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Abstract of the Dissertation

Optimal Oscillations and Chaos Generation in Biologically-Inspired

Systems

by

Saba Kohannim

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2016

Professor Tetsuya Iwasaki, Chair

Biological systems display a variety of complex dynamic behaviors, ranging from periodic

orbits to chaos. Regular rhythmic behavior, for instance, is associated with locomotion, while

chaotic behavior is observed in neural interactions. Both these cases can be mathematically

expressed as the interaction of a collection of coupled bodies or oscillators that are actuated

to behave with a desired pattern. In animal locomotion, this desired pattern is the periodic

body motion (gait) that interacts with the environment to generate thrust for motion. By

contrast, the observed behavior of a network of neurons is possibly chaotic and flexible. This

research focuses on the design and analysis of these two types of behaviors in biologically-

inspired systems.

A fundamental problem in animal locomotion is determining a gait that optimizes an

essential performance while satisfying a desired velocity constraint. In this study, a functional

model is developed for a general class of three dimensional locomotors with full (six) degrees

of freedom, in addition to arbitrary finite degrees of freedom for body shape deformation.

An optimal turning gait problem is then formulated for a periodic body movement that

minimizes a quadratic cost function while achieving a steady turning motion with prescribed

average linear and angular velocities. The problem is shown to reduce equivalently to two

separate and simpler minimization problems that are both solvable for globally optimal

solutions.
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Optimal gait theory can also be utilized in order to determine analytical justifications

for observed behavior in biological systems. In this study, a simple body-fluid fish model

is developed, and steady swimming at various speeds is analyzed using optimal gait theory.

The results show that the gait that minimizes bending moment over tail movements and

stiffness matches data from observed swimming of saithe. Furthermore, muscle tension is

reduced when undulation frequency matches the resonance frequency, which maximizes the

ratio of tail-tip velocity to bending moment.

The final task is to design the interconnections in a network of Andronov-Hopf oscillators

in order to generate desired chaotic behavior. Due to the structure of the oscillators, it is

possible to generate chaos by using weak linear coupling to destabilize the phase difference

between the oscillators. To this end, a set of sufficient conditions are determined to guarantee

the instability of a desired periodic solution through phase destabilization. Subsequently, a

condition is found to guarantee the absence of any stable harmonic orbit. Finally, additional

properties are considered, where small variations in a parameter can lead to chaotic behavior.

With additional research, these results can be expanded to the design of a chaotic neural

controller to generate adaptive locomotion for a mechanical rectifier.
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CHAPTER 1

Introduction

Various complex dynamic behaviors, ranging from stable periodic limit cycles to chaos,

have been observed and studied in healthy biological systems. An essential example of regular

rhythmic behavior observed in biology is animal locomotion, i.e. walking, flying, swimming,

and crawling. Animal locomotion can be regarded as a type of mechanical rectification, in

which sustained propulsive forces are produced through the interaction of the environment

with the animal’s periodic body motions (gaits) [3, 4, 5]. The specific periodic gait of an

animal is chosen depending on its body conditions and environmental effects, as well as

its desired locomotion speed and path. Due to their observed adaptability, agility, and

robustness properties, animal locomotion has motivated the design of robotic vehicles that

possess these same qualities. Mathematical and engineering tools can be effectively used in

the design of efficient robotic systems; furthermore, they can also be used to analyze and

explain observed behaviors and tendencies in natural locomotion.

In contrast to the rhythmic behavior of animal locomotion, evidence of chaos is prevalent

in various biological systems, particularly in neural and brain dynamics and cardiac rhythm.

Chaotic behavior has been observed in both single neurons, as well as groups of neurons that

belong to a small functional network, such as the central pattern generator (CPG) [6, 7, 8].

The CPG comprises of a group of coupled neurons or oscillators located within the central

nervous system that control motor activities [9]. Although CPGs produce periodic patterns,

the neurons in the CPG present chaotic behavior,which is believed to be responsible for the

CPG’s flexibility to quickly adapt to environmental changes [10]. One popular hypothesis

for the existence of chaotic regimes in neural networks is the ability to stabilize an unstable

periodic orbit embedded in a strange attractor with minimal cost [6].
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In this research, we focus on two fundamental questions in the study and design of

dynamic behavior in biologically-inspired systems. The first problem is determining possible

appropriate gaits of an animal given its environment and desired tasks. The optimal solution

of this question can then be used to analytically study natural gaits observed in biology. The

second problem is determining the interconnections between a group of coupled oscillators

or neurons in order to generate desired chaotic behavior embedded in a strange attractor.

The purpose of this research is to analytically pose and solve these questions and provide

numerical support for the solutions.

The first essential problem in the design of biologically-inspired robotic locomotors is de-

termining a gait that optimizes an important performance or cost function while satisfying

a desired trajectory constraint. This problem has been studied extensively in the litera-

ture for various mechanical rectifiers, but due to inherent difficulties, most existing results

only provide solutions that are locally optimal. For locally optimal solutions, a standard

approach is based on nonlinear optimal control theory. For example, in [11], Pontryagin

maximum principle is used to characterize the optimal gait of a seven-link biped robot in

terms of a two-point boundary value problem. A similar method was used in discrete-time

setting [12] to solve for snake-like link structures. Another popular approach is to reduce the

problem to a finite dimensional parametric optimization. In [13] and [14], this approach is

taken to find optimal gaits for an underwater eel-like robot and for a nonholonomic snake-

board, respectively, by solving a stationarity condition using Newton iteration algorithms.

The parametric approach is also used for biped robots with direct numerical optimizations

through sequential quadratic programming [15, 16], steepest gradient descent method [17],

and a commercial software package [18].

There are a few approaches for computing global solutions of certain optimal gait prob-

lems. One approach is inspired by biology, where an optimization problem is formulated over

a narrow set of possible gaits that are observed in animal locomotion. Since the parameter

space of various gaits is restricted, it is possible to find the globally optimal solution by sim-

ulations on gridded parameter points [19] or by analytical perturbation methods [20]. These

methods find reasonable gaits, but can miss better gaits that deviate from those observed
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in biology. Another approach to globally optimal gaits is to restrict the class of underly-

ing locomotion dynamics rather than the class of possible gaits. Reference [21] considers a

general class of mechanical rectifiers that are in continuous interactions with the environ-

ment, including swimming, flying, and slithering. A simplified bilinear model is developed

under the assumption of small curvature deformation, capturing essential rectifier dynamics

necessary for locomotion. An optimal gait problem is then formulated as a minimization of

a quadratic cost function over all periodic body movements achievable with a given set of

actuators, subject to a constraint on the average locomotion velocity. The globally optimal

solution is obtained using generalized eigenvalue computation, and the method’s utility is

validated by case studies of a link-chain rectifier swimming in water.

The methods mentioned above are primarily used to find optimal gaits for locomotion

along a straight line, but the problem can also be extended for turning along a curved path.

Turning motion has been investigated by [12, 20, 22] for planar eel swimming and snake

crawling. In all these cases, a constant offset is added to the harmonic shape variable to

achieve turning; however, only the harmonic terms are included in the optimization and the

offsets are set to prescribed values, with no basis for the separation of the offset terms from

the periodic terms. Thus, it remains open how to optimize the gait for turning locomotion

in three dimensional space while minimizing a general cost function.

In our research, we address this open problem; we develop a functional model for a general

class of mechanical rectifiers in three dimensional space, and extend the approach by [21] to

find globally optimal gaits that satisfy a desired steady turning constraint. We then use the

tools from the optimal gait analysis in order to find simple analytical justifications for the

observed gait and oscillation frequencies of swimming fish.

Fish swim by generating thrust through interactions between their body movement and

the surrounding water. Studies of fish locomotion aim to understand how fish choose a fre-

quency and gait of tail oscillation, how thrust is generated efficiently through hydrodynamic

forces, and how body shape and muscle activation are adjusted to regulate swim speed. Fish

locomotion has been investigated using various methods, including kinematic and biome-

chanical data analysis of live fish, swimming experiments using flexible fish body models,
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and computational/experimental analyses of oscillating foils in fluids. Several theories have

been formulated using these methods.

One prevalent theory is that fish minimize mechanical bending cost, or maximize thrust,

by tuning their natural frequency to the tail-beat frequency [23, 24]. Studies suggest that

fish use their muscles, skin, and tendons, to alter their body stiffness to achieve the required

natural frequency [25, 26]. Previous studies on the relationship between tail-beat frequency,

amplitude, and speed have concluded a linear relationship between speed and frequency

[27, 28]. Experimental data on pumpkinseed sunfish suggest that fish increase their flexu-

ral stiffness to increase their tail-beat frequency to achieve faster swimming speeds, while

maintaining constant tail-tip amplitudes [29].

Thrust production in swimming has been analyzed through vortex structure and energy

expenditure of the wake. Experiments on foils oscillating in fluids have demonstrated that

maximum thrust occurs when the nondimensional Strouhal number is within 0.25-0.35 [30],

agreeing with values observed in biology 0.2-0.4 [31]. Optimum hydrodynamic efficiency is

achieved when foil oscillation frequency coincides with the frequency of maximum spatial

amplification of unstable wake [32], or “wake resonance frequency” [33, 34].

The results of our research using optimal gait analysis shows that the optimal gait which

minimizes bending moment or muscle tension, closely resembles observed swimming gait.

Furthermore, minimizing muscle tension explains the observed tendency of increasing tail-

beat frequency and stiffness to achieve higher velocities, while maintaining constant tail

amplitude. The optimal frequency occurs at the resonance which maximizes the ratio of

tail-tip velocity to bending moment; this resonance results from both the body resonance

and the fluid resonance.

The final task of this research is to design the coupling between oscillators or neurons to

generate chaotic behavior, similar to what is observed in many biological systems. According

to [35], various human rhythmic movements result from chaotic motion on strange attractors.

Chaotic regimes have also been observed in the nervous system [36] and neural assemblies,

and are known to promote adaptability and flexibility [10]. Chaos has also been found
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to be related to neuromuscular control of locomotion [37]. For example, in [38], arm and

leg movements of skiers were found to fluctuate in a chaotic manner as they adapted to

environmental perturbations. According to [39], chaos in the CPG allows for rapid switching

to multiple stable gaits available in the attractor.

Based on the observed benefits of chaotic neuronal control, various papers have attempted

to control locomotion using chaos. In [40], chaos control was used to generate complex be-

havior for an autonomous six-legged robot. The discrete-time chaotic CPG reliably switched

between various periodic gaits. In [41], distributed chaotic elements coupled with mus-

coskeletal system showed adaptability to changes in body-environment dynamics. In [42], a

CPG modeled with four coupled chaotic Rössler oscillators recovered various natural gaits

in animals.

Although these papers motivated the application of chaos in neural control for loco-

motion, they did not design the interconnections between oscillators to generate chaotic

behavior on a desired strange attractor. To our knowledge, there is currently no method-

ological and analytical method for designing coupled chaotic oscillators. In [43] and [44]

chaos in coupled Kuramoto oscillators was discovered using phase destabilization. However,

subsequent works on the design of desynchronization of coupled oscillators using delayed-

feedback required simulation results and parameter tuning [45, 46, 47]. Most recently, [48]

provided semi-analytical guidelines for designing a chaotic system. However, their method

requires nonlinear control, and does not apply to systems where the necessary nonlinearity

is embedded in the plant. Additionally, the final chaotic motion is not on a desired strange

attractor. Therefore, it remains open how to design chaotic coupled oscillators with desired

limit cycles embedded in the strange attractor.

This research seeks to solve this open problem. We consider a set of linearly coupled

two-dimensional Andronov-Hopf oscillators, and find conditions on the interconnections to

generate chaos with a desired unstable limit cycle embedded in the strange attractor.

This dissertation is organized as follows. In Chapter 2, we develop the dynamic model and

optimal turning gait analysis for a general mechanical rectifier in three dimensional space.
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In Chapter 3, we use optimal gait analysis to provide analytical insights into the observed

carangiform swimming of saithe fish and the hypothesis that fish exploit resonance to reduce

the cost of swimming. In Chapter 4, we determine conditions on the interconnections between

a set of coupled Andronov-Hopf oscillators in order to generate desired chaotic behavior.

Finally, in Chapter 5, we provide concluding remarks and discuss future works that remain

open for further study.

Notations: The set of positive integers is denoted by Z. The sets of n by m real

and complex matrices are denoted by Rn×m and Cn×m respectively. For vectors f and x,

the (i, j)th entry of ∂f/∂x is given by ∂fj/∂xi. For a complex matrix X, the transpose,

complex conjugate transpose, and real part are denoted by XT, X∗, and ℜ[X] respectively.

The matrix (or vector) obtained by stacking matrices Xi, i ∈ Zn, in a column is denoted

by col(X1, . . . ,Xn). Similarly, diag(X1, . . . ,Xn) denotes the block diagonal matrix with Xi

stacked on the diagonal. The eigenvalues with the smallest and largest real parts of a matrix

X are denoted by eig(X) and eig(X), respectively.
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CHAPTER 2

Dynamic Model and Optimal Turning Gait Analysis

for Mechanical Rectifiers

2.1 Overview

The purpose of this chapter is to develop a functional model for a general class of mechan-

ical rectifiers in three dimensional space, and extend the approach by [21] to find globally

optimal gaits that satisfy a desired steady turning constraint. We consider a multi-body

mechanical rectifier with full (six) degrees of freedom (DOF) for position and orientation

within the inertial frame, in addition to arbitrary finite degrees of freedom for body shape

deformation. The body is assumed to be in continuous contact with its environment, re-

ceiving environmental forces that are proportional to the relative velocities with directional

preference. This class of rectifier systems has been considered in [21], where the equations of

motion are derived within the inertial frame. We build on the previous result and transform

the equations of motion into body coordinates in order to provide a comprehensible de-

scription of the dynamics for arbitrary three dimensional maneuvers from the “pilot’s view”,

and independent of an inertial frame. A mathematical proof is given to confirm the physi-

cal intuition that dynamics of body shape and linear/angular velocities are independent of

body orientation. Assuming small body deformation, the nonlinear model is reduced to a

simplified model that is tractable and captures the essential rectifying dynamics.

An optimal turning gait problem is then formulated for the simplified model as the search

for a periodic body movement that minimizes a quadratic cost function while achieving a

steady turning motion with prescribed linear and angular velocities on average over each

cycle. Similar to the previous methods mentioned above, shape offsets are added to the
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periodic shape variables to allow for turning motion; however, in this case the shape offsets

are not specified a priori, but included in the optimization. The problem is shown to reduce

equivalently to two separate and simpler minimization problems that are both solvable for

globally optimal solutions. The first problem solves for the nominal (fixed) body shape

that yields the desired turning rate while minimizing the additional drag due to turning.

The second solves for the optimal periodic body movement that would minimize the cost

function if the locomotion were achieved at the prescribed tangential speed without the

turning constraint, under increased environmental drag and modified body dynamics. Thus,

our main result proves a separation principle in optimal turning gait where the cost function

and optimization variables can both be decoupled into rotational and translational terms.

The rotational problem is a simple convex optimization and we provide an analytical solution,

while the translational problem takes the same form as the one solved in [21] in terms of

generalized eigenvalues, where a harmonic gait is shown to be optimal. The utility of the

developed model and the optimal turning gait results are tested by a numerical case study

of an arbitrary swimming locomotor designed to allow thrust generation in roll, pitch, and

yaw turning directions.

2.2 Mechanical Rectifier System

We consider a general mechanical system composed of multiple rigid bodies that are

connected arbitrarily to each other at rigid or flexible joints with rotational and/or linear

degrees of freedom. The shape of the system is defined by relative positions and orientations

of the multiple bodies, and can be deformed through actuators placed at some of the joints.

The multi-body system can rotate and translate in three-dimensional space due to interactive

forces resulting from continuous contact with the environment (e.g. water, air, ground).

We assume that the gravity effect can be neglected due to e.g. neutral buoyancy of the

system in a fluid. When the system interacts with the environment to convert periodic body

motion to a net thrust over each cycle, we call it a mechanical rectifier. Such systems would

represent animal locomotions or their robotic realizations such as fish and batoid swimming,
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eel/serpent slithering, and balloon flight with flapping wing.

The environmental force on each body is roughly modeled as a static linear function of the

relative velocities seen from the body frame. The linear dependence of the force on velocity

is meant to capture the qualitative nature of resistive interactions with the environment in

various contexts (hydrodynamic drag in swimming, Coulomb friction in slithering, etc.). The

values of the drag coefficients are chosen to quantitatively dictate the net effect over each

cycle of body oscillation. For instance, hydrodynamic force in swimming may be modeled by

a nonlinear function of the velocity f(v) [49, 50]. However, if the velocity is roughly sinusoidal

v(t) ∼= asin(ωt+b) during periodic body movements, the net effect of the nonlinear force may

be approximated by a Fourier series truncation to yield the linear term f(v) ∼= κ(a)v where

κ(a) is the describing function [51]. The truncated higher order harmonics would have a

small impact on the overall behavior if they are damped out due to the low pass filtering

effect of the body dynamics with inertia.

The next sections outline the derivation of analytical models for mechanical rectifiers,

with supplementary details given in the Appendix. The equations of motion with respect

to the inertial frame can be developed through the Euler-Lagrange equation, using a set

of generalized coordinates as in [21]. However, our goal is to analyze turning motion of

the rectifier with a fixed average locomotion speed and angular velocity. Therefore, we

will develop equations of motion with respect to a body frame, so that the dynamics are

described independently of the position and orientation with respect to the inertial frame,

as a consequence of the symmetry/invariance property of the environmental forces. The

equations of motion are then reduced, assuming small body oscillations, to a simpler state

space form that is reasonably accurate, tractable, and usable for analytical study of optimal

gaits for turning.

2.2.1 General Equations of Motion

This section provides a brief summary of equations of motion for the mechanical rectifier

described in the inertial frame. The equations have been derived in [21] at a conceptual
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level as outlined here, and further details of the model equations, not worked out in [21]

but necessary for the coordinate transformation in the next section, are presented in the

appendix.

A mechanical rectifier in three dimensional space has n = 6 + ℓ degrees of freedom, de-

scribing its position (3 DOF), orientation (3 DOF), and flexible body shape (ℓ DOF). In

particular, the motion can be described by the generalized coordinates q := col(w,θ), where

w(t) ∈ R3 is the position of the center of mass of the entire system and θ(t) ∈ Rℓ+3 are the

variables specifying the orientation and shape of the multi-body system. The equations of

motion for a general mechanical rectifier can be developed using the Euler-Lagrange equation

given by
d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= h̄, (2.1)

where L := T −V is the Lagrangian, T(q, q̇) ∈ R is the total kinetic energy of the system,

V (q) ∈ R is the total potential energy, and h̄(t) ∈ R
n are the generalized forces.

The total kinetic energy of the system T includes the translational kinetic energy of each

body’s center of mass plus the rotational kinetic energy around each body’s center of mass.

Using the generalized coordinates q, T is given by

T(q, q̇) =
1

2
m||ẇ||2 +

1

2
θ̇TJ(θ)θ̇, (2.2)

where m is the total mass, and J(θ) represents the moment of inertia matrix. The total

potential energy of the system V captures the elastic potential energy associated with body

deformation and is only a function of the shape of the mechanical rectifier, i.e. V = V (θ).

The generalized forces consist of environmental forces h̄e(t) ∈Rn and actuator input forces

h̄a(t) ∈ Rn, so that h̄= h̄e + h̄a. We assume an environmental force acts on each surface area

segment of each body, and roughly estimate that the force is proportional to the velocity in

each direction of each body’s coordinates. Therefore, the force from the environment, acting

on an infinitesimal segment on the surface of body i (Fig. 2.1), is assumed to be resistive and

proportional to the velocity σ̇i(s) of point c in the local body frame, and is given by

dfi = −Ω(ψi)
T∆iΩ(ψi)σ̇i(s)dai,
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where ∆i ∈ R3×3 is a constant matrix of drag/friction coefficients, s is the vector from the

center of mass of body i to point c, σ̇i(s) is the velocity of point c, and dai is the surface area

of the segment. The virtual work done on the segment is δWi(s) = δσi(s)
Tdfi, where δσi(s)

is the virtual displacement. Integrating over body i’s surface and summing over all bodies,

the generalized environmental forces are then given by

h̄e = −







C(θ) E(θ)T

E(θ) D(θ)













ẇ

θ̇





 , (2.3)

for coefficient matrices C(θ), D(θ), and E(θ) defined in the appendix.

In order to calculate the generalized forces due to actuator inputs, we let u(t) ∈ Rr be

the actuator force/torque inputs, and assume that their displacements are linear functions

of shape variables given by BTq for a coefficient matrix B ∈ Rn×r with its first six rows being

zero. Then, the generalized force of actuators can be expressed as

h̄a = Bu, B :=







0

B





 ,

where B denotes the bottom (ℓ+ 3) × r block of B.

Using the given expressions for kinetic energy, potential energy, and generalized forces,

the Euler-Lagrange equation reduces to the following two equations of motion:

J(θ)θ̈+G(θ, θ̇)θ̇+D(θ)θ̇+E(θ)ẇ+k(θ) =Bu,

mẅ+C(θ)ẇ+E(θ)Tθ̇ = 0.
(2.4)

The terms J(θ)θ̈+G(θ, θ̇)θ̇ and mẅ are the inertial torques and forces, D(θ)θ̇+E(θ)ẇ and

C(θ)ẇ+E(θ)Tθ̇ capture the environmental torques and forces, k(θ) are the torques due to

body stiffness, and u ∈ Rr are the forces/torques applied through actuators.

2.2.2 Coordinate Transformation

The general equations of motion in (2.4) describe the dynamics of the mechanical rectifier

with respect to the inertial frame. Our goal is to analyze turning motion of the mechanical

rectifier with a fixed average locomotion speed and a fixed average angular velocity. In order
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Figure 2.1: Coordinates for body i in the mechanical rectifier

to achieve this, we use a coordinate transformation to derive another set of equations of

motion that are equivalent to (2.4), but expressed with respect to a body frame. This new

model will show more explicitly how the dynamics are related to shape, orientation, and

velocity.

To this end, consider a particular body i in the rectifier in an inertial reference frame with

(X,Y,Z)-axes and origin at point o (Fig. 2.1). The orientation of body i can be described by

a rotated reference frame fixed on the body with (x,y,z)-axes, which can be related to the

inertial frame with a sequence of three elemental rotations or Euler angles. Let ψi ∈ R3 be a

stacked vector of the Euler angles that specify the orientation of body i with respect to the

inertial frame. For a given vector, its inertial coordinates v := col(vX ,vY ,vZ) are related to

the body coordinates v := col(vx,vy,vz) by v = Ω(ψi)v, where Ω(ψi) ∈ R
3×3 is an orthogonal

rotation matrix defined by the Euler angle sequence.

We now introduce a coordinate transformation by arbitrarily picking one of the multiple

bodies forming the rectifier as a reference for orientation and calling it body B. Let us first

choose θ := col(ψ,φ), where ψ ∈ R3 describes the orientation of body B, and φ ∈ Rℓ are the

orientation and position of the remaining bodies with respect to body B, representing the

shape of the rectifier. The angular velocity of body B, ̟ ∈ R3, can be expressed in the body

frame as

̟ := P (ψ)ψ̇,

where P (ψ) ∈ R
3×3 is a matrix-valued function uniquely determined from the choice of the
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Euler angle sequence. Define the velocity of the center of mass with respect to body B’s

frame:

v := col(vx,vy,vz) := Ω(ψ)ẇ,

where vx, vy, and vz are the velocity components along the respective axes of the body

frame. We consider the following coordinate transformation:

(w,ẇ,ψ, ψ̇,φ, φ̇) ↔ (w,v,ψ,̟,φ, φ̇),

where the left hand side is the state variables for the original system in (2.4), and the right

hand side is the new state variables by which we will describe the rectifier motion.

With the coordinate transformation, the equations of motion can now be written as

J(φ)ξ̈+ g(φ, ξ̇) +D(φ)ξ̇+E(φ)v+k(φ) =Bu,

mv̇+mQ(̟)v+C(φ)v+E(φ)Tξ̇ = 0.
(2.5)

where the variable ξ̇ ∈ Rℓ+3 is defined as a stacked vector containing the angular velocity of

body B and the shape derivative, i.e., ξ̇ := col(̟,φ̇). Details of the derivation are given in the

appendix. The original equations in (2.4) are expressed with respect to the inertial frame,

and therefore the coefficient matrices all depend on the rectifier’s orientation ψ. When the

equations are viewed from the reference frame of body B, however, this dependence on the

orientation changes. All the coefficient matrices in (2.5) are independent of the rectifier’s

orientation and only functions of the rectifier’s shape φ and angular velocity ̟. The body

orientation ψ never appears in the equations, similar to how the position w of the center of

mass never appears in the equations. These properties allow us to specify desired nominal

locomotion velocity and angular velocity in the optimal gait problem.

Let us conceptually explain why the coefficient matrices are independent of the body

orientation ψ (see the appendix for mathematical justification). The environmental forces

acting on the rigid bodies of the rectifier were estimated to be static functions of the relative

velocities; therefore, the coefficient matrices for the environmental forces in the new model,

D(φ), E(φ), C(φ), are independent of the orientation and only a function of the shape φ.

For a mechanical rectifier consisting of multiple bodies, the moment of inertia matrix in
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the inertial frame, J(θ) in (2.4), depends on the orientation, but J(φ) in (2.5) with respect

to the body frame, will be a function of only the shape of the rectifier and the mass dis-

tribution of each body. Overall, the entire dynamics in the body frame are free from the

body orientation ψ, including the g(φ, ξ̇) term in (2.5), whose independence from ψ is proven

mathematically in Lemma 11 in the appendix. The result is not surprising if we consider

the dynamics intuitively. To gain this intuition, we imagine an animal swimming in a vast

three dimensional ocean with no sense of a fixed inertial frame such as the water surface or

ocean floor. Without any reference to a fixed frame, the animal can still swim and turn in

any trajectory with respect to its own body’s frame. We expect then, that the output body

shape and velocity of the animal, given the input torques at the joints, will not depend on

the orientation of the animal.

Finally, the Q(̟) term in the second equation of (2.5) arises from the fact that the linear

acceleration ẅ is seen in the body frame as Ω(ψ)ẅ = v̇+Q(̟)v. With the choice of the

variable ξ̇, the torque vector due to body stiffness k(φ) depends only on the body shape φ

and has zeros in its first three elements to have no direct influence on rotational torque on

the whole body. Similarly, since the displacements of the actuator inputs are functions of

the shape variables, the first three rows of matrix B are zero.

2.2.3 Approximate Model for Trimmed Locomotion

In order to analyze the locomotion mechanism of a mechanical rectifier (2.5), and for-

mulate a tractable and meaningful optimal turning gait problem, we develop the simplest

approximated model that still captures the essential rectifying dynamics. We focus on a

trim condition for steady turning locomotion where the rectifier body moves through space

at a constant speed v and angular velocity ̟. Since the thrust is generated by rectifying

the effect of periodic body oscillation, the actual values of v and ̟ oscillate around fixed

constants. The objective is to develop a simple model that captures the perturbed dynamics

around the trim condition, including the thrust generation mechanisms.

In [21], simplified equations of motion for a general mechanical rectifier in a similar
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form to (2.5), but in the inertial frame, were developed to capture the dynamics during

locomotion along a straight line. The simple model was used for analytical study of optimal

gaits and was shown to be valid for snake-like undulation and jellyfish-like flapping of link-

chain locomotors in comparison with numerical simulations of the original nonlinear model.

In their approach, it was assumed that the body oscillated about some nominal posture,

defined as a fixed body shape and orientation that allow coasting along a straight line in

the absence of any actuator inputs. The oscillation about the nominal posture was assumed

small and of order ǫ, and Taylor series expansions were used to reduce the equations to their

simplest forms by retaining up to second order O(ǫ2) terms that had essential contribution

to the thrust generation.

Here, we use a similar approach to [21], but modify it to make it applicable for turning

motion. Since body orientation ψ does not appear in the new equations of motion (2.5),

there is no need to introduce nominal orientation angles. This feature is essential for turning

analysis. We consider the nominal body shape φ defined as follows. Let V ⊂ R
3 be a linear

subspace (straight line) indicating the intended direction of locomotion in the body frame.

The shape φ(t) ≡ η ∈ Rℓ is said to be nominal along V if

k(η) = 0, E(η)V = 0, C(η)V ⊆ V. (2.6)

Under these conditions, (̟,φ, φ̇) = (0,η,0) satisfies (2.5) with some v(t) ∈ V and u(t) ≡ 0,

which can be physically interpreted as follows. At a nominal shape, the body is at rest

with minimum elastic potential (k(η) = 0), and the rectifier can coast without changing its

orientation or shape under no actuator inputs (E(η)V= 0), while keeping the same direction

of locomotion velocity (C(η)V ⊆ V).

We consider the situation where a small body deformation ϕ(t) := φ(t) − η around a

nominal shape η achieves steady turning with nearly constant speed v and angular velocity

̟. Without loss of generality, we choose the body frame so that the rectifier travels in

the y-axis direction during an intended locomotion; V = {ve2 : v ∈ R}, where v := vy is the

tangential velocity, and ei ∈ R3 is a vector whose ith entry is one and all others are zero.

This setting allows us to neglect higher order terms of angular acceleration ˙̟ and normal
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velocity components δ := col(vx,vz), which are perpendicular to the direction of locomotion.

Assuming that ϕ, δ, and ˙̟ are small and of order ǫ, we use Taylor series expansions, like

in [21], and linearize the shape equation or the first equation in (2.5), as well as the normal

velocity equation for δ̇. However, we keep up to the quadratic or O(ǫ2) terms in the tangential

velocity equation for v̇ to keep the thrust term embedded in E(φ)Tξ̇, which would be lost if

linearized. Note that neither turning rate ̟ nor locomotion speed v is assumed small, and

all the terms associated with these variables are retained.

The general equations of motion in (2.5) then reduce to (see the Appendix for details)

ẋ= A(̟,v)x+ Bu,
v̇ = (bTx−a)v+xTS(̟,v)x,

x := col(̟,ϕ̇,δ,ϕ), (2.7)

where v := vy ∈ R, δ := col(vx,vz) ∈ R2, and ϕ := φ− η ∈ Rℓ. All the coefficients are a

function of the nominal shape η. Coefficients a, b, and B are constant scalar, vector, and

matrix, and A(̟,v) and S(̟,v) are affine in col(̟,v) except that the last ℓ columns of

A(̟,v) have additional terms that are quadratic in ̟. Furthermore, S(̟,v) is symmetric

and has zeros in its first 3×3 block. The parameter a is positive, representing the drag from

the environment under the nominal condition x = 0. These properties become useful when

formulating and solving the optimal turning gait problem.

The definition of nominal shape in (2.6) may not be the best for turning motion analysis

since the trim condition results in coasting along a straight line. Alternatively, a nominal

shape could be defined to maintain a specified locomotion speed and nonzero angular velocity

given a known constant actuator input to keep the shape and a fictitious thrust to sustain the

speed. However, finding such a nominal shape is strenuous as it requires solving a complex

nonlinear vector equality. Instead, we define the nominal shape by more tractable condition

(2.6) that is generically satisfied by well-designed mechanical rectifiers with streamlined

bodies, like those found in nature.

The nominal shape would typically have some symmetry to maintain straight coasting,

but body oscillation around an asymmetric shape can be needed for turning. We use model

(2.7) and optimal gait analysis to find the optimal body shape offset that satisfies the desired

16



angular velocity. This process is guaranteed to work only when the desired turning can be

achieved by small body shape offsets because model (2.7) assumes small body deformation

around a nominal shape. However, a large body shape offset that achieves higher desired

turning rates may be found through an iteration process, where the optimal gait analysis

defines the nominal shape used in the next iteration step, which maintains a specific angular

velocity at a desired locomotion speed.

2.3 Optimal Turning Locomotion

We will formulate an optimal turning gait problem and provide a solution to find the best

body oscillation of the mechanical rectifier that achieves steady locomotion with a desired

speed and turning rate on average. The problem formulation and solution are based on the

simplified model in (2.7); however, functionality of the result will be confirmed later for the

original model (2.5) through a case study.

2.3.1 Problem Statement

We seek the optimal periodic gait ϕ(t) and corresponding periodic control input u(t)

that minimizes a quadratic cost function, subject to constraints on the average locomotion

velocity v and angular velocity ̟, with normal velocities δ oscillating about zero. The

optimal turning gait problem is formulated for the mechanical rectifier (2.7) as follows:

min
τ∈R

min
u∈Pτ

1

τ

∫ τ

0
zTΥzdt, z := F (s)







x

u





 , (2.8)

subject to
1

τ

∫ τ

0
v dt= vo, (2.9)

1

τ

∫ τ

0
y dt= yo, y := Cx, (2.10)

where we assume that system (2.7) admits a τ -periodic solution (x,v) in response to τ -

periodic input u. The optimal periodic control input u ∈ Pτ and its period τ > 0 are to

be found, where Pτ is the set of possibly vector-valued τ -periodic signals. The objective
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function is the average value of a quadratic form zTΥz, where Υ is a constant symmetric

matrix, and z ∈ Pτ is a selected performance output specified by filtering ς := col(x,u) ∈ Pτ

through a transfer function F (s). Note that z = F (s)ς under an appropriately chosen initial

condition that makes the output τ -periodic without transient. The constraints are imposed

on the average values of v and y with desired values vo and yo. Here, we let y := col(̟,δ)

be the constrained output with target value yo := col(̟o, δo), and choose C accordingly. A

typical value of target normal velocity is zero (δo = 0), although we allow nonzero values.

The objective function in (2.8), which is quadratic in variable ς := col(x,u), is defined

in terms of F (s) and Υ. For technical simplicity, we assume that these filter and weight

are chosen such that the bias term ς̄ := 1
τ

∫ τ
0 ς dt has no contribution to the value of the

objective function. It can readily be verified that the assumption is satisfied if and only

if ς̄TΠ(0)ς̄ = 0 holds for the frequency weight Π(jω) := F (jω)∗ΥF (jω). Even with this

assumption, (2.8) captures useful cost functions through appropriate choices of F (s) and Υ.

Table 2.1 gives examples of such objective integrands that are practically important, together

with the corresponding frequency weights Π(jω), where U and W are defined such that

ζ̇ := col(̟,ϕ̇) =UTx and ϕ̇=W Tx. The input power and shape derivative have nonzero Π(0),

but it can be verified that ς̄TΠ(0)ς̄ is zero by noting that the bias of ϕ̇ is zero. Other costs can

also be defined with possibly discontinuous function Π(jω). For instance, if velocity ripples

are undesired, the oscillation amplitudes of ̟ and δ can be penalized by choosing Π(jω) =

diag(CTC,0) for ω 6= 0 and Π(0) = 0. Finally, a cost can be given as a linear combination of

various costs.

2.3.2 Problem Reformulation Using Phasors

Solving the optimal gait problem in (2.8)-(2.10) for a globally optimal solution is diffi-

cult. For tractability, we reformulate the problem assuming small body deformation ϕ and

truncating its higher order terms.
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Table 2.1: Objective Functions

Quantity Objective Function Π(jω)

Input Power
1

τ

∫ τ
0 ζ̇

TBudt
1

2







0 UB

BTUT 0







Input Torque Rate
1

τ

∫ τ
0 ||u̇||2dt







0 0

0 ω2I







Shape Derivative
1

τ

∫ τ
0 ||ϕ̇||2dt







WW T 0

0 0







Let us start by introducing some notation and providing a brief review of mathematical

preliminaries. A periodic signal u ∈ Pτ can be approximated by its Fourier series

u(t) = ū+
h
∑

k=1

ℜ[ûke
jωkt], (2.11)

where h ∈ Z can be arbitrarily large, ω := 2π/τ is the fundamental frequency, ū ∈ Rr is the

bias, and ûk ∈ Cr is the phasor for the kth harmonic term. We denote the phasor of u as

û := col(û1, . . . , ûh). For a transfer function F (s), we define

F h
ω := diag(F (jω),F (j2ω), . . . ,F (jhω)). (2.12)

The notations ū, û, and F h
ω will be used for generic periodic signals and transfer functions.

The following result is elementary and can be proven by straightforward calculations (hence

a proof is omitted).

Lemma 1. Let periodic signals z, ς ∈ Pτ and a transfer function F (s) be given. Then

z = F (s)ς ⇒ z̄ = F (0)ς̄ , ẑ = F h
ω ς̂ .

For signals x,y ∈ Pτ of the form (2.11), we have

1

τ

∫ τ

0
x(t)Ty(t)dt= x̄Tȳ+

1

2

h
∑

k=1

ℜ[x̂∗
kŷk].

We now reformulate the optimal gait problem. One factor that makes the problem

difficult is the ripples in the locomotion velocity; if v(t) were constant, the analysis would
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be easier. We realize this ideal situation by adding a fictitious force ε(t), with zero average,

to the right hand side of the v̇ equation in (2.7). Consider the situation where τ -periodic

inputs u,ε∈ Pτ for (2.7), with ε(t) specifically chosen to regulate the swim speed v(t), result

in constant locomotion velocity v(t) ≡ vo and τ -periodic response x(t). Approximate u,x∈Pτ

by truncations of the Fourier series as in (2.11) for a chosen h ∈ Z. Assume that the bias

term ϕ̄ and all the harmonic terms x̂ are small and of order ǫ, and neglect the O(ǫ2) and

O(ǫ3) terms, respectively, in the ẋ and v̇ equations in (2.7). We equate the periodic terms

in the first equation of (2.7) to obtain

x̂k =M(jkω)ûk, M(s) :=
(

sI−Ã(̟o,vo)
)−1B,

where Ã is defined to be identical to A except that the linear terms of ̟ in the first three

columns are multiplied by two. The bias terms in the first equation of (2.7) give

x̄=Hū, H := −A(̟o,vo)−1B.

Using the above expression, the angular and normal velocity constraint in (2.10) can be

rewritten as

Hū= yo, H := CH, (2.13)

Since we assumed a fictitious force ε, with zero average, is applied to keep v ≡ vo, the

average of the velocity equation in (2.7) over one cycle should also be zero. Averaging (2.7),

we replace the velocity constraint integral in (2.9) by

1

τ

∫ τ

0

(

(bTx−a)vo +xTS(̟,vo)x
)

dt= 0, (2.14)

yielding the thrust-drag balance at v(t) ≡ vo with no fictitious forcing on average. The

integral in (2.14) can be converted to a quadratic constraint in ū and û using Lemma 1 as

follows:

û∗Yω
hû− ŭTZŭ= 1,

where ŭ := col(ū,1) and

Y (jω) :=M(jω)∗S(̟o,vo)M(jω)/(2avo),

Z := −







∇ d

dT 0





 ,
d :=HTb/(2a),

∇ :=HTS(̟o,vo)H/(avo).

(2.15)
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Similarly, the objective integral in (2.8) can equivalently be written by û∗Xω
hû, where

X(jω) :=
1

2







M(jω)

I







∗

Π(jω)







M(jω)

I





 . (2.16)

In summary, the original optimal gait problem formulated in (2.8)-(2.10) is approximated

by the following quadratic optimization problem:

min
ω∈R

min
û ∈ Crh

ū ∈ Rr

û∗Xω
hû s.t.

û∗Yω
hû= 1 + ŭTZŭ,

Hū= yo,
(2.17)

which is to be solved for the control bias ŭ := col(ū,1) and the control phasor û.

Since the cost or performance function is generally chosen to represent a physical quantity

such as energy cost or a vector norm, it is a valid assumption for the cost to be positive. Due

to the environmental drag a> 0, coasting without deceleration is impossible, and there will

always be a nonzero cost for any locomotion at nonzero (linear or angular) velocity. Thus

we impose the following.

Assumption 1. Consider the optimization problem in (2.17). The constraints are feasible,

and the value of the objective function is positive on the feasible set for any nonzero vo or

̟o and for any a> 0.

The assumed property turns out to have favorable implications to tractability of the

optimization problem as shown in the next section.

2.3.3 Optimal Turning Gait

The optimal gait problem for locomotion along a straight line is a special case of (2.17),

and has been solved in [21]. However, the additional turning rate constraint makes it more

difficult. For straight locomotion without turning (yo = 0), zero bias ū= 0 satisfies the second

constraint in (2.17) making ŭTZŭ= 0, and problem (2.17) reduces to

min
ω∈R

min
û∈Crh

û∗Xω
hû s.t. û∗Yω

hû= 1. (2.18)
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While this problem is nonconvex since matrices Xω
h and Yω

h are generally indefinite, [21] has

shown that the problem can be equivalently converted to a generalized eigenvalue computa-

tion using the S-procedure [52]. For the turning locomotion, however, there are two equality

constraints on mixed real (ū) and complex (û) variables , and direct application of the S-

procedure is conservative (inaccurate). One could eliminate the linear equality constraint by

solving it for ū, but we take a different approach to gain insights into the turning problem.

Our approach is to reduce the problem to two tractable problems by proving a separation

principle under the property in Assumption 1. First note that the cost û∗Xω
hû is small if

the oscillation amplitude ‖û‖ is small. The thrust-drag balance, i.e. the first constraint in

(2.17), indicates that ‖û‖ is smaller if ŭTZŭ is smaller. Hence, the term ŭTZŭ can be thought

of as the cost associated with turning. Indeed, this term is nonnegative as shown below.

Lemma 2. Suppose Assumption 1 holds. Then

ŭ= col(ū,1), Hū = yo ⇒ ŭTZŭ≥ 0. (2.19)

Proof. Suppose condition (2.19) does not hold. Then there is a ū such that Hū = yo but

ŭTZŭ < 0. Since Z is proportional to 1/a, an appropriate scaling of a can make 1+ ŭTZŭ= 0.

For this value of a, û= 0 is a feasible control input that satisfies constraint (2.17), and makes

the cost û∗Xω
hû = 0. Since this contradicts the original assumption, condition (2.19) must

hold.

Thus, the minimum value of ŭTZŭ is zero and is achieved when the input bias ū is set to

zero for straight locomotion (yo = 0) as in [21]. For general turning locomotion (yo 6= 0), we

may minimize the turning cost ŭTZŭ separately by choosing ū. This idea is formally justified

as follows.

Lemma 3. Consider problem (2.17) and

min
ω∈R

min
û∈Crh

û∗Xω
hû s.t. û∗Rω

hû= 1, (2.20a)

µ := min
ū∈Rr

ŭTZŭ s.t. Hū= yo, (2.20b)
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where

R(jω) := Y (jω)/(1 +µ), ŭ := col(ū,1).

Suppose Assumption 1 holds. Then, problem (2.20) and problem (2.17) are equivalent in

the sense that they have the equal value of the optimal cost function and the same optimizer

solution.

Proof. It suffices to show that problems (2.17) and (2.20), excluding the minimization over

ω, are equivalent for each fixed ω. Let γ1 be the optimal value of the cost function in (2.17)

with optimizer (ū1, û1), let γ2 be the optimal value of the cost in (2.20a) with optimizer û2,

and let ū2 be an optimizer for (2.20b). Define

αi := 1 + ŭT

iZŭi,

Ri := Yω
h/αi,

ŭi := col(ūi,1),

ûo :=
√

(α2/α1)û1,

for i= 1,2. Because (2.19) holds, αi is always positive, and by definition, R2 =Rω
h. We will

show that problems (2.17) and (2.20) are equivalent by showing γ1 ≤ γ2 and γ2 ≤ γ1.

The proof for γ1 ≤ γ2 is simple. Because û∗
2Yω

hû2 = 1+µ where µ= ŭT

2Zŭ2, the parameter

(ū2, û2) satisfies both constraints in problem (2.17) and is a possible solution to (2.17).

However, since γ1 is the optimal solution to (2.17), it follows that γ1 ≤ û∗
2Xω

hû2 = γ2. To

show the other direction, note that the optimizer (ū1, û1) satisfies the constraints in (2.17),

and hence û∗
1R1û1 = 1. We then see that û∗

oR2ûo = û∗
1R1û1 = 1, so that ûo satisfies the

constraint in (2.20a). It now follows that

γ2 ≤ û∗
oXω

hûo = (α2/α1)û∗
1Xω

hû1 ≤ γ1,

where the first inequality holds because γ2 is the optimal solution to (2.20a), and the second

inequality holds since ū2 is the optimal solution to (2.20b) and therefore α2 ≤ α1. This

completes the proof.

Lemma 3 proves that the optimization problem in (2.17) can be reduced, equivalently,

to two minimization problems, where the optimal bias term is found separately from the

optimal periodic component. The physical interpretation of (2.20b) is the minimization of
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the environmental drag due to the bias ū, given by ŭTZŭ, with the achievement of the desired

turning rate ̟o. Equivalently, it can be seen as finding the optimal nominal body shape of

the rectifier to reduce the environmental drag effect. According to Lemma 3, the optimal

bias offset is independent of the effects of the periodic component or even the choice of cost

functions. On the other hand, (2.20a) has the same form as (2.18), and is essentially the

optimal straight locomotion problem with the modification of the velocity constraint, which

compensates for the drag effect µ due to the turning component.

The phasor optimization problem in (2.20a) can be solved using a previous result for

straight locomotion (Lemmas 2 and 3 in [21]). The result shows that the optimal value

of the cost û∗Xω
hû is independent of h, meaning that the optimum can always be achieved

by a purely sinusoidal input and no further reduction of the cost is possible by a general

periodic input. The optimal cost can be found from the generalized eigenvalues of the pair

(X(jω),R(jω)) with a line search over ω, and the phasor of the optimal input is given as

the corresponding eigenvector.

For the bias optimization problem in (2.20b), ŭTZŭ is an indefinite quadratic form, and

hence is not convex. However, it turns out that the objective function is convex on the

feasible set under Assumption 1. Therefore, the problem has only one local minimum, and

the global minimizer can be found by a local algorithm or convex programming. In fact, the

problem admits a closed form solution of the global minimizer as follows.

Lemma 4. Consider the problem (2.20b). Suppose the problem is feasible and condition

(2.19) holds. Then an optimizer is given by

ū♭ = ūo −N(NT∇N)†NT(∇ūo +d), (2.21)

where (·)† denotes the Moore-Penrose inverse, and

N := I−H†H, ūo = H†yo.

Proof. The result follows from a standard linear algebra result [53].

We can now summarize the main result. Consider the optimal turning gait problem

given by (2.8)-(2.10) for the mechanical rectifier in (2.7) with desired locomotion speed vo,
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turning rate ̟o, and cost weights Υ and F (s). Suppose the objective function value is zero

when u and x are constant solutions of (2.7). Then, based on the reformulation procedure

in Section 2.3.2, the problem reduces, approximately, to the quadratic optimization given

by (2.17), where matrices X(ω), Y (ω), Z, and H are defined in (2.15), (2.16), and (2.13).

The optimizers of the two problems are related by (2.11). The globally optimal solution to

(2.17) is given by the following result.

Theorem 1. Consider the optimal turning gait problem given by (2.17). Suppose Assump-

tion 1 holds. Then the optimal bias ū♭ is given by (2.21), and optimal phasor û♭ and frequency

ω♭ can be found as follows. For each ω > 0, define

R(ω) := Y (ω)/(1 + ŭT

♭Zŭ♭), ŭ♭ := col(ū♭,1),

and let λω be the largest real generalized eigenvalue of the pair (X(ω),R(ω)) that satisfies

the condition X(ω) ≥ λωR(ω). Let ûω be the eigenvector corresponding to λω, normalized

such that û∗
ωR(ω)ûω = 1. The optimal frequency ω♭ is given by ω that minimizes λω, and the

optimal phasor û♭ is the corresponding eigenvector ûω♭
.

Proof. Problem (2.17) can be equivalently split into the bias and harmonics (phasor) opti-

mizations in (2.20) as shown in Lemma 3. The optimal bias ū♭ is given by Lemma 4, and

the optimal phasor û♭ is obtained from the result in [21] as described.

Theorem 1 states that the optimal control input for the original problem (2.8)–(2.10) can

be approximately given by the exact solution u♭(t) to the reformulated problem (2.17). The

optimal solution u♭(t) is purely sinusoidal and has the form

u♭(t) = ū♭ + ℜ[û♭e
jω♭t],

where ū♭ and û♭ are found by an explicit formula and eigenvalue computation. The opti-

mal frequency ω♭ can be found through a line search by gridding the frequency axis and

plotting the optimal cost value λω as a function of ω. The optimal gait, or body shape

ϕ♭(t) corresponding to u♭(t), is also sinusoidal and its bias ϕ̄♭ and phasor ϕ̂♭ are found by

computing (x̄♭, x̂♭) using the equations following (2.11). Note that the optimal bias shape ϕ̄♭

is independent of the cost function.
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2.4 Numerical Example: The H-Swimmer

This section demonstrates the utility of the optimal turning gait problem formulation

and solution through numerical examples of an arbitrary locomotor swimming in water. The

mechanical rectifier is H-shaped, and is composed of a main body (54.5×9.1 mm, 0.33 g) with

six degrees of freedom of translation and rotation, and twenty identical panels (9.1×9.1 mm,

0.083 g each) connected at rotational joints, each with one degree of freedom for a total of

n= 26 degrees of freedom (Fig. 2.2). Half of the panels are located in front of the main body,

divided between right and left sides (arms), and can rotate along the pitch direction, and half

of the panels are located behind the main body, divided between right and left sides (legs),

and can rotate along the yaw direction. The rectifier’s total length along the y-axis is 100

mm, and its width along the x-axis is 54.5 mm. It is placed in a fluid environment, subject

to hydrodynamic forces and torques that interact with the body motion to produce thrust

for locomotion. The hydrodynamic forces acting on each panel are approximated by linear

functions of the relative velocities of the respective segments; fni
= cni

vni
and fti

= cti
vti

in the normal and tangential directions, where (cni
, cti

) = (41,0.62) mN·s/m for the small

panels and (cn, ct) = (60,0.88) mN·s/m for the main body. All the model parameter values

are set for physical plausibility from experimental data of leech swimming [50].

The body frame is attached to the main body as shown in Fig. 2.2, and its Euler angles

ψ ∈R3 and angular velocity ̟ ∈R3 represent the orientation and turning rate of the rectifier.

The joint angles φ ∈ R
20 specify the body shape, and are defined so that φ = 0 when the

v
z

x y

Figure 2.2: Swimming locomotor model consisting of κ = 21 bodies and n = 26 degrees of

freedom
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(a) Pitch, ̟o =











0.8

0

0











(b) Roll, ̟o =











0

0.8

0









 (c) Yaw, ̟o =











0

0

0.8











Figure 2.3: Optimal shape with only bias of the joint angles ϕ̄♭, around which the body

oscillates

arms and legs are stretched along the y-axis. Each joint is actuated by a torque input, such

that u(t) ∈ R20, and the adjoining panels are connected by linear bending stiffnesses 3×10−4

Nm/rad. Finally, the nominal shape is set to be straight (η = 0), where the flexible joints

are at rest.

This particular locomotor design serves two features. The first is that it is not replicating

any particular underwater animal that could give us a reasonable gait without using optimal

gait analysis. The second feature is that it allows for torque production in any direction of

rotation such that a bias shape ϕ̄ exists for any feasible value of the desired angular velocity

̟o. This can be better understood by Fig. 2.3, which shows the optimal bias shapes for

basic pitch, roll, and yaw rotations calculated from (2.21). Pure pitch rotation is achieved

by a body shape with left-right symmetry where the arms are curled up along the radius

of rotation. Similarly, pure yaw rotation is achieved by the legs curving along the radius

of rotation about the z-axis. Pure roll rotation, however, requires asymmetry in the body

where one arm pushes the fluid upward and the other arm pushes the fluid downward.

We find the optimal torque input, optimal frequency, and optimal body shape for the

three cost functions provided in Table 2.1 subject to an average locomotion velocity of

vo = 100 mm/s, an average angular velocity of ̟o = col(75,75,400) rad/ks, and average δo =

col(0,0) mm/s. Table 2.2 gives the optimal frequencies and the average values of the steady

state velocities obtained by simulating the simplified model (2.7). The optimal frequencies for
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the three cost functions range between 2 Hz to 4 Hz. The results show that average velocities

close to the desired values are achieved for shape-derivative and torque-rate optimizations;

however, there are some large errors in the simulated velocities for power optimization. These

errors are due to the large harmonics of the angular velocity ˆ̟ that violate the assumption

that ˆ̟ is of order ǫ. The errors can be reduced, if desired, by penalizing a linear combination

of power and angular velocity oscillations.

Minimization of each cost function leads to a distinct gait whose optimality is not obvious

from physical intuition. Snapshots of these optimal gaits over one period are shown in

Figs. 2.4-2.6. Thrust generation in the power optimal gait is achieved by the arms sending

asymmetrical waves down the right and left sides of the body, while the legs oscillate from

side to side with small amplitudes (Fig. 2.4). The oscillation amplitudes are larger on the

left hand side to achieve the desired turning. This asymmetrical gait has a lower power cost

than a gait with symmetrical waves traveling down the right and left sides of the locomotor.

The shape-derivative cost is minimized when the legs use a flapping motion to propel the

locomotor forward, similar to the gait in jellyfish swimming (Fig. 2.5). This gait is desirable

because it minimizes large changes in the body shape and allows the main body to remain

steady without large oscillations about its orientation. However, it comes at a price of very

large torque and power costs. In the optimal torque-rate gait, the legs synchronously oscillate

from side to side at a relatively high frequency, similar to the motion of caudal fins in fish

(Fig. 2.6). This gait saves input torque magnitude, but sacrifices large body shape changes

and yawing motion.

Figures 2.4-2.6 show that it is optimal to use either arms or legs to generate thrust for

locomotion, but it is not desirable to combine all four limb movements. This is a counterin-

tuitive result (valid at least for the simplified model) that one would not be able to predict

without using the optimal gait theory. Furthermore, the left-right asymmetry in the optimal

gaits resulting from turning requirement, which is most prevalent in power optimization,

demonstrates the following point. Although the harmonic term of the body shape is found

by solving a problem of the same form as the straight locomotion problem, the oscillatory

component of the optimal gait is still a function of the desired angular velocity due to the
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dependence of X(ω) and Y (ω) on ̟o.

Table 2.2: Target values, optimal frequencies, and simulated velocities of the simplified model

(2.7)

objective ω♭ [Hz] v [mm/s] δ [mm/s] ̟ [rad/ks]

(Target Value) — 100







0

0





















75

75

400















Power 2.00 101.0







−1.7

−0.1





















100

85

499















Shape 2.26 99.5







−0.2

0.0





















75

75

413















Torque 3.66 98.8







−1.8

0.0





















73

69

394














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Table 2.3: Simulated velocities of the original model (2.5)

objective v [mm/s] δ [mm/s] ̟ [rad/ks]

Power 87.2







0.2

1.9





















84

60

312















Shape 95.7







−0.1

−2.4





















74

64

518















Torque 107.2







−0.8

−3.2





















114

75

499















t = 0 τ/4 τ/2 3τ/4

Figure 2.4: Snapshots of the power optimal gait

t = 0 τ/4 τ/2 3τ/4

Figure 2.5: Snapshots of the shape-rate optimal gait

t = 0 τ/4 τ/2 3τ/4

Figure 2.6: Snapshots of the torque-rate optimal gait
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(a) Power (b) Shape (c) Torque

Figure 2.7: Nonlinear model trajectory over 25 seconds

In order to analyze the accuracy of the optimal gait result from the simplified model

(2.7), we look at the simulated velocities of the original nonlinear model (2.5) given in Table

2.3. The different gaits result in different accuracies depending on how well they satisfy the

assumptions on small body deformation and small angular velocity harmonics. In torque-

rate optimization, in particular, the pitch rate is much larger than desired. This occurs

because the gait in torque-rate optimality has large roll rate harmonics due to the motion of

the back panels pushing the main body from side to side, thereby violating the assumption

that ˆ̟ is of order ǫ. The roll rate harmonics can be reduced by actuating the rectifier at a

higher oscillation frequency with smaller amplitudes, thereby achieving simulated velocities

that are closer to the desired values.

Figure 2.7 shows snapshots of the trajectories for the original nonlinear model (2.5) over

25 seconds. The slower nominal speed and smaller yaw rate in power optimization results

in a trajectory with a larger radius of rotation and a larger bank angle. The larger yaw rate

and smaller roll rate in shape-derivative optimization results in a smaller radius of rotation

and a tighter distance between the turns. The larger locomotion speed and pitch rate in

torque-rate optimization results in the locomotor traveling at a faster pace with a larger bank

angle. Despite the discrepancies between the simulated velocities, all the trajectories follow

the desired path at least qualitatively, demonstrating the utility of the optimal turning gait

formulation and solution for robotic locomotor designs. Although optimality of the simplified

model does not guarantee global optimality for the original nonlinear model, the optimal gait
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found can be used as an initial condition to find optimal gaits for the fully nonlinear model.

2.5 Discussion

Analytical studies of (animal or robotic) locomotion systems require dynamic models of

the body-environment interactions. While most of the past modeling efforts have addressed

specific locomotor configurations, it is desired to have a “paradigm model” for a class of loco-

motors, upon which a general theory of locomotion can be developed. A successful paradigm

model, based on geometric mechanisms, exists [54, 14, 13, 55], which encompasses model-

ing/analysis of locomotors interacting with environment through kinematic (nonholonomic)

constraints (rolling wheels, momentum preservation, etc.). This paradigm does not capture

locomotors interacting with the environment through resistive forces resulting from relative

body motion (swimming, slithering) under nontrivial inertia effects. The dynamical models

we developed in Section 2.2 capture this class of locomotors, providing a basis for further

analytical studies.

In general, robotic locomotors are subject to many uncertainties embedded in various

features, and their accurate modeling is infeasible. Hence, a good practice in robotic con-

trol design or motion planning, in our opinion, is to analyze a simple model capturing the

essential dynamics and develop a rough plan for operation, followed by fine tuning on site

through experiments. With this scenario in mind, we have derived the equations of motion

(2.5) for a general class of mechanical rectifiers traveling in three dimensional space with full

rotation and translation. The resistive nature of the body-environment interactions is quali-

tatively captured by forces linearly dependent on the relative velocities, with drag coefficients

quantitatively dictating the net effect over a cycle of body oscillation. We then reduced the

model to the simplest form (2.7) that maintained the necessary rectifying dynamics, assum-

ing small body deformation. The state space model (2.7) unveils the dynamical structure of

mechanical rectifiers, explicitly showing how variables are interlaced to produce thrust for

propulsion and moment for turning. Our simple analytical model is not only applicable for

numerical simulations, but also for theoretical study.
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We then formulated an optimal turning gait problem as the minimization of a quadratic

cost function subject to constraints on the average locomotion velocity and angular velocity.

Physical properties (Assumption 1) were exploited to reduce the optimality problem equiva-

lently to two separate minimization problems, solvable for globally optimal solutions. It was

proven that the optimal offset resulting in turning is first found independently of the periodic

term resulting in translation, while the optimal periodic term is adjusted to compensate for

the environmental drag due to the shape offset. Furthermore, it was shown that, like optimal

locomotion in a fixed direction, the optimal periodic term is purely sinusoidal.

To confirm the utility of the optimal gait problem and solution, numerical examples of

a swimming locomotor were presented. The examples showed that while the optimality

problem is formulated and solved for a simplified model, the optimal gaits are reasonable

for the original nonlinear model even when the assumptions of small body deformation are

slightly violated. The results showed the benefits of the optimal gait theory in finding optimal

gaits that can achieve a desired trajectory and speed.

The theoretical framework developed through a series of research, including [21] and in

this chapter, are useful for understanding biological mechanisms underlying animal locomo-

tion. For instance, in the next chapter, we will demonstrate how modeling and gait analyses

within our framework supports the hypotheses that carangiform fish exploit body-fluid reso-

nance for efficient swimming. Another example of this theory supporting animal locomotion

includes the two representative gaits of batoids, undulation and oscillation [56], which result

from energy optimization under round and triangular shapes of large pectoral fins [57, 58].

In the field of engineering, our framework is useful for proof-of-concept designs of mechan-

ical rectifiers. Our theory can quickly provide a list of reasonable gaits for a creative (not

necessarily bio-inspired) design of a robotic locomotor, without any a priori knowledge or

prejudice from animal locomotion. These innovative designs of locomotors can be achieved

through design/analysis iterations to go beyond mimicking what we observe in nature.
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CHAPTER 3

Analytical Insights into Optimality and Resonance in

Fish Swimming

3.1 Overview

The purpose of this chapter is to demonstrate the utility of the optimal gait theory not

only for design, but also as a tool for analyzing biology. We provide simple analytical ex-

planations for why fish choose a specific gait and oscillation frequency when swimming at

a steady-state velocity. We first hypothesize that the natural gait is optimal and minimizes

a mechanical cost. For instance, the natural gait may be minimizing muscle tension, power

consumption, body shape curvature, or a combination thereof. Furthermore, we hypothesize

that resonance is exploited in reducing the cost. Because both frequency tuning and hydro-

dynamic wake resonance have been observed, this resonance likely depends on both body

and fluid dynamics. In contrast with previous works that focused on individual aspects of

biomechanics and hydrodynamics of swimming, this chapter presents an integrative view of

fish swimming mechanisms, based on a simple model of body-fluid dynamics.

The primary analysis focuses on saithe (pollachius virens) swimming. Carangiform lo-

comotion of saithe has been studied using Lighthill’s slender body theory by [1, 2, 59],

which modeled saithe as a continuous dynamic beam under hydrodynamic forces and mo-

ments. Here, we develop a discrete model using three rigid bodies with two rotational joints

that only permit lateral oscillation. We consider standard form drag on the whole body and

added-mass effect on the tail for thrust generation [60, 61, 62] to model the resistive/reactive

hydrodynamic forces. To determine whether natural swimming gait is optimal, we compare

numerical results from model-based analysis to data from observed swimming. We find op-
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timal gaits using the approach developed in [21] and extended in Section 2.3.3, where tail

motion is optimized to achieve a given average velocity with minimal mechanical cost. This

simple method allows us to develop analytical insights into the connection between optimal-

ity and resonance, plus various properties including Strouhal number, power consumption,

and Froude efficiency.

3.2 Body-Fluid Interaction Model

Saithe fish exhibit carangiform locomotion, where undulation is concentrated in the pos-

terior half of the body. In our study, we use a simple model with three rigid bodies and

two rotational joints (figure 3.1), representing a heavy head and trunk region (“main body”)

and undulating precaudal and caudal regions (“tail”). The main body of the fish, with the

center of mass at (xo,yo), is assumed to move only in the x direction, with no rotation or

translation in the y direction, such that its motion is solely described by the position xo

and velocity v := −ẋo. This is a reasonable model to study carangiform locomotion along a

straight line. Tail motion is described by the angular displacements of the oscillating panels

θ ∈ R2 and is generated from the net effects of hydrodynamic forces and muscle bending

moments. Although we are only considering a model where the tail section is represented

by two panels with two rotating joints, the tail can be similarly divided for an arbitrary

dimension of n oscillating panels with analogous analytical results.

The muscle bending moments consist of active and passive components [63]. The active

component u ∈ R2 results from the difference in antagonistic left/right muscle tensions and

is directly controlled through motoneuron activation. The passive component results from

co-contraction of left/right muscles plus intrinsic elasticity of the tissues, and is modeled

proportional to the curvatures (angular displacements) at the two joints with proportionality

constants (stiffnesses) k1 and k2. Undulatory motion of fish is driven by anterior muscles in

the precaudal region, and the resulting wave is propagated down the tail through the body’s

passive stiffness [64, 65, 66]. To make our model similar to live fish, we allow the tail to

oscillate passively; the active muscle bending moment u1 is applied only at the anterior joint,
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Figure 3.1: Top view of fish model. A large main body is constrained to move along the

x-axis, and two oscillating panels represent the flexible tail section.

with the posterior joint assumed passive, i.e. u2(t) ≡ 0, unless otherwise noted. Each rigid

body is subject to forces and torques due to the external environment, neglecting gravity

and buoyancy. Non-linear equations of motion can be found using torque and force balances

or the Euler-Lagrange equation.

In carangiform locomotion, with Reynolds number (Re) between 2×105 and 8×105 [1],

there is little time for resistive forces to build up in the undulating sections of the body, and

thrust generation is dominated by reactive forces due to the water inertia. Therefore, we

only consider resistive drag acting on the "zeroth" main body constrained to the x-axis and

reactive thrust in the tail. The drag force fo is proportional to the fish’s total (main body

and tail) wetted surface area Aw and the square of the velocity v, with drag coefficient cD,

which is approximately 0.01 for swimming fish [62]:

fo = cv2, c :=
1

2
cDρAw,

where ρ is the water density.

The mean thrust necessary to balance the drag is generated reactively in the undulating

sections. In inviscid flow, this reactive force arises from the volume of water accelerated by

the panels in the normal direction at each cross section of the body. In this simple body-fluid

model, we assume all the thrust is generated at the unconstrained pre-caudal and caudal tail

sections; and the added mass of the accelerated fluid adds to the body mass of the fish, to

give a total effective mass. In his reactive theory of a slender fish, Lighthill models the fluid

acceleration at section i with

ai = ẇi +
v

cos2θi
θ̇i, (3.1)

where wi is defined as the velocity in the y-direction of a water slice, pushed away by cross

section i of the body [60]. Here, we assume the volume of water accelerates in the normal
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direction with the body and slides in the tangential direction, such that the after a time δt,

the volume of water remains in its x-position, (figure 3.2). This assumption gives a fluid

acceleration of

ani
= αni

−2νti
θ̇i, (3.2)

where αni
and νti

are the normal acceleration and tangential velocity of the ith panel re-

spectively [50]. The reactive force fi is normal to the panel, and its lateral component is

proportional to the acceleration and mass of the water slice [67]. Hence, fi is given by

fi =mAi
ani

,

mAi
:= ρVicAi

,

where mAi
is the added mass accelerated by the ith body, ρ is the water density, Vi is the

cylindrical volume of water, and cAi
is the added mass coefficient that takes into account

shape dependence on the acceleration reaction [67]. It can be shown that this reactive force

model is equivalent to the spatial discretization of the slender-body theory by Lighthill [60].

The model is also equivalent to the one previously used for anguilliform swimming [50] when

both models are linearized using small oscillation angle approximations.

With the model for hydrodynamic forces and torques, nonlinear equations of motion

are derived from first principles of physics, such as the Euler-Lagrange equation, as in the

previous chapter, in Section 2.2. To gain insights into swimming mechanisms, we simplify

the equations of motion to develop bilinear equations of motion using small oscillation angles

and Taylor series expansions. Additionally, we consider steady-state swimming at a constant

average speed v resulting from τ -periodic body movements θ, and take the average over a

cycle τ to remove acceleration. Using these assumptions, we get the following equations of

motion:

Jθ̈+ 2vGθ̇+Kθ =Bu, (3.3)

cv2 + θTGTθ̈ = 0, (3.4)

where J , G, K, and B are constant 2 × 2 matrices representing the moment of inertia of

the total effective mass, coefficient for reactive hydrodynamic torque, body stiffness, and
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Figure 3.2: Hydrodynamic forces acting on the body model. Two snapshots at different time

instants are shown with a lateral offset for clarity. The main body experiences resistive drag

force fo. The tail receives reactive hydrodynamic forces, f1 and f2, due to the mass of fluid

pushed in the lateral direction of the oscillating body. In steady swimming, the average

reactive forces in the x-direction (thrust) balance the resistive drag. Reactive forces in the

y-direction would balance the lateral resistive drag on the main body (not shown) if it were

not constrained to only move in the x-direction.

transformation from bending moment to inertial torque, respectively. The first equation

shows how the muscle bending moment u results in body motion θ, and the second equation

shows the force balance where cv2 represents the total drag and −θTGTθ̈ the average thrust

force over one cycle. Here, the notation x for a τ -periodic signal x means the average

x := (1/τ)
∫ τ
0 x(t)dt. Although velocity fluctuations are ignored in the first equation adding

limitations to the model, the simplification helps us find important properties in steady

swimming otherwise hidden in a complicated mathematical model. A detailed derivation is

given in the Appendix.

3.2.1 Model Parameters

We fix model parameters using data on the body dimensions, kinematics, and observed

gaits of live saithe provided by [1, 2]. According to the data, a saithe, on average, travels

approximately 86% of its body length in one tail-beat cycle. Therefore, a 40 cm saithe

swims at approximately 1.2 m/s with a frequency of 3.5 Hz. The body dimensions of saithe

and kinematic data, averaged over 13 video sequences, are given in table 3.1. Based on the

distribution of amplitude of movement along the body, we approximate the main body to
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Figure 3.3: Approximated side view of saithe.

τ/8

τ/4

3τ/8

t = 0

τ/2

Figure 3.4: Snapshots of observed swimming gait over a half cycle [1], with period τ , during

steady-state swimming.

be 50% of the entire length, and approximate the undulating precaudal region and caudal

tail fin to be 40% and 60% of the posterior half, respectively. The fish’s side view is given

in figure 3.3, with body parameters in table 3.2.

Table 3.1: Averaged body dimensions and kinematic data from saithe

total body length lb = 0.40 m

total body mass m = 11.3l3
b

kg/m3

wetted surface area Aw = 0.401 l2
b

tail-beat period τ = 0.278 s

tail-beat amplitude h = 0.083 lb

swimming speed v = 0.86 lb/τ

The saithe’s natural gait is described by the distribution of amplitude and phase of

movement along the body length. Two observed gaits at two swim speeds are given in

[1]. Snapshots of one observed gait, traveling at 1.2 m/s with an oscillating frequency of

3.49 Hz, are shown in figure 3.4, where the tail angles θnat(t) were determined by spatial
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Table 3.2: Model parameters

tail panel 1 tail panel 2

length 2l1 = 8 cm 2l2 = 12 cm

height d1 = 6.09 cm d2 = 3.75 cm

mass m1 = 177 g m2 = 67.9 g

fluid volume/length A1 = 0.0182l2
b

A2 = 0.0174l2
b

added-mass coefficient cA1
= 1 cA2

= 2.53

drag coefficient cD = 0.009

water density ρ = 1000 kg/m3

0.5 1 1.5 2
1.9

2
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cA1

c A
2

Gait 1
Gait 2

Figure 3.5: Estimation of the added-mass coefficients (virtual mass divided by nominal cylin-

drical mass) of the two tail links (cA1
, cA2

). For values on the two lines, average thrust and

drag forces balance in the two observed gaits provided by [1], resulting in steady swimming.

In the analysis, cA1
= 1 and the average value of cA2

for the two gaits (marked by a square)

are used.

discretization. For a 40 cm fish, the tail-tip amplitude ymax is approximately 3.3 cm. We

define the nondimensional frequency called the Strouhal number, as St = fh/v, where f is

the tail-beat frequency in Hertz, and h = 2ymax is the peak-to-peak tail-tip amplitude. For

an average fast-swimming saithe, the Strouhal number is about 0.20. This value is at the

low end of the 0.2-0.4 range observed in fish and cetaceans [68].
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The fluid drag depends on the drag coefficient cD. According to [69], this value is approx-

imately 0.01 for salmon and herring swimming at Re ∼ 106. The averaged drag coefficient

calculated from saithe data in [1] is cD ≈ 0.009, and we use this value for our analysis. The

thrust generated in the undulating tail sections depends on added-mass coefficients cA1
and

cA2
. The precaudal tail section is close to a rectangular panel and it is reasonable to ap-

proximate the added-mass coefficient cA1
≈ 1; however, the caudal tail shape is not close to

a rectangle, and calculating the exact value of cA2
is tedious. To find a reasonable value for

cA2
, we compute the value that balances thrust and drag forces for the two observed gaits

provided by [1]. Figure 3.5 plots the lines in the (cA1
, cA2

) plane on which the thrust and

drag balance for the two observed gaits. Averaging cA2
values at cA1

= 1 gives cA2
= 2.53.

The fluid force parameters used in our analysis are summarized in table 3.2, where Ai is the

cross-sectional area of the cylindrical fluid accelerated by the ith tail panel. Note that with

this body division, A1 and A2 are approximately equal, leading to insightful results later.

3.3 Optimal Gait Analysis

Various periodic forcing of the bending moment results in different tail oscillation pat-

terns (gaits), which may lead to different characteristics (e.g. efficiency) of swimming. To

determine whether natural swimming gait is optimal, we compare the frequency and shape

of body oscillation observed in natural swimming with the solution from optimal gait theory

[21]. An optimal periodic body motion can be defined and computed by the minimization

of a quadratic cost function subject to drag-thrust balance at a desired locomotion velocity.

Optimal gaits are specified as follows. We apply a sinusoidal bending moment at the

anterior tail joint. The amplitude and frequency of the driving input are constrained so

that the model fish swims at a prescribed average velocity in the steady-state, balancing

thrust and drag. Among those satisfying this constraint, we choose the bending moment

that gives the smallest value of a selected cost function. The optimal input, and hence the

optimal gait at a prescribed velocity, are thus determined for a given set of body and fluid

parameters. We have examined various cost functions including the power consumption and
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body curvature, and found that choosing the smallest amplitude of active bending moment

gave the optimal gait closest to the observed motion; the result of this case will be reported

below.

For minimal cost of bending moment due to muscle tension, the problem is formulated

as follows:

min
u,θ∈Pτ

1

τ

∫ τ

0
||u||2 dt (3.5)

subject to (3.3) and (3.4), where Pτ is the set of τ -periodic signals. The theory [21] indicates

that the optimal bending moment u ∈ Pτ is a sinusoid and has the form u(t) = ℜ[ûejωt],

where û ∈ C2 is the phasor of u(t), and ω := 2π/τ is the oscillation frequency. In particular,

the optimal solution is given in terms of the largest eigenvalue λo and the corresponding

eigenvector ûo of the matrix Z:

Z := P∗
ω(G+GT)Pω(ω/v)2/(2c) (3.6)

where Pω := P(jω) is the frequency response of the transfer function from the bending

moment u to the tail angle θ:

P(s) := (Js2 + 2vGs+K)−1B.

The minimal value of the cost in (3.5) for a given frequency ω is equal to 1/λo; thus, the

optimal frequency, ωo, that minimizes the muscle tension cost, can be found using a line

search over all frequencies to maximize λo. Consequently, the optimal body shape phasor,

θ̂o, can be found using the transfer function at the optimal frequency; θ̂o = P(jωo)ûo. We

can then compare the optimal gait, θo(t) = ℜ[θ̂oe
jωot], with the natural gait θnat(t).

The same active bending moment can generate tail oscillations of different shapes de-

pending upon the tail stiffness. Therefore, the stiffness value can have a large impact on

the swimming performance. While observations and experiments in the literature provide

preliminary results on how body flexibility varies with body position and speed, they do not

provide actual values for live saithe body stiffness that can be used to determine k1 and

k2 in our model. In fact, stiffness values are probably actively adjusted for a given speed

through co-contraction of left/right muscles [24]. To test this hypothesis, we set k1 to be a
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reasonable scalar multiple of k2, and include k2 in the optimal gait problem as an adjustable

parameter. We examine cases with various ratio k1/k2, for a sensitivity study, since a definite

relationship between the body flexibility at various points on the body is not known.

Overall, the frequency and amplitude of sinusoidal active bending moment u1 and tail

stiffness k2 are optimized to achieve a given average speed with minimum amplitude of u1,

while hydrodynamic and body geometry/mass parameters, and the stiffness distribution over

the body, k1/k2, are fixed. The optimization is repeated for various swim speeds in a range

observed in saithe swimming to determine whether the observed gaits can be explained by

optimality. When we examine hydrodynamic resonance in Section 3.4.2.3, the procedure is

modified by assuming that the fish body has no mass or stiffness and both tail joints are

driven by active muscle bending moments. In this case, tail stiffness parameters are set to

zero (k1 = k2 = 0), and frequency, amplitudes, and phases of bending moments u1 and u2

are adjusted to minimize the sum of squares of the bending moment amplitudes.

3.4 Results

3.4.1 Intrinsic Properties of Steady Fish Swimming

Given a particular gait θ, the equations of motion, (3.3) and (3.4), allow us to determine

the muscle bending moment u that generated the motion, and the resulting average steady

speed v. Various combinations of (θ,u,v) would satisfy the equations, but there are certain

properties that are shared by all combinations. This section presents such gait-independent

intrinsic properties.

3.4.1.1 Strouhal Number

In equation (3.4), the average thrust force over one cycle is balanced with the total drag

to achieve a steady-state velocity. Rewriting this thrust-drag balance using phasor notation

θ(t) = ℜ[θ̂ejωt] gives:
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ω2θ̂∗(G+GT)θ̂ = 4cv2. (3.7)

The matrix G is a function of the undulating panel lengths, 2li, and the added mass of the

fluid accelerated by each panel, mAi
:= ρAi(2li). For the saithe model, with parameters given

in Section 3.2.1, the virtual mass per unit length is roughly constant, i.e. A1 = A2 =: Ao.

In this case, the rank of the matrix G+GT becomes one, and we can factor it out as

G+GT = ρAoll
T, where l ∈ R2 is a stacked vector of panel lengths 2li. Assuming small

oscillation angles θi, the lateral tail-tip displacement can be approximated as y ∼= lTθ. The

thrust-drag balance equation can then be simplified to give the following expression for the

ratio of the locomotion velocity v to the maximum tail-tip velocity vt := max
t

ẏ:

v

vt
=

√

Ao

2cDAw
. (3.8)

Equation (3.8) implies that the average swimming velocity is proportional to the maximum

tail-tip velocity, with a constant determined from only the fish’s body geometry and hydro-

dynamic force parameters. If a fish has a large drag coefficient cD or a large wetted area Aw,

a higher tail-tip velocity vt is required to achieve a given speed v. The relationship expressed

in equation (3.8) agrees with observations from biology. Data on carangiform locomotion of

live scombroid fish shows a linear relationship between swim speed and tail speed [70, 71].

This relationship was calculated by [72] to be v/vt = 1.21 for steady swimming, and v/vt = 1.9

for swimming starting from rest. Tail velocity also appears to be directly proportional to

swim velocity in anguilliform swimming of eel [73]. In our simple model, we get v/vt = 1.57,

similar to the expressions found by [72], while live fish observation gives v/vt = 1.44 [2].

The nondimensional Strouhal number is defined by St= h/(vτ), and can be interpreted

as the ratio of the peak-to-peak tail amplitude h to the distance traveled over a cycle vτ .

Because the maximum tail-tip velocity is given by vt = πh/τ for sinusoidal oscillations, the

Strouhal number can also be viewed as the ratio St= (1/π)(vt/v), leading to the expression:

St=
1

π

√

2cD · Aw

Ao
. (3.9)

The relationship (3.8) between the locomotion velocity and tail-tip velocity makes St prede-

termined based on the fish’s body geometry and fluid parameters, and independent of gait
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and velocity. Slow propulsion with fast tail-beat (higher St) results from a larger wetted

area Aw, larger drag coefficient cD, and/or smaller amount of water pushed by the tail Ao.

The saithe model has St= 0.2, which is close to values observed for live saithe. If the virtual

masses per unit length are not equal, i.e. A1 6= A2, the expression for St in (3.9) remains

with a new definition for Ao:

Ao := A2 + (A1 −A2)(vm/vt)
2,

where vm is the maximum lateral velocity of the posterior joint. Consequently, St may vary

with the distribution of lateral velocity along the body.

3.4.1.2 Power Consumption and Froude Efficiency

In the literature, power consumption and Froude efficiency have been calculated using

Lighthill’s reactive theory for a continuum model of fish body that periodically undulates

at a frequency ω, and sends traveling waves down its body to swim at a constant (average)

velocity v. In this study, we calculate these quantities using the discrete and bilinear model

(3.3) and (3.4). The calculated values will not be perfectly accurate due to the simplification

of the model, but provide new analytical insights into efficiency associated with swimming

dynamics.

Basic power equations are obtained by multiplying (3.3) and (3.4) by θ̇T and v, respec-

tively:

E =R+V +W, D = Pv (3.10)

where E is the power supplied by the muscle, W is the power lost into water, R and V are

the rotational kinetic and elastic potential powers, D is the power loss due to viscous fluid

drag, and P is the thrust force. These quantities are defined by

E := θ̇TBu, R := θ̇TJθ̈, V := θ̇TKθ, W := 2vθ̇TGθ̇, D := cv3, P := −θTGTθ̈.

During steady swimming, the average kinetic and potential energies are constant. Thus,

averaging of the first equation in (3.10) yields E = W , indicating that the muscle power

supply E is equal to the power lost into water W . The second equation in (3.10) shows that

45



the thrust power gained by the body through reactive hydrodynamic forces equals the power

loss due to drag during steady swimming.

Now, based on the above analytical formulas for W and P , one can readily verify through

integral by parts thatW = 2Pv. This implies E= 2cv3, and thus the total power consumption

E on average is estimated to be twice the power required for towing the fish body, and is

independent of the body gait and oscillating frequency. Therefore, it does not make sense to

optimize the gait to minimize power consumption because the total power E is determined

only by the swimming velocity v and the fluid drag coefficient c, which are fixed in this

analysis. The expression for E arises from the work done to push fluid both axially and

laterally, as explained in Section 3.5.1. For saithe, the power consumption at a nominal

speed 1 m/s is estimated to be E = 0.58 W. The average power consumption for saithe was

calculated in [2] to be 0.0014ρl5bT
−3 which equals 0.61 W for a 0.4 m fish swimming at 3.5 Hz.

The Froude efficiency, or the propulsive efficiency, is the ratio of useful power output to the

total power consumption, defined as η := Pv/E. According to our results using a bilinear,

discrete reactive fluid model, E = 2Pv. This relationship makes the Froude efficiency always

equal to η = 0.5, regardless of the swimming gait, speed, and body geometry.

3.4.2 Optimal Gait Analysis

3.4.2.1 Natural Gait is Optimal

This section examines whether the observed gait of saithe is optimal with respect to a

certain cost function. The previous section revealed that both total power consumption and

Froude efficiency are independent of gait, and not appropriate cost functions for character-

izing the natural gait in terms of an optimality. As an alternative, we minimize the muscle

tension or bending moment cost while maintaining a given swimming speed, and solve for the

optimal periodic body shape and oscillation frequency, using optimal gait theory provided

in Section 2.3. We compare the optimal gaits at various speeds with data on live saithe

swimming provided by [1, 2] to examine optimality of the natural gaits. We also determine

the role that body stiffness, driving frequency, and tail-tip amplitude play in varying the
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desired speed.
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Figure 3.6: Results for optimal gait that minimizes muscle bending moment for the saithe

model with a passive tail over a range of velocities. The tail joint stiffness is also optimized

while the ratio of anterior stiffness to posterior stiffness is fixed. The data points indicated

by “+” are from [2]. As the swimming speed increases, the frequency linearly increases while

the amplitude remains roughly constant so that St stays constant as analytically predicted.

The optimal gaits are reasonably close to the observed data.

Undulatory motion of fish is driven by anterior muscles in the precaudal region, and the

resulting wave is propagated down the tail through the body’s passive stiffness [64, 65, 66].

To make our model similar to live fish, we allow the tail to oscillate passively; the muscle

bending moment u1 is applied only at the first joint between the main body and precaudal

region, and the second joint between the precaudal and caudal tail sections is assumed
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Figure 3.7: Snapshots of the optimal gait that minimizes muscle bending moment at a

locomotion velocity of 1.2 m/s. The precaudal and caudal tail stiffnesses are optimized

assuming k1/k2 = 0.85. The optimal oscillation frequency is 3.52 Hz and the optimal stiffness

is k2o
= 0.117 Nm/rad.
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Figure 3.8: Snapshots of the hydrodynamically optimal gait. The conditions are the same

as those for Fig. 3.7, except the fish model has no body mass or body stiffness, and both

joints receive bending moment inputs. The optimal oscillation frequency is 2.38 Hz.

completely passive, i.e. u2(t) ≡ 0. In this case, u and B are redefined to be u1 and the first

column of the original B matrix, respectively (see the Appendix).

While observations and experiments in the literature provide preliminary results on how

body flexibility varies with body position and swimming speed, they do not provide actual

values for live saithe body stiffness that can be used to determine k1 and k2 in our model. In

fact, the stiffness values are probably actively adjusted for a given swimming speed through

co-contraction of left/right muscles [24]. Therefore, we set k1 to be a reasonable scalar

multiple of k2, and include k2 in the optimal gait problem as an adjustable parameter.

We examine cases with various ratio k1/k2 since a definite relationship between the body
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flexibility of live fish at various points on the body is not known.

The results of the optimal gait calculations (figure 3.6) show that the optimal frequency

ωo increases linearly with increasing locomotion velocity v. The optimal stiffness at the

second joint between the precaudal and caudal regions, k2o
, exhibits polynomial growth with

an increase in velocity. In fact, it can be analytically verified that optimal ωo and k2o
are

proportional to v and v2, respectively. The tail-tip amplitude ymax := max y(t), however,

remains constant, keeping the Strouhal number St also a constant. The results from the

optimal gait closely match the data of live saithe swimming when the precaudal stiffness

is approximately 85% of the caudal stiffness. Snapshots of the optimal body motion are

shown in figure 3.7 for the case k1 = 0.85k2o
, where the fish is swimming with an oscillation

frequency of 3.52 Hz. The swimming motion in figure 3.7 closely resembles the observed

swimming shown in figure 3.4. Thus, saithe appears to minimize active muscle bending

moment during steady-state swimming by adjusting its gait, tail beat frequency, and body

stiffness.

3.4.2.2 Optimal Gait Exploits Resonance

We will present an analytical explanation for the optimal frequency ωo and why it is

linearly proportional to swimming speed. We theorize that both body resonance and fluid

resonance are exploited in the optimal frequency and in natural swimming. As in Section

3.4.1.1, we consider the case where the added masses per unit length are equal, i.e. A1 =A2.

This approximation is reasonable for our model, and provides analytical insights into how

optimal, and hence natural, gait exploits resonance.

When a sinusoidal bending moment of frequency ω is applied to the anterior tail joint, the

tail tip oscillates laterally at the same frequency. According to the optimal gait theory, the

cost of bending moment or muscle tension (3.5) is given by 1/λo, where λo is the maximum

eigenvalue of the matrix Z defined in (3.6). Assuming A1 =A2 =:Ao, the eigenvalue is given

by

λo =
(

Ao

cDAw

)

∥

∥

∥

∥

∥

Q(jω)

v

∥

∥

∥

∥

∥

2

, Q(s) := slTP (s),
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Figure 3.9: The gain of Q(jω) over a range of frequencies, where Q(s) is the transfer function

from the muscle bending moment u1 to the tail-tip velocity. The speed is v = 1.2 m/s and

the tail stiffness is specified as k1 = 0.85k2 and k2 = 0.117 Nm/rad. There is a peak, or

resonance frequency at ωr = 3.51 Hz.

where Q(s) is the transfer function from input torque u to the lateral tail-tip velocity ẏ. The

optimal frequency that maximizes λo is the peak frequency that maximizes the gain (spectral

norm) of Q(jω). Thus, the optimal frequency that minimizes the torque or muscle tension

cost is the resonance frequency that maximizes the tail-tip velocity for a given magnitude of

the bending moment. Since steady swimming speed is proportional to the maximum tail-tip

speed, (3.8), we can also interpret the resonance with the frequency that maximizes the ratio

of swimming speed to input torque magnitude.

To verify existence of the resonance, we consider the optimal locomotion example shown

in figure 3.7, where the optimal frequency is ωo = 3.52 Hz. The plot of the amplification

factor ‖Q(jω)‖ as a function of frequency ω is shown in figure 3.9. There is a well-defined

resonance peak that maximizes ||Q(jω)|| at 3.51 Hz. Because of the slight difference in the

values A1 and A2, there is a negligible difference between the optimal frequency ωo and the

resonance frequency.
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Figure 3.10: The gain of QF (jω) over a range of frequencies, where QF (s) is the transfer

function from the muscle bending moments (u1,u2) to the tail-tip velocity when the fish has

no body mass or body flexibility. There is a peak, or resonance frequency at ωr = 2.4 Hz.

3.4.2.3 Hydrodynamics and Body Flexibility Resonate

The previous two sections have shown that a swimming saithe exploits resonance to

achieve a desired swimming speed with minimal load on muscle. This section explores the

origin of the resonance. When the fish body is flexible, there may exist a peak resonance of

the transfer function Q(jω), that is close to the natural frequency of the fish body. But it

is possible that this resonance is also related to a hydrodynamic resonance due solely to the

fluid. We separately examine these two possible sources of resonance.

The moment of inertia matrix J in the equation of motion, (3.3), can be split into

the summation of the fish body inertia matrix and the added-mass fluid inertia matrix,

J = JB + JF . The natural frequencies of the fish body itself coincide with the resonance

frequencies of Q(s) without water:

QB(s) := slT(JBs
2 +K)−1B,

and are equal to the square roots of the generalized eigenvalues of (JB,K). For the swimming

fish shown in figure 3.7, the first two natural frequencies of the body are 1.12 and 6.13 Hz,

which are in the same order as the resonance frequency ωr = 3.52 Hz, but are not very

close. Alternatively, the resonance frequencies can be defined using the effective inertia
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matrix J containing both body and added-mass. In this case, (J,K) gives the frequencies of

natural body oscillations in still water. These natural frequencies coincide with the resonance

frequencies of Q(s) at zero swimming speed:

Q0(s) := slT(Js2 +K)−1B.

With the fluid inertia added, the natural frequencies are at 0.49 Hz, and 3.29 Hz. Therefore,

the tail beat frequency of optimal (and natural) swimming is close to the second natural

mode of oscillation in Q0(s) resulting from body flexibility and total effective mass.

To study hydrodynamic resonance, we remove the stiffness and mass of the fish body, and

assume that the fish model can achieve an arbitrary tail motion through bending moment

inputs at both joints. In this case, the transfer function from bending moments to lateral

tail-tip velocity Q(s) becomes

QF (s) = lT(JF s+ 2vG)−1B.

We can view QF (s) as a transfer function which describes the input/output dynamics of

a massless ribbon swimming in water. The moment of inertia matrix, JF , is symmetric

and positive definite; the hydrodynamic torque matrix G, however, is an asymmetric upper

triangular matrix; thus, the transfer function contains the fluid inertia and skewed damping

due to fluid flow. Although the body lacks stiffness, there is still a well-defined peak that

maximizes the gain of the transfer function QF (s) because of the structure of G (figure 3.10).

This resonance occurs at ωr = 2.4 Hz, which is reasonably close to the natural swimming

frequency at 3.5 Hz.

Figure 3.8 depicts snapshots of the optimal gait, which minimizes muscle tension, when

there is no body mass or stiffness. Because the optimal frequency is at 2.4 Hz, and the fish is

swimming with a locomotion speed of 1.2 m/s, the tail-tip height is larger than in observed

swimming, such that the Strouhal number remains at 0.2.
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3.5 Discussion

The results in this chapter are derived from a simple fish swimming model, with hydro-

dynamic forces modeled as static functions of relative velocity and acceleration. Due to the

approximations, our results may not be exactly accurate in a quantitative sense, and we

remain cautious when interpreting the results. Nevertheless, the model presumably captures

essential dynamics of fish swimming, and the results should provide basic understanding of

swimming mechanisms. The results are applicable when the body can be roughly separated

into a main body and tail sections, the main body’s lateral motion is negligible compared to

the tail motion, and reactive force model for thrust generation is valid.

3.5.1 Power Equality for Lateral Kinetic Loss and Thrust

The total power used in swimming is found to be invariant over various gaits; it is always

equal to 2cv3, twice the power loss due to resistive drag, regardless of the hydrodynamic

parameter values, and is proportional to the swimming speed cubed. Regardless of the gait,

a speed v is achieved with the same power cost as long as the maximum tail-tip speed vt

is a fixed fraction of v as specified by (3.8). Therefore, power optimality cannot be the

reason why fish consistently choose particular gaits. It should be noted, however, that the

“total power” we examined is the mechanical power output from muscle that is eventually

dissipated into water; power loss associated with muscle activation is not considered. If the

activation cost is considered, it may still be possible to explain the natural gait by power

optimality.

Fish swim by transferring a supply of power between their muscles, their tail, and the

water. Figure 3.11 shows a diagram of this energy transfer. First, muscles provide a total

average supply of power, E, to the tail, through bending moment input. The tail transfers

this energy to the water as the rate of work Y done in the lateral direction; E = Y . The

water then gains a portion as kinetic power, T , and returns the rest, Pv, to the tail for thrust

generation; Y = T +Pv. The thrust power is eventually dissipated as heat, D, through

resistive drag on the body; Pv = D. Overall, the total power supplied by muscle is lost
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Figure 3.11: Diagram of the energy transfer that occurs between the fish muscles, the main

body and tail, and water. E is the total power supplied by muscle, Y is the rate of work

done by tail to water in the lateral direction, Pv is the thrust power returned by water to

tail, and D is the power loss due to resistive drag.

into water in two forms, E = D+T . The loss due to drag, D = cv3, is a price to be paid

regardless. The additional loss, T , is the overhead cost required when generating thrust by

pushing water in the lateral direction; T = wTf where w := ẏ+vθ is the fluid velocity in the

y direction. A major finding of our analysis is that, to generate thrust power Pv, fish has to

waste the same amount of power in the lateral direction as the rate of kinetic energy gained

by water; T = Pv. The thrust power is equal to the main body drag power D, dissipated as

heat.

Because of the equality between kinetic power T and thrust power Pv, our result predicts

that the ratio of useful power to total power, known as Froude efficiency, η := Pv/E, is

exactly 1/2, regardless of the gait, swim speed, or driving frequency. Biological data [2]

indicate that η is in the range 0.52–0.72 for steadily swimming saithe, which is larger than

the predicted value 1/2. We suspected that a large portion of the error is attributed to

the approximation associated with linearizing the model, and studied the power transfer of

the original nonlinear model from which the bilinear model, (3.3) and (3.4), was derived.

The original nonlinear model contains trigonometric terms of θ, including the nonlinear

acceleration term for reactive hydrodynamic forces as in [50]. Because it is difficult to study

the nonlinear model analytically, numerical simulations are used to determine if the nonlinear

model gives reasonable results. As expected, simulations of the nonlinear model give more
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realistic values of Froude efficiency that are larger than or less than 1/2, depending on the

gait, frequency, and steady swimming speed. Thus, we predict η ≈ 1/2 for swimming with

small oscillation amplitude. Higher Froude efficiency (η > 0.8) of thunniform swimming [74]

cannot be predicted by our model since the main thrust source is lift force rather than

added-mass effect [75].

3.5.2 Invariance of Strouhal Number

The non-dimensional Strouhal number St describes the wake structure in fish swimming.

Fish and cetaceans generally swim with St between 0.2-0.4, with the saithe St lying on

the lower end of this interval [68]. Biological data of a variety of fish, including dace,

trout, goldfish, and jack mackerel, have pointed to a linear relationship between oscillation

frequency and swim speed, and a direct relationship between tail-tip amplitude and body

length. Based on these results, various literature have concluded that St remains constant

for a fixed ratio of swim speed to tail-beat frequency v/ω [27, 76]. According to our analysis,

thrust-drag balance requires the ratio of swim speed to maximum tail-tip speed v/vt, and

therefore St, be a constant depending on only the fish’s body geometry and hydrodynamic

parameters. The optimality for small tension then explains the observed proportionality of

frequency and constancy of tail-tip amplitude with respect to speed.

Interestingly, [77] observed that St is a function of a single parameter called the Lighthill

number Li := cDAw/b
2, where b is the tail tip height. If the volume of fluid accelerated

by tail is estimated by a circular cylinder of diameter αb with a constant α depending on

the tail geometry, then the cross-sectional area of the added mass is Ao = π(αb/2)2, and

the formula in (3.9) reduces to St = (2/π)3/2
√
Li/α, explicitly showing the dependence of

St on Li. Moreover, this simple formula with α ≈ 0.5 explains the (Li,St) relationships for

many species in Fig. 4 of [77]. While [77] interpreted the result through power optimality,

our analysis derives this formula from thrust-drag balance without optimality.

Experimental data from oscillating foil in fluids have demonstrated maximum Froude

efficiency η for St in the range of 0.25-0.35 due to efficient thrust development [30, 34, 78].
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There is an apparent discrepancy between these results and our results, which state that St is

independent of gait optimality. This discrepancy arises because the literature defines wake

resonance as maximum spatial amplification of unstable flow, while our St results follow

from the assumption of thrust-drag balance. For a fixed oscillation frequency and tail-tip

amplitude, our fish model will achieve a certain swimming speed; this speed is incomparable

to the fixed fluid speed that flows past an airfoil which is oscillating mechanically with a

fixed amplitude and frequency. Our results predict that if thrust-drag balance is taken into

account in oscillating foil experiments, such that two parameters in (v,ω,h) are fixed and

the third is measured in steady flow, the St will remain fairly constant.

3.5.3 Optimality of Natural Swimming

To determine whether the periodic body motion in natural swimming is optimal, we

defined and solved the optimal gait that minimizes muscle bending moment, and compared

the results to data of live saithe swimming. The model was adjusted to have an active

anterior tail and a passive caudal tail fin, to capture the anatomy of live fish. Because no

data is available on the body stiffness of swimming saithe, we included the stiffness as an

optimization parameter, with a fixed ratio of precaudal stiffness k1 to caudal stiffness k2.

Our choice to adjust stiffness while keeping k1/k2 constant was based on the observation that

local body flexibility at a cross-section of a swimming fish is related to the muscle activation

level and body curvature at that cross-section.

The total bending stiffness is determined by the active and passive stiffness of the muscle-

tendon-skin system and the vertebral column stiffness [79, 25]. It is proposed that active

muscles modulate the muscle stiffness to reduce the bending cost by bringing the body’s

natural frequency closer to the tail-beat frequency [26, 29, 80]. The increase in body stiffness

is generated by negative muscle work to resist muscle strain [66]. Experimental results

on the stiffness properties of the intervertebral joints of blue marlin suggest that caudal

intervertebral joints have a higher stiffness than precaudal joints, and an increase in bending

amplitude results in an increase in stiffness [81]. Experiments on the fish skin of longnose gar
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suggest that skin resists bending at high curvatures and permits bending at small curvatures

[26]. These studies indicate that the total fish stiffness should increase with an increase in

swimming speed, and the stiffness in the caudal region should be greater than the precaudal

region due to higher curvature and higher muscle strain. In the natural gait, the curvature of

saithe at 50% of the body length is approximately 63% of the curvature at 70% of the body

length [1]. According to [82] the red muscle strain of swimming mackerel at 50% of the axial

position is approximately 80% of the strain at 70% of the axial position, while the curvature

is about 55%. Consistent with these results, comparison of model-predicted optimal gaits

with natural gaits of live saithe suggested that the precaudal stiffness k1 is about 85% of the

caudal stiffness k2, and the stiffness is actively adjusted to increase quadratically with the

swimming speed.

The results demonstrated that characteristics of natural gaits over a range of swimming

speeds can be explained by optimality of minimum bending moment. In particular, the data

collected from live saithe swimming indicated that the oscillation frequency linearly increases

with speed while tail-tip amplitude remains constant. These properties are captured by the

optimal gaits with frequency and amplitude values close to observations (figure 3.6). The

linearly increasing frequency can be explained in terms of optimality, together with resonance

mechanisms. The constancy of the amplitude then follows from the constancy of the Strouhal

number. Because these numerical results match tendencies observed in live fish swimming,

and the optimal body shape is close to the observed gait, we stipulate that the optimal gait

which minimizes muscle tension can explain carangiform locomotion.

3.5.4 Resonance Mechanisms Underlying Swimming

An essential question in animal locomotion is how animals choose a specific oscillation

frequency to achieve a desired steady-state velocity. Most biological observations hint at the

exploitation of the natural dynamics associated with the interaction of the (flexible) body

and environment in order to reduce energy consumption [80]. Additionally, experimental

data from wake production of oscillating foils have demonstrated the existence of a “wake
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resonance,” which maximizes thrust production [30]. Based on these results we predicted that

natural fish swimming is exploiting some type of resonance, which is due to a combination of

natural body frequency and hydrodynamic resonance. Our results confirmed this prediction.

We found that the natural gait is optimal with respect to minimum bending moment, and

the optimal gait exploits resonance to maximize the tail-tip velocity. Therefore, we conclude

that there are resonance mechanisms underlying natural gait of swimming.

The results demonstrated that fish swims faster by increasing its oscillation frequency.

Because the tail oscillation is exploiting resonance, the body adjusts its stiffness so that the

resonance frequency matches the frequency required to achieve a desired speed. This result

agrees with the frequency tuning theory observed in animals [26, 29, 80]. The model analyt-

ically predicts that the optimal tail beat frequency ω and tail stiffness K are proportional

to v and v2, respectively, and the optimal tail beat amplitude stays constant over a range of

swimming speeds. Many fish exhibit the proportionality and constancy properties [30], and

hence our result may suggest resonance exploitation in general fish swimming.

A remaining question is: what is the origin of the resonance? Consider a virtual experi-

ment where the fish body is fixed in a flow tank to experience fluid flow at velocity v. If a

sinusoidal muscle bending moment of a fixed amplitude is applied to flip the tail, there is a

frequency at which the amplitude of the lateral tail velocity is maximum; this is the reso-

nance observed in figure 3.9. In Section 3.4.2.3, we found that this resonance is still observed

when we remove the body mass and stiffness. Thus, the origin of the overall resonance may

be traced to the dynamics without body. Because this peak is purely due to the fluid effects,

we call it a hydrodynamic resonance. However, its relation to the so-called wake resonance

[34] is not immediately clear since the latter is unrelated to the muscle bending moment.

The hydrodynamic resonance found in Section 3.4.2.3 may be explained in terms of

the natural oscillation resulting under no muscle moment input, thereby making a possible

connection to the wake resonance. With no input or body inertia/stiffness, the tail motion

is governed by

JF θ̈+ 2vGθ̇ = 0.
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The natural dynamics are described by the eigenvalues of 2vJ−1
F G, which turn out to be

complex, and therefore an ideal fish body with no mass/stiffness can naturally oscillate

in a flow without muscle input. The natural oscillation could be exploited to resonate

the tail motion with the input excitation. The period of the natural oscillation can also

be analytically derived for the simplified case, where the precaudal and caudal panels are

assumed equal (l1 = l2, A1 = A2), as follows:

τnat =

(

14π

12
√

3

)(

lt
v

)

∼= 2

(

lt
v

)

, (3.11)

where lt is the total tail length. As expected, the natural frequency ωnat := 2π/τnat is close

to the resonance frequency; for instance, ωnat = 2.84 Hz for v = 1.2 m/s and lt = 0.2 m. The

analytical formula in (3.11) shows that the natural oscillation is most likely related to how

water travels across the tail. The tail flips from left to right in roughly lt/v seconds, equal to

the time it takes for water to flow through the length of the tail. Thus, the caudal tail may

take advantage of the water accelerated by the precaudal section. Consistently with these

observations, it can be shown in the general case that the resonance frequency is proportional

to v/lt, and the proportionality constant is a function of the added-mass coefficients and the

number of tail panel divisions.

We have found that both hydrodynamic resonance and body resonance exist separately,

and they are reasonably close to the overall resonance and hence to the cycle frequency of

natural swimming. While the body resonance frequency can be adjusted by active muscle

stiffness, the hydrodynamic resonance frequency is determined essentially by the ratio of

the swimming speed to the total tail length. Therefore, our results suggest the following

mechanisms underlying natural swimming: the body geometry determines the hydrodynamic

resonance to be exploited for swimming at a desired speed, the muscle stiffness is actively

adjusted in proportion to the speed squared so that the body resonance is roughly aligned

with the hydrodynamic resonance, and then the muscle bending moment drives the tail to

excite the overall body-fluid resonance.
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CHAPTER 4

Chaos Generation in Coupled Andronov-Hopf

Oscillators

4.1 Overview

The purpose of this chapter is to determine conditions on the coupling between a set of

oscillators or neurons such that their collective behavior is characterized as chaotic, with a

desired unstable limit cycle embedded in a chaotic strange attractor. Due to their ability to

capture complex dynamic behavior with a fairly simple structure, Andronov-Hopf oscillators

are widely used to model networks of neurons in biological systems [83, 84]. Consequently,

we also model our system using a network of two-dimensional coupled Andronov-Hopf oscil-

lators, and set out to design their interconnections such that desired behavior is achieved.

In this study, we consider the characterization of a chaotic strange attractor given by

[85]. A strange attractor is an attractor that is not a finite set of points, is not piecewise

differentiable, and has a non-integer fractal dimension. A strange attractor is chaotic if it

exhibits sensitivity to initial conditions. This property exists if all trajectories with initial

conditions on the basin of attraction have a positive maximum Lyapunov exponent.

In order to achieve the objective, we first use a coordinate transformation to describe

the dynamics of the oscillators using their amplitudes and phases. We then determine

sufficient conditions to ensure the phase instability of a desired limit cycle, with a designable

instability magnitude and direction. We then consider a special case of symmetric weak

coupling and determine sufficient conditions to guarantee that all harmonic periodic orbits

are unstable. Finally, using numerical evidence, we consider several additional conditions,
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including symmetry breaking, that increase disorder and contribute to chaos. Numerical

examples are then given in the last section to demonstrate the effectiveness and shortcomings

of this method.

4.2 Coupled Oscillators Model and Control Objective

Consider a network of n coupled two-dimensional Andronov-Hopf oscillators, modeled by

ẋ=







E(x) −I
I E(x)





x+u(x), (4.1)

Eii(x) := 1 − (q2
i +p2

i ), x=







q

p





 ,

where x ∈ R2n, and the coupling enters through the control input u(x) ∈ R2n. Without a

coupling term, the system has the general τ -periodic solution x(t) = ξ(t), where

ξ(t+ τ) =







Cη11

Sη11





 , η := t+ϕ, 11 := col(1, ...,1), (4.2)

and

Cz := cos(diag(z)), Sz := sin(diag(z)),

for an arbitrary vector z.

Because the plant can be separated into a skew-symmetric section and a nonlinear section,

coming from the E(x) term, ξ(t) is amplitude and period locked at 11 and 2π seconds,

respectively. However, the phase ϕ ∈ R
n remains arbitrary and a function of the initial

conditions.

Our objective is to design the controller u(x) such that the system has a chaotic strange

attractor, with a desired limit cycle embedded in the attractor. Hypothetically, the controller

would add weak coupling between the oscillators, such that the amplitudes remain stable at

approximately 11, while the phase dynamics destabilize such that the trajectory never settles

at a stable limit cycle.
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It is well understood that chaotic behavior is only feasible in a nonlinear system. Since

the plant, without controller input u(x) is already nonlinear, it is possible to generate chaos

and achieve our goal with a linear controller, given by

u= εHx. (4.3)

With the form in (4.3), the controller represents the linear coupling between the oscillators.

In order to maintain the stability of the oscillators’ amplitudes, we only consider weak

coupling, where the order of the coupling is denoted by a sufficiently small ε > 0. We will

now begin to designH such that a desired limit cycle remains unstable, while being embedded

in a strange attractor.

4.2.1 Coordinate Transformation

Our goal is to design the weak linear interconnections between a network of Andronov-

Hopf oscillators (4.1) such that their amplitudes remain stable, while their phases never

stabilize, resulting in a chaotic collective behavior. To this end, we consider the following

coordinate transformation (q,p) ↔ (r,θ), defined by

q = Cθr, p= Sθr.

This coordinate transformation is useful because it more clearly shows how the dynamics

and the coupling affect the amplitudes and the phases of the oscillators.

With the new state variables (r,θ), system (4.1) can be expressed as







ṙ

Rθ̇





=







CθE(Cθr,Sθr)Cθ +SθE(Cθr,Sθr)Sθ

I−SθE(Cθr,Sθr)Cθ +CθE(Cθr,Sθr)Sθ





r+







Cθ Sθ

−Sθ Cθ





H







Cθ

Sθ





r, (4.4)

where R := diag(r).

One of our goals is to design the coupling such that a desired limit cycle becomes an

unstable solution of the system. We choose the periodic orbit given by

ξ̂(t+ τ) =







Cη̂11

Sη̂11





 , η̂ := t+ ϕ̂, (4.5)
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with a frequency at 1 Hz, amplitudes at 11, and some particular phase ϕ̂. Note that for

sinusoidal orbits with different amplitudes and frequencies, the developing procedures will

still apply and lead to similar conditions. We now require a sufficiency condition on the weak

coupling εH that analytically guarantees the instability of the periodic orbit in (4.5).

4.3 Conditions for Orbital Instability

In the study of system stability, Lyapunov exponents are defined for trajectories and are

used to quantify the system’s sensitivity to initial conditions. The Lyapunov spectrum of a

trajectory is primarily measured numerically with system simulation and a practical algo-

rithm. In general, all trajectories that start on the basin of a chaotic strange attractor have

both positive and negative Lyapunov exponents [86, 87]. While the positive maximum Lya-

punov exponents ensure the instability of the trajectories, the negative Lyapunov exponents

allow the stability of the chaotic attractor.

In this study, we do not want to use numerical simulations and measurements in order

to enforce the instability of a trajectory. Instead, we use the definition of the maximum

Lyapunov exponent to analytically analyze and design the instability of a known solution of

the system.

4.3.1 Maximum Lyapunov Exponent Definition

The mathematical definition of the maximum Lyapunov exponent is given as follows:

Definition 1. Consider a general system

ẋ= f(x),

where x(t) ∈ R2n. Suppose x̄(t) is a trajectory of the system. Let Φ(t, to)∈ R2n×2n be the

state transition matrix for the system linearized about x̄(t), given by

ẇ = A(t)w, A(t) :=

(

∂f(x̄)

∂x

)

T

. (4.6)
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Φ satisfies

w(t) = Φ(t, to)wo, Φ(to, to) = I.

Define the maximum singular value of the solution, σ(t) = σ̄(Φ(t, to)). Then, the maximum

Lyapunov exponent is defined as [88]

λ= lim
t→∞

1

t− to
lnσ.

When x̄(t) is a bounded numerical trajectory of the system, then a positive maximum

Lyapunov exponent is a sufficient condition for the trajectory being chaotic [89]. This con-

dition results from inaccuracies in numerical simulations, which prevent a trajectory from

settling on an unstable limit cycle, even with exact initial conditions on the limit cycle.

Conversely, when x̄(t) is a possible analytical solution of the system, then λ> 0 is only a suf-

ficient condition for x̄(t) being unstable. The Lyapunov exponent does not indicate whether

or not there is a different stable limit cycle or equilibrium point nearby for the trajectory to

settle to. Thus, if for all possible solutions of the system, the maximum Lyapunov exponents

are positive and the trajectories are bounded, then the system is chaotic. However, checking

or designing such a condition is extremely challenging, if not impossible.

4.3.2 Sufficient Condition for a Positive Maximum Lyapunov Exponent

Although the maximum Lyapunov exponent is a practical and effective tool in the nu-

merical analysis of chaotic systems, it is difficult for use in analytical analysis. Thus, we

consider an exponentially weighted state transition matrix given by

Ψ(t, to) := e−µtΦ(t, to), Ψ̇(t, to) = (A(t) −µI)Ψ(t, to), Ψ(to, to) = I, (4.7)

for some constant µ ∈ R. Note that with Ψ, the maximum Lyapunov exponent is given by

λ= µ+ lim
t→∞

1

t− to
ln ||Ψ(t, to)||.

We now see that

λ < µ ⇒ lim
t→∞

||Ψ(t, to)|| → 0,

λ > µ ⇒ lim
t→∞

||Ψ(t, to)|| → ∞.
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Thus, a lower bound can now be derived from the following characterization of the maximum

Lyapunov exponent:

λ= supµ subject to lim
t→∞

||Ψ(t, to)|| → ∞. (4.8)

Using this lower bound, as well as matrix norm and trace properties, we can formulate a

sufficiency condition for the positivity of the maximum Lyapunov exponent. First, we prove

a few preliminary results in Lemmas 5 and 6.

Lemma 5. For some bounded matrix P (t) ≥ 0, if limt→∞ trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

→ ∞,

then limt→∞ ||Ψ(t, to)|| → ∞.

Proof. Recall that for an arbitrary matrix X ∈ Rm×n, with rank r, the matrix norms satisfy

the inequality

||X||22 ≤ ||X||2F ≤ r||X||22≤ ℓ||X||22, ℓ, max(m,n).

Therefore, the following are equivalent:

lim
t→∞

||Ψ(t, to)|| → ∞ ⇔ lim
t→∞

||Ψ(t, to)||2 → ∞,

⇔ lim
t→∞

||Ψ(t, to)||2F → ∞,

⇔ lim
t→∞

trace
(

Ψ(t, to)TΨ(t, to)
)

→ ∞.

Note that

eig(P (t))trace
(

Ψ(t, to)TΨ(t, to)
)

≤ trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

≤ eig(P (t))trace
(

Ψ(t, to)TΨ(t, to)
)

.

Since P (t) ≥ 0 is bounded and nonzero, the largest eigenvalue is non-zero and positive, thus

lim
t→∞

trace
(

Ψ(t, to)TPΨ(t, to)
)

→ ∞ ⇒ lim
t→∞

trace
(

Ψ(t, to)TΨ(t, to)
)

→ ∞,

⇔ lim
t→∞

||Ψ(t, to)|| → ∞.
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Lemma 6. Let ρ(t) ≥ 0 be a function such that trace(Φ(t, to)TP (t)Φ(t, to)) ≥ ρ(t) for some

P (t) ≥ 0 and all t≥ 0. Define µ̃ and λ as

µ̃ := supµ such that limt→∞ e−2µtρ(t) → ∞,

λ := supµ such that limt→∞ e−2µt||Φ(t, to)||22 → ∞.

Then, it always holds that λ≥ µ̃. Thus, µ̃ > 0 is a sufficient condition for λ > 0.

Proof. Based on the matrix norm properties stated in Lemma 5, the following inequalities

hold:

||Φ(t, to)||22 ≥ 1

2n
||Φ(t, to)||2F ≥ 1

2nλmax(P (t))
trace(Φ(t, to)TP (t)Φ(t, to)) ≥ ς

2n
ρ(t),

where ς is defined such that ||P (t)||< 1

ς
∀t. Because ς/(2n) is some constant for all time, it

will not change the value of µ̃. Let µ̃δ , µ̃− δ. Then, for sufficiently small δ > 0,

lim
t→∞

e−2µ̃δt||Φ(t, to)||22 ≥ lim
t→∞

ς

2n
e−2µ̃δtρ(t) → ∞.

Since µ̃δ can make the left hand side go to ∞, λ≥ µ̃.

Using these Lemmas, we can now determine a sufficient condition that ensures the pos-

itivity of the maximum Lyapunov exponent for a system linearized about some trajectory

x̄(t).

Lemma 7. Consider a general system ẋ= f(x), where the linearized system about some x̄(t)

is given by (4.6). Suppose there exist a bounded matrix P (t) > 0, a scalar-valued function

α(t) ∈ R, and scalars t1 ≥ 0 and ǫ > 0, such that the following conditions are satisfied for all

t≥ t1:

A(t)TP (t) +P (t)A(t)+Ṗ (t) ≥ α(t)P (t),
∫ t
t1
α(t)dt ≥ ǫ(t− t1),

then, it is guaranteed that λ≥ ǫ/2, where λ is the maximum Lyapunov exponent.

Proof. We’re going to prove this using the lower bound i.e. show that limt→∞ ||Ψ(t, to)|| → ∞
for µ > 0. Using Lemmas 5 and 6 above, this is sufficient to proving that

limt→∞ trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

→ ∞ for µ > 0.
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Using the dynamics,

d

dt
trace

(

Ψ(t, to)TP (t)Ψ(t, to)
)

= trace
(

Ψ(t, to)T(A(t)TP (t) +P (t)A(t) −2µP + Ṗ (t))Ψ(t, to)
)

,

= −2µtrace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

+ trace
(

Ψ(t, to)T(A(t)TP (t) +P (t)A(t)+Ṗ (t))Ψ(t, to)
)

,

≥ −2µtrace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

+ trace
(

α(t))Ψ(t, to)TP (t)Ψ(t, to)
)

,

=
(

−2µ+α(t)
)

trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

.

Then,

trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

≥ e−2µt+
∫ t

0
α(t)dttrace(P (0)),

≥ e(−2µt+ǫt)e(−ǫt1+
∫ t1

0
α(t)dt)trace(P (0)),

for some ǫ > 0. Because ǫ is positive, for a small enough positive µ,

limt→∞ trace
(

Ψ(t, to)TP (t)Ψ(t, to)
)

→ ∞. Since µ is a lower bound for λ, it is a sufficient

condition for λ> 0. Given the definition of λ in Lemma 6, it is easy to verify that λ≥ ǫ/2.

In the Lemma above, ǫ/2 represents the lower bound of the magnitude of instability for

the trajectory x̄. Furthermore, P (t) contains the direction of the instability. For this reason,

it can be shown that the sufficiency condition is invariant under a similarity transformation.

Lemma 8. Suppose the conditions in Lemma 7 hold for matrices (A(t),P (t),Ṗ (t)). Then, if

A(t) =R−1Ã(t)R for a constant nonsingular matrix R, the conditions still hold for matrices

(Ã(t), P̃ (t), ˙̃P (t)), where

P̃ (t) :=R−TP (t)R−1, ˙̃P (t) :=R−TṖ (t)R−1.
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Proof. The first condition says

A(t)TP (t) +P (t)A(t)+Ṗ (t) ≥ α(t)P (t),

R−T

(

RTÃ(t)TR−TP (t) +P (t)R−1Ã(t)R+Ṗ (t) ≥ α(t)P (t)
)

R−1,

Ã(t)TR−TP (t)R−1 +R−TP (t)R−1Ã(t)+R−TṖ (t)P−1 ≥ α(t)R−TP (t)R−1,

Ã(t)TP̃ (t) + P̃ (t)Ã(t)+ ˙̃P (t) ≥ α(t)P̃ (t).

And the second condition is unchanged.

We will now use this condition to design a controller u(x) of the form in (4.3) to ensure

that a desired solution of system (4.4) with the form in (4.5) is unstable.

4.3.3 Controller Design for Instability of a Desired Orbit

In order to use the conditions in Lemmas 7 and 8, we first linearize equation (4.4) about

the orbit (r,θ) = (11, η̂). Define

ρ := r−11, ϑ := θ− η̂, η̂ := t+ ϕ̂.

Linearizing the system around the solution (11, η̂), we obtain

ẇ = A(t)w, w :=







ρ

ϑ





 , (4.9)

where

A(t) =













−2I 0

0 0





+ εΩT

η̂HΩη̂





 , Ωz(t) :=







Cz −Sz

Sz Cz





 .

Since the choice of (r,θ) = (11, η̂) is a solution of system (4.1) when u(x) = 0, the coupling

has to vanish on the target orbit for (11, η̂) to remain a solution of the coupled system. In

that case, εH has to satisfy the following:

HΩϕ







ct11

st11





= 0, cz := cos(z), sz := sin(z). (4.10)

Because the above has to hold true for all time t, the condition reduces to

εHΩϕ111 = 0, εHΩϕ112 = 0, (4.11)
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where 111 := col(0,11) and 112 := col(11,0). For an orbit with different amplitudes and oscil-

lation frequency, similar but slightly more complicated conditions can be derived for εH to

force the orbit to be a solution of the system.

Consider the linearized system in (4.9). We now design the coupling εH to ensure that

a desired limit cycle at (r,θ) = (11, ϕ̂+ t) will be an unstable solution of the system. The

linearization about this orbit is given by (4.9) with A(t) equal to

A(t) =







−2I 0

0 0





+ εΩT

t H̃Ωt, H̃ := ΩT

ϕ̂HΩϕ̂,

Ωt :=







ctI −stI

stI ctI





 .

Let H̃ be described by the following block form:

H̃ =







H̃11 H̃12

H̃21 H̃22





 .

Then, using Lemma 7, we can formulate conditions that ensure the instability of the limit

cycle. This is summarized in the following Theorem.

Theorem 2. If for some v ∈ Cn and a ∈ C with positive real part, the following conditions

are satisfied,

εH̃111 = 0,

εH̃112 = 0,

εH̃T

11v = av,

εH̃T

22v = av,

εH̃T

12v = 0,

εH̃T

21v = 0,

then, for any controller of the form u= εHx, with H = Ωϕ̂H̃ΩT

ϕ̂, the limit cycle described by

(r,θ) = (11, ϕ̂+ t) will be an unstable solution of system (4.4).

Proof. The first two conditions on the left correspond to the conditions in (4.11), which

ensure that the desired limit cycle is a solution of the system. Define v := col(0,v), and set

P = vv∗. Then, it can be shown that

A(t)TP +PA(t) ≥ 2ℜ(a)P.

According to Lemma 7, the above is a sufficient condition for λ > ℜ(a) > 0. Therefore, the

prescribed limit cycle will be an unstable solution of the system.
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The conditions in Theorem 2 state that there exists a direction col(0,v) in which the

desired orbit is unstable, with the magnitude of the instability described by the real part of

a. While satisfying the conditions in Theorem 2 ensures the instability of the desired limit

cycle, it does not guarantee that the limit cycle will be embedded in a strange attractor,

and that the system will be chaotic. It is likely that the states will merely reach a different

stable limit cycle. Thus, further conditions are needed to guarantee the instability of any

other periodic orbit that is a solution of the system for a given coupling εH .

4.4 Coupling Design for Chaos Generation

In the previous section, we determined sufficient conditions that guaranteed the instability

of a desired orbit with designable magnitudes and direction of instability. We now need to

find additional conditions on the interconnections between the oscillators that will generate

chaotic behavior, and guarantee that the trajectory will not reach a different stable periodic

orbit. This is a very difficult problem, particularly since the system is very sensitive to the

smallest variations in coupling. It turns out that a particular symmetric form of the coupling

matrix εH can greatly simplify analytical study of the system. However, numerical analyses

generally indicate that the symmetric form lacks the disorderliness that leads to chaos, and

breaking the symmetry is suitable for generating chaotic behavior. We now look at these

results.

4.4.1 Special Case of Symmetric Coupling

If the coupling matrix H can be expressed as HS with the following symmetric structure:

HS =







H11 H12

−H12 H11





 , (4.12)

then, it is a special case where linearizing about any general sinusoidal solution (r,θ) =

(γ,ωt+ϕ), for (γ,ω,ϕ) ∈ Rn ×Rn ×Rn, will result in (4.9) with a time-invariant Jacobian
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matrix A, given by

A= T−1ÂT, Â :=













I−3Γ2 −I+W

I−W I−Γ2





+ εĤ





 ,

where

Ĥ := ΩT

ϕHΩϕ,

T := diag(I,Γ),

Γ := diag(γ),

W := diag(ω).

Since A is time invariant and is related to Â through a similarity transform, the stability

of the limit cycle is equivalent to Â having one eigenvalue at the origin, and the rest in the

open left half plane.

Conjecture 1. Consider system (4.1) with u(x) given by (4.3). For a sufficiently small ε,

all possible stable sinusoidal solutions of the form (r,θ) = (γ,ωt+ϕ) will have amplitudes

and frequencies close to the nominal value of 1. Let W and Γ denote diagonal matrices of ω

and γ, respectively. Then, matrices (I−W) and (I−Γ2), will be small and of order ε.

The argument behind this conjecture is as follows. Let ξ(t) := col(Cθγ,Sθγ) be a sinu-

soidal solution of (4.1) with u(x) = εHx. Then, plugging ξ(t) into (4.1) gives

(M(ω,γ) + εH)ξ(t) = 0, M(ω,γ) :=







I−Γ2 −I +W

I−W I−Γ2





 .

Suppose there exists a solution ξ(t) with some γk not close to 1. Let ek be the kth

element of the identity matrix. Then, multiplying the equality above from the left by

col(γkcθk
ek,γksθk

ek)T simplifies to

γ2
k(1 −γ2

k) + O(ε) = 0

Taking the limit of the above as ε→ 0 gives

lim
ε→0

γ2
k(1 −γ2

k) = 0.

Both γk = 0 and γk = 1 are solutions of the system when ε= 0. However, the former solution

is an unstable equilibrium point. Based on continuity, we reason that all sinusoidal solutions
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with amplitudes close to zero will remain unstable. Thus, the limit equality is only possible

if (1 −γ2
k) is of order ε. Because this contradicts the original assumption, (I − Γ2) ∼ O(ε)

must hold. A similar argument can be made for ωk by multiplying the initial equality from

the left by col(−γksθk
ek,γkcθk

ek)T.

Lemma 9. For a small enough ε, if trace(I−Γ2 +εH/2)> 0, then Â will have at least one

eigenvalue with a positive real part.

Proof. According to Conjecture 1, εĤ, (I −W) and (I−Γ2) are all of order ε. As a result,

Â can be represented by

Â=







Â11 εÂ12

−εÂ12 εÂ22





 ,

which is similar to






Â11 + εÂ12X εÂ12

0 εÂ22 − ǫXÂ12





 ,

where X is the solution to the following matrix Riccati equation [90]

−εÂ12 −XÂ11 + εÂ22X−εXÂ12X = 0.

We would like to see if there is a relationship between X and ǫ. Since (I−Γ2) is small and

of order ε, Â11 is clearly invertible. If we take the limit of the norm of the above as ε → 0,

we get

lim
ε→0

|| −εÂ12 −XÂ11 + εÂ22X−εXÂ12X|| = lim
ε→0

||XÂ11|| = 0.

Since Â11 is invertible, and X is non-zero in general, we can conclude that

lim
ε→0

||X|| → 0.

Then, for small enough ε, the eigenvalues of Â can be approximated by the eigenvalues of

Â11 and εÂ22. Then, trace(Â22) > 0 is a sufficient condition for Â having an eigenvalue

in the right half plane. Using simple trace properties, it can be shown that trace(Â22) =

trace(I−Γ2 + εH/2).
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The periodic orbit (r,θ) = (γ,ωt+ϕ) is a solution of the system if and only if













I−Γ2 −I+W

I−W I−Γ2





+ εH













Γ 0

0 Γ













Cϕ11

Sϕ11





= 0. (4.13)

If we define x := col(Cϕγ,Sϕγ), then (4.13) can be expressed as

F (x,w)x = 0, (4.14)

where

w := −11 +ω, Γ2
ii = x2

i +x2
n+i, F (x,w) :=













I−Γ2 diag(w)

−diag(w) I−Γ2





+ εH





 .

We would like to set a condition that ensures that for a given H , there is no stable sinusoidal

solution of the form (r,θ) = (γ,ωt+ϕ). This means that if a choice of (γ,ω,ϕ) satisfies (4.13),

then the Jacobian A matrix will have at least one eigenvalue with a positive real part. For

sufficiently small ε, we can approximate the eigenvalues of A by the eigenvalues of Â11 and

ǫÂ22. A suitable sufficient condition to ensure the instability of the linearized system, is

trace(ǫÂ22)> 0. In the original variables, this condition is equivalent to

trace
(

I−Γ2 + ε(SϕH11Sϕ +CϕH11Cϕ +CϕH12Sϕ −SϕH12Cϕ)
)

> 0,

which simplifies to

n−xTx+ εtrace(H/2)> 0. (4.15)

The condition above guarantees the instability of a specific harmonic form where each

oscillator has the same amplitude, frequency and phase for both of its states. It can be

shown that this form of x(t) = col(Cθγ,Sθγ) is the only possible sinusoidal solution.

Lemma 10. Consider system (4.1) with u(x) given by (4.3). Then, all possible sinusoidal

solutions, with constant frequencies, phases, and amplitudes, are of the form

x(t) =







Cθγ

Sθγ





 , θ := ωt+ϕ. (4.16)
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Proof. Suppose a solution is given of the form x(t) = col(q(t),p(t)), where q(t) and p(t) are

arbitrary sinusoidal functions with frequency ω. Define the vector x̂i := col(qiei,piei), where

ei is the ith column of the n dimensional identity matrix. Then, multiplying (4.1) by x̂T

i from

the left gives
1

2

d

dt
(p2

i + q2
i ) = p2

i + q2
i − (p2

i + q2
i )2 + x̂T

iHx.

If (q2
i + p2

i ) is not equal to a constant, but is a sinusoidal function with frequency 2ω, then

the right hand side will have a harmonic term with frequency 4ω coming from the (p2
i +

q2
i )2 term. However, this term cannot cancel any term from the left side, resulting in an

inconsistency.

We will now summarize the conditions on εH that guarantee the nonexistence of any

stable sinusoidal solution in the following Theorem.

Theorem 3. Consider system (4.1) with u(x) given by (4.3), where the coupling matrix H

has the structure in (4.12). Suppose general multipliers y ∈ R2n and Z ∈ R2n×2n exist such

that the following condition is satisfied for all x and w:

n−xTx+ εtrace(H/2)> (y+ Zx)TF (x,w)x. (4.17)

Then, for a small enough ε, no trajectory of system (4.1) will reach a stable sinusoidal

solution of the form in (4.16) with (ωi −1) and (γi −1) of order ε for i= 1, ...,n.

Proof. (r,θ) = (γ,ωt+ϕ) is a stable solution of the system if it satisfies (4.14) and all the

eigenvalues of Â are on the closed left half plane. Thus, if all (x,w) that satisfy (4.14)

also satisfy (4.15), then that’s a sufficient condition that they are unstable solutions of the

system. (Note that (4.15) is only a sufficient condition under Conjecture 1, when (ωi − 1)

and (γi −1) are of order ε for i= 1, ...,n.) This is captured in the following statement:

n−xTx+ εtrace(H/2)> 0 ∀(x,w) s.t. F (x,w)x = 0.

Finally, the S-procedure is used to convert the above to one sufficient condition using mul-

tipliers y and Z.
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We can now use the specifications in Theorems 2 and 3 to find a coupling matrix εH that

guarantees the instability of a desired limit cycle with a designable instability magnitude

and direction, as well as the nonexistence of any other stable sinusoidal solution. However,

if H has been chosen to satisfy the properties in Theorem 2, then an unstable solution

described by x̂ := col(Cϕ̂11,Sϕ̂11) exists that may not satisfy the sufficient condition in (4.15).

Therefore, another condition needs to be added to eliminate x = x̂. Furthermore, an upper

bound on the absolute values of the elements of w, which are assumed to be of order ε, can

improve the numerical feasibility of the condition. With these additional constraints, we can

reformat (4.17) to the following condition

n−xTx+ εtrace(H/2)> (y+ Zx)TF (x,w)x+
n
∑

i=1

ζi(cε−w2
i ) +̺(||x− x̂||2 − δ), (4.18)

where ζ ∈ Rn and ̺ ∈ R are positive multipliers, δ ≪ ε is a small, positive number close to

zero, and c is some constant that enforces the elements of w to be of order ε.

The conditions in Theorem 2 are linear and easy to solve numerically. However, the one

in Theorem 3, or (4.18), is nonlinear and involves the multiplication of multipliers y and Z

with εH . To circumvent this complexity, an iterative algorithm can be used in order to find

numerical solutions. A summary of this iteration technique will be discussed in the next

section.

4.4.2 Symmetry Breaking and Additional Conditions for Chaos Generation

In the previous sections we determined specifications on the coupling εH that ensured

that no stable sinusoidal orbit was a solution of the system. However, these conditions are

not sufficient for chaos generation, as they do not eliminate the existence of more complex

harmonic orbits. In particular, when H has the symmetric form of HS, it could create unde-

sired order amongst the oscillators. Based on considerable numerical examples, we speculate

that system (4.1) can rarely generate chaotic behavior when the interconnections have the

symmetric form in (4.12), and symmetry breaking is significant for increased disorder.

To maintain the specifications that have been satisfied in Theorems 2 and 3, we break
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symmetry by choosing the following form for the coupling matrix H :

H = Ωϕ̂







H̃11 (1 + e)H̃12

(−1 + e)H̃12 H̃11





ΩT

ϕ̂, (4.19)

where the conditions in Theorems 2 and 3 have been satisfied for e = 0. It is clear that for

any value of e, the specifications in Theorem 2 still hold; however, this is not necessarily true

for the latter theorem. Therefore, we make the following assumption:

Assumption 2. Consider system (4.1) with u(x) given by (4.3) and H given by (4.19). If

for e= 0, the coupling εH satisfies the conditions in Theorem (3), then for sufficiently small

e, all possible harmonic solutions of system (4.1) will remain unstable.

Although the variation of the coupling matrix with a nonzero e can increase disorder, it is

still not a sufficient condition for the existence of a chaotic strange attractor. Unfortunately,

determining an analytical sufficiency condition for chaos generation, without the need for

numerical simulations and tuning, is extremely difficult. It is especially challenging when

the controller is linear and does not contain particular nonlinearities, such as nonlinear

delay feedback or sawtooth functions. Hence, we progress this study by finding additional

properties that are generally satisfied in chaotic numerical examples, and can be formulated

as an analytical condition on the controller.

In Section 4.3, we noted that chaotic systems generally have positive and negative Lya-

punov exponents. While the positive Lyapunov exponent indicates sensitivity to initial con-

ditions, the negative exponent indicates that the trajectory returns to a previous vicinity,

resulting in a stable strange attractor. In fact, the strangeness of an attractor can gener-

ally be classified by a non-integer Kaplan-Yorke dimension, which can only occur with the

existence of a negative Lyapunov exponent [91].

In our system, we expect that with weak coupling, all n amplitude states of a general

trajectory will remain stable and lead to n negative Lyapunov exponents. However, we

want one Lyapunov exponent, corresponding to the oscillators’ phases, to be positive, one

to be zero, and for all others to be negative. Numerical evidence indicates that this is more

achievable when the trajectories in the strange attractor continuously approach and leave the
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vicinity of the desired unstable orbit ξ̂(t). Because we do not want to rely on any conditions

that involve numerical simulations, we require a simple, linear property that would indicate

the above. We hypothesize that the time-invariant Jacobian A matrix, linearized about ξ̂(t)

in (4.9) with symmetric H , should have only one eigenvalue in the right half plane, one at

the origin, and all others on the open left half plane. Based on the proof of Lemma 9, n

eigenvalues of A are approximately equal to the eigenvalues of εH̃11. As a result, H̃11 should

have only one positive eigenvalue. This can be converted to a restriction on the trace of the

coupling matrix H .

Numerical case studies have also indicated that it is easier to generate chaotic behavior

when the off diagonal block H̃12 is large. However, because our specifications in Theorem 3

are made for small εH , there is a limit on how strong H̃12 can be before our assumptions

are broken. We will now summarize the steps in the iteration algorithm that can be used to

numerically solve the conditions in Theorems 2 and 3.

Iteration Algorithm: Consider the condition given in (4.18), with the additional positive

multipliers multiplying constraints on the cε bound of ||wi|| and ||x− x̂|| > 0. Define a

variable β ∈ R and add it to the right hand side of (4.18) to get

n−xTx+ εtrace(H/2)> (y+ Zx)TF (x,w)x+
n
∑

i=1

ζi(cε−w2
i ) +̺(||x− x̂||2 − δ) +β, (4.20)

Select desired values of (ϕ̂,v,a) for the conditions in Theorem 2. Note that it is also possible

to allow a to vary within a small range of positive values in order to increase the numerical

feasibility and speed of the algorithm. Finally, choose a suitable starting value for the

coupling matrix εoHo, an upper bound for its trace hf , and an initial βo < 0. The pseudocode

of the two-step decay algorithm is then given as follows:

• while (βo ≤ 0) or (trace(εoHo) > hf )

– maximize β over (y,Z, ζ,̺,β) subject to condition (4.20) for all x ∈ R2n and

w ∈ R
n, and positivity of ̺ and all elements of ζ , with εH = εoHo

– define (yo,Zo, ζo,̺o,βo) as (y,Z, ζ,̺,β) from the previous step
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– minimize trace(εH) over (εH,a) subject to the conditions in Theorem 2, condition

(4.20) for all x∈R2n and w∈Rn, desired bounds on a, and bounds on the elements

of εH being small, with (y,Z, ζ,̺,β) = (yo,Zo, ζo,̺o,βo)

– redefine εoHo as the new εH from the previous step

• end

For the examples given in Section 4.5, each optimization step was formulated with SOS-

TOOLS, a free MATLAB toolbox for formatting sum of squares optimization problems. The

problems were then solved using SeDuMi, a well-known program that solves optimizations

over linear, quadratic, and semidefinite constraints.

4.5 Numerical Examples

In the following numerical analyses, a set of three coupled Andronov-Hopf oscillators,

with their dynamics described by (4.1), are considered. For each example, the controller

has the linear form in (4.3), where the coupling matrix εH satisfies all the conditions in

Theorems 2 and 3, as well as the additional conditions from Section 4.4.2. However, each

case considers a different desired unstable limit cycle, of the form in (4.5), to be embedded

in a strange attractor, with a different instability direction v. The results of these examples

demonstrate both the effectiveness and the deficiencies of the theory presented in this chapter.

Notably, we witness the sensitivity of the oscillators’ dynamics to the slightest variations in

their interconnections. This sensitivity is particularly disadvantageous as we lack a complete

analytical condition that guarantees chaos generation.

4.5.1 Example I

In this example, we first find a numerical coupling matrix εH , with the symmetric form

in (4.12), that satisfies the conditions in Theorems 2 and 3, for the following specifications:

ϕ̂= col(0,π/2,π), 0.05 ≤ a≤ 0.15, v = col(1,−2,1)/
√

6.
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We allow the magnitude of instability a to be within a range of small values in order to

improve feasibility and speed of convergence in the decay iteration process. Using the form

in (4.19), a possible interconnection matrix εH is found, with the following eigenvalues:

eig(εH) = (0.12,0.12,0,0,−0.08 ±0.39).

Note that because of the structure of H , all eigenvalues are either repeated or complex

conjugates. Furthermore, there is only one pair of positive eigenvalues. One eigenvalue of
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Figure 4.1: Simulation results of Example I for e= 0
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the pair corresponds to the desired a value, while the other becomes a negative eigenvalue

of the Jacobian A matrix due to the −2I term. This also occurs with the other pairs of

eigenvalues, such that A will contain one positive eigenvalue, one zero eigenvalue, and all

others in the open left half plane.

Figure 4.1 shows the results of the system simulation for e= 0, with the initial conditions

close to the desired unstable orbit. Note that we only plot the first state of the oscillators,

represented by q(t). As expected, the trajectory continuously leaves and returns to the
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Figure 4.2: Simulation results of Example I for e= 0.15
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Figure 4.3: Simulation results of Example I for e= 0.1

unstable orbit, but never settles at a stable harmonic limit cycle. This is shown in Figure

4.1a in the time domain, and in Figure 4.1b in the phase plane, with the red orbit indicating

(r,θ) = (11, t+ ϕ̂). However, the resulting attractor is not chaotic and is not sensitive to initial

conditions. Figure 4.1c shows the plot of the maximum singular value of the state transition

matrix of the linearized system (4.6). Because σ is not exponentially growing, the maximum

Lyapunov exponent, or the limit of the plot in Figure 4.1d, is zero.

Figure 4.2 shows the simulation results when symmetry is broken by setting e = 0.15.
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The symmetry breaking increases the disorder such that the trajectory becomes chaotic and

sensitive to initial conditions. In this case, σ is exponentially growing, as seen in Figure 4.2c,

and the maximum Lyapunov exponent is approximately 0.007. The significant difference in

the behaviors of these two trajectories, with e= 0 versus e= 0.15, is not particularly visible

in the time domain. A comparison of the phase plots of q(t), given in Figures 4.1b and

4.2b, indicates that a chaotic strange attractor possibly occupies a smaller volume of space.

However, we still lack a complete condition to help us determine a value of e. For instance,

when e is decreased to e = 0.1, chaotic behavior disappears and the maximum Lyapunov

exponent again reaches zero. This is seen in Figures 4.3c and 4.3d. But again, the time

and phase plots of q(t), shown in Figures 4.3c and 4.3d, look almost identical to the case

with e = 0.15. As a result, it is still impossible to classify the system’s behavior without

calculating the maximum Lyapunov exponent.

4.5.2 Example II

In this example, we again find a numerical coupling matrix εH , with the symmetric form

in (4.12), that satisfied the conditions in Theorems 2 and 3, for the following specifications:

ϕ̂= col(0,π/2,π/4), 0.05 ≤ a≤ 0.15, v = col(1,1,−2)/
√

6.

Using the form in (4.19), a possible interconnection matrix εH is found, with the following

eigenvalues:

eig(εH) = (0.079,0.079,0,0,−0.063 ±0.39).

The results of the system simulation for e= 0 are shown in Figure 4.4, with the initial con-

ditions close to the desired unstable orbit. Similar to Example I, the trajectory continuously

leaves and returns to the unstable orbit, but never settles at a stable harmonic limit cycle.

This is shown in Figures 4.1a and 4.1b for q(t). Like the previous example, the strange

attractor is not chaotic in the symmetric case when e= 0. Figure 4.1c shows the plot of σ,

which is not exponentially growing; thus, the maximum Lyapunov exponent, or the limit of

the plot in Figure 4.1d,is zero.

Figure 4.5 shows that the disorder and the maximum Lyapunov exponent can be increased
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when symmetry is broken by setting e= 0.15. In this case, the maximum Lyapunov exponent

increases to 0.013, Figure 4.5d. A comparison of the phase plots of q(t), given in Figures 4.5b

and 4.4b, indicates again that a chaotic strange attractor, with a larger maximum Lyapunov

exponent, occupies a smaller volume of space.

While this system is not quite as sensitive to small perturbations in e as the system in

Example I, it is sensitive to small perturbations in the norm of the coupling matrix εH .

For example, when we decrease the norm by 8%, with e= 0.15, the exponential growth of σ
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Figure 4.4: Simulation results of Example II for e= 0
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disappears and the maximum Lyapunov exponent becomes zero. This is seen in Figure 4.6.

While this section has only presented two numerical examples, we believe that these

cases have demonstrated the effectiveness of our developments, as well as the difficulties

of satisfying the objective. For both examples, we were able to generate desired chaotic

behavior with variations in a small parameter. However, while the shape of the strange

attractor remained fairly similar, sensitivity to initial conditions was not robust, such that

parameter tuning became reliant on numerical simulations.
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Figure 4.5: Simulation results of Example II for e= 0.15
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Figure 4.6: Simulation results of Example II for e= 0.15 with ε reduced by 8%

4.6 Discussion

The design of a network of coupled oscillators, whose collective behavior is character-

ized by a chaotic strange attractor, is a challenging problem. Previous efforts have either

included complex nonlinearities, such as time delays, or parameter tuning using numerical

simulations. Our objective in this chapter was to determine sufficiency conditions on the

oscillators’ interconnections that would accomplish the objective without the need for numer-

ical simulations and calculating Lyapunov exponents. For this task, we considered a set of
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two dimensional Andronov-Hopf oscillators, where the internal structure, without coupling,

stabilizes the oscillators’ frequency and amplitude. We then set out to design weak, linear

coupling between the oscillators such that the system dynamics would characterize a chaotic

strange attractor, with a desired unstable orbit embedded in the attractor.

The first main contributions of this chapter was developing simple eigenvalue/eigenvector

conditions on the coupling matrix that forced a desired harmonic orbit to be an unstable

solution of the system with a specified magnitude and direction of instability. The second

main contribution was determining a specific symmetric structure for the coupling matrix

that greatly simplified system analysis. Specifically, with the particular symmetric coupling,

linearizing the system about all simple harmonic solutions resulted in a time-invariant Jaco-

bian matrix. Using this property and the S-procedure, we developed a condition that ensured

no harmonic orbit would be a stable solution of the system. Finally, using numerical analyses

of chaotic systems, we determined several additional factors that we hypothesize can assist

in stabilizing a strange attractor and increasing disorder and sensitivity to initial conditions.

Our numerical examples demonstrated that satisfying the conditions can lead to a sys-

tem which generates the desired behavior; however, it still requires parameter tuning. In

particular, we witnessed that the chaotic strange attractors are not robust and are sensitive

to small parameter changes. Although the work of this chapter did not conclude with a

completed sufficiency condition that solved the objective, we believe our results have set the

groundwork for a final solution.
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CHAPTER 5

Conclusion

This research has centered on the design and analysis of complex dynamic behaviors

inspired by those observed in biological systems. Specifically, this study has focused on the

generation of period oscillations in animal locomotion and chaotic behavior in neural net-

works, such as those located within the central pattern generator (CPG). It has been shown

in the literature that animal locomotion is energy efficient and adaptable to environmental

changes. This adaptability is likely related to the flexibility of the intrinsic chaotic behavior

in the CPG. Broadly speaking, the motivation of this research is to be able to create robotic

locomotors that posses the same desirable properties as their biological counterparts.

In Chapter 2 of this dissertation, we considered a general multi-body mechanical rectifier

traveling in three dimensional space, subject to continuous environmental forces. We devel-

oped a functional model for the locomotor in the body frame, and formulated and solved

an optimal turning gait problem that minimizes a quadratic cost function while satisfying

desired translational and angular velocities. Our results showed that the problem can be

reduced to two simpler minimization problems, where the body shape offset for turning can

be found independently from the periodic body motion resulting in straight locomotion. A

numerical case study of an H-swimmer was then presented to demonstrate the functionality

of the optimal turning gait theory. The results showed that the simplified model and the

optimal gait theory are practical in finding gaits that can achieve desired trajectory and

speed for the fully nonlinear model.

The purpose of Chapter 3 was to utilize the optimal gait theory in order to investigate

essential questions in biological locomotion. In particular, the study focused on the questions

of why Carangiform fish swim at a particular frequency and why the Strouhal number remains
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approximately constant over all speeds. In order to answer these questions, we developed

a simplified model for saithe fish that captured the essential dynamics of locomotion. Our

results indicated that the optimal periodic motion which minimizes muscle tension or bending

moment closely matches observed swimming, and can explain the observed tendency of

increasing tail-beat frequency and stiffness to achieve higher velocities, while maintaining

constant tail amplitude. This also answers why the Strouhal number remains constant over

all swim speeds and frequencies. Furthermore, the optimal frequency is equivalent to the

resonance which maximizes the ratio of tail-tip velocity to bending moment; this resonance

results from both the body resonance and the fluid resonance.

The purpose of Chapter 4 was to determine conditions on the interconnections within

a neural network in order to generate desired chaotic behavior. To achieve this goal, we

required a neural model that was simple enough for analytical study, but could capture a

wide variety of complex behaviors. To that end, we decided to model the neural network as

a set of two dimensional Andronov-Hopf oscillators with linear coupling. In particular, we

considered the case where the coupling between the oscillators is weak enough to maintain

amplitude stability, while destabilizing the phase differences. First, we found properties that

guaranteed the instability of a desired limit cycle with the ability to design the instability

direction and magnitude. We then considered a special case of symmetric coupling and

determined a condition that ensured no other harmonic limit cycle would be a solution

of the system. Through considerable numerical evidence, we noted a few suppositions,

including symmetry breaking, that appear to increase disorder and sensitivity to initial

conditions. Finally, we presented two numerical case studies that demonstrated the utility

and shortcomings of our results.

The results of this research can be expanded in several different directions. One major

project is to use the coupled oscillators for feedback control of a mechanical rectifier, in order

to drive the locomotor to the desired oscillation profile(s). We anticipate that the chaotic

nature of the neural network will have the adaptability and flexibility to readily switch

between multiple gaits through environmental changes. Achieving this task requires solving

several major steps. First, the independent chaotic neural network needs to be designed such
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that the desired oscillation profiles are embedded in the strange attractor. This research only

considered the case for one desired orbit; however, this needs to be expanded to multiple

orbits in order to achieve flexible gait switching. Then, the input and output gains for the

plant and the controller need to be designed such that the closed loop system trajectory will

reach the desired stable oscillation.

Other directions for the continuation of this research include applying the theoretical

results for the study of biological systems. One example of this was shown in Chapter

3, where the optimal gait theory was used to analyze observed swimming of saith fish.

However, this can be be expanded further. For example, the mathematical tools developed

in Chapter 4 on chaos generation in neural networks can be used to analyze the central

pattern generators of healthy individuals versus those suffering from Parkinson’s disease or

epileptic seizures. It may be possible to find analytical justifications for the hypothesis that

chaotic behavior is necessary for healthy motor function, while regular rhythmic behavior

can result in movement disorders. We hope that the results of this dissertation will provide

effective stepping stones for these larger scientific endeavors.
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APPENDIX A

Modeling Details for Mechanical Rectifiers

A.1 Modeling details and definitions of coefficient matrices in

(2.4)

This section of the Appendix provides details on the rectifier modeling. The rectifier is

formed by a set of κ rigid bodies connected to each other in three dimensional space. In the

development of the equations of motion, subscript i for a quantity refers to that quantity

with respect to body i, where the bodies i number from 1 to κ. For the ith body, mi ∈ R is

the mass, Ji ∈ R3×3 is the moment of inertia, ri ∈ R3 is the position of the center of mass,

ψi ∈ R3 is the orientation expressed by Euler angles, and ̟i ∈ R3 is the angular velocity.

When referring to these quantities for an arbitrarily chosen reference body B, subscript i is

dropped off from the variables, and r,ψ,̟ ∈ R3 are used.

The generalized coordinates are chosen as q := col(w,θ) where w ∈ R3 is the position

of the rectifier’s center of mass, and θ := col(ψ,φ) contains the orientation of the rectifier

represented by ψ ∈ R3, and body shape φ ∈ Rℓ describing the position and orientation of the

κ rigid bodies with respect to the body frame. The position and velocity of body i can be

expressed in terms of the generalized coordinates as

ri = w+pi(θ), ṙi = ẇ+

(

∂pi

∂θ

)

T

θ̇, (A.1)

where pi(θ) is a function of θ depending on body i and the rectifier’s geometry. The angular

velocity is given by ̟i = P (ψi)ψ̇i for a matrix-valued function P (ψi), and can be expressed

in terms of θ and θ̇.

Consider an arbitrary point c on body i, shown in Fig.2.1 where (X,Y,Z) is the inertial
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frame with origin o, and (x,y,z) is the body frame with origin b at the center of mass. The

position of point c with respect to origin o in the inertial frame is given by

σi(s) = ri + Ω(ψi)
Ts,

where s is the vector from point o′ to point c in the (x,y,z) frame, and Ω(ψi) is the rotation

matrix. The velocity of point c can then be expressed as

σ̇i(s) = ṙi + Ω(ψi)
T(̟i × s) = ṙi + Ω(ψi)

TQ(̟i)s,

where × denotes the cross product, and d
dtΩ(ψi) =Q(̟i)

TΩ(ψi) for skew symmetric matrix

Q(z) ∈ R3×3 built from the elements of z such that z×x=Q(z)x =Q(x)Tz.

The kinetic energy of an infinitesimal segment located at point c is

dTi =
1

2
‖σ̇i(s)‖2dmi,

where dmi is the mass of the segment. Integrating dTi over body i and taking the summation

over the κ bodies, the total kinetic energy is given by (2.2) with

J(θ) :=
κ
∑

i=1

(

miQi(θ)Qi(θ)
T +Pi(θ)JiPi(θ)

T

)

,

Qi(θ) :=

(

∂pi

∂θ

)

Ω(ψi)
T, Pi(θ) :=

(

∂ψi

∂θ

)

P (ψi)
T.

The generalized forces from the environment are given by (2.3) with

C(θ) :=
κ
∑

i=1

Ω(ψi)
TCiΩ(ψi), Ci :=

∫

∆idai,

E(θ) :=
κ
∑

i=1

Qi(θ)CiΩ(ψi), Di :=
∫

Q(s)∆iQ(s)Tdai,

D(θ) :=
κ
∑

i=1

(

Qi(θ)CiQi(θ)
T +Pi(θ)DiPi(θ)

T

)

,

where we assume that each body has a uniform density and shape such that
∫

sdai = 0.

Using the Euler-Lagrange equation (2.1), the equations of motion for the general me-

chanical rectifier are derived and given by (2.4) with

G(θ, θ̇) :=

(

∂J(θ)θ̇

∂θ

)T

− 1

2

(

∂J(θ)θ̇

∂θ

)

, k(θ) :=
∂V (θ)

∂θ
,

where V (θ) is the elastic potential energy due to body deformation.
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A.2 Definitions of coefficient matrices in (2.5)

We now introduce a coordinate transformation to replace θ̇ and ẇ by ξ̇ and v, respectively,

where

v := Ω(ψ)ẇ, ξ̇ = Γ(ψ)θ̇, ξ̇ :=







̟

φ̇





 , Γ(ψ) :=







P (ψ) 0

0 I





 .

Given the definitions above, the acceleration of the center of mass, seen in the body frame,

is given by

Ω(ψ)ẅ = v̇+Q(̟)v,

and the acceleration of the orientation/shape variable θ is expressed in the new coordinates

as

θ̈ := Γ(ψ)−1ξ̈+
d

dt
Γ(ψ)−1ξ̇.

Expressing the equations in (2.4) by the new variables (v, v̇) and (ξ̇, ξ̈), and multiplying

the equations from the left by Γ(ψ)−T and Ω(ψ), respectively, results in (2.5) with

J(φ) := Γ(ψ)−TJ(θ)Γ(ψ)−1,

D(φ) := Γ(ψ)−TD(θ)Γ(ψ)−1,

g(φ, ξ̇) := −J(φ)Γ̇(ψ,ψ̇)θ̇+ Γ(ψ)−TG(θ, θ̇)θ̇,

E(φ) := Γ(ψ)−TE(θ)Ω(ψ)T,

C(φ) := Ω(ψ)C(θ)Ω(ψ)T

where Γ̇(ψ,ψ̇) := d
dt(Γ(ψ)) and we note that Γ(ψ)−Tk(θ) = k(θ) =: k(φ) and Γ(ψ)−TB =B, as

the first three rows of k(θ) and B are zero, and the potential V (θ) is a function of φ only.

In the above equations, the right hand sides appear to depend on ψ, but they are actually

independent of ψ as indicated by the left hand sides’ notation. We will show this in the

following.

First note that function pi(θ) in (A.1) can be denoted by

pi(θ) = Ω(ψ)Tbi(φ),

where bi(φ) ∈ R3 is the position of the center of mass relative to the center of mass of the

entire system, expressed in the reference body frame. Let variables ψ∗
i be the Euler angles

of body i relative to body B that only depend on φ, and satisfy

Ω(ψi) = Ω(ψ∗
i )Ω(ψ).
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One can then verify the following identities:

Γ(ψ)−TQi(θ) = Qi(φ), Qi(φ) :=







Q(bi)

∂bi/∂φ





Ω(ψ∗
i )T.

Γ(ψ)−TPi(θ) = P(φ), P(φ) :=







Ω(ψ∗
i )T

(∂ψ∗
i /∂φ)P (ψ∗

i )T





 .

Using the above, the coefficient matrices can be written as

J(φ) =
κ
∑

i=1

(

miQi(φ)Qi(φ)T + Pi(φ)JiPi(φ)T

)

,

D(φ) =
κ
∑

i=1

(

Qi(φ)CiQi(φ)T + Pi(φ)DiPi(φ)T

)

,

C(φ) =
κ
∑

i=1

Ω(ψ∗
i )TCiΩ(ψ∗

i ), E(φ) =
κ
∑

i=1

Qi(φ)CiΩ(ψ∗
i ),

g(φ, ξ̇) = −J(φ)Γ̇(ψ,ψ̇)θ̇+ Γ(ψ)−TG(θ, θ̇)θ̇,

It is clear that J(φ), C(φ), D(φ), E(φ) are independent of body orientation ψ and only

a function of the shape φ. Yet, it remains to show that the right hand side of the g(φ, ξ̇)

equation can be expressed in terms of φ, φ̇, and ̟, without involving ψ. This is formally

stated and proven in the following lemma.

Lemma 11. The function

g(θ, θ̇) := −J(φ)Γ̇(ψ,ψ̇)θ̇+ Γ(ψ)−TG(θ, θ̇)θ̇

can be written as g(θ, θ̇) = g(φ, ξ̇) for some function g(·, ·).

Proof. First note that the following identities hold for an arbitrary vector a ∈ R3:

(

∂Ω(ψ)Ta

∂ψ

)

T

= Ω(ψ)TQ(a)TP (ψ),

(

∂P (ψ)a

∂ψ

)

T

ψ̇ = Ṗ (ψ,ψ̇)a, Ṗ (ψ,ψ̇) :=
dP (ψ)

dt
,

(

∂P (ψ)Ta

∂ψ

)

ψ̇ = Z(ψ,ψ̇)a, Z(ψ,ψ̇) :=
∂P (ψ)ψ̇

∂ψ
.
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The function g(θ, θ̇) can then be written as

g(θ, θ̇) = −J(φ)







Ṗ (ψ,ψ̇)ψ̇

0





+ Γ(ψ)−T





(

∂J(θ)θ̇

∂θ

)T

− 1

2

(

∂J(θ)θ̇

∂θ

)



 θ̇.

The above partial derivative terms can be simplified by:

(

∂J(θ)θ̇

∂θ

)T

θ̇ = Γ(ψ)T

(

∂J(φ)ξ̇

∂φ

)T

φ̇+ Γ̇(ψ,ψ̇)TJ(φ)ξ̇+ Γ(ψ)TJ(φ)







Z(ψ,ψ̇)Tψ̇

0





 ,

(

∂J(θ)θ̇

∂θ

)

θ̇ =











2
[

Z(ψ,ψ̇) 0

]

J(φ)ξ̇

∂J(φ)ξ̇

∂φ
ξ̇











.

Using these simplifications, g(θ, θ̇) becomes

g(θ, θ̇) =

(

∂J(φ)ξ̇

∂φ

)T

φ̇+











[

R(ψ,ψ̇) 0

]

J(φ)ξ̇

−∂J(φ)ξ̇

2∂φ
ξ̇











,

where R(ψ,ψ̇) := P (ψ)−T

(

Ṗ (ψ,ψ̇)T −Z(ψ,ψ̇)
)

. Finally, it can be shown that R(ψ,ψ̇) =Q(̟)

using the commutative property and the Jacobi identity:

∂

∂ψ

(

dΩ(ψ)Ta

dt

)

=
d

dt

(

∂Ω(ψ)Ta

∂ψ

)

,

Q(a)Q(̟)T +Q(̟)Q(a) =Q(Q(a)T̟).

Thus, R(ψ,ψ̇) is a function of ̟, and hence g(θ, θ̇) is a function of φ and ξ̇.

A.3 Some details of approximations leading to (2.7)

Approximate equations of motion in (2.7) are derived from (2.5), assuming that body

deformation ϕ, angular acceleration ˙̟ , and velocity components δ normal to the direction

of locomotion V are small and of order ǫ, where ϕ := φ−η, δ := NTv, N := [e1 e3 ], and ei is

the ith column of the 3 ×3 identity matrix.

The terms in (2.5) can be approximated by Taylor series expansion and truncation as
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follows:

J(φ)ξ̈ = J(η)ζ̈+ O(ǫ2),

g(φ, ξ̇) = G(̟)ζ̇+ G1(̟̟T)ϕ+ O(ǫ2),

D(φ)ξ̇ = D(η)ζ̇+ D1(̟)ϕ+ O(ǫ2),

E(φ)v =✘✘✘✘✘
E(η)e2v+E(η)Nδ+vΛϕ+ O(ǫ2),

k(φ) =
✟
✟✟k(η) + Kϕ+ O(ǫ2),

NTQ(̟)v = vR̟+ NTQ(̟)Nδ,

eT

2Q(̟)v = −(R̟)Tδ,

NTC(φ)v =
✘✘✘✘✘✘

NTC(η)e2v+ NTC(η)Nδ+vQϕ+ O(ǫ2),

eT

2C(φ)v =
✘✘✘✘✘
eT

2C(η)Nδ+ c(ϕ)v+ (Qϕ)Tδ+ O(ǫ3),

NT
E(φ)Tξ̇ = NT

E(η)Tζ̇+ E(̟)ϕ+ O(ǫ2),

eT

2E(φ)Tξ̇ =✘✘✘✘✘eT

2E(η)Tζ̇+ (Λϕ)Tζ̇+ϕTF(̟)ϕ+ O(ǫ3),

where ζ̇ := col(̟,ϕ̇) and v := eT

2v. Functions G, G1, D1, E, and F are linear (without

constant terms) and function c(ϕ) is the quadratic approximation of eT

2C(φ)e2. All the terms

depend on η and the canceled terms are zero due to the nominal shape properties. Thus,

(2.5) approximates to

Jζ̈+D(̟)ζ̇+K(̟,v)ϕ+Eδ =Bu,

mδ̇+C(̟)δ+mR̟v+ETζ̇+ L(̟,v)ϕ= 0,

mv̇+ c(ϕ)v+ (Qϕ−mR̟)Tδ+ (Λϕ)Tζ̇+ϕTF(̟)ϕ= 0,

where O(ǫ2) and O(ǫ3) terms are neglected in the first two and the last equations, respec-

tively, and

J := J(η), E := E(η)N, D(̟) := D(η) + G(̟),

L(̟,v) := vQ+ E(̟), C(̟) := NT(mQ(̟) +C(η))N,

K(̟,v) := G1(̟̟T) + D1(̟) +vΛ + K,

Finally, it can readily be seen that the approximate equations can be expressed in a more

compact form as (2.7).
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APPENDIX B

Modeling Details for Saithe Fish

The saithe fish is modeled with a main body and two undulating panels with two rotating

joints, as described in Section 3.2. This section provides details for the derivation of the

equations of motion. The variables are summarized in Table B.1. Consider an external

force ξ(t) acting on the main body to regulate the swim speed such that ẋo(t) = −v with

a constant v > 0. We will write down the nonlinear equations of motion and obtain the

linearization assuming θ is small. Further assuming periodic motion θ(t), we will write down

the thrust-drag balance equation by setting the average value of ξ(t) over a cycle to zero.

Table B.1: List of model variables (i= 1,2)

xo x-position of the center of mass (C.M.) of the main body

xi x-position of the C.M. of the ith panel

yi y-position of the C.M. of the ith panel

θi angle between the ith panel and the x-axis

ui bending moment applied at joint i

wi velocity of fluid pushed by the ith panel in y direction

ai acceleration of fluid pushed by the ith panel

The hydrodynamic forces and torques acting on the body are given by:

fo = −sgn(ẋo)cẋ2
o, fi =mAi

ai/cos θi, τi = −(mAi
l2i /3)θ̈i,

for i= 1,2, where

mAi
:= ρVicAi

, Vi := π(di/2)2(2li).
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The kinematic and dynamic equations are given by:

x1 = xo + lo + l1cosθ1, moẍo = gx1
+fo + ξ,

x2 = x1 + l1cosθ1 + l2cosθ2, m1ẍ1 = f1sinθ1 −gx1
+ gx2

,

y1 = yo + l1sinθ1, m2ẍ2 = f2sinθ2 −gx2
,

y2 = y1 + l1sinθ1 + l2sinθ2, m1ÿ1 = −f1cosθ1 −gy1
+ gy2

,

wi = ẏi − ẋiθi, m2ÿ2 = −f2cosθ2 −gy2
,

ai = ÿi − ẍiθi −2ẋiθ̇i, J1θ̈1 = ũ2 − ũ1 + τ1 − (gx1
+ gx2

)l1sinθ1 + (gy1
+ gy2

)l1cosθ1,

J2θ̈2 = −ũ2 + τ2 −gx2
l2sinθ2 + gy2

l2cosθ2,

where gxi
and gyi

are constraint forces due to the neighboring panel(s), and ũi are the total

bending moments containing the effects of active muscle and body flexibility:

ũ1 = u1 +k1θ1, ũ2 = u2 +k2(θ2 −θ1).

The dynamic equations for translational motion can be solved for the constraint forces to

give:






gx1

gx2





= −







1 1

0 1













m1ẍ1 −f1sinθ1

m2ẍ2 −f2sinθ2





 ,







gy1

gy2





= −







1 1

0 1













m1ÿ1 +f1cosθ1

m2ÿ2 +f2cosθ2





 .

These expressions are substituted into the rotational equations of tail motion. In the equation

for the main body, the average of the external force ξ(t) over one cycle is set to zero such

that the average thrust balances the average drag:

ξ = 0 = f1sinθ1 +f2sinθ2 +fo.

Assuming small θi =O(ǫ) and neglecting O(ǫ2) terms in the tail motion equation and O(ǫ3)

terms in the thrust drag balance equation, we find the following linear and bilinear equations

of motion:

Jθ̈+ 2vGθ̇+Kθ =Bu,

θTGTθ̈+ cv2 = 0,
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with the following parameter definitions:

J := L(M +MA)L/3 +F T(M +MA)F, G := F TMA, K :=BKoB,

F :=







l1 0

2l1 l2





 , B :=







−1 1

0 −1





 ,
M := diag(m1,m2), Ko := diag(k1,k2),

MA := diag(mA1
,mA2

), L := diag(l1, l2),

where θ,u ∈ R
2 are two dimensional vectors obtained by stacking θi and ui for i = 1,2,

respectively. This two-input case with u ∈ R2 is considered in Section 3.4.2.3. In all other

analyses, the tail is assumed passive (u2(t) ≡ 0), and u and B are redefined as u := u1 and

B :=
[

−1 0

]

T

.
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