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22460-320, Brazil; e-mail: jespinar@impa.br
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Abstract

We develop a global correspondence between immersed horospherically convex hy-
persurfaces φ : Mn → Hn+1 and complete conformal metrics e2ρgSn on domains Ω
in the boundary Sn at infinity of Hn+1, where ρ is the horospherical support function,
∂∞φ(Mn) = ∂Ω , and Ω is the image of the Gauss map G : Mn → Sn. To do so we first
establish results on when the Gauss map G : Mn → Sn is injective. We also discuss when
an immersed horospherically convex hypersurface can be unfolded along the normal flow
into an embedded one. These results allow us to establish general Alexandrov reflection
principles for elliptic problems of both immersed hypersurfaces in Hn+1 and conformal
metrics on domains in Sn. Consequently, we are able to obtain, for instance, a strong Bern-
stein theorem for a complete, immersed, horospherically convex hypersurface in Hn+1 of
constant mean curvature.

1 Introduction
In a recent paper [19], the authors observed a very interesting fact that the extrinsic curvature
of a horospherically convex hypersurface φ : Mn → Hn+1 (n ≥ 3) can be calculated via its
horospherical support function ρ as follows:

λi =
1

2
− 1

1− κi
(1.1)

1The author is partially supported by Spanish MEC-FEDER Grant MTM2010-19821 and CNPQ-Brazil.
2The author is partially supported by NSF DMS-1005295 and CNSF 10728103
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where the λi are the eigenvalues of the Schouten tensor of the horospherical metric ĝ = e2ρgSn

and the κi are the principal curvatures of the hypersurface φ (see also [16, 17]). This observa-
tion creates a correspondence that opens a window for more interactions between the study of
elliptic problems of Weingarten surfaces in hyperbolic space and the study of elliptic problems
of conformal metrics. We will assume throughout the paper that the dimension n ≥ 3 or as
stated otherwise.

Later it was pointed out in [5] that such correspondence can be seen as the association of a
conformal metric at infinity with level surfaces of the geodesic defining functions of the confor-
mal metric. In fact, the level surfaces of the geodesic defining function form the regular part of
the normal flow (cf. [17]) of the horospherically convex hypersurfaces both in the hyperbolic
metric and the conformally compactified metric. We refer to the part of the normal flow where
each leaf is embedded as the regular part.

At first the horospherical support function ρ̃ is defined on the parameter space Mn of an
immersed horospherically convex hypersurface φ : Mn → Hn+1. Hence the so-called horo-
spherical metric gh = e2ρ̃G∗gSn is originally defined on Mn too. It is much more useful if the
horospherical support function ρ̃ as well as the horospherical metric gh can be pushed on a do-
main in Sn through the Gauss map G : Mn → Sn. Indeed, when the Gauss map is injective, we
may view the hypersurface as a “graph” of the horospherical support function ρ = ρ̃ ·G−1 over
the domain G(Mn) in Sn. Though the Gauss map of a compact horospherically convex hyper-
surface is always injective, the Gauss map of an immersed, complete, horospherically convex
hypersurface in general may not be injective.

We notice that the Gauss map of a horospherically convex hypersurface is naturally a de-
velopment map. Hence, as a consequence of the celebrated injectivity result of Schoen and Yau
[42, 43], we obtain the following:

Theorem 1.1. Suppose that φ : Mn → Hn+1 is an immersed, complete, horospherically convex
hypersurface and suppose that

n∑
i=1

2

1− κi
≤ n, (1.2)

where κi are principal curvatures of φ. Then its Gauss map is injective.

In general, to avoid wild behavior of the end of a horospherically convex hypersurface, we
require that the Gauss map is regular at infinity (cf. Definition 3.4). An immediate consequence
of such regularity is the following:

Lemma 1.1. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, horospherically
convex hypersurface with the Gauss map G regular at infinity. Then

∂G(Mn) ⊆ ∂∞φ(Mn). (1.3)
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Using the uniformly horospherical convexity (cf. Definition 3.1) to ensure the completeness
of the horospherical metric, we then establish the following injectivity theorem:

Theorem 1.2. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, uniformly
horospherically convex hypersurface with the Gauss map regular at infinity. And suppose that
the boundary at infinity ∂∞φ(Mn) is small in the sense that its Hausdorff dimension is less than
n− 2. Then the Gauss map G : Mn → Sn is injective.

One of the most important issues in hypersurface theory is about when an immersed hyper-
surface is embedded. In contrast to the Hadamard type theorem established in [13] (cf. [26, 45]),
it is pointed out in [19] that even a horospherical ovaloid does not have to be embedded. But
we observe the following:

Proposition 1.1. Suppose that φ : Mn → Hn+1, n ≥ 2, is a compact, immersed, horospheri-
cally convex surface. Then φ can be unfolded into an embedded hypersurface along its normal
flow eventually.

Our approach here is to use the connection between normal flows, geodesic defining func-
tions, and conformal metrics at the infinity for the hyperbolic metric gHn+1 observed in [5].
Based on the Hadamard type theorem established in [13] (cf. [10, 20]) we are able to obtain the
following:

Theorem 1.3. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, uniformly
horospherically convex hypersurface with injective Gauss map. In addition, we assume that
the boundary at infinity ∂∞φ(Mn) is a disjoint union of smooth compact submanifolds with no
boundary in Sn. Then φ can be unfolded into an embedded hypersurface along its normal flow
eventually.

Equivalently, suppose that e2ρgSn is a complete conformal metric on a domain Ω in Sn with
bounded curvature. In addition, we assume that the boundary ∂Ω is a disjoint union of smooth
compact submanifolds with no boundary in Sn. Then the hypersurface

φt =
eρ+t

2

(
1 + e−2ρ−2t

(
1 + |∇ρ|2

))
(1, x) + e−ρ−t(0,−x+∇ρ) : Ω −→ Hn+1

is embedded when t is large enough.

It is interesting in the surface side to note that one also gets to know the end structure in
the proof of the above theorem (cf. Remark 3.1). The above embedding theorem is particularly
useful when combining with injectivity theorems in this paper and therefore gives us opportu-
nities to apply the Alexandrov refection principle in dealing with immersed hypersurfaces in
hyperbolic space. Based on a slight extension of the Alexandrov-Bernstein theorem in [12] we
obtain the following:
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Theorem 1.4. Suppose that φ : Mn → Hn+1 is an immersed, complete, horospherically convex
hypersurface with constant mean curvature H =

∑n
i=1 κi and

n∑
i=1

2

1− κi
≤ n. (1.4)

Then it is a horosphere if its boundary at infinity is a single point in Sn.

This is a strong Bernstein theorem for immersed hypersurfaces in hyperbolic space. The
condition (1.4) is used to apply Theorem 1.1 and implies that H ≥ n. Similarly, we establish
a general Alexandrov reflection principle for immersed, complete, horospherically convex hy-
persurfaces satisfying general elliptic Weingarten equations (4.8).

Elliptic Weingarten equations (4.8) for hypersurfaces and fully nonlinear elliptic Yamabe
type equations (4.4) for conformal metrics have been extensively studied. Both subjects have
a long history and both are very important subjects in the fields of differential geometry and
partial differential equations. Although they are mostly treated separately, there is a clear indi-
cation that these two subjects should be intimately related in terms of the types of problems and
the tools that have been used. In this paper we extend the correspondence shown in [19] and es-
tablish the following correspondence between uniformly horospherically convex hypersurfaces
and complete conformal metrics with bounded curvature.

Theorem 1.5. Suppose that φ : Mn → Hn+1 is an immersed, complete, uniformly horospheri-
cally convex hypersurface with injective Gauss map G : Mn → Sn. Then it induces a complete
conformal metric e2ρgSn on G(Mn) ⊂ Sn with bounded curvature, where ρ is the horospherical
support function and

∂∞φ(Mn) = ∂G(Mn).

On the other hand, suppose that e2ρgSn is a complete metric on a domain Ω in Sn with bounded
curvature. Then it induces properly immersed, complete, uniformly horospherically convex
hypersurfaces

φt =
eρ+t

2

(
1 + e−2ρ−2t

(
1 + |∇ρ|2

))
(1, x) + e−ρ−t(0,−x+∇ρ) : Ω −→ Hn+1

and
∂∞φt(Ω) = ∂Ω

for t large enough.

The correspondence established in the above theorem identifies the problem of finding a
properly immersed and complete hypersurface φ : Mn → Hn+1 that satisfies certain geometric
equation (4.8) with a prescribed boundary at infinity ∂∞φ(Mn) in Sn [44, 25] with the prob-
lem of finding a complete conformal metric e2ρgSn that satisfies the corresponding geometric
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equation (4.4) according to (1.1) on the domain Ω ⊂ Sn whose boundary ∂Ω is the same as
the prescribed boundary at infinity ∂∞φ(Mn) [8, 36]. For instance, the method of Alexan-
drov reflection for embedded hypersurfaces in hyperbolic space Hn+1 in [3, 27, 12] and the
method of moving planes (or spheres) in [24, 7] are seen to be the same under the correspon-
dence. As a consequence of our general Alexandrov reflection principle for horospherically
convex hypersurfaces satisfying elliptic Weingarten equations (4.8), we also establish a general
Alexandrov reflection principle for conformal metrics satisfying fully nonlinear elliptic equa-
tions (4.4). From this general Alexandrov reflection principle, we derive, for example, the
following Delaunay type theorem:

Theorem 1.6. Suppose that g is a complete conformal metric with bounded Schouten tensor on
the domain Ω = Sn \ {p, q}. And suppose that g satisfies (4.4). Then g is cylindric.

We would like to remark that this Delaunay type theorem should be compared with those
in [32, 33, 34]. Their theorems assume the scalar curvature is nonnegative, while ours assumes
the Schouten tensor is bounded.

To end the introduction we would like to remark that it is not just desirable but imperative for
us to consider general fully nonlinear elliptic problems (4.4) and (4.8) other than, for example,
just the mean curvature equation for hypersurfaces. Because, in order to gain the embeddedness
and apply the Alexandrov reflection principle, we need to unfold a given hypersurface along the
normal flow, in which the curvature equation usually does not remain the same. This is seen,
for instance, in the proof of Theorem 4.1 in Section 4.

The paper is organized as follows: In Section 2 we recapture the works in [19] and [5] and
clarify the relation of geodesic defining functions and normal flows. In Section 3 we develop the
global correspondence between admissible hypersurfaces Hn+1 and realizable metrics on do-
mains in Sn. We also prove that an admissible hypersurface can be unfolded into an embedded
one along the normal flow when the boundary at infinity is a disjoint union of smooth com-
pact submanifolds with no boundary in Sn. In Section 4 we establish the full correspondence
between elliptic problems from the two sides. In particular, we compare Alexandrov theorems
with Obata theorems, Bernstein theorems with Liouville theorems and even Delaunay type the-
orems. In fact we extend a general symmetry result in [31] for both admissible hypersurfaces
and realizable metrics based on our embedding theorem.

Acknowledgment The authors would like to express their gratitude to the Beijing Interna-
tional Center for Mathematical Research. Part of the research of this paper was carried out
during the time when the authors were visiting the center. The authors are also very apprecia-
tive for many enlightening discussions with Professors Sun-Yung Alice Chang, José A. Gálvez,
Bo Guan, Yanyan Li, and Paul Yang.
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2 Local Thoery
In this section we will recapture the works in [19, 5] and set the stage to develop a global
theory of the correspondence between hypersurfaces in hyperbolic space Hn+1 and conformal
metrics on domains of the conformal infinity Sn of hyperbolic space Hn+1. In [19], Espinar,
Gálvez and Mira discovered that (see also [16, 17]), given a piece of horospherically convex
hypersurface φ : Mn → Hn+1, there is a locally conformally flat metric gh on Mn, whose
curvature is explicitly related to the extrinsic curvature of the hypersurface in Hn+1. Conversely,
one may construct an immersed, horospherically convex hypersurface in hyperbolic space Hn+1

from a conformal metric on a domain in the infinity Sn. It was later observed in [5] that such
correspondence can be seen as the association of conformal metrics on domains of Sn, geodesic
defining functions, and level surfaces of geodesic defining functions (see also [37]).

2.1 Horospherical Convexity and Horospherical Metrics
We will briefly introduce the construction developed in [19]. Let us denote by R1,n+1 the
Minkowski spacetime, that is, the vector space Rn+2 endowed with the Minkowski spacetime
metric 〈, 〉 given by

〈x̄, x̄〉 = −x2
0 +

n+1∑
i=1

x2
i ,

where x̄ ≡ (x0, x1, . . . , xn+1) ∈ Rn+2. Then hyperbolic space, the de Sitter spacetime, and the
positive null cone are given, respectively, by the hyperquadrics

Hn+1 =
{
x̄ ∈ Ln+2 : 〈x̄, x̄〉 = −1, x0 > 0

}
Sn+1

1 =
{
x̄ ∈ Ln+2 : 〈x̄, x̄〉 = 1

}
Nn+1

+ =
{
x̄ ∈ Ln+2 : 〈x̄, x̄〉 = 0, x0 > 0

}
.

The ideal boundary at infinity of hyperbolic space Hn+1 will be denoted by Sn.
An immersed hypersurface in hyperbolic space Hn+1 is given by a parametrization

φ : Mn −→ Hn+1.

On the hypersurface φ, an orientation assigns a unit normal vector field

η : Mn −→ Sn+1
1 .

Hence, associated to φ, one may consider the map

ψ = φ+ η : Mn −→ Nn+1
+ ,

which is called the associated light cone map of φ. We will use horospheres to define the Gauss
map of an oriented, immersed hypersurface in hyperbolic space Hn+1. In the above hyperboloid
model, horospheres in Hn+1 are the intersections of affine null hyperplanes of R1,n+1 with Hn+1.
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Definition 2.1 ([15, 16, 6]). Let φ : Mn −→ Hn+1 be an immersed, oriented hypersurface in
Hn+1 with the orientation η : Mn → Sn+1

1 . The Gauss map

G : Mn −→ Sn

of φ is defined as follows: for every p ∈ Mn, G(p) ∈ Sn is the point at infinity of the unique
horosphere Hp in Hn+1 passing through φ(p) and with the inner unit normal the same as η(p)
at φ(p).

The associated light cone map ψ is strongly related to the Gauss map G of φ. Indeed, the
ideal boundary Sn of Hn+1 can be identified with the projective quotient space Nn+1

+ /R+ in
such a way that we have

ψ = eρ̃(1, G), (2.1)

where ρ̃ is the so-called horospherical support function for the hypersurface φ. Note that horo-
spheres are the unique hypersurfaces such that, with inward orientation, the associated light
cone map as well as the Gauss map are constant. Moreover, if we write ψ = eρ̃(1, x) for a given
horosphere, then x ∈ Sn is the point at infinity of the horosphere and ρ̃ is the signed hyperbolic
distance of the horosphere to the point O = (1, 0, . . . , 0) ∈ Hn+1 ⊆ R1,n+1. The intrinsic ge-
ometry of a horosphere is Euclidean. Therefore one may introduce a notion of convexity based
on horospheres. Namely,

Definition 2.2 ( [41]). Let φ : Mn → Hn+1 be an immersed, oriented hypersurface and let Hp

denote the horosphere in Hn+1 that is tangent to the hypersurface at φ(p) and whose inward
unit normal at φ(p) agrees with unit normal η(p) to the hypersurface φ at φ(p). We will say that
φ : Mn → Hn+1 is horospherically convex at p if there exists a neighborhood V ⊂ Mn of p so
that φ(V \ {p}) does not intersect withHp. Moreover, the distance function of the hypersurface
φ : V → Hn+1 to the horosphere Hp does not vanish up to the second order at φ(p) in any
direction.

We have the following characterization of horospherically convex hypersurfaces:

Lemma 2.1 ([19]). Let φ : Mn −→ Hn+1 be an immersed, oriented hypersurface. Then φ is
horospherically convex at p if and only if all principal curvatures of φ at p are simultaneously
< 1 or > 1. In particular, dG is invertible at p if φ is horospherically convex at p.

To see the second statement, if {e1, · · · , en} denotes an orthonormal basis of principal cur-
vature directions of φ at p and κ1, · · · , κn are the principal curvatures respectively, i.e.

dφ(ei) = ei

dη(ei) = −κiei,
(2.2)
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it is then immediate [19] that

〈(dψ)p(ei), (dψ)p(ej)〉 = (1− κi)2δij = e2ρ̃〈(dG)p(ei), (dG)p(ej)〉Sn . (2.3)

From now on, unless stated otherwise, we will take the orientation on a horospherically convex
hypersurface so that all principal curvatures satisfy κi < 1.

Remark 2.1. We like to remark here that horospherical convexity (cf. Definition 2.2) is a weaker
notion of convexity for oriented immersed hypersurfaces in hyperbolic Space. To clarify, a
hypersurface is said to be convex in our terminology if its principal curvatures satisfy κi < 0 in
the canonical orientation.

Now we are ready to introduce the horospherical metric on an immersed horospherically
convex hypersurface as follows:

Definition 2.3. Let φ : Mn → Hn+1 be an immersed horospherically convex hypersurface. Then
the Gauss map G : Mn → Sn is a local diffeomorphism. We consider the locally conformally
flat metric

gh = ψ∗〈, 〉 = e2ρ̃G∗gSn (2.4)

on Mn and call it the horospherical metric of the horospherically convex hypersurface φ.

It is clear that gh is the induced metric on the immersed hypersurface ψ : Mn → Nn+1
+ , when

ψ is spacelike. Considering ψ : Mn → Nn+1
+ ⊂ R1,n+1 as a surface of co-dimension 2 in the

Minkowski spacetime R1,n+1, we know that φ(p) and η(p) are two unit normal vectors at ψ(p)
and the second fundamental form is

IIψ(ei, ej) = (
1

1− κi
φ+

κi
1− κi

η)gh(ei, ej).

Hence, the sectional curvature of the metric gh is

Kgh(
ei

1− κi

,
ej

1− κj

) = 1− 1

1− κi

− 1

1− κj

and Schouten tensor is
Schgh(ei, ej) = (

1

2
− 1

1− κi

)gh(ei, ej).

When the Gauss mapG : Mn → Sn of a horospherically convex hypersurface φ : Mn → Hn+1 is
a diffeomorphism, one may push the horospherical metric gh onto the image Ω = G(Mn) ⊂ Sn

and consider the conformal metric

ĝ = (G−1)∗gh = e2ρgSn ,

where ρ = ρ̃◦G−1. For simplicity, we also refer to this conformal metric ĝ as the horospherical
metric. On the other hand, given a conformal metric ĝ = e2ρgSn on a domain Ω in Sn, one
immediately recovers the light cone map ψ(x) = eρ(1, x) : Ω→ Nn+1

+ . It turns out that one can
solve for the map φ : Ω→ Hn+1 and the unit normal vector η : Ω→ Sn+1

1 such that φ+ η = ψ.
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Theorem 2.1 ([19]). Let φ : Ω ⊆ Sn −→ Hn+1 be a piece of horospherically convex hypersur-
face with Gauss map G(x) = x. Then ψ = eρ(1, x) and it holds

φ =
eρ

2

(
1 + e−2ρ

(
1 + |∇ρ|2

))
(1, x) + e−ρ(0,−x+∇ρ). (2.5)

Moreover, the eigenvalues λi of the Schouten tensor of the horospherical metric ĝ = e2ρgSn and
the principal curvatures κi of φ are related by

λi =
1

2
− 1

1− κi
. (2.6)

Conversely, given a conformal metric ĝ = e2ρgSn defined on a domain of the sphere Ω ⊆ Sn
such that the eigenvalues of its Schouten tensor are all less than 1/2, the map φ given by
(2.5) defines an immersed, horospherically convex hypersurface in Hn+1 whose Gauss map is
G(x) = x for x ∈ Ω and whose horospherical metric is the given metric ĝ.

To end this subsection, for the convenience of readers, we recall that on a Riemannian
manifold (Mn, g), n ≥ 3, the Riemann curvature tensor can be decomposed as

Riemg = Wg + Schg � g,

where Wg is the Weyl tensor, � is the Kulkarni-Nomizu product, and

Schg :=
1

n− 2

(
Ricg −

Sg
2(n− 1)

g

)
is the Schouten tensor, where Ricg and Sg stand for the Ricci curvature and scalar curvature of
g respectively. The eigenvalues of Schg are defined as the eigenvalues of the endomorphism
g−1Schg.

Remark 2.2. To avoid confusion we remind readers that in our convention, for instance, the
principal curvatures of a geodesic sphere in hyperbolic space Hn+1 with respect to the outward
orientation are less than −1.

Finally we want to remark that, with the orientation and curvature condition for horospher-
ically convex hypersurfaces here, it is perhaps more appropriate to say concave instead of
convex. But, we continue to use these words as used in [19] [5].

2.2 Geodesic Defining Functions and Normal Flows
In this section we briefly summarize the work in [5]. We will take a viewpoint that is more
reflective of conformal geometry and reinterpret the correspondence, Theorem 2.1, as the asso-
ciation of conformal metrics and geodesic defining functions. Here one can think of geodesic
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defining functions as ways of describing foliations of hypersurfaces, or level set representations
of normal flows.

A defining function for a part of the infinity Ω ⊂ Sn of hyperbolic space Hn+1 is a smooth
function satisfying

1. r > 0 in Ω× (0, ε0) ⊂ Hn+1;

2. r = 0 on Ω× {0} ⊂ Sn; and

3. dr 6= 0 on Ω× {0} ⊂ Sn.

The hyperbolic space (Hn+1, gHn+1) is conformally compact in the sense that r2gHn+1 extends
to the infinity for any defining function r when considering Ω = Sn. The metrics r2gHn+1|r=0

recover the standard conformal class of metrics on Sn when the defining functions vary.

Definition 2.4. A defining function r is said to be geodesic defining function if

|dr|r2gHn+1
= 1, (2.7)

at least in a neighborhood of the infinity (i.e. Ω × [0, ε0) for some positive number ε0). With
geodesic defining function r we have

gHn+1 = r−2(dr2 + gr),

where gr is a family of metrics on Ω ⊂ Sn. It is easily seen that there is a canonical association
between the choice of conformal metric r2gHn+1|r=0 and the geodesic defining function r.

The advantage of using geodesic defining functions is evident from the following lemma of
Fefferman and Graham [21].

Lemma 2.2 ([21]). Suppose that g is a metric conformal to the standard round metric gSn on a
domain Ω ⊂ Sn and that r is the geodesic defining function associated with g. Then

gHn+1 = r−2(dr2 + gr)

where

gr = g − r2Schg +
r4

4
Qg (2.8)

and
(Qg)ij = gkl(Schg)ik(Schg)jl.
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By the definition of geodesic defining functions above, it is useful to realize that the level
surfaces of a geodesic defining function r are the normal flow of the boundary into Hn+1 in
the conformally compactified metric r2gHn+1 as well as the normal flow of a horospherically
convex hypersurface toward the infinity in Hn+1 in the hyperbolic metric gHn+1 , which was
called parallel flows in [17]. After identifying the level surfaces of a geodesic defining function
as horospherically convex hypersurfaces in Hn+1, the relation (2.6) in Theorem 2.1 is a direct
consequence of the expansion (2.8) as observed in [5].

For the convenience of readers we calculate the expansion (2.8) using Ricatti equations for
principal curvatures in hyperbolic space of the normal flow. Let Ω ⊂ Sn be a domain in the
sphere and φ : Ω→ Hn+1 be an oriented horospherically convex hypersurface so thatG(x) = x
for all x ∈ Ω ⊂ Sn. Let {φt}t∈R denote the normal flow of φ in hyperbolic space Hn+1, that is,

φt(x) := expφ(x)(tη(x)) = φ(x) cosh t+ η(x) sinh t : Ω −→ Hn+1 ⊂ R1,n+!, (2.9)

where exp denotes the exponential map for the hyperbolic metric gHn+1 . Due to the Ricatti
equations, the principal curvatures κti of φt are given by

κti(p) =
κi(p)− tanh(t)

1− κi(p) tanh(t)
, (2.10)

and the first fundamental form of φt is given by

It(ei, ej) = (cosh(t)− κi sinh(t))2δij, (2.11)

where {e1, · · · , en} is an orthonormal basis of principal curvature directions of φ. From here
one can easily check that the Gauss maps Gt remain invariant under this flow and the horo-
spherical metric of φt is gt := e2tgh, where gh is the horospherical metric of φ. Moreover, the
change of variable r = 2e−t shows that (2.11) is equivalent to (2.8).

Conversely, given a conformal metric ĝ := e2ρgSn on Ω ⊂ Sn with Schouten tensor bounded
from above, one considers a family of rescaled metric ĝt = e2tĝ. Choosing t0 large so that
e−2t0Schĝ ≤ 1

2
, it follows from Theorem 2.1 that the foliation of hypersurfaces

φt =
eρ+t

2

(
1 + e−2ρ−2t

(
1 + |∇ρ|2

))
(1, x) + e−ρ−t(0,−x+∇ρ) : Ω −→ Hn+1 (2.12)

for t > t0 consists of immersed, horospherically convex hypersurfaces with Gauss mapGt(x) =
x : Ω→ Sn the identity.
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3 Global Theory
From the previous section, we know that, for a piece of horospherically convex hypersurface
in hyperbolic space Hn+1, the Gauss map induces a canonical conformal metric on the infinity
Sn locally. Conversely, given a conformal metric on a domain of Sn, there is an immersed,
horospherically convex hypersurface in hyperbolic space Hn+1 whose horospherical metric is
the given metric up to a rescale. In this section we establish a global correspondence between
properly immersed, complete, horospherically convex hypersurfaces and complete conformal
metrics on domains of Sn. Given a complete, properly immersed, horospherically convex hy-
persurface φ : Mn −→ Hn+1, the issues that concern us are the following:

• When is the horospherical metric gh complete?

• When is its Gauss map injective?

• When does the boundary at infinity of the hypersurface coincide with the boundary of the
Gauss map image?

In the other direction, given a complete conformal metric ĝ on a domain Ω of the infinity Sn
with Schouten tensor bounded from above, we are concerned with the following issues:

• When does it correspond to a complete, immersed, horospherically convex hypersurface?

• When is the corresponding hypersurface proper?

• When does the boundary of the domain coincide with the boundary at infinity of the
hypersurface?

A final, yet most important question is: when are the leaves of the normal flow given in (2.9)
or (2.12) eventually embedded? Equivalently, one may ask when there is a geodesic defining
function associated with a given complete conformal metric on a domain Ω ⊂ Sn defined for a
positive distance uniformly in the domain Ω.

3.1 Uniform Convexity vs Bounded Curvature
We are able to make a satisfactory correspondence if we restrict ourselves to the cases where
hypersurfaces are uniformly horospherically convex or equivalently the conformal metrics are
of bounded curvature. Let us start with the definition of uniformly horospherically convex.

Definition 3.1. Let φ : Mn → Hn+1 be an immersed, oriented hypersurface. We say that φ
is uniformly horospherically convex if there is a number κ0 < 1 such that all the principal
curvatures κi at all points in Mn are less than or equal to κ0.
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Hence, in the light of (2.6), one can easily see that, for a conformal metric ĝ = e2ρgSn on
a domain Ω ⊂ Sn with Schouten tensor bounded from above, the corresponding hypersurface
φt given in (2.12) is an immersed, uniformly horospherically convex hypersurface for t large
enough if and only if the Schouten tensor of ĝ is also bounded from below. On the other hand,
when the conformal metric is of bounded curvature, the corresponding hypersurfaces φt given in
(2.12) are immersed and uniformly horospherically convex with bounded principal curvatures
for t large enough. Based on the above observation we make the following definition.

Definition 3.2. An oriented hypersurface φ : Mn → Hn+1 is said to be admissible if it is
properly immersed, complete, uniformly horospherically convex with injective Gauss map G :
Mn → Sn. Meanwhile, a complete conformal metric ĝ = e2ρgSn on a domain Ω ⊂ Sn is said to
be realizable if it is of bounded curvature.

When we start with a properly immersed, complete, horospherically convex hypersurface
φ : Mn → Hn+1 with injective Gauss map G : Mn → Sn, from Theorem 2.1, we know φ
induces a conformal metric ĝ on the image of the Gauss map Ω = G(Mn) ⊂ Sn with Schouten
tensor bounded from above by one half. Then, the question to ask is if the conformal metric ĝ is
complete? One can easily construct an example to show that the answer in general is negative.
We will present a properly immersed, complete, horospherically convex hypersurface whose
horospherical metric is not complete at the end of this subsection. On the other hand, when the
hypersurface is uniformly horospherically convex, the completeness of the horospherical metric
is a simple consequence of (2.3).

Lemma 3.1. Suppose that φ : Mn → Hn+1 is a complete, immersed, uniformly horospherically
convex hypersurface. Then the horospherical metric gh is complete on Mn.

When we start with a complete conformal metric ĝ = e2ρgSn on a domain Ω ⊂ Sn with
Schouten tensor bounded from above, from Theorem 2.1, we know that for t large enough
the hypersurface φt given by (2.12) is immersed and horospherically convex . Then a natural
question to ask is if the hypersurface φt is complete and proper. One again easily observes

Lemma 3.2. Suppose that ĝ = e2ρgSn is a complete conformal metric on a domain Ω ⊂ Sn
with Schouten tensor bounded from above and that φt : Ω→ Hn+1 given by (2.12) is immersed.
In addition we assume that

β(x) := e2ρ(x) + |∇ρ|2(x) −→ +∞ as x→ ∂Ω.

Then φt is a properly immersed, complete, horospherically convex hypersurface for t large
enough.

13



Proof. Here we shall use the Poincaré ball model of Hn+1. We like to use stereographic projec-
tion in Minkowski spacetime to realize the coordinate change between the two models. Namely,

Hn+1 ⊂ R1,n+1 −→ Bn+1 ⊂ Rn+1 = {x̄ ∈ R1,n+1 : x0 = 0}
τ

(x0, x1, · · · , xn+1) −→ 1

1 + x0

(x1, · · · , xn+1)
.

Hence, omitting the variable t for simplicity, we have,

τ ◦ φ =
e2ρ + |∇ρ|2 − 1

e2ρ + 2eρ + |∇ρ|2 + 1
(x+ Y (x)) : Ω −→ Bn+1

with
Y (x) =

2

e2ρ + |∇ρ|2 − 1
∇ρ.

Now it is easily seen that if β(x)→ +∞, then(
e2ρ + |∇ρ|2 − 1

e2ρ + 2eρ + |∇ρ|2 + 1

)
(x) −→ 1

and (
2

e2ρ + |∇ρ|2 − 1
∇ρ
)

(x) −→ 0.

Therefore, if β(x)→ +∞ as x→ x0 ∈ ∂Ω, it then follows that

τ ◦ φ(x)→ x0 (3.1)

as desired.

One important side product of the proof of Lemma 3.2 is the following:

Corollary 3.1. Suppose that ĝ = e2ρgSn is a complete conformal metric on a domain Ω ⊂ Sn
with Schouten tensor bounded from above and that φt : Ω → Hn+1 is given in (2.12). In
addition we assume that

β(x) := e2ρ(x) + |∇ρ|2(x) −→ +∞ as x→ ∂Ω.

Then φt is a properly immersed, complete, horospherically convex hypersurface, and

∂∞φt(M
n) = ∂Ω,

for t large enough.
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One may refer to Definition 3.3 for the boundary at infinity ∂∞φ(Mn) of a hypersurface
φ in hyperbolic space Hn+1. It seems to us that it is a rather subtle issue to determine when
β(x) → +∞ as x → ∂Ω if one only assumes the metric ĝ to be compete and the Schouten
tensor to be bounded from above. We settle the issue by using Proposition 8.1 in [8], where
it is shown that the conformal factor ρ → +∞ as x → ∂Ω if the scalar curvature is bounded
from below. Notice that in our context, since we always assume the Schouten tensor is bounded
from above, the fact that the scalar curvature is bounded from below implies the curvature of
the conformal metric ĝ is bounded.

Proposition 3.1. Suppose that ĝ = e2ρgSn is a complete conformal metric on a domain Ω ⊂ Sn
with Schouten tensor bounded and that φt : Ω→ Hn+1 is given in (2.12). Then φt is a properly
immersed, complete, uniformly horospherically convex hypersurface with uniformly bounded
principal curvature, and

∂∞φt(M
n) = ∂Ω,

for t large enough.

Again, one may refer to Definition 3.3 for the boundary at infinity ∂∞φ(Mn) of a hyper-
surface φ in hyperbolic space Hn+1. To summarize we have the following main result in this
subsection for the global correspondence.

Theorem 3.1. Suppose that φ : Mn → Hn+1 is an admissible hypersurface with the hyperbolic
Gauss map G : Mn → Ω ⊂ Sn. Then it induces a realizable metric on the domain Ω. Moreover
∂∞φ(Mn) = ∂Ω.

On the other hand, suppose that e2ρgSn is a realizable metric on a domain Ω ⊂ Sn.
Then φt given in (2.12) is an admissible hypersurface with bounded principal curvature and
∂∞φt(M

n) = ∂Ω, for t large enough.

The above result provides a back-and-forth relationship between complete conformal met-
rics on domains of the sphere and horospherically convex hypersurfaces in Hn+1 with prescribed
boundary at infinity. This allows to relate the results of [35] and [36] for singular solutions for
conformal metrics on the sphere with those of, among others, [44, 25] for hypersurfaces in Hn+1

with prescribed boundary at infinity.

Before we end this subsection we would like to present an easy example to show that one
in general does not get the completeness of horospherical metric. Let us consider Ω = Sn−1 ×
(−1, 1) ⊂ Sn−1 × (−π

2
, π

2
) = Sn \ {S,N} ⊂ Sn. In this parameterzation, the standard round

metric is given as
gSn = ds2 + cos2 sgSn−1

and the Christoffel symbols are

Γsss = Γssi = 0 and Γsij = tan s(gSn)ij
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for i, j = 2, 3, · · · , n. Let

ρ(θ, s) = ρ(s) = −1

2
log(1− s2)

and ĝ = e2ρgSn be the conformal metric on Ω. If we consider the meridian γ : (0, 1)→ Ω given
by γ(s) = (θ0, s) where θ0 ∈ Sn−1 is fixed, then we easily see that∫

γ

eρ dvgSn =

∫ 1

0

1√
1− s2

ds < +∞,

which implies that ĝ is not complete in Ω. On the other hand, we recall

Sch[ĝ]ik = Sch[gSn ]ik − ρi,k + ρiρk −
1

2
|∇ρ|2(gSn)ik

and calculate
ρs =

s

1− s2

and the only nonzero terms for the Hessian are

ρs,s =
1 + s2

(1− s2)2
, ρi,j = −s tan s

1− s2
(gSn)ij.

Hence we notice

−ρs,s + ρ2
s −

1

2
ρ2
s = − 1 + s2

(1− s2)2
+

1

2

s2

(1− s2)2
= −

1 + 1
2
s2

(1− s2)2
< 0

and

−ρi,j + ρiρj −
1

2
|∇ρ|2(gSn)ij = (

s tan s

1− s2
− s2

2(1− s2)2
)(gSn)ij ≤ C(gSn)ij

for some C > 0, i, j = 2, 3, · · · , n, and s ∈ (−1, 1). Therefore we consider the immersed,
horospherically convex hypersurface φt given by (2.12) corresponding to (Ω, ĝ) for t sufficiently
large. Since ρ → +∞ as s approaches 1, from Lemma 3.2, we know that φt is proper and
complete. We remark here that in fact Sch[ĝ] is not bounded from below in this example, which
implies that the hypersurface φt is not uniformly horospherically convex.

3.2 Injectivity of Hyperbolic Gauss Maps
We next describe an explicit example to show that indeed the Gauss map of a noncompact,
complete, properly immersed oriented horospherically convex hypersurface may not be injec-
tive. The essential reasons are that one can have a convex, self-intersecting, closed curve in
H2 and that higher dimensional hyperbolic space Hn+1 is a foliation of totally geodesic H2 via
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translation isometries.

Let r, R : R→ R be smooth 4π−periodic functions defined by

r(u) := sin(
u

2
) cos(u), R(u) := cos(

u

2
)− 1

3
cos(

3u

2
),

and let α(u) : R→ H2 ⊂ R1,2 be given by

α(u) = (cosh(r(u)) cosh(R(u)), sinh(r(u)) cosh(R(u)), sinh(R(u))).

Then α is non-embedded and has nonnegative curvature. Actually, in the geodesic coordinate,
its profile is as depicted:

α(u) := (sin(u2 ) cos(u), cos(u2 )− 1
3 cos(3u

2 ))

So the desired hypersurface is generated from the above immersed convex closed curve in a
totally geodesic surface H2 by (n − 1)-families of translation isometries along geodesics or-
thogonal to the totally geodesic surface H2 in Hn+1. The resulting hypersurface is a properly
immersed convex hypersurface φ : Rn−1 × S1 → Hn+1 where by construction the principal
curvatures of the hypersurface are all zero except one is positive. Hence, the scalar curvature
of the horospherical metric of such immersed convex hypersurface is strictly negative when
n ≥ 3. Also, the boundary at infinity of this hypersurface is a Sn−2. In other words, the image
of the Gauss map is Sn \ Sn−2 ' Rn−1 × S1, which is not simply connected. Considering the
normal vector along the profile curve one sees that the Gauss map is a three-sheet covering map.

In general, it is a rather difficult issue to determine when the Gauss map is injective. On the
other hand, the Gauss map of an immersed, horospherically convex hypersurface in hyperbolic
space is a development map from the parameter space Mn equipped with the horospherical
metric into the sphere. Hence, due to Kulkarni and Pinkall [30], we have the following:
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Lemma 3.3. Suppose that φ : Mn → Hn+1 is an immersed, horospherically convex hypersur-
face and that the horospherical metric gh is complete on Mn. Then the Gauss map is a covering
onto its image in the sphere. Hence, the Gauss map is injective if its image in the sphere is
simply connected.

In this subsection we will show that the Gauss map of a properly immersed, complete, horo-
spherically convex hypersurface is injective when it is regular at infinity (cf. Definition 3.4) and
the boundary at infinity (cf. Definition 3.3) is small, which will be made precise below. We will
also show that the injectivity of the Gauss map follows under certain curvature conditions on
the hypersurface, which is a straightforward consequence of the celebrated injectivity of devel-
opment maps of Schoen and Yau [42, 43].

In the light of Lemma 3.3 the Gauss map is injective when its image in the sphere is simply
connected. A good way to study images of Gauss maps is to consider the boundaries at infinity
of hypersurfaces. Let us first define the boundary at infinity of a noncompact hypersurface in
Hn+1.

Definition 3.3. Suppose that φ : Mn → Hn+1 is a properly immersed hypersurface. We define
the boundary at infinity ∂∞φ(Mn) to be the collection of points x ∈ Sn such that there is a
sequence xn on the hypersurface in the Poincaré ball Bn+1 model of hyperbolic space that
converges to x in Bn+1 in Euclidean topology.

In general, the end behaviors of properly immersed, complete, horospherically convex hy-
persurfaces may be very wild. The following regularity of Gauss maps at infinity seems to be a
very efficient and geometric way to restrict the behavior of the end and in many ways excludes
the persistent sharp turns of a surface approaching the boundary at infinity.

Definition 3.4. Suppose that φ : Mn → Hn+1 is a properly immersed hypersurface. The Gauss
map is said to be regular at infinity if, for each p ∈ ∂∞φ(Mn) ⊂ Sn,

lim
i→∞

G(qi) = p

for qi ∈ Mn, φ(qi)→ p.

As a consequence of the regularity of the Gauss map at infinity, we have the following:

Lemma 3.4. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, horospherically
convex hypersurface and that the Gauss map G : Mn → Sn is regular at infinity. Then

∂G(Mn) ⊂ ∂∞φ(Mn). (3.2)

Proof. Let p /∈ ∂∞φ(Mn). We would like to show that p /∈ ∂G(Mn). Otherwise, p ∈ ∂G(Mn),
which means that p /∈ G(Mn) and there is a sequence pi ∈ G(Mn) such that pi → p in Sn. Let
qi ∈ Mn such that G(qi) = pi. At least for a subsequence, we may assume φ(qi) converges
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to x ∈ B̄n+1. By the completeness of the hypersurface, if x ∈ Bn+1, then p = G(q) for some
q ∈ Mn and φ(q) = x, which contradicts the fact that p /∈ G(Mn). On the other hand, if
x ∈ ∂Bn+1, one may conclude that x ∈ ∂∞φ(Mn) ⊂ Sn by the regularity of the Gauss map,
which contradicts the fact that p /∈ ∂∞φ(Mn).

We also observe the following:

Proposition 3.2. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, horospheri-
cally convex hypersurface with complete horospherical metric and that the Gauss map is regular
at infinity. Then either the Gauss map is a finite covering or

G(Mn) ⊂ ∂∞φ(Mn).

Proof. For any p ∈ G(Mn), we consider the preimage G−1(p) ⊂ Mn and the set P = {φ(q) :
q ∈ G−1(p)} ⊂ Bn+1 of points on the surface. First we show that no limit point of P is inside
Bn+1. Otherwise, suppose that x ∈ Bn+1 is a limit point of P . Then x ∈ φ(Mn) due to the com-
pleteness of the surface. By the properness of the immersion φ we may conclude that G−1(p)
has a limit point in Mn, which contradicts the fact that the Gauss map is a local diffeomorphism.

On the other hand, since φ is proper, when G−1(p) is infinite so is the set P . In this case P
can only have limit points in the boundary at infinity ∂∞φ(Mn). Therefore, p ∈ ∂∞φ(Mn) due
to the regularity of the Gauss map at infinity. The conclusion of this proposition then follows
from Lemma 3.3.

Proposition 3.2 tells us that the Gauss map is a finite covering when the Gauss map is regular
at infinity and the boundary at infinity ∂∞φ(Mn) of the surface has no interior points. We know
that a subset in Sn has no interior point if, for example, it is of Hausdorff dimension less than
n. In fact, when the boundary at infinity ∂∞φ(Mn) of a surface is of Hausdorff dimension less
than n− 2, it turns out that the Gauss map has to be injective.

Theorem 3.2. Suppose that φ : Mn → Hn+1 is a properly immersed, complete, horospherically
convex hypersurface with complete horospherical metric and that its Gauss map is regular at
infinity. Then the Gauss map is injective and

∂G(Mn) = ∂∞φ(Mn),

provided that ∂∞φ(Mn) ⊂ Sn is small in the sense that its Hausdorff dimension is less than
n− 2.

Proof. By the above Lemma 3.4, we know that

∂G(Mn) ⊂ ∂∞φ(Mn)
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is small in the sense that its Hausdorff dimension is less than n− 2. Then G(Mn) is connected
and simply connected in Sn. Because, any loop in G(Mn) can be deformed into a point in Sn
without leaving G(Mn), when Sn \ G(Mn) is of codimension bigger than 2 in Sn. Notice that
Sn \G(Mn) = ∂G(Mn) when ∂G(Mn) is of Hausdorff dimension less than n− 1.

Thus, in the light of Lemma 3.3, the Gauss map is injective. This implies that no point in
∂∞φ(Mn) can be in the image G(Mn) of the Gauss map, which implies

∂G(Mn) = ∂∞φ(Mn).

As noted earlier, the Gauss map is a development map from a locally conformally flat man-
ifold (Mn, gh) into Sn. Therefore, we may apply the celebrated result on the injectivity of the
developing map in [42, 43].

Theorem 3.3. Suppose that φ : Mn → Hn+1 is an immersed, complete, horospherically convex
hypersurface and suppose that

n∑
i=1

2

1− κi
≤ n, (3.3)

where κi are the principal curvatures of φ in Hn+1. Then the Gauss map is injective. Hence,
the hypersurface φ is admissible and

∂G(Mn) = ∂∞φ(Mn).

Proof. This turns out to be a rather straightforward consequence of Theorem 3.5 on page 262
in [43]. First, the assumption (3.3) implies that the hypersurface is in fact uniformly horospher-
ically convex. Hence, the horospherical metric gh is complete in the light of (2.3). Secondly,
due to the explicit relation (2.6) in Theorem 2.1, the assumption (3.3) implies that the scalar
curvature of the horospherical metric gh is nonnegative. Thus, by Theorem 3.5 on page 262 in
the book [43], the Gauss map G of φ as a development map is injective. The remaining claim
then follows from the fact that the surface φ is now known to be admissible.

For the convenience of readers we provide Theorem 3.5 on page 262 of [43] in the following:

Theorem 3.4 ([43]). Let (Mn, g) be a complete Riemannian manifold with nonnegative scalar
curvature. Suppose that Φ : Mn → Sn is a conformal map. Then Φ is injective and ∂Φ(Mn) ⊂
Sn has zero Newton capacity.
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3.3 Embeddedness
An important issue in the theory of hypersurfaces is to know when an immersed hypersurface
is in fact embedded. To use the convexity to gain embeddedness is a classic idea traced back to
Hadamard [26, 45]. Here we will combine the ideas from [10, 20] and the connection between
normal flows and geodesic defining functions observed in [5] to obtain some embedding theo-
rems, based on the embedding theorem in [13]. First we state some extremal cases where the
hypersurfaces φt in (2.12) are embedded from known results in [2, 10].

Proposition 3.3. Let ĝ = e2ρgSn be a realizable metric on a domain Ω ⊂ Sn .

a) If the Schouten tensor of the conformal metric g is nonnegative, then Ω is either Sn or
Sn \ {point}. In the first case the corresponding hypersurface φt given in (2.12) is an
embedded ovaloid when t is large . In the later case the corresponding hypersurface φt
is a horosphere with the inward orientation for each t.

b) On the other hand, if the Schouten tensor is nonpositive, then Ω is homeomorphic to Rn

and the corresponding horospherically convex hypersurface φt given in (2.12) is properly
embedded for all t.

Proof. a) By Theorem 3.1, we know that φt as in (2.12) is a properly immersed, complete,
uniformly horospherically convex hypersurface when t is large enough. Moreover, the nonneg-
ativity of the Schouten tensor implies that all principal curvatures of the surface φt are less than
or equal to −1. Thus, from [10], the surface is either an embedded n-sphere or a horosphere.

b) As in the above, we construct properly immersed, complete, uniformly horospherically
convex hypersurfaces φt via Theorem 3.1. This time the nonpositivity of the Schouten tensor of
a realizable metric implies that all principal curvatures of the surface φt are between −1 and 1.
Thus, from [2], the surface is properly embedded and homeomorphic to Rn.

In general, one simply cannot expect all admissible hypersurfaces are embedded, as it was
pointed out in [19], even a horospherical ovaloid may not be embedded. But what we can hope
is that every admissible hypersurface can be unfolded along the normal flow into an embedded
one, which is shown to be the case for a horospherical ovaloid in Corollary 3.2. We recall that
the geodesic defining function r and its level surfaces give rise to both the normal flow in the
hyperbolic metric gHn+1 (called parallel flows in [17]) and the normal flow in the compactified
metric r2gHn+1 . It is worth mentioning that the geodesic defining function is not well defined
when the surfaces are no longer embedded, while the normal flow of immersed surfaces is still
well defined. Therefore, the embeddedness of a hypersurface is equivalent to the existence of a
geodesic defining function, which is equivalent to solving the noncharacteristic first order partial
differential equation (2.7). Interestingly, solving (2.7) by the characteristic method is equivalent
to solving the normal flow in the compactified metric. It then becomes a standard geometric
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question of how far one can push a totally geodesic hypersurface along the normal flow in a
Riemannian manifold without any focal points, to which the standard Riemannian comparison
theorems apply (cf. [9]). This reconfirms that given a conformal metric with Schouten tensor
bounded from above, the hypersurface φt given by (2.12) is an immersion when t is large enough
(cf. [19]).

Theorem 3.5. Suppose that ĝ = e2ρgSn is a conformal metric on Ω ⊂ Sn with Schouten tensor
bounded from above. Then φt given in (2.12) is an immersion for t large enough.

Proof. Given a point x ∈ Ω, there exists an open neighborhood U of x inside Ω on which the
geodesic defining function associated with the given metric ĝ = e2ρgSn on Ω is defined and
reaches out for a positive number ε. The key point is to show that ε ≥ ε0 for some positive
number ε0 which is independent of where x is in Ω. In the compactified metric r2gHn+1 the in-
finity U becomes a totally geodesic boundary and how far the geodesic defining function can be
defined is determined by how far the boundary can be pushed in along the normal flow without
encountering any focal points. In other words, in the metric r2gHn+1 , we would like to know
how far the geodesics from points in U in the directions normal to the boundary U can be ex-
tended without collisions locally.

Let us calculate the sectional curvatures for the metric r2gHn+1 in the plane containing the
direction normal to U . To do so, we set a normal coordinate x with respect to the metric ĝ at a
point x0 in U . We may assume that the Schouten tensor of the conformal metric ĝ is in diagonal
form under the chosen coordinates at x0. Hence, in the coordinate (r, x) for ḡ = r2gHn+1 ,

R̄irir =
1

2
(−∂r∂rḡii − ∂i∂iḡrr + ∂i∂rḡir + ∂r∂iḡir)− ḡαβ([ii, α] [rr, β]− [ir, α] [ir, β]),

where the Christoffel symbols of second kind are given by

[αβ, γ] =
1

2
(∂β ḡαγ + ∂αḡβγ − ∂γ ḡαβ)

What is good here is that we only need to take second order derivatives for ḡrr with respect to
x variables. It is helpful at this point to recall from Lemma 2.2 that

ḡ = r2gHn+1 = dr2 + ĝ − r2Schĝ +
r4

4
Qĝ.

Hence,

R̄irir = −1

2
∂r∂rḡii + ḡii[ir, i][ir, i]

= λi −
3

2
r2λ2

i + (1− r2λi +
1

4
r4λ2

i )
−1(rλi −

1

2
r3λ2

i )
2

= λi −
1

2
r2λ2

i .

(3.4)
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Now one may apply the second Rauch comparison theorem of Berger, Theorem 1.29 on page
30 of the book [9] to conclude that, for any given neighborhood V of x0 such that V̄ ⊂ U , there
is a positive number ε0 such that the geodesic defining function reaches beyond ε0 from any
point in V , since Schĝ is assumed to bounded from above.

Consequently, even though a horospherical ovaloid may not be embedded (cf. [19]), it can
be expanded along the normal flow into an embedded one.

Corollary 3.2. Suppose that φ : Mn → Hn+1, n ≥ 2, is a connected, compact, immersed, horo-
spherically convex hypersurface. Then the leaves φt in (2.9) in the normal flow are embedded
spheres when t is large enough.

This should be compared with the Hadamard type theorem established by Do Carmo and
Warner in Section 5 in [13] (cf. [26, 45]). For the convenience of readers we state their result
as follows:

Theorem 3.6 ([13]). Suppose that φ : Mn → Hn+1, n ≥ 2, is a connected, compact, immersed
hypersurface with all principal curvature nonnegative. Then φ is an embedded ovaloid.

It turns out that Theorem 3.6 is one of the important key ingredients in our approach to
establish the embeddedness of leaves in the normal flow from a noncompact admissible hyper-
surface. Another key ingredient is also a consequence of Theorem 3.5.

Lemma 3.5. Suppose that φ : Ω → Hn+1, n ≥ 2, is an immersed, horospherically convex
hypersurface with Gauss map G(x) = x : Ω → Sn. Then, for any compact subset K ⊂ Ω, the
hypersurfaces φt : K → Hn+1 given in (2.9) are embedded when t is sufficiently large.

In order to apply Theorem 3.6 we use the following:

Lemma 3.6. Suppose that φ : Mn → Hn+1 is an admissible hypersurface. Then

κti =
κi − tanh t

1− κi tanh t
= − coth t+

coth2 t− 1

coth t− κi
−→ −1 as t→∞, (3.5)

where κti are the principal curvatures for the hypersurface φt given by (2.12).

Proof. This is simply because the principal curvatures κi ≤ κ0 for some κ0 < 1 from the
uniformly horospherical convexity.

Theorem 3.7. Suppose that φ : Ω → Hn+1 is an admissible hypersurface and that the hyper-
surfaces φt given by (2.9) is the normal flow from φ. In addition, we assume that the boundary
∂Ω at infinity is a disjoint union of smooth compact submanifolds with no boundary in Sn. Then
there is a number t0 > 0 such that the hypersurfaces φt are embedded for all t ≥ t0.
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Proof. First, in the light of Lemma 3.5, one only needs to focus on each end. This is because,
for the conformal metric e2ρgSn corresponding to the given admissible hypersurface φ, we know
ρ → ∞ when approaching ∂Ω. Hence (3.1) holds, which implies the ends of hypersurface are
well separated near the infinity.

Consider one of the connected components Ek ⊂ ∂Ω, which is a smooth compact sub-
manifold with no boundary in Sn. Let U be an open neighborhood of Ek in Sn whose closure
Ū is a compact subset in Sn intersecting no other component of ∂Ω. We denote the tubular
neighborhood of Ek inside U with size λ0 in Sn as

Nλ0(E
k) = Ek ×Bn−k

λ0
⊂ Sn,

where Bn−k
λ is geodesic ball in Sn−k for n − k ≥ 1 and λ0 is some small positive number. Let

Sn−k−1
λ ⊂ Bn−k

λ0
denote the family of round spheres with λ < λ0 and centered at the center of

Bn−k
λ0

. Finally, for a point p ∈ Ek, let Dn−k
λ (p) ⊂ Hn+1 denote the totally geodesic hyperbolic

subspace that has the boundary {p} × Sn−k−1
λ ⊂ Nλ0(E

k) at infinity.

From Lemma 3.5 we know that there exists t0 large enough so that the hypersurface

φt : Ω
⋂

(Ū \ N 1
2
λ0

(Ek)) −→ Hn+1

is embedded and the hypersurface

φt : Ω
⋂

(N 1
2
λ0

(Ek) \ Ek) −→ Hn+1

lies inside
⋃
p∈Ek

⋃
λ< 2

3
λ0
Dn−k
λ (p) for each t ≥ t0. Now let us consider the intersection

I tp,λ = Dn−k
λ (p) ∩ φt(Ω) for each p ∈ Ek and λ ≤ λ0. First of all, one sees that each I tp,λ

is non-empty for λ < λ0. This is a consequence of the fact that Ek is linked with each Sn−k−1
λ

in Sn when λ is appropriately small, so Ek is still linked with Dn−k
λ in the ball Bn+1. It is then

clear that I tp,λ is a connected, embedded convex ovaloid (n− k ≥ 3), or a simple closed convex
curve (n − k = 2), or a single point (n − k = 1), in a totally geodesic hyperbolic subspace
Dn−k
λ (p) when λ ∈ (2

3
λ0, λ0) and t ≥ t0. Another simple observation is the fact that each

intersection I tp,λ is compact, since the boundary at infinity Sn−k−1 of Dn−k
λ (p) does not intersect

with the boundary at infinity ∂Ω of the hypersurface φt. Our theorem is true if, for any given
t ≥ t0, we are able to show that each I tp,λ is a connected, embedded, convex ovaloid (n−k ≥ 3),
or a simple closed convex curve (n−k = 2), or a single point (n−k = 1) for all p ∈ Ek, λ < λ0.

Let us first establish the cases k = 0, i.e. Ek is a point p ∈ Sn. We observe that the intersec-
tion of a complete, strictly convex, immersed, hypersurface and a totally geodesic hyperbolic
hyperplane can only be a union of connected, convex, immersed hypersurfaces and possibly
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finitely many other points in the hyperbolic hyperplane. This is because a strictly convex hyper-
surface is either transversal to a totally geodesic hyperbolic hyperplane or locally stays strictly
on one side of the totally geodesic hyperbolic hyperplane at the intersection point.

We claim that for any λ < λ0 and t ≥ t0 each intersection I tp,λ is a connected, immersed,
compact, convex hypersurface (n ≥ 3) or closed convex curve (n = 2) in the totally geodesic
hyperbolic hyperplane Dn

λ(p). Hence our theorem, when k = 0, follows from this claim and
Theorem 3.6. Note that, in case n = 2, we instead use the fact that a connected, immersed,
convex, closed curve is embedded if it is a limit of connected, embedded, convex, closed curves.

It is clear that I tp,λ is a connected, compact, embedded, convex ovaloid when λ is close to λ0.
This convex ovaloid stays as an embedded convex ovaloid before some points emerge in I tp,λ as
λ decreases from λ0 in the light of Theorem 3.6. To show that no point ever emerges in I tp,λ we
may assume otherwise I tp,λ1 contains a point q for the first time as λ decreases from λ0. One
sees that the hyperbolic hyperplane Dn

λ1
(p) is a support hyperplane at q for the hypersurface

φt. It is clear that near q, the hypersurface φt lies locally on the side of the hyperplane Dn
λ1

(p)
that contains p and the normal to the hypersurface φt at q points to the same side due to the
regularity of the Gauss map at infinity. But that would contradict (3.5). Therefore our theorem
is proven when k = 0.

The other extremal case is k = n − 1. In this case D1
λ(p) is a geodesic with ends (p,−λ)

and (p, λ) in Nλ0(E) ⊂ Sn. Instead of using hyperbolic hyperplanes we consider the ruled
hypersurface Σλ =

⋃
p∈ED

1
λ(p) and the intersection I tλ =

⋃
p∈E I

t
p,λ. Assume otherwise, that

for the first time, for some λ1, among all p ∈ E and λ decreasing from λ0, the intersection I tp,λ1
contains more than just a single point. Then the hypersurface φt at the touch point, which has
just emerged in I tp,λ1 , is tangent to the ruled hypersurface Σλ1 and would possess some principal
curvature nonnegative, which contradicts (3.5), similar to the situation dealt in the case k = 0.

For general k between 0 and k − 1, we are going to use the combination of the above
two special cases. We claim that each I tp,λ is an embedded, convex ovaloid or a simple closed
convex curve in the totally geodesic hyperbolic subspace Dn−k

λ (p). Again we will use the ruled
hypersurface

Σk
λ =

⋃
p∈Ek

Dn−k
λ (p),

instead of hyperbolic hyperplanes. Assume otherwise, that for the first time, for some λ1, among
all p ∈ Ek and λ decreasing from λ0, some points emerge in the intersection I tp,λ1 other than
the connected immersed convex surface (n − k ≥ 3) or the connected convex closed curve
(n− k = 2). Then, similar to the case k = n− 1 above, the hypersurface φt at the touch point,
which has just emerged in I tp,λ1 , is tangent to the ruled hypersurface Σk

λ1
so would have some
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principal curvature nonnegative, which contradicts (3.5). This completes the proof.

Remark 3.1. It is worth mentioning that the argument above is local in the sense that each
component Ek is investigated independently. In other words, one may conclude that for t large
enough the hypersurface φt is embedded near those ends which are of manifold structure. It is
also worth mentioning that, in fact, with the above argument we have shown that each end has
the structure

Ek × Sn−k−1 × (0,∞),

where Sn−k−1 stands for a single point for k = n− 1.

4 Elliptic Problems
In this section we compare the elliptic problems associated with Weingarten hypersurfaces in
hyperbolic space Hn+1 to those of conformal metrics on domains of the conformal infinity Sn.
Both subjects have a long history and have been extensively studied. Although they are mostly
treated separately, there is a clear indication that these two subjects should be intimately related
in terms of the types of problems and the tools that have been used to study them. Our work
here is an attempt to give a unified framework for the two subjects with a hope that in doing so,
it will shed light on further investigation and research. For instance, comparing Obata type the-
orems and Alexandrov type theorems, we derive a new Alexandrov type theorem, which does
not assume the hypersurface to be embedded. Similarly, comparing Liouville type theorems
and Bernstein type theorems, we also obtain some new results.

Unfortunately, the choices of convenient orientation between the discussions of admissible
hypersurfaces and the elliptic problems of Weingarten hypersurfaces are opposite to each other.
From here on we will take the orientation opposite to the canonical orientation for admissible
hypersurfaces and we will refer to such orientation simply as the opposite orientation.

4.1 Corresponding elliptic problems
For a comprehensive introduction of conformally invariant elliptic PDE we refer readers to the
papers [32, 25, 44, 33, 34] and references therein. We will briefly introduce the conformally
invariant elliptic PDE in the context of our discussions. Since we focus on realizable conformal
metrics, we denote

C := {(x1, · · · , xn) ∈ Rn : xi < 1/2, i = 1, · · · , n}

and
Γn := {(x1, · · · , xn) : xi > 0, i = 1, 2, · · · , n}.
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Consider a symmetric function f(x1, · · · , xn) of n-variables with f(λ0, λ0, · · · , λ0) = 0 for
some number λ0 <

1
2

and

Γ = an open connected component of {(x1, · · · , xn) : f(x1, · · · , xn) > 0}

satisfying

(λ, λ, · · · , λ) ∈ Γ
⋂
C, ∀ λ ∈ (λ0,

1

2
), (4.1)

∀ (x1, · · · , xn) ∈ Γ ∩ C, ∀ (y1, · · · , yn) ∈ Γ ∩ C ∩ ((x1, · · · , xn) + Γn), ∃ a curve γ
connecting (x1, · · · , xn) to (y1, · · · , yn) inside Γ ∩ C such that γ′ ∈ Γn along γ,

(4.2)

and
f ∈ C1(Γ) and

∂f

∂xi
> 0 in Γ. (4.3)

Suppose g = e2ρgSn is a conformal metric on a domain Ω of Sn satisfying

f(λ(Schg)) = C and λ(Schg) ∈ Γ in Ω, (4.4)

for some positive constant C, where λ(Schg) is the set of eigenvalues of the Schouten curvature
tensor of the metric g. In (4.4), a positive constantC is admissible for a given curvature function
f if f(λ̄0, λ̄0, · · · , λ̄0) = C, ∂f

∂xi
(λ̄0, λ̄0, · · · , λ̄0) > 0, and λ̄0 > λ0. We refer to equation (4.4)

as the conformally invariant elliptic problem of the conformal metrics on the domain Ω.

On the other hand, we have the following elliptic problems of Weingarten hypersurfaces.
For a comprehensive introduction of Weingarten hypersurfaces we refer to the papers [14, 23,
22, 29] and references therein. We will briefly introduce the elliptic problems of Weingarten
hypersurfaces in our context. Again, our focus is on admissible hypersurfaces with the opposite
orientation. Let

K := {(x1, · · · , xn) ∈ Rn : xi > −1, i = 1, · · · , n}.

Consider a symmetric functionW(x1, · · · , xn) of n-variables withW(κ0, κ0, · · · , κ0) = 0 for
some number κ0 > −1 and

Γ∗ = an open connected component of {(x1, · · · , xn) :W(x1, · · · , xn) > 0}

satisfying

(κ, κ, · · · , κ) ∈ Γ∗
⋂
K,∀ κ ∈ (κ0,∞), (4.5)
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∀ (x1, · · · , xn) ∈ Γ∗ ∩ K, ∀ (y1, · · · , yn) ∈ Γ∗ ∩ K ∩ ((x1, · · · , xn) + Γn), ∃ a curve
γ connecting (x1, · · · , xn) to (y1, · · · , yn) inside Γ∗ ∩ K such that γ′ ∈ Γn along γ,

(4.6)

and
W ∈ C1(Γ∗) and

∂W
∂xi

> 0 in Γ∗. (4.7)

Suppose φ : M→ Hn+1 is a hypersurface satisfying

W(κ1, · · · , κn) = K and (κ1, · · · , κn) ∈ Γ∗ on φ, (4.8)

for some positive constant K, where (κ1, · · · , κn) is the set of principal curvatures of the hy-
persurface φ. In (4.8), a positive number K is admissible for a given curvature function W if
W(κ̄0, κ̄0, · · · , κ̄0) = K, ∂W

∂xi
(κ̄0, κ̄0, · · · , κ̄0) > 0, and κ̄0 > κ0. We refer to equation (4.8) as

the elliptic problem of Weingarten hypersurfaces.

Remark 4.1. For the motivation of (4.2) and (4.6), please see the proof of Theorem 4.2, where
(4.6) is shown to be sufficient to apply the Alexandrov reflection method. On the other hand, it
is more appropriate to use curves instead of rays in (4.2) and (4.6), since the curvature relation
is non-linear.

To relate these two elliptic problems, in the light of Theorem 2.1, we consider

T (x1, · · · , xn) =

(
1

2
− 1

1 + x1

, · · · , 1

2
− 1

1 + xn

)
: K → C. (4.9)

Let us discuss the correspondence between conformally invariant elliptic problems of realizable
metrics and elliptic problems of admissible Weingarten hypersurfaces. By our definitions, only
Γ ∩ C is relevant for a realizable metric and only Γ∗ ∩K is relevant for an admissible hypersur-
face with the opposite orientation. Below we list some fundamental relations and facts for the
correspondence between the elliptic problems of conformal metrics and Weingarten hypersur-
faces.

Symmetric Functions:

Wf = f ◦ T and fW =W ◦ T −1. (4.10)

Domains:

T (Γ∗ ∩ K) = Γ ∩ C. (4.11)
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It is clear that

T ((κ0, κ0, · · · , κ0) + Γn) = ((λ0, λ0, · · · , λ0) + Γn) ∩ C, (4.12)

where λ0 = 1
2
− 1

1+κ0
. In fact,

T ((x1, · · · , xn) + Γn) = (T (x1, · · · , xn) + Γn) ∩ C (4.13)

for all (x1, · · · , xn) ∈ K. Therefore (4.1) holds for Γ ∩ C if and only if (4.5) holds for Γ∗ ∩ K.
Moreover, we also see (4.2) holds for Γ ∩ C if and only if (4.6) holds for Γ∗ ∩ K.

Ellipticity:

∂Wf

∂κi
> 0 in Γ∗ ∩ K if and only if

∂f

∂λi
> 0 in Γ ∩ C.

∂fW
∂λi

> 0 in Γ ∩ C if and only if
∂W
∂κi

> 0 in Γ∗ ∩ K.
(4.14)

Homogeneity:

Homogeneity of symmetric functions is not preserved under this correspondence.
In fact, scaling on the metric side corresponds to deforming along the normal flow
in hypersurface side.

Concavity:

The concavity on the other hand is preserved under this correspondence from f to
W , but not necessarily fromW to f . The concavity of a function is understood to
be the nonpositivity of the Hessian matrix. One may simply calculate that

∂2Wf

∂κi∂κj
=

1

(1 + κi)2(1 + κj)2

∂2f

∂λi∂λj
− 2δij

(1 + κi)3

∂f

∂λi

and
∂2fW
∂λi∂λj

=
1

(1
2
− λi)2(1

2
− λj)2

∂2W
∂κi∂κj

+
2δij

(1
2
− λi)3

∂W
∂κi

.

Hence, instead, the convexity is preserved under this correspondence fromW to f .
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Admissible Constants:

In (4.4), a positive constant C is admissible for a given curvature function f if
f(λ̄0, λ̄0, · · · , λ̄0) = C, ∂f

∂xi
(λ̄0, · · · , λ̄0) > 0, and λ̄0 > λ0, while in (4.8), a posi-

tive constant K is admissible for a given curvature functionW ifW(κ̄0, · · · , κ̄0) =
K, ∂W

∂xi
(κ̄0, · · · , κ̄0) > 0, and κ̄0 > κ0, where λ̄0 = 1

2
− 1

1+κ̄0
. Geometrically

it means that the horospherical metric of a geodesic sphere of principal curvature
κ > 1 is of constant sectional curvature < 1; the horospherical metric of a horo-
sphere is of zero sectional curvature; and the horospherical metric of a hypersphere
of principal curvature κ ∈ [0, 1) is of negative constant sectional curvature.

Scalar Curvature vs Mean Curvature:

In the context of solving elliptic problems one typically assumes

Γ ⊂ Γ1 = {(x1, · · · , xn) :
n∑
i=1

xi ≥ 0}

and

Γ∗ ⊂ Γ∗1 = {(x1, · · · , xn) :
n∑
i=1

xi ≥ n}.

In contrast to T (Γ∗n) = Γn ∩ C, we only have

T −1(Γ1) ⊂ Γ∗1. (4.15)

Therefore, we only have Γ ∩ C ⊂ Γ1 implies Γ∗ ∩ K ⊂ Γ∗1, but not necessarily the
converse.

Before we end this subsection we would like to give a proof of (4.15). This turns out to be
a consequence of the following simple algebraic fact.

Lemma 4.1. Let ai be real numbers so that ai > −1 for all i = 1, · · · , n. Set bi =
ai − 1

ai + 1
.

Then
n∑
i=1

bi ≤ 2
n∑
i=1

ai − n.

Proof. Set Q(t) =
∑n

i=1

ai
1 + ait

for 0 ≤ t ≤ 1. Then,

Q′(t) = −
n∑
i=1

a2
i

(1 + ait)2
≤ 0,

30



which implies Q(1) ≤ Q(0) =
∑n

i=1 ai. On the other hand,

n∑
i=1

bi =
n∑
i=1

ai − 1

ai + 1
= 2

n∑
i=1

ai
ai + 1

−
n∑
i=1

ai + 1

ai + 1

= 2Q(1)− n.

Therefore, the lemma is easily seen.

Let φ : Mn → Hn+1 be a horospherically convex hypersurface with the orientation opposite
to the canonical one. Then, λi and κi are related by

2λi =
κi − 1

κi + 1
, (4.16)

or equivalently,

κi =
1 + 2λi
1− 2λi

. (4.17)

Set ai := −2λi and bi := −κi. Note that since λi < 1/2, then 1− 2λi > 0, that is, ai > −1.
Therefore, from (4.16) it follows

−
n∑
i=1

κi ≤ −4
n∑
i=1

λi − n,

so that
n∑
i=1

λi ≥ 0 implies
n∑
i=1

κi ≥ n, (4.18)

which in turn implies (4.15).

4.2 Obata Theorem vs Alexandrov Theorem
Here we establish an explicit relationship between a famous theorem in conformal geometry
and a famous theorem in hypersurface theory. Namely, the Obata Theorem and the Alexandrov
Theorem (cf. [19]). First, let us state the aforementioned results. For conformal metrics, we
have the following:

Obata Theorem [38, 24] Let g be a metric conformal to the standard round metric
gSn on Sn with constant positive scalar curvature. Then, there exists a conformal
diffeomorphism Φ : Sn → Sn and a postive constant a > 0 such that g = aΦ∗gSn .

Its generalization to fully nonlinear elliptic functions (f,Γ) is as follows:
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Generalized Obata Theorem [33] Let g be a metric conformal to the standard
round metric gSn on Sn. Suppose that (f,Γ) is elliptic in the sense that it satisfies
(4.1) (4.2) (4.3) and that

f(λ(Schg)) = C, λ(Schg) ∈ Γ

for an admissible constant C. Then, there exists a conformal diffeomorphism Φ :
Sn → Sn and a positive constant a such that g = aΦ∗gSn .

For hypersurfaces in hyperbolic space we have the following:

Alexandrov Theorem [3, 27] Let Σ ⊂ Hn+1 be a compact (without boundary) em-
bedded hypersurface with constant mean curvature. Then, Σ is a totally umbilical
round sphere.

Its generalization to elliptic Weingarten hypersurfaces (W ,Γ∗) is as follows:

Generalized Alexandrov Theorem [29] Let Σ ∈ Hn+1 be compact (without bound-
ary) embedded hypersurface. Suppose that (W ,Γ∗) satisfies (4.5) (4.6) (4.7) and
that

W(κ1, · · · , κn) = K and (κ1, · · · , κn) ∈ Γ∗

on Σ, where K is admissible. Then Σ is totally umbilical round sphere.

In the light of the correspondence observed in Theorem 2.1 of [19] and the discussions in
Section 4.1 we obtain a new Alexandrov type theorem for horospherical ovaloids as an equiva-
lent statement of the generalized Obata Theorem of Li-Li [33, 34] above (notice that a conformal
metric on Sn is always realizable). But due to our Corollary 3.2, it can be seen as a consequence
of the generalized Alexandrov Theorem of Korevaar [29]. Thus, such new Alexandrov type
theorem becomes the bridge connecting the two sides and it is interesting to see that the gen-
eralized Alexandrov Theorem of Korevaar implies the generalized Obata Theorem of Li-Li
[33, 34], instead of the other way around as given in [19].

Theorem 4.1. Suppose that (W ,Γ∗) satisfies (4.5) (4.6) (4.7). Then a horospherical ovaloid
in Hn+1 with the opposite orientation satisfying (4.8) for an admissible constant is a geodesic
sphere in Hn+1. Equivalently, suppose that (f,Γ) satisfies (4.1) (4.2) (4.3). Then any conformal
metric on Sn satisfying (4.4) for an admissible constant is isometric to a round metric on Sn.

Proof. According to Theorem 3.7, the horospherical ovaloid Σt along the normal flow of the
given horospherical ovaloid Σ becomes embedded when t ≥ t0 for some t0. Moreover,

κi =
κti − tanh(t)

1− κti tanh(t)
and κti =

tanh(t) + κi
1 + κi tanh(t)

.
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Hence, Σt is still an elliptic Weingarten hypersurface for all t > t0. To see this, we let

W t(x1, · · · , xn) :=W
(
x1 − tanh(t)

1− x1 tanh(t)
, · · · , xn − tanh(t)

1− xn tanh(t)

)
.

Therefore,W t is a symmetric function of n-variables withW t(1, · · · , 1) = 0. Let

T (x1, · · · , xn) =

(
tanh(t) + x1

1 + x1 tanh(t)
, · · · , tanh(t) + xn

1 + xn tanh(t)

)
.

We then have
Γ∗t ∩ K = T (Γ∗ ∩ K).

Similar to the case of the map T , we in fact have

T ((x1, · · · , xn) + Γn) = T (x1, · · · , xn) + Γn

for all (x1, · · · , xn) ∈ K. For ellipticity we easily calculate

∂W t

∂xi
=

1− tanh2(t)

(1 + xi tanh(t))2

∂W
∂yi

.

Therefore, (W t,Γ∗t ) satisfies (4.5) (4.6) (4.7). Thus, from the above generalized Alexandrov
Theorem of Korevaar [29], Σt is a totally umbilical round sphere for t ≥ t0, and therefore so is
Σ.

4.3 Liouville Theorem vs Bernstein Theorem
Next to compact hypersurfaces in Hn+1, the simplest noncompact hypersurfaces in Hn+1 are
those that have a single point at the infinity Sn. Their corresponding domains in Sn are punc-
tured spheres Sn \ {n}. In this context, we establish an explicit relationship between another
pair of celebrated theorems in conformal geometry and in hypersurface theory: Liouville type
theorems and Bernstein type theorems. We focus on the cases where the positive constants in
(4.4) and (4.8) are admissible and elliptic equations are non-degenerate. First, let us state the
aforementioned results.

Liouville Theorem [7] The only complete conformal metrics on Sn \ {n} with
nonnegative constant scalar curvature is the Euclidean metric.

Its generalization to fully nonlinear non-degenerate elliptic functions (f,Γ) is as follows:

Generalized Liouville Theorem [34] Suppose that (f,Γ) is elliptic in the sense
that it satisfies (4.1) (4.2) (4.3). Then the only possible complete conformal metric
of nonnegative scalar curvature on Sn \ {N} satisfying (4.4) for an admissible
constant is the Euclidean metric.
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We remark that the above theorems are simplified versions of Theorem 1.4 in [33] and Theorem
1.3 in [34]. For hypersurfaces in hyperbolic space we have the following:

Bernstein Theorem [4, 12]: The only properly embedded, complete, constant
mean curvature H ≥ n hypersurfaces with one point at infinity in Hn+1 are horo-
spheres.

As far as we know, the above result has been generalized for special Weingarten surfaces in H3

(see [39, 40] and [1]), but not for higher dimensions. We follow the proof in [12] and establish
the following generalized Bernstein Theorem:

Theorem 4.2 (Generalized Bernstein Theorem). Suppose that (W ,Γ∗) is an elliptic function
satisfying (4.5) (4.6) (4.7). Then the only possible properly embedded, complete hypersurface
in Hn+1 satisfying (4.8) for an admissible constant with only one point at infinity is a horosphere.

Proof. The proof is more or less the same as the proof of Theorem A given in Section 2 of [12].
The readers are referred to [12] for more details. It is particularly helpful to use the Figure 1
and 2 in Section 2 of [12]. However, we would like to take this opportunity to clarify that our
assumptions (4.5) (4.6) (4.7) are sufficient for the argument.

Suppose that there is such surface Σ in Hn+1. We use the half space model for hyperbolic
space Hn+1 so that the single point infinity of the surface Σ is at the infinity of Rn+1

+ . Let γ be
any vertical line in the half space Rn+1

+ . Then γ is a complete geodesic in Hn+1. Let Pt denote
the foliation of totally geodesic hyperplanes orthogonal to γ passing through γ(t). Since Σ is
properly embedded, there exists t0 so that Σ ∩ Pt = ∅ for all t < t0 and t0 is the first time that
Pt touches Σ. At this first point of contact, Σ is locally a graph over Pt0 . We can raise Pt further
for t > t0 to obtain Σ−(t) := Σ ∩

⋃
s<t Ps, which is a graph under Pt at least for t close to

t0. Now we reflect Σ−(t) with respect to Pt and denote the reflection by Σ̃−(t). The proof of
Theorem A in [12] is based on the fact that the reflection Σ̃−(t) can never touch the rest of the
surface Σ+(t) := Σ \ Σ−(t), not even at the boundary of the reflection Σ̃−(t). Here, by touch,
we mean their tangent hyperplanes are parallel at the point of contact.

Assumption (4.5) allows us to define admissible constants K. Assume otherwise the re-
flection Σ̃−(t) does touch the rest Σ+(t). When Σ̃−(t) first touches Σ+(t), with respect to the
inward normal to Σ, Σ̃−(t) is above Σ+(t). Hence the principal curvatures (κ−1 , · · · , κ−n ) of
Σ̃−(t) at the touch point are in Γ∗ ∩ ((κ1, · · · , κn) + Γn), where (κ1, · · · , κn) are the principal
curvatures of Σ+(t) at the touch point. Then (4.6) and (4.7) imply (κ−1 , · · · , κ−n ) = (κ1, · · · , κn)
due to that factW(κ−1 , · · · , κ−n ) =W(κ1, · · · , κn). After we know the principal curvatures are
the same for the two surfaces at the touch point, we may consider a smooth family of surfaces
deforming from Σ̃−(t) to the Σ+(t), where the functionW is well defined, at least locally near
the touch point. Then the Hopf maximum principle is applicable and gives the fundamental
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proposition of the Alexandrov reflection method due to the assumption (4.7) (cf. [29]).

Having explained the use of our assumptions (4.5) (4.6) (4.7), we now briefly recapture the
idea in the proof of Theorem A in [12]. First one proves that the reflection Σ̃−(t) can never
touch the rest of the surface Σ+(t). Second one observes that if the surface is not a horosphere
in Hn+1 (i.e. a horizontal hyperplane in Rn+1

+ ), then the incident that the reflection touches the
rest of the surface at the boundary for the first time always happens for some vertical line (cf.
Figure 2 in Section 2 of [12]). This completes the proof.

As a consequence of Theorem 3.1 and Theorem 3.7, we have the following:

Corollary 4.1. Suppose that (W ,Γ∗) is an elliptic function satisfying (4.5) (4.6) (4.7). Then the
only possible admissible hypersurface in Hn+1 with the opposite orientation and a single point
at infinity satisfying (4.8) for an admissible constant is a horosphere.

Equivalently, suppose that (f,Γ) satisfies (4.1) (4.2) (4.3). Then the only possible realizable
metric on Sn \ {p} satisfying (4.4) for an admissible constant is the Euclidean metric.

4.4 General Symmetry
In this subsection we derive a slight extension of [31, Theorem 2.1]. As a consequence, we will
derive Delaunay type theorems for admissible hypersurafces as well as realizable metrics.

First we introduce some notation. Let us denote the group of conformal transformations on
Sn by Con(Sn) and the group of isometries of Hn+1 by Iso(Hn+1). Let g be a conformal metric
on a domain Ω ⊂ Sn. We say that g is Φ−invariant if

Φ : Ω→ Ω and g = Φ∗g

for Φ ∈ Con(Sn). And we say that a hypersurface Σ in Hn+1 is I−invariant if

I : Σ→ Σ

for I ∈ Iso(Hn+1). Remember that a conformal transformation Φ ∈ Con(Sn) induces an
unique isometry I ∈ Iso(Hn+1) and vice versa (cf. [11], for instance). The following fact can
be verified and appeared in [18]:

Lemma 4.2. Let φ : Mn → Hn+1 be an admissible hypersurface in Hn+1 and g be correspond-
ing realizable metric on G(M). Let I ∈ Iso(Hn+1) be an isometry and Φ ∈ Con(Sn) be the
associated conformal transformation. Then φ is I−invariant if and only if g is Φ−invariant.
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From this fact we know that symmetries are preserved under the correspondence between
admissible hypersurfaces and realizable metrics. Our issue here is to retain the symmetry for
a complete hypersurface in Hn+1 from that of its boundary at infinity or equivalently to retain
the symmetry for a complete conformal metric on a domain in Sn from that of the domain. The
proof of the following slight extension of [31, Theorem 2.1] is readily seen from the original
proof in [31] and from the proof of Theorem 4.2. To state our theorem we introduce some more
notation. Let E be the equator in Sn and P be the totally geodesic hyperplane whose boundary
is E. Let R stand for the reflection in Hn+1 with respect to the hyperplane P .

Theorem 4.3. Suppose that (W ,Γ∗) satisfies (4.5) (4.6) (4.7). Let Σ ⊂ Hn+1 be a properly
embedded hypersurface whose boundary ∂∞Σ at the infinity is inE. Assume that Σ is an elliptic
Weingarten hypersurface in the sense that the equation (4.8) holds on Σ for an admissible
constant K. Then ∂∞Σ can not be all of E and the surface Σ is R−invariant.

Again, as a consequence, we conclude the following general Alexandrov reflection principle
for both admissible hypersurfaces and realizable metrics:

Corollary 4.2. Suppose that (W ,Γ∗) satisfies (4.5) (4.6) (4.7). Let φ : Mn → Hn+1 be an ad-
missible hypersurface with the opposite orientation satisfying (4.8), whose boundary ∂∞φ(Mn)
at the infinity is a disjoint union of smooth compact submanifolds with no boundary in E. Then
∂∞φ(Mn) can not be E and the surface φ is R−invariant.

Equivalently, suppose that (f,Γ) satisfies (4.1) (4.2) (4.3). Let g be a realizable metric
satisfying (4.4) on Ω such that ∂Ω ⊂ E is a disjoint union of smooth compact submanifolds
with no boundary. Then ∂Ω can not be E and g is R−invariant.

There are many consequences of Corollary 4.2. In particular, when the boundary at infinity
consists of exactly two points, we obtain the following Delaunay type theorem.

Corollary 4.3. Suppose that (W ,Γ∗) satisfies (4.5) (4.6) (4.7). Let φ : Mn → Hn+1 be an ad-
missible hypersurface with the opposite orientation satisfying (4.8), whose boundary ∂∞φ(Mn)
at the infinity consists of exactly two points. Then the surface φ is rotationally symmetric with
respect to the geodesic joining the two points at the infinity of φ.

Equivalently, suppose that (f,Γ) satisfies (4.1) (4.2) (4.3). Let g be a realizable metric
satisfying (4.4) on Ω = Sn \ {p, q}. Then g is cylindric with respect to the geodesic joining the
two points in ∂Ω.

In the theory of hypersurfaces in hyperbolic space, Delaunay type theorems were established
in [28, 31] for constant mean curvature surfaces, and in [1, 39, 40] for special Weingarten
surfaces in H3. Also Corollary 4.3 should be compared with Theorem 1.2 in [32], where the
scalar curvature is assumed to be nonnegative.
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