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ABSTRACT OF THE DISSERTATION

Programmable Accelerators for Lattice-based Cryptography

By

Hamid Nejatollahi

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Nikil Dutt, Chair

Advances in computing steadily erode computer security at its foundation, calling for fun-

damental innovations to strengthen the weakening cryptographic primitives and security

protocols. While many alternatives have been proposed for symmetric key cryptography

and related protocols (e.g., lightweight ciphers and authenticated encryption), the alterna-

tives for public key cryptography are limited to post-quantum cryptography primitives and

their protocols. In particular, lattice-based cryptography is a promising candidate, both in

terms of foundational properties, as well as its application to traditional security problems

such as key exchange, digital signature, and encryption/decryption. At the same time, the

emergence of new computing paradigms, such as Cloud Computing and Internet of Every-

thing, demand that innovations in security extend beyond their foundational aspects, to the

actual design and deployment of these primitives and protocols while satisfying emerging

design constraints such as latency, compactness, energy efficiency, and agility.

In this thesis, we propose a methodology to design programmable hardware accelerators for

lattice-based algorithms and we use the proposed methodology to implement flexible and

energy efficient post-quantum cache- and DMA-based accelerators for the most promising

submissions to the NIST standardization contest. We validate our methodology by inte-

grating our accelerators into an HLS-based SoC infrastructure based on the X86 processor

xi



and evaluate overall performance. In addition, we adopt the systolic architecture to accel-

erate the polynomial multiplication, which is the heart of a subset of LBC algorithms (i.e.,

ideal LBC), on the field programmable gate arrays (FPGAs). Finally, we propose a high-

throughput Processing In-Memory (PIM) accelerator for number theoretic transform (NTT-)

based polynomial multiplier.
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Chapter 1

Introduction

A worldwide research effort is currently pursuing a scalable quantum computer. Quantum

computers, as envisioned by Richard Feynman [90], use quantum mechanics to carry out

computation that can reach an exponential speedup in several applications, such as quantum

chemistry [172]. Exponential speed up can also be reached in other problems, such as the

search for the period of a function. As demonstrated by Peter Shor [208], it would allow us

to factorize integers in polynomial time and ultimately render the public key infrastructure

insecure. Shore’s algorithm needs 6146 and 2330 Qubits to break ECC-256 and RSA-3072,

respectively, in 3848 seconds computing the elliptic curve discrete logarithms in E(Fp) and

factoring an RSA modulus N needs 6146 and 2330 Qubits for RSA-3972 and ECC-256,

respectively [193].

The scientific community is investing significant efforts to address the problem in a timely

and effective way. Post-quantum cryptography is a vibrant area of research devoted to

studying alternative public-key algorithms, executed on classical computers, but capable of

withstanding quantum computational power. In December 2018, the US president signed

H.R. 6227 to fund the National Quantum Initiative Act (NQI)1. The law authorizes 1.2 billion

1https://fas.org/sgp/crs/misc/R45409.pdf

1

https://fas.org/sgp/crs/misc/R45409.pdf


to be invested in quantum information science over five years. NQI funding will go to the

National Institute of Standards and Technology (NIST), National Science Foundation (NSF)

Multidisciplinary Centers for Quantum Research and Education and to the Department

of Energy Research and National Quantum Information Science Research Centers. The

effort of governmental agencies in conducting the standardization of these novel algorithms

endorses the urgency of the threat. The most relevant standardization effort is the NIST

one, that started in 2017 with the submissions of potential candidates, and continues with

the evaluation of the candidates for the next six to seven years, until the selection of the

new standards. During the evaluation phase, the proposed algorithms will be analyzed and

compared using various parameters, including the security and efficiency of software and

hardware implementation.

Among the post-quantum cryptography families, the family of lattice-based cryptography

(LBC) appears to be gaining acceptance. Its applications are proliferating for both tra-

ditional security problems (e.g., key exchange and digital signature), as well as emerging

security problems (e.g., homomorphic schemes, identity-based encryption and even sym-

metric encryption). Lattice-based cryptographic primitives and protocols provides a rich

set of primitives which can be used to tackle the challenges posed by deployment across

diverse computing platforms, e.g., Cloud vs. Internet-of-Things (IoT) ecosystem, as well

as for diverse use cases, including the ability to perform computation on encrypted data,

providing strong (much better understood than before) foundations for protocols based on

asymmetric key cryptography against powerful attackers (using Quantum computers and

algorithms), and to offer protection beyond the span of traditional cryptography. Indeed,

lattice-based cryptography promises to enhance security for long-lived systems, e.g., critical

infrastructures, as well as for safety-critical devices such as smart medical implants [98].

2



1.1 Trends, Challenges and Needs for Lattice-based

Cryptography Implementations

The emergence of new computing platforms, such as cloud Computing, software defined

networks and Internet of Everything, demands the adoption of an increasing number of se-

curity standards, which in turn requires the implementation of a diverse set of cryptographic

primitives, but this is only part of the story. At the computing platform level, we face a

diversity of computing capability. On one end of the spectrum, in the cloud computing

and software defined network space, applications demand high-performance, and energy ef-

ficiency of cryptographic implementations. This calls for the development of programmable

hardware capable of running not only individual cryptographic algorithms, but full proto-

cols efficiently, with the resulting challenge of designing for agility, e.g., designing computing

engines that achieve the efficiency of Application-Specific Integrated Circuits (ASICs), while

retaining some level of programmability. On the other end of the spectrum, in the IoT

space, implementations of standardized cryptography to handle increased key sizes become

too expensive in terms of cost, speed, and energy, but are necessary, e.g., in the case of

long lived systems such as medical implants and image encryption algorithms [15]. In part,

this demands the development of new and strong lightweight alternatives to symmetric key

cryptography as well [14]. Furthermore, given the variety of applications and their interplay

with the cloud, even in this case agility in the implementation becomes a key requirement.

This poses tremendous challenges in the design and implementation of emerging standards

for cryptography in a single embodiment, since the computing platforms exact diverging

goals and constraints.

Figure 1.1 illustrate the taxonomy of the state-of-the-art accelerator architecture space.

Compared to instruction-level accelerators, kernel-level accelerators implement large with

more semantically rich functions of computation (e.g., Keccak and polynomial multiplica-

3



Part of the
Pipeline

Attached to
Cache

Attached to the
Memory Bus

Attached to the
I/O Bus

Instruction-
Level

Kernel-
Level

Application-
Level

Table 2.1: Accelerator taxonomy.

commercial accelerators require minimal changes in general-purpose core designs; accel-
erators either reside on a separate chip, as in the case of GPUs or FPGA accelerators, or
they are plugged in as standalone IP blocks, as in the case of today’s SoCs. On the soft-
ware side, the software stack is also more or less intact: the entire workload is offloaded
to accelerators, and no additional management is needed.

Industry has also been good at providing tightly coupled, instruction-level accelera-
tors, such as FPU and SIMD units, a category located at the opposite corner of the table
from loosely coupled, application-level accelerators. The wide adoption of accelerators
in this category also stems from the relative ease with which they can be integrated. Of
course, certain modifications to ISAs and compilers are needed to allow applications to
leverage accelerators inside the pipeline, such as auto vectorization for vector units, and
hardware designers need to balance the new execution units with the rest of the pipeline.
However, the changes are well-contained inside the pipeline, with little impact on the
memory system.

The accelerator space that requires more attention in the next decade lies in cache-
attached, kernel-level accelerators. These are the areas where we see little industry pres-
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Figure 1.1: Accelerator taxonomy [205].

tion) that leads to less flexibility [205]. Application level accelerators compute the whole

application with the superior performance but the lowest flexibility. In the order dimen-

sion, accelerators can be tightly-coupled (i.e., part of the pipeline) or loosely-coupled to the

processor. The more loose the connection to the CPU is, the more flexibility and lower

performance are expected.

Cryptographic accelerators, such as X86 AES, are typically tightly-coupled application-level

co-processors. However, the early adoption of quantum-resistant hardware is challenging

because in this period of transition, during which candidates are still under the evaluation,

a post-quantum standard is yet to be decided and also the parameters of the candidates

themselves can change; subsequently, it is troublesome to commit to a specific algorithm

and a specific set of parameters, knowing that they could be soon outdated [164].

The situation would change if the accelerators would be able to meet two requirements: 1)

reach the required performance and 2) be flexible, thus “robust” to change in parameters
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and algorithms (providing the so-called crypto-agility). To meet these goals, we propose to

accelerate, instead of a complete algorithm, only several portions of the software routines,

called micro-kernels. Compared to a whole dedicated accelerator, a micro-kernel accelerator

does not reach the same level of performance, because the main processor executes parts

of the computation. Subsequently, hardware acceleration based on micro-kernels is more

flexible compared to the classical counterparts.

As shown in red , Figure 1.1, we design loosely-coupled kernel-level accelerators which are

suitable for LBC schemes because the common resource-intensive kernels consumes most of

the execution cycles and power. Figure 1.2 shows the profiling results for the most promising

LBC schemes in the server-side (sign) client (verify). NewHope and Kyber are key encap-

sulation mechanisms (KEM) while Dilithium and qTESLA are digital signatures. NTT CT,

NTT GS, and Keccak consume most of the cycles over different schemes for which we create

flexible accelerators.

NewHope Client NewHope Server

NTT GS

HW

Keccak

Montgomery Mult

Others

38.6%

13.8%15.9%

31.7%
46.2%

12.1%
10.9%

6.0%

24.8%

Kyber Client Kyber Server
NTT GS

NTT CT

Keccak

Others

Montgomery mult

Polyvec ntt

Polyvec invntt

18.4%

30.7%
18.4%

26.1%

6.0%
12.1%

28.0%

17.2%

23.1%

6.4%
6.9%

6.3%

Dilithium Sign Dilithium Verify

NTT GS

NTT CT

Keccak

Store

Others

39.4%

32.5%

14.1%

14.0%
24.2%

37.2%

27.1%

6.4%
5.1%

qTESLA Sign qTESLA Verify
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Keccak

computeEc

Others

26%

6%
57%

11.0%

29%

8% 49%

14.0%

Figure 1.2: Profiling results for the most promising LBC schemes. Profiling results are based
on the user-level CPU cycles
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Figure 1.3: Thesis Contribution

1.2 Thesis Contributions

Figure 1.3 divides our contribution into two wide parts: 1) design space exploration (DSE)

of accelerators and verify the design in system on chip (SoC) for numerous LBC schemes. 2)

Hardware acceleration of polynomial multiplier.

We focus on domain-specific programmable hardware accelerators because they are the most

suitable, at this stage, to adopt post-quantum algorithms in hardware. We concentrate on

lattice-based algorithms, the most promising family of quantum-resistant algorithms thanks

to their versatility and their excellent performance. Around half of the submission to the

first round of the NIST PQC Standardization Process belong to this family. After a year of

evaluation, 26 of the candidates are chosen for the second round; twelve candidates belong

to lattices, and the remaining 14 candidates belong to code-based, hash-based, supersingular

elliptic curve isogeny, and multivariate cryptography [164].

1.2.1 Design Space Exploration

As stated earlier, generation of domain specific accelerators involves considering the spec-

trum of the computing platforms which ranges from resource-constrained IoT devices to
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performance-driven cloud servers. Therefore, explore the security, performance, area, power,

and energy trade-offs of the target kernels seems to be essential. In this dissertation, we

adopt a Pre-RTL simulation framework to explore the design space of micro-kernel-based

accelerators for a subset of (LBC) algorithms (i.e., ideal LBC) and implement the identified

accelerators. Based on Figure 1.2, we explore design space of the below resource-intensive

kernels:

1. Keccak. Keccak is a family of cryptographic primitives primarily as a candidate

for the NIST SHA-3 competition [34]. The main transformation in the family is the

Keccak-f[1600] permutation which is used in the sponge mode in the specification for

the SHA-3 hash function. The hash function operates on a state of 1600 bits and is

designed for easy implementation in both software and hardware.

2. Number theoretic transform (NTT). Polynomial multiplication is usually performed

using the NTT, a variant of the Discrete Fourier Transform (DFT) for polynomial rings

on finite arithmetic fields [160]. The process is slow due to the repeated use of expen-

sive operations like multiplication and modulo reduction. Two common algorithms of

performing NTT are Cooley-Tukey (NTT CT) [61], produces the result in the bit-reverse

order by receiving the input in the correct order, and Gentleman-Sande (NTT GS) [100],

receives the input in the reverse order and produces the output in the correct order.

As can be seen in Figure 1.2, and NTT GS and NTT CT are the most resource-intensive

kernels in the ideal LBC schemes.

We design cache-assisted [166] (Chapter3) and DMA-assisted [163] (Chapter4) accelerators

and evaluate them into an HLS-based SoC infrastructure based on the X86 processor and

evaluate overall performance, power, and energy.
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1.2.2 Hardware Acceleration of Polynomial Multiplier

Polynomial multiplication is the most time-consuming routine int ideal LBC schemes. We

design accelerators for two common methods to compute the polynomial multiplication.

1. Convolution-based multiplier. The easiest method to multiply two polynomials

is to use the convolution (Schoolbook [135]) with the time complexity of O(n2). We

adopt the systolic architecture [137] to accelerate the polynomial multiplication and

implement on Zynq UltraScale+ FPGA [167] (Chapter5). Our design is 22x faster

than the state-of-the-art FGPA implementation of the polynomial multiplier in the

NewHope-Simple key exchange mechanism on a low-cost Artix7 FPGA [223] for poly-

nomial degree n=1024.

2. NTT-based multiplier. Polynomial multiplier is usually implemented by the Num-

ber Theoretic Transform (NTT), which drops the time complexity of the polynomial

multiplier from O(n2) to O(n · log n). We present FPGA-based [167] and processing

in memory (PIM-) based [165] in Chapter5 and Chapter6, respectively.

• FPGA-based NTT. We design and implement two NTT-based polynomial mul-

tipliers on FPGAs.

– Seq NTT. Sequential NTT-based multiplier which consists of a single butterfly

operator and perform the polynomial multiplication in serial. It achieves

3x speedup over the state-of-the-art on a low-cost Artix7 FPGA [223] for

polynomial degree n=1024.

– SA NTT. When synthesized on a Zynq UltraScale+ FPGA, the NTT-based sys-

tolic array design (SA NTT) achieve on average 1.7x speedup over our sequen-

tial NTT-based multiplier which means it is 5x faster than the state-of-the-art

[223] for polynomial degree n=1024.
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.

• PIM-based NTT. We design a high throughput PIM-based NTT that

– achieves 31x throughput improvement with the same energy and 28% latency

reduction compare to the our NTT on FPGA [167] (which itself is 3x faster

than the state-of-the-art [223] for polynomial degree n=1024).

– provides 5x throughput improvement with the 20x energy reduction, but 6x

latency increase compare to Convolution-based multiplier on FPGA [167].

– enables fast execution of the polynomial multiplication with the support of

polynomials with degrees up to 32k, accommodating requirements for public

key cryptographic systems for data at rest and in communication, and data

in use, i.e., homomorphic encryption.

The rest of the thesis is organized as follows: Chapter 2 provides the background for LBC

primitives and surveys the LBC implementations; Chapter 3 and Chapter 4 detail the designed

cache- and DMA-based accelerators, respectively. Chapter 5 discusses the FPGA-based

polynomial multipliers. Chapter 6 introduces the PIM-based polynomial multiplier. Finally,

we conclude the thesis in Chapter 7.
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Chapter 2

Background and Related Works

Lattice-based cryptographic primitives and protocols provides a rich set of primitives which

can be used to tackle the challenges posed by deployment across diverse computing plat-

forms, e.g., Cloud vs. Internet-of-Things (IoT) ecosystem, as well as for diverse use cases,

including the ability to perform computation on encrypted data, providing strong (much

better understood than before) foundations for protocols based on asymmetric key cryptog-

raphy against powerful attackers (using Quantum computers and algorithms), and to offer

protection beyond the span of traditional cryptography. Indeed, lattice-based cryptography

promises to enhance security for long-lived systems, e.g., critical infrastructures, as well as

for safety-critical devices such as smart medical implants [98]. In this chapter, we review

the foundations of lattice-based cryptography, some of the more adopted instances of lat-

tices in security, their implementations in software and hardware, and their applications to

authentication, key exchange and digital signatures.
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2.0.1 Arithmetic and Components of Lattices

In this section, we provide an evaluation of the components in a lattice-based cryptosystem

that guides the actual implementation. To components are critical: (a) the Polynomial

multiplication for ideal lattices, and matrix multiplication for standard lattice are the main

speedup bottlenecks; (b) The discrete Gaussian sampling is used to sample noise in order to

hide the secret information. There are various algorithms for the sampler and multiplier in

the literature, by providing the designer with a specific goal [160]. We briefly review different

algorithms and outline their practical implementations in Section 2.1.1

There exist two main classes of lattice-based algorithms used in cryptography, namely NTRU

and Learning with Error (LWE). The security of NTRU is based on hardness not-provably re-

ducible to solving the Closest Vector Problem (CVP) in a lattice, whereas the security of LWE

relies on provably reducible solving the Shortest-Vector Problem (SVP) in a lattice. Con-

sequently, NTRU suffers from security guarantees, but in practice provides more flexibility

and efficiency in the implementation. On the contrary, LWE problems are resistant to quan-

tum attacks, while their relatively inefficient nature led researchers to devise more efficient

formulations, e.g., over rings - Ring Learning with Errors (Ring-LWE).

Implementations are broadly classified in pure software, pure hardware, and hardware/software

co-design cryptographic engines [160]. Implementation of the modulo arithmetic (multiplica-

tion and addition of big numbers) is a bottleneck in LBC. For Standard LWE schemes, matrix

multiplication algorithms are adopted, whereas number theoretic transform (NTT) is a bet-

ter choice for polynomial multiplication in Ring-LWE. A summary of modular arithmetic is

presented in Figure 2.1.

In addition to the arithmetic portion, a bottleneck in lattice-based schemes is the extraction

of the random term, which usually is implemented with a discrete noise sampler (from

a discrete Gaussian distribution) and can be done with rejection, inversion, Ziggurat, or
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Modular
Multiplication

Multiplication

Schoolbook O(n2)[135]

k-way Toom-Cook O(nlog(2k−1)/logk)) [60]

Karatsuba O(n1.58) [131]

Schönhage-Strassen O(n.logn.loglogn) [203]

Fürer O(n.logn.2O(log∗n)) [97]

FFT O(n.logn) [169]

Cooley–Tukey [61]

Gentleman-Sande [100]

Reduction

Classical [135]

Montgomery [156]

Barret [27]

Figure 2.1: Common modular Multiplication algorithms

Knuth-Yao sampling with moderate standard deviation for key exchange and public key

encryption, and small standard deviation for digital signature to achieve a compact and

secure signature.

When implemented, Standard LWE-based schemes exhibit a relatively large memory footprint

due to large key size - hundreds of kilobyte for the public key - which render a straightforward

implementation of standard LWE-based schemes impractical. The adoption of specific ring

structures, e.g., Ring-LWE, offers key size reduction by a factor of n compared to Standard

LWE [151], making Ring-LWE an excellent candidate for resource-constrained devices, such as

Wi-Fi capable smart devices, including medical implants. Another avenue to address resource

constrained devices is that memory footprint can be traded off with security assurance, which

improves both efficiency and memory consumption.

High-performance Intel/AMD processors, which are notoriously equipped with AVX vec-

tor instructions, and ARM/AVR micro-controllers are popular platforms for software im-
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plementations, as we will see in more detail in the coming sections. Practical software

implementations of standard lattices, encryption scheme [122] and key exchange [42], have

been published recently. For hardware implementations, FPGAs provide flexibility and cus-

tomization but not agility. Hardware implementations of lattice-based schemes (e.g., BLISS-I

[79] with higher security level) are about an order of magnitude faster than the hardware

implementation of RSA-2048 [123]. Furthermore, another candidate platform to implement

lattice-based schemes is application specific integrated circuits (ASICs) of which there appear

to be no such implementations in the literature at this time. However, the main advantages

and challenges for ASIC design of lattice-based schemes are presented in [170].

2.0.1.1 The multiplier component

Matrix multiplication is used for the standard lattices, while polynomial multiplication is em-

ployed for ideal lattices. Arithmetic operations for a Ring-LWE based scheme are performed

over a ring of polynomials. The most time and memory consuming part is the polynomial

multiplication. The easiest way to multiply two polynomials is to use the Schoolbook al-

gorithm with the time complexity of O(n2) [135]. Let n and p be degree of the lattice (n

is a power of 2) and a prime number (p = 1 mod 2n), respectively. Zp denotes the ring of

integers modulo p and xn+1 is an irreducible degree n polynomial. The quotient ring Rp,

contains all polynomials with the degree less than n in Zp, that defines as Rp = Zp/[xn+1]

in which coefficients of polynomials are in the range [0,p).

The number theoretic transform (NTT) is a generalization of Fast Fourier Transform (FFT),

which is carried out in a finite field instead of complex numbers. The latter could achieve

time complexity of O(nlogn). In other words, exp(-2πj/N) with nth primitive root of unity

ωn which is defined as the smallest element in the ring that ωnn = 1 mod p and ωn
i 6= 1

mod p for i 6=n. The main idea behind this is to use the point value representation instead

of the coefficient representation by applying NTT in O(nlogn); thereafter performing point-
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wise multiplication in O(n) and finally converting the result to coefficient representation by

applying Inverse NTT (INTT) in O(nlogn).

a(x)× b(x) = NTT−1(NTT (a)�NTT (b)) (2.1)

Where � is the point-wise multiplication of the coefficients. If NTT is applied to a(x) with

(a0, ..., an−1) as coefficients, we would have:

(â0, ..., ˆan−1) = NTT (a0, ..., an−1) (2.2)

âi =
n−1∑
j=0

aiω
ijmod(p), i = 0, 1, ..., n− 1 (2.3)

In order to retrieve the answer from point value representation using NTT−1, it is sufficient

to apply NTT function with −ω and divide all the coefficients by n:

ai =
n−1∑
j=0

âiω
−ijmod(p), i = 0, 1, ..., n− 1 (2.4)

In order to compute NTT(a), we pad the vector of coefficients with n zeros that leads to

doubling the input size. Negative wrapped convolution technique [227], avoids doubling the

input size.

To improve efficiency of polynomial multiplications with NTT, combining multiplications of

powers of ω with powers of ψ and ψ−1 ( ψ2 = ω) is beneficial which requires storage mem-
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ory for precomputed powers of ω and ψ−1 in bit-reversed order [196, 185, 145]. NTT can

be used only for the p = 1 (mod 2 n) case where p is a prime integer. Suppose a′ =

(a0, ψa1, ..., ψ
n−1an−1), b

′ = (b0, ψb1, ..., ψ
n−1bn−1), c

′ = (c0, ψc1, ..., ψ
n−1cn−1) to be coeffi-

cient vectors of the a, b, c that are multiplied component-wise by (1, ψ1, ..., ψn−1). Based on

the negative wrapped convolution theorem, modulo (xn + 1) is eliminated and the degree of

NTT and NTT−1 is reduced from 2n to n.

c′ = NTT−1(NTT (a′)�NTT (b′)) (2.5)

c = (ψ0c′0, ψ
−1c′1, ..., ψ

−n+1c′n−1) (2.6)

Two common algorithms to compute NTT are Cooley-Tukey butterfly (CT) [61] and Gentleman-

Sande butterfly (GS) [100]. CT, decimation-in-time, outputs the result in the bit-reverse order

by getting the input in the the correct order. GS, decimation-in-frequency, receives the input

in the reverse order and produces the output in the correct order [145]. Employing GS to

compute both NTT and NTT−1 involves in bit-reverse calculation [11]; however, bit-reverse

step can be avoided by using CT for NTT and GS for NTT−1 [43, 145].

Other popular multiplication algorithms in literature are the Karatsuba algorithm (with time

complexity of O(nlog3/log2) [131]), and subsequent variants of it [65]. Schönhage-Strassen with

time complexity of O(n.logn.loglogn) [203] outperforms the Karatsuba algorithm [52].

An extensive analysis and comparison for hardware complexity of various modular multi-

plications, including Schoolbook (classical), Karatsuba, and FFT, with different operand
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size, are presented in [65]. Authors calculate hardware complexity of each multiplier by

decomposing it into smaller units such as the full adder, half adder, multiplexer, and gate.

Rafferty et al. [189] adopt the same approach to analyze large integer multiplications of both

combined and individual multipliers. Karatsuba multiplier outperforms for operands greater

or equal to 32 bits. Schoolbook imposes large memory footprint in order to store partial

products which negatively impact performance that is mitigated by Comba [59] with the

same time complexity but relaxing memory addressing by optimizing the sequence of partial

products. Rafferty et al. compare hardware complexity, in terms of +, −, and ∗ units, of

different combinations of classical (Comba), Karatsuba, and FFT (NTT for integers) for

up to multipliers with 65536-bit operands. However, they evaluate the latency and clock

frequency by implementing in hardware (Xilinx Virtex-7 FPGA) for up to 256-bits for the

combination of NTT+Comba and 4096-bit for Karatsuba+Comba which are not in a good

range for lattice-based cryptography (e.g., 1024 × 14 = 14336 bits are used for NewHope

key exchange). Based on their (analytical) hardware complexity analysis, the combination

of Karatsuba-Schoolbook is the best choice for operands under 64 bits. Karatsuba-Comba

is preferable for operands for 64 bits to 256 bits. For larger operands, the lowest hardware

complexity is achieved by combined multiplier NTT-Karatsuba-Schoolbook. It should be

mentioned that results are for a single multiplication. Authors make some assumption for

the sake of simplicity such as the shift operation is free and inputs are ready.

2.0.1.2 The Sampler Component

The quality of a discrete Gaussian sampler is determined by a tuple of three parameters:

(σ,λ,τ). In such a tuple σ is the standard deviation (adjusts dispersal of data from the

mean), λ is the precision parameter (controls statistical difference between a perfect and im-

plemented discrete Gaussian sampler), and τ is the distribution tail-cut (determines amount

of the distribution that we would like to ignore). Each of these parameters affects the secu-
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rity and efficiency of the sampler. For instance, a smaller standard deviation decreases the

memory footprint required to store precomputed tables. For encryption/decryption schemes

σ=3.33 [143] is suggested. Digital signature sampling from a Gaussian sampler involves

large σ=215 [79]. However, by employing Peikert’s convolution lemma [173], the standard

deviation can be reduced by order of magnitude which is a remarkable improvement on the

precomputed table size. Speed and memory footprint is λ dependent, i.e., higher λ results in

more secure but a slower and bigger sampler. The tail of the Gaussian distribution touches

the x-axis at x=+∞ (considering only the positive side due to the symmetry) with negligi-

ble probability. Tail-cut parameter (τ) defines the amount of the distribution that we would

like to ignore, hence random number e is sampled in |e| ∈ {0, σ × τ} instead |e| ∈ {0,∞}.

Instead of the statistical distance, Rényi divergence technique [21] can be employed to

measure the distance between two probability distributions (e.g., [11]). More precisely, in

lattice-based cryptography, Rényi divergence is used to generalized security reductions.

Sampling the discrete Gaussian distribution is one the most time and memory hungry parts

of lattice-based cryptosystems, due to the demands of high precision, many random bits,

and huge lookup tables. To be more specific, the obligatory negligible statistical distance

between the implementation of a Gaussian sampler (approximated) and the theoretical (per-

fect) discrete Gaussian distribution imposes expensive precise floating point arithmetic (to

calculate the exponential function) or large memory footprint (to store precomputed proba-

bilities). To keep statistical distance less than 2−λ, floating point precision with more than

standard double-precision is obligatory which is not natively supported by the underlying

platform; thus software libraries should be used to perform higher floating-point arithmetic.

It is impractical to sample from a perfect Gaussian sampler; hence a λ-bit uniform random

integer is used to approximate the discrete sampler. Fortunately, it is proven that the Gaus-

sian sampler could be used to achieve λ/2 security level (approximated sampler) instead of

λ level (perfect sampler), since (to date) there is no algorithm that can distinguish between

a perfect sampler (λ bits) and an approximate sampler (λ/2 bits) [198]. In other words,
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we can cut half of the bits in the sampler which results in a smaller and faster sampler

[122, 199, 26]. Reduction in precision parameter (from λ to λ/2) changes tail-cut parame-

ter (τ) as τ =
√
λ× 2.ln(2) [121]. Sampling from a Gaussian distribution may lead to a

timing side-channel attack, which can be avoided by using a constant generic time Gaussian

Sampling over integers [155]. Folláth provides a survey of different Gaussian samplers in

lattice-based cryptography schemes with a more mathematical outlook [92]. Gaussian sam-

ples are classified into six categories and guidelines provided for choosing the best candidate

on different platforms for specific parameter ranges. However, we organize Gaussian sam-

plers into the following types discussed below. A Summary of advantage and disadvantages

of each sampler are listed in Table 2.1.

Rejection Sampler

Firstly, x is sampled in (-τσ,τσ) uniformly at random where τ and σ are tail-cut and standard

deviation of Gaussian distribution. After that, x is rejected with the probability proportional

to 1-exp(-x2/2σ2). The high rejection rate of samples (on average eight trials to reach ac-

ceptance) along with expensive calculation of exp() are the main reasons for the inefficiency

[225]. Göttert et al. [103] employ rejection sampler for the first time within LBC. Remarkable

speed and area improvement could be achieved by accomplishing rejection operation using

lazy floating-point arithmetic [83].

Bernoulli Sampler

Bernoulli is an optimized version of rejection sampling in order to reduce average required

attempts for a successful sampler from 10 to around 1.47 with no need to calculate exp()

function or precomputed tables [178]. Bernoulli is introduced in [79] for lattice-based cryp-

tography and used widely in the research community [183, 180, 122]. The main idea be-
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hind Bernoulli sampling is to approximate sampling from DZ,kσ2 using the distribution

k ·DZ+,σ2 +U({0, ..., k−1}) where U is the uniform distribution. The procedure for Bernoulli

sampler is shown below in 5 steps.

1. sample x ∈ Z according to DZ+,σ2 with probability density of ρσ2 = e−x
2/(2σ2

2)

2. sample y ∈ Z uniformly at random in {0, ..., k − 1} and calculate z ← y + kx, j ←

y(y + 2kx)

3. sample b ← B−j/2σ2 where σ = kσ2 and B is Bernoulli distribution. To sample from

Bc where c is a precomputed constant value, a uniform number u ∈ [0, 1) with λ-bit

precision is sampled; 1 is returned if u < c, otherwise 0 should be returned.

4. if b = 0 goto to step (1)

5. if z = 0 go to step (1), otherwise generate b← B1/2 and return (−1)bz as the output

The standard deviation of the target Gaussian sampler DZ,kσ2 , equals kσ2 where σ2 =√
1

2ln2
≈ 0.849 where standard deviation of the binary Gaussian sampler DZ,σ2 and k ∈ Z+

are uniform distribution parameters.For schemes with small standard deviation (e.g., public

key encryption) sampling from binary Gaussian distribution can be eliminated [183], while

for digital signatures with large standard deviation, using Gaussian distribution is manda-

tory [180]. Gaussian distribution can be replaced with other distributions (e.g., uniform

distribution [105]). Bernoulli approach avoids long integer calculation and employs single

bit operations that make it beneficial for hardware implementation. The time dependency of

Bernoulli makes it vulnerable to timing attacks that are resolved in the hardware implemen-

tation of BLISS in [180]. Precomputed tables in Bernoulli sampling are small, besides binary

Gaussian distribution (easy to sample intermediate sampler) is independent of σ hence the

Peikert convolution lemma (smaller σ) does not have a considerable effect on the area. How-
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ever, convolution lemma reduces the area of precomputed tables in CDT sampler by a factor

of 23× for BLISS (reduces σ from 215 to 19.47).

Binomial Sampler

Centered Binomial distribution (ψk) is a close approximation of rounded Gaussian sampler

(ξσ) that eliminates the need for computing exp() and precomputed large tables. Let σ =
√

8

be the standard deviation of ξσ and a binomial distribution is parameterized with k = 2σ2;

choosing ψk as the sampling distribution has negligible statistical difference with rounded

Gaussian sampler with σ =
√

8 [11]. Centered Binomial distribution(ψk) for integer k ≥ 0

is defined as sampling 2 · k random numbers uniformly from {0, 1} as (a1, ..., ak, b1, ..., bk)

and output
∑k

i=1(ai, bi) as the random sample [11]. Since k scales with power 2 of σ, it is

not practical to use binomial sampling for digital signatures with large standard deviation.

Binomial sampler has been employed inside software implementation of NewHope [12, 13,

216, 179], HILA5 [200], LAC [147], LIMA [211], Kyber [43, 16] and Titanium [215]. It also

is used in hardware implementation of NewHope [223].

Ziggurat Sampler

Ziggurat sampler is a variation of rejection sampler introduced in [152] for a continuous

Gaussian sampler 1. The discrete version of Ziggurat sampler is proposed in [47] which is

suitable for schemes with large standard deviation. The area under the probability density

function is divided into n rectangles with the same area whose size is proportional to the

probability of sampling a point in each rectangle. The left and right corners of each rectangle

are on the y-axis and Gaussian distribution curve, respectively. Each rectangle is stored using

1Another method to sample from a continuous Gaussian is Box-Muller [45]. Box-Muller method trans-
forms two independent uniforms into two independent discrete Gaussian distributions. pqNTRUSign [50]
and NTRUEncrypt [229] use Box-Muller based Gaussian sampler.
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its lower right coordinates (Figure 2.2). Firstly, rectangle Ri and point xi inside the rectangle

is chosen uniformly at random. Since we are considering positive xi, a random sign bit, s,

is also required. If xi ≤ xi−1, xi resides below the curve and would be accepted. Otherwise,

a uniformly random yi is sampled and if yi ≤ exp(xi), the random point (xi, yi) is accepted;

otherwise new random x should be sampled and the process is repeated.

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 405

2.1 Setting

We are concerned with sampling from a discrete Gaussian distribution centered
at zero with bounded support B := [−tσ, tσ] ∩ Z for some parameter t > 0.
This bounded support is sufficient for the application in lattice-based cryptog-
raphy as long as t is chosen large enough. Moreover, we show in Sect. 3.2 how to
select parameters such that the sampled distribution is within a certain statis-
tical distance to a (truly) discrete Gaussian distribution. The assumption that
the distribution is centered at zero is also fine, as we can add a constant offset
to transform samples into a distribution centered around any other integer.

2.2 Intuition

We briefly review the continuous Ziggurat for the above setting to give some
intuition. As the target distribution is symmetric, we can proceed as follows. We
use the method to sample a value x ≤ tσ within R+

0 . Afterwards, if x = 0 we
accept with probability 1/2. Otherwise, we sample a sign s ∈ {−1, 1} and return
the signed value sx.

Now, how do we sample x within R+
0 ? During set-up, we enclose the area of

the probability density function (PDF) in an area A consisting of m horizontal
rectangles with equal area as shown in Fig. 1. How the rectangles are computed is
described below. Next, we store the coordinates (xi, yi) of the lower right corner
of each rectangle Ri, 1 < i < m − 1. Please note that each rectangle Ri can be
split into a left rectangle Rl

i that lies completely within the area of the PDF and
a right rectangle Rr

i that is only partially covered by the PDF. For an example,
see R3 in Fig. 1.

Fig. 1. Ziggurat for m = 7 with covering area A and the partition into rectangles.Figure 2.2: A partition of Ziggurat [47].

More rectangles reduce the number of rejections, better performance, and higher precision.

Due to its flexibility

Cumulative Distribution Table (CDT) Sampling

CDT is also known as the inversion sampling method [173]. CDT is faster than rejection

and Ziggurat samplers by avoiding the use of expensive floating-point arithmetic [222]. Since

in cumulative distribution all the numbers are less than 1, it is sufficient to use the binary

expansion of the fraction. CDT requires a large table to store values of the cumulative

distribution function (CDF) of the discrete Gaussian (highest memory footprint [92]) for

which their size is a function of distribution tail-cut (τ) and Gaussian parameter (σ). Variable

r is sampled uniformly at random in the range [0,1) with λ bits of precision. The goal is to find
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an x whose probability is ρ(x) = S[x+1]−S[x] where S[x] equals the value of CDF at x. CDT

performs a search, usually binary search, on the CDFto find the corresponded x. A standard

CDT needs table of size at least στλ bits; for instance BLISS-IV (σ = 13.4, τ = 215, λ = 128)

and BLISS-I (σ = 13.4, τ = 19.54, λ = 128) need at least pre-computed tables of size 630

kbits and 370 kbits for 192 and 128 bit post-quantum security, which is not practical for

resource-constrained embedded devices [79]. By employing Peikert’s convolution lemma

[173], the size of precomputed tables are dropped by the factor of 11 by sampling twice from

τ ′ = τ√
1+k2

= 19.47 instead of sampling from a DZ,τ with τ = 215. Further improvements on

table size are presented in [178] by employing adaptive mantissa size which halves the table

size.

Pöppelmann et al. [181] proposed a hardware implementation of CDT sampler which is

further optimized in [182, 180, 73]. Du et al. [72] propose an efficient software implementa-

tion of CDT that is vulnerable to timing attack which is resolved in [133] by suggesting a

time-independent CDT sampler. Pöppelmann et al. [183] combine the CDF and rejection

sampling to achieve a compact and reasonably fast Gaussian sampler.

Knuth-Yao sampler

The Knuth-Yao sampler [136] provides a near optimal sampling (suitable for the high pre-

cision sampling) thanks to its near entropy consumption of the random bits required by the

sampling algorithm. Assume n to be number of possible values for each random variable

r with the probability of pr. The probability matrix is constructed based on the binary

expansion of each variable whose rth row denotes the binary expansion of pr. According

to the probability matrix, a discrete distribution generating the binary tree (DDG) is built

whose ith level corresponds to the ith column of the probability matrix. Sampling is the

procedure of walking through the DDG tree until a reaching a leaf and returning its value

as the sampling value. At each level, a uniformly random bit indicates whether the left child

22



or right child of the current node should be visited in the future. The Knuth-Yao sampler

is suitable for schemes with small standard deviations; thus Knuth-Yao is not suitable for

digital signature because of its slow sampling caused by a high number of random bits. In

order to minimize the statistical distance between the approximated distribution and the

true Gaussian distribution, Knuth-Yao sampler needs large memory to store probability of

the sample points with high precision, which is an issue on resource-constrained platforms.

Combination of Knuth-Yao and CDT results in about halving the table sizes, which is still

prohibitively large; however, the Bernoulli sampler offers the best-precomputed table size

[79].

De Clercq et al. [66] introduce an efficient software implementation of the Ring-LWE based

cryptosystem by using Knuth-Yao as a Gaussian sampler. Using a column-wise method for

sampling, Roy et al. [197] propose the first hardware implementation of the Knuth-Yao

sampling with small standard deviation which results in faster sampling. Same authors

improve their implementation in [195].

Based on the presented results on [47], with the same memory budget, CDT beats rejection

sampling and discrete Ziggurat. The Ziggurat sampler outperforms CDT and rejection

sampling for larger values of the standard deviation. Ziggurat sampler bears almost the

same speedup as Knuth-Yao, while it improves the memory footprint by a factor of 400. As

stated earlier, due to the large standard deviation necessary for digital signature, Knuth-

Yao sampler is not suitable for digital signatures. Inside an encryption scheme with σLP =

3.3 [143], with the same security level (λ = 64), Knuth-Yao sampler beats CDT in terms

of number of operations performed in one second per slice of FPGA (Op/s/S) for time-

independent implementation [133]. However, for a time-dependent Gaussian sampler with

the same security level (λ = 94), the CDT sampler proposed by Du and Bai [73] outperforms

Knuth-Yao implementation of [195] in term of Op/s/S.

The Size of precomputed tables in a Bernoulli sampler is two orders of magnitude smaller than
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Table 2.1: Comparison of different Gaussian samplers; partially extracted from [79].

Sampler Speed FP exp() Table Size Table Lookup Entropy Features
Rejection slow 10 0 0 45+10log2σ suitable for constrained devices

Ziggurat flexible flexible flexible flexible flexible
suitable for encryption
requires high precision FP arithmetic
not suitable for HW implementation

CDT fast 0 στλ log2(τσ) 2.1+log2σ
suitable for digital signature
easy to implement

Knuth-Yao fastest 0 1/2στλ log2(
√

2πeσ) 2.1+log2σ not suitable for digital signature
Bernoulli fast 0 λlog2(2.4τσ

2) ≈ log2σ ≈ 6 + 3log2σ suitable for all schemes
Binomial fast 0 0 0 4σ2 not suitable for digital signature

that of CDT and Knuth-Yao sampler [79]; however, CDT has three times more throughput

than Bernoulli for hardware implantation of BLISS in [180].

2.0.2 Lattice-based schemes

Security of the lattice-based cryptography schemes are based on hardness of solving two

average-case problems, a.k.a Short Integer Solution (SIS) [154] and the Learning With Errors

(LWE) problem [190].

Regev [190] proposed the Learning With Errors problem which can be reduced to a worst-

case lattice problem like the Shortest Independent Vectors Problem (SIVP). In the proposed

scheme, the ciphertext is O(nlogn) times bigger than plaintext; however, in [175] ciphertext

has the same length order compared to the plaintext. A smaller key size for LWE-based

encryption is introduced as the LP scheme in [143]. Another difference between Regev’s

encryption scheme and LP scheme is that the former uses discrete Gaussian sampler in the

key generation step, while LP employs Gaussian Sampler in encryption in addition to the

key generation step.
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2.0.2.1 Public Key Encryption

Public key encryption (PKE) is employed to encrypt and decrypt messages between two

parties. Additionally, it is a basis for other cryptography schemes such as digital signatures.

Generally, it consists of three steps including key generation, encryption, and decryption.

The first party (Alice) generates two set of keys and keeps one of them private (skAlice) and

distributes the other key (pkAlice) to other party (Bob). In order to send the message M to

Alice, Bob encrypts the message as S = Enc(M, pkAlice) where pkAlice is Alice’s public and

Enc is encryption cipher. Thereafter, Alice decrypts the message as M = Dec(S, skAlice)

where Dec is the decryption cipher and skAlice is Alice’s private key. Similarly, Alice should

encrypt her message with Bob’s public key (pkBob) if she wants to send message to Bob.

Encryption and decryption ciphers are one-way functions and are known publicly; hence the

only secret data are private keys of the recipients which should be impossible to uncover

using their corresponding public keys. Practical lattice-based PKE schemes are either based

on NTRU related [115, 213] or LWE [190] (and its variants including RLWE [151], MLWE

[142], ILWE [114] and MPLWE [194]) assumptions.

2.0.2.2 Digital Signature

Digitally signing a document involves sending the signature and document separately. In

order to verify the authenticity of the message, the recipient should perform verification on

both the signature and the document. Digital signature consists of three steps including key

generation, Signsk, and Verifypk. In the first step, secret key (sk) and public key (pk) are

generated; signer keeps the secret key and all verifier parties have the public key of signer.

During the sign step, signer applies the encryption algorithm on input message M with its

private key and produces output S as S = Signsk(M, sksigner). Signer sends the tuple (M ,S)

to the Verifier who applies Verifypk (M ,S) and outputs 1 if M and S are a valid message
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and signature pair; otherwise, S is rejected as the signature of message M . As an example

of hash and sign procedure: in the sign step, message M is hashed as D = h(M) where D

is the digest. Signer applies the encryption algorithm on D with its private key with the

output of S = Enc(D, sksigner). Afterwards, signer sends the pair of (M ,S) to the verifier.

Subsequently, verifier uses public key to decrypt S as D′ = Dec(S, pksigner). Then verifier

compares D = h(M) (same hash function is shared between signer and verifier) and D′;

signature is verified if D′ = D; otherwise, the signature is rejected. The steps outlined for

sign and verify are just an example (used in RSA); hence sign and verify steps might be

slightly different for various signature schemes, but follow the same idea.

Lattice-based signature schemes belong to one of two classes including hash-and-sign (e.g.

GPV [101]) and Fiat-Shamir signatures (e.g. BG [20], GLP [105], and BLISS [79]). GPV

is a provably secure framework to obtain ”hash-and-sign lattice-based signature schemes”;

GGH [1] and NTRUSign [116] were the two first works that propose lattice-based signatures

which are not provably secure (due to the deterministic signing). Because of the high

standard deviation of Gaussian sampler, implementation of lattice-based digital signatures

that use Gaussian sampler is challenging. Besides, the need for hash function components

and rejection step makes digital signature more complex.

2.0.2.3 Key exchange mechanism

Key exchange is the process of exchanging keys between two parties in the presence of ad-

versaries. If parties use symmetric keys, the same key is shared between them; otherwise,

public key of parties should be exchanged. There are numerous public key exchange methods

reported in the literature. For classical cryptography, Diffie–Hellman is a practical public key

exchange that has been used widely. Establishing a shared key in a lattice-based key encap-

sulation (KEM) or key exchange (KEX) scheme can be done by either a reconciliation-based

or encryption-based method [12]. Ding [70] propose the first lattice-based key agreement us-
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ing the reconciliation-based method. There are plenty of reconciliation-based key agreement

schemes based on the LWE (e.g., Frodo [42]), RLWE (e.g., BCNS [44] and NewHope [11]) and

MLWE (e.g., Kyer[43]) that require less bandwidth compare to the simper encryption-based

ones (e.g., NewHope-Simple [12] and NewHope-512/1024 [179]).

Fujisaki-Okamoto transform

In the random oracle model, an IND-CPA 2 public key encryption (PKE) can be transformed

into a IND-CCA 3 PKE using the Fujisaki − Okamoto (FO) transform [96]. Hofheinz et

al. [120] introduce a variant of the FO transform that performs transformation from CPA-

security into CCA-security in the quantum random oracle model. By applying this variant

of FO on a CPA-secure PKE, an IND-CCA key encapsulation mechanism (KEM) is achieved.

This transformation is widely used in submitted proposals to ”NIST call for post-quantum

algorithms” [3] where authors first make a IND-CPA PKE and then build the CCA-KEM,

with the same parameter space, by applying the KEM version of the transform [120].

Note. There are plenty of submitted proposals to the NIST PQC standardization call that

a single proposal (e.g., LOTUS [176]) supports both public key encryption (e.g., LOTUS-

PKE) and key agreement (e.g., LOTUS-KEM); in Table 2.2 and Table 2.3, we list those

proposals as two separate schemes. To avoid the redundancy, in section 2.1, we describe

each scheme under only one of the categories of public key encryption (section ??) or key

exchange mechanism (section ??).

Similarly, to avoid the redundancy, an article with both software and hardware implemen-

tations is mentioned only once (software implementation in section 2.1.2 or hardware imple-

mentation in section 2.1.3).

The contemporary lattice-based schemes existed in the literature are listed in Table 2.2.

2Indistinguishability under chosen plaintext attack
3Indistinguishability under chosen ciphertext attack
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Details on the security level, public key, secret key and ciphertext size of lattice-based pub-

lic key encryption (PKE), key establishment (KEX/KEM) schemes can be seen in Table 2.3.

Furthermore, details on the security level, secret key, public key, and signature size of the

lattice-based digital signature schemes are listed in Table 2.4.

Table 2.2: Contemporary lattice-based schemes.

Lattice Type
Schemes

Public Key Encryption Digital Signature Key Exchange

Standard

LP [143]
Lizard [54, 55]

NTRUEnrypt [118]
EMBLEM.CPA [204]

FrodoPKE [158]
LOTUS-PKE [176]

Odd-Manhattan [177]
uRound2.PKE [99]

GGH [1]
NTRUSign1[116]

GPV [101]
Lyubashevsky [148]

BG [20]
TESLA [10]

Frodo [42]
EMBLEM [204]
FrodoKEM [158]

SPKEX[35]
OKCN/AKCN-LWE/LWR4[130, 230]

Lizard [55]
LOTUS-KEM [176]

Odd-Manhattan [177]
uRound2.PKE [99]

Ideal

NTRU [115]
NTRU Prime[31]

Ring-Lizard [54, 55]
trunc8 [202]

HILA5 [201, 200]
R.EMBLEM.CPA [204]

NewHope-CPA-PKE [179]
ntru-pke, ss-ntru-pke [229]

u/nRound2.PKE [99]

Lyubashevsky [149]
GLP [105]
GPV [88]

BLISS [79]
BLISS-B[78]

Ring-TESLA [56]
TESLA# [26]
BLZZRD [199]

GLYPH2[57]
FALCON [93]
qTESLA [36]

JARJAR, NewHope [11]
NewHope-Simple [12]

BCNS [44]
HILA5 [201, 200]
NTRU KEM [126]

Ding Key Exchange [69]
R.EMBLEM [204]

OKCN/AKCN-RLWE4[130, 230]
AKCN/OKCN-SEC4[230]

LIMA-sp/2p [211]
RLizard [55]

NewHope-CPA/CCA-KEM [179]
ntru-kem, ss-ntru-kem [229]
NTRU-HRSS-KEM [127]

Streamlined-NTRU-Prime [32]
NTRU-LPRime [32]

u/nRound2.KEM [99]

Module

Kyber PKE [43, 16]
AKCN-MLWE-CCA4[230]

KINDICPA [25]
SABER [64]

Dilithium [81, 80]
pqNTRUSign [50]

Kyber KEM[43, 16]
CNKE, OKCN/AKCN-MLWE4[230]

KINDICCA−KEM [25]
SABER [64]

THREEBEARS3[114]
Middle Product Titanium-CPA [215] - Titanium-CCA [215]

1 Adapted from GGH digital signature scheme;
2 Adapted from GLP digital signature scheme;
3 Based on the integer version of the MLWE problem;
4 From the KCL [230] family;
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Table 2.3: Comparison of contemporary lattice-based public key encryption and key exchange
schemes.

Scheme
PQ security Failure

Prob.1
Size (bytes)

SVP CCA Secret Public Cipher
BCNS (KEX) [44] 78 - ? 4096 4096 4224
JarJar (KEX) [11] 118 - 55 896 928 1024
NewHope (KEX) [11] 255 - 61 1792 1824 2048

Frodo rec. (KEX) [42] 2 130 - 36 1280 11296 11288
Kyber light (KEX) [43] 102 169 169 832 736 832

Kyber rec. (KEX)[43] 2 161 142 142 1248 1088 1184
Kyber paranoid (KEX) [43] 218 145 145 1664 1440 1536
NTRU KEM [126] 123 ∞ ∞ 1422 1140 1281
NTRU Prime (KEM) [31] 129 ∞ ∞ 1417 1232 1141
HILA5 (KEM/PKE) [201] 255 135 135 1792 1824 2012

trunc8 [202] § 131 - 45 128 1024 1024
NTRU ees743ep1 (PKE) [115] 159 - 112 1120 1027 980

Ding Key Exchange [69] 4 AES-256 * - 60 3072 2064 2176
EMBLEM (KEM)[204] AES-128 - 140 2039180 2036736 78368
R.EMBLEM (KEM) [204] AES-128 - 140 6144 4096 3104
FrodoKEM (Frodo-976) [158] AES-192 199 31272 15632 15762
FrodoKEM (Frodo-640) [158] AES-128 148 19872 9616 9736

KCL (e.g., AKCN-RLWE) (KEM) [230] 4 AES-256 40 1664 1,696 2083

KINDI (PKE/KEM) [25] ++4 AES-256 276 2752 2368 3392

LAC (e.g., LAC256) [147] ++4 AES-256 115 2080 1056 2048

LIMA (e.g., CCA.LIMA-2p2048) [211] ++4 SHA-512 314 18433 12289 7299

LIMA (e.g., CCA.LIMA-sp2062)[211] ++4 SHA-512 244 24745 16497 9787

Lizard.CCA (PKE) [55] 4 AES-256 381 557056 6553600 3328

RLizard.CCA (PKE) [55] 4 AES-256 305 513 8192 8512

Lizard.KEM [55] 4 AES-256 381 34880 4587520 35904

RLizard.KEM [55] 4 AES-256 305 769 8192 8256

LOTUS (PKE/KEM) [176] ++4 AES-256 256 1630720 1470976 1768

NewHope1024 (KEM) [179] 5 AES-256 216 3680 1824 2208

NewHope512 (KEM) [179] 5 AES-128 213 1888 928 1220
Streamline-NTRU-Prime (KEM) [32] AES-256 ∞ 1600 1218 1047
NTRU-LPRime (KEM) [32] AES-256 ∞ 1238 1047 1175
NTRU-HRSS-KEM [127] AES-128 ∞ 1418 1138 1278

NTRUEncrypt (e.g., ntru-kem-743) [229] 4 AES-256 112 1173 1023 1023

Odd-Manhattan (KEM) [177] 4 AES-256 ? 4456650 4454241 616704

uRound2 (uround2 kem nd l5) [99] 4 AES-256 65 169 709 868

nRound2 (nround2 kem nd l5) [99] 4 AES-256 45 165 691 818

uRound2 (uround2 pke nd l5) [99] 4 AES-256 137 1039 830 953

nRound2 (nround2 pke nd l5) [99] 4 AES-256 164 1039 830 1017

SABER (PKE/KEM) [64] 4 AES-256 165 3040 1312 1472

THREEBEARS (KEM) [114] 4 AES-256 188 40 1584 1697

Titanium-CPA (PKE) [215] 4 AES-256 30 32 23552 8320

Titanium-CCA (KEM) [215] 4 AES-256 85 26944 26912 8352
DH-3072 - - ? 416 384 384
ECDH-256 - - ? 32 32 64

1 Failure is −log2 of the failure probability;
2 For recommended parameters;
3 AES-128 and AES-192 are also available;
4 Scheme with the highest security is selected;
5 INP-CPA KEM is also available;
§ Ring-LWE encryption and authentication system;
+ INP-CPA PKE is available;
* The scheme is at least as hard as AES-256 as a requirement by NIST (same is applied to schemes with security of
AES-128, AES-192 and SHA-512);
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Table 2.4: Comparison of popular lattice-based key digital signature schemes

Scheme
Security Size

PreQ PostQ Secret Key Public Key Signature
GPV [101] 100 ? 256 B 1.5 kB 1.186 kB
BG [20] 128 ? 0.87 MB 1.54 MB 1.46 kB
TESLA–128 [10] 128 ? 1.01 MB 1.33 MB 1.280 kB
TESLA–256 [10] 256 128 1.057 MB 2.2 MB 1.688 kB
GLP [105] 100 <80 256 B 1.5 kB 1.186 kB

BLISS-I [79] 2

BLISS-BI [78]1
128 <66 256 B 896 B 700 B

TESLA#–I [26] 128 64 2.112 kB 3.328 kB 1.616 kB
TESLA#–II [26] 256 128 4.608 kB 7.168 kB 3.488 kB
Ring-TESLA-II [56] 118 64 1.92 kB 3.328 kB 1.568 kB

Dilithium rec. [81] 3 138 125 3.504 kB 1.472 kB 2.701 kB

Dilithium high. [81]4 176 160 3.856 KB 1.760 kB 3.366 kB
FALCON (falcon1024) [93] AES256 128 8.193 kB 1.793 kB 1.233 kB
FALCON (falcon768) [93] AES192 96 6.145 kB 1.441 kB 1.077 kB
FALCON (falcon512) [93] AES128 64 4.097 kB 897 B 690B

pqNTRUsign [50] 5 AES256 128 2.604 kB 2.065 kB 2.065 kB

qTESLA (qTesla 256) [36] 5 AES256 128 8.256 kB 8.224 kB 6.176 kB

qTESLA (qTesla 192) [36] 5 AES192 96 8.256 kB 8.224 kB 6.176 kB

qTESLA (qTesla 128) [36] 5 AES128 64 2.112 kB 4.128 kB 3.104 kB
DSA-3072 128 0 416 B 384 B 384 B
ECDSA-256 128 0 32 B 32 B 64 B

1 BLISS-BI speeds up BLISS-I by factor of 1.2×;
2 Speed optimized;
3 For recommended parameters;
4 The highest security level;
5 For both Gaussian-1024 and Unifrom-1024 variants;

2.1 Implementation challenges

In this section, we consider various implementations of lattice-based cryptographic schemes

using software, hardware, software/hardware codesign and DSP techniques. First we fo-

cus on the implementation of key arithmetic modules such as Gaussian sampler and ma-

trix/polynomial multiplication in Section 2.1.1. Software and hardware implementations

of lattice-based cryptographic schemes are described in Section 2.1.2 and Section 2.1.3,

respectively. Section 2.1.4 describes implementations of lattice-based schemes using hard-

ware/software codesign techniques. The only implementation of a lattice-based scheme using

DPS implementation is described in Section 2.1.5.

Table 2.5 presents a birds-eye view of popular implementation schemes and can be helpful as

a visual/organizational reference during the discussion of various implementation schemes.
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Table 2.5: Popular implementation of lattice-based schemes.

Lattice Type
Schemes

Software Hardware Hardware/Software

Standard Lattices
PKE: [54, 55] [118] [204] [158] [176] [177] [99]

DS: [20] [88][63] [10]
KEX: [35] [42] [204] [158] [35] [130, 230] [55] [176] [177] [99]

PKE: [122] [204] -

Ideal Lattices

PKE: [66] [144] [185] [192] [49] [228]
[31] [54, 55] [202] [201, 200] [204] [179] [229] [99]
DS: [105] [108] [88] [171] [180] [41] [185, 187] [7]

[88] [79] [78] [56] [26] [199] [57] [93] [36]
KEX: [70] [130] [11] [12] [13] [104] [126] [12] [44] [201, 200]

[69] [204] [130, 230] [230] [211] [55] [179] [229] [127] [32] [99]

PKE: [103] [182] [196] [183] [204] [192]
DS: [105] [180] [107] [124] [159]

KEX: [204] [223] [139] [159]

DS: [19] [18]

Module Lattices
PKE: [43, 16] [64] [25] [230]

DS: [81, 80] [119, 50]
KEM: [43, 16] [114] [64] [25] [230]

- -

Middle Product Lattices
PKE:[215]
KEM:[215]

- -

2.1.1 Implementation of Arithmetic Modules

In this section, practical implementations of the Gaussian sampler and polynomial multipli-

cation on both hardware and software platforms are presented. There is only one hardware

implementation of matrix multiplication (for standard lattices) available in the literature

which we detail in Section 2.1.1.2.

2.1.1.1 Gaussian Sampler

Dwarakanath et al. [85] provide a survey of different algorithms of computing the expo-

nential function efficiently on resource-constrained devices regarding memory capacity. In

order to decrease memory footprint, pipelining the sampling algorithm is offered. To be

more specific, authors divide the distribution curve into rectangles with the same prob-

ability and choose the rectangles according to the Knuth-Yao method which means the

Knuth-Yao method is employed another round for rectangle itself. Tail probabilities in dis-

crete distribution are relatively small which provide the chance of approximating them with

lower precision arithmetic. Consequently, on the fly tail construction using standard double-

precision floating-point precision is suggested. Although the offered idea could significantly

reduce memory (lookup table) footprint since lookup tables only store non-tail probabilities;

however, considerable floating point arithmetic overhead is imposed on the system.
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Software Implementation. Buchmann et al. [47] design and implement, in C++, a flexible

Gaussian sampler named Ziggurat which sets a trade-off between memory footprint, preci-

sion, and execution time. The area under the probability density function (PDF) is divided

into rectangles with the same area that is employed to minimize calculation of expensive ex-

ponential function. More rectangles (more memory footprint) results in higher precision and

better performance. The Ziggurat sampler is attractive because of the potential flexibility

that makes it a good candidate to use in crypto-engines of either high-performance servers

(allocate more memory to reach better performance and precision) or low-speed resource

constraint embedded devices (use few numbers of rectangles to minimize memory consump-

tion). In order to increase the performance of Ziggurat sampler, more rectangles are required

which imposes significant memory overhead since it needs to re-compute all the rectangles

and save them in the memory. A better way to improve Ziggurat sampler is to increase the

number of approximation lines (by adding two extra points) which culminates in decreasing

number of the exponential function calculation [157]. In other words, more approximation

lines decrease the probability of rejection by providing a more precise approximation of the

curve. Consequently, performance and memory occupation are improved by employing more

approximate lines.

Hardware Implementation. Roy et al. [197] implement the first high precision and

low area hardware implementation of Knuth-Yao sampler with small standard deviation on

a Xilinx Virtex5 FPGA. Knuth-Yao involves a random walk tree traversal which imposes

expensive sequential bit scanning and wide ROM footprint. To improve performance, authors

traverse the discrete distribution generating (DDG) tree by employing relative distance of

intermediate nodes. Column-wise storing of the samples probability in ROM improves the

performance of the sampler. Numerous zeros in the probability matrix are well compressed

by applying one-step compression which culminates in a near-optimal number of random

bits to generate a sample point. Presented Knuth-Yao sampler suffers from vulnerability

to timing and power attacks due to the non-constant time random walk which is solved
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by a random shuffle approach in order to eliminate leaking the timing information [195].

Authors offer the solution (random shuffle) but do not evaluate hardware implementation

of the shuffler. In the new implementation, the efficiency of the Knuth-Yao is enhanced

by employing small LUTs with the input of the random bits and output of the sample

point with high probability or an intermediate node positioned in the discrete distribution

generation tree. Employing a lookup table with 8-bit input results in hitting a sample point

(eliminate expensive bit-scanning procedure) with the probability of 97% by eight random

bits. Additionally, a more compact sampler is achieved by reducing the width of ROM and

random bit generator.

Du and Bai [73] implement a highly precise (large tail bound) and area efficient cumula-

tive distribution function (CDF) inversion variant of the discrete Gaussian sampler on Xilinx

Spartan-6 FPGA. Authors reduce area occupation by employing piecewise comparison (re-

sults in 90% saving of the random bits) and avoiding comparison of large numbers which

is an improvement on [182]. Further improvement is achieved by employing small lookup

tables with high hit rate which culminates in performance improvement. Performance of

the proposed Gaussian sampler is improved twofold by the same authors with a software

implementation (Intel Core i7-4771) [72]. The primary challenge to improve performance on

a general purpose processor is a large number of random bits that are consumed by the sam-

pler to generate a random number. This obstacle is alleviated (around 30%) by employing

multi-level fast lookup table (using eight smaller lookup table instead of one). Further speed

improvement of the sampler is gained by applying the multithreading technique. The main

security drawback of both hardware and software implementation of the discrete Gaussian

sampler by Du and Bai is its vulnerability to timing attacks because of the non-constant

time traversal of the binary tree [121].

Howe et al. [121] propose a comprehensive evaluation of various practical hardware im-

plementation of time-independent discrete Gaussian samplers, including Bernoulli, discrete
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Ziggurat (First hardware design on FPGA), CDT, and Knuth-Yao. They present each sam-

pler’s weaknesses/strengths and perform the comparison with state-of-the-art designs re-

garding memory footprint, performance, and FPGA resource consumption. Authors analyze

different quantum secure parameters for public key encryption scheme and digital signature.

CDT Gaussian sampler provides higher throughput with lower memory footprint when it is

used for digital signature. Due to the inferior performance of hardware Ziggurat implemen-

tation, authors prohibit the use of Ziggurat sampler for digital signatures. Similarly, CDT

sampler achieves better-balanced area and throughput for public key encryption. However,

allowing the use of BRAMs makes Knuth-Yao variant a much superior design in terms of

area and throughput. Authors use BRAMs in order to decrease occupied slices in FPGA

and to save precomputed values which significantly improves performance.

Pöppelmann and Güneysu [183] propose an area optimized hardware implementation of

Bernoulli sampler that employs Bernoulli evaluation instead of evaluation of exp(). Rejec-

tion probability is high due to the absence of binary Gaussian distribution (easy to sample

intermediate sampler) which results in increasing the entropy consumption and runtime.

Although proposed Gaussian sampler is suitable for encryption schemes, it would be chal-

lenging to be employed inside digital signatures as the sampling component. Pöppelmann

et al. [180] propose a hardware implementation of Bernoulli sampler with binary Gaussian

distribution for BLISS scheme on Xilinx Spartan-6 FPGA.

Göttert et al. [103] propose the first hardware implementation of the discrete Gaussian

sampler. Authors use rejection sampling in their software implementation; however, because

of the obligatory floating point arithmetic, authors prefer to employ lookup tables in their

hardware implementation of implement Gaussian which the Gaussian distributed values in

the stored array are indexed using a pseudo-random bit generator. The proposed sampler

has an unsatisfactory precision which has far distance from golden discrete Gaussian distri-

bution due to the small tail bound. Authors employ a fully parallel architecture to design a

34



polynomial multiplier which provides high throughput but makes the design extremely big

which cannot be fitted into the largest Virtex-7 FPGA family.

Roy et al. [196] propose a compact Ring-LWE cryptoprocessor to optimize NTT multipli-

cation which is accomplished by the reduction in fixed computation (4 NTT instead of 5

NTT) and in reducing the pre-scaling overhead. Besides, NTT Memory access is minimized

by storing two coefficients in a single word, processing two pairs of coefficients together,

and eliminating idle cycles. Authors avoid using ROM to save the twiddle factors and in-

stead compute the twiddle factors on demand. Besides, they reduce security by limiting

coefficients of the secret key to be binary, instead of Gaussian distributed, which gives the

opportunity to replace multiply with addition operations. Small lookup tables are used in

the Knuth-Yao discrete Gaussian sampler to avoid expensive bit scanning [197] to improve

speedup; additionally, ROM widths are reduced which results in a more compact and faster

sampler than Bernoulli [183].

2.1.1.2 Multiplier

Software Implementation. Emeliyanenko [89] proposes an efficient 24-bit modular mul-

tiplication to achieve high throughput polynomial multiplications using NTT algorithm (on

Nvidia GeForce GTX 280 GPU). Employing CUDA FFT kernel and Chinese Remainder

Theorem (CRT), the proposed method provides better speedup compared to the GMP and

NTL libraries for moderate coefficient bit-length.

Akleylek et al. [8] propose sparse polynomial multiplication for LBC for the first time which

improves the performance of digital signature proposed in [107] by 34%. Authors implement

the Schönhage-Strassen polynomial multiplication on NVIDIA GPU and compare its per-

formance with existed multiplication schemes, including iterative NTT, parallel NTT and

CUDA-based FFT (cuFFT) for different integer size.
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Akleylek et al. [6] propose a software implementation (Intel Core i5-3210M processor) of

the sparse polynomial multiplication using a sliding window that bears around 80% of speed

improvement compared to NTT [108]. Authors assume to have polynomials with coefficients

with three possible values including -1,0 and +1. Multiplications by zero are avoided, and

for +1 and -1 cases addition and subtraction are used, respectively. The method can be used

for polynomials with arbitrary coefficients by substituting a multiplication with a loop of

additions. Performance of the proposed method depends on high number zeros and numerous

identical patterns which make the system prone to timing attacks.

FNLlib [4] is a scalable, efficient, and open source C++ library contains optimized arithmetic

operations on the polynomials for the ideal lattice-based cryptography schemes. Compared

to the generic libraries for polynomial arithmetic, several orders of magnitude improvement

in the speed is achieved by employing algorithm optimizations, including fixed sized Chi-

nese Remainder Theorem (CRT), scalar modular multiplication and NTT algorithm, and

programming-level optimizations, such as SSE and AVX2 SIMD. Authors use NFLlib for

the RLWE encryption scheme and homomorphic encryption and compare their efficiency

with classical cryptographic schemes (like RSA) and libraries (like NTL).

Longa et al. [146] propose an efficient modular reduction by limiting the coefficient length to

32 bits. Consequently, by employing the new technique in NTT, the reduction is only required

after multiplication. Combined with the lazy reduction in NTT, speed improvement of factor

1.9 for C implementation (on a 64-bit platform) and 1.25 for AVX2 vector implementation

compared to NewHope (tolerant against timing attacks) is achieved. However, due to lack

of 64-bit register, proposed reduction technique does not provide any speed up on 32-bit

microcontrollers [13]. Additionally, authors use signed integer arithmetic which optimizes

the number of add operations in both sampling and polynomial multiplication.

Hardware Implementation. Howe et al. [122] propose the only hardware implementation

of standard lattice-based encryption scheme based on LWE problem. Authors perform the
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multiply-accumulate (MAC) operations of matrices in the encryption scheme by utilizing a

dedicated DSP48A1 unit of the Spartan-6 FPGA to achieve an area optimized hardware

implementation of standard LWE based encryption engine.

Pöppelmann et al. [181] propose the first hardware optimization of polynomial multiplica-

tion (NTT) for the ideal lattice-based encryption schemes on a Xilinx Spartan-6 FPGA with

the primary goal of minimizing the area. Authors design a sequential NTT (one butterfly

operator) that stores twiddle factors in a dedicated ROM which imposes memory overhead

but achieves decent performance. Twiddle factors refer to different powers of the multiplica-

tive operands. An optimized version of presented NTT polynomial multiplier is employed

in [182] to design in a Ring-LWE encryption engine. With acceptable runtime, authors

of [17, 196] present an optimized hardware implementation of NTT introduced in [181] to

compute polynomial multiplication in a Ring-LWE on the smallest Spartan-3. The main

idea is to compute twiddle factors on the demand instead of storing them in the ROM.

By replacing the modulus with a Fermat number, shift operation could be used instead to

polynomial exponentiation. However, proposed optimizations cannot take advantage of in-

herent parallelism in NTT. It should be mentioned that authors of [17] do not provide the

implementation of the whole crypto-engine.

Chen et al. [51] present a high-performance polynomial multiplication for Ring-LWE encryp-

tion cryptosystems in hardware on a Spartan-6 FPGA by exploiting the parallel property of

the NTT. Authors provide a different secure set of parameters by which efficient Ring-LWE

encryption and SHE could be achieved. They prove that polynomial multiplication can be

done by computing the negative wrapped convolution by which there is no need to compute

the modular reduction. Besides, size of FFT/inverse-FFT and point-wise multiplication is

halved compared to the zero padding method. To be more specific, the proposed architec-

ture for polynomial multiplication consists of two butterflies and two point-wise modulo p

multiplier (p has the adjustable length) which produce outputs (equivalent to two parallel
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NTT) that could be used to perform the inverse-FFT.

Du and Bai [75] propose a scalable and efficient polynomial multiplier architecture that take

advantage of NTT’s parallelism (implemented on Xilinx Spartan-6 FPGA) which provides

a speed and area trade-off. In [181] and [196, 17] one and two butterfly operators are

employed, respectively; however, [75] use b (power of 2) butterfly operators to improve speed

of the polynomial multiplier which perform multiplication of two n-degree polynomials in

(1.5n + 1.5nlogn)/b cycles. To improve area (minimize required area), authors employ the

cancellation lemma to minimized number of constant factors. Butterfly operation takes

two coefficients (x,y) and one constant factor (ω) and makes two new coefficients ([x+ωy]

mod p, [x-ωy] mod p). The butterfly can be used as a modulo p multiplier (by setting

x = 0). Besides, in the first stage of inverse NTT the constant factor (ω) is 1, hence

new coefficients are [x-y] mod p and [x+y] mod p. Consequently, necessary clock cycles to

calculate a sequential polynomial multiplication is (1.5n + 1.5nlogn) which reduces 3.5n of

required cycles.

Györfi et al. [112] perform a thorough evaluation of various candidates to implement modu-

lar FFT on Xilinx Kintex-7 FPGA. Authors study three architectures in the diminished-one

number system (computations over Z2k+1) for different parameters in order to meet vari-

ous factors such as run-time execution, throughput, occupation, and scalability. The first

architecture yields the best performance, using pipelined modular butterfly-based FFT in

which FFT core is throughput optimized. The other two architectures are serial distributed

arithmetic-based and nested multiplication which occupy less area than butterfly-based FFT.

Du and Bai [76] demonstrate 30% savings in time and space (compared to [181]) on a Spartan-

6 FPGA by performing on-the-fly performing bit-reversal step along with a new memory

access scheme, (to load/store coefficients in calculating NTT). The idea is to load/store at

address bit-reverse(i) instead of load/store at address i in memory, which means ith coeffi-

cient of NTT’s output is located in the bit − reverse(i)th memory location. Consequently,
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the bit-reversal step in the inverse-NTT is eliminated. Authors employ two Block RAMs

on FPGA which provide interleaving, hence two parallel NTT can be interleaved. Authors

apply their optimization to the NTT of an RLWE base public key cryptosystem [74]. Also,

it is assumed uniformly random polynomial in the public key scheme to be fixed, hence

precomputing the NTT of it offline improves the performance. In the above two articles,

only one butterfly operator is used; however, by adapting bit-reversal and memory saving

methods of above articles, authors propose a fast polynomial multiplication architecture

with four butterfly operators that achieve on average 2.2 speedup improvement [77]. Two

butterfly operators are used to calculate the ith level, and other two perform (i+ 1)th level

calculations in the pipeline by using results of the ith stage.

2.1.2 Software Implementations of Lattice-based Cryptographic

Schemes

Public Key Encryption. de Clercq et al. [66] propose an efficient software implemen-

tation of Ring-LWE based encryption for ARM Cortex-M4F micro-controller. The main

goal was maximizing the speed (using assembly level optimization) and minimizing memory

footprint (by storing two coefficients in one word). They employ the Knuth-Yao algorithm

to achieve fast noise sampling and use the platform’s True Random Number Generator

(TRNG) to generate random numbers. Authors employ optimization of the paper [196] in-

cluding instruction-level parallelization. Additionally, polynomial multiplication is optimized

by integrating multiple coefficients into one large word allowing load/store operations to be

performed with a single instruction.

In [144], the authors use a byte-wise scanning method to improve the performance of the

Gaussian sampler based on the Knuth-Yao algorithm. This allows them to implement a Ring-

LWE based public key encryption scheme on a resource-constrained 8-bit ATxmega128 AVR
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processor. By applying sophisticated memory alignments for storing coefficients, about a 20

percent decrease in RAM usage is achieved. For NTT computation a couple of optimization

techniques are employed including approximation based reduction and negative wrapped

convolution.

Buchmann et al. [49] implement a high performance and lightweight public key encryp-

tion scheme implemented on small and 8-bit ATXmega128 and 32-bit Cortex-M0 micro-

controllers by replacing the Gaussian noise distribution with a uniform binary error distri-

bution. The determine security of the scheme by evaluating hardness of binary LWE against

hybrid attack.

The main advantage of this scheme over Lindner-Peikert’s proposal (LP) [143] is its smaller

key and ciphertext size. Regarding the speed, it is beaten by the scheme in [144] with slightly

higher memory footprint. Similarly, proposed design in [185], uses NTT with precomputed

twiddle factors and eliminating the bit reversal step which results in twofold performance

improvement.

Yuan et al. [228] provide a portable JavaScript implementation of lattice-based cryptography

schemes on PC web browsers, Tessel (an embedded system for IoT applications), and Android

devices. To compute polynomial multiplication in Ring-LWE schemes NTT is used, while

Karatsuba algorithms [131] is employed for NTRU schemes. In order to reduce the execution

time, inverse transform sampling is employed in which possible values are precomputed and

stored in a lookup table.

Reparaz et al. [192] implement a masked Ring-LWE scheme on a Virtex-II FPGA and 32-

bit ARM Cortex-M4F which is Differential Power Analysis (DPA) resistant. In order to

be resilient to first-order side-channel attacks, a constant time masked decoder with high

success probability is implemented. Entire computation is done in the masked domain by

employing a dedicated masked decoder which imposes considerable time and area overhead
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compared with an unprotected design.

Cheon et al. [54] exploits learning with rounding (LWR) problem [23] and present Lizard

and its ring variant (Ring-Lizard). Discrete Gaussian error distribution is replaced with an

efficient rounding process with smaller modulus. Based on the results, Lizard beats NTRU

and RSA encryption schemes by factors of 3 and 5, respectively. The main idea behind the

Lizard is to eliminate the least significant bits of the ciphertext rather than integrating the

message with some error. Cheon et al. [55] submitted Lizard (IND-CPA/CCA PKE

and IND-CCA2 KEM) and its ring variant, RLizard, to the NIST PQC standardization call

(NIST security category of 1, 3 and 5). Sparse and small secrets version of LWE and LWR

(RLWE and RLWR) are the security basis of the Lizard (RLizard) IND-CPA PKE.

Besides Intel Xeon E5-2620 CPU, authors provide performance evaluation on a smartphone

(Samsung Galaxy S7) for their recommended parameter of Lizard.CPA (128-bit quantum

security). Authors claim that Lizard is suitable for smartphones (memory usage of 20

megabytes). Authors provide datapath and finite state machine for hardware implemen-

tation of the Lizard PKE using Lizard.CPA and RLizard.CPA.

Chen et al. propose NTRUEncrypt [229] (at the NIST standardization call), a family of IND-

CCA2 (resistant to subfield attacks) PKE and KEM schemes at 85, 159 and 198-bit post

quantum security (NIST security category 1, 5 and 5). Based on the original NTRU scheme

[115] and using parameters set of [118], ntru-pke and ntru-kem are achieved by applying

NAEP transformation [125]. Using the same transformation, base on the provably secure

NTRU encryption scheme [213] (based on RLWE problem), ss-ntru-pke and ss-ntru-pke

are derived. Modulus is chosen to be a power of 2 (211) to enhance efficiency of the modulo

arithmetic and integer multiplications. Authors adopt a PRNG from Salsa20 [30] to expand

the seed. Box-Muller [45] is employed (only in ss-ntru-pke and ss-ntru-kem) to sample from

the discrete Gaussian distribution. The performance results are reported only for Intel i7-

6600U processor (AVX2 optimization of NTT is not performed).
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Bernstein et al. [32] introduce two ideal-lattice-based KEMs named Streamlined-NTRU-Prime

and NTRU-LPRime with 248-bit and 225-bit security (NIST security category 5), respectively,

with ciphertext and the key size of around 1kB that are designed to reduce attacker’s suc-

cess probability by eliminating the ring homomorphisms. Schemes are IND-CCA2 where a

key can be used multiple times; hence large key generation latency is tolerable. Authors

implement the reference code on an Intel Xeon E3-1275 v3. Streamlined-NTRU-Prime is

faster than NTRU-LPRime in terms of the encapsulation and decapsulation time with slower

key generation.

Hülsing ea al. propose NTRU-HRSS [127], a One-way CPA secure (OW-CPA) PKE and

NTRU-HRSS-KEM, a CCA2-secure KEM derived from NTRU [115] with 123-bit post-quantum

security (NIST security category 1). In contrast to NTRUEncrypt [229] and standard NTRU

[2], KEM is derived directly from NTRU-HRSS without using padding techniques (e.g.,

[125]). Contrary to Streamlined NTRUPrime [31] and standard NTRU, the correctness

of NTRU-HRSS does not rely on the fixed weight distinctions. NTRU-HRSS is designed

based on the worrisome algebraic structure of cyclotomic rings (in contrast to Streamlined

NTRUPrime). Additionally, NTRU-HRSS has probabilistic encryption, while Streamlined

NTRUPrime has deterministic encryption. NTRU-HRSS use the power of 2 modulus rather

than the prime modulus (used in Streamlined NTRUPrime) which leads to faster arithmetic

computation. NTRU-HRSS employs trinary secret key and messages and large modulus

in order to avoid decryption failure (in contrast to LWE-based schemes with a non-zero

probability of failure) which leads to lower security and higher communication cost. Authors

report the performance results of the reference and AVX2 implementation on Intel Core

i7-4770K CPU.

Bansarkhani proposes KINDI [25] (at NIST PQC standardization call), a trapdoor-based

encryption scheme based on LARA [188] in which data is concealed into the error without

changing the target distribution. As a result, more data can be encrypted per ciphertext bit
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which reduces the message expansion factor (beneficial in ”sign-then-encrypt”). KINDICPA,

(Module-LWE based IND-CPA PKE) has been proposed with five different parameter sets

ranging from 164 to 330-bit security (NIST security category of 2, 4 and 5). By applying

a variant of Fujisaki-Okamoto (FO) transformation [120] on the KINDICPA, KINDICCA−KEM with

the same parameter space, can be built.

Key Exchange. Ding et al. [70] propose a provably secure Ring-LWE key exchange mech-

anism which is not passively secure since it produces biased keys. Peikert improves the

protocol by using a new reconciliation method which generates unbiased keys [174]. A

practical constant-time software implementation of the Peikert’s Ring-LWE key exchange

protocol is proposed in [44], namely BCNS, which can be added as the key exchange pro-

tocol to the transport layer security (TLS) protocol in OpenSSL along with RSA as the

authentication and key SHA-256 as the hashing method. The most time-consuming part of

the protocol is the Gaussian sampler, which is done by employing a constant-time search

on the Cumulative Distribution Table (CDT). For polynomial arithmetic, authors adapt the

FFT from Nussbaumer’s method [169], in cyclotomic rings whose degree is a power of two

that provides efficient modular reduction. BCNS employs a fixed polynomial as the system

parameter which could be a potential weak link of the protocol. Besides, selection of large

modulus results in lower efficiency and security level, 78-bit quantum security, than expected

from a Ring-LWE scheme. In contrast to the digital signature and encryption schemes, key

exchange scheme does not need a high-quality Gaussian sampler [11], which BCNS uses;

consequently, a simpler noise distribution is used in NewHope instead of Gaussian sampler.

BCNS caches keys, which can be very dangerous to the security of the protocol because of

the shared-key reused attacks [91], which is solved in the NewHope.

Alkim et al. [11] introduce NewHope, a portable C and highly optimized SIMD implementa-

tion (AVX2) of unauthenticated key exchange scheme, that solves the inefficiency (10 times

better performance) and security drawbacks (increase quantum security level from 78-bit
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to 128-bit) of BCNS by optimizing the key exchange algorithm and better parameter selec-

tion. A better analysis of failure probability which results in smaller modulus, on the fly

generation of the polynomial system parameter, efficient polynomial arithmetic (combining

Montgomery and Barret reduction and employing polynomial encoding), and using the cen-

tered binomial instead of the discrete Gaussian distribution are the main improvements of

NewHope over BCNS. NewHope has attracted the attention of research and industry com-

munities such that Google released the Chrome Canary which uses NewHope as the key

exchange protocol along with elliptic curve Diffie–Hellman as the authentication protocol

[46].

Alkim et al. [12] propose NewHope-Simple, a simpler variant of the Newhope with the same

performance and security level. Simplicity is achieved by eliminating the error-reconciliation

mechanism [70] with 6% message size overhead. Authors discard the least significant bits

of each coefficient due to their negligible impact on the successful plaintext recovery. Addi-

tionally, authors encode a single key bit into four coefficients that results in the reduction

of the ciphertext length. In NewHope-Simple, polynomial a can be fixed, while the original

NewHope generates a on the fly for every single run of the scheme. Alkim et al. [13] present

the software implementation of NewHope on ARM Cortex-M family, low power Cortex-M0

and high-performance Cortex-M4, which is the first key exchange scheme with the quan-

tum security level of 128-bit on constrained embedded devices. Authors optimize all hot

regions of protocol in assembly, including error reconciliation, the uniform noise generation

by ChaCha20 stream cipher [29], and NTT/NTT−1. For NTT, authors set a memory-time

trade-off for precomputing powers of constants (design parameters) by which only a subset

of the powers of constants are precomputed and stored in the table. Gueron and Schlieker

[104] further optimize the NewHope by optimizing the pseudorandom generation part which

results in 1.5× better performance on the Intel Skylake processors. Authors improve the sam-

pling step by lowering the rejection rate (from 25% to 6%) and exploit the parallelism in the

pseudorandom generation (replace SHAKE-128 with the parallelized SHA-256 or AES block
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cipher) and rejection sampling (employing AVX vector instructions). Longa and Naehrig

[146], employ a reduction technique (during the NTT calculation) that eliminates the mod-

ular reduction after additions of two polynomials which results in the speed improvement

of 1.9 and 1.25 for C and AVX implementations (compared to the reference NewHope [11]),

respectively.

Adopted from the NewHope-Simple, Alkim et al. [179] propose NewHope as a family of

KEMs, at NIST PQC standardization call. The submitted proposal includes NewHope512-

CPA-KEM and NewHope512-CCA-KEM (n = 1024, q = 12289) which target 101-bit se-

curity (NIST security category level 1) and NewHope1024-CPA-KEM and NewHope1024-

CCA-KEM with 233-bit security (NIST category security category 5) with comparable per-

formance as the elliptic curve based cryptosystems. Four mentioned KEMs are derived

from NewHope-CPA-PKE (which does not support arbitrary length messages, hence can

not be used as a standalone encryption scheme) by applying a variant of Fujisaki-Okamoto

transform [120]. In order to generate the random number and shared secret, hash function

SHAKE256 [87] is used as a pseudorandom function; generation of the shared polynomial a is

done by expanding a 32-byte seed using SHAKE128 [87]. Besides the reference and vectorized

(using AVX instructions) implementations on the Intel Core i7-4770K (Haswell) processor,

authors provide implementation and optimization of KEMs on a 64-bit MIPS architecture

(MIPS64).

Ding et al. [69] propose (at NIST PQC standardization call) Ding Key Exchange, an

ephemeral IND-CPA secure error reconciliation-based key exchange protocol from RLWE

problem. At the same security level, Ding Key Exchange reduces communication cost (due

to its rounding technique) compare to the similar schemes (NewHope, NewHope-Simple, and

Kyber). It provides equivalent security to AES-128, AES-192 and AES-256 (NIST security

category 1,3 and 5) with flexible parameter choices and key size of n-bit where n can be

512 and 1024; as a result, it is more resistant to Grover algorithm compare to NewHope,
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NewHope-Simple and Kyber with the key size of 256-bit. NTL library [209] and CDT sampler

are used for polynomial multiplication and sampling from the Gaussian distribution.

HILA5 [201], a Ring-LWE-based key exchange scheme (and also public key encryption) with

the same security parameters (n = 1024, q = 12289) and sampler (binomial sampler ψ16)

as NewHope and has been tested on Intel Core i7-6700 CPU; also it has been integrated

into OQS and OpenSSL. HILA5 uses SafeBits, improved version of the Peikert reconciliation

mechanism [174], to reach slightly smaller messages than NewHope (36-byte which is 0.9%)

at the same security level by generating unbiased secret bits and hence less randomness

in secret bits. HILA5 employs an efficient constant time error correction block to correct

5 bits of error which results in decryption failure of 2−128 compared to NewHope’s failure

rate of 2−64 (Frodo [42] and Kyber [43] with failure rate of 2−38.9 and 2−71.9 ) by sacrificing

less than 4% of performance. HILA5 can be employed as a PKE scheme due to its higher

reliability. HILA5 [200] is submitted to the NIST PQC standardization call as a famility of

PKE and KEM schemes that provide equivalent security to AES-256 (NIST security category

5). Optimized polynomial multiplication and error sampling are performed by employing

the Cooley-Tukey [61] method and binomial distribution. Besides, SHAKE-256 is used to

sample from the uniform distribution.

Frodo (FrodoCCS) [42], the first practical implementation of public key exchange scheme

based on standard lattices, original LWE problem [190], is secure against cache-timing at-

tacks. Like BCNS, Frodo could be integrated into OpenSSL such that Google has announced

that Frodo is used in 1% of Chrome web browsers. Matrix arithmetic compared to poly-

nomial arithmetic imposes considerable overheads on the bandwidth (4.7 times more than

NewHope), throughput (1.2 less throughput than NewHope), and performance (8 times

slower than NewHope). Massive memory overhead is imposed if matrix variant should be

saved in the memory. By generating and afterward discarding the matrix variant (on-the-fly),

memory overhead is alleviated. Besides, authors use an efficient Gaussian sampler, inversion
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sampling method, which employs precomputed tables. Based on the authors’ claim, inte-

grating Frodo (LWE-based post-quantum key exchange protocol) into TLS halves the server

throughput. To tackle the ring related attack, NTRUPrime is proposed as a more secure

scheme by using a combination Karatsuba, schoolbook, and Toom’s multiplier [31]. Con-

sequently, NTT-friendly prime and polynomial are not crucial which results in a negligible

drop in performance compared to NewHope [11].

FrodoKEM [158] is a family of IND-CCA secure KEMs based on the LWE problem with

brute-force security of at least AES-128 (FrodoKEM-640) and AES-192 (FrodoKEM-640).

FrodoPKE is transformed by a variant of FO transformation [120] to build the FrodoKEM.

Authors generate public matrix A from a small seed using PRNG (AES128 or cSHAKE128)

which results in a more balanced ciphertext and key sizes, but remarkable computational

overhead. Timing and cache attacks are prevented by prohibiting the use of secret address

accesses and branches. A portable C code reference and its optimized implementation (of

generating the public matrix A and matrix arithmetic) are provided. Besides, authors report

the results of the implementing on a 64-bit ARM Cortex-A72 (with the best performance

achieved by using OpenSSL AES implementation, that benefits from the NEON engine)

and an Intel Core i7-6700 (x64 implementation using AVX2 and AES-NI instructions). Em-

ploying modular arithmetic (q ≤ 216) results in using efficient and easy to implement single-

precision arithmetic. The sampling of the error term (16 bits per sample) is done by inversion

sampling using a small lookup table corresponds to the discrete cumulative density functions

(CDT sampling).

Open Quantum Safe (OQS) [212] software platform is designed to evaluate proposed quantum-

resistant schemes which have an open-source library (contains C implementation of BCNS,

NewHope, and Frodo) of post-quantum cryptographic schemes. More importantly, OQS

offers the chance to integrate the quantum resistant schemes into classical applications and

protocols with the goal of minimizing the software change; besides, OQS provide the op-
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portunity to compare post-quantum schemes with each other or with classical cryptographic

algorithms.

Jin and Zhao [130] present symmetric (OKCN) and asymmetric (AKCN) LWE and Ring-

LWE based key exchange mechanisms (NewHope and Frodo are Ring-LWE and LWE-based

symmetric key exchange schemes). OKCN, optimally-balanced key consensus with noise,

can be used for key transport and encryption, while AKCN, asymmetric key consensus with

noise, only can be employed for the key transport. In the proposed scheme, the server

sets the session key before starting the key exchange mechanism. Consequently, it provides

the opportunity to encrypt the message offline which provides higher security and better

workload balance. Compares with Frodo, OKCN-LWE produces a much smaller matrix by

eliminating the least significant bits of each LWE sample which results in less computation

for matrix arithmetic; smaller matrix also results in the faster generation and sampling of the

matrix. With the same set of parameters (same security level), OKCN-LWE consumes more

bandwidth (30%) than Frodo, while its failure probability is remarkably lower. Employing

the same optimization techniques, Ring-LWE based version of OKCN, which adopts the same

noise distribution and parameters of NewHope, provides a more computationally efficient

scheme than NewHope. Authors integrate the OKCN-LWE scheme into the open safe project

platform [212].

Zhao et al. [230] extend [130] and present a generic construction of authenticated key

exchange, PKE and KEM schemes based on LWE/RLWE, LWR, and MLWE problems

(submitted to NIST PQC standardization call as KCL (pka OKCN/AKCN/CNKE)). OKCN-

LWE and OKCN-LWR key exchanges require less bandwidth (18% and 28%) compare to

Frodo at the same security level (shared key size of 256-bit). The most efficient key exchange

mechanism with share the key size of 512-bit is achieved by AKCN. Authors prove that

the errors in different positions in the shared key are independent and propose single-error

correction (SEC) code to correct at least one bit error; using the SEC, with the same security
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and error rate, OKCN/AKCN-RLWE based KEX schemes generate 765-bit shared key with

less bandwidth than NewHope and NewHope-Simple (with 256-bit shared key). Authors

claim that they provide the most efficient lattice-based key exchange scheme with share

key size of 256-bit by applying OKCN/AKCN to MLWE-based key exchange mechanism.

Additionally, the authors provide a new authenticated key exchange scheme named concealed

non-malleable key-exchange (CNKE).

Seo et al. [204] propose error-blocked multi-bit key encapsulation mechanism named EM-

BLEM and (R.EMBLEM) which is (secure against adaptive chosen-ciphertext attack) based

on the small secret LWE (RLWE) problem. During the decryption phase, the error does

not affect the message by separating the message and error and concatenating each message

block with the error-blocking bit. The secret key is sampled uniformly at random in [−B,B]

(where B is a positive integer smaller than σ) instead of Gaussian distribution. Conse-

quently, the key size is notably reduced since the secret key can be generated by a 256-bit

seed which eliminates the need for storing the whole matrix; however, it imposes compu-

tational overhead to generate the secret key from the seed using pseudorandom functions.

For polynomial multiplication in R.EMBLEM, Cooly-Tukey butterfly and Gentleman-Sande

butterfly are used in NTT and inverse NTT, respectively. Besides the software implemen-

tation on Intel core-i7-7600, authors implement schemes on the Zynq 7 FPGA platform.

Kyber [43] is a highly optimized IND-CCA KEM with the post quantum security based

on the hardness of solving the module learning with error problem (Modulue-LWE) [142].

Ideal lattices with their ring structure decrease public key and ciphertext size of standard

lattices schemes by sacrificing security assumption. Module lattices proposed to fill the

gap by believing that full ring structure is excessive [142]. Authors define IND-CPA PKE

scheme under Module-LWE hardness assumption and apply a variant of Fujisaki-Okamoto

transform [120] to build a IND-CCA KEM. Employing IND-CCA KEM, they design IND-
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CCA KEX and AKEX under hardness assumption in the classical and quantum random-

oracle models. Kyber works over only one ring, Rq = Z7681[x]/(x256 + 1), which provides

flexibility (e.g. performing polynomial multiplication) to sacrifice security (from 128-bit to

102-bit) to improve performance and communication size (33%) (by only changing k from 3

to 2). This flexibility is exclusive to Kyber (Module-LWE schemes); in Ring-LWE schemes,

changing the security parameters results in building a new ring Rq and ring operations.

Kyber has been submitted to the NIST PQC standardization call for as Kyber512, Kyber768,

Kyber1024 at 102, 161 and 218-bit security (NIST security category 1, 3 and 5) [16].

Lu et al. [147] present LAC (LAttice-based Cryptosystems) that includes an IND-CPA PKE

(LAC.CPA), a passively secure KEX (LAC.KE), an IND-CCA KEM (LAC.CCA) and an AKEX

(LAC.AKE) all of which are based on the RLWE problem. The main design concern is to

enhance bandwidth efficiency (reduce key and ciphertext size) by setting modulus q to be

small (q = 251) which prevents the direct use of NTT in LAC. However, employing AVX2

vector instructions improves the performance of the polynomial multiplication by a factor

of 30, polynomial multiplication imposes remarkable computational pressure on the systems

without the support of vector instructions. Sampling the secret and error term is done using

the centered binomial distributions. LAC is proposed with three set of parameters that are

much more expensive to break than AES128, AES192, and AES-256 (NIST security category

of 1, 3 and 5).

Smart et al. [211] propose LIMA (LattIce MAthematics), a family of IND-CCA and IND-

CPA RLWE-based PKE (based on based on LP [143]) and KEM schemes, to the NIST PQC

standardization call as 6 set of parameters with claimed post-quantum security from 143 to

274 (NIST security category of 1, 2, 3 and 5). Authors employ the Fujisaki-Okamoto [96] and

Dent transform [68] to obtain IND-CCA PKE and IND-CCA KEM schemes. In addition to

power-of-two cyclotomic rings (LIMA-2p), authors propose safe-prime cyclotomics (LIMA-sp)

that reduces the probability of subfield attacks by scarifying the efficiency compare to the
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power-of-two cyclotomics. In order to avoid decryption failure, authors perform rejection

sampling (from a centered binomial distribution) at the encryption stage which makes the

implementation to be non-constant time. In order to perform polynomial multiplication with

FFT, large modulus should be selected for LIMA-sp.

Phong et al. [176] present LOTUS (Learning with errOrs based encryption with chosen

ciphertexT for poSt quantum era) IND-CCA2 secure LWE-based PKE (LOTUS-PKE) and

KEM (LOTUS-KEM) with 128-bit, 192-bit and 256-bit security (NIST security category of 1,

3 and 5). Knuth-Yao algorithm [136] is employed to sample the error term from discrete

Gaussian distribution. In order to reduce sampling’s overhead, DDG tree is built online and

probability matrix is stored column-wised. Besides the reference and optimized implemen-

tations, vectorized implementation (employing AVX2 vector instructions) of LOTUS-PKE

and LOTUS-KEM are provided.

NTRU-KEM [126], an IND-CCA2-secure KEM based on NTRU cryptosystem with 128-bit

classical security, is the first timing attack resistant NTRU software thanks to its constant-

time noise sampler. NTRU-based KEM has active security which allows parties to cache

the ephemeral keys, however passive secure key exchange mechanisms like NewHope and

Kyber must not use cached values. Compared to NewHope (255-bit PQ security), NTRU-

KEM (123-bit PQ security) improves (secret key size, public key size,ciphertext size) by

(20%, 37%, 37%) and halves the required clock cycles for encryption/encapsulation step.

However, it increases required clock cycles for key generation and decryption/encapsulation

by a factor of 3.47.

Plantard [177] presents Odd-Manhattan, a IND-CCA KEM by using Dent transform [68]

on IND-CPA PKE, at 126,192 and 256-bit security (NIST security category 1,3 and 5).

Odd-Manhattan is based on the α-Bounded Distance Parity Check (BDPCα) [150], which

impose a considerable increase in time and size of key generation, encryption, and decryption.

To mitigate the time overhead, computational reuse, i.e., store the results of the k consecutive
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additions (constant time) in memory, with notable memory penalty has been employed.

Garcia-Morchon et al. [99] introduce Round2, a family of CCA-PKE (Round2.PKE) and

CPA-KEM (Round2.KEM) based on the general learning with rounding (GLWR) problem.

By having d (dimension), n (system parameter), q (large modulus), p (rounding modulus)

∈ Z+ where q ≤ p and n ∈ 1, d, if n = 1, instantiated scheme is based on the LWR

problem, while n = d (n + 1 is prime) results in a RLWR based scheme. Round2 provides

two set of parameters including Unified-Round2 (uRound2, q is a power of 2) and NTT-

Round2 (nRound2, q is prime, n = d (n + 1 is prime)). With uRound2, schemes can be

seamlessly instantiated from LWR or RLWR [23] (for all NIST security levels), both n = 1

and n = d, with the same code which provides agility (i.e., switching from RLWR-based

schemes to LWR-based schemes without recompilation). GLWR, compare to LWE, results

in decreasing random data generation due to avoiding sampling from the non-uniform noise

distribution; besides, the required bandwidth is reduced since fewer bits are needed per

coefficient. Secret terms can be either a sparse-trinary (reduces the probability of error

in decryption) or uniformly sampled in Zdq . In order to have a unique implementing for

LWR and RLWR, a common multiplier that implements polynomial multiplication as the

matrix multiplication is employed. Compare to NewHope [11] and Kyber [43], RLWR-based

uRound2 requires smaller the public-key and ciphertext in total for NIST security category

5. Over the same ring as NTRU-KEM scheme, Round2 bears better speedup due to its

faster key generation. Performance evaluation of the reference implementation is performed

on Intel Core i7 2.6GHz.

D’Anvers et al. [64] propose SABER, a family of Module-LWR based IND-CPA PKE and

IND-CCA KEM schemes including LightSaber-KEM, Saber-KEM and FireSaber-KEM with

115, 180 and 245-bit security (NIST security category 1, 3 and 5). Integers are chosen to be

the power-of-two modulus which results in avoiding explicit modular reduction and relaxing

complicated sampling methods (e.g., rejection) by efficiently, constant time, sampling from
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a (modulo power 2) uniform distribution; however, power-of-two modulus prevents using

the NTT for polynomial multiplication (Karatsuba and Toom-Cook algorithms are used

instead). Switching among SABER schemes is accomplished by choosing a modulus of

higher rank in the fixed polynomial ring Z213 [x]/(x256 + 1). The failure rate is reduced by

using a reconciliation method introduced in [12].

Hamburg [114] introduces THREEBEARS, a family of IND-CPA and IND-CCA KEM schemes

adopted from Kyber [43] and based on integer Module-LWE (ILWE) [58] problem. THREEBEARS

includes BABYBEAR, MAMABEAR (recommended)and PAPABEAR with NIST security security

category of 2, 4 and 5, respectively. For each scheme, deterministic CCA-secure (with FO

transform) and ephemeral (without FO transform) implementations are presented. In order

to reduce the memory footprint, the private key is rapidly generated by expanding a seed;

similarly, public key and large public matrix (uniformly at random sample each element)

are generated modulus N where N is a large Mersenne prime. Sampling the noise is per-

formed by expanding a seed to only 1B per digit. Although the Saarinen’s error correction

[201, 202] can notably improve THREEBEARS security, author prefers to use Melas BCH code

as the two-error-correcting code to maintain the code simplicity. To preserve simplicity, NTT

is not used which results in slower integer arithmetic, on devices without vector unit support

in particular. Performance analysis of the THREEBEARS implementations are provided on

Intel Skylake, ARM Cortex-A8 and ARM Cortex-A53. With 15% smaller ciphertext and

public key size, MAMABEAR (resp. PAPABEAR) is stronger than Kyber-Paranoid (resp. Hila5

[201, 202] and NewHope [11]).

Steinfeld et al. [215] present Titanium, a family of IND-CPA PKE (Titanium-CPA) and IND-

CCA KEM (Titanium-CCA) schemes based on the middle product LWE (MPLWE) problem

[194]. Schemes are tightly and provably secure based on the hardness of Polynomial-LWE

problem over the polynomial ring Z[x]/f(x) where f is the member of a large group of

ring polynomials. Titanium is a middle ground scheme that achieves a trade-off between

53



security and efficiency such that, in terms of ciphertext size and performance, it is superior to

Frodo [42] but inferior to Kyber [43]. Among 6 suggested parameter sets, Std128, Med160,

Hi192 and Super256 satisfy minimum security specified by NIST (1,1,3 and 5, respectively).

However, the security analysis of Titanium assumes the classical random oracle model. NTT

and binomial difference error distribution are used for polynomial multiplication and error

sampling; secret key coordinates are sampled uniformly at random over Zq. It should be

mentioned that error correction or reconciliation techniques are not employed in Titanium.

In addition to the reference and optimized implementation, authors provide performance

analysis of vectorized implementation (AVX2) on Intel i7-7700K.

Digital Signature. Lyubashevsky [148] presents Short Integer Solution (SIS) problem

based digital signature schemes adopted from Fiat-Shamir transformation. Lyubashevsky

improves this scheme by establishing it efficiently for Ring-SIS and Ring-LWE which culmi-

nates in a smaller signature and key size [149]. BLISS signature [79] is an optimized version

of Lyubashevsky’s signature where a binomial Gaussian sampler is used in the rejection

sampler component, resulting in a remarkable reduction in the standard deviation of the

Gaussian distribution. Bai and Galbraith [20] propose a provably secure small signature (BG

signature) based on the standard LWE and SIS problems that can be implemented using

uniform distributions. Standard worst-case computational assumptions on lattices are the

basis of security for the BG signature scheme.

Pöppelmann et al. [185, 187] evaluate implementations of various lattice-based schemes,

including RLWE-based public key encryption schemes and BLISS [79] on the 8-bit AVR

micro-controllers. They review various NTT algorithms (written in C) and optimize (using

assembly language and ignoring zero coefficients) polynomial multiplication (column-wise)

for ideal lattice-based cryptography schemes. However, using precomputed twiddle factors

in NTT computations requires more memory footprint. Official release code of Keccak [33]

for AVR is used for the random oracle which is needed for signing and verification. Other
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optimizations offered by the authors are removing bit reversal step during polynomial mul-

tiplication and applying the Gaussian sampling in a lazy manner. Compared to RLWE

encryption, BLISS needs larger standard deviation for sampling from Gaussian distribution;

candidates for Gaussian sampling are CDT sampling [40] with binary search, which results

in large tables, and Bernoulli [41], that impose remarkable performance overhead. Con-

sequently, for Gaussian sampler, KL-convolution sampler [180] is used which consume less

flash memory compared with the CDT and Bernoulli samplers. The BLISS implementation

consumes the least flash footprint on AVR and has the lowest published runtime through

2015.

BLISS-B [78] (with the same security level) improves the performance of original BLISS 2.8

times by employing the ternary representation of polynomials in order to shorten the length

of the random numbers. During the key generation, keys will not be rejected which leads

to 5-10 times enhancement of key generation step runtime. Generated signatures by BLISS

and BLISS-B are compatible with each other, allowing signatures generated by one to be

valid for the other. Although generated keys of BLISS-B could not be used in BLISS, BLISS

generated keys are compatible with BLISS-B.

Oder et al. [171] present an efficient software implementation of BLISS on ARM Cortex-

M4F to optimize the throughput along with minimizing memory footprint. Authors evaluate

the efficiency of a variety of Gaussian samplers including the Bernoulli, Knuth-Yao, and

Ziggurat [47]. In order to improve NTT computation, assembly level optimization along

with precomputed coefficients are employed. They conclude that Knuth-Yao sampler is the

best candidate for large devices, while for constrained devices Bernoulli is more favorable.

Güneysu et al. [108] present a highly optimized SIMD implementation of GLP signature [105]

and implement it on Intel’s Sandy and Ivy Bridge processors. In the proposed scheme, the

Gaussian sampler is replaced with the uniform sampling from {-1,0,+1}; to benefit from the

AVX, each 512 double-precision floating-point array of coefficients is 32-byte aligned. Besides,
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modular reduction of the coefficients is performed in a lazy manner. However, the signature

size and security level of the implemented scheme are inferior to BLISS.

El Bansarkhani and Buchmann [88] implement the first software implementation (space and

speed optimized) of GPV signature scheme [101] by employing the Micciancio and Peikert

(MP) trapdoors [153] on the Sun XFire 4400 server equipped with 16 Quad-Core AMD

Opteron. Besides the matrix version, a much faster Ring-LWE based variant of the scheme

is provided which has around 3-6 and 3-9 times better speed than matrix version for sign

and verification steps, respectively. Due to the small number of stored entries, instead of

rejection sampling, the inversion transform method is used for discrete Gaussian sampling

during integer key generation; however, rejection sampling [101] is used in the randomized

rounding. It worth mentioning that for random oracle SHA256 and a pseudo-random number

generator from [48] are used.

Dagdelen et al. [63] propose a fast software implementation of the BG signature, with opti-

mized rejection sampling, on an Intel processor with AVX and an ARMv7 with Neon vector

instructions support. Small performance degradation is observed by employing standard

lattices instead of ideal lattices which is a great achievement because there is no quasi-

logarithmic arithmetic scheme like NTT for standard lattices.

Boorghany et al. [40, 41] propose efficient software implantation of lattice-based GLP and

BLISS authentication protocols for resource-constrained smart cards and micro-controllers

(ARM and AVR). Authors perform a design space exploration by choosing different param-

eter sets for FFT and Gaussian Sampler (Knuth-Yao and Bernoulli) along with the various

PKE schemes. They conclude that lattice-based schemes are efficient enough to be imple-

mented on the constrained devices.

Alkim et al. [10] introduce TESLA (a tightly secure signature in random oracle model re-

sulted) by a tight reduction to LWE-based problems on the standard lattices and implement

56



it on Intel Core-i7 4770K (Haswell). Their proposed design is adopted from BG signature [20]

which is faster and smaller than the same scheme in [63] due to employing parallel matrix-

vector multiplication and lazy reduction. Authors propose two variants TESLA-128 and

TESLA-256; the former one, TELSA-I, is not quantum resistant, while the latter, TELSA-

II, provides the first lattice-based digital signature with 128-bit security against quantum

computers. Large public key size (about 1 MB) makes it impractical to implement. Same

authors present a fast, small, and provably secure Ring-LWE based software implementation

of TESLA, that uses uniform sampling, on the same platform which reduces the key size

about three orders of magnitude [7]. The propose Ring-TESLA benefits from the AVX2

instructions, which has a one cycle throughput for eight doubles integers. Instantiation from

the Ring-TESLA leads to the rejection of valid signatures in the verification stage due to a

problem in the parameter selection which is solved in [56] by new parameter selection method

and in [26] by altering the algorithm. Based on the claims in [26], TESLA and Ring-TESLA

are using global parameters which results in employing a fixed lattice for all the signatures

that could weaken the signature scheme. A recent version of TESLA [10] fixes the problem

by adding a new condition to the signing step which results in dropping the speedup, creating

a more complex signature scheme, with less success in signing. Barreto et al. [26] introduce

TESLA#, a high-performance version of Ring-TESLA, on Intel Core i7-4770 Haswell pro-

cessor, which resolves the security problems of TESLA. Further improvement is achieved

by designing a more efficient Gaussian which accelerates the key generation step along with

avoiding to store all 32 bits of coefficients of the polynomial. Bindel et al. [36] pro-

pose qTESLA a family of (provably existentially unforgeability under chosen-message attack

(EUF-CMA) secure in the quantum random oracle model) Ring-LWE based digital signature

schemes, including qTESLA-128, qTESLA-256 and qTESLA-192 with NIST’s security cate-

gories of 1, 3 and 5. qTESLA adopts a simpler version [26] of the bimodal Gaussian sampler

[79] that is only employed in key generation. Although qTESLA performs polynomial mul-

tiplication by NTT, it is compatible with the schoolbook algorithm. qTESLA uses cSHAKE
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[132] to deterministically generate the random bits for driving the seeds in the key generation

and generation of a new polynomial for every key pair. In the signing step, qTESLA employs

SHA-3 as the hash function and cSHAKE as the pseudo-random function. Contrary to the

Ring-TESLA, qTESLA is secure against cache side channel attacks by applying counter-

measures introduced in [38]; however, qTESLA is vulnerable to fault attacks [37] similar to

Ring-TESLA.

BLZZRD [199], a lattice-based signature based on BLISS-B [78] is implemented on an Intel

Core-i7 Haswell processor with small signature size but with costly signing step. Authors

achieve optimal compression for discrete Gaussian distribution by using Binary Arithmetic

Coding (BAC) which leads to a more compact signature compared to advanced Huffman-

based signature compressors. Further security improvement is gained by prohibiting leak

of information about the execution time and power consumption of the arithmetic opera-

tion by applying randomization which makes the signature resistant to timing and power

attacks. Additionally, masking properties of Gaussian samples is achieved by randomizing

and combining multiple numbers the of sample vectors.

Dilithium [81], a simple and efficient digital signature scheme resistant to the lattice re-

duction attacks (with the same conservative security parameter in [11]) is adapted from

the designs in [105] and [20] that uses Fiat-Shamir Abort Framework [148] which is secure

in random oracle model (no security proof in quantum random oracle model is presented).

Authors implement Dilithium and its variant Dilithium-G on Intel Core-i7 4770k with

comparable efficiency to BLISS. In [105], hints are generated (by the signer to help verifier

to verify the signature) to make the signature smaller; Dilithium improves hint-generation

and halves the public key size with less than 5% increase in the signature size. In fact,

authors set total size = signature size + public key size as their size parameter. Dilithium

over ring of Zq[x]/[xn+ 1] (n = 256,q = 223−213 + 1 = 8380417) has slightly bigger total size

than BLISS (over ring of Zq[x]/[x1024 + 1]) with the same security level. Dilithium samples
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polynomial noises from the uniform distribution Sη in [−η,+η] where η is in the range of

3 to 7 for very high secure to weakly secure scheme, respectively. However, Dilithium-G

extract noises from Gaussian sampler which results in better security but vulnerable to tim-

ing attacks. Rejection sampling is the same for both schemes as if individual coefficients of

a signature is not within a certain range, signing procedure must be restarted. Dilithium

employs the standard NTT-based polynomial multiplication, however in vectorized version,

Dilithium uses integer instructions instead of floating point vector instructions [11].

Dilithium has been submitted to the NIST PQC standardization call at three security

levels (all use the same ring) including medium, recommended and very high (NIST security

category 1,2 and 3) [80]. Dilithium is tightly secure in the quantum random oracle model

based on the Module-LWE, Module-SIS and SelfTargetMSIS [134] problem (adopted from

combined security of MSIS problem and hash function H). Signature size of Dilithium is

about 2× bigger than that of BLISS [79] and [82] (smallest schemes among lattice-based

digital signatures) that use discrete Gaussian sampler which Dilithium avoids. However,

compare to the most efficient lattice-based digital signature schemes that avoid Gaussian

sampler, Dilithium achieves 2.5× smaller public key size. Coole-Tukey and Gentleman-

Sande butterflies are used in NTT and inverse NTT, respectively, to perform the polynomial

multiplication in which Montgomery reduction is used after multiplication (avoid reduction

after addition and subtraction). Vectorized (AVX2 instruction set on Intel Core i7-4770K)

version of NTT gives 4.5× speed improvement over the (reference) integer NTT implemen-

tation which is 2× faster than floating point NTT [11]. Dilithium uses SHAKE128 and

SHAKE256 to drive the matrix (A ∈ Rk×l
q in NTT domain) and vectors. Vectorization im-

proves speedup of the matrix and vector expansion by sampling four coefficients in parallel.

Fouque et al. [93] propose FALCON, a family of compact lattice-based hash-and-sign digital

signature schemes with quantum security of 103, 172 and 230 bits (NIST security category
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1,3 and 5) with the main goal of minimizing the total size = signature size + public key size.

FALCON is the result of combining GPV framework [101], NTRU lattices [115] and Fast

Fourier sampling [84]; provably secure NTRUSign is built by combining the GVP framework

and NTRU lattices [214]. Instantiation of the GPV IBE over NTRU lattices is presented in

[82] which can be transformed to FALCON by employing the Fast Fourier sampling in private

key operations. NTRU lattices along with the capability of the message recovery (entirely

from the signature) result in compactness of the FALCON. Verification step in FALCON

is relatively fast and simple and can be performed by a hash function followed by NTT

operations. FALCON uses double precision floating-point arithmetic in signing which can

be challenging to implement on the devices without floating point units. Another downside

of the FALCON is the extensive use of the discrete Gaussian sampling over the integers

which is hard to protect against the timing and side-channel attacks. FFT over the complex

numbers is used for private key operations, while public key operations and key generation

are performed using NTT over Zq. FALCON uses bimodal Gaussian in the reject in the

sampler, ChaCha20 as the PRNG and SHAKE-256 as XOF for all security levels. FALCON

can be easily transformed into an IBE scheme [82]. Authors only provide the performance

evaluation of the reference implementation on an Intel Core i7-6567U CPU with 15% of error

margin due to not disabling the boosting feature of the processor. Falcon has the smallest

total size among all the post-quantum digital signature schemes at the same security level.

Chen et al. [50] present pqNTRUSign, a modular lattice-based hash-then-sign digital sig-

nature scheme (introduced in [117]) at post-quantum security of 149-bit (NIST security

category 5). pqNTRUSign provides sampler agility as the user can choose the sampler based

on the design goal; constant time uniform sampling for the security and (bimodal) Gaus-

sian sampling for the performance goals, respectively. The key generation is the same for

both set of parameters (Gaussian-1024 and Uniform-1024); other steps have different imple-

mentations for various parameter sets. The public key, forgery and transcript security are

provided by NTRU assumption, LWE problem over NTRU lattices and rejection sampler,
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respectively. Like NTRUEncrypt [229], Box-Muller [45] is employed to sample from the dis-

crete Gaussian distribution. AVX optimization for polynomial multiplication is not included

in pqNTRUSign; a naive NTT with the time complexity of O(N2/2) is used.

2.1.3 Hardware Implementations of Lattice-based Cryptographic

Schemes

Nejatollahi et al. [159] propose the first domain-specific accelerators for ideal lattice-based

schemes with the case study of BLISS-BI [78] and NewHope [11]. Authors present a quick

design flow that performs exploration and the design of programmable accelerators that leads

to on average 35% and 50% improvement in the latency and energy-delay product. Authors

create a programmable accelerator for NTT that can be employed in any scheme, with any

set of parameters, that uses Gentleman-Sande butterfly; the Keccak-f[1600] accelerator is

suitable for any classical and post-quantum cryptographic scheme as the heart of the SHA3.

Public Key Encryption. Göttert et al. [103] propose the first hardware implementation of

Ring-LWE based public key encryption on the Xilinx Virtex-7 FPGA. Due to the large area

occupation of the full Ring-LWE public key encryption scheme, only LWE-polynomial vari-

ants are chosen to be implemented. Proposed implementations are based on LP lattice-based

encryption scheme [143] which achieve 316 times higher throughput compared to software

implementation. Using a fully parallel architecture (which makes the design remarkably

spacious), high throughput is achieved by minimizing required clock cycles in computing the

NTT. The primary optimization metric is the performance for which they show speedups

for encryption and decryption schemes by factors of 200 and 70, respectively, in comparison

to the software implementation with the same level of security.

Pöppelmann and Güneysu [182] provide a flexible Ring-LWE encryption engine in which one

core is used to perform key generation, encryption, and decryption steps with the primary
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goal of optimizing throughput per unit of area. Besides, by applying optimizations including

different encoding technique and removing some LSBs of the ciphertext coefficients, encryp-

tion engine, which is 60 times smaller than the design in [103], it could be fit on the Xilinx

Spartan-6 FPGA with three times slower encryption step. They employ a Gaussian sam-

pler with relatively low precision, using the CDT sampling method that compares random

probabilities with a cumulative distribution table. The proposed Gaussian Sampler is fast

(one sampler per cycle at 60 MHz) with the cost of numerous random bits (85) to produce a

single random number. The Gaussian sampler is time independent with the cost of an array

of parallel comparators, one per each word of the table.

Roy et al. [196] implement a compact Ring-LWE crypto processor on Virtex 6 FPGA where

they optimize NTT multiplication by reducing the fixed computation and pre-scaling over-

head. Authors suggest combining pre-computation stage and NTT computation. Besides,

NTT Memory access is minimized by storing two coefficients in a single word, processing

two pairs of coefficients together, and eliminating idle cycles. Small lookup tables are used

in the Knuth-Yao discrete Gaussian sampler [197] which leads to more compact and faster

sampler than [183].

Pöppelmann and Güneysu [183] implement the smallest lattice-based encryption engine on

Spartan-6 and Virtex-5. Compared with the high-speed implementation of [182], this is

one order of magnitude slower due to non-applicability of using NTT (using DSP-enabled

schoolbook polynomial multiplier). Besides, a considerable area is saved by using specific

modulus, a power of 2, by which modular reduction is almost cost-free. Further area saving

is achieved by using a Bernoulli distribution [79] with small precomputed tables in order to

optimize simple rejection sampling by eliminating computing of exp() function.

Howe et al. [122] present the first and the only, hardware implementation of lattice-based en-

cryption engine based on learning with error problem over standard lattices on the lightweight

Spartan-6 FPGA. The main concern is optimizing the area, while the scheme maintains the
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balance between area and performance by using a larger Gaussian sampler. The proposed

encryption engine is smaller in comparison to the design of [103]; besides, it can closely

compete with the encryption scheme of [182]. To maximize the performance, authors use

a larger Gaussian sampler, Bernoulli sampler, which generates samples in parallel with no

adverse effect on the critical path.

Reparaz et al. [192] implement a masked Ring-LWE scheme on a 32-bit ARM Cortex-

M4F and Virtex-II FPGA which is Differential Power Analysis (DPA) resistant. In order

to be first-order side-channel attack resilient, a constant time masked decoder with high

success probability is implemented. The entire computation is done in the masked domain

by employing a dedicated masked decoder which imposes considerable time and area overhead

compared with an unprotected design.

Digital Signature. Howe et al. [123] provide evaluation and summary of practical in-

stantiations of digital signature schemes based on lattice problems on different platforms.

Evaluation metrics are the secret key, public key, and signature size. Additionally, they give

a survey of various implementations of basic blocks including NTT and sampling. Authors

evaluate Bernoulli, Ziggurat, Knuth-Yao, and cumulative distribution table (CDT) variants

of the Gaussian sampler.

Güneysu et al. [105] implement an efficient lattice-based signature scheme (GLP signature)

on a Xilinx Virtex 6 FPGA which is the first practical lattice-based signature scheme that

could resist transcript collision attacks. Author removes the need for Gaussian noise sampling

by using the rejection sampling which leads to hiding the secret key contained in each sig-

nature. Security of the proposed scheme is lower than standard lattice-based signatures due

to building the hardness assumption based on the Decisional Compact Knapsack problem.

Because of the regular structure of the schoolbook algorithm, authors achieve high speed

and small size for implementation of the polynomial multiplier. Compared with BLISS, the

proposed signature is sub-optimal in terms of signature size and security level.
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Pöppelmann et al. [180] implement a high throughput hardware implementation of BLISS

[79] on Xilinx Spartan-6 FPGA. Authors improve and parallelize the column-wise schoolbook

multiplier presented in [105]. Authors employ an efficient CDT based Gaussian sampler with

large tables. To improve the performance of the CDT sampler, author deploy a decreasing

number of comparisons by improving the binary search and reducing the size of precomputed

large tables by using an optimized floating-point representation (adaptive mantissa size)

with negligible effect on the performance. Authors provide enhanced CDT which uses two

smaller samples (Peikert convolution theorem [173]). A standard CDT needs table of the

size at least η × τ × λ = 215.73 × 13.4 × 128 = 370kb while enhanced CDT needs around

23× smaller table. Authors evaluate performance and resource consumption of BLISS-I

(n = 512, q = 12289) by employing the CDT and two parallel Bernoulli samplers and

conclude that CDT consumes less FPGA resources than Bernoulli; besides, enhanced CDT

achieves 17.4 Million Operation per Seconds (MOPS) which is 2.3×more than that of Bernoulli

sampler. Based on the results, performance of enhanced CDT is almost the same for BLISS-I

(σ = 215), BLISS-III (σ = 250) and BLISS-IV (σ = 271).

Güneysu et al. [107] propose an optimized and flexible implementation of a lattice-based

digital signature on Xilinx Spartan-6 and Virtex-6 FPGAs which has the same theoretical

basis as [105] but with major improvements. Compared with [105], instead of Schoolbook

multiplier, authors employ a parallelized NTT for polynomial multiplications (the most time-

consuming part of the digital signature), which leads to smaller and faster signing/verification

engines. Authors develop a flexible processing core with VHDL that could be configured as

either signing or/and verification engine which does not impose any overhead to provide

flexibility. The signing step breaks into three separate blocks, including lattice processing

engine, random oracle, and, sparse multiplication along with compression unit, which are

running in parallel. The digital signature processor is based on the lattice processor for the

public key encryption scheme in [182].
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Key Exchange. Oder et al. [223] propose an area optimized constant time implementation

of NewHope-Simple [12], on Xilinx Artix-7 FPGA, with decent performance level. With the

same post-quantum security level as NewHope (128-bit), server and client work with clock

frequency of 125 and 117 MHz, respectively. Authors design two separate modules for the

client and server sides which forces an embedded system to be only either a server or a

client, hence results in the lack of re-usability as a disadvantage. For the sake of the area

optimization, 512 butterfly operations are performed serially, while they can be performed

in parallel.

Kou et al. [139] provide a high performance pipelined implementation of NewHope [11] on

Xilinx Artix-7 FPGA which is 19.1× (4 ×) faster (bigger) than the hardware implementation

of the NewHope-Simple [223]. In order to improve the performance, NTT operations are

computed using four butterfly units; besides, Longa-Naehrig modular reduction [145] is used

instead of Barrett reduction.

2.1.4 Hardware/Software Implementations of Lattice-based Cryp-

tographic Schemes

Because of the probabilistic inherent feature of rejection sampling in the lattice-based schemes,

the probability of generation of an invalid signature exists that can be minimized by pre-

computation. Aysu et al. [18] divide the signature scheme in hash-based cryptographic

signatures into two separate phases in order to minimize the energy and latency of signa-

ture generation. During the offline phase, input (message) independent computations, for

instance, key and random number generation, are performed, and results are stored in a

memory buffer as coupons. Subsequently, the output is generated using the precomputed

coupons and the input (message) during the online phase. Employing the same idea, Aysu

et al. [19] implement a latency optimized lattice-based signature with hardware/software
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co-design technique. The main objective is to optimize latency which is achieved by focusing

on the signature generation step on the embedded device. On the other hand, the verifica-

tion step is performed on high-performance platform servers. Signature generation scheme

consists of two separate phases including offline and online phases which are performed on

NIOS soft-core as software, and Altera Cyclone-IV FPGA as hardware, respectively. Hard-

ware is responsible for low latency hash function and polynomial multiplication; however,

the software part computes and stores polynomials.

2.1.5 DSP Implementation

In order to perform the multiply-accumulate (MAC) operations of matrices in the encryption

scheme, Howe et al. [122] utilize a dedicated DSP48A1 unit of the Spartan-6 FPGA to achieve

an area optimized hardware implementation of standard LWE based encryption engine. The

primary goal is optimizing area, while the scheme maintains the balance between area and

performance by using a larger Gaussian sampler.

2.2 Conclusion

Lattice-based cryptographic algorithms promise to tackle the challenges posed by deployment

across diverse computing platforms, as well as for diverse use cases within reasonable security,

performance, and energy efficiency guarantees. Numerous schemes and implementations

tackle different trade-offs, such as memory footprint, security, performance, and energy, are

mapped on a variety of platforms and apply to specific use cases. However, current designs

are still deficient in addressing the need for agility, which is paramount to tackle the needs of

emerging business models at the computing platform level. Besides, securing such platforms

against physical attacks is a topic that needs to be researched.
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Chapter 3

Simulation-based Cache-assisted

Polynomial Multiplier

3.1 Background

A lattice L ⊂ Rn is the set of all integer linear combinations of basis vectors b1, . . . ,bn ∈ Rn.

i.e., L =
{∑

aibi : ai ∈ Z
}

. In particular, L is a subgroup of Rn that is isomorphic to

Zn. The cryptography based on lattices exploits the hardness of two problems: Short Integer

Solution (SIS) and Learning With Errors (LWE). Cryptosystems based on the LWE problem,

the most used one, have their foundation in the difficulty of finding the secret key sk, given

(A, pk), where pk = A ∗ sk + e mod q, being pk the public key, e an error vector with

Gaussian distribution, and A a matrix of constants in Zr×nq chosen randomly from a uniform

distribution. In general, the parameters n, r and q are integers such that n > 1, r > n and

q ≥ 2, but for some efficient implementations these numbers are constrained to a limited set

of values. For more detailed information about the parameters we refer to the survey done

by Oded Regev [190].
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LWE, however, requires large keys that could be impractical; for instance, public and secret

key size of Frodo [158], LWE-based KEM, at NIST security level 1 are 9KB and 19.8KB,

respectively. To overcome this limitation, Lyubashevsky et al. [151] introduced Ring-LWE

(RLWE), a derivation of LWE where A is implicitly defined as a vector a in the ring R ≡

Zq[x]/〈xn+1〉. These lattices are called Ideal lattices, while other lattices are called Standard

lattices. At the same security level as Frodo, NewHope [179], a RLWE-based KEM, provides

10X smaller public and secret keys. Since implementing a polynomial multiplication requires

a notable amount of computational resources, it is implemented using the so-called Number

Theoretic Transform (NTT), which is a Fast Fourier Transform implemented over a ring. In

the rest of this section, we introduce a detailed definition of RLWE and number-theoretic

transform.

Notations

In an RLWE encryption scheme, operations are performed on polynomials. We denote

polynomials in the time domain by a lower case letter, e.g., x, and whenever we want to

access one coefficient of the polynomial, we denote x(i). Polynomials in the frequency domain

are denoted by upper case letters. Multiplication of integers is described by · while we use

∗ for multiplication of polynomials. We omit · and ∗ where it is clear from the context.

3.1.1 Ring-LWE Encryption Scheme

The cryptosystems analyzed in this paper are mostly based on a ring-variant of the LWE

problem [190, 151]. The hard problem to be solved on the ring R = Zq[x]/〈xn + 1〉 which

defines as deciding whether the samples (a1, t1), . . . , (am, tm) ∈ R×R are chosen uniformly

random or whether each ti = ais + ei, being s, e1, . . . , em small coefficients from the (one-

dimensional) discrete Gaussian distribution Dσ [151]. The distribution Dσ is defined such
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that a value x ∈ Z is sampled from Dσ with the probability ρσ(x)/ρσ(Z) where ρσ(x) =

exp (−x
2

2σ2 ) and ρσ (Z) =
∑∞

k=−∞ ρσ(k).

The algorithms for key generation, encryption and decryption are presented in Algorithm 1,

Algorithm 2, and Algorithm 3, respectively. The key generation uses a constant vector a for

obtaining the public and secret key (pk, sk). The encryption procedure takes a binary string

µ and releases the ciphers (c1, c2), which are used in the decryption to recover the message

µ′. The vectors r1, r2, e1, e2, e3 are error vectors sampled from a Gaussian distribution.

Algorithm 1: RLWE Key generation

1 Function RLWEkeyGen(a):

/* Require: Access to a global constant ‘a‘ that was uniformly

chosen from Rq */

2 r1, r2 ← DZn,σ

3 pk ← r1 − ar2
4 sk ← r2
5 return (pk, sk)

Algorithm 2: RLWE Encryption

1 Function RLWEenc(pk, µ):

/* Require: Access to a global constant a that was uniformly

chosen from Rq and to a message µ ∈ {0, 1}n */

2 e1, e2, e3 ← DZn,σ

3 m̄← Encode(µ)
4 c1 ← ae1 + e2
5 c2 ← pke1 + e3 + m̄
6 return (c1, c2)

Algorithm 3: RLWE Decryption

1 Function RLWEdec(c1, c2, sk):

2 µ′ ← Decode(c1 · sk + c2) return µ′

The Number-Theoretic Transform (NTT) transforms a finite field polynomial from the time

to the frequency domain. Inverse Number-Theoretic Transform (NTT−1) transform back

the polynomial to the time domain. Polynomial multiplication in the frequency domain
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has linear complexity instead of quadratic complexity. As the transformation itself has

quasi-linear complexity, the overall effort for polynomial multiplication drops from O(n2) to

O(n · log n). The efficient computation of the NTT involves the coefficient ring to contain

primitive roots of unity. Formally, a primitive root of unity is defined as follows.

Definition 3.1 (Primitive root of unity). Let R be a ring, n ∈ N≥1, and ω ∈ R. The value

ω is an n-th root of unity if ωn = 1. The value ω is a primitive n-th root of unity (or root

of unity of order n) if it is an n-th root of unity, ωn ∈ R is a unity in R, and ωn/t − 1 is

not a zero divisor for any prime divisor t of n.

For a given primitive n-th root of unity ω in Zq, the NTT of a vector a = (a(n−1), . . . , a(0))

is the vector A = (A(n−1), . . . , A(0)) and it is computed as A(i) =
∑n−1

j=0 a(j)ωij mod q, i =

0, 1, . . . , n−1. The inverse transformation is calculated as a(i) = n−1
∑n−1

j=0 A(j)ω−ij mod q, i =

0, 1, . . . , n− 1.

The idea is to transform two polynomials a = a(n − 1) · xn−1 + . . . + a(0) and b = b(n −

1) · xn−1 + . . . + b(0) into their NTT representations A = A(n − 1) · xn−1 + . . . + A(0)

and B = B(n − 1) · xn−1 + . . . + B(0) and to compute the coefficient-wise multiplication

as C =
∑n−1

i=0 A(i) · B(i) · xi. The result c = a ∗ b is obtained after the computation of

the inverse number theoretic transform (NTT−1) to C. For q = 1 mod 2n the way the

result has to be interpreted depends on the input. Two common algorithms of performing

number theoretic transform are Cooley-Tukey (CT) [61], produces the result in the bit-

reverse order by receiving the input in the correct order, and Gentleman-Sande (GS) [100],

receives the input in the reverse order and produces the output in the correct order. We

refer to Gentleman-Sande and Cooley-Tukey algorithms as NTT CT and NTT GS, respectively,

in the rest of this paper. Employing NTT GS to compute both NTT and NTT−1 involves in

bit-reverse calculation (NewHope); however, bit-reverse step can be skipped by using NTT CT

for NTT and NTT GS for NTT−1 (Kyber and Dilithium).
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Keccak is a family of cryptographic primitives primarily as a candidate for the NIST SHA-3

competition [34]. The main transformation in the family is the Keccak-f[1600] permutation

which is used in the sponge mode in the specification for the SHA-3 hash function. The hash

function operates on a state of 1600 bits and is designed for easy implementation in both

software and hardware. The state can be considered to be a 5 × 5 × 64 array of bits. Let

a[i][j][k] be bit (5i+ j)×w+ k of the input, using a little-endian bit numbering convention

and row-major indexing. Index arithmetic is performed modulo 5 for the first two dimensions

and modulo w for the third. A set of 64 bits with the same x, y coordinates is called a lane.

The basic block permutation function consists of 24 rounds of five steps (Figure 4.2).

• θ: In this step, we compute the parity of each of the 320 five bit columns and add

it two nearby columns. Functionally it can be described as a[x][y][z] ← a[x][y][z] +∑4
y′=0 a[x][y][z] +

∑4
y′=0 a[x+ 1][y][z − 1]

• ρ: In this step we rotate each of the lanes by a fixed number of bits. The transformation

is given by a[x][y][z] ← a[x][y][z − (t + 1)(t + 2)/2] where t = −1, if x = y = 0 and

otherwise t ∈ [0, 24] satisfying

x
y

 =

3 2

1 0


t0

1


• π: The mapping π is a transposition of the lanes. It is defined as a[x][y][z] ←

a[x′][y′][z], with x = y′, y = 2x′ + 3y′

• χ: This is the only non-linear step in the round function given by a[x][y][z] ←

a[x][y][z] + (a[x+ 1][y][z] + 1)a[x+ 2][y][z]

• ι: This is the round constant addition step. A round constant is added only to the

lane with co-ordinates (0,0).

The energy cost of implementation is crucial for constraint devices and servers; energy con-

sumption of classical cryptography has been evaluated by many authors [226, 71, 224, 15].
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However, for lattice-based cryptography, previous works focused mainly on limiting the area

and improving the performance [22, 106]. However, energy has been left mostly unexplored,

except for FPGA implementation [162], ASIC implementation [24], and simulation-based

[163] accelerator for NTT, where none of them are cache-based accelerators. The early

results of this work were presented in [161].

3.2 Design Flow Steps

HLS-Friendly
C-code 

Hand-Optimized
C-code

Kernel's Original
C-code 
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Kernel 4

-Algorithm/Domain
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Figure 3.1: Design flow of the accelerator generation.

In this section, we detail the three main steps that compose our design space exploration

flow: profiling, early exploration, and evaluation within the target architecture. Figure 4.1

illustrates the design flow steps to generate flexible accelerators for any domain or set of

algorithms. The first step is the profiling of the implementations of the target lattice-based

schemes. This process is needed to identify the bottlenecks and the kernel to be accelerated.
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Profiling is executed by running the algorithm on a host arbitrary machine, e.g., X86 based

system, and verify it using a microarchitectural simulator such as gem5 [39]. In the former

case, profiling results correspond to collecting performance counters from the execution. In

the latter case, profiling means collecting simulation statistics. In either case, the same

hot-spots in the protocol are identified. We profile the server and the client portion of the

protocol separately to accommodate the specific needs of each end-point. The identified

hot-spot functions are candidates for acceleration and are input in our design exploration

flow.

In the second step, we used gem5-Aladdin [207] to perform the design space exploration of the

candidate functions. gem5-Aladdin is a fast design exploration framework that allows making

decisions on the trade-off between performance, power, and area of the identified design

points with high accuracy, even avoiding the explicit synthesis step. For standard linear

algebra kernels, pre-RTL performance area and power estimation fall within a threshold of

10% compared to the actual synthesis. The results of the DSE are stored in an elastic search

service, which we develop to keep track of the design points and to compare them in terms

of area, power, performance, and complexity. The DSE itself consists on the extraction of

instruction-level parallelism in each candidate function, and the mapping of such parallelism

on a parameterizable set of finite constraints in the hardware, e.g., number of vector lanes,

vector lane pipeline depth, ports to memory, and communication to memory (with cache

or via streaming) [207]. The introduction of system-level requirements allows us to query

the elastic search service and to prune down the set of possible designs further. We use

3D (latency, power, and area) Pareto-optimal fronts to eliminate non-optimal points. The

design points that are not pruned will be evaluated in the whole system on the chip.

In the third step, we exploit the integration between gem5 and Aladdin [207], to evaluate

the accelerator within the whole SoC. We used this approach to avoid Transaction Level

Simulation, emulation or full-system HLD synthesis. The memory communication and the
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host processor computation aspects are modeled in a pre-RTL environment. Thanks to

the accuracy guaranteed by gem5 and Aladdin [207], this last step allows us to identify a

restricted set of design points that quickly reach our design goals.

In this work, we accelerate the execution of lattice-based cryptography algorithms using

co-processors with the small instruction set. Based on Figure 4.2, these accelerators are

loosely coupled with the main processor in a System on Chip (SoC). Each accelerator has

its private caches and operates in slave mode attached to the network o chip.

The accelerators are kernel-level accelerators, where the kernel to accelerate is the bottleneck

functions that are common across different families of lattice-based cryptography schemes.

For instance, any call to NTT GS is transferred to the accelerator; if the size of the NTT GS,

i.e., polynomial degree, which determines the security strength, is bigger than the accelerator,

we orchestrate the data stream via the cache hierarchy. In other words, the accelerator is

a pipelined implementation of the kernel that arbitrary size of a call to the kernel can be

offloaded to it.

The choice of this type of accelerator allows us to maintain high flexibility while at the same

time, improving performance. This strategy ensures crypto-agility, which is fundamental for

the early adoption of post-quantum algorithms. Additionally, it allows us to accelerate sev-

eral lattice-based cryptography schemes with a small set of co-processors. Both advantages

could not have been achieved using designs customized on each scheme.

3.3 Algorithms Profiling

We considered four key encapsulation mechanisms (NewHope, Kyber, R.EMBLEM, and

KCL) and a digital signature algorithm (Dilithium). A KEM is a technique to encapsulate

a symmetric key using an asymmetric cryptographic algorithm [168]. A digital signature
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is a scheme that guarantees the integrity and authenticity of a message. In the rest of the

section, we discuss their profiling results.

3.3.1 NewHope

NewHope cryptosystem is a suite of two KEMs based on NewHope-Simple [12], that bases

its security on the hardness of RLWE problem. NewHope is the transformation of a Public

Key Encryption (PKE) scheme into a KEM using the Targhi and Unruh transforms [220]

that implies the use of hash functions, which in the case of NewHope is Shake256 [86]. Also,

NTT and binomial samplers are employed to improve the performance of the algorithm.

The current submission of NewHope to NIST competition presents two parameter sets,

NewHope512cpa/cca, and NewHope1024cpa/cca, with security levels of 101 bits and 233

bits, depending on the length of ring polynomials [179]. Figure 4.4 presents the profile

of NewHope1024cpa, referred to as NewHope in the rest of the paper, in the client and

server-side. NewHope employs NTT GS for both forward and inverse NTT.

NewHope Client NewHope Server

NTT GS

HW

Keccak

Montgomery Mult

Others

38.6%

13.8%15.9%

31.7%
46.2%

12.1%
10.9%

6.0%

24.8%

Figure 3.2: Profiling results for NewHope: Client - Server.

3.3.2 Kyber

Kyber is a KEM based on the LWE problem in module lattices [142] which is built using the

Fujisaki-Okamoto transform [95]. Kyber uses NTT CT and NTT GS to compute forward and
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Figure 3.3: Profiling results for Kyber: Client - Server.

reverse NTT, respectively. Kyber is presented in three versions: Kyber512, Kyber768, and

Kyber1024 with the quantum hardness 102, 161, and 241 bits, respectively[16]. Due to the

similarity, we only analyze Kyber768 in this paper. The profile of Kyber768, referred to as

Kyber in the rest of the paper, is shown in Figure 4.3.

3.3.3 Dilithium

Dilithium is a signature algorithm based on ”Fiat-Shamir with Aborts” approach [148] that is

designed to be easy to implement securely [80]. Its main characteristics are small signature

and keys, conservative parameters and modular structure. The most relevant operations

in Dilithium are eXtendable-Output Functions (XOF) and polynomial multiplication in a

ring. SHAKE128 and Shake256 are used as XOF. Similar to Kyber, Dilithium uses NTT CT

and NTT GS to compute forward and reverse NTT, respectively. The profile of Dilithium for

signature and verification processes are reported in Figure 3.4.

3.3.4 R.EMBLEM

R.EMBLEM (and its standard lattice variant EMBLEM) is an error-blocked multi-bit RLWE-

based (LWE-based) key encapsulation mechanism [204]. Small keys size is achieved by sep-
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Figure 3.4: Profiling results for Dilithium: Sign - Verify.

arating the message from error and attach the error-blocking bit to each message block.

Sampling the secret term is performed uniformly at random in [−B,B]. Similar to Kyber

and Dilithium, R.EMBLEM uses NTT CT and NTT GS to compute forward and reverse NTT,

respectively.

R.EMBLEM Client R.EMBLEM Server
NTT GS

NTT CT

Keccak

blake2b

Rotate64

Others

39%

23% 6%

9%

6.0%
17%

28%

45%

4%
3%

10%

10%

Figure 3.5: Profile R.EMBLEM: Client - Server.

3.3.5 KCL (Key Consensus from Lattice)

Zhao et al. [230] propose a generic construction of the authenticated key exchange, public-key

encryption, and key encapsulation mechanism, including asymmetric key consensus (AKCN)

and optimal asymmetric key consensus (OKCN). Proposed schemes are based on LWE and

its variants over ideal and module lattices with different mathematical structures. Authors

propose single error correction (SEC) code to correct at least one-bit error; using the SEC, at
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Table 3.1: Size of loop and data types for NTT GS and NNT CT over different schemes. It
should be mentioned that the data type for Keccak perform operations over uint64 t for al
the schemes.

Scheme Loop Iterations
Data type

Coeffcients Twiddle factor
NewHope512cpa/cca 256 uint16 t uint16 t
NewHope1024cpa/cca 512 uint16 t uint16 t
Kyber 128 uint16 t uint16 t
Dilithium 128 uint32 t uint32 t
R.EMBLEM 512 int32 t int32 t
AKCN MLWE 128 int32 t int16 t

the same security level and error rate, OKCN/AKCN-RLWE based KEX schemes generate

765-bit shared a key with less bandwidth than NewHope (256-bit shared key). Due to the

similarity and to avoid the repetition, we provide the results for AKCN-MLWE. AKCN-

MLWE uses NTT CT to compute the forward and reverse NTT.

AKCN MLWE Client AKCN MLWE Server
NTT CT

Expand Key

AES Encrypt

Decompress

Compress

Others

37%

16% 15%
6%

5.0%

21%

41%

15% 12%

7%

5.0%

20%

Figure 3.6: Profile AKCN MLWE: Client - Server.

Table 3.1 shows summarized the size of the common kernels and the data types that they

perform the computations. Keccak performs 25 iterations on unsigned 64-bit data. How-

ever, for NTT GS and NTT CT data types are different over different schemes. One 32-bit

accelerator for NTT GS and another 32-bit for NTT CT are designed that can support cal-

culation of forward and inverse number theoretic transform over the analyzed schemes with

various data bitwidth, which is introduced in this work for the first time.
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Figure 3.7: Architectural template for generated accelerators for Keccak, NTT CT and NTT GS

kernels.
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Figure 3.8: The sensitivity of the accelerators’ performance and power to the number of
cache ports.

3.4 Evaluation

The first step is to identify compute-intensive kernels, Section 4.3, and then search the space

of the design and select the desired design points and evaluate them within an SoC. We

use the original software implementation of the accelerated algorithms as a baseline for our
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Figure 3.9: The sensitivity of the accelerators’ performance and power to the software pipelin-
ing.
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Figure 3.10: The sensitivity of the accelerators’ performance and power to the number of
lanes.
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Figure 3.11: The sensitivity of the accelerators’ performance and power to the cache size.

evaluation. These implementations are the references for generating the KAT files, which

enables us to use them for verifying the accelerator’s functionality. To apply our methodology

in algorithms the usage of KAT files can be integrated into the tool flow..

Figure 4.2 shows the architectural template of the designed accelerators, which are composed

of a set of lanes that implement the primitives of the kernel, a Translation Lookaside Buffer

(TLB), one level of cache and the respective controller. Our tool allows analyzing the

accelerators without digging into the details of the hardware implementations concentrating

on the accelerator functionality.

Based on the profiling results (Figure 4.4-3.6) the top three common kernels that consume

most of the cycles are NTT CT, NTT GS, and Keccak.

Keccak permutation consists of bit-wise arithmetic operations, and each datapath lane of

the accelerator has basic components to compute the F[1600] permutation function. The de-

signed accelerator for Keccak can be used in any cryptographic scheme to hash a message and
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generate pseudo-random numbers. NTT CT and NTT GS accelerators are two programmable

accelerators that can be employed inside any scheme with arbitrary security parameters to

perform the number theoretic transform. Each datapath lane in NTT CT and NTT GS ac-

celerators (Figure 4.2) executes the butterfly operation. To perform NTT and NTT−1 in

NewHope, NTT GS is used. However, AKCN MLWE uses NTT CT to compute both NTT and

NTT−1. Kyber, Dilithium, and R.EMBLEM perform NTT with NTT CT and NTT−1 with

NTT GS.

Sensitivity analysis. SoC components share the same system bus width and cache line

size; although these two are sweepable parameters, we fixed them at 8 and 64 bytes since

they are the typical sizes of CPU and system bus. The clock frequency of the host processor

and system bus are fixed at 2GHz and 1GHz, respectively. The frequency of the accelerator

can be set to 100 MHz, 200 MHz, or 500 MHz.

Figure 3.8-3.11 shows the effect of number of cache ports (Figure 3.8), software pipelining

(Figure 3.9), number of parallel lanes (Figure 3.10), and accelerator’s cache size (Figure 3.11)

on the power and latency of an accelerator in a scheme. Loop pipelining overlaps execution of

instructions over different loop iterations by exploiting the loop level parallelism, and can be

beneficial to improve the performance but increases the hardware complexity and the energy

dissipation. Software pipelining is more effective if it is being used with loop unrolling. Loop

unrolling determines the number of parallel lanes that are created inside the accelerator for

each loop. Loop unrolling improves the performance by alleviating the branch penalty and

memory latency with an increase in the code size and the hardware area. Memory reduction

latency needs parallel access to memory banks from the lanes, which can be achieved by

increasing the number of cache ports ; this also incurs high power consumption and area

overhead.

The DSE trends for each counterpart in a scheme are similar; hence we only present the

results for the Server and the Signer Also, due to the resemblance of the DSE trends, e.g. ,
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Kyber Server: NTT CT and Dilithium Sign: NTT CT, we just present DSE results of NTT CT

for Kyber and NTT GS for Dilithium.

Selected design points. We carried out our selection focusing firstly on energy consump-

tion, then the area occupation, and finally, the speed of each accelerator. Table 3.2 provides

the improvement of the latency, energy, and EDP of the schemes when only one kernel is

accelerated, and the rest of the scheme is executed on the CPU. After selecting the desired

design points for each accelerator, they are coupled to the bus and communicate via the

coherent memory hierarchy (Figure 4.2). Figure 4.8 summarizes speedup and EDP improve-

ments of the schemes when all the calls inside of the schemes to Keccak, NTT CT, and NTT GS

are offloaded to their corresponding optimized accelerators. The frequency of the accelerators

100 MHz, 200 MHz, and 500 MHz.

Based on the results we obtained, we can derive several general guidelines about accelerating

lattice-based cryptography. Figure 3.9, suggests always to enable the loop pipelining since

most of the points on the Pareto-frontier curves are the blue points (pipelining on). The

iterative nature of the selected kernels is the main reason for the efficacy of loop pipelining.

Considering energy as the main concern, independent of the scheme, after 64 times of loop

unrolling the performance gain is saturated for NTT CT and NTT GS (Figure 3.10); saturation

point for Keccak is 12 parallel lanes.

According to Figure 3.8, the highest speedup is achieved with 8 cache ports, considering

the performance as the primary concern. However, considering the energy as the primary

figure of merit as is our goal, cache port 4 is suggested because for all the kernels it achieves

acceptable performance. Besides, the cache size of 4kB is proper for all the accelerators

since with bigger cache sizes performance improvements cannot compensate for the energy

penalty.

Another consideration is related to the size of the polynomial and the achieved acceleration.
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Table 3.2: Latency and energy-delay product (EDP) improvement of the schemes (functional
units power models are based on OpenPDK 45nm and SRAM model from CACTI 5.3); one
accelerator (100MHz) at a time is attached to the host x86 CPU (2GHz) through the bus.
To select a design point and attach the corresponding accelerator to the SoC, we focus firstly
on energy consumption, then the area occupation and finally the speed of each accelerator.

Scheme Kernel
Cycle Count

Speedup
(CPU+Accel)

Improvement
(CPU+Accel)

Accelerator’s
area (mm2)

CPU
(Baseline)

CPU+Accel Speedup Energy EDP

NewHope1024cpa
Server

NTT GS
1283366

676297 1.89 1.36 2.6 1.42
Keccak 1282400 1.01 1.06 1.07 1.64

NewHope1024cpa
Client

NTT GS
1353624

741725 1.82 1.35 2.46 1.43
Keccak 1352716 1 1 1 1.64

Kyber768
Server

NTT CT
2100227

1620437 1.29 1.11 1.44 0.42
NTT GS 1837164 1.14 1.19 1.54 1.43
Keccak 2069412 1.1 1.05 1.07 1.64

Kyber768
Client

NTT CT
1090235

843838 1.29 1.19 1.54 0.42
NTT GS 951567 1.15 1.13 1.29 1.43
Keccak 1052613 1.03 1.13 1.17 1.64

Dilithium
Sign

NTT CT
2470672

2077058 1.18 1.07 1.45 1.36
NTT GS 1987848 1.24 1.09 1.28 1.46
Keccak 2441352 1.01 1.03 1.25 1.64

Dilithium
Verify

NTT CT
1278898

1060998 1.20 1.20 1.28 1.36
NTT GS 1156888 1.10 1.16 1.35 1.46
Keccak 1229706 1.04 1.20 1.05 1.64

R.EMBLEM
Server

NTT CT
4072534

2400767 1.7 1.5 2.5 1.36
NTT GS 3147634 1.3 1.3 1.7 1.42

R.EMBLEM
Client

NTT CT
1721429

1273543 1.34 1.26 1.7 1.36
NTT GS 1101269 1.56 1.43 2.24 1.42

AKCN LWE
Server

NTT CT 1216360 933151 1.3 1.2 1.56 1.36

AKCN LWE
Client

NTT CT 1087624 860891 1.26 1.1 1.33 1.36

The bigger the size of the polynomial, the more speedup we get. NewHope1024 achieves,

on average, 20% more speedup than NewHope512 by using the same accelerators since

polynomials in NewHope1024 is twice bigger than NewHope512, and hence, it gets more

benefit from the software pipelining along with loop unrolling. In the case of MLWE schemes,

Kyber and Dilithium, size of the polynomials are the same for all different version of the

scheme; hence the speedup for different variants of MLWE schemes is similar.

With the current fast CPU (2GHz) and energy-efficient accelerator (Figure 4.8) we suggest

to allow the accelerators to operate at the maximum frequency, 500 MHz, specifically for

Keccak since at 100 MHz (Table 3.2) it is not beneficial to use the accelerator. The power
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consumption of the accelerators is 2 orders of magnitude less than that of the host CPU;

consequently, faster accelerators result in better EDP improvement and higher speedup.

Comparing our acceleration with state of the art is challenging since the acceleration of these

algorithms was not presented in literature before. We can, however, compare the achieved

performance with results used with the same tool-chain in other domains.

Previous hardware implementations and accelerators. Hardware implementations

for the analyzed algorithms are rather scarce, but proponents of R.EMBLEM designed and

implemented in the Zynq-7000 board the algorithm EMBLEM.CPA (meaning without the

ring structure) [204]. Their design only used 24 FFs and 48 LUTs, but this result can

be misleading for evaluating the area of R.EMBLEM.CCA. The same board was used to

implement NewHope for high performance. Four butterfly units were employed that use

6680 slices, 9412 FFs, 18756 LUTs, 8DSP, and 14 BRAMS; the implementation took 51.9

µs, 78.6 µs, 21.1 µs for the three phases of NewHope at a frequency of 131 MHz [138]. An

existing co-processor for RSA/ECC was repurposed for (ideal) lattice-based cryptography.

CCA-secure Kyber768 key generation was executed in 79.6 ms, encapsulation in 102.4 ms,

and decapsulation in 132.7 ms [9]. Aside from the acceleration, this work confirmed that

PQC is feasible on current smart card platforms.

Basu et al. [28] compared different hardware implementations of PQC algorithms. They

used Xilinx HLS-based design space exploration to map C-code to FPGA and ASIC. Differing

from us, they created an accelerator with the complete algorithms; instead, we create accel-

erators for the bottleneck functions. Therefore, we include in our methodology a profiling

step to identify the most time-consuming functions, and hence, our accelerator implements

kernels that can be used in different algorithms that result in smaller accelerator (even after

a linear correction on the transistor length of the libraries). Additionally, we present the

effect on energy, which is an overlooked metric in previous works.
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Figure 3.12: Delay and EDP improvement of the schemes when all the accelerators (fastest design
points) at different frequencies are simultaneously attached to the bus.

3.5 Conclusion

We present a design flow and demonstrate its suitability for accelerating NewHope, Kyber,

Dilithium, KCL (Key Consensus from Lattice), and R.EMBLEM five submissions to the

NIST standardization contest. Our experiments demonstrate the suitability of the approach

for exploring the design space of hardware accelerator for lattice-based algorithms, allowing

us to quickly identify hardware kernels capable of reducing the energy consumption up to

2.1x, EDP up to 5.2x and improve the speedup up to 2.5x. Thanks to the quick exploration

and performance estimation, we discover compelling guidelines for manually designing more

optimized hardware accelerators for lattice-based algorithms.
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Chapter 4

Simulation-based DMA-assisted

Polynomial Multiplier

4.1 Background

A lattice L ⊂ Rn is the set of all integer linear combinations of basis vectors b1, . . . ,bn ∈ Rn.

i.e., L =
{∑

aibi : ai ∈ Z
}

. LBC exploits the hardness of two problems: Short Integer

Solution (SIS) and Learning With Errors (LWE) [190]. Cryptosystems based on the LWE

problem, the most common one, have their foundation in the difficulty of finding the secret

key sk, given (A, pk), where pk = A∗sk+e mod q, given pk the public key, e an error vector

with Gaussian distribution, and A a matrix of constants in Zr×nq chosen randomly from a

uniform distribution. Because LWE requires large keys (e.g., 11 KB for Frodo [42]), it could

be impractical on the devices with limited on-chip memory. To overcome this limitation,

Lyubashevsky et. al [151] introduced Ring-LWE (R-LWE), a derivation of LWE in which

A is implicitly defined as a vector a in the ring R ≡ Zq[x]/〈xn + 1〉. Because polynomial

multiplication, the most frequently used kernel in RLWE schemes, is computationally inten-
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sive, such multiplication is usually implemented by using the Number Theoretic Transform

(NTT), which drops the time complexity of the polynomial multiplication from O(n2) to

O(n · log n) [164].

Polynomials a = a(n − 1) · xn−1 + . . . + a(0) and b = b(n − 1) · xn−1 + . . . + b(0) are

transformed into their NTT representations A = A(n−1) ·xn−1 + . . .+A(0) and B = B(n−

1)·xn−1+. . .+B(0), and their multiplication can be computed coefficient-wise multiplication

as C =
∑n−1

i=0 A(i) · B(i) · xi. The result c = a ∗ b is obtained after the computation of the

inverse number theoretic transform (NTT−1) of C. Two common algorithms for performing

number theoretic transform are Cooley-Tukey (CT) [61], which produces the result in the

bit-reverse order by receiving the input in the correct order, and Gentleman-Sande (GS)

[100], which receives the input in the reverse order and produces the output in the correct

order. We refer to Gentleman-Sande and Cooley-Tukey algorithms as NTT CT and NTT GS,

respectively, in the rest of this paper. Employing NTT GS to compute both NTT and NTT−1

involves bit-reverse calculation (NewHope); however, the bit-reverse step can be skipped by

using NTT CT for NTT and NTT GS for NTT−1 (Kyber).

4.2 Design Space Exploration (DSE) Flow

Figure 4.1 shows the design method in a flow of three steps. The first step is profiling

the implementations of the target lattice-based schemes. This process is needed to identify

common bottlenecks and kernels to accelerate. Profiling is executed by running the protocol

on a host arbitrary machine, e.g., x86 based system. Alternatively, the profiling can be

executed in simulation, e.g., in the gem5 simulator [39]. In the former case, profiling results

correspond to collecting performance counters from the execution. In the latter case, profiling

means collecting simulation statistics. In either case, hot-spots in the protocol execution are

identified. We profile both the server and the client portion of the protocol separately to
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Figure 4.1: Design flow of the accelerator generation.

accommodate the specific needs of each end-point. The identified hot-spot functions are

candidates for acceleration and are input in our design exploration flow. In the second step,

we refer to Aladdin [206] to perform the design space exploration of the candidate functions,

which takes a few seconds to generate a design point. Aladdin is a pre-RTL simulation tool

whose performance, area, and power estimation for standard linear algebra kernels fall within

a threshold of 10% with respect to actual HDL synthesis. The DSE proceeds by extracting

the instruction-level parallelism in each kernel, and the mapping of such parallelism on a

parameterizable set of finite constraints in the hardware, e.g., number of vector lanes, vector
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Clock frequency 100, 200, 500

Design parameters

. . .

Loop pipelining

Datapath lanes

SPM parition Cyclic/Block

SPM partition factor 1, 2, 3, ...

Figure 4.2: Architectural template for generated accelerators for (NTT CT) and (NTT GS) kernels.
Configurable micro-architectural and compiler parameters are shown in the first column of the
table; the next column is the searched spaced in this work.
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lane pipeline depth, ports to memory, and communication to memory (with cache or via

streaming). The design points that are not pruned during the multi-objective optimization

of 3D-Pareto fronts will be evaluated in the whole system on the chip. In the third step, we

use the integration of gem5 and Aladdin [207], to evaluate the accelerator within the whole

SoC. Thanks to the accuracy guaranteed by gem5 and Aladdin, the last step allows us to

identify a restricted set of designs that quickly reach our design goals.

Based on Figure 4.2, accelerators are loosely coupled with the main processor in an SoC.

Each accelerator has its local memory and operates in the slave mode attached to the SoC.

The accelerators are kernel-level accelerators, where the kernel to accelerate represents the

bottleneck functions that are common across different families of lattice-based cryptography

schemes. For instance, any call to NTT GS and NTT CT are transferred to their corresponding

accelerator.

4.3 Algorithm Analysis & Profiling

We consider NewHope [179] and Kyber [16], two key encapsulation mechanisms (KEM)

for acceleration. A KEM is defined as using an asymmetric cryptographic algorithm to

encapsulate a symmetric key [168].

Kyber. Kyber is a KEM based on the LWE problem in module lattices [142]. Kyber uses

NTT CT and NTT GS to compute forward and reverse NTT, respectively. Kyber is presented

in three versions: Kyber512, Kyber768, and Kyber1024 [16]. Due to their similarity, we only

analyze Kyber768 in this paper. The profile of Kyber768, referred to as Kyber in the rest of

the paper, is shown in Figure 4.3. We introduce Kyber Flex as a variant of Kyber in which

both forward and reverse NTT are calculated using NTT GS. This transformation involves

adding the bit-reversal operation which is cheap in hardware. Kyber and Kyber Flex work
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on polynomials of degree 256.
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6.9%
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Figure 4.3: Profiling results for Kyber based on the user-level CPU cycles.

NewHope. NewHope cryptosystem is a suite of KEMs whose security is based on the hard-

ness of the RLWE problem. The current submission of NewHope to the NIST competition

presents two parameter sets, NewHope512cpa/cca and NewHope1024cpa/cca.NewHope1024cpa

employs NTT GS for both forward and inverse NTT. NewHope512cpa and NewHope1024cpa

work on the polynomials with the degree of 512 and 1024, respectively. Figure 4.4 shows the

profile of NewHope1024cpa in the client and server-side.
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Montgomery Mult

Others
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13.8%15.9%

31.7%
46.2%

12.1%
10.9%

6.0%
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Figure 4.4: Profiling results for NewHope based on the user-level CPU cycles.
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4.4 Design Space Exploration

The first step in design space exploration (DSE) is to identify compute-intensive kernels, and

then search the space of the design and select the desired design points and evaluate them

within an SoC. We use the original software implementation of the accelerated algorithms

as a baseline for our evaluation. Based on the profiling results (Figures 4.3-4.4) we select

NTT CT and NTT GS for acceleration. NTT CT and NTT GS are two flexible accelerators that can

be employed inside any scheme with arbitrary security parameters to perform the number

theoretic transform. Figure 4.2 shows the architectural template of the designed accelerators,

which are composed of a set of lanes that implement the primitives of the kernel, local SRAM,

one level of cache and the respective controller. Our tool allows analyzing the accelerators

without digging into the details of the hardware implementations, concentrating on the

accelerator functionality. To perform NTT and NTT−1 in NewHope, we use NTT GS. Kyber

performs NTT with NTT CT and NTT−1 with NTT GS.

Sensitivity analysis. SoC components share the same system bus width the size of 8

bytes. The clock frequency of the host processor and system bus are fixed at 2GHz and

1GHz, respectively. The frequency of the accelerator can be set to 100 MHz, 200 MHz, or

500 MHz. Design parameters of the accelerators which could have a significant impact on

our figures of merit have been explored in more depth. Figure 4.5 shows the effect of software

pipelining (Figure 4.5a), number of parallel lanes (Figure 4.5b), partition type/factor of the

coefficient and twiddle factors (Figure 4.5c-4.5d) on the area, power, and latency of NTT GS

accelerator with polynomial degree of 256. Due to the similarity of results, we omit the results

for polynomial degree of 512 and 1024 as well as the results for NTT CT accelerator.

Selected design points. We perform a multi-objective optimization of 3D-Pareto fronts

to eliminate non-optimal points from the selection process. Two steps of Pareto-frontier

optimization are done; firstly, non-optimal points considering latency and power are pruned
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Figure 4.5: The normalized sensitivity of the NTT GS performance, area, and power to different
design parameters; software pipelining is either off or on; SRAM partition type is either cyclic or
block.

(Figure 4.6a and Figure 4.6b); thereafter, we consider latency and area to prune the remain-

ing non-optimal points (Figure 4.6c and Figure 4.6d).

After elimination of non-optimal points, the next step is to select the desired design point.

We carried out our selection focusing firstly on energy consumption, then the speed of each

accelerator. After selecting the desired design points for each accelerator, they are coupled

to the bus and communicate via the coherent memory hierarchy (Figure 4.2). We generate

the accelerators for NTT GS and NTT CT regarding the polynomial degree of 256 as in Ky-

ber and Kyber Flex to satisfy the programmability need. However, NewHope512cpa and
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NewHope1024cpa have higher polynomial degrees and faster accelerators can be generated

for them. We compare custom accelerators for NTT GS to their programmable alternatives

in Figure 4.7. We suggest to use the programmable accelerator for NTT GS: we can achieve

programmability as well as area and power reduction of the accelerator by employing a single

smaller accelerator, at the cost of only 13% and 2% drop in the latency of the accelerators

and the schemes. Table 4.1 provides the improvement of the latency, energy, and EDP of the

schemes when the invocations to NTT CT and NTT GS are transferred to their corresponding

programmable accelerators at 100 MHz. Kyber executes forward NTT and inverse NTT

with NTT CT and NTT GS, respectively, while other schemes, including Kyber Flex, run both
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Figure 4.6: Multi-objective optimization of 3D-Pareto fronts. The points that do not lie on the blue curve
are the non-optimal points .
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Figure 4.7: Comparison of programmable and customized NTT GS at 100MHz for NewHope512cpa and
NewHope1024cpa. Numbers are normalized to the customized accelerator.

forward and inverse NTT on NTT GS. With Kyber Flex we improve performance by 20% less

than Kyber. Consequently, we suggest creating only one accelerator (i.e., NTT GS) for all the

ideal lattice-based schemes. As can be seen in Figure 4.8, an increase in the frequency of the

accelerators has negligible improvements in performance and EDP. Figure 4.8 summarizes

the effect of the accelerators’ clock frequency on the speedup and EDP improvements of the

schemes. Due to the negligible performance improvements, we suggest to employ the slowest

accelerator (100 MHz) for the resource-constrained devices.

Table 4.1: Performance, energy, and EDP improvement of schemes with different polynomial
degrees when the fastest NTT GS and NTT CT accelerators (100 MHz) are simultaneously connected
to the CPU (2GHz) via DMA (1 GHz).

Scheme Degree NTT NTT−1 Perf Energy EDP

Kyber Client 256 NTT CT NTT GS 1.71x 1.45x 2.49x

Kyber Server 256 NTT CT NTT GS 1.74x 1.50x 2.62x

Kyber Flex Client 256 NTT GS NTT GS 1.53x 1.33x 2.05x

Kyber Flex Server 256 NTT GS NTT GS 1.57x 1.35x 2.10x

NewHope512 Client 512 NTT GS NTT GS 1.67x 1.48x 2.48x

NewHope512 Server 512 NTT GS NTT GS 1.68x 1.34x 2.26x

NewHope1024 Client 1024 NTT GS NTT GS 1.81x 1.51x 2.74x

NewHope1024 Server 1024 NTT GS NTT GS 1.88x 1.62x 3.06x
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Figure 4.8: Normalized latency and EDP improvement of the schemes when the accelerators at different
frequencies are simultaneously attached to the bus. Numbers are normalized to the execution case of 100MHz.

4.5 Conclusion

At this stage, it would be impractical to select a single scheme for hardware adoption due to

unpredictable changes in both protocols and schemes. On the one hand, software-only imple-

mentations cannot satisfy the performance and energy requirements of the target platform;

on the other hand, custom hardware implementations do not allow changes or upgradeabil-

ity. To satisfy crypto-agility and efficiency challenges, we presented for the first time, a

design flow for flexible DMA-based accelerators of hardware kernels, and demonstrated its

suitability to accelerate ideal lattice-based schemes, including NewHope and Kyber. The

presented approach provides the opportunity to quickly identify micro-kernels and generate

a corresponding hardware accelerator that reduces energy consumption by 1.9x, EDP up to
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3.9x and improve the performance up to 2x.
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Chapter 5

Exploring Energy Efficient

Quantum-resistant Signal Processing

Using Array Processors

5.1 Background and Related Work

A lattice L ⊂ Rn is the set of all integer linear combinations of basis vectors b1, . . . ,bn ∈ Rn.

i.e., L =
{∑

aibi : ai ∈ Z
}

. LBC exploits the hardness of two problems: Short Integer

Solution (SIS) and Learning With Errors (LWE) [190]. Cryptosystems based on the LWE

problem, the most common one, have their foundation in the difficulty of finding the secret

key sk, given (A, pk), where pk = A ∗ sk+ e mod q, given the public key pk, an error vector

e with Gaussian distribution, and a matrix A of constants in Zr×nq chosen randomly from

a uniform distribution. Because LWE requires large keys (e.g., 11 KB for Frodo [42]), it

can be impractical on devices with limited on-chip memory. To overcome this limitation,

Lyubashevsky et. al [151] introduced Ring-LWE (RLWE), a derivation of LWE in which A
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is implicitly defined as a vector a in the ring R ≡ Zq[x]/〈xn + 1〉. Arithmetic operations

for a Ring-LWE-based scheme are performed over a ring of polynomials. Let n, a power of

two, and p be the degree of the lattice and a prime number (p = 1 mod 2n), respectively.

Zp denotes the ring of integers modulo p, and xn+1 is an irreducible degree n polynomial.

The quotient ring Rp contains all polynomials with degree less than n in Zp, that defines Rp

= Zp/[xn+1] in which coefficients of polynomials are in [0,p). Degrees of the polynomials in

RLWE-based schemes vary between 256 [16] and 1024 [179].

In the following, we describe two common methods to compute the polynomial multiplication.

5.1.1 Convolution-based multiplier

The easiest way to multiply two polynomials is to use the convolution (Schoolbook [135])

with the time complexity of O(n2) as shown in Algorithm 4. A convolution-based multiplier

can be seen as a discrete feed-forward finite impulse response (FIR) over the polynomials in

R ≡ Zq[x]/〈xn + 1〉. Due to the inefficiency of the convolution-based multiplier, there is no

notable work that uses it for the acceleration; however, by using its systolic architecture, we

can achieve considerable performance gains.

5.1.2 NTT-based multiplier

Polynomial multiplier is usually implemented by using the Number Theoretic Transform

(NTT), which drops the time complexity of the polynomial multiplier from O(n2) to O(n ·

log n). Polynomials a = a(n − 1) · xn−1 + . . . + a(0) and b = b(n − 1) · xn−1 + . . . + b(0)

are transformed into their NTT representations A = A(n − 1) · xn−1 + . . . + A(0) and

B = B(n − 1) · xn−1 + . . . + B(0), and their multiplication can be computed coefficient-

wise as C =
∑n−1

i=0 A(i) · B(i) · xi. The result c = a ∗ b is obtained after the computation
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Algorithm 4: Convolution (Schoolbook)-based Polynomial Multiplier

1 Function POLY CONV(A, B):

/* Initialization: Let a = {a0, a1, a2, ..., an−1} and b = {b0, b1, b2, ..., bn−1}
∈ Zq[x]/<f(x)> be two polynomials with the length of n, where

f(x) = xn + 1 is an irreducible polynomial with n a power of 2,
and q ≡ 1mod 2n is a large prime number. */

2 c←− 0
3 for i = 0 to n− 1 do
4 for j = 0 to j − 1 do
5 sign←− (−1)b(i+j)/nc

6 index←− (i+ j) mod n
7 coeff ←− aibi mod q
8 cindex ←− integer(cindex + sign ∗ coeff) mod q

9 end

10 end
11 return c

of the inverse number theoretic transform (NTT−1) of C. Algorithm 5 describes the NTT-

based polynomial multiplier. Figure 5.1 illustrates basic blocks of the NTT-based polynomial

multiplier. One standard method to perform the number theoretic transform is Cooley-

Tukey (CT) [61], which produces the result in the bit-reverse order by receiving the input

in the correct order; the other method is Gentleman-Sande (GS) [100], which receives the

input in the reverse order and produces the output in the correct order. Similar to [223],

we use the Gentleman-Sande method to compute both NTT and NTT−1, which needs bit-

reverse calculation. As previously mentioned, NTT designs are known as parallel NTT due

to the parallel use of butterfly processing elements. Pipeline FFT processor [210] is a high-

throughput design of FFT that utilizes single-path delay feedback. Authors in [191] adopt

Pipeline FFT to design a systolic array polynomial multiplier to develop a high throughput

RLWE cryptoprocessor. In this work, we focus on the parallel NTT designs and leave the

Pipeline FFT for future work.
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Algorithm 5: NTT-based Polynomial Multiplier

1 Function POLY NTT(A, B):

/* Initialization: Let a = {a0, a1, a2, ..., an−1} and b = {b0, b1, b2, ..., bn−1}
∈ Zq[x]/<f(x)> be two polynomials with length of n, where

f(x) = xn + 1 is an irreducible polynomial with n a power of 2,
and q ≡ 1mod 2n is a large prime number. w is the n-th root of

unity and φ is the 2n-th root of unity (φ2 = w mod q); w−1 and

φ−1 are the inverse of w modq and φ modq, respectively. */

/* Precompute: {wi, w−i, φi, φ−i} for i ∈ [0, n− 1] */

2 bitrev(A)
3 bitrev(B)
4 for i = 0 to n− 1 do
5 āi ←− aiφ

i

6 b̄i ←− biφ
i

7 end
8 Ā ←− NTT GS(ā, w)
9 B̄ ←− NTT GS(b̄, w)

10 C̄ = Ā.B̄
11 bitrev(C̄)
12 c̄ ←− NTT GS(C̄, w−1)

13 for i = 0 to n− 1 do
14 ci ←− c̄iφ

−i

15 end
16 return C

5.1.3 Previous works

Previous efforts on the acceleration of the NTT mostly focus on the area and performance of

the of the polynomial multiplier for LBC and leave the energy unexplored [184] [62]. Some

efforts have evaluated the energy as well as the area and performance of NTT accelerators

[166, 24, 163]. The only notable work that uses systolic arrays to accelerate polynomial

multiplier reports only performance and area metrics for n = 256 and n = 512; however, we

report energy as the primary goal as well as the performance and area for n ∈ (128, 256,

512, 1024).
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5.2 Systolic Array polynomial multiplier

We use the concept of systolic array architecture to design polynomial multipliers.
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(a) High level diagram for polynomial multiplication using NTT units
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Figure 5.1: (a) Polynomial multiplication using NTT units (b) NTT unit based on only
one PE which processes inputs sequentially in (n/2)logn iterations. In order to perform
polynomial multiplication NTT unit is executed three times (c) NTT-based systolic array
polynomial multiplier encompass logn PE blocks each performs butterfly operation in n/2
iterations.
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5.2.1 Systolic arrays

Today’s systems are intensely designed to move data for computation. Data movement is

highly expensive in terms of energy consumption and latency compared to computation.

Consequently, the movement of data is the critical bottleneck in computing systems as ap-

plications become more data-intensive. To address the bottleneck, we need an alternative

architecture – such as a systolic array – to process data with less data movement. A sys-

tolic array consists of a set processing elements (PE), each capable of performing simple

operations. Each PE is connected to its nearest PEs and performs operations on data.

Data flows from the memory cells and passes through PEs before returning to the memory

cells. Systolic architecture relieves the repeated memory access problem for general-purpose

computing systems, which in turn helps to reduce latency.

We design and implement two systolic array polynomial multipliers including NTT-based and

convolution-based systolic array and compare them to the sequential NTT-based multiplier.
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5.2.2 Implementation of systolic array polynomial multiplier

5.2.2.1 NTT-based polynomial multiplier

The conventional hardware implementation for the NTT-based polynomial multiplier uses

a processing element with only one butterfly block sequentially (Figure 5.1-a). We use

sequential NTT-based multiplier (Seq NTT) as the baseline in our experiments; Seq NTT,

our slowest design, provides 3x speedup to compute forward and inverse number theoretic

transforms compared to the implementation of [223] on a low-cost Artix7 Xilinx FPGA.

The NTT-based polynomial multiplier can be implemented using a systolic array (SA NTTfor

the rest of the paper). Figure 5.1-b shows a logn array of processing elements, each executes

n/2 butterfly operations on all coefficients of the input polynomial. In other words, we

cascade all logn stages of the NTT-method and connect them using FIFO buffers. According

to the Gentleman-Sande method, extracting parallelism between stages of the NTT is non-

trivial; we can improve the performance of NTT by fusing multiple stages through the

dataflow optimization of a high-level synthesis (HLS) tool.

5.2.2.2 Convolution-based polynomial multiplier

The time complexity of the convolution-based polynomial multiplier can be decreased to O(n)

if we adjust the systolic architecture to use n-cascaded multiply-accumulators (MACs). As

shown in Figure 5.2, each processing element in the convolution-based polynomial multiplier

(CONV) performs modular reduction (MR) after each multiplication and addition. The signif-

icant performance improvement comes at the large area and energy overhead of performing

n MACs. We use our optimized versions of Montgomery [156] and Barrett [27] reduction

after each multiplication and addition, respectively, using only shifts and additions.
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Table 5.1: High-level synthesis results on Zynq UltraScale++ for three different designs of
polynomial multipliers. To multiply two polynomials using NTT-based multipliers, we need
to execute NTT block three times, and each includes bit-reversal, forward NTT, and point-
wised multiplication of the input vector with the precomputed twiddle factors. Although
the degree of the polynomials in most of the RLWE-based schemes ranges from 256 to 1024,
we also provide the results for other degrees to show the trends.

Design N Cycles Latency (us) Energy (uJ) BRAM CLB DSP FF LUT Freq. (MHz)

64 2112 7.47 0.16 0 221 10 1120 937 282.48
Seq NTT 128 4776 16.79 0.62 1 364 10 2085 1,520 284.33

256 10728 36.37 1.27 2 667 10 4281 2999 294.89
512 23736 83.93 4.36 2 1220 10 8374 5278 282.80
1024 52152 169.28 13.37 2 2551 10 17091 10888 308.07

64 897 4.86 0.49 14 366 38 1577 1760 184.39
SA NTT 128 1878 10.19 0.95 17 426 43 1906 2063 184.16

256 4008 21.56 2.15 24 547 48 2230 2372 185.83
512 8634 47.63 5.28 27 605 53 2610 2772 181.25
1024 18636 101.84 12.52 29 732 58 3007 3140 182.98

64 271 1.31 0.85 1 2226 322 8746 10223 205.88
CONV 128 533 2.65 3.39 2 4398 642 19098 21501 200.68

256 1058 5.32 8.33 2 8580 1282 38108 47332 198.57
512 2107 10.75 64.03 2 19301 2562 135593 161924 195.84
1024 3720 17.40 257.23 2 49714 4282 310247 322866 195.22
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Figure 5.3: Increase in the latency and energy of polynomial multiplier by the increase in
the size of the polynomials.
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5.3 Evaluation

To perform the synthesis, we use Vivado high-level synthesis (HLS) 2018.2 and select Artix7

and Zynq UltraScale+ as the target FPGA devices from resource-constrained internet-of-

things (IoT) settings and performance-driven real-time signal processing scenarios, respec-

tively. We extract the numbers of reported resources (BRAM, CLB, DSP, FF, and LUT),

maximum achieved frequency, and energy from the post-implementation process of the HLS

tool. The latency of the polynomial multiplier is the number of execution cycles at the

maximum achieved frequency.

For the polynomial-size of N=1024, Seq NTT achieves 3x speedup to compute forward and in-

verse number theoretic transform compared to the implementation of [223] on a low-cost Ar-

tix7 FPGA. Table 6.2 shows the synthesis results of Seq NTT as the smallest design along with

the two systolic array polynomial multipliers, SA NTT (NTT-based) and CONV (convolution-

based on Zynq UltraScale++. Seq NTT achieves the highest maximum frequency than SA NTT

and CONV because of its sequential architecture.

According to Figure 5.3, with the increase in the degree of the polynomial from 512 to 1024,

the rise in the energy consumption of CONV is exponential due to the increase in the number

of resources required to satisfy the timing constraints.
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Figure 5.4: Comparison of the different polynomial multiplier designs, normalized to NTT,
for polynomials with degree 256, 512 and 1024.
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Figure 5.4 shows the latency and energy consumption, extracted from Table 6.2, of the de-

signs normalized to the Seq NTT. For N=1024, e.g., NewHope scheme, SA NTT reaches 3x

speedup with 7% decrease in energy compared to the Seq NTT; for N=256 and N=512, 1.7x

improvement in latency is achieved with 69% and 21% increase in the energy, respectively. We

suggest employing a systolic array NTT-based polynomial multiplier for resource-constrained

devices to achieve plausible performance with low energy consumption to verify the digital

signatures and/or perform encrypting and decryption. The convolution-based systolic array

multiplier is suitable for high-performance servers that can tolerate higher energy consump-

tion to generate 2x more signatures per second by CRYSTALS – Dilithium [80], a PQC

digital signature scheme with a 7x speedup in the computing NTT. Forward and inverse

NTT consumes around 65% of cycles in CRYSTALS – Dilithium to generate a signature.

5.4 Conclusion and future work

The advent of quantum computing threatens to render ineffective classical cryptographic

schemes to secure signal processing applications. Emerging quantum-resistant cryptographic

schemes show promise, but are hindered by the computational overhead of essential critical

kernels such as a polynomial multiplication. This work explores, for the first time, the

energy efficiency of array processors for implementing polynomial multipliers with degrees

up to 1024.

We design and synthesize an NTT-based and a convolution-based systolic array polynomial

multipliers and compare their performance, area, and energy with the sequential NTT-based

counterpart. Our serial NTT-based design achieves 3x speedup on a low-cost Artix7 FPGA

compare to the hardware implementation of NewHope-Simple.

On a Zynq UltraScale+ FPGA, NTT-based systolic array on average is 1.7x faster than
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sequential NTT-based polynomial multiplier with less than 30% increase in the energy. The

convolution-based systolic array on average is 7.5x faster than serial NTT-based polynomial

multiplier with a 13.5x increase in the energy overhead; thus, convolution-based systolic array

polynomial multipliers are suitable for high-performance servers that can tolerate higher

energy consumption.

Our future work evaluates the energy efficiency of the Pipeline FFT processor to perform

polynomial multiplication. Additionally, we make the systolic architecture of the CONVmore

area- and energy-efficient for securing quantum resistance of future signal processing appli-

cations.
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Chapter 6

CryptoPIM: In-memory Acceleration

for Lattice-based Cryptographic

Hardware

6.1 Background and Related Work

A lattice L ⊂ Rn is defined as all the integer linear combinations of basis vectors b1, . . . ,bn ∈

Rn. The hardness of the lattice-based schemes are based on two mathematically hard prob-

lems: short integer solution (SIS) and, more commonly, learning With errors (LWE). Given

the pair (A,pk) as a matrix of constants sampled uniformly at random in Znq and the pub-

lic key, the learning with error problem is defined as finding the secret key sk, where

pk = (A ∗ sk + e) mod q, and e is a small error vector that is sampled from a Gaussian

distribution.

LWE-based schemes are impractical to be implemented on resource-constrained devices due

to their large keys. At the same security level, Ring-LWE (RLWE) reduces the key size by
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a factor of n, where n is the degree of the polynomial. In Ring-LWE (RLWE), a derivation

of LWE in which A is implicitly defined as a vector a in the ring R ≡ Zq[x]/〈xn + 1〉.

Algorithm 6: NTT-based Polynomial Multiplier

1 Function POLY NTT(A, B):

/* Initialization: w is the n-th root of unity and φ is the 2n-th
root of unity (φ2 = w mod q); w−1 and φ−1 are the inverse of w
modq and φ modq, respectively. */

/* Precompute: {wi, w−i, φi, φ−i} where wi, w−i are in reversed order,

while φi, φ−i are in normal order */

2 bitrev(A)
3 bitrev(B)
4 for i = 0 to n− 1 do
5 āi ←− aiφ

i

6 b̄i ←− biφ
i

7 end
8 Ā ←− NTT GS(ā, w)
9 B̄ ←− NTT GS(b̄, w)

10 C̄ = Ā.B̄
11 bitrev(C̄)
12 c̄ ←− NTT GS(C̄, w−1)

13 for i = 0 to n− 1 do
14 ci ←− c̄iφ

−i

15 end
16 return C

Arithmetic operations for a Ring-LWE-based scheme are performed over a Zp, the ring of

integers modulo p where n (degree of the polynomial) is a power of two, p is a large prime

number, and xn+1 is an irreducible polynomial degree n. The quotient ring Rp includes

polynomials with degree less than n in Zp, that defines Rp = Zp/[xn+1] in which coefficients

of polynomials are in [0,p). Degrees of the polynomials in RLWE-based schemes vary between

256 [16] and 1024 [179] for public-key encryption and between 2k and 32k for homomorphic

encryption [53].

Polynomial multiplication is commonly computed using the Number Theoretic Transform

(NTT). Two polynomials (a = a(n−1)·xn−1+. . .+a(0) and b = b(n−1)·xn−1+. . .+b(0)) are
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transformed into the NTT domain (A = A(n−1) ·xn−1+ . . .+A(0) and B = B(n−1) ·xn−1+

. . .+ B(0)); multiplication of the two polynomial is computed as C =
∑n−1

i=0 A(i) · B(i) · xi.

The final result, c = a∗b, is computed by applying the the inverse number theoretic transform

(NTT−1) on C. A common method to perform the number theoretic transform is Gentleman-

Sande (GS) [100], which receives the input in the reverse order and produces the output in

the normal order. Similar to [162], we employ the GS method to compute both forward and

inverse number theoretic transforms. It involves changing the order of the coefficients in the

vector representation (i.e., bit-reverse). Algorithm 5 describes the NTT-based polynomial

multiplier using the GS method.

Algorithm 7: The Gentleman-Sande in-place NTT algorithm

1 Function ntt gs(A,twiddle):

/* To compute the NTT and NTT−1, twiddle is set to {wi} and {w−i}
for all i ∈ [0, n/2− 1], respectively. Output is A in the

frequency domain (bit-reversed order). */

2 for i=0 to log2n do
3 for idx=0 to n/2 do
4 st←− idx & ((1<<i)-1)
5 j ←− ((idx & !(1<<i - 1) <<1)&(n-1) + st
6 j = j&(n− 1) + start

7 j
′ ←− j + (1<<i)

8 k = j >> (i+ 1)
9 W ←− twiddle[j>>(i+1)]

10 T ←− A[j]
11 A[j]←− (T + A[j’])mod q

12 A[j
′
]←− W*(T - A[j’])mod q

13 end

14 end

Numerous researches focus on implementation of classical cryptographic schemes for servers

and constraint devices [224, 15]. In the scope of LBC schemes, researches on the acceleration

of the NTT-based polynomial multiplications narrow the focus on the area and performance

of the polynomial multiplier and leave the energy unexplored [184] [62].

Efforts have evaluated the energy as well as the area and performance of NTT accelerators
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Figure 6.1: Digital processing in memory (PIM) overview.

[166][161][24][163]. We compare our results to the fastest FPGA implementation of the NTT-

based multiplier in [162] for the vector sizes n ∈ (256, 512, 1024) in terms of performance,

energy, and throughput. Besides, we report the performance, energy, and throughput for

vector sizes n ∈ (256, 512, 1024, 2k, 4k, 8k, 16k, 32k).

While the works mentioned above try to accelerate NTT, they do not perform well for

higher degree polynomials. Processing higher degree polynomial, even with NTT, involves

a massive amount of computations. Hence, the application performance suffers due to (i)

less than required on-chip memory and (ii) limited availability of complex cores. Prior

work has proposed processing in memory (PIM), which is an architecture for doing in-situ

computation [102, 94, 128].

Recent works in PIM enable highly efficient bitwise operations in memory [110, 94] and

extend the operations to implement complex functions like floating-point arithmetic [128].

Besides, PIM has been shown to provide large dense memory and extensively parallel com-

puting. Figure 6.1 shows high-level implementation of PIM based on bitwise computation

in [110]. The memory block on the left is a crossbar of ReRAM (resistive RAM) cells, where

each row of cells share a wordline, while those in the same column share a bitline. These

cells have two possible states. The cells change state when the voltage across them crosses

a device threshold. A memory cell is present at the intersection of a wordline and bitline.

To implement bitwise functions, it applies a voltage V at the input bitlines and ground the
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output bitline. The result of the computation is generated in the output cell. The operation

performed is dependent on V . Also, the same operation can be executed in parallel over

multiple rows of the block, enabling parallel vector-wide operations. Prior research designed

PIM blocks for application acceleration, e.g., MapReduce based on 3D stacking [186], nearest

neighbor search using computational logics beside DRAM [67], and parallel graph processing

based on 3D DRAM [5]. Several SW interface designs have also been proposed for hetero-

geneous computing platforms to use the accelerators in system and coherently access host

memory, e.g., IBM CAPI [217], Intel HARP [109], and HMC 2.0 [221].

Instead, in this work, we, for the first time, propose CryptoPIM, a high-throughput PIM

accelerator for NTT-based polynomial multiplication. The proposed design optimizes the

basic NTT operations, introduced new inter-block switches, and finally uses a configurable

architecture to support polynomial multiplications for polynomials with degrees up to 32k.

6.2 CryptoPIM for RLWE Polynomial Multiplier

In this section, we detail CryptoPIM, a processing in-memory design for NTT-based polyno-

mial multiplier. We start by analyzing the base algorithms to identify the basic operations

involved in the execution. We then show how these operations can be mapped to PIM. In the

end, we put together the individual PIM pieces to present a high-speed and highly efficient

architecture for NTT-based polynomial multiplier.

6.2.1 Operational Breakdown of Polynomial Multiplication

As discussed in Section 6.1, Algorithm 16 contains multiple sequential operations. The

computational operations involve element-wise multiplication between two vectors and NTT

calculation over a vector. While bitrev() only changes the sequence of data reads and not
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the data itself. Algorithm 7 shows that NTT is further composed of element-wise vector

addition, subtraction, and multiplication operations. Hence, NTT-based polynomial mul-

tiplication essentially comprises of bit-reversal and element-wise addition, subtraction, and

multiplication. Further, each data operation is followed by a modulo operation (mod q) to

maintain consistent bitwidth.

6.2.2 Mapping Operations to PIM

Section 6.1 shows that PIM based designs [128, 94, 218, 111] can implement arithmetic

functions with high parallelism and energy efficiency. Moreover, using such designs for integer

arithmetic, as required in our case, can further increase their benefits. Integer operations

do not involve tracking decimal point (for fixed-point) or iterative data-dependent shifts

(for floating-point). This simple computation logic of integer operations, combined with the

vector-based operations in polynomial multiplication, make it a suitable candidate for PIM.

6.2.2.1 Data organization in CryptoPIM

A memory block is an array of memory cells, where each memory cell represents a bit. N

continuous memory cells in a row represent an N -bit number, with the first cell storing the

MSB. For a block with r rows and c columns, each row stores c/N numbers, with the entire

block having a capacity of (c/N)× r N -bit numbers.

In PIM, each row has some data columns and some processing columns. While data columns

store inputs and other relevant data like pre-computed factors, processing columns are pri-

marily used for performing intermediate operations and storing temporary results. However,

the data and processing columns are physically indistinguishable and their roles can be

changed on-the-fly. An input vector with m N -bit values is stored in data columns such that
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each N -bit number occupies the same N columns in m rows. This is illustrated in Figure 6.2

6.2.2.2 Polynomial multiplication in CryptoPIM CryptoPIM

We implement the functions in polynomial multiplication to PIM as follows:

Bit-reversal: Bit-reversal changes the sequence of data read. In the case of PIM, where

an input vector is stored over different rows in a memory block, a bit-reversal operation is

equivalent to changing the row to which a value is written (shown in Figure 6.2. This can

be easily achieved while writing the vector to the block. The arrangement can either be

hard-coded or be flexible according to the target application.

Addition/Subtraction: The state-of-the-art PIM designs perform vector-wide addition.

For subtraction, 2’s complement is taken for one of the inputs (subtrahend) and then addition

is performed. We use similar techniques where basic bitwise operations are cascaded to

implement 1-bit adder. Then, these multiple such 1-bit additions are used to implement an

N -bit operation. Although a single N -bit addition/subtraction may be a slow operation, r of

such operations can be executed in parallel in a r× c memory block without any additional

overhead, as shown in Figure 6.2. The latency of N -bit addition is 6N + 1 cycles [110] and

for subtraction is 7N + 1.

Multiplication: An N -bit multiplication operation is broken into simple shift and addition

of partial products. First, the partial products are generated using bitwise operations and

stored in the same row as operands. Because CryptoPIM works with bit-level memory

access, instead of explicit data shift, shifting operation is translated to selecting appropriate

columns of memory block. Similar to addition/subtraction, r multiplication operations can

also execute in parallel in a memory block which provides efficient vector-wide operations.

The work in [113] proposed full-precision multipliers. However, the bitwise operations used

by them are expensive. Instead, we combine the algorithm in [113] with the low latency
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bitwise operations proposed in [110]. As a result, N -bit multiplication in CryptoPIM takes

6.5N2 − 11.5N + 3 cycles, significantly less than the 13N2 − 14N + 6 cycles of [113].

Modulo: While addition of two N -bit numbers can result in an (N + 1)-bit output, a

multiplication may give an output with 2N bits. However, to maintain the consistency in

number bitwidth with minimum effect on the algorithmic correctness, each computation un-

dergoes a modulo operation. Modulo operations traditionally involve the expensive division

operations. To enable modulo operations in memory, we use Barrett reduction [27] and

Montgomery reduction [156] after each addition and multiplication, respectively. Further,

in NTT, the modulo factor (q in our case) is generally fixed for a specific size of the vector

or polynomial’s degree. For instance, we set q = 12289 for vector sizes of 1024 and 512,

according to NewHope [179], and q = 7681 for vector sizes of 256 and less according to

Kyber [16]. For vector sizes of 2k, 4k, 8k, 16k, and 32k we set q = 786433 according to the

Microsoft SEAL library [53]. We exploit this limited set of possible qs to make reduction

more efficient in PIM. Instead of naively using multiple multiplications, we first convert these

reduce operations into successive shift and add/subtract operations as shown in Algorithm 8.

Since, we have bit-level access, we perform only the necessary bit-wise computations. For

example, in line 15 of Algorithm 8, {v ←− u & ((1<<18)-1)} resets to 0 all but the 17 LSBs

of the output of {u←− (a<<13) - (a<<9) + a}. Here, we compute only 17 LSBs of u.

Since q is the same for all the values in a vector, they require same shift (i.e. same column

activations in CryptoPIM) and can hence be completely parallelized over the entire vector

in CryptoPIM. For each reduction, latency is dependent on the total number of bitwise

additions involved in it. Table 6.1 lists the latency of each reduction in CryptoPIM.
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Algorithm 8: Reduction algorithms using shifts and adds. q = 7681 for n ≤256,
q = 7681 for n=512, 1024, and q = 786433 for n≥ 2048

1 Function BARRET REDUCE(f , a, b, ε):

2 if q == 12289 then
3 u←− ((a<<2)+(a)) >> 16; u←−(u<<13) + (u<<12) + u
4 if q == 768 then
5 u←− a>>13; u←− (u<<13) - (u<<9) - u
6 if q == 786433 then
7 u←− a>>20; u←− (u<<19) + (u<<18) + u
8 return a-u

9

10 Function MONTGOMERY REDUCE(f , a, b, ε):

11 if q == 12289 then
12 u←− (a<<13) + (a<<12) - a; u←− u & ((1<<18)-1)
13 u←− (u<<13) + (u<<12) + u; u←− (u + a)>>18

14 if q == 768 then
15 u←− (a<<13) - (a<<9) + a; u←− u & ((1<<18)-1)
16 u←− (u<<13) - (u<<9) - u; u←− (u + a)>>18

17 if q == 786433 then
18 u←− (a<<19) - (a<<18) + a; u←− u & ((1<<32)-1)
19 u←− (u<<19) + (u<<18) - u; u←− (u + a)>>32

20 return u

Table 6.1: Execution time (cycles) for modulo operation

q 7681 12289 786433
Barrett Reduction 261 239 429

Montgomery Reduction 683 461 1083

6.2.3 CryptoPIM Building Blocks

The two basic building blocks of CryptoPIM are PIM-enabled memory block and fixed-

function switch. A memory block implements one phase or stage of the polynomial multi-

plication. Two adjacent memory blocks are connected using the CryptoPIM fixed-function

switches as shown in Figure 6.3 Each memory block is a PIM enabled an array of 512× 512

memory cells and can process a vector of length 512 at a time. The fixed-function switches,

unlike typical crossbar switches, enable only three types of connections: a direct rowA-to-
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rowA, rowA-to-row(A+s), rowA-to-row(A-s). A fixed-function switch allows just one, the

in-hardware-coded value of s. However, this ‘s’ may be different (but fixed) for different in-

stances of this fixed-function switch in the hardware. Instead, traditional crossbar switches

provide a connection between any possible input/output combination leading to an exponen-

tial increase in logic requirement with an increase in inputs or outputs. Our fixed-function

crossbar switch has just three logic switches per row. The number of switches per row is

independent of the number of inputs/outputs. These switches can read up to one entire

column of one block and write it to the next block in parallel, requiring as many cycles as

the bitwidth of data. Hence, transferring data between two blocks in NTT requires only

3*bitwidth cycles, one each for A-to-A, A-to-(A+s), and A-to-(A-s) transfer.

All computation steps in Algorithm 5 and 7 are implemented using these building blocks.

Each vector-wide data operation along with the involved modulo reduction is implemented

in an independent memory block. Hence, we have a memory block each for aiφ
i, biφ

i, Ā.B̄,

c̄iφ
−i. Then, the log2n stages in NTT uses a memory block each. Each (NTT) stage block

is connected to the next stage block using the switches.
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6.2.4 CryptoPIM Architecture

6.2.4.1 CryptoPIM Pipeline

The block-by-block modular architecture provides an opportunity to increase the through-

put by pipelining. Figure 6.4a shows the most area-efficient NTT pipeline for the 16-bit

datawidth. Here, the computation and its corresponding modulo operation are performed in

the same block. For 16-bit datatype and n=256, this results in 2700 cycles per stage. Note

that even though the logic performed in each stage have different latencies, the latency of

the slowest stage determines the stage latency while pipelining. Now, the data computation

and its modulo are completely independent operations and can be performed in separate

blocks, leading to the pipeline shown in Figure 6.4b and stage latency of 1756 cycles. How-

ever, this comes at the cost of increasing the number of stages and hence, the total latency

of one polynomial multiplication. We further optimized the pipeline by combining Mont-

gomery reduction, addition/subtraction, and Barrett reduction in the same stage as shown

in Figure 6.4c. We obtain the final stage latency of 1643 cycles.
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Figure 6.4: Detailed stage-by-stage breakdown of (a) Area-efficient pipeline, (b) naive
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sents a pipeline stage. The slowest stage in a pipeline is colored red.

6.2.4.2 Configurable Architecture

CryptoPIM consists of a ReRAM memory chip with several memory banks. A set m cascaded

memory blocks map to one memory bank. A memory bank takes in 512 parallel inputs in the

first block and output 512-element wide vector. Hence, it can only process polynomials with

degrees up to 512. However, the degree of the polynomials in RLWE/FHWE-based schemes

generally ranges up to 32k. We design CryptoPIM architecture such that many of these

banks can be dynamically arranged in the form of bsoft softbanks. A softbank consists of bm

parallel memory banks. Each softbank is responsible for processing vector-wide operations for

a polynomial. Then, two softbanks dynamically form a superbank which completely processes

multiplication between two input polynomials. To enable this configurability, CryptoPIM

uses additional switches at the intersection of different banks and softbanks to allows data

communication between them.

We optimize our hardware to support 32k degree polynomials in memory. A 32k NTT

120



pipeline has 49 blocks (from Figure 6.4). Hence, each bank has 49 memory blocks. We

further need 64 such memory banks for each input polynomial, requiring 128 memory banks

per 32k polynomial multiplication. If the degree of input polynomial is higher than 32k,

CryptoPIM divides the inputs into segments of 32k and iteratively uses the hardware. On

the other hand, if the input polynomial degree is less than 32k, we dynamically configure

CryptoPIM into multiple superbanks to enable parallel multiplication of multiple polynomial

pairs.

6.3 Evaluation

6.3.1 Evaluation Setup

We use an in-house cycle-accurate C++ simulator, which emulates CryptoPIM functionality.

We used HSPICE for circuit-level simulations and calculate energy consumption and perfor-

mance of all the CryptoPIM operations in the 45nm process node. We used System Verilog

and Synopsys Design Compiler to implement and synthesize the CryptoPIM controller. The

robustness of all proposed circuits, i.e., interconnect, has been verified by considering 10%

process variations on the size and threshold voltage of transistors using 5000 Monte Carlo

simulations. A maximum of 25.6% reduction in resistance noise margin was observed for

RRAM devices. However, this did not affect the operations in CryptoPIM due to the high

ROFF/RON . We adopt a RRAM device with VTEAM model [141]. The device parameters

[219] are chosen to fit practical devices [140] with switching delay of 1.1ns (= cycle time

in CryptoPIM). The behavior of bitwise PIM operations has been demonstrated using a

fabricated chip in [129].
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Figure 6.5: Normalized latency and throughput of CryptoPIM for different degrees of poly-
nomial. NP and P represent non-pipelined and pipelined designs respectively.

6.3.2 Performance and Energy Consumption of CryptoPIM

Figure 6.5 shows the latency and throughput of non-pipelined and pipelined CryptoPIM over

different degrees of polynomial multiplications (n). The latency of CryptoPIM increases with

increase in n, primarily due to the increased number of NTT stages. However, the pipelined-

throughput remains the same for the degrees processed in same bitwidth. This is because the

latency of one stage in CryptoPIM depends on bitwidth and not n. The energy consumption

of the design increases with n. This is due to increase in both the number of stages and well

as the amount of parallel computations in each stage.

As evident from the results, pipelining increases the throughput tremendously with some

latency overhead. For smaller degrees (n ≤ 1024), average throughput improves by 27.8×,

while incurring 29% latency overhead. When is n > 1024, the throughput improvement

increases to 36.3×, with 59.7% increment in latency. This happens because the latency of

multiplication increases exponentially with the bitwidth of inputs. For n > 1024 (32-bit

inputs), the execution time of multiplication is 6.8× that of the second slowest operation.

On the other hand, for n ≤ 1024 (16-bit inputs), multiplication is just 2.3× slower than

the second slowest operation. Hence, the pipelines is comparatively more balanced in 16-
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bit than 32-bit. The energy consumption of CryptoPIM increases on average by just 1.6%

for the pipelined design. While pipelining increases the number of stages, the underlying

computations don’t increase. Hence, the total amount of logic is same in both the pipelined

and non-pipelined versions. The small increase in energy is due to increased block-to-block

transfers.

6.3.3 Comparison with state-of-the-art PIM

To show the efficiency of our optimizations, we compare CryptoPIM with multiple PIM base-

lines. The first baseline PIM (BP-1) uses the operations proposed in [113], while utilizing

the same building blocks and architecture as CryptoPIM. BP-2 is BP-1 with its N -bit mul-

tiplication replaced with the multiplication in CryptoPIM. BP-3 is BP-2 with the reduction

operations converted to shift and adds. Figure 6.6 shows the latency of the three baselines

and CryptoPIM for different degrees of polynomial multiplication. To have a fair compari-

son, we compare the baselines with the non-pipelined version of the design. We observe that

BP-2 is on average 1.9× faster than BP-1. This shows that optimized CryptoPIM multipli-

cations significantly improve CryptoPIM latency. Moreover, BP-3 is 5.5× faster than BP-2,

which shows that the shift and add based reduction is more efficient than multiplication
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based reduction. Finally, CryptoPIM is 1.2× faster than BP-3, showing that CryptoPIM

modulo reductions are highly optimized. As a result, CryptoPIM is 12.7× faster than the

state-of-the-art PIM (BP-1).

6.3.4 Comparison with CPU and FPGA

Table 6.2 shows the comparison of the pipelined-CryptoPIM in terms of latency, energy,

and throughput to the FPGA (on Xilinx Zynq UltraScale+) and software (on an X86 CPU

at 2GHz) implementations. Compare to the CPU implementation, CryptoPIM on average

achieves 7.6x, 111x, and 226x improvement in the performance, throughput, and energy,

respectively. For the sizes suitable for public-key encryption (256, 512, and 1024) CryptoPIM

achieves on average 31x throughput improvement with the same energy and less than %30

reduction in the performance.

6.4 Conclusion

The (NTT) is the most time-consuming routine in ideal lattice-based cryptographic protocols.

In this paper, we propose a high-throughput Processing-In-Memory accelerator for NTT-

based polynomial multiplication. Our fast energy-efficient design, CryptoPIM, enables fast

execution of the polynomial multiplication with the support of polynomials with degrees

up to 32k, accommodating requirements for public key cryptographic systems for data at

rest and in communication, and data in use (e.g., homomorphic encryption). CryptoPIM

achieves on average 31x throughput improvement with the same energy consumption and

28% latency reduction compare to the fastest NTT-based polynomial multiplier implemented

on FPGA.
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Table 6.2: Comparison of the CryptoPIM to the FPGA and CPU implementation of the
NTT-based polynomial multiplier. Throughput is defined as number of the polynomial
multiplications per seconds. Energy is the require energy to multiply two polynomials.

Design N Bitwidth Latency (us) Energy (uJ) Throughput

256 16 84.81 570.60 11790
512 16 168.96 1179.52 5918
1k 16 349.41 2483.77 2861
2k 32 736.92 5273.07 1365

X86 (gem5) 4k 32 1503.31 10864.64 665
8k 32 3066.76 22385.51 326
16k 32 6256.20 46123.84 159
32k 32 12762.65 95032.33 78

256 16 21.56 2.15 46382
NTT-based 512 16 47.63 5.28 20995

[162] (FPGA) 1k 16 101.84 12.52 9819
2k-32k - - - -

256 16 68.67 2.58 553311
512 16 75.90 5.02 553311
1k 16 83.12 11.04 553311

CryptoPIM 2k 32 363.60 82.57 137511
Pipelined 4k 32 392.69 178.62 137511

8k 32 421.78 384.17 137511
16k 32 450.87 822.21 137511
32k 32 479.95 1752.15 137511
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Chapter 7

Conclusions and Future Directions

Industry, academic, and government are working together to commercialize quantum com-

puters – computers that can achieve unprecedented levels of performance in specific ap-

plication domains, including biology and chemistry. With the compute power of quantum

computers, the existence of quantum algorithms for solving problems such as the discrete

logarithm problem promises to nullify the effectiveness of current public-key cryptography,

as illustrated by in Shor’s algorithm to factorize large integers in polynomial time.

Fortunately, Post-quantum cryptography (PQC) is a vibrant area of research devoted to

studying alternative schemes for public-key cryptographic protocols, capable of withstanding

quantum cryptanalysis attacks, and executable on classical computers. The relevance of the

problem and the urgency of the threat is also demonstrated by the activity of government

agencies, which are currently promoting the evaluation (first) and standardization process

(next) of suites composed of such new algorithms. Lattice-based cryptography (LBC) schemes

are the most promising family of quantum-resistant schemes due to their versatility and

superior performance. In both the first and second rounds of the NIST PQC competition,

about half of the candidates belong to the LBC family. We focus on aera, performance,
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and energy efficiency as the primary optimization goals since such objectives are the most

relevant for resourceful servers and cloud-based accelerators, as well as resource-constrained

IoT devices.

We focus on domain-specific programmable hardware accelerators because they are the most

suitable, at this stage, to adopt post-quantum algorithms in hardware. Generation of domain

specific accelerators involves considering the spectrum of the computing platforms which

ranges from resource-constrained IoT devices to performance-driven cloud servers.

Efficiency in terms of performance, energy, and sustainability of the designed accelerators

(i.e., robustness to the changes in algorithms and parameters) are crucial for early adoption

of such cryptographic protocols in hardware. We satisfy such goals by (a) analyzing and

profiling schemes, and (b) targeting parts of the reference routines, which we address as

micro-kernels. This is in contrast to the traditional approach of designing a dedicated co-

processor for the entire routine. The employment of the micro-kernel accelerators provides

more flexibility but has inferior performance compared to the dedicated co-processor because,

in the micro-kernel approach, the main processor has to run portions of the protocol. Towards

this goal, we design cache and DMA assisted accelerators for resource-intensive kernels of the

LBC and verify them in We validate our methodology by integrating our accelerators into an

HLS-based SoC infrastructure based on the X86 processor and evaluate overall performance.

Among the validated accelerators in the proposed simulation framework, we implement poly-

nomial multipliers on FPGA and PIM platforms. We explore energy efficiency of different

array-based polynomial multipliers. Then, we compare our FPGA implementation with our

high-throughput PIM design.
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lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT,
2016.
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[10] E. Alkim, N. Bindel, J. Buchmann, Özgür Dagdelen, E. Eaton, G. Gutoski, J. Krämer,
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[38] N. Bindel, J. Buchmann, J. Krämer, H. Mantel, J. Schickel, and A. Weber. Bound-
ing the cache-side-channel leakage of lattice-based signature schemes using program
semantics. Cryptology ePrint Archive, 2017.

[39] N. Binkert et al. The gem5 simulator. SIGARCH, 2011.

[40] A. Boorghany and R. Jalili. Implementation and comparison of lattice-based iden-
tification protocols on smart cards and microcontrollers. Cryptology ePrint Archive,
2014.

[41] A. Boorghany, S. B. Sarmadi, and R. Jalili. On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. 2015.

[42] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan,
and D. Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange from
lwe. In CCS, 2016.

[43] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
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performance and lightweight lattice-based public-key encryption. In IoTPTS, 2016.

[50] C. Chen, J. Hoffstein, W. Whyte, and Z. Zhang. pqntrusign: A modular lattice
signature scheme. Technical report, National Institute of Standards and Technology,
2017.

[51] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung, D. Pao, and
I. Verbauwhede. High-speed polynomial multiplication architecture for ring-lwe and
she cryptosystems. TCS, 2015.

[52] D. D. Chen, G. X. Yao, R. C. Cheung, D. Pao, and C. K. Koç. Parameter space for
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[92] J. Folláth. Gaussian sampling in lattice based cryptography. Tatra Mountains Math-
ematical Publications, 2014.

[93] P.-A. Fouque et al. Falcon: Fast-fourier lattice-based compact signatures over ntru.
Technical report, National Institute of Standards and Technology, 2017.

133



[94] D. Fujiki, S. Mahlke, and R. Das. Duality cache for data parallel acceleration. In
ISCA, 2019.

[95] E. Fujisaki et al. Secure integration of asymmetric and symmetric encryption schemes.
Journal of Cryptology, 2013.

[96] E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption at
minimum cost. In PKC, 1999.
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[182] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key encryption
on reconfigurable hardware. In SAC, 2013.
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[214] D. Stehlé and R. Steinfeld. Making ntru as secure as worst-case problems over ideal
lattices. In EUROCRYPT, 2011.

[215] R. Steinfeld, A. Sakzad, and R. K. Zhao. Titanium. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[216] S. Streit and F. D. Santis. Post-quantum key exchange on armv8-a – a new hope for
neon made simple. Cryptology ePrint Archive, 2017.

[217] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. Capi: A coherent accelerator processor
interface. IBM Journal of Research and Development, 2015.

[218] N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky. mmpu—a
real processing-in-memory architecture to combat the von neumann bottleneck. In
Applications of Emerging Memory Technology. 2020.

[219] N. Talati et al. Logic design within memristive memories using memristor-aided logic
(magic). NANO, 2016.

[220] E. E. Targhi et al. Post-quantum security of the fujisaki-okamoto and oaep transforms.
In Theory of Cryptography, 2016.

[221] M. Technology. Hybrid memory cube, 2017.

[222] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. Gaussian random number
generators. ACM CSUR, 2007.

[223] O. Tobias and G. Tim. Implementing the newhope-simple key exchange on low-cost
fpgas. In LATINCRYPT, 2017.

[224] J. Toldinas et al. Energy efficiency comparison with cipher strength of aes and rijndael
cryptographic algorithms in mobile devices. 2011.

[225] J. Von Neumann. Various techniques used in connection with random digits. National
Bureau of Standards Applied Mathematics booktitle, 1951.

[226] A. Wander et al. Energy analysis of public-key cryptography for wireless sensor net-
works. In IEEE International Conference on Pervasive Computing and Communica-
tions, 2005.

[227] F. Winkler. Polynomial algorithms in computer algebra. In TMSC. 1996.

141

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


[228] Y. Yuan, C.-M. Cheng, S. Kiyomoto, Y. Miyake, and T. Takagi. Portable implemen-
tation of lattice-based cryptography using javascript. In CANDAR, 2016.

[229] Z. Zhang, C. Chen, J. Hoffstein, and W. Whyte. Ntruencrypt. Technical report,
National Institute of Standards and Technology, 2017.

[230] Y. Zhao, Z. jin, B. Gong, and G. Sui. A modular and systematic approach to key
establishment and public-key encryption based on lwe and its variants. Technical
report, National Institute of Standards and Technology, 2017.

142


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Trends, Challenges and Needs for Lattice-based Cryptography Implementations
	Thesis Contributions
	Design Space Exploration
	Hardware Acceleration of Polynomial Multiplier


	Background and Related Works
	Arithmetic and Components of Lattices
	Lattice-based schemes

	Implementation challenges
	Implementation of Arithmetic Modules
	Software Implementations of Lattice-based Cryptographic Schemes
	Hardware Implementations of Lattice-based Cryptographic Schemes
	Hardware/Software Implementations of Lattice-based Cryptographic Schemes
	DSP Implementation

	Conclusion

	Simulation-based Cache-assisted Polynomial Multiplier
	Background
	Ring-LWE Encryption Scheme

	Design Flow Steps
	Algorithms Profiling
	NewHope
	Kyber
	Dilithium
	R.EMBLEM
	KCL (Key Consensus from Lattice)

	Evaluation
	Conclusion

	Simulation-based DMA-assisted Polynomial Multiplier
	Background
	Design Space Exploration (DSE) Flow
	Algorithm Analysis & Profiling
	Design Space Exploration
	Conclusion

	Exploring Energy Efficient Quantum-resistant Signal Processing Using Array Processors
	Background and Related Work
	Convolution-based multiplier
	NTT-based multiplier
	Previous works

	Systolic Array polynomial multiplier
	Systolic arrays
	Implementation of systolic array polynomial multiplier

	Evaluation
	Conclusion and future work

	CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware
	Background and Related Work
	CryptoPIM for RLWE Polynomial Multiplier
	Operational Breakdown of Polynomial Multiplication
	Mapping Operations to PIM
	CryptoPIM Building Blocks
	CryptoPIM Architecture

	Evaluation
	Evaluation Setup
	Performance and Energy Consumption of CryptoPIM
	Comparison with state-of-the-art PIM
	Comparison with CPU and FPGA

	Conclusion

	Conclusions and Future Directions
	Bibliography



