any of the interface element’s constitutive models considered in this study are in very good 

agreement with the experimental behavior, with a ratio of the numerically simulated peak load 

over the average experimental peak load equal to 1.04, 1.01, 1.10, and 0.98 for the CTSIM, 

Lourenco's, Macorini’s, and Citto’s models, respectively. The deformed shape and the minimum 

principal stress distribution (corresponding to the maximum compressive stress) at an applied top 

horizontal displacement 4 mmΔ =  (i.e., the maximum displacement recorded in the experimental 

tests) of the FE analyses using different constitutive models are presented in Fig. 9. For the sake 

of visualization, the interface elements are represented by white empty spaces in this figure so that 



highly plasticized interface elements appear as openings between masonry units. The stress 

distributions of the shear wall FE models corresponding to the different constitutive models were 

very similar. In addition, the crack patterns were also similar to those observed experimentally for 

all FE models, except for that corresponding to the Citto’s model. During the application of the 

monotonically increasing horizontal load, horizontal tensile cracks developed at the bottom and 

top of the wall, particularly in the bed joint at an early loading stage, followed by the formation of 

a diagonal stepped crack due to a combined tension-shear failure of the joints. For large horizontal 

load levels, the diagonal stepped crack was followed by crushing of the toes of the masonry and 

tensile cracking within the masonry units, leading to the overall failure of the masonry wall. The 

cracking of the masonry units is significant for all constitutive models except for the Citto’s model, 

in which the behavior of the potential vertical crack within a unit is more ductile than for the other 

constitutive models, leading to smaller crack’s openings. This behavior is due to the use of a high 

‘dummy’ value for the compressive yield stress of cracks within the masonry units, which is 

required to avoid the activation of the compressive failure surface in the Citto’s model. In fact, 

while for the CTSIM, Lourenco's, and Macorini’s models the compressive failure surface is 

independent of the tension-shear behavior, a change of the compressive yield stress in the Citto’s 

model affects also the shape of the failure surface in the tension-shear region. This shape change 

deteriorates the capability of the Citto’s model to simulate the brittle cracking of masonry units.    

Assessment of computational cost 

The FE models corresponding to the different constitutive models were also compared in terms 

of computational cost. In particular,  

Table 5 reports the number of increments, cutbacks (reduction of load/displacement increment 

size when the iterative global solution algorithm cannot converge within a specified number of 



iterations), and total iterations (Dassault Systèmes 2013b), as well as the CPU time ratios (CTR) 

corresponding to the FE analyses for each of the considered constitutive models. The CTRs were 

calculated with respect to the total CPU time corresponding to the FE analysis using the CTSIM, 

which was assumed as a reference with CTR = 1.00. The FE analysis based on the CTSIM took 

9.53 hours of CPU time using an Intel(R) Core(TM) i5-2400S CPU @ 2.50 GHz processor and 

12.0 GB RAM. It is noteworthy that the FE analysis using the CTSIM was found to be the least 

computationally expensive one among those considered in this study. The second most 

computationally efficient model was the Macorini’s model with CTR = 1.22, followed by the 

Lourenco's model (CTR = 1.37) and the Citto’s model (CTR = 1.48). Moreover, the CTSIM 

completed the simulation with the smallest numbers of increments, cutbacks, and total iterations. 

This result indicates that the CTSIM can allow FE simulation of the masonry shear wall with larger 

load steps than those corresponding to the other interface element’s constitutive models, which 

explains the lower computational cost of the proposed constitutive model.  

 

Table 6 reports the number of the local iterations corresponding to the different regions of 

constitutive models during the FE simulations of the benchmark masonry shear wall. It is observed 

that the CTSIM requires the least number of local iterations, i.e., 21.15 million, followed by the 

Macorini’s (24.77 million), Lourenco’s (27.68 million), and Citto’s models (29.81 million).  

The FE simulation with the CTSIM requires 17.96 local iterations (out of 21.15 million) 

occurring in the tension and shear failure region, which corresponds to a 6×6 Jacobian matrix. For 

the Lourenco’s model, 24.58 million local iterations (out of 27.68 million) occur in the failure 

region. These local iterations are associated with three different failure conditions, i.e.: (1) 

violation of the Rankine failure criterion that requires the inversion of a 3×3 Jacobian matrix (0.52 



million iterations); (2) violation of the Mohr-Coulomb failure criterion that requires the inversion 

of a 5×5 Jacobian matrix (18.47 million iterations); and (3) violation of both failure criteria 

simultaneously (T-S corner), which requires the inversion of a 7×7 Jacobian matrix (5.59 million 

iterations). By contrast, Thus, by comparing the FE simulations with the CTSIM and the 

Lourenco’s model, it is observed that the use of a smooth failure surface instead of the two different 

failure surfaces (the Rankine and Mohr-Coulomb failure surfaces) results in 6.62 million fewer 

local iterations. Even though the computational cost associated with each local iteration for the 

two constitutive models is different (generally lower for the Lourenco’s model), the CTSIM results 

in lower CPU times because of the significantly smaller number of iterations required. Therefore, 

it can be concluded that the use of smooth failure surface to describe the shear and tension failure 

region results in a more computationally efficient interface element’s constitutive model. 

Furthermore, the FE simulation with the Macorini’s model requires 24.42 million local iterations 

violating the tension and shear failure criterion, which is 6.46 million iterations more 

(approximately 35.97%) than the corresponding total local iterations for the CTSIM. In addition, 

the FE simulation with the Macorini’s model required a comparatively higher number of global 

increments (approximately 33.60% higher) when compared with the CTSIM, as reported in  

Table 5. The higher number of local iteration and global increments may be due to the fact 

that the Macorini’s model requires smaller load step sizes to achieve the same accuracy of the 

CTSIM, as shown by the results reported for the one-element test. 

In the compression cap failure region, the FE simulations of the masonry shear wall with the 

CTSIM and Lourenco’s model results in 3.19 million and 3.10 million local iterations, 

respectively, which require the inversion of a 5×5 Jacobian matrix. Thus, the Lourenco’s model is 

slightly more efficient than the CTSIM in the compression cap failure region. The Macorini’s 



model requires only 0.35 million local iterations that correspond to violating the compression 

failure surface. This difference in the number of local iterations when compared to the CTSIM and 

Lourenco’s models is mainly due to the different assumptions for the evolution of the compressive 

yield stress and the different values for the initial compressive yield stress. In fact, these different 

assumptions result in the Macorini’s model exhibiting linear elastic behavior for a much wider 

range of strains and stresses when compared to the CTSIM and Lourenco’s model. 

The FE simulation of the masonry shear wall with the Citto’s model results in the largest 

number of local iteration, i.e., 26.81 million local iterations, compared to the other constitutive 

models. Thus, the Citto’s model is the least efficient model among those considered in this study 

for simulating the response of this masonry shear wall. This result is due to: (1) the lower accuracy 

in normal and shear stress evaluations for a given load/displacement step size (as shown by the 

results reported for the one-element test); (2) the larger size of the Jacobian matrix (10×10) that 

needs to be inverted in the local iterations; (3) the more complex equation used for representation 

of the single failure surface. The comparison of the computational costs of the FE simulations 

corresponding to the different constitutive models considered in this study (i.e., the CTSIM, 

Lourenco’s model, Macorini’s model, and the Citto’s model) indicate that the use of single failure 

surface for all failure modes decreases the overall computational efficiency of the interface 

element’s constitutive model.  

Conclusions 

A new interface element’s constitutive model, referred to as coupled tension-shear interface 

model (CTSIM), is proposed in this paper for finite element (FE) analysis of masonry using the 

simplified micro-modeling approach. This new model is capable of simulating tension cracking, 

shear slipping, and compression failure and is defined by a convex composite failure surface 



consisting of a tension-shear failure criterion and a compression cap failure criterion. The 

constitutive model is implemented in the FE software ABAQUS through a user-defined material 

subroutine. The different constitutive equations of the CTSIM are integrated using the implicit 

backward Euler integration method, and the integrated equations are solved monolithically with 

the local/global Newton-Raphson technique, which leads to a combined local and global solution 

strategy. Moreover, the CTSIM is combined with an adaptive sub-stepping strategy to ensure 

convergence and accuracy of the final solution for larger load step sizes. 

The performance of the CTSIM is assessed through a series of one-element tests and through 

the comparison of FE response simulation and experimental results for an unreinforced shear wall. 

Furthermore, the robustness, computational cost, and accuracy of the CTSIM are also compared 

with three constitutive models that are available in the literature, i.e., the Lourenco’s, Macorini’s 

and Citto’s models. The comparison of one-element test’s results shows that the CTSIM is at least 

as efficient as and generally more robust than the other constitutive models for varying load step 

sizes and load paths. The comparison of the FE results for the masonry shear wall indicates that 

the CTSIM is more efficient than and at least as accurate as the other constitutive models. 

Moreover, it is observed that: (1) the use of a single failure surface for mode-I and mode-II failure 

can improve the computational efficiency and robustness of the constitutive model when compared 

to constitutive models that use two separate failure surfaces; (2) the use of a single failure surface 

for all failure mechanisms has negative effects on the computational efficiency and robustness of 

the constitutive model when compared to constitutive models that use  multi-surface criteria; and 

(3) constitutive models based on the hypothesis of strain hardening seem to be more efficient and 

robust than those based on the hypothesis of work hardening. 

Appendix: Integration scheme for constitutive equations 



The local/global Newton-Raphson strategy (Ottosen and Ristinmaa 2005; Caballero et al. 

2008; Macorini and Izzuddin 2011) is used to solve the nonlinear system of algebraic equations 

obtained from the implicit backward Euler integration (Simo and Hughes 2006) of the CTSIM. 

This integration procedure leads to a set of algebraic-incremental equations that are solved using 

an elastic predictor-plastic corrector approach. The plastic correction step is performed when the 

trial stress violates at least one failure criteria (failure surfaces) and consists in an iteration process 

that requires: (1) evaluating the residuals of the non-linear constitutive equations, (2) evaluating 

the Jacobian of the residuals, (3) solving the set of algebraic equations to obtain the increments of 

the independent variables, (4) evaluating the updated residuals and repeating the iteration until 

these residuals become smaller than a specified tolerance. Three different cases can occur in the 

plastic correction step: (1) violation of the tension-shear failure criterion, (2) violation of the 

compression cap failure criterion, and (3) violation of both tension-shear and compression cap 

failure criteria. The Jacobian of the residuals for these three cases are: 

1. Violation of the tension-shear failure criterion, with independent variables σ , 1κ , 2κ , and 1 :λΔ
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where 3I  represents the 3×3 identity matrix and 1λΔ  denotes the increment of the plastic multiplier 

for the tension-shear failure surface 1 1 2( , , )F κ κσ .  

2. Violation of the compression cap failure criterion, with independent variables σ , 3κ , and 2 :λΔ  
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where 2λΔ  denotes the increment of the plastic multiplier for the compression cap failure surface 

2 3( , ).F κσ  

3. Violation of both tension-shear and compression cap failure criteria (S-C corner), with 

independent variables σ , 1κ , 2κ , 3κ , 1λΔ  and 2 :λΔ  
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where { }1 2 3, , Tκ κ κ=κ . Note that some of the terms in Eqs. (14), (15), and (16) are matrices or 

vectors. 
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Figure Captions 

Fig. 1. Typical composite failure surface for the proposed CTSIM in stress space. 

Fig. 2. Hardening/softening law for compression cap failure criterion. 

Fig. 3. Typical failure surface in stress space for: (a) Lourenco's model, (b) Macorini’s model, 

and (c) Citto's model. 

Fig. 4. Load paths used in the one-element test of the different constitutive models. 

Fig. 5. Iso-error maps for the point on the yield surfaces at θ  = 36.13°: (a) CTSIM, (b) 

Lourenco’s model, (c) Macorini’s model, and (d) Citto’s model. 

Fig. 6. Size of the Jacobian matrix for different regions of the constituitve models: (a) CTSIM,  

(b) Lourenco’s model, (c) Macorini’s model, and (d) Citto’s model. 

Fig. 7. Masonry shear walls: (a) shear walls, and (b) SMM used for simulating the shear wall. 

Fig. 8. Comparison of experimental and numerical results in terms of load-displacement 

response of the shear wall. 

Fig. 9. Comparison of experimental and numerical results: (a) and (b) experimental crack 

patterns for the two specimens; and deformed shaped and distribution of minimum principal 

stress for (c) CTSIM, (d) Lourenco’s model, (e) Macorini’s model, and (f) Citto’s model. 

 
Table 1. Elastic properties of masonry units, joints, and potential cracks. 

Property Value 
Masonry units 

E  [MPa] 16,700 
υ  0.15 

Joints 
nk  [N/mm3] 82.00 
sk  [N/mm3] 36.00 

Potential cracks 
nk   [N/mm3] 10,000 

sk   [N/mm3] 10,000 
 

 
 



Table 2. Inelastic properties for joints and potential cracks. 
Property Joints Potential cracks 

Tension-shear failure criterion 
tf [MPa] 0.25 2.0 
I
fG  [N/mm] 0.018 0.008 

0C  [MPa] 1.45 tf  1.45 tf  

0QC  [MPa] 050C  0C  

0tan / tan rφ φ  0.75/0.75 1.0/1.0 

0tan / tan rψ ψ  0.001/0.0001 1.0/1.0 
II
fG  [N/mm] 0.125 0.50 

Compression cap failure criterion 
0σ  [MPa] 3.5 - 

pσ  [MPa] 10.5 - 

mσ  [MPa] 5.25 - 

rσ  [MPa] 1.5 - 

pκ  0.09 - 

mκ  0.49 - 

 
Table 3. CPU time ratio (CTR) vs percentage error (δ) for tension-shear region. 

θ N CTSIM Lourenco’s model Macorini’s model Citto’s model 
CTR δ CTR δ CTR δ CTR δ 

0 N100 0.093 <0.01 0.106 <0.01 0.106 2.62 0.087 96.45 
N50 0.050 <0.01 0.050 <0.01 0.050 5.58 0.043 >100 
N10 0.012 <0.01 0.012 <0.01 - - - - 
N5 0.006 <0.01 0.006 <0.01 - - - - 

15 N100 0.099 <0.01 0.106 <0.01 0.113 2.26 0.134 1.67 
N50 0.042 <0.01 0.049 <0.01 0.049 4.81 0.056 >100 
N10 0.014 <0.01 0.021 <0.01 - - - - 
N5 0.007 <0.01 0.007 0.02 - - - - 

30 N100 0.101 <0.01 0.101 <0.01 0.109 1.60 0.116 1.44 
N50 0.058 <0.01 0.051 <0.01 0.051 3.40 0.051 >100 
N10 0.014 <0.01 0.014 0.03 - - - - 
N5 0.007 <0.01 0.007 0.04 - - - - 

45 N100 0.093 <0.01 0.099 <0.01 0.105 0.92 0.099 1.09 
N50 0.049 <0.01 0.062 <0.01 0.049 1.94 0.049 2.30 
N10 0.019 <0.01 0.019 <0.01 - - - - 
N5 0.006 <0.01 0.006 67.70 - - - - 

60 N100 0.096 <0.01 0.110 <0.01 0.103 0.03 0.103 0.68 
N50 0.062 <0.01 0.062 <0.01 0.055 0.08 0.055 1.42 
N10 0.014 <0.01 0.021 <0.01 0.021 1.28 0.014 >100 
N5 0.007 <0.01 0.007 >100 - - - - 

75 N100 0.097 <0.01 0.090 <0.01 0.111 0.10 0.097 0.29 
N50 0.056 <0.01 0.049 <0.01 0.056 0.21 0.049 0.61 
N10 0.014 <0.01 0.014 <0.01 0.014 1.67 0.014 4.04 
N5 0.007 0.03 0.007 37.87 0.007 1.83 0.007 10.16 

90 N100 0.097 0.42 0.103 0.02 0.109 0.35 0.085 0.22 
N50 0.048 0.87 0.048 0.04 0.055 0.72 0.042 0.46 
N10 0.012 3.42 0.012 0.33 0.018 3.50 0.018 2.60 



N5 0.006 5.90 0.006 1.46 0.012 8.37 0.006 4.58 
 

Table 4. CPU time ratio (CTR) vs  percentage error (δ) for compression-shear region. 
θ N CTSIM Lourenco’s model Macorini’s model Citto’s model 

CTR δ CTR δ CTR δ CTR δ 
105 N100 0.105 0.02 0.105 0.01 0.112 0.03 0.112 0.12 

N50 0.049 0.05 0.056 0.02 0.042 0.31 0.042 0.29 
N10 0.014 0.39 0.014 0.33 0.014 3.53 0.014 1.09 
N5 0.007 0.76 0.007 0.45 0.007 10.39 0.007 1.72 

120 N100 0.101 0.06 0.109 0.06 0.109 0.05 0.109 6.19 
N50 0.051 0.12 0.065 0.13 0.051 0.11 0.051 7.19 
N10 0.014 1.17 0.014 1.31 0.014 3.16 0.014 10.60 
N5 0.007 49.53 0.007 54.68 0.007 73.19 0.007 >100 

135 N100 0.102 0.07 0.102 0.08 0.102 0.11 0.109 0.57 
N50 0.054 0.14 0.048 0.16 0.048 0.24 0.051 1.23 
N10 0.014 1.32 0.014 1.54 0.014 0.60 0.014 57.20 
N5 0.007 35.45 0.007 35.56 0.007 52.46 0.007 >100 

150 N100 0.094 0.05 0.101 0.07 0.081 0.12 0.107 0.65 
N50 0.054 0.11 0.054 0.14 0.047 0.24 0.040 1.34 
N10 0.013 1.03 0.013 1.26 0.013 2.24 0.013 98.96 
N5 0.007 49.10 0.007 48.81 - - - - 

165 N100 0.104 0.02 0.090 0.03 0.097 0.02 0.111 0.14 
N50 0.056 0.05 0.042 0.06 0.049 0.05 0.049 0.20 
N10 0.014 0.81 0.014 0.57 0.014 0.32 0.021 11.19 
N5 0.007 55.63 0.007 54.73 0.007 61.02 - - 

180 N100 0.097 <0.01 0.097 <0.01 0.103 0.01 0.097 1.18 
N50 0.055 <0.01 0.055 <0.01 0.055 0.02 0.055 2.10 
N10 0.014 <0.01 0.014 <0.01 0.014 0.22 0.014 13.43 
N5 0.007 59.35 0.007 57.99 - - - - 

 
 
Table 5. Load increments and CPU time ratio for different constitutive models in the analysis of the 
benchmark masonry shear wall. 

Item CTSIM Lourenco’s model Macorini’s model Citto’s model 
Increments 26,620 29,679 35,564 40,119 
Cutback 6,796 7,861 9,538 11,137 
Total iterations 106,567 114,378 136,680 170,495 
CPU time ratio (CTR) 1.00 1.37 1.22 1.48 

 
 

Table 6. Number of iterations under different conditions for different models. 

Violation of failure criterion 

CTSIM Lourenco’s model Macorini’s model Citto’s model 
Iteration 

(Millions) % 
Iteration 

(Millions) % 
Iteration 

(Millions) % 
Iteration 

(Millions) % 
Rankine - - 0.52 1.89 - - 29.81 100 
Mohr-Coulomb - - 18.47 66.74 - - 
Tension-shear 17.96 82.60 - - 24.42 98.58 
Compression cap 3. 01 16.58 2.93 10.58 0.32 1.31 
T-S corner* - - 5.59 20.19 - - 
S-C corner** 0.18 0.82 0.17 0.60 0.03 0.11 
Total 21.15 

 
27.68 

 
24.77 

 
29.81 

 

* Multi-surface singularity between Rankine and Mohr-Coulomb failure criterion 
** Multi-surface singularity between Mohr-Coulomb or tension-shear and compression cap failure criterion 
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