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Abstract: Recent developments in technology and data processing for Unoccupied Aerial Vehicles
(UAVs) have revolutionized the scope of ecosystem monitoring, providing novel pathways to fill the
critical gap between limited-scope field surveys and limited-customization satellite and piloted aerial
platforms. These advances are especially ground-breaking for supporting management, restora-
tion, and conservation of landscapes with limited field access and vulnerable ecological systems,
particularly wetlands. This study presents a scoping review of the current status and emerging
opportunities in wetland UAV applications, with particular emphasis on ecosystem management
goals and remaining research, technology, and data needs to even better support these goals in
the future. Using 122 case studies from 29 countries, we discuss which wetland monitoring and
management objectives are most served by this rapidly developing technology, and what workflows
were employed to analyze these data. This review showcases many ways in which UAVs may
help reduce or replace logistically demanding field surveys and can help improve the efficiency
of UAV-based workflows to support longer-term monitoring in the face of wetland environmental
challenges and management constraints. We also highlight several emerging trends in applications,
technology, and data and offer insights into future needs.

Keywords: wetland; unoccupied aerial vehicle; UAV; UAS; drone; management; conservation;
restoration; monitoring; high spatial resolution

1. Introduction

Unoccupied aerial vehicles (UAVs) have emerged in the global remote sensing com-
munity as small, flying robots that can access dangerous or remote regions, capture high-
resolution imagery, and facilitate environmental monitoring and research ranging from
broad applications in agricultural management [1] to specialized marine mammal behav-
ioral ecology [2]. UAVs are beneficial to environmental monitoring because they bridge the
constraints in complex, dynamic, limited-access environments that historically have been
challenging to survey [3]. Furthermore, they reduce the amount of time and labor expended
on surveying and sampling on the ground [4–7], providing time for targeted managerial
activities that may otherwise be overlooked, such as restoration assessments [8–11]. In re-
cent years, technological advances in UAV instruments such as greater spectral complexity
via LiDAR and multispectral sensors and increased volumetric estimations from Structure
from Motion (SfM) photogrammetric techniques have transformed applications of UAVs in
environmental research [12]. Newer UAV applications in environmental research involving
hyperspectral sensing have also expanded species-related analyses such as invasive plant
evaluations [13] and mangrove species detection [14,15], although sensor costs and storage
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capacity limitations impact the opportunities for hyperspectral studies to become ubiqui-
tous in current research [16]. While many UAV-based environmental projects center on
terrestrial analyses (e.g., [17]), aquatic research has become a recent frontier in UAV studies
(e.g., [18]). As hydrological regimes continue to shift with climate change [19], UAVs will
prove to be critical tools in the monitoring and management of freshwater and marine
ecosystems around the world.

Wetland ecosystems present a particularly important and interesting case for UAV
applications. Globally threatened and disappearing at alarming rates, wetlands provide
critical ecosystem services such as hydrological regulation, sequestration of carbon and
mitigation of sea level rise, and support of biodiversity and critical habitats at land-water
interfaces [20–22]. Protecting and amplifying these services via restoration, conservation
and management measures often requires studying and monitoring wetlands at a land-
scape scale; however, the scope of wetland field surveys is frequently limited by difficult
access, hazardous field conditions and the risk of disturbing sensitive plant and animal
species [23–25]. These challenges are amplified in diverse and heterogeneous wetlands
spanning complex topographic and hydrological gradients, which may require intensive
surveys with large numbers of sampling locations [26–29].

UAVs are uniquely positioned to cost-effectively overcome these challenges at local ob-
servation scales via spatially comprehensive coverage, customizable flight schedules, and
diverse sensor instruments for specific applications [18,30–33]. The high spatial resolution
of UAV-derived imagery makes them an especially valuable surrogate for field assessments
by enabling visual recognition of landscape elements and evaluation of multiple indicators
of wetland habitat and ecological status (e.g., [7,34–36]). At the same time, some essen-
tial aspects of UAV workflows pertaining to in situ infrastructure—e.g., positioning of
launching and landing sites, installation of georeferencing markers, among others—may be
challenged by wetland landscape properties and accessibility similarly to ground surveys.
These considerations may affect the scope of research questions and application goals that
can be supported by UAV technology in a given wetland context. Understanding these
opportunities and constraints is thus highly important for guiding decisions about UAV
use, selecting the appropriate instruments and optimizing their application workflows to
maximize their informative value, efficiency, and safety.

In response to these needs, the overarching goal of this review is to assess current
scope and emerging directions in UAV applications in wetlands with particular empha-
sis on research applications relevant to ecosystem management and monitoring. Other
researchers have explored similar topics involving the use of UAVs in aquatic ecology, wet-
land identification, and hydrologic modeling [2,30,37]. Vélez-Nicolás et al. [38] conducted
a literature review on UAV applications in hydrology and selected 122 research papers
for analysis, while Jeziorska [37] explored UAV sensors and cameras for a broad array of
applications, and coupled this with a focus on 20 highlighted research papers pertaining
to wetland and hydrological modeling. Mahdianpari et al. [30] examined wetland classi-
fication studies from 1980–2019 across North America using a variety of remote sensing
techniques, and found only four UAV-based studies, all of which took place in Florida. Our
study both complements and expands on these findings by reviewing research in manage-
ment categories and detailing methods specific to wetland mapping, modeling, change
detection, and new methods. We also provide insight on environmental management ap-
plications, future research opportunities, and data replicability. We focus on the following
specific questions: 1) What the current state of UAV applications in wetlands is and what
types of management goals and needs they respond to; 2) What emerging opportunities in
approach, technology, and data are evident and what frontiers these opportunities open
for wetland science, restoration, conservation and management; and 3) What barriers and
wetland-specific constraints limit the scope of UAV use and what considerations and future
research could strengthen the ability of these tools to support wetland monitoring and
management in the face of field challenges.
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2. Scoping Literature Review
2.1. Literature Selection

Our scoping synthesis focused on the peer reviewed studies published before 6 March
2021. We performed a literature search on Thomson Reuters Web of Science and ProQuest
databases using topic keyword combinations such as ("unmanned aerial" or "uninhabited
aerial" or “unoccupied aerial” or UAV* or UAS or drone*) AND (wetland* or marsh* or
swamp or estuary or estuarine or coastal or riparian or floodplain* or bog) AND (restoration
or conservation or management) and included 17 additional papers identified via a Google
Scholar search and other literature. After removing duplicates among the search engines,
we screened paper abstracts, titles, and keywords to include research that represented case
studies involving UAV applications in wetland settings, considering both natural wetland
types [30,39] and man-made wetlands. At this stage, we excluded review, opinion-style,
and other papers that did not present UAV applications as case studies, leading to a pool
of 155 candidate papers (Figure 1). However, we retained the papers in which the abstract,
title and/or keywords did not provide sufficient information about case study specifics
and reviewed those via full text assessment.

Figure 1. Structure and workflow of the scoping literature review, following the PRISMA Group
recommendations (Liberati et al., 2009, doi:10.1371/journal.pmed1000097).

Finally, we performed a full-text screening of the remaining papers and further ex-
cluded studies in which UAVs were mentioned but not used, as well as one study that used
UAVs to support other remote sensing data analyses without providing any specific detail
on the UAV instrument, its operation, or data processing. We also excluded papers in which
the studied landscapes potentially included wetlands by description, but the UAV-related
analyses and information extraction did not cover wetlands (e.g., studies of non-wetland
coastal geomorphology). Finally, we reviewed instances in which multiple papers were
published by the same leading author or team based on the same UAV data acquisitions.
Such papers were treated as one broader study in our reviewed pool, unless they followed
different research objectives and accordingly applied different methodologies of data pro-
cessing or extracted different types of information from the data. This led us to select a final
pool of 122 papers (Figure 1). From these selected studies, we extracted information about
wetland type, study location, targets of UAV surveys, as well as information about UAV
platform and sensor instruments, flight logistics, and data processing, when applicable
or available.
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2.2. Geographic and Technical Characteristics of the Reviewed UAV Applications

Of the 122 studies we analyzed, most were published in riparian environments using
RGB imagery on quadcopter UAVs. The 122 studies we reviewed came from six continents
and focused on a wide range of wetland environments (Figure 2). The annual number
of publications has increased over the main part of the study period (January 2010 to
December 2020). The majority of studies took place in riverine and floodplain (n = 36),
coastal salt and brackish marsh (n = 33), mangrove (n = 15), and peatland (bogs and fens)
(n = 15) ecosystems in the United States (n = 29), China (n = 15), Australia (n = 8), Germany
(n = 6), Canada (n = 6), and Italy (n = 5, respectively). There was a clear dominance of RGB
sensors used alone or with other sensors (n = 103), followed by multispectral sensors used
alone or in combination with other sensors (n = 27), and most studies used quadcopters
(n = 56), followed by fixed-wing vehicles (n = 34). Study areas, which were derived from
the study area map when not stated directly in the text, varied between 0.2 hectares to
44,447 ha, with 40 ha as the median. Flights were conducted at altitudes between 5 and
800 m, with 100 m above ground level as both the median and most commonly flown
altitude. Ground sampling distance (GSD) varied between 0.55 cm and 80 cm; however,
several studies aggregated UAV data to pixel sizes larger than GSD, often to match other
coarser-resolution datasets used in their analyses.

Figure 2. Summary of reviewed studies: (a) map of publications; (b) publication year, (c) flying
height and ground sampling distance (GSD), (d) survey type, (e) type of UAV, and (f) UAV sensor.

RGB sensors were the most commonly used sensors throughout the reviewed studies
(Figure 2f), either alone or in combination with another sensor (n = 103). These sensors
are preferable because they are inexpensive, typically provided as the native camera on
a UAV, and RGB orthophotographs were used in numerous vegetation mapping cases
(e.g., [40–45]). Multispectral sensors were also prevalent in wetland studies (n = 27), as
they are useful in mapping shallow environments (down to about 1 meter underwater) [46]
and for vegetation health assessments [27,47,48]. Only six cases used thermal data, six
used LiDAR, and four used hyperspectral sensors, although this will likely change as these
sensors become smaller and less expensive. Among other instruments, synthetic aperture
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radar (SAR) is common in remote sensing of wetlands involving satellite and aircraft
data [49], particularly for flood mapping and in regions with high cloud density [50,51].
However, SAR was not as common within wetland UAV studies (n = 2) as it is expensive, is
more complex to process than optical imagery, and does not have as high spatial resolution
as other sensors such as RGB, multispectral, or LiDAR data [52].

One of the most common methods used throughout the reviewed papers is Structure
from Motion (SfM) using RGB imagery. This photogrammetric technique can be employed
to estimate the volume or height of vegetation in the study area [29,48,53–58]. SfM is similar
to LiDAR in that it generates point clouds for volumetric estimations, although sensors are
cheaper and lighter than current LiDAR counterparts [59]. However, as LiDAR is an active
technology with crown-penetrating capability, the resulting point clouds are denser and
provide more volumetric structure than do those from SfM [60]. A potential solution to this
tradeoff is combining LiDAR data with SfM data [61]. Combined LiDAR and SfM methods
can be used not only in vegetation inventory studies, as demonstrated in this review, but
also in surface water, flooding detection analysis [38], and morphological features [35].

Several flight planning apps and processing software packages were used throughout
the reviewed studies. These include mission planning apps such as Pix4DCapture [62,63],
Map Pilot App [64,65], Litchi [58,66], UgCS [11], and Autopilot for DJI [67]. Most re-
searchers used AgiSoft PhotoScan processing software for SfM and orthomosaic stitch-
ing [11,25,61,65,68], as well as Pix4DMapper, ArcGIS, QGIS, eCognition, R, Python, MAT-
LAB, Lastools, and LiDAR360. The most common data products that were derived from
these apps and software packages were orthomosaics (n = 105), which can serve multiple
purposes and users and can then be post-processed through a variety of methods including
manual digitization, simple classification, and machine learning algorithms. Generally,
software falls into two categories: desktop and cloud-based options. Desktop tools pro-
vide more options and customizability at the expense of powerful computing hardware.
Cloud-based options remain more limited, but besides computing power, they offer unique
advantages in terms of ease of file sharing and collaboration, and easier file storage and
data archiving [8].

Image classification techniques often involved using Esri or AgiSoft software, with
occasional classifications made in Python [56], Google Earth Engine [36]), eCognition [10,
14,24,27,29,42,63,69–72], and ENVI [13,14,73] software. Vegetation classification often used
Random Forest algorithms [23,27,55,69,74–76], and there was a significant cluster of studies
using object-based image analysis (OBIA) [23,24,29,69,70,77,78]. A recent study used deep
learning algorithms such as convolutional neural network architectures to classify coastal
wetland land cover [79]. Other common data products relevant to the scope of this paper
involved derived outputs from SfM: digital terrain models (DTMs), digital surface models
(DSMs), canopy height models (CHMs), and aboveground biomass of vegetation (AGB) (in
n = 72 studies).

3. Wetland Management Applications and Goals
3.1. Broad Management Goals in Wetland UAV Applications

After selecting 122 studies for review, we further categorized the papers by their
primary project goal (Figure 3, Table 1) and application of UAV technology to better un-
derstand the choice of UAV instruments, survey logistics, and methods of data analysis.
Specifically, we differentiated baseline inventories of vegetation from studies focusing
on invasive plant species and UAV-derived indicators of wetland ecological status and
health that could focus on cover types beyond vegetation (Table 1A). We also distinguished
studies of restoration and management outcomes because specific goals of such interven-
tions could affect both the choice of UAV workflows and the information extracted from
their data. Wildlife habitat and population inventories were also treated as a separate
group because landscape targets assessed in such applications (e.g., nesting sites, animal
individuals) often differed from land cover or floristic targets. As another form of inven-
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tory, we also distinguished studies focusing on abiotic factors such as hydrological or
geomorphological characteristics.

Figure 3. Matrix showing project goal and method used, shaded by the number of references
reviewed; pie charts show sensor types used for each goal and method category (references for the
matrix are provided in Table 1 below).

Another group included studies producing UAV surveying and/or image analysis
methods for wider use, without clearly attributing such data or methods to any of the
other goal types and in some cases using their study site as a case study rather than the
underlying reason for the UAV application. Finally, we also distinguished the studies using
UAV data as a reference for broader-scale analyses with satellite or airborne imagery.
Although UAVs were typically not the focal tool in such analyses, their applications were
often described in detail as a case for cost-effective source of training and validation datasets
for other remote sensing products.

Given that many of the papers in our pool included assessment of wetland land
cover, vegetation, and geomorphology (e.g., terrain) in some form, a degree of overlap
among the categories in Table 1A was expected. In cases where the paper fit in more than
one category, we assigned it a lead category and addressed the overlap in the text. To
understand goal-specific analyses in more detail, we further subdivided the studies for
each goal by their method: (1) mapping, focusing predominantly on plant delineation,
species identification, or habitat classification from UAV imagery; (2) modeling, i.e., studies
predicting environmental or biophysical wetland properties (e.g., vegetation biomass)
based on UAV data and empirical measurements (typically from temporally matching
field surveys); (3) change analysis over time, and (4) novel methods, which included
studies developing UAV survey protocols and ecosystem monitoring workflows without
an explicit goal of mapping, modeling, or change analysis.
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Table 1. Distribution of reviewed studies by the primary goal of wetland unoccupied aerial vehicle (UAV) application and
primary method category.

Primary Goal of the
UAV Application

Primary Method in the Application

Mapping Vegetation
and Land Cover

Modeling Biophysical
Parameters of
Ecosystem or

Vegetation

Mapping Change
Over Time

Development of
Novel Methods

Vegetation inventories [24,29,40,41,61,69,70,73,
77,80–85]

[23,33,53,54,62,67,86,
87] [88–93] [5,14,15,71,79,94,95]

Wildlife habitat and
population
inventories

[96–99] [36] [100] [63,101–104]

Wetland ecological
status and health

indicators
[27,34,42,47,48,64,105] [35,106,107] [108–111] [7]

Tracking biological
invasions [25,68,74,112–115] [116] - [13,55]

Restoration and
management

outcomes
[10,11,56,57,117–119] [120,121] [8,9,43,122] [44,123]

Abiotic surveys [32,45,58,65,124–127] [28,128] [4,129,130] [66,131]
Data and methods for

wider use [76,132] [133–135] [78] [6,136,137]

Ground reference [72,75,138–142] [143] [144–146] -

The overall distribution of studies among project goals and methods shows a strong
prevalence of vegetation inventory applications, most of which focused on mapping
(Figure 3). Similarly, mapping was the leading type of analysis in abiotic inventories,
restoration, and management assessments, while studies of wetland ecological health were
the next three most prevalent goals (Figure 3). Interestingly, despite the obvious appeal of
UAVs for monitoring of wetland change analysis, such applications were relatively few,
accounting for less than one-third of studies for any of the major goals. Nevertheless, many
assessments of single-date imagery acknowledged the importance of change detection in
their discussion sections, commenting on the utility of monitoring over time. Modeling of
vegetation or ecosystem parameters from UAV data was also less common than mapping;
however, our pool included examples of modeling studies for every major goal except
abiotic factor inventories (Figure 3). A similar number of studies focused on UAV surveying
workflows and logistics, which were present in almost all goals except the use of UAVs as
reference data. Specific applications focusing on these project goals and analysis types are
discussed in subsequent Sections 3.2–3.9.

3.2. Vegetation Inventories

Not surprisingly, vegetation mapping dominated the reviewed literature. Nearly one
third of the papers reviewed (n = 36) focused on the use of UAVs for wetland mapping,
modeling, change detection, and novel method development. These inventory studies used
the largest variety of sensors: RGB, Multispectral, Hyperspectral, LiDAR, and combinations
of these (Figure 3). Thirteen papers focused on case studies mapping wetlands from coarse
to fine scales. Rupasinghe et al. [82] and Castellanos-Galindo et al. [80] each highlighted
the use of green vegetation indices (e.g., Visible Atmospherically Resistant Index (VARI)
and Green Leaf Index) developed from RGB imagery along with DSM to classify general
shoreline land cover and wetland habitat. Two early examples of UAVs for wetland
mapping [15,61] proved that the spectral and spatial resolution provided by an RGB
orthophoto was sufficient to identify key wetland vegetation features. Zweig et al. [40] were
able to use a more automated approach to classify freshwater wetland community types in
the Florida Everglades using an RGB orthophoto, and Morgan et al. [41] reported a similar
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approach mapping riparian wetland community types. Other case studies incorporated
DSM information in classification. For instance, Palace et al. [81] used artificial neural
networks (ANN) to classify peatland vegetative cover types in Sweden, while Corti Menses
et al. [83] used a novel RGB vegetation index (i.e., excess green and excess red) and the
point geometry from DSM to classify the density, vitality, and shape of aquatic reed beds
in a lake in southern Germany. One paper [85] incorporated thermal bands with RGB for
mapping riparian vegetation in the Yongding River Basin in China.

Five papers focused on the use of OBIA to capture multi-scale attributes of wetland
mosaics. OBIA is a frequently used set of techniques to extract individual features from
high spatial resolution imagery [147]. The method uses spatial and spectral information
to segment an image into semantically and ecologically meaningful multi-scale objects,
which are then classified based on numerous decision rules. Because wetlands can be very
spatially heterogeneous, often displaying multi-scale patterns of vegetation [148,149], the
OBIA framework can be very helpful [150]. Four papers embraced an OBIA workflow to
map wetland features. For example, the complex vegetation mosaic found in peatlands
and heathlands were mapped using OBIA techniques applied to RGB orthomosaics by
Bertacchi et al. [69] and Díaz-Varella et al. [70], respectively. Shang et al. [77] used an OBIA
method to classify coastal wetland community types in China. Durgan et al. [29] and
Broussard et al. [24] included the DSM product in their OBIA classification of floodplain
and coastal marsh vegetation, respectively. Both found the OBIA method improved
classification accuracy, and each report accuracies up to 85%.

Because wetland vegetation exhibit high rates of net primary productivity [151,152],
and wetland aboveground biomass is an important indicator of carbon storage, productiv-
ity, and health, many papers reviewed and evaluated the use of UAVs for AGB mapping.
Several papers reviewed focused on UAV data in estimating aboveground biomass and
linking spatial AGB estimates to models that helped to scale field data to larger land-
scapes. Two studies focused on the use of SfM from RGB data [53,87] to estimate biomass.
Others linked targeted UAV data with satellite imagery to map biomass, including com-
bining NDVI from multispectral UAV imagery and Landsat imagery [33], UAV-LiDAR
and Sentinel-2 imagery [86], and RGB UAV imagery with Sentinel-1 and Sentinel-2 im-
agery [62]. Two studies [54,67] used SfM with RGB imagery to capture detailed models
of riparian vegetation in order to reconstruct physical models of structure and shading
properties, while another riverine study [23] used RGB and multispectral orthophotos
with an OBIA approach. They first mapped spectrally similar riparian objects and then
applied in situ carbon stocks estimations to the objects to estimate the entire riparian forest
carbon reservoir.

Monitoring vegetation dynamics is critical for management, and six papers described
analysis of multi-date UAV missions. Two studies mapped vegetation change as a re-
sponse to an external stressor [88,92] and four mapped seasonal changes at the community
level [89–91] or at the species level [93]. Vegetation change was revealed through spectral
indices [92,93], via DSMs derived from multispectral cameras [89–91], or LiDAR [88].

The use of UAVs in wetland science is growing, as are novel methods for analyz-
ing data. Several papers discussed new uses of sensors common in remote sensing
but less tested with UAVs, such as hyperspectral [94] or LiDAR [95]; or new sensor
combinations [5,71]. These cases suggested that data other than RGB imagery can be
powerful for wetland vegetation mapping. For example, Zhu et al. [71] showed how
the combination of SAR, optical (from the Geofeng-2 satellite (GF-2)) and a DSM from a
fixed-wing UAV could be used to map mangrove biomass in a plantation in China. Pin-
ton et al. [5] developed a new method for correcting the impact of slope on vegetation
characteristics using UAV-borne LiDAR instrumentation. Other papers discussed the use
of Machine Learning algorithms to characterize vegetation. Among those, Cao et al. [14]
found support vector machines (SVMs) to be the best classifier of hyperspectral imagery
of mangrove species; Li et al. [15] transformed hyperspectral, RGB, and DSM data prior
to classification of 13 mangrove species with SVM, and Pashaei et al. [79] evaluated a
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range of convolutional neural network (CNN) architectures to map coastal saltmarsh with
RGB imagery. Collectively, these novel applications suggest that the success of vegetation
inventories with UAVs can be greatly boosted by joint use of richer datasets and more
sophisticated algorithms. Finally, such analyses are becoming increasingly feasible and
accessible to a wider range of users thanks to novel open-source computing tools, such
as Weka software used in [14], free Amazon Web Services cloud computing in [79], and
CloudCompare software in [5].

3.3. Wildlife Habitat and Population Inventories

Spatially comprehensive and customizable UAV observations can tremendously sup-
port monitoring of wildlife populations and habitats, while greatly reducing the scope
and duration of human presence compared to direct field surveys. This capacity becomes
invaluable in wetlands with massive field access limitations or applications with large
numbers of animal individuals or nesting sites, where field surveys can be severely compro-
mised by physical view obstructions and limited vantage points [36,63,101]. At the same
time, the success of UAV-based wildlife applications also heavily rely on the detectability of
such targets from the aerial view, which may increase with larger size and conspicuousness
of individual species or their habitat features [63,101].

Most wildlife-related wetland UAV studies in our pool have focused on birds (seven
out of ten papers) with two others considered mammals [100,102] and crustaceans (crab)
in relation to illegal trapping [97]. One study assessed a broader suite of coastal habitats
with salt marshes and mudflats among those [104]. Among less directly habitat-focused
studies, one paper from the wetland health category focused on a rare wetland plant species
indicator of susceptible deer activity in a wetland with increasing deer population [108],
while another application discussed an abiotic transformation of the landscape induced
by American beaver (Castor canadensis) [127]. Most frequently, such analyses targeted:
1) animal populations or colonies [36,63,101,103]; 2) habitat components [99–101]; and 3)
evidence of wildlife activity on the landscape [96,100,108,127]. The majority of these UAV
applications used RGB cameras or a combination of RGB and thermal sensors (Figure 3).

Inventories of bird colonies are especially well facilitated by UAVs when targeting
larger waterbird species or their nests located on top of plant canopies [36,101,103], both
through human [101] and automated machine-learning image recognition [36,63]. Wildlife
detection potential can be substantially amplified by the use of thermal cameras that
enhance identification of animals based on the contrast between their body temperatures
and environment [102]. In avian studies, unique thermal properties of nesting material can
also help identify nest features from thermal data even when the birds are not present [101].
A “dual-camera” approach combining RGB with thermal sensing is thus highly appealing
to animal inventorying applications [101].

Importantly, by their nature, UAV observations of wildlife can often be a form of
disturbance and, as such, require a particular level of procedural control and elevated
degree of supervision during flights. This issue was manifested in bird inventories as an
important tradeoff between enhanced spatial detail and increased disturbance to nesting
colonies with lower flight altitudes [101,103]. While assessing and avoiding the degree of
animal disturbance during UAV observations is a recommended practice [63,101], estab-
lishing a specific relationship between altitude and disturbance may not always be feasible.
Instead, other proxies can be used such as the number of birds leaving the nests during the
survey [101].

UAV-induced disturbance becomes less concerning in studies focusing on detecting
habitat elements [99,104] or impacts of wildlife activity on wetland landscapes [96,108],
where flights can be conducted outside of the primary breeding and nesting seasons.
Specific uses of UAV data in such habitat-oriented assessments are versatile, including both
visual assessments of recognizable features, such as beaver dams [100] and classifications
of UAV imagery into habitat features of specific relevance to species, such as tussocks
in [99], or mudflats, oyster reefs, and salt marshes in [104]. Notably, modifications of the
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landscape by wildlife can be seen both as an indicators of conservation success, e.g., when
signifying the outcome of reintroduction [100], and as a disturbance and ecosystem change
drivers, e.g., in cases of grazing and trampling [96,108]. Given the indirect nature of such
evidence, UAV surveys should ideally be accompanied or validated with other assessments,
such as in situ camera traps, to provide local nuances on animal movement and habitat
use for more robust and comprehensive conclusions about wildlife population status and
activity [108].

3.4. Wetland Ecological Status and Health Indicators

Wetland monitoring at the whole-site and regional scale often aims to make diagnostic
assessments of ecological status and health and, ideally, to detect early warning signals of
degradation, decline, or disturbance that may lead to irreversible long-term disruptions
such as losses of water quality, critical habitat, or similar issues [34,47,138,144]. Emerging
applications of UAVs are extremely promising for informing cost-effective yet spatially
comprehensive indicators of wetland health at the landscape scale and support long-term
monitoring needs. Our pool of studies in this category included seven mapping, three
modeling, three change analysis, and one novel method application that either targeted a
particular aspect of wetland ecological health such as water quality (e.g., [105]) and vegeta-
tion indicators (e.g., [42,108,111]) or assessed the overall ecological status using different
indicators (e.g., [7,34]). These studies employed RGB, Multispectral, Hyperspectral, and
SAR sensors, as well as combinations of RGB and Multispectral and RGB and Thermal sen-
sors (Figure 3). Multi-sensor combinations especially benefit holistic assessments targeting
multiple health indicators by helping to strategically optimize surveying workload between
less demanding and easily replicable tasks (such as visual recognition from passive RGB
imagery) and more intensive data processing endeavors (such as LiDAR-derived modeling
of geomorphology and vegetation structure) [7,34,35].

A common, notable characteristic among these studies was the focus on disturbance
and stress factors leaving a sizable fingerprint on wetland ecosystems that can be de-
tected with the help of UAVs more comprehensively and cost-effectively than with field
surveys [34,111]. Certain assessments are almost uniquely made possible by the customiz-
able aspects of UAV surveying, such as monitoring wetland body volumes and water
budgets based on the 3D information enabled by image overlap [107]. At the same time,
a relatively novel history of such applications clearly shows the need for comparative
assessments, equipment use trials, and field verifications to optimize workflows for a
given set of objectives. For instance, Cândido et al. [105] tested multiple spectral indices
of water quality derived from RGB information, which can be computed from a wide
array of camera sensors. A comprehensive coastal ecosystem assessment in [34] used
different instrument types and altitudes for different indicators. For example, they used
RGB cameras at lower altitudes for monitoring pollution, littering, and shoreline position,
and employed a thermal sensor at higher altitudes to detect the structure of wetlands and
signals of vegetation decay. Vegetation-based indicators play an especially prominent role
in such assessments, including the presence of characteristic [27,35,42,48,106] or special
status [64,108] native plant species or signals of vegetation mortality and stress [27,34,42].
Among abiotic indicators, several geomorphological and hydrological characteristics can
be informed by UAV data, including shoreline microtopography and slope gradients, water
quality, surface roughness, and evidence of anthropogenic impacts [7,34,35,47,107].

Interestingly, only a small fraction of such studies focused on wetland change using
UAV data from more than one time frame [108–111]. Two studies focusing on coastal wet-
land change and signals of marsh dieback in Southeastern USA [109,110] performed change
analysis using UAVSAR data provided and managed by the U.S. National Aeronautics and
Space Administration (NASA). Another change study in this category [108] tracked the
spatial distribution of an endangered native plant species in a wetland with expanding
deer population and increasing vegetation disturbance. Finally, the study of a characteristic
disturbance-sensitive wet floodplain plant species highlighted the importance of inter-
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annual fluctuations in patch dynamics in response to various landscape stressors even
in sustainable populations [111]. Together, these studies highlight an important twofold
value of multi-temporal UAV information: 1) the ability to more accurately assess site-scale
changes in species coverage than with field surveys, particularly for rare species that may
be missed by discrete plots, and 2) the capacity to cover the time span commensurate with
the scale of the processes and detectable impact, which is critical for unveiling mechanistic
drivers of change.

3.5. Tracking Biological Invasions

Invasive plants are some of the most widespread biological threats to wetland environ-
ments, causing rapid ecological and economic damage throughout these biomes [13,25,116].
In our review, there were nine studies involving invasive plant identification, consisting
of six mapping, one modeling, and two novel method papers (Figure 3). Issues caused
by invasive species involve reduced habitat for native populations [74,112,113], modified
nutrient cycling [113], and negative impacts on livestock [55,116]. Although some inva-
sive aquatic species have beneficial traits, such as increased carbon capture and food for
fish [55], aquatic managers typically aim to remove these species from the environment.
Management goals pertaining to invasive species largely involve plant identification and
remediation, and UAVs allow for on-the-ground immediate assessment and response.
Specific objectives for these studies include plant identification [55,68,74,112], biomass
and plant height estimates [116], and herbicide application assessments [116]. Invasive
plants that are often targeted for removal include species such as wild rice (Zizania latifo-
lia) [116], hogweed (Heracleum mantegazzianum), Himalayan balsam (Impatiens glandulifera),
Japanese knotweed (Fallopia japonica and F. sachalinensis) [25], sea couch grass (Elymus
athericus) [55], blueberry hybrids (Vaccinium corymbosum x angustifolium) [114], saltmarsh
cordgrass (Spartina alterniflora) [74], water hyacinth (Eichornia crassipes), water primrose
(Ludwigia spp.) [13], glossy buckthorn (Frangula alnus) [115], and common reed (Phragmites
sp.) [68,112,115], which is one of the most “problematic invasive species in wetlands in
North America” [113].

Aerial imagery is a useful tool in the management of invasives, and aerial photography
has been employed for this purpose since the beginning of the twentieth century [153].
UAVs have expanded the spatial and temporal capabilities of vegetation mapping, and
this increased resolution allows for more fine-scale detection of individual species [55].
Spectral indices such as the normalized difference vegetation index (NDVI) [55,112] and
the normalized difference water index (NDWI) [55] are common for invasive species
detection, while texture-based analysis [68], deep learning [114], and object-based image
analysis (OBIA) are successful methods used for invasive species classification [55,74].
As many of the UAV-based invasive species studies, we reviewed used RGB (n = 7) and
multispectral (n = 3) imagery, orthophotos [25,74,112], and digital surface models [55,116]
were common data products. To overcome spectral limitations of such data, some studies
developed sophisticated mapping approaches using Machine Learning algorithms; for
example, Cohen and Lewis [115] proposed a monitoring system for two common invasive
plants in the Great Lakes coastal ecosystems with the CNN-based software for automated
recognition of these species. A more recent study demonstrates that imaging spectroscopy
through aerial hyperspectral sensors can increase vegetation classification accuracy [13].
While mapping invasive plants is relatively easy to learn and produces sharable outputs
with managers and stakeholders [116], limitations of this method include difficulties
identifying submerged or emergent aquatic plants due to visibility issues from turbid water
and solar reflection on the water’s surface [154]. With reduced sensor costs and increased
data storage capacity, hyperspectral sensors on UAVs will pave the way for more accurate
identification of invasive species [13].
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3.6. Restoration and Management Outcomes

Restoration projects provide ecosystem services such as habitat for aquatic flora and
fauna, improved water quality and quantity [120], and increased carbon storage [56]. In our
review, we found fifteen papers that focused on restoration goals, involving seven mapping,
two modeling, four change over time, and two novel method studies (Figure 3). Although
restoration monitoring is a vital component of ecological management, it is rarely priori-
tized due to time and personnel constraints associated with ground surveys, lags between
project implementation and data analysis, and the need for high-resolution data [26,120].
UAVs are tools that enable restoration assessment at the whole-site levels and allow for
cost-effective change analysis of restored environments [8,9,121,122] due to their flexibil-
ity in flight times and heights and lack of disturbance to sensitive restoration areas [56].
Furthermore, repeat aerial surveys facilitate adaptive management techniques [118] of iter-
atively examining and modifying projects, and this continual decision-making capability
helps ensure long-term success of restoration projects.

UAV-based restoration monitoring involves a variety of objectives, including biomass
estimates [120], hydrological mapping [8,9,11,123], morphological evaluations [43,57], and clas-
sification of plant communities in peatlands [10,56,119,122] and coastal regions [44,117,118,121].
While many researchers leverage RGB aerial imagery for restoration monitoring [8,9,120,122,123],
multispectral imagery, and specifically the near-infrared wavelength, which can detect
species and topography in shallow wetland environments [155]. This is particularly use-
ful in invasive species identification [121] and peatland biodiversity assessments [56] at
restoration sites. Additionally, thermal aerial imagery can be used to locate groundwater
discharge in restored peatlands, greatly reducing time spent conducting ground-based
seep detection studies [11]. Vertical takeoff and landing in constricted or topographically-
complex areas generates popularity of quadcopter UAV usage for small restoration study
regions [8–11,120,122], while fixed-wing UAVs are preferred when mapping larger restora-
tion projects [56,118,121,123]. UAVs prove to be efficient tools to track human-induced
ecological modifications [9,11,44,118,122,123], and cheaper and lighter multispectral sen-
sors for quadcopter, and fixed-wing UAVs will help advance future restoration assessments
and analysis.

3.7. Abiotic Surveys

The mapping and modeling of abiotic environmental features such as land cover
classes [4,58,65,124,129] and water [32,45,66,127,131] are important for understanding
surface dynamics and how landscapes evolve, which complements the multitude of UAV
wetland vegetation studies by providing information on the structure and habitat of
these species. We reviewed fifteen papers pertaining to abiotic surveys, which was the
second largest number of papers in one category, following the vegetation inventory group
(Figure 3). A common theme in abiotic mapping and change detection is SfM analysis
derived from RGB imagery [4,58,127,129]. In these studies, point clouds are generated to
construct digital surface models that estimate volumetric compositions of the landscape,
similar to LiDAR data [4,58]. This is a useful technique in abiotic UAV research that pertains
to modeling shoreline losses and habitat destruction [4,130], floodplain connectivity [127],
carbon storage estimates [129], and topobathymetry [58,128]. Real-time kinematic (RTK)
GPS can greatly enhance the precision of such studies [4,5,45,58,65,124,131] and ground
control points (GCPs) [4,45,58,65,66,124,129] can generate greater horizontal and vertical
accuracy in landscape modeling and change detection studies. In particular, Correll and
colleagues [28] rigorously employed RTK to measure elevation in a tidal marsh. Their
study reported that raw UAS data “do not” work well for predicting ground-level elevation
of tidal marshes, likely because a DSM is not equivalent to a DEM [28]. Other projects in
the realm of abiotic mapping involve RGB analysis of soil structure and infiltration [131],
delineations of riparian zones [125], and saltmarsh shoreline deposition [126], in addition to
thermal analysis of river to floodplain connectivity [127], river temperature heterogeneity
in fish habitats [45], and peatland groundwater seepage detection [32].
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UAVs are particularly important in abiotic mapping and modeling studies because the
hydrodynamic complexity and tidal fluxes characteristic to many of these environments
can leave little time for ground surveys [58] and sites like blanket bogs are often difficult to
access because they are remote [129]. UAVs are therefore helpful in these studies because
they reduce the cost of ground surveys and in situ sensor deployment [4,66], can access
regions that are difficult to reach [58], and are relatively easy to deploy and use [129]. UAVs
are successful in achieving abiotic management goals of reduced erosion [4,124], flood
monitoring [58], and carbon and peatland conservation [129]. Future abiotic mapping
and modeling techniques will benefit from increased UAV and in situ paired sampling
methods, as demonstrated by Pinton et al. [66] who used dye tracing coupled with RGB
imagery to measure saltmarsh surface velocities and Isokangas et al. [32] who used stable
isotopes paired with RGB, multispectral, and thermal imaging to evaluate peatland water
purifying processes.

3.8. Data and Methods for Wider Use

Applications of UAVs as a source of reference information demonstrate their special
potential to support broader-scale analyses from satellite and other (piloted) aerial im-
agery [72,75,138–146]. Our pool included 12 papers in this category, mostly using RGB
but also RGB + Thermal, RGB + Multi + Thermal, and Thermal instruments (Figure 3).
Most commonly, such applications use UAV images to infer the identity and location of
wetland land cover and vegetation types [72,138–140,142], sometimes up to individual
plant species level [146] to generate training and/or validation samples for landscape-scale
wetland classifications. Assignment of reference categories can range from manual delin-
eation of specific class extents or smaller samples based on their visual recognition from
the ‘raw’ UAV imagery [139,140] to more automated classifications using computer-based
algorithms [72,138]. High spatial detail and recognizability of landscape features from
UAVs increases the analyst’s confidence in selection of such samples compared to, e.g.,
coarser-resolution imagery, while whole-site coverage allows obtaining a much larger
number of samples compared to field surveys given site access constraints [29,139,146]. In
addition to hard classifications, UAV-derived high-resolution maps can also support fuzzy
analyses from coarser-resolution data, such as spectral unmixing of pixels into fractions of
contributing cover types, both as a source of “endmember” examples [138] and as a basis
for validating endmember fractions estimated from satellite imagery [75,138].

Reference information from UAVs can include not only thematic identities of wetland
surface components but also their quantitative properties that can be assessed visually [141,
143] or via statistical summary of the mapped imagery [145]. For example, a study of an
invasive wetland grass [143] relied on visual interpretation of its percent cover from image
portions matching the field survey plots, while a study of mangrove ecosystems [141]
took advantage of high spatial detail in UAVs to identify areas of different tree density to
calibrate the analyses based on satellite data. Similarly, a study focusing on a forested bog
in Czech Republic [135] developed a UAV-based workflow for tree inventories based on the
UAV-derived CHMs. Such applications also highlight important opportunities for regional
up-scaling of ecosystem properties with remote sensing indicators using models derived
from UAV data [145], since the latter can be more accurately matched with fine-scale
ground measurements in both space and time than from satellite image pixels.

Finally, in some applications, UAVs were used to complement other satellite, piloted
aerial, and historical geospatial data sources by helping to characterize landscape qualities,
composition, and status from a unique spatial perspective not possible with these other
sources [144,146]. For instance, a historical analysis of a river floodplain change [144] found
UAV orthoimagery and DEM valuable for measuring terrain geomorphology, vegetation
distribution as well as signatures of human land use to complement the analyses with
historical maps and satellite imagery (Landsat and Sentinel-2). In such applications, UAV
datasets can both fill a gap in historical image series by complementing piloted aerial
photography archives, and elucidate certain landscape characteristics at a great level
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of interpretation fidelity, especially within regions unreachable by field surveys [144].
Notably, the informative richness offered by very high UAV resolution can be significant
even in studies working with already fairly high spatial resolution of 1–4 meters, such as
Pleiades [138], RapidEye, and Worldview satellites [140]; Spot-6 at 1.5 m [141]; or USA
national aerial imagery products [146], in addition to medium-resolution products such as
Landsat and Sentinel-2 [72,75,139].

At the same time, several important technical factors have been mentioned as potential
limitations in these applications, such as mismatches between spectral values of UAV and
satellite products for a given electromagnetic band or index and limitations of recognition at
fine semantic levels [138,139,146]. It may also be difficult to derive automated classifications
of spectrally rich and heterogeneous UAV data for mapping reference classes, particularly
with a limited number of spectral bands, which may lead to manual corrections of classified
maps or even hand digitization of the key land cover types from the raw data [75,146].
Finally, in a number of cases, UAV-derived field information may not be sufficient or may
require additional validation with field surveys and ground-level photographs of sampling
locations [139,146]. Addressing these challenges may be possible by performing flights
at different stages of the plant growing season or hydrological cycle [139,146] to capture
unique phenological aspects of classes. Spectrally limited UAV data may be strategically
applied to workflow steps where they are likely to be most useful, e.g., for a fine-scale
mapping of easily distinguishable classes, to facilitate more detailed classifications within
these categories from other sources [146].

3.9. Ground Reference Applications

A smaller group of studies (n = 8) in our pool applied UAVs towards developing
generalizable methodologies for image processing, information extraction, and/or field
surveying [6,76,78,132–134,136,137] using RGB, RGB and Multispectral, and LiDAR sensors
(Figure 3). Such studies often emphasized methodology-building efforts more than site-
specific ecological questions and discussed the relevance of the proposed analyses and
workflows to wetland management, conservation, or research beyond their specific case
study sites. Four of these applications focused on UAV data processing for mapping and
quantitative assessments of vegetation [76,133,134] and hydrological properties [132], while
four other studies concentrated primarily on UAV surveying workflows [6,136,137], with
one study proposing a full workflow for both surveying and subsequent image processing
for riverine and estuarine landscape change assessment [78].

Overall, despite the small size of this literature pool, the versatility of its topics
highlights the importance of this emerging methodology-developing trend for a wide
array of wetland management and monitoring needs. Furthermore, it is obvious that
some of these needs can be uniquely facilitated by the special nature of UAV data and
surveying protocols. For instance, methodology to generate multi-angular landscape
images from overlapping UAV image tiles showed a strong potential to improve object-
based classification of complex landscapes at land-water ecotones [76] and a powerful
strategy to overcome the limitations of low spectral richness in RGB orthoimagery mosaics.
Among non-vegetation applications, a method to map groundwater table in peatlands
proposed by Rahman et al. [132] relies on UAV-derived orthophotographs to detect surface
water bodies and on photogrammetric point clouds to extract landscape samples of water
elevation, which together enable a continuous interpolation of groundwater levels across a
broader landscape. Similarly, the UAV-borne LiDAR surveying workflow together with
a customized software system developed by Guo et al. [133] holds a strong promise to
alleviate the challenge of characterizing 3D vegetation structure as critical determinant of
habitat and ecosystem function in complex, limited-access sites such as mangrove forests.
Another example of vegetation structure modeling involved prediction of mangrove leaf
area index (LAI) based on different NDVI measures computed from UAV and satellite
data [134]. Notably, in the latter study, UAV indices tended to correlate with field-measured
LAI less strongly than satellite-based ones, except a well-performing “scaled” UAV-based
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form of NDVI which included adjustments for the greenness of pure vegetation and
pure non-vegetated background. Not surprisingly, the role field-collected validation data
such as direct vegetation measurements [133,134] in or groundwater well data [132] was
important in these studies even though it was not always required for the ultimate use of
the developed methods.

In turn, studies prioritizing the development of field survey workflows were often
motivated by the need to generate data and methods serving potentially different users
and management questions [6,78,136,137]. Examples of mentioned ongoing or potential
wetland applications supported by UAV data included monitoring changes in aquatic and
emergent habitats and landscape structure [6,78,137], tracking invasive and native plant
species [137], delineating different types of wetlands for wetland management [137], and
geomorphological assessments [78], involving very practical purposes such as decisions
on wetland reclamation [136]. Not surprisingly, both orthoimagery and SfM play critical
roles in the anticipated data uses and receive close attention in field surveying workflows.
Another notable consideration for UAV surveying workflows discussed by Thamm et al. [6]
involved ground truthing specifically of satellite-based SAR products, which can be difficult
to interpret visually due to the nature of this active remote sensing, but which are critical
in humid, cloudy regions such as their study area in Tanzania.

Versatility of potential data uses from such efforts also raises important considerations
about the optimal timing of data collection, including multi-seasonal acquisitions [6,137],
as well as practical measures to maximize the efficiency of time in the field to optimize the
monitoring routines [6]. The latter issue may also require innovative strategies around UAV
instrumentation: for instance, Kim et al. [136] discussed the advantages of a fixed/rotary
hybrid UAV system to meet multiple challenges of coastal assessment including the large
survey area requiring longer flights, high wind requiring resistance, and the ability to
hover, among other features. Relatedly, development of surveying workflows for universal
wetland management uses needs to pay close attention to positioning error and both hori-
zontal and vertical accuracy [78,136], and understand which levels of error are acceptable
for specific applications [136].

4. Discussion
4.1. Technological Opportunities and Strenghts in Wetland Applications of UAVs

Several important strengths of the expanding UAV technology are evident across the
pool of wetland applications reviewed in this synthesis. First, UAVs provide spatially-
comprehensive coverage that enable researchers and managers to view the wetland as an
entire entity. This large spatial extent differs from field surveys that capture discrete rather
than continuous data at smaller spatial and temporal resolutions, although certain types of
data necessarily must come from ground observations, such as soil samples [117,131]. High
resolution imagery from a UAV enables a high degree of visual recognition, providing an
array of opportunities from basic surveying (e.g., plant cover, vegetation types with distinct
morphological properties, visual texture and color) [55,63,68,81] to mapping, modeling,
and quantifying wetland characteristics. Also, the customizable timing of UAV flights
allows for users to avoid cloud issues, which are prevalent in wetland environments [156],
and track wetland vegetation phenology, which is critical at early stages after disturbances
and restoration. UAV customization permits users to choose their sensor of choice (i.e.,
RGB, multispectral, LiDAR, thermal, hyperspectral) that can be adapted to the study’s
objective, whether it pertains to the morphological changes of a saltmarsh environment or
to the aboveground biomass estimations in a mangrove ecosystem. User-defined flights are
also advantageous in wetland studies because they enable repeat missions (e.g., [92,93]) at
various flying heights (some even over 400 m above ground level) (e.g., [35,71,74]), which
create various corresponding ground sampling distances used to address the research
question at hand. Finally, UAVs are highly beneficial in wetland environments because
they help overcome challenges of site access [157], and provide cost-effective alternatives
to traditional surveying methods that require ample labor and time [53].
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4.2. Field Operations in Wetland Setting

Several important considerations may affect feasibility of flight surveys even when
UAVs of desirable type are available to achieve a given management goal. Regulations on
UAV surveying often affect spatial scope, timing, and feasibility of wetland surveys [25,40],
and may differ among countries as discussed by earlier reviews [37,158,159]. Not surpris-
ingly, previous efforts (e.g., [3,136]) highlight regulations as one necessary improvement to
make UAVs more ubiquitous in science applications. For example, reduced restrictions on
lighter remote-piloted aircraft operations in Australia were mentioned as an important way
to facilitate novel ecological research [53,160]. A study performed in the Czech Republic
cited drone traffic restrictions as a limiting factor in the flight altitude [8]. In the USA,
multiple regulations have been developed for various aspects of field UAV operations,
including field crew size, flying altitudes, proximity to airports, and other considerations
(see, for example, summaries of key regulations by the Federal Aviation Administration
(FAA) in Zweig et al. [40] and Jeziorska [37]). A riparian study in the UK [54] mentioned
UAV flight regulations as a reason for dividing the study area into sections and acquiring
their images separately. In addition to common protocols related to weather, airspace
regulations, and proximity to specific land uses [24,40], wetlands may invoke additional
regulatory constraints due to presence of sensitive species and habitats [101]. For instance,
wildlife inventories may often require permitting for both field surveys of animal popula-
tions and on-site UAV use and may demand that researchers and managers formally assess
and minimize the disturbance during field sessions [63,101,103]. Such restrictions not only
can become direct obstacles to data collection in certain contexts [5,24], but also affect user
perceptions about the adoption of UAVs as a monitoring tool [161].

The dynamic and heterogeneous environmental setting of wetlands creates multiple
challenges for both spatial scope and timing of UAV applications. Site entry issues pro-
hibitive for field surveys may also significantly reduce access for efficient UAV operation
due to lack of suitable landing and launching sites [24,144] and low mobile network cover-
age prohibiting real-time georeferencing [25,27]. A vivid example of these challenges was
noted by [24], where the use of an airboat was necessary to maintain radio communication
when directing the instrument to a landing location due to the lack of suitable sites close
to the target wetland area. Special constraints arise around the establishment and mainte-
nance of ground control points (GCPs), since wetland environments significantly limit the
capacity to make GCPs “permanent” and to keep them static given wind, flooding, and
movement of sediment [35,99,104,116,124,126]. Not surprisingly, studies often relied on a
small number of GCPs (median number of GCPs among reporting studies was ~11 per site)
and develop various temporary solutions to facilitate ground referencing. For example,
Howell et al. [116] used inflatable party balloons for a study of wetland plant biomass;
however, strong winds could cause the balloons to deflate or shift, reducing the precision
of their positioning. Similarly, the discussion of georeferencing in avian colony invento-
ries [101] proposed buoys as reference features to support image mosaicking in submerged
areas near nesting sites. Finally, it may be necessary to avoid site disturbance during GCP
installation and upkeep; for instance, one application [5,66] deployed GCPs on metal poles
by boat during the high tide to both ensure their elevation above the water and reduce
the impact on marsh vegetation. As real-time positioning technologies such as RTK are
becoming more accessible, the labor-intensive task of GCP placement and maintenance
may become less relevant over time (e.g., [7,28,131,144]).

More generally, studies showed a substantial variation in reporting positional accura-
cies and errors both for image mosaicking and for the field georeferencing. Approximately
half of the studies (56 papers) mentioned using GCPs and 49 of them provided some
information on the number of points, and even fewer (~40 studies) made comments about
GCP positional accuracy. Only 55 studies (~46% of the pool) reported some form of survey
and image mosaicking error. Since implications of mosaicking and positioning errors
are likely to substantially vary among management goals (e.g., [28,119,128,133]), the lack
of clear accuracy benchmarks as well as standards for accuracy and error reporting in



Drones 2021, 5, 45 17 of 29

UAV applications presents an important action item for the wetland UAV community in
the future.

The timing of UAV operations may be significantly constrained by weather conditions
and airspace restrictions, which may limit the number of flights in a given field session
and affect data collection consistency across different sites [25,27,104]. Such impacts are
especially strong in coastal tidal wetlands where a targeted phase in the seasonal ecosystem
cycle (e.g., plant biomass) must be monitored at a low tide stage and with the appropriate
field conditions, such as low wind speed for operational safety and high solar elevation for
minimizing shadows [25,28,65]. Difficulties to recover the UAV instrument from a wetland
in the case of malfunction or failure place a special importance on UAV flight time, battery,
data storage capacity, and other factors affecting flight duration and the success of land-
ing [24,144], and underscore the need for efficient use of time and logistical resources [6].
Prioritizing shorter operation times is also critical for reducing UAV disturbance to wetland
wildlife and exposure of human operators to potential field hazards. An added benefit
from this perspective is selecting easily replaceable instruments (i.e., different camera and
sensor types compatible with the same carrier platform) to assess multiple indicators and
meet various application goals concurrently [133].

4.3. Considerations in UAV Data Processing and Management

Several important aspects of UAV data processing can also be challenged by wetland
environments and thus need to be considered early in application workflows. For instance,
three-dimensional spatial accuracy in UAV-derived products is dictated both by the field
operational factors (e.g., positioning system in the instrument, precision of GCPs, and other
reference locations) and data post-processing (e.g., additional geo-rectification to correct
for spatial shifts in image mosaics [119]). Positional inaccuracies may accumulate and
propagate across workflows, eroding the quality and reliability of the final products [162].
Such concerns are especially problematic in studies heavily relying on 3D information,
such as assessments of site elevation change in response to restoration treatments or sea
level rise [28,35,43,57,88,118,130].

Reported georeferencing and positioning challenges make it obvious that spatial
accuracies around ~0.1-1m, which are common, for example, in ground-truthing for satellite
data analyses, become too coarse relative to very small (<0.1m) pixel sizes possible with
modern UAVs. Simultaneously, the dynamic nature of wetland environments inherently
imposes a fundamental degree of positional uncertainty due to wind-induced movement
of vegetation, fluctuations in water extent, and changes in mudflat, sediment, and ground
debris. Effectively, this means that even very high levels of positional accuracy may not
always guarantee the “true” match between wetland surface elements and the spatial
location of a given small pixel. This issue has not been extensively discussed; however, it
raises an important need to better understand what minimum spatial resolution is likely
to realistically represent landscape features in a given wetland setting and what spatial
errors are acceptable in aligning the imagery with field reference locations. This also raises
a question of how much spatial accuracy is really necessary for a given study objective and
what levels of error may lead to similar analysis outcomes without substantially impacting
the quality of inference from UAV data.

Very high spatial detail in UAV imagery can also become a massive challenge for auto-
mated computer-based algorithms in mapping and change detection [25,27,72,75,78]. Small
pixel size amplifies wetland spectral heterogeneity by highlighting local variability in illumi-
nation, shadows, vegetation stress, background flooding, and similar factors. This may de-
crease the ability to successfully distinguish landscape classes [42,139,141], especially from
spectrally limited RGB imagery [75,76,104]. Although multiple techniques to navigate these
challenges have been proposed, such as image texture measures summarizing local het-
erogeneity at the pixel or local moving window scales and OBIA tools [29,55,69,76,78,104],
their use among wetland UAV studies remains somewhat limited and calls for more guid-
ing recommendations. Image texture metrics were used with mixed success in the reviewed
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studies and showed strong sensitivity to spectral artifacts caused by topographic breaks,
orthomosaicking distortions, and similar factors [27,55,68,140,143]. For OBIA, similar to
previous applications of satellite and piloted aerial imagery [150], studies reported chal-
lenges in choosing among different options for segmentation parameters [25,27,78], as well
as disagreements among different classification algorithms [29], sometimes causing the
analysts to resort to fully manual delineation [75]. Such mapping limitations can be aggra-
vated by challenges to accuracy assessment, such as the lack of standardized assessment
protocols [24], variability in accuracy among different seasons [145], and the implications
of human error in field visits for accuracy assessment in UAV images [68].

A notable challenge for wetland management that remains is the limited guidance on
developing efficient long-term monitoring plans. Among the papers that frame their work
as specifically relevant to monitoring, the actual published case study was often limited to
single-date analysis. As a result, there are few insights into potential opportunities and
challenges of change analysis with data from UAVs. Potential opportunities include the
ability to capture fine-scale changes in wetland plant communities at relevant temporal
scales. Relevant challenges are introduced with multi-temporal fine-scale imagery because
imagery can be susceptible to environmental conditions at the time of data acquisition,
requiring radiometric calibration between images or normalization between multi-date
DSMs. Some studies circumvented this need by performing a visual photointerpretation at
different time frames within a signal wetland site (e.g., [108]); however, this can become
a demanding task for larger wetland regions or multiple time frames. However, none of
the papers investigating change mentioned radiometric calibration, and only nine papers
overall discussed radiometric calibration [14,23,29,55,56,62,65,71,91]. Although in single-
date and single-site applications, radiometric calibration can be automatically facilitated by
relevant software packages and mosaicking tools, longer-term and regional applications
would require a systematic inter-calibration for discrete mosaics created for isolated sites
or different image dates [24,138].

Finally, while several papers discussed the need to perform reproducible scientific
studies and acknowledged the need for data sharing, only nine studies had some mention
of data accessibility (i.e., data and/or scripts), and only two [36,139] explicitly provided
links to an accessible repository (e.g., Github, ArcGIS Online). A few others mentioned
that data were available upon request, or were available at a third-party collection. For
example, two papers by Ramsey et al. [109,110] used NASA’s UAVSAR data, which are
collected, processed, and hosted by NASA for wider use by other parties.

4.4. Perspectives for UAV Use in Long-Term Wetland Monitoring

The collective experience offered by the reviewed applications suggests several in-
sights for optimizing the use of UAV workflows for wetland management needs. Overall,
the UAVs hold a strong appeal for replacing human observers on the ground [9,31,57]
and fill an important information gap between limited-scope field surveys and non-
customizable satellite observations [53,138]. At the same time, it is obvious that a full
replacement of human potential is not yet possible, nor is it necessarily desirable. Many
wetland applications require some amount of field data collection [138,140], such as mea-
surements of vegetation biomass, height, and other parameters used in modeling efforts
(e.g., [62,87,116,133,134]), as well as characteristics of soil and water chemical properties
that cannot be observed from the above-ground aerial platforms [105,117,131]. Second,
certain targets, such as rare, endangered or problematic plant species, may be too fine-scale
in their spatial distribution even for small UAV pixels and thus require field verifica-
tion [35,55,108].

These issues highlight an important need to better understand the sufficiency of
UAV-enabled opportunities for a given management goal and strategically apply this un-
derstanding to maximize both cost-effectiveness and informative value of data acquisitions.
Given common budget limitations, the tradeoff between growing sophistication of rapidly
advancing UAV instruments and high-risk wetland environmental setting may favor robust
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and, ideally, less expensive sensors and workflows. Furthermore, developing or investing
in a long-term monitoring approach using UAVs is complicated by the fact that the tech-
nology is changing rapidly and/or the cost of hardware and software is falling quickly.
Beyond the instrument expenses, however, wetland applications inevitably necessitate
other costs, such as training and labor of personnel, post-flight data processing and man-
agement, travel to and from the sites, field logistics, and GCP management [5,24,29,116],
all of which can be probed for improving workflow efficiency.

On the field operations side, a critical precursor of such efficiency lies in navigating
the tradeoff among spatial coverage and timing of operations and informative content of
the data. For a given camera field of view, reducing flight altitude can increase the flight
time of a study site, but also spatial resolution [34,65,67,69,115,133]. Similarly, expanding
the overlap among images at a given altitude may improve the quality of photogrammetric
products such as DSMs [57,95], but escalate both the time of data collection and post-
processing computational workload [13,65]. For these reasons, efforts pursuing complex,
multi-faceted monitoring indicators may especially benefit from multiple flights and/or
instruments with different specifications [7,34].

Importantly, however, a number of wetland applications might be severely con-
strained by the insufficiently low flight altitudes, limiting the ability to recognize specific
landscape features or perform visual assessments of water coverage and similar indica-
tors [34,43,69,97,106,115]. Among the few studies operating at ≤20m altitudes in our pool,
Bertacchi et al. [69] concluded that the most accurate taxonomic identification of plants
at the species/genus level was possible only with the images taken from 5 m altitude,
compared to 10 and 25 m tested in the same study, especially for smaller species with
more cryptic distribution. Cohen and Lewis [115] found 20 m to be superior compared
to 30 and 60 m for detecting and mapping density of somewhat more conspicuous in-
vasive shrub and reed plant species. Some applications may necessitate extremely low,
near-surface surveying—for example, monitoring of a coastal marsh breach in Pontee
and Serato [43] had to fly UAVs “as near low water as was possible” to observe rapid
changes in water volume, and even this strategy could not fully resolve some of the view
challenges. This evidence suggests that near-surface observations at very low altitudes
could provide extremely useful surrogates for ground-level photographs and some other
data collected by field surveyors [139]. Besides regulatory constraints such as the risk of
wildlife disturbance [101,103], limitations on flying heights were not always clearly stated,
and could stem, for example, from practical considerations related to battery life and
efficient time use [115], or the intent to optimize the total number of photos [100]. In some
contexts, altitude choices were also driven by characteristics of plant cover and observation
goals; for instance, to enable photogrammetric modeling of tree biomass from UAV data,
Navarro et al. [62] used 25 m altitude in a mangrove plantation with trees 0.35–3.4 m in
height to facilitate their crown observations from different view angles. Overall, such
considerations clearly highlight the need to better understand the implications of flying
height limitations for both the data quality and efficiency of post-processing and develop
more specific guidelines for different management goals.

It is also critical to anticipate and minimize the effects of potential field survey short-
comings on data post-processing and information extraction. For example, sharpness and
exposure in visible and thermal camera settings may strongly affect the quality of images
and ease of visual interpretation of wetland targets [34,101,102], which means that failure to
select the appropriate settings can render the ultimate datasets much less usable. Relatedly,
allocation of ground surveying units (e.g., vegetation plots) should anticipate potential
challenges in their co-location or identification from UAV data and, when possible, record
assisting information, such as cost-effective ground photographs [139,146]. Constraints on
GCP installation and management can be alleviated by combining a smaller number of
“formal” control points with additional field checkpoints for validation and quality assess-
ments [8,9,29,48,107,136]. For example, in a coastal assessment for reclamation purposes,
Kim et al. [136] used 426 checkpoints surveyed with the total station. When applicable, it is



Drones 2021, 5, 45 20 of 29

also possible to incorporate reference data and additional control points from non-field
sources, such as high-resolution Google Earth imagery in [11] and distinctive terrain objects
visible in the imagery in [10].

From the data processing perspective, it is important to evaluate the potential im-
plications of uncertainties in spatial resolution and positional accuracy for project goals
in order to decide on the optimal minimum mapping units (MMUs) and the appropriate
strategies in navigating such uncertainties. An MMU choice should ideally balance the
benefits of high spatial resolution with the needs to improve signal-to-noise ratio and avoid
mixed pixels, both of which may increase with greater pixel size and also vary with elec-
tromagnetic aspects of data and instruments [13,109,119]. This means that data analyses,
especially computer-based routines, may not always require the highest “achievable” spa-
tial resolution and may, in fact, benefit from some degree of data aggregation and filtering
to reduce noise [14,96]. Interestingly, several studies used MMUs substantially exceeding
the original ground sampling distance of their UAV data (e.g., [14,35,56,67,75,87]), often
in order to match the coarser scales of other relevant datasets. Rather than simply repre-
senting local spectral variation, texture measures can be strategically used to accentuate
certain forms of heterogeneity most relevant to class differences, including more sophisti-
cated filters that can be more easily computed with modern tools [68]. Importantly, OBIA
can also be approached as a strategy for “smart” pixel aggregation and for overcoming
spectral richness limitations based on texture differences at the object level, as well as
object size, shape, and context (e.g., adjacency to other object types), in addition to spectral
values [27,104,147,148,150,163]. Challenges in selecting OBIA segmentation parameters
in complex wetland surfaces can be alleviated by focusing on smaller “primitive” objects
increasing signal-to-noise ratio that don’t have to capture full extents of landscape enti-
ties [150] and that can be more easily matched with ground-surveyed locations [29,139].
Emerging tools enable more automated selection of segmentation parameters to generate
such primitives (e.g., [164–166]), while the full-sized class patches can be recovered via
their classification and merging [150].

Finally, a broader path towards cost-effectiveness may lie in co-aligning UAV appli-
cations with systematic regional monitoring efforts and creating wider opportunities for
data use beyond individual case studies [6,7,78,137]. Opportunities to reduce operational
and travel expenses may arise, for example, when UAVs are hosted in permanent research
stations and can be operated by long-term personnel, or when flights can be logistically
aligned with other environmental field survey campaigns to help reduce travel cost and
synchronize collection of complementary data.

5. Emerging Trends
5.1. Emerging Technologies

Despite the remaining needs for improving regulations, instrument hardware, and
software and flight controls [3], several emerging trends highlight exciting promises for
wetland applications and for streamlining workflows towards better management support.
Notable advances are evident in the area of sensor and data processing technology devel-
opment, where LiDAR and RGB-based SfM appear to pave the way of the future, especially
if LiDAR sensors become more affordable [167,168]. Hyperspectral sensors present another
important frontier with particular appeal for vegetation inventories and invasive species
monitoring [14,94,165]. Interestingly, hyperspectral wetland studies have not substantially
expanded in the last five years, in contrast to agriculture and forestry applications [16],
although they have been referenced as potential avenues in recent review papers [12].
There is also a growing trend towards multi-sensor workflows, with 22 studies in our pool
using a combination of different instruments or camera types (e.g., RGB + LIDAR, RGB +
Thermal, RGB + Multispectral) (Figure 3). Such opportunities seem to be most applicable to
fixed-wing studies because of their payload capabilities; yet, broadly-focused monitoring
efforts also mix fixed-wing and other platforms for complementary observations [4,7,83,85].
Equally promising are emerging efforts to integrate UAVs into broader monitoring pro-
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grams involving other extensive in situ tools. For example, Isokangas et al. [32] applied
thermal and color infrared UAV imagery together with field stable isotope analysis to
monitor treatment peatlands, while vegetation mapping in the subarctic peatland in [81]
was conducted at a sentinel monitoring site collecting long-term biogeochemical and other
environmental data to understand climate change implications for permafrost and carbon
budgets. On the field logistic sites, advances in RTK technologies also hold promise to
relieve some of the most labor-intensive components of UAV surveying related to GCP
installation and maintenance.

Importantly, these efforts are also accompanied by significant advances in data
processing—such as extraction of multi-angular information from RGB images, signif-
icantly improving discrimination of wetland classes from spectrally limited data [76], data
fusion between satellite and UAV sources [15,71], advances in characterizing complex
geomorphology and vegetation structure based on SfM and UAV LiDAR [7,86,88,95,133].

5.2. Emerging Topics

UAV technological advances are especially timely in light of pressing challenges im-
posed by global environmental changes, which create an unprecedented and urgent need
for streamlining geospatial data, including UAV imagery, into decision making across
different scales. Climate change, for instance, was recognized by multiple studies as a
critical driver of wetland ecosystem dynamics in which UAVs can inform early warning
indicators of changes in marsh elevation [28], drought patterns, and hydrological regimes
(e.g., [41,128,146]). Studies in peatland environments were often motivated by the vulnera-
bility of wetlands to rising temperature and carbon loss due to erosion and/or permafrost
collapse [81,129]. These early efforts towards the leading indicators of wetland change
are also critical for establishing spatially comprehensive, detailed landscape ecological
baselines for tracking fine-scale ecosystem changes [81], and for identifying workflow
barriers to inform future research and technologies [28].

Another important emerging interest is applying UAV data towards scaling ecosystem
characteristics from local to regional extents [33,145] and comparing the predictive per-
formance of UAV-based versus satellite-based ecological indicators [134]. Although such
applications are still relatively few, they are extremely promising for enhancing regional-
scale modeling of ecosystem functions and services targeted by management at the new
levels of robustness enabled by comprehensive UAV-based reference information. For
example, Góraj et al. [145] demonstrated a workflow for novel hydrological mapping from
UAVs that could be aggregated to broader regions for regional water table up-scaling.
Another application in a complex coastal marsh setting by Doughty et al. [33] applied
UAVs to scale vegetation biomass to Landsat satellite product extents. Comparisons of
UAV- and satellite-derived vegetation indicators also show important opportunities to
inform regional upscaling of logistically demanding ecological parameters, such as plant
biomass and canopy structure [53,134]. Local UAV-provided information on 3D structure
and composition of wetland vegetation canopies and microtopographic features can also
help elucidate the uncertainty in satellite-based mapping and modeling in a way that is
not possible with traditional field surveys [62,133].

Finally, highly customizable UAV tools may provide critical insights into various
aspects of ecosystem dynamics and responses to exogenous change drivers (phenology,
changes in transpiration, plant water status, and carbon fluxes) at unprecedentedly detailed
spatial scales and temporal resolutions (e.g., hourly or daily) [169]. These opportunities
provide novel venues for advancing the understanding of wetland biogeochemical budgets
and capacity to promote carbon sequestration in blue carbon restoration projects, where
spatial complexity of wetlands limits the interpretation of point carbon flux measurements
from chambers and eddy covariance flux towers and requires highly detailed site mapping
and change analyses [81,170,171]. Better understanding of ecosystem phenology at high
temporal frequencies is also critical for detecting signals of long-term ecosystem shifts, and
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gradual stressors such as sea level rise [28,104], especially in coastal systems confounding
with tidal effects on spectral reflectance [172].

5.3. Emerging Data Frameworks

Maximizing these novel opportunities requires collective thinking about current
challenges in UAV data distribution in use, particularly, FAIR data (Findable, Accessible,
Interoperable, Reusable) [173]. Data gathered using UAVs, especially with repeat missions,
can become quite large. Managing large volumes of data (i.e., flight photos, products,
metadata, calibration, and ground control points) is a widely acknowledged problem for
which there are no simple off-the-shelf solutions [174]. Local storage is commonly used
among wetland researchers and managers, but makes sharing of individual case studies
difficult. Advances in cloud-based computing and data management are likely to greatly
facilitate such capacities; however, these opportunities have only been rarely discussed by
the studies in our pool [5,8].

Overall, data in the UAV domain lags behind satellite imagery in that UAVs do not
have widely adopted metadata standards and open data infrastructures that characterize
the satellite domain. An obvious example is the opening of the Landsat archive, which
has led to numerous revolutions in earth observation science [175]. There are potential
benefits for wetland science and management with better data sharing, interoperability, and
reproducibility of UAV data. Even limited-scope, single-date UAV acquisitions do not have
to be “disposable”, one-time use datasets—rather, similar to satellite products, they could
be made available via regional spatial data archives and repositories to support broader
monitoring activities. For example, a study developing a tree inventory approach for UAV
data in forested bogs created a database that was connected to QGIS for sharing [135];
however, such efforts are still uncommon. Such practices could also stimulate more
rigorous conversations around data quality and standards to support much needed regional
monitoring programs and data sharing practices. Open data access promotes research
collaboration and fosters scientific development into novel technical, algorithmic, and data
solutions, which can only benefit the wetland science and management community.

6. Conclusions

Our scoping review indicates that cases of wetland UAV applications are on the
rise, serving a growing variety of environmental management needs, from supporting
inventories of vegetation, wildlife, and abiotic factors to assessing ecosystem health and
response to restoration actions, as well as ongoing development of field workflows and
data processing methods for wider use. Although RGB and multi-spectral instruments
prevail in wetland inventories and mapping applications, advances in sensor and data
processing technology suggest that LiDAR, hyperspectral, and multi-sensory workflows
may become the leading next frontier, especially as tools become more affordable. The re-
viewed applications universally highlight massive potential of UAVs to improve logistical
efficiency and cost-effectiveness of wetland monitoring for various management goals, as
well as to facilitate regional up-scaling of ecosystem characteristics using broader-scale
products. However, rather than completely replacing human observer potential, wetland
UAV applications should be aimed to strategically re-distribute logistical burden of field
campaigns and fill the critical information gap between limited field surveys and limited
information in broader-scale satellite and piloted aerial datasets. Maximizing the success
and cost-effectiveness of such efforts calls for more ubiquitous sharing, interoperability, and
reproducibility of UAV data, as well as for more universally applicable data and analysis
quality standards. A more rigorous and coordinated integration of UAVs in long-term
ecosystem monitoring can also greatly support leading indicators of ecosystem perfor-
mance and critical shifts to facilitate a broad array of wetland management, conservation,
and restoration goals.
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