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Objectives: This study investigates primary peer-referral engagement (PRE) strategies to
assess which strategy results in engaging higher numbers of people with HIV (PWH)
who are virally unsuppressed.

Design: We develop a modeling study that simulates an HIV epidemic (transmission,
disease progression, and viral evolution) over 6 years using an agent-based model
followed by simulating PRE strategies. We investigate two PRE strategies where referrals
are based on social network strategies (SNS) or sexual partner contact tracing (SPCT).

Methods: We parameterize, calibrate, and validate our study using data from Chicago
on Black sexual minority men to assess these strategies for a population with high
incidence and prevalence of HIV. For each strategy, we calculate the number of PWH
recruited who are undiagnosed or out-of-care (OoC) and the number of direct or
indirect transmissions.

Results: SNS and SPCT identified 256.5 [95% confidence interval (CI) 234–279] and
15 (95% CI 7–27) PWH, respectively. Of these, SNS identified 159 (95% CI 142–177)
PWHOoC and 32 (95% CI 21–43) PWH undiagnosed compared with 9 (95% CI 3–18)
and 2 (95%CI 0–5) for SPCT. SNS identified 15.5 (95%CI 6–25) and 7.5 (95%CI 2–11)
indirect and direct transmission pairs, whereas SPCT identified 6 (95% CI 0–8) and 5
(95% CI 0–8), respectively.

Conclusion: With no testing constraints, SNS is the more effective strategy to identify
undiagnosed and OoC PWH. Neither strategy is successful at identifying sufficient
indirect or direct transmission pairs to investigate transmission networks.

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
AIDS 2024, 38:245–254
Keywords: contact tracing, engagement, HIV, people with HIV,
recruitment, social networks
Introduction

In 2019, the US Health and Human Services established
the Ending the HIV Epidemic (EHE) initiative to
eliminate new HIV infections by 2030 [1]. The EHE
initiative outlines four strategies, all of which require
rapidly engaging individuals in HIV services through
diagnosing people early, link-to-care, or re-engagement
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for individuals out-of-care (OoC). Engagement is
challenging and will increase in difficulty as the epidemic
becomes more concentrated among those who are
historically disenfranchised, such as Black sexual minority
men (BSMM) [2–4]. Prioritizing the BSMM population
is critical to achieving EHE goals as approximately a
quarter of all new HIV infections in the United States are
among BSMM [5], and BSMM are less likely to be virally
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suppressed [6]. Engagement in care among this group is
low as a result of stigma experienced in healthcare
settings, lack of insurance, unstable housing, and
psychological factors [7–9]. However, engagement is
critical in the United States; it is estimated that 13–15% of
people with HIV (PWH) are currently undiagnosed and
that another 37% are OoC [10]. This has serious
consequences as unaware and OoC PWH are estimated
to account for 80% of transmissions [11].

There have been several efforts to engage individuals. For
example, the standard of care employed by Public Health
Departments across the United States for identifying
individuals who are unaware of their HIV infection is
contact tracing (i.e. partner services) [12,13]. This process
involves eliciting names of sexual and drug use contacts
from people newly diagnosed with HIVand inviting them
to get tested for HIV [12,13]. This approach has not been
widely effective, producing a low number of contacts of
newly HIV diagnosed clients. In a review of 51 public
health jurisdictions, only 0.9 contacts were identified per
newly HIV diagnosed ‘index’ [14]. Per recommendation
by theCenters forDiseaseControl and Prevention (CDC),
the focus of partner services is on PWH who are newly
diagnosed rather than re-engaging PWH who are OoC
[15]. However, new evidence shows that focusing partner
services on contacts of previously diagnosed PWH is also
effective at engaging and re-engaging PWH [16]. The
objective of this manuscript is to explore the effectiveness
of peer recruitment strategies for engagement and re-
engagement among BSMM,where we define recruitment
as the acceptance of a peer invitation and HIV testing.

Although the ultimate goal for engaging/re-engaging
peoplewho are undiagnosed and/orOoC is to reduceHIV
transmission, it is unclear what recruitment strategy can
most effectively identify PWH who have high HIV
transmission potential (i.e. PWH who are virally
unsuppressed), and what strategy enables a better
characterization of the underlying HIV transmission
network. A contributing factor to the low identification
rate is that at-risk populations often donot trust themedical
community [3], or are more likely face stigma from
partners if referred, and partners may face stigma being
named by someone living with HIV/STIs. Interventions
that recruit social contacts, either in addition to or in place
of risk contacts, have been more effective at locating those
with undiagnosed HIV infection, in part because people
tend to obtain and transmit information primarily through
informal social networks, especially their friends [3,17]. In
addition, naming a friend, or family member rather than a
sex partner also decreases stigma [18–20]. This ‘social
network strategy’ (SNS) is promoted by the CDC,
with studies showing that up to 6% of people tested using
SNS are unaware of their HIV infection [5,21–23].

We investigate two primary Peer-Referral Engagement
strategies (PRE strategies) for identifying PWH who are
undiagnosed, PWH who are OoC, PWH pairs who have
similar HIV genetic sequences (i.e. indirect HIV
transmission pairs), and PWH pairs where HIV transmis-
sion occurred. We investigate one PRE strategy with
recruitment based on social partners and another based on
sexual partners. We simulate PRE strategies for BSMM in
Chicago, which is located within an EHE jurisdiction [1].
Methods

Overview
To evaluate PRE strategies, it is necessary to have realistic
social and sexual contact networks, as well as knowledge
about HIV transmissions that occur within this popula-
tion (the transmission network). However, complete
social, sexual, and transmission networks are generally
unknown. To evaluate PRE strategies, we conducted a
robust simulation study with three modeling components
on simulated networks (see Fig. 1a).

We first generated social and sexual networks that
represented connections among BSMM in Chicago. We
used a congruence class model (CCM) [24] to generate
sample networks. Secondly, we simulated HIV spread
among BSMM using an epidemic transmission model
called FAVITES (FrAmework for Viral Transmission and
Evolution Simulation) [25]. FAVITES produces a
transmission network and simulated genetic sequence
data. Together, components 1 and 2 generate necessary
data to model and assess the PRE strategies (component
3). Fig. 1a outlines these components, including model
assessment on key outcomes.

Data
The first and third components were parameterized using
data from a longitudinal study of BSMM ages 16–29 who
reside in Chicago; details of the study, including sampling,
recruitment, and data collection, have been previously
described [26–28]. The cohort was obtained using
respondent-driven sampling to recruit 618 young
BSMM. Respondents were evaluated at baseline, 9,
and 18months beginning June 2013. Each participant
answered a set of name-generating questions at each study
visit on their social and sexual networks. Participants were
asked to list up to five confidants with whom they ‘discuss
things that are important to you’ along with demographic
information, such as name, gender (male, female,
transgender), age, education, employment status, ethnic-
ity (Hispanic or not), and race. Participants were also
asked to list their (up to) five most recent sexual partners
in the past 6 months. The degree distribution of sexual
partners, Dcn, was estimated from these data (Supple-
mental Table S1, http://links.lww.com/QAD/D23).
Study participants were asked how many SMM they
know, and these survey responses together with named
confidants permitted an estimate of the distribution of
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Fig. 1. Simulation framework. (a) First a contact network is sampled, and then a social network is sampledwith a specified overlap
with the contact network (component 1). An epidemic model is run on the contact network for a simulated time period of 6 years
(component 2). The outputs of the epidemic model are viral molecular sequences that can be transformed into a genetic cluster
network; a collection of transmission events defining a transmission network; and the disease status of each individual in the
simulation. Finally, SPCT is simulated on the sexual contact network, and SNS is simulated on the social network (component 3).
The disease status and transmission relationships of the sampled individuals are then compared. (b) Division of risk population into
disease status categories (compartments). Our epidemiological model consists of six disease states. Colors indicate treatment
status. Pink denotes susceptible individuals, yellow compartments show individuals not presently under treatment (i.e. undiag-
nosed/treatment-naive, or out-of-care), and blue compartments indicate individuals currently under treatment. Individuals in the
susceptible population become infected and transition to the acute undiagnosed state at rate r1. From the acute undiagnosed state,
individuals either remain untreated and transition to chronic undiagnosed at a rate of r2 or initiate treatment and transition to acute
treated at a rate r3. Individuals in the acute treated and chronic undiagnosed compartments enter a chronic treated state with
transition rates r4 and r5, respectively. The out-of-care compartment contains individuals that are currently not treated but have
been in the past. The out-of-care and chronic treated compartments may mutually transition with rates of r6 and r7.
BSMM social contacts, Dsn (Supplemental Table S2,
http://links.lww.com/QAD/D23).

Simulation components
Component 1: generating sexual and social networks
Weestimated the population size of theBSMM inChicago
to be 15397 (see Supplement, http://links.lww.com/
QAD/D23). Eachof the 15 397nodes in the sexual contact
network, gcn, represents an individual, while each edge
represents a sexual relationship between two BSMM. Our
sexual networks are generated using a CCM, which is
defined by a network property or set of properties and a
probability mass function on the congruence classes
defined by values of the network property. An important
network property to model epidemic spread is the
distribution of the number of sexual partners, which is
referred to as a degree distribution, denoted Dcn. For
simulated sexual contact networks, we model degree
distributions based on data from uConnect [27,29]
(see Supplemental Table S1, http://links.lww.com/
QAD/D23), assuming that the degree distribution follows
a multinomial distribution based on Dcn parameterized
by maximum likelihood estimates.

We generate a social network, gsn, using a two-step
process. The first consists of generating an initial network,
gsninitial, using a CCM with a multinomial distribution on
the degree distribution that is parameterized from the
social partner data from the uConnect cohort using
maximum likelihood estimates. The uConnect study
allowed participants to name SMM social contacts
irrespective of race, that is, not restricted to BSMM
[27,29]. Based on demographic data provided by
respondents, 97% of SMM social partners were BSMM.
Therefore, we assume that the degree distribution of
social contacts in the sexual minority men community
approximates the degree distribution of the BSMM
community, Dsn (Supplemental Table S2, http://links.
lww.com/QAD/D23). Secondly, we randomly selected
13% of gcn edges and added this subgraph to gsninitial to
generate gsn (the percentage of sexual partner pairs in the
BSMMpopulation that were also in the social networkwas
13% in the uConnect study). This addition is a necessary
step since gcn and gsninitial are generated independently.

Component 2: simulating HIV epidemic, transmission
network, and molecular sequences
We simulated an HIV epidemic process using FAVITES,
which ingests a sexual network, simulates an epidemic
process, and outputs a transmission network gtn and
associated HIV sequence data. FAVITES uses an epidemic
compartmental model customized to HIV to simulate
disease transmission. Our epidemic model divided the
BSMM population into six compartments: susceptible,
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undiagnosed acute, treated acute, undiagnosed chronic,
treated chronic, and OoC; see Fig. 1b. Susceptible
individuals are uninfected; individuals that have acute or
chronic treated infections are PWH undergoing antire-
troviral therapy (ART), while PWH without a diagnosis
and OoC individuals (all assumed to have a diagnosis) are
not on ART. See Supplement for initial population sizes in
each compartment, http://links.lww.com/QAD/D23.

PWH have a probability of transmitting HIV to each of
their susceptible sexual partners. The probabilities for
transmission from individuals with treated acute, undiag-
nosed acute, and undiagnosed chronic infections were
from published literature (Supplemental Table S3 and
Supplemental Figure S1, http://links.lww.com/QAD/
D23) [25]; PWH in the chronic treated compartment
were assumed to have a zero transmission rate. The
transmission rate from OoC individuals to susceptible
individuals was calibrated to ensure an incidence rate of
approximately 1.4% (see Supplemental Figure S2, http://
links.lww.com/QAD/D23); this incidence was derived
by applying data from the Enhanced HIV/AIDS
Reporting System (eHARS) in Chicago to the estimate
of the BSMM population size in 2019 [30].

Compartment transmissions are Poisson processes. Indi-
viduals transitioned from acute to chronic disease status
with a mean of approximately 6weeks [31], regardless of
treatment state. The mean transition time from acute
undiagnosed to acute treated was 1 year [25], and chronic
undiagnosed to chronic treated was approximately
3.3 years (see Supplement, http://links.lww.com/
QAD/D23). PWH may transition back and forth
between the chronic treated and OoC compartments.
The mean transition time from OoC to chronic treated
(re-engagement) was 5.9 years [32] and chronic treated to
OoC was then calibrated to 1.8 years in order to ensure
that there were not multiple transitions between these
compartments within a 12-month period (see Supple-
ment, http://links.lww.com/QAD/D23), which is not
consistent with the standard definition of OoC [33].

Epidemics were simulated over a 6-year period, without a
specific starting year (late teens are reasonable), providing
each individual’s disease status, all transmission events,
and all viral sequences. Sequencing occurred at the end of
the simulation. The evolutionary model and associated
parameters are thoseused in previous studieswith FAVITES
[25,34] (Supplemental Table S3, http://links.lww.com/
QAD/D23). FAVITES does not currently model PRE
strategies coincident with an epidemic, so the simulated
disease spread was performed first to provide a reasonable
estimate of a population in the midst of an epidemic.

Component 3: simulating peer-referral engagement
strategies
We simulated two PRE strategies at the end of the
epidemic simulation before further significant transmission
occurred. The first strategy modeled recruitment of social
partners (SNS for social network strategy) and the second
modeled recruitment of sexual partners through peer-
referral contact tracing (SPCT). To simulate SNS, we
conducted respondent-driven sampling on gsn, whereas
SPCT uses gcn. Both PRE strategies start with an initial
group of PWH respondents (seeds), who then recruit
others. In respondent-driven sampling, each individual
attempts to recruit a fixed number of their social contacts
for participation by providing them with a voucher; these
contacts accept and participate with probability psns. The
new recruits continue this process until a specified sample
size is reached. In SPCT, the PWH seed attempts to recruit
all sexual partners; a partner acceptswith a fixed probability
pct. Only PWH continue recruiting in the SPCT strategy.
The process continues until none of the recruits are PWH;
unlike SNS, SPCT does not have a fixed sample size.

The number of vouchers distributed per individual (6) in
SNS, the initial population of seed individuals (62) in
both SNS and SPCT, and the target sample size for SNS
(600) were taken from the uConnect study design. The
probability psns¼ 39.4% was estimated from uConnect
outcomes by taking the proportion of vouchers returned
from individuals who reported a single social contact.
Although the uConnect data recruitment strategy
specified only young BSMM, we use the acceptance
rate for our simulations to represent recruitment of the
entire BSMM population in Chicago (we later relaxed
this assumption). The probability pct was estimated from
the literature to be 17.5% [35] (Supplemental Table S4,
http://links.lww.com/QAD/D23).

Model assessment of peer-referral engagement strategies
Themeasure of success of a PRE strategy used in this article
was the total number and proportion of PWH recruited
during SNS or SPCT and stratified by those OoC or
undiagnosed. We also assessed the number of pairs of
individuals with direct or indirect transmission events that
were sampled in each recruitment strategy. To assess
possible indirect transmissions, we computed genetic
distances between the HIV sequence data simulated by
FAVITES using the TN93 nucleotide substitution model
[36–38]. Putative linkage in a molecular network ggcn is
inferredwhen the genetic distance between two sequences
is below 1.5% sequence divergence.

Sensitivity analyses
We conducted three sensitivity analyses. The first was a
modified version of SPCT (mod-SPCT) where all
individuals (not just PWH) were asked to continue
recruiting all sexual partners until no further individuals
chose to participate, assuming the same probability of
recruitment. The motivation for mod-SPCT was to
exclude the possibility that only following up with PWH
was the cause of small sample sizes in SPCT (Fig. 2a). The
second analysis increased pct from 17 to 27% and decreased
psns from 40 to 30% to assess the impact of uncertainty in
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Subpopula�on SNS percentage of sample 

median with 95% C.I.

(2 independent 

simula�ons)

SPCT percentage of 

sample median

mod-SPCT percentage 

of sample median

PLWH 47.5% (43.3%, 51.6%)

47.7% (44.1%, 51.7%)

50.0% (31.8%, 68.0%) 50.0% (35.3%, 68.6%)

OoC 29.4% (26.3%, 32.9%)

29.7% (26.2%, 33.6%) 

30.8% (15.6%, 50.0%) 31.0% (19.7%, 47.7%)

Undiagnosed 

(UD)

5.9% (3.9%, 7.9%)

5.9% (4.1%, 8.1%) 

6.5% (0.0%, 15.6%) 6.1% (0.0%, 15.2%)

(c)

(a) (b)

Fig. 2. (a) Comparison of number of recruited people with HIV between social network strategies and sexual partner contact
tracing. The panel shows the number of individuals recruited from SNS and SPCT in total, the subsample of these that are PWH, the
further subsample that are out-of-care, and lastly the subsample of PWH that are undiagnosed. The boxplots show the distribution of
the median individuals over 250 simulations, 25 and 75% quartiles, whiskers out to 1.5 times the interquartile distance, and outliers
beyond. The label ‘Sample’ refers to the total sample size excluding seed individuals. PWH indicates infected individuals that were
sampled, regardless of diagnosis or treatment state. OoC indicates the sampled individuals in the OoC compartment. ‘UD’ refers to
people who are undiagnosed that were sampled, whether in the acute or chronic phase of the disease. Medians and confidence
intervals are given in Supplemental Table S5, http://links.lww.com/QAD/D23. (b) Comparison of number of samples of PWH
between SNS and mod-SPCT, where both infected and uninfected individuals are asked to recruit sexual partners. The SNS strategy
remained unchanged as expected, except for slight differences because of stochasticity. The mod-SPCT strategy yielded only slightly
better numbers than SPCT in panel (a), with a median sample size of 42 (95% CI 24–65). Other medians and CIs are given in
Supplemental Table S6, http://links.lww.com/QAD/D23. (c) Comparison of percentage of recruited subpopulation with respect to
sample size for SNS, SPCT, and mod-SPCT. The percentages of the PWH groups were computed as a proportion of sample size. For
example, PWH recruited via SNS is 47.5% (95% CI 43.3–51.6%) of the SNS sample size (median 540, 95% CI 538–543), while
PWH sampled via SPCT is 50% (95% CI 31.8–68%) of the SPCT sample size (median 31, 95% CI 18–46). Other percentages with
95% CIs are shown in the table with the corresponding sample medians/CIs in Supplemental Table S5, http://links.lww.com/QAD/
D23. The first column indicates the subpopulation for which percentages are reported; the second column shows results for SNS (blue
boxes) in both panels (a) and (b); the third column reports percentages for SPCT in panel (a) (red boxes); and the fourth column reports
percentages for mod-SPCT in panel (b) (red boxes). While the absolute sample sizes between SNS and SPCT/mod-SPCT are very
different [compare blue and red boxes in panels (a) and (b)], the percentage of PWH subpopulations recruited is very similar between
PRE strategies. SNS, social network strategies; SPCT, sexual partner contact tracing.
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Fig. 3. Comparison of number of pairs of individuals with genetically similar viral sequences (GN) and direct transmission events
(TN) between social network strategies and sexual partner contact tracing. The boxplots show the distribution of the median
individuals over 250 simulations, 25 and 75% quartiles, whiskers out to 1.5 times the interquartile distance, and outliers beyond.
The number of pairs was less than 35 in all cases. In comparison, the number of pairs in each of the genetic cluster and transmission
networks numbered in the thousands. Medians and CIs in Supplemental Table S7, http://links.lww.com/QAD/D23. CI, confidence
interval.
acceptance rates. The third analysis varied the initial
prevalence of HIV among BSMM (36.3%, see Supple-
ment, http://links.lww.com/QAD/D23) to 27.2, 18.1,
and 9.1%, representing HIV prevalences of 75, 50, and
25% of baseline.
Results

Results for number of people with HIV recruited
We performed 250 independent simulations and com-
pared outcomes from SNS and SPCT. We found that
overall SNS outperformed SPCT on total number of
PWH recruited as well as stratified by those OoC and
undiagnosed. The median identification of PWH by SNS
was 256.5 (95% CI 234–279) compared with 15 (95% CI
7–27) by SPCT. For PWH in the OoC and undiagnosed
populations, SNS identifies 159 (95% CI 142–177) and
32 (95% CI 21–43), respectively, compared with 9 (95%
CI 3–18) and 2 (95% CI 0–5] by SPCT; see Fig. 2a. The
difference in absolute numbers between the strategies is
because of the larger number of recruits under SNS
compared with SPCT. In terms of percentages, the two
strategies are nearly identical; see Fig. 2c.

Results for direct and indirect HIV transmission
pairs
PRE strategies were assessed on the number of direct/
indirect HIV transmission pairs identified. A direct
transmission pair occurred if both PWH were connected
by an edge in gtn, whereas an indirect pair was represented
by an edge in ggcn. For both PRE strategies, an
insignificant number of direct and indirect pairs were
found (Fig. 3). We conclude that both SNS and SPCTare
inefficient at recovering direct and indirect HIV
transmission pairs at the sample sizes explored here. This
conclusion holds when viral sequencing occurs at the
moment of infection (Supplemental Figure S3, http://
links.lww.com/QAD/D23).

Results from sensitivity analyses
In the first analysis (mod-SPCT), we saw slight, but not
substantial, improvement in sample sizes (Fig. 2 and
Supplemental Tables S5 and S6, http://links.lww.com/
QAD/D23), indicating that continuing recruitment with
all sexual partners does not significantly increase the
proportion of PWH recruited.

For the second analysis (variance of acceptance rate), the
sample size for SPCT increasedmoderatelywith increasing
acceptance rate (Fig. 4a, Supplemental Table S8, http://
links.lww.com/QAD/D23). In contrast, decreasing the
acceptance rate for SNS from 40 to 30% caused no change
in the sample size of recruited individuals (medians andCIs
in Supplemental Table S9, http://links.lww.com/QAD/
D23). Furthermore, the decrease in rate did not affect the
number of PWH recruited with SNS (Fig. 4b). We
conclude that the higher degree distribution of the social
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Fig. 4. Yield as a function of acceptance rate. (a) Total sample size attained for SPCT at acceptance rates of 17–27%. (b) Number
of PWH recruited under SNS [the total sample size was 602 (95%CI 600–605)] for acceptance rates from 30 to 40%.Medians and
CIs in Supplemental Tables S8–S9, http://links.lww.com/QAD/D23. SNS, social network strategies; SPCT, sexual partner contact
tracing.
network is responsible for the larger sample sizes, not the
acceptance rate. Similarly, the lower degree distribution in
the SPCT network is likely the primary cause of the low
sample size.

In the third analysis (variance of HIV prevalence), the
number of new PWH recruited drops as prevalence
decreases (Fig. 5). The drop is more pronounced in SNS
compared with SPCT. At our estimated prevalence of
36.3%, the proportions of PWH, OoC PWH, and
undiagnosed PWH are similar between the two strategies.
At less than 18.1% prevalence, SPCT shows a noticeable
advantage in the proportion of all, OoC, and undiagnosed
PWH identified. This corresponds to fewer administered
HIV tests per recruitment. In all cases, SNS returns a
greater absolute number of individuals because of its
greater sample size but its proportional results are only
comparable to SPCT at the highest prevalence.
Fig. 5. Social network strategies vs. sexual partner contact tracing
individuals. The horizontal axis is HIV prevalence in the BSMM po
prevalence in the BSMM population in Chicago), 27.2%, which is 7
9.1%, which is 25% of our estimate. The percentage of PWH (panel
to the number of recruited individuals decreased with decreasing
absolute number of PWH recruited was always greater with SNS. M
S10–S12, http://links.lww.com/QAD/D23. The greater CIs in SPCT
sexual minority men; CI, confidence interval; OoC, out-of-care; P
sexual partner contact tracing.
Discussion

We examined the relative performance of two PRE
strategies, social network-based (SNS) and sexual
network-based (SPCT), in identifying subpopulations
of PWH at high risk of transmitting HIV. Our simulation
results indicate that SNS identifies a greater number of
PWH who are undiagnosed and OoC compared with
SPCT. However, the two strategies produce equal
proportions of these outcomes, consistent with nearly
equal proportions of newly diagnosed BSMM from both
social and sexual PRE strategies in Baytop et al. [39]. This
suggests that a larger proportion of the total population of
PWH can be identified by using a SNS strategy, with the
number of administered tests proportionately the same for
each newly diagnosed individual as in contact tracing
for high HIV prevalence. For low prevalence, if the
number of tests is a concern, then contact tracing may be
recruitment of people with HIV as a percentage of sampled
pulation. The prevalences of HIV are 36.3% (our estimate of
5% of our estimate, 18.1%, which is 50% of our estimate, and
a), OoC (panel b), and UD (undiagnosed, panel c) with regard
prevalence, and more so for SNS versus SPCT. However, the
edians and CIs plotted here are given in Supplemental Tables
are likely due to a much smaller sample size. BSMM, Black

WH, people with HIV; SNS, social network strategies; SPCT,
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the desired alternative; if the desired outcome is a greater
absolute number of undiagnosed individuals, then SNS is
the preferred strategy.

Previous research has found that strategies that elicit social
rather than sexual contacts are effective at identifying
individuals’ OoC and unaware of their HIV infection
[19,20,23,39–43]. Moreover, a recent systematic study
concluded that SNS is an effective way of reaching urban
BSMM who are at high risk but not engaged with the
healthcare system [44]. Our results corroborate these
findings by providing a direct comparison between SNS
and SPCT. In addition, we found that the difference in
absolute numbers between PRE strategies was not because
of SPCT being limited to follow-up with only PWH
(seemod-SPCT in Fig. 2b), or the difference in acceptance
rates between the two strategies. Rather, the differential
connectivity of the two networks is likely the primary
reason for the low numbers identified with SPCT;
specifically, the social network is more densely connected.
Because of this, we speculate that SNS is more effective at
identifying preexposure prophylaxis (PrEP) candidates.

There is interest by public health officials on a national
level in utilizing molecular cluster analysis with partner
services to respond to emerging clusters of HIV infection.
However, there is no consensus on which response
methods are most effective. We found that SNS displayed
a slightly higher trend in detecting indirect pairs, but
neither PRE strategy was successful at identifying direct
transmission pairs. Our results indicate that recovery of a
significant portion of ggcn remains out-of-reach without a
greatly increased sample size. Diagnoses at an earlier stage
of infection could increase the probability of genetic
linkage and our ability to identify direct/indirect
transmission pairs [45] (see also Supplemental Figure
S3, http://links.lww.com/QAD/D23), as would an
overall increase in viral sequence reporting completeness,
which is still quite low across the country [46,47].

Our modeling study has several limitations.
(1) O
ur social network parameters are estimated for the

BSMM population in Chicago, with study participants

in the 16–29 age range; therefore, the results may not be

generalizable to other communities.
(2) O
ur simulations assume that the recruitment probabili-

ties among people who are newly diagnosed with HIV

are the same as among people living with established

HIV infection.
(3) W
e simulated a fixed population in which death,

immigration, emigration, and entry into the young

BSMM population were not modeled over the 6-year

period of the simulations.
(4) T
he probability of recruiting an individual can be

affected by compensation. The uConnect study

provided compensation and was the basis of our estimate

for social contact acceptance. However, the literature
basis for contact tracing did not include compensation.

Our sensitivity analysis with varying acceptance rates

partially mitigates this limitation.
(5) O
ur PRE strategies are not performed simultaneously

with disease spread. As these strategies could be used to

contain spread, such a process could alter the epidemic.

Future studies should model a combination of strategies

and complex social behaviors simultaneously with

disease spread to identify which package of interventions

are most effective at curtailing the epidemic in specific

jurisdictions.
In conclusion, the simulations presented here provided
insight on the utility of different network-based recruit-
ment strategies to attempt engagement and re-engage-
ment in individuals with the highest transmission
potential, and consequently identified which strategy
has the largest impact on curtailing transmission. With no
limitations on test availability, SNS was the more effective
strategy for identifying undiagnosed and OoC PWH.
Neither SNS nor SPCT could identify sufficient indirect
or direct transmission pairs to investigate transmission
networks.
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