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. THERMALLY ACTIVATED DISLOCATION GLIDE THROUGH A RANDOM

ARRAY.OF POINT OBSTACLES: NUMERICAL SIMULATION
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Center for the Design of Alloys,
" Inorganic Materials Research Division,
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. ABSTRACT
This paper reports results obtained from numerical simulation of the

thermally-activated glide of an idealized dislocation through a random

array of point obstacles. The array size is fixed at 999, and the dislo?

cation—obstacle interaction is taken to have a simple step form. The

variables governing glide are then the resolved shear stress, the temper-

. ature, and the obstacle strength, which may be phrased as dimensionless

parameters. ‘The principal subjects studied are three: (1) the stress

required for athermal glide at given obstacle strength, and the charac~

.teristics of the obstacle configurations which determine this stress;

l (2) the glide path taken by the cdhfiguration,'and the characteristics

of the obstacle configurations encountered along this glide path;

(3) the velocity of glide, and its d%pendence on the stress, the tempera-

ture, and the obstacle strength.

*Present Address: M-C 145
: "~ General Electric Company
175 Curtner Avenue
San Jose, Californtfa 95114



I. INTRODUCTION

(1)

As in the first paper of this séries, we are here concerned with
the glide of a dislocation, idealized és a string of constant tension, |
through a randoﬁ array of idéﬁtical, immobile point obstacles. As dis- :
cussed in the Introduction to refereﬁce 1, é proper description of ther- -
maliy activated glide requires two types éf information: the nature of
the 6bstac1e‘configufations encountered by the gliding dislocation and
the proper statistics of thermal activation past these barrier configu-
rations., In reference 1, we treated the statistics of fhérmal activation
aﬁd discussed the statistical'definition of the glide velocity. In the
work fepbrted here we have used nﬁmerical techniques to directly simulate
thermally activated glide. The objectives of this work are three:

(1) fo characterize the obstacle configurations encountered along the

glide path of a dislocation in sufficient details to provide guidance for-

theoretical work; (2) to check the validity of the approximations identi-

fied in reference 1; and (3) to study the velocity of glide as a function

of applied stress, témperature, and obstacle strength, given a dislocation-

- obstacle interaction of simple "step" form.

The assuﬁptions and basic equations uséd here afe specializations of
those‘used in reference 1. The glide plane of the dislocation is taken
to be a squafe containing a random distribution»of point obstécles, whose
density‘is characterized by the area (a) per point or by the charactefis—

= (a)l/z. The total area of the square array may be written

4

tic length 1s
in diﬁensiqnless form as the number of points.contained: A* = "/a = n,

In the work reported here we studied arrays of fixed size, n = 999,



.

A dislocation in this plane -is modelled as a flexible, extensible
string of constant line tension, I', and Buergers vector, Q, of magnitude
b, taken to lie in the glide plane. The resolved shear stress 1 impell-

ing glide of this dislocation may be written in dimensionless form

% = Py N (1.1)
O

Let the dislocation, under the applied sfréss 7%, encounter a con-
figuratioﬁ éf point obstacles denoted by (1) (figure 1). Between two
adjacent obstacles the dislocation will take the form of a circular arc
of dimensioﬁless radius R¥* (=l/2T*), If the distance between any two
adjacent obstacles along (i) exceeds 2R* or if fhe dislocation line anj—
where intersects itself then the configuration (i) is transparent to the
dislocation andlwill be mechanically by-passed. If (i) is not transparent
its mechanical stability is governed by the strength of the dislocation-
obstacie interaction. ' |

The obstacles are taken to be idéntical, circularly symmetric bar-
rieré to the dislocation whose effe;tive range of interaction (d) is
assumed small compared to their mean separation (ls). They may hence be
treated as‘point obstacles. Af the kEh-point obstacle along i the dislo-~
cation line forms the asymptotic anglerE (O§p§5ﬁ). The forge, F?, which
the dislcoation exerts on the k£E-obstac1e may be written in dimension-

less form

k

By

= F/2 = cos (y3/2), (1.2)

’

where 05325}. The dislocation-obstacle interaction is. given by a force-
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displacement relatioﬁ, B(x/d),.the effective dimensionless point force 6n
the dislocation as it sweeps thr§u§§ thé obstacle. (ref..2). 1In the work.;
~reportéd_here the function”B(x/d) was assumed to have a simple step form
'(figure é) withAB =13C when Oié/df} and 8 =0 otherwise.:‘The forée,sé*
.meésures the mechanical strength of the obstacle, A non-transparent line
cohfigufation of obsgaéles fErms.é mechaﬁically stable barrier to the
'glide?of‘a dislocation under stress t¥* if Bi <_Bcvfor Q}I bbstacles k
on i. ‘{
If the configuration i is mechéniCally stable it,must(be passed by
thermal ;activation. We ignore thelpbssibility>6f the:mally—acﬁivate.bowe
o;t between‘dislocapions and require that the actiﬁation occur at an.
th

obstacle. The energetic barrier to thermal activation at the k

obstacle on i is written -

o ‘ B |
* ,
éG i)/kT =a(B - BF) ‘ ' (1.3)
c i ' .
where o is the "dimensionless reciprocal .temperature"

o= 211d/k’I‘ | V. . (1.4)

The residence time of the dislocation in configuration i is the time
réquired for thermal activation past at least one obstacle point in i.

The expected value of  the résideﬁce,time is (ref. 1, equation (24))

-1

<t¥5 = Ai

- (1.5)
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where t* is dimensionless time, vt, with v the mean frequency with which

L ’ ’ N . .
. the dislocation attempts an obstacle, and Ai is the activation parameter

N
Ap= D e [ G 8D] .6

k=1

where the summation is taken over the Ni obstacles on i. The variance

.'of the reéidence time ‘(012) is (ref. 1, eq. (26)) . L

1 "M - @

The probability that'activation will occur first at the obstacle k on i

is (ref. 1, eq. (28))

PGs,1) = (A

-1 e ok

)~ exp [-a(B -B))] (1.8)
. c i

To .compute the glide velocity of the dislocation at given stress

and temperature we assume that.glide is controlled by thermal activation

in the sense that the time required for dislocation glide between successive

stable obstacle configufations is negligible compared to the time reqﬁired
for thermal activation past these configurations. If there are r stable
dislocation configurations aldng a particular glide path x. through the
array, then the expected transit time of a dislocation along X 1is
- '
ctk> = 2, _(Ai)-l . . .9
i=1 . '

and ‘its variance is

r
2 -2 ) R .
0 = 1221 ;(Ai) _ . (1.10)
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Given that the dislocation may take any one of many available glide paths-

through the array, the expected transit time is (ref. l,.equationé 45,

46).
<t*®> =2:P < t*> (1.11)
X X
wifh variance
02.=ZP [02 + (<t*x >- <t*>)2] (1.12)
X X X X X

~

where PX is the probabilityrthat path X is followed in a given.trial.
The velocity of glide is defined in a statistical sense only, but has
the ergodic average
| 1/2 S
<yl =1 /< t*> (1.13)

where v* is the dimensionless area swept out by the dislocation per unit
time divided by its projected leﬁgth, the edge length of ﬁheﬂafray.

The determination of the velocity of glide througﬁ a random array
of point obstacles 1is complicated'since the available glidé patﬁs change,
with the applied stress, and Fhe relative probabilities of'these paths
change with temperaturé. In reference 1 we identified apptoximations
which appear useful when eithér o is la:ge (low temperature) or the
applied stress 1% is very closed té the criticél resolved shear stress
_T: for athermal gliée through the array. These gpproximations»were based’
on the observation that; given either large o or T*&T: the dislogation
will tend tb.follow the "minimum angle" path Xo obtainedbunder fhe con-
straint that the diélocation pass each configuration (i) by activating

past the point k at which the angle ¢? takes on its minimum value (dr,
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equivalently, at~which.5§ has its maximal value Bi). In the context of
the present work these approximations take the following form. First,

let .a be so large that
a>>lnNi/Bi - Bi ' (1.14)

for every configuration in Xos where Bi is the largest value of B? and

Bi is the second lafgest value. Then equation I.13 becomes:

1721 %

<v¥> = n exp [0 - 8.)] (1.15)
2: c i
=1

where the summation is taken over the r, configurations in Xg If o

satisfies the more stringent condition
a>>1n(ro)/82—8l : (1.16)

where By is the least of the Bj and 82 is the next smallest,

<V*> = n1/2 exp [_G'(Bc-sl)] . (1-17) )

‘and the glide velbcity is determined by the time required for thermal
activation at the weakest point along thé strongest configuration in the
array. Second, let t* be so ﬁear rt that.the few stable barrier configu-
rations of obstacles in the array.are spatially separated in the sehse’
_that they have no obstacle points in common. Then the dislocation will

follow path X independent of temperature and
-1

r
: 0
<vk> = nI/? ,Eéi(Ai)-l ‘ (1.18)
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IT. NUMERICAL SIMULATION

The central reSulfs given in‘the following sections were obtaiﬁed
through direct ﬁumerical simulation of dislocation glide. The code em-
ployed is based on an adaptation of a "circle-rolling" algorithm first
uséd by Foreman and Makin(3). The code models dislocation glide for
given array size (n), applied.stresé (+*), obstacle strength,(sc), and
reciprocal temperature (@).

Using a "pseudo—réndom number generator", available as a computer
subroutine, the code first distributes a given number (n) of poiﬁts over
a square which represents the glide plane. It then lays mirror image
boundary conditions. Thé points are identigal,'and are giveﬁ a specified
obstacle strength Bc. Given the array and the applied streés, T*? which
f%xes the radius (R*) of dislocation bow-out between obétacle ﬁbiﬁts,
the initial disiocafion position is obtained using an analytical equi&a-
lent of thévfollowing procedure.

(1) A circle of dimensionlesslradius (R*) is moved up the left hand
boundary of the square glidé plane until it makes contact with an obstacle"
in the array. The circle center remains on the left ﬁoundary, assﬁring
satisfactidh of the mirror image'bOunda:y condition. The érc of the
circle from the left boundary to the obstacle defines the first segment
of'the dislocation liﬁe. This dislocation line impinges normally oﬁ the
boundaryzbin this sense the mirror image boundary is equivalent to a free
surface. |

(2)v A circle is then rotated counter-clockwise about the obs;acle

until a second obstacle of the array is contacted. The arc of this



.: -8~

circle between the first and second obstacles defines the second segment
of the dislocation. The force (Bl) oa the first obstaéle is easily re-
lated algebraically to the distance between the centers of the circles
. defining the first and second dislocation segments. If gi is less thanv
ABc, obstacle 1 is a ﬁechanically stable bafrief to the dislocation. A
circle is then rotated counter-clockwise about obstacle (2) until it
contacts an'abstacle (3) of the array. The arc of this circle betﬁeen
'obstaclea (2) and (3) defines the third segment of the dislocation line,
and the distance of the center of this cirale from the center of the

circle-connecting obstacles (1) and (2) is used to compute the force

2

{ on obstacle (2).

B

The dislocation line is extended By successive circle rollings until

the opposite end of the array is reached or until a point (k) is reached

such that circle rolling about (k) does not find a point of the array
giving B:'E_Bc. In the latter casé the point (k) is erased from the
array (equlvalently, it is mechanically by-passed by the dislocation).
The code returns to point (k-1) and attempts to find a new extension of

the dislocation line by circle rolling about this point. When a line is

found such that the two sides of the array are connected via a configura-.

tion of obstacles (1) with S§<8c for all k on 1, this line ia recognized
tobbe the first stable configuration of the dislocation. The mirror

bohndary‘cendition on the right'hand side of the array ensures that the
dialocation impinges normally on the right hand boundary. )

(3) Given a stable line configuration the code may compute and

tabulate interesting properties of the configuration, such as the forces

3

“

Kl

v



A {BE }, the distribution of dislocation segment lengths, and the activation
parameter_Ai for a parti;ular value of the temperature paraﬁeter &; The
code then breaks this configuration by erasing a selected point (k)
(equivalently, letting the dislocation thermally activate bast obstacle
(k?i)),'énd finds the (i + l)EE-mechaﬁically stéble configuration by re-
peating the circle—rblling process, start&ng with'obstacle (k-1).

In practice, we select the activation point (k) in one of two ways.

To generéte a statisticall& chqsen‘glidé path, %, the code first computes

the activationvprobabilities P(k,i) from the B? and o, by equation (I.8),

then calls a random nnger to select the obstacle actually passed accord-

ihg td the P(k, i{). To generate the "minimum angle" pathlxO the code
constrains the activation event to the point (k, i) at which S? takes on(
its maximum value.Bi. The résidence time in configuratiop (1) is stoch;
astically independent of the activation site and may be computed accord-

ing to the equations given in Seétion I and discussed in reference 1.

%) Successive_stéble dislocation configurations are identified,
and the time of passage computed by repeating steps (1) -~ (3) above.

In the work reported here, glide was termiﬁated when any part of ;he
1-;1slocation touched the upper boundary of the glide plane. The expected
transit time, its scatter,.and the ergodic average of the glide~Velocity'

are then coﬁputed from the relations given in Seection I.

The code described above has two shortcomings which. should be noted,
though they do not.sensibly affect the results given in the following

4

sections. First, a gliding dislocation may fola around a group of

closely spaced obstacles and, by closing on itself, leave an isolated



dislocatioﬁ loop. On1y~cert$in of these ioops arevfound with a "circle-
.rolling"'algorithm. However, as Kocks(4) found, and our observa;ions
confirm, this looping.becomes important only when 1% and Bc are large.
Moreover, excepting the limit of 1% near 0.8 and Bc_near 1.0, the loops:
formed at stresses below the critical resolved shear stress Crt) are
mechanically weak relative to the stabletdisloéation configuratidns and
c§;lapse'thr0ugh thermal activation in times short compared to the ex-
pected transit time. Hence, they do not affect the average glide'velo-‘
city. Second, while the dislocation line is mechanically unstable if iﬁ
‘anywhere intersects itself, self—interseétions are found by the code only
when they occur at an obstacle point. However,bspecific observation of
the stable dislocation lines show that»intersections other than anob—
stacie»points are very rare unless T* and Bc are large, and almost in;
variably occur in weak configurations which contribute negligibly to the

glide velocity(s)'
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III. MECHANICAL PROPERTIES: - THE CRITICAL RESOLVED SHEAR STRESS

A central mechanical property of a glide plane éontaining a random
distribution’of pointlobstacles is the critical resolved shear stress
(t:) at which a dislocation can cross the glide plane without benefit of
thermal activation; Much of the friér work on glide through random
arrays 6f point obstéclés haévbeen_deﬁoted to the problem of finding
Cf:) as.a function of'the "obstacle strength" (Sc). This é;ior_wérk in-
3, 4 .

cludes both numerical simulation and analytic studies (6a8).

1. The critical reSoived‘shear stress :

@

The available data comes from numerical‘simulations by Kocks

@)

\

and by Foreman and Makin Kocks used a graphical technique to esti-

. mate Tg for "uncuttable" obstacles (Bé = 1.0) in an array of 550 point

(2)

obstacles. He found T*C v 0.8. Foréman and Makin used a coﬁputer
code similar to ﬁhat described in Section II to conduct a comprehensive
fséudy»Of t: over the full range of obstacle strengths (0§§ci}.0).fqr
arrays containing from lO3 to 104 pqints., Their data, which confirms
Kock's estimate in the limit BC = 1.0, is compéred Qithﬂresu;tgtpf the
present study in Figure 3. "

| ~ In the presen; work we adoéted a’vafiént of the précé@ure_of
Foremaﬁ and Makiﬁ(z) which.fits.more naturallyvin a study of Fhermally
activated glide. By fixing a stress (T%), arbitrarily set;iﬂg Bc,at i.O,
lettiﬁg thé dislocation move through the array along the minimun angle
path‘Xo,'ana measuring the maximum forcé (Bi) fbr each<oﬁ§tacle configu-
gation encountered, we may determinelthe maximum force (51)'which.the

‘ . ‘ ’ L
dislocation exerts on the most stable obstacle configuration opposing

glide at stress T*. This value (Bl) is the minimum value the obstacle
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strength-(sc) may have‘if the obstacie érray-is to be mechanically stable
with respect to glide. Hence if Sc ='31, Tz = 1%, Since it may be easilf'
shown that Bl is a monotonically increasing‘fﬁnctioﬁ of t* in a given
arréy,'a Qetermination'of Bl as a function of t* is equivalént té a
mgésure of Tt as a functi;n of Bc. | | |

The strength 8, is plotted as a function of the applied stregs T*
“dn figure.3. The bars indicate the r;nge df'valueé obtained in.tests
of several arrays. At the higher stresses notlall arfays con;éin non-
transparent configurations. Six of 20 arrays tested at t* = 0.75 were
transparénf; 92 of 100 arrays tested at t* = 0,85 weré transparent.
The solid line in the figure is a schematic representation of the data
obtaiﬁed by Foreman and.Makin(3). fﬁe-dashed line is a plot of the

n{9)

"Friedel\relation

sé = (r*c)2/3 ‘ ' (II1.1)

)

To indicate the nature of the scatter ih déta obtained at given stress,
ﬁhe inSert'iﬁ the figqre shqws normalized histbgfams of the Bl yalues
foﬁnd in tesfs of tﬁe same 20 afrays at three stresses, T* =.0,1, -«
0.3, and 0.5. | | |

The results obtaiﬁed generaily confirm those of Foremap and Makin.
At low stresses the Friedel.relation, equation GIII.i) is é good approxi-
mation. The limiting stress at which one half the arra&sfbegdme'trans—
parent 1is near 0.8. |

Our results also show anlgppreciable scatter in the strengths of
afrays‘containing approximately 103 points.{ This scatter should decrease

as the number of points in the array is increased, but may, nonetheless,




-13-

have siénificant mechenical coneequences.' Consider, for‘example,‘an
idealized crystal made up of parallel glide planes each of whichﬂeontains
approximately 103 ebstacles strength BC‘= 1.0. Let the crystal contain
sources of ndn—interacting dislocations on each glide plane. Near zero

. temperature the average gllde plane will y1e1d at a value of T* near 0. 8;
however the crystal may undergo substantial plastlc deformation through

;glide on well-defined sllp‘planes at T*=0.75,

2. Characteristics of the strength—determiﬁing configurations.

Ae has been pointed out, the strength—determining obstacle
configuration in a giveﬁ array at given.stress is that configuration
along the glide path of’the dislocation for which the ﬁaximum force
Aexerfed by the dislocaﬁion (Bi) takes en‘it minimgm'value (Bl)'. These
strength—determininé EOnfigurations are of central iméortance-to disloca-
tion glide since they net only determine,T: but, as we shall show in the
foliowing sections, also have a dominant influence on the velocity of
thermally activated glide over a wide rangelof conditionsr

In the current literature the strength-determining configu-
rations aré often discussed usingAthe simple model proposed by Friedel.(é)
Friedel aseumed that when T* is small the ebstacle'configurations encount-
ered will abproximate straiéht iinesbof equispeced points. Using the con-
”ditien,that the average dimensionless‘erea swept per point eet by ‘the

dislocetion be one, he found equation III.3 for the force exerted by the-

dislocation on each obstacle and the additional relatiom,

/1) (t*) 1/3 o - (In.2)
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giving the separation between obstacles along the dislocafion line, Wﬁile
this model was proposed to treat thermally activated glide at high tempera-

turé, its adaptation by Fleisher and Hibbard(s)‘and the subsequent demonstra-

3)

tion by.Foreman aﬁd Makin that eduation TII.1 is a good approximation

over a wide range of T* values led to its use in discussing the strengtﬁ
3) ’

- determining confiéurations. Thus Foreman and Makin used the accurécy ~

of equatioﬁ I1X.1 at small t* to iﬁfer the validity of both fhe Friedei'

pic£uré of.thé dislocation and_fhe relation (III.2) for the mean obstacle
spacing (I*) in the strength—determininglconfiguration. Their assumptions
have béén followed in more recent‘work.v

More detailed analyses of the obstacle configurations opposing glide
have\beeﬁ published'by'Kocks(G) and by Labuséh(loZ' However, since ﬁdth
. considered the obstacle,configurétion along a randgmly placed dislocation
their results are not directly applicable to the.strength-degermining
configuraﬁions.

Given éhis baékground we conduéted a‘numerical analysis bf the
characteristics of>strong Obsfacle configurations, including their over-
all éhapes, the distribution of forces'(B:), and tﬁe-mean and distribuf
tion of the diétance ﬁetween obséacles (1*%).

The overall shapes of the strong configurations are illustra;ed in-
'Vthe example of figuFe'4-which shows the strongest configurations found
iin glide through a typical 999 point array at three.stressés: ™ = 0.1,
0.3, and 0.5. ihe three configurations are essentially independent of one

- another. Their shapes change roughly as expected;. the strength~determ-

ining configuration becomes more irregular as the dimensionless 'stress
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‘is raised. However, at t* = 0.1, which is well within fhe.range.in which
equation III.1 yields a gqod approximation, the dislocation line remains
irregular; The results shown in figure 4 are typical of those obtained
in tests using a number of arrays.

To- study the distribution of forces along strong configurations, we
compiled and compared the‘{Bi} for the strongést configurations in
several arrays at give; values of t*., The comparision showed that if
histograms'of the B-values were made using the vafiablé tB/Bi) the hiéto—
grams were similar both for the strongest configurations in différent
arrays and for the strongest configurations at diffefent-sfresses. To
find the general form of these his;ograms we used the folloﬁing procedure.
For given T* we chbse Bm sﬁ;h,that yirtualiy allv999 point arrays would
contain configurations having Bi j_Bm, but also such that Sm - Sl would
.bg Smali. We then found one configuration with Bi&Bm in each of a number
of arrays at‘giveh T*, compiled the'{BE} for each of these configurations,
and used this compilation to establish the normalized density n(B/Bm).

The results are plotted in ‘figure 5, which shows the normalized den-
sity n(B/Bm) at three stresses, T% = 0.1‘(100 arrays, Bm = 0.2339), t* =
0.3 (100 arrays, B = 0.5080), and T# = 0.5 (20 arrays, B = 0.7109).
»The normalized density functions at the three stresses are'n;arly coin-
ic?@ent. the slight drop in n(B/Bm) near 1.0 is spurious; the configura—
tions used in this coﬁpilation have a distribution of strengths B{yﬁm.
Direct comparision with the histograms of (B/Bm) for the,stfength-deter-
mining configurations in individual arrays shows general agreement. The
‘scatter between single-configuration histograms is, however, large, as is

expected given the small number of obstacles on a. typical strength—detef—
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mining configuration in a 999-point array (N~21 at t* = 0.1, 34 at 1* =
0.3, 52 at t* = 0.5). |

. Two poings of theoretical significance méy be drawn from figure 5.
First,'the similarity of the density functions ﬁ(B/Bm) suggests the ex-
istencé~of a stress-independent -density function which governs the dis-
tribution of the forces (8?) on strong confiéurations. This limiting
density function need not necessarily be of the form ﬁ(B/Bm). If the
~data in figure 5 are replotted in terms of the angles wi as n(¢/¢m), the
agreement is essentially as godd over the range of stresses tested.
Second, although equation (III.1l) is well obeyed when T* is small, there

is no apparent tendency for n(B/Bm) to approach the limiting distribution

of thevFriedel model;
n(8/8 ) = a{s/sm - 69 /Bmi (111.3)

where 8 is the Dirac 5-functionr

To examine the mean and distribution of 1* we formed histograms of
the 1* values along individual strength-determining configurations and
f also found norﬁalized density functions ﬁy compiling the 1* values along
the configurations used to obtain figure 5. The resulting density func-
tions cann§t easily be set in stress-independent form. Their mean values,
I*, are plotted in figure 6 against the predictions of the Ffiedel_rela—
fién II1.2. For completeness we have included the. 1* estimates of
Labusch(lO)and‘Kocks(ﬁy; the Labusch esfimate is virtually identical to
tha£ of Friedelfg)The points on the "experimental" curve in figure 6 are

.the 1* values determined from the normalized density functions. The bars

glve the range of 1* for the strongest configurations in twenty arrays.
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As is apparent from figure 6, the Friedel equation (III.2) seriously
overestimates 1* over the range of stresses studied. The discrepancy
increases ‘as 1* becomes small, a trend opposite to that wﬁich would be
observed if the validity of equation III.1 implied the validity of the

Friedel model of the disl&cation line.
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IV. OBSTACLE CONFIGURATIONS ENCOUNTERED

ALONG THE GLIDE PATH

As discuésed in referénce (1) the éath.followed by a dislocation in
glide at finite temperature is statisticallf determined. TheAglide‘path
is well defined only in limiting cases, three of which were identified.
First, when,the temperature is sufficiently high the parameter a is so
small that all activation events are almost equally likely. The succes-
sive configurétions eﬁcountered by the dislocation will then be random
in the sense that they are déterﬁined_from the initial configuration
through a raﬁdom'seqﬁence of activatioﬁ.events. Second, when the temper-
ature is SufficientlyAlow o is so large that (in a finite array) activa-
tion is almost certain to occur at the point along the configuration
where the applied force Bi has its maximum.value Bi (of the angle w?lhas
its minimuﬁ value wi). The dislocation will then follow the minimug
angle path, Xo* Third, when the stress 1* is very near T: the stable
obstaclé configurations.are spatially separated from one another in the
sense thatvthey have no obstacle points in common. The path followed by
the dislocation is then independent of thé statistics of thermal activa-
tion. iThe configufations encoﬁntered-necessarily.lie'along the minimum
angle path_(xo). |

The work répofted here focused on‘glide at moderate to large values
of the dimensionless reciprocal tempefature, d. ?he glide pafhs are then
cioéely{related to the "minimﬁmhahgle" ﬁath, Xo* |

1. Characteristics of the path Xo;

Th:ee characteristics of the path.x° were studied. (1) the distri-

bution of mechanical strengths (si) of the obstacle configurations en-
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countered along Xo as a function of the stress f*;-(Z). the distribution
of forces (B?) along configufatiﬁns.in X, as a functioﬁ of t* and Bi;

(3) the spatial distribution of the strong cénfigurations (Bi near Bl)
in Xy The distriﬁution of the Bi determines the fraction of the non-
transparent configurations which are mechanically stable at a given ob-

stacle strength (Bé) and determines the velogity of glide at given a in.

' . ’ . . . . . . k .
the minimum angle approximation. The distribution of the Bi determines

the true values of the activation parameter Ai at>given o, The spatial

distribution of the strong configurations determines the value of the

obstacle strength g at which the high stress limit is reached in an
: c : .

array at given T*., The spatial distribution of strong configurations

‘influences both the "jerkiness" of dislocation glide at low temperature

aﬁd the tendency of the dislocation to adhere to the path_xo during-glide
at finite temperature.

The.distribution of the Bi along X, was studied as a function of f* b& .
compiling fhe streﬁgths of ali lines encountered along the minimum angle
path in twenty arrays each containing 999 points. Typical results are
shown in figure 7, where we have plotted the density (per array) of con-
figurations of strength B; encéuntered along X, at stress‘T* = 0.1, 0.3,
and 0.5. The area under these curves gives the total number of non-
transparent'configurations (xﬁﬁer‘array) aléng X at given,étress, and -
1s r = 890 at * = 0.1, r = 750 at <* = 0.3, and r = 470 at ¢* = 0.5,

Given an obstacle strength, Bes the expected number of mechanically

~stabie coﬁfigurations at t* is simply the area under the appropriate

curve over the range B j_Bc..
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The shape of the distfibution of.Bi along the minimum angle path in
a particular 999 point array at applied stress T* corresponds closely to
+ the shape of the composite distribution function. The principal variation
from one array to the next is in the distribution of strengths near Bl’

. and is associated with the variationvin Bl-values discussed in the pre-~
viéus section.

The Bi - distribution ié strongly influenced by the applied stress
(t*). As is apparent from figure 7,'increasing 1% increases the minimum,
Bl’ decreaées the number of non-transparent configurations encountered in.
glide through the array, and alters the shape of the distribution.

The distribution of forces,'{BE}, along é configuration in X is, to
a‘reasonable.approximation, detérmined by the strength,Bi. When Bi n Bl
the B? are distributed according to the functions described in the pre-
vious section. .Even when Bi is app?eciébly larger than Bl the distribu-
tion of the BE is still dominated by this: "strong-line" distributioﬁ.

This latter result fbllows from the way in which the péth.xo is generated.
;n each step along xo the dislocation activatesvpaSt the obstacle at

. 1 is applied, and hence alwayg eliminates the
from the set of applied forcesA{BE}. Excepting the first

which the maximum force, 8

\

maximum, Bi’

'few configurations encountered as the dislocation moves into the érray, |
the distribution.of the éi always approximates the strong-line distribu-
tion for 8 5_81, and will also include one or a few 8 >'81 scattered
“over the raﬁge 81<Q§Bt. This character of the distribution is illuétrated
in figure 8, thch,shows a normalized distribution obtained by compiling
all angles aiong the SOEL1 configuration encountered along the path.x° in

200 arrays'at t* = 0.1, As can be seen by comparing this figure with
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figure 6,>the strong line distribution is well obeyed for 820.22, which
is close to Bl for Fhis stréss. The.distribution.also includes. a scatter-
ing of larger Bf values, reflecting the distribution of‘the strengths,
813 of the lines used to compose this histogram. This and more: detailed
stﬁdiés of the‘character of individual configurations show that the distri-
bution of {Bg} along a line of given B, i; X, may be roughly approximated
by taking the strong—line distribution for 8 :-Bo’ and adding one point
at B”=“Bi.
The thi:d property of the path.xo studied in this investigation was
the spatial distribution of the strong. obstacle configurations.. The
principal dbéervation from this study is the tendency of the strong con-
figurations to buﬁch so thaf they share>many obstacle points in common.
Figﬁre 9 illustrates the five strongest configurations encountered in :
glide along Xo through a typical array at t* = 0,1. Four of these five
configurations'nearly superimpose. The superposition of the strong con-
figurations has the consequence that the "high stress" limit is Anly
reached when 1* is very close'to Tz; in thg arfayvshownvr* must be so
near_rz that pnly one configuration remains stable. This result is

typical of 999 point arrays at all stresses studied.

2. The glide path at finite temperature

.. As the temperature is raised from near zéroﬁthe parameter d decreases
and the path, y, followed in glide becomes a stochastic sequence different
from Xo* It is difficult to characterize these finite temperature paths,
However, one can make the general statement that a stochastic path x will

tend to contain fewer'strong configurations than the minimum angle path
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Xgs and hence will permit-somewhat faster dislocation glide, This con-~
clusion follows for two reasons. First, all spatially independéﬂt‘stréng
configurations are necessarily-confained in the sequence Xgo but do not
necessariiy appéar in a stochastically determined glide sequence. Second,
the strongest configuration in any Eluster of strong configurations is
neéessarily contained in Xo* Not only ma& this strongest configuration
be excluded from a'stochastically determined glide path, but if activa-
tion happené to occur at aﬁ obstacle common to several strong configura-

tions of the cluster, a sequence of strong configuraticns may be excluded.

Even in a 999 point array the actual glide path (x) begins to deviate -

noticeably from Xo at rather large values of the parameter o. The reason
is apparent from the distribution functions presented above. ‘The dis-
tribution of forces’{si} along a strong line is such that (Fig. 5) there
is a high density of 8 values near Bi. Hence the difference betweenvthe
largest and next-largest of the g? | tends to be small, The right
hand side of the -inequality (I.14) which determines the low temperature
limit is then large, and the minimum.angle approximation fails unless &
is cdrresﬁondingly iarge. For example, the Stréngest'configuration in
the array.shown ip figure 9 at t* = 0.1 has B, = 0.2154, Bi; = 0.2113, and
Ni = 21. The condition (I.14) then requires a>>750 for the low tempera-
ture limit in this configuration. The value of the rightbhan& side of
edﬁation (I.14) is, to a rough approximation, independent of streés;

a>>750 is a typical condition for the minimum angle approximation for a

stfdng line.
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V. THE GLIDE VELOCITY

The numericallstudies of glide velocity reported in this section
focus on three problems: (1) ,the statistics of glide at finite tempera-
ture and the accuracy of the "minimum angle" and ‘minimal sequence'" approx-
mations; (2)v the dependencé of glide velocity. on the parameters a, %,
and Bc (i.é., on temperature, stress, and‘obstacle strengtﬁ) given the
assumptions discussed in Section I (3) the superposition of independent
glide in distinct arrays and implications for the deformation of model
crysﬁals. |

1. Statistics of glide

The results of a typical simulation at finite temperaturelare shown
in figure 10, wﬁere we have plotted the dimensionless velocity v* (speci-
fically, its.negative logarithm) against the thermal parameter d for a -
par;icular 999 point array of obstacles with strength sc = 0.63. Data
.aré shown for two stresses: r* = 0.1, which is approximately 0.2 of the
critical resolved shear stfess at this obstacle strength, and t* = 0.4,
which is approximately 0.8 of T:. The stochastic velocity curves were
found by allowing six independeht’passages throﬁgh the array at each.con?
dition fo£ which a data point is shoﬁn} The mean tfansit time, <t*>, and -
its Variance, 02, were coﬁpgted from the results of the individual trials
according to equations (I.11) énd-(I.lZ). The expected vélues, <v*>,_of
thé dimgnéionless glide velocity were tﬁen obtained from gquation (1.13).
The results are shown as‘circles_in the figufe. The bars indicate the
variation of velocity as the transit time ranges over the interval <t*?g£

Joz. The numerical results found with t* = 0.4 are tabulated in Table 1.



iy

The results obtained from this unrestricted simulation are compared
to estimates‘derived from three approkimations; The bases of these
- approximations are discussed in Section T. Thé.first i; the minfmum
angle approximétipn, in which we assume that the dislocation follows the

path X and passes each configuration encountered at the point at which

_ the angle ¢, is minimum, giving B its maximum value B;- In this case,

r
r, A | .
- <tk> = I, exp {a(Bc—Bi)} . (I11.1)
and ' r
. 0 o .
o2 - iElexp {Za(Bc—Bi)} (I11.2)

where r, is the number of stable configurations along the glide path xo;
The second estimate is obtained from the minimum angle approximation
under the additional constraint that only the strongest configuration is
considered; <t*> is.set equal to the expected time to activate;past the
strongest configuration encountered (where'Bi takes its minimum yalue Bl)'
at its minimum angle point. In this case <t%> is given by the Arrenhius
equation |

<t#> = exp {a (8 ~8,)) | (111.3)

and

g2 = <pa>? o (QIL.b)

--. The third estimate employs the minimal sequence approximation, in
which we assume that the dislocation follows the glide path.xo, but passes

~each configuration at a stochastically chosen point. In this case
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cth o= TG (urr.5)
and
r
(o]
0" = 1 a7 o a1z.6)

where Ai is the activatién éarameter for the i£E4configuration and is
given by equation (I.6).

As is apparen£ from figure 10 and Table I &1l three approaches-give
a generally reasonable estimate of the veiocity of glide through fhis
- array when a is gréater than 100, As\is expected from the underlying
assumptions, the full minimum angle approximation underestimates <v*>
and slightly exaggerates thebupward concavity in the curves of [—1n<v*§l
§s. a. An Arrenhius equation based on activation at the minimum angle
in the strongest configuration encoﬁntered overeétimates <v*> and misses
the slight upward concavity of the curvés. The minimal sequence approx-
imation yields a particularly good fit over the fange.of a studied,

The success of these approximations argués for their utility in
estiﬁating the glide velocity, but should not be taken to infer the
accuracy of the assumptions on:which they afe based. For example, a de-
tailed analysis of the numerical simulatioﬁ at t* = 0,4 showed that the
path Xo contained 30 stable configurations. These o;érlapped’significantly;
in faét, theifour most stable configurations weré almost coincident.

While the dislocation tended to follow the path.x° during glide there were
significant déviations. In particular, the strongest configuratioﬁ lay
on the actual glide path in only a minofity of the trials 2 of 6 at d =

. 400 .and '« = 300, 3 of 6 at o = 200). Both the overlap of strong configu-
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rations and the deviaFion from xé violate the assumptions on which the
minimal sequence appréximation is based. Its success should rather be
taken as evidence that the ergodic average of the glide paths actually
followed by the dislocation is sufficiently like the path.xo to be repée-
sented by it. This point is documented in figure 11, in which we compare
the cumulative distribution of tﬁé activation parameter A along the path
' X, at @ = 306.to the corresponding distribution for the weighted average
of the statistically-chosen paths taken in six independént trials at the
same value.of o. The merit of X, as a representative path is also largely
responsible for the reasonable accuracy of the minimal angle approxima-
tions over this range d.
The results presented here are fairly typicél of those ébtained
from simulation of glide in a number of arrays over the range of 1%
studied, 0.05 to.0.6. The minimal sequence approkimation provides a
good estimate of <v*> when o is greater than about 50. The miminum angle
v approximation yields a reasonable, fhough.less accurate, appfokimation
when o is greater than about 100, However, the good fit obtained in the
Present case ‘(T* = 0.4) with an Arrenhius equation based on activation
at the minimum angle in ;hé sfrongest configurationvis somewhat atypical,
and must be attributed tovthe mutual cancellation of sigﬁificant errors.
__This Arrenhius equation is always useful, but is geﬁerally~iess precise

than shown here when d<400. A

2. The influence of temperature, stress and obstacle strength
Given the accuracy of the minimal sequence approximation, illustrated

in the previous section; we use it as the basis of a discussion of the
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,dependehce of the glide velocity <v*> on the parameters a, - T*, and Bc,

or equivalently, on the temperature, stress and obstacle strength. From

equations (1.18) and (I.6) the expected value of the transit time <t*>
alond the path Xo’ which is the estimated in the minimal sequence approx-

imation,_may be written

<tEx> = l 1 + (Q—Tl) + R .ggxpfa(Bc—Bl)] ‘ v.1)

¢ . . .
where the strongest obstacle configuration along X, is labelled 1 = 1.

'The .symbols Q, ,, and R denote the series:

-~

r

o .

Q = ;I, exp [-6(B,~8,)] : @)

- N, | 1
i k :

T, =1 ,"{ L+ Zy exp [-(8;-6)] } v.3)
and
. \ -

R= I, T; exp [-a(8;-6)] o v.4)

i
where T, is the number of stable configurations along the path.xo, Bi is
the largest value of 8 in the iEE-configuration, and Ni is the number of

obstacles.invthe iEE-coﬁfiguration. The series Q,\Ti, and R all decrease

as @ increases. <t#> has the aéymptotic form

Cctk> = {1 + (Q—.Tl) } exp [“(Be'si)] : | (v.5)
where . , | N o .  )
i Kk . ’ ‘
Tl = kéz VexP [—a (81'81)] v - (V'6)

and Q is given by équation (V.2). Hence the glide velocity sv*> has the

asymptotic_form



<vE> = n]'/2 [1-(Q—T1)] exp [—G(BC-BI)] w.7)

The series Q is the lead correction term giving the decrement in <y#>

due te cthe fact that the dislocation must activate past stable configura=~ :

tions in addition to the strongest\along xo.' The series T1 is the lead

correction term giving the incremeht_to €v*> from the possibility of
thermal aétivation at a point other than the weakest in a étable configu-~

ration. The parameter T. specifically measures this effect for the

1

‘strongest configuration (i=1). Equation V.7 differs: from that obtained

using the minimum angle approximation through the inclusion of'Tl.

Equation V.7 can be developed quantitatively using results given in
the preceeding sections. The strength Bl can be estimated from the
- stress—T*—according—to the relation illuStratéd in figure (3), and given

a and Bl the series T, and Q may be approximated from the histograms

1
illustrated in figures (5) and (7).  We shall present this quantitative

development iﬁ a future publication;"a qualitativé discussion fulfills
the ?urpoée of.the present paper.

(a) The effect of feﬁperature

It follows from equation V.7 that when o is arbitratilyllarge <y#*>

if givén by the Arrenhius-equation

{

x> = 0% exp [-a(8,-8;)] - v.8)

-

- As a degrééses (temperature increases) the parameters Q and'T1 become
'significant, and <v*> deviates from equation (V.8). The direction of the

deviation is determined by the relative magnitudes of Q and T - For the

lo

numerical studies we have conducted, which treat‘999 point arrays and
’ . P -

3 .
e e e e
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cover roughly the range agSO, 0;05:;* <0.6, and Bc such that T#< O.ST*C,
the series Q tends to dominate and <y*> deviates from thelArrenhius
equation to the negative sidé by an amount_which increases as o decreases,
This behavior is illustrated in figure (10). It should, however, be
épparent that as t#* +T*c an opposite trend will be observed: Tl will.
dominate and <v*> will deviate in the positive sense from the Arrenhius
equation V.8, This latter behavior is obvious in>the limit, since wheﬁ
* is sufficienlj close to Tz-the array contains only onelstablevline'
and'Q is identically zero.

As we have emphasized elsewhere(ll)

the temperature affects the
character of glide as well as its velocity. As the temperature is de-
creased (at fixed t* and Bc)’the dislocatiqn spends an increasing fraction
of its total transit time in the few strongest configurations, with the
result that glide is increasingly "jerky". This behavior is again ob-
vidus in the iimits, since as o> the mean residence time in the stron-
gest cgnfigﬁration becomes arbitfarily larger than the mean residence
time in aﬁy other cohfigurétion, while as a+>o0 the mean. residence times
ih‘all configurations are comparable.

(b) The effect of étress'

The effect of'the appiied stress, 1%, may also be discﬁssed in tefms
of its influence on equation V.7. Its dominant influence is”through.the
. strength,.Bl, which varies according to the relaéion Bl(r*) plottea in
figure (3)-and discussed in thg gccompanying text. As t* increases, Bl
increases, which in turn causes an exponential increase in the glide

-wvelocity <v*>, The applied stress, t*, also influences the pre-exponential

term in equation V.7; though in a less striking way. The value of Q tends



to decrease as T* increases, while the value of T

1 remains roughly the

same. Hence the increase in <v*> with T# tendsvto be greater thén one
would prediét on the basis of the Arrenhius equation, V.8. Moreover the
deviation of equation V.7 from a simple Arrenhius form becomes less pro-
nounced as T* increases, and may change in sign. The former effect is
apparent‘iﬁ the velocity curves shown in %igure (10); the data‘ét % = 0.4
are fit more closely by equation'V.B than are those at t* = 0.1.

. The decrease in Q with increasing T#* has two SOurces; First,as t*
increases the histogram of Bl values along X, (figure (7)) flattens so
tﬁat there tend to be fewer configurations having Bi near Bl' The seriés
determining Q then has fewer terms of significant_magnitude,‘and its sum
decreases. Second, as T* inéreases the histogram is shifted along the
B-axis, so that there are fewer stable configurations alogg Xo.and the
total numBer of terms in the series determining Q decreases. However,
Vhen o is reasonably large this latter effect is important only if T* is
near Tg;’otherwise the terms deleted from the series have negligible
magnitude.

(10)

As we have emphasized elsewhere , an. increase in t* tends to cause

the glide to become more "jerky". Excepting the cast r*zr*c this phenome- "

non is due to the flattening of the Bi histogram with,incfeasing ¥
l(figure (7)). The applied stress is, however, less'important than the
temperature in determining the "jerkiness" of dislocation glide.

'(c) The effect of obstacle strength

The obstacle strength (Bc)jappears explicitly in the exponential

in equation V.7. A change in Bc at fixed 1* will cause the wvelocity
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<v*, to undergo an exbonentiél change in the opposite d;rection. In
general the pre-exponential in equation V.7 is unaffected by a change in

Bc. The series T, is independent of BE' The value of Q will be affected

1
only if Bc is so close to Bl (T#&T*c) that a change in obstacle strength
causes terms of significant magnitude to be added to or deleted from the
series determining Q. |
_3. Deformation of én idealized crystal

In refe;énce (1) we discuésed how the results of this investigétion
can be used to model steady-state deformation of an idealized crystal
made up of parallel glide planes. Thelsteady-statg strain rate of Such‘a
crystal can be computed if characteristics of the mobile dislocation
density are known, and if the dislocations are assumed independent of one
another. Two limiting distributions of mobile dislocations were identified.
In tﬁe first_we assumed a constant density of non-interacting, ﬁobile

dislocations ergodically distributed ﬁhrough the whole crystal. In this

case the Ave:age glide velocity (v*) is given by

1/2 s
: ‘-’* = n /t (V-9)
where
tx =1 g <tk | (V.10)
S 1=1

is the average of the expected transit times in a crystal cdﬁtaining S
glidé planes. As a second limiting case, we assumed a distribution of
 mobi1e, non-interacting dislocations.which is uniform in the sense that
theltime averégé of the density of dislocations on each:glide plane 1is

the same. In this case the .average glide velocity 63*) is the simple
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average of the expected glidé!velocity on the planes composing the cry-
‘stals |
vk = % 121 <v*>1=§1/?1§1 <t*>’1'l (v.11)
It shoﬁld be apparent from equations (V.§ - V.li) that if <v#*> varies
from plane to plane these two dislocations distributions will yiéld dif-
ferent values for the overall average glide velocity. The velocity ;*
is principally inﬁluenced by glide on those planes on which the transit
time <t*> is largest, or those on which glide is most difficult. The
velocity_%* is principally influenced by glide on those planes on which
the expected velocity <v*> is largest, or those on which glide is easiest.
Moreover, if ;v*> varies—frbﬁ plane to plane the two distributions will
lead to qualitatively different types of crystal deformation., With an
' ergodic distribution of mobile dislocations all glides planes will be
active and the overall_deformation of the crystal will be eveﬁly distri-
buted émong,them. With a uniform distributionvof mobile dislocations the
deformation will be concentratéd on a few well-defined planes, those on
which glide is éasiest.
. The points made aboveée may be illustrated with a simple exampie. Let
- a hypothetical crystal contain four barallel glide planes, which we speci-
fy by randomly seiecting four arfa&s qf 999 points, and let the obstacles
impeding glide through thesé pianes have_strengtﬁ éc = 0.63. The glide’
characteristics of these planes are shown in figure (12), where we have

plotted the glide vélocity <v*> as a function -of .the thermal parameter,

a, for each plane at each of the four stresses, t* = 0.1, 0.2, 0.3 and 0.4.
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As shown in the figure, at t* = 0.1 and 0.2 the velocity of glide is‘
essehtialli the same in the four planes, while at ™ = 0.3 and 1% = 0.4
the velocities scatter by an amount whicﬁ inéreaseé with a. The increas-
ing spread in <y*> as T* is_raised is in large part attributable to the
increasing spread in the By values as 1* is raised, a behavior illustra-
ted in the insert to figure (3).

At stresses of f* = 0.1 and 0.2 the velocity v* based on the ergodic
distribution (e.g. V.9)vis very nearly equél to the velocity %# based on
\thé uniform distribution., However, at t* = 0,3 and 0.4 vk is substan-
'tially less than v*. The two velocities are plptted in figure (12).

The character of the crystal éeformation obtained is illustrated in
figure (13) Assume the hypothetical crystaliéontains a uniform distri-
bution of dislocations, and, moreover, that the density of these disloca-
tions is indépendent of tempefature and stress. In this case the strain |
rate (¥) of fhe crystél is simply proportional to the average glide velo-
city (F*). Now imagine an experiment‘in which the crystal is strained by
a fixed ambﬁnt_(for example, T = 0.2) at a given strain rate (for example,
let 1n vk = -10). As illustrated in figure (12) both the stress required
to ;ccomplish this defofmatioﬁ and the final appearance of the crystal
depend markedly oﬁ the temperature at which the experiment is carried out.

" As the illustration shows, at relatively lpwﬁtemperaturé; d p 260, a
;éiatively high stress (T* = 0.4) is required, and virtually the entire
deformafionAoécurs thréugh slip on a single slip plane;  At higher tem;
peréture; a @‘68, a lower stress is sufficient (T* = 0.3), and:there is
sensibie though relatively ;nSignificant slip on plénes other than the

4" : -
dominant slip plane. At & = 35, T* = 0.2 and deformation is reasonably



homogeneops. At o A 22, t% = 0.1 and thg deformétion.is almost perfectly
homogeneous.,

Hence when the distribution of dislocations isvunifbrm the stress
required to carfy out the deformation drops as the temperature is raised,
and the mode of deformation gradually changes from slip on well-defined
slip planes to homoéeneous siip. Had we éssumed an ergodic distribution
of dislocations the required stress would héve been higher by an amount
which iﬁcreased with o; however, the mode of déformation would have been

homogeneousﬂslip at all values of a.
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TABLE 1.

The mean transit time and its variance for t* = 0.4,
Bo = 0.63, compared with results of three approximations.

)

Empirical Result: Six
Attempts at Each
Value of o

Minimum Angle Approximation

Minimum Angle Approximation:

" Arrenhius Equation

Minimal Sequence
Approximation

o
200 300 . 400
' A 6 : 7
<t%> 1.49 x 108 1.19 x 10ll 9.57 x 1015
02 1.21 x 10 9.67 x 10 4,54 x 10
. 4 6 8
<t*> 3.05 x 108 2.12 x 1012 1.64 x 1015
02 1.64 x 10 1.08 x 10 7.56 x 10
3. 5 7
<t*> 7.74 x 108 6.97 x 1011 6.27 x 1015
02 5.91 x 10 4,85 x 10 3.93 x 10
bl
4 6 8
<tk> 1.87 x 107 1.55 x 10ll 1.33 x 1015
c2 6.28 x 10 6.27 x 107 5.53 x 10
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FIGURE CAPTIONS

Detail of equilibrium in the igE'configuration.
The assﬁmed-step form of the &imenéionless dislocation-obstacle inter-
action, s(x/d); The obstacle strength_is gc. The shaded area is gi,
the dimensionless activation energy required when the dislocation

k .
exerts a force Bi on the obstacle,

- The dependence of the strength (Bi) of the most stable configuration

on the applied stress, 1*. The solid bars show the range of values
for four arrays. The dasﬁed bars show the range of values for twenty
arrays. The solid curve represents the data obtained by Foreman and
Makin(3). The dashed curve is a plot of the 'F¥iedel relation

(eq. III.1). The insert shows normalized histograms of the 81 values

.of 20 arrays at each of three stresses: 1% = 0.1, 0.3,.and 0.5.

The most stable configurations found in glide through a typical_§99

point array at three strééses: 1% = 0,1 (Bl = 0.22); t* = 0.3 (81 = Q.ﬁﬁ);
and t* = 0.5 (8, = 0.70).

Normalized histograms of the densiﬁy of forces (measured as the ratio
(B/Bm)) along stable configurations of strength Bm¢81 at each of three
stresses: T*=O.l(3m=0.2339); r*=0.3(gm=0.5080); and f*=0.5(3m=0.7109).
fhe method of constructing these histoéramé is described in the téxt.

The variation.of the mean obstacle spacing (I*) in the strength-

determining configurations with the applied stress (t*). ' The solid

circles give the mean value obtained using cdnfigurations from 100

randomly chosen arrays at t* = 0.1 and 0.3, and configurations from

20 random arrays at t* = 0.5. The solid Baré show the range of

I* for the strength-determining configurations in 20 arrays. The
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comparison curves plot the theoretical relations of Friedel(g)’

Labusch(lo), and Kocks (6).

Histograms showing the distribution of the strengths (Bi) of the con-
figurations encountered along the minimum angle path.(xo) at each of

three stresses, t* = 0.1, 0.3,'and 0.5. The histograms were obtained

by superimposing data from 20 random arrays. The area under the

curves . gives the mean number r of stable configurations on xo per

array, and is r = 890 at T* = 0.1, 750 at T* = 0.3, and 470 at T# = 0.5,

Histogram: showing the normalized density of forces (B) along the
SOEB-configuration encountered in glide at 1* = 0.1. The histogram-

was fOund by superimposing data obtained from 200 random arrays.

The five strongest configurations encountered in glide through a

s

 typica1férray at T* = 0.1, The strengths are: Bl = 0,2154,

= 0.2155, 83 = 0.2176 B8, = 0.2192, and 85 = 0,2203.

4
Results of a simulation of_thermally-activated'glidé, showing the

average glide velocity <v*> as a fgnction of the thermal parameter
(o) at tﬁo stresses: t* = 0,1 and T* = 0.4;:with obstacle strength

Bc'= 0.63. The circles show the average of six trials. The bars.

-

' - /2
show the range in -In<v*> as the transit time ranges over <t*> j:w4:: N

The comparison plots show estimates obtained from the minimum angle

approximation (dashed curve) and from an Arrenhius equation based on

time required to activate past the strongest obstacle configuration.

.The cumulative distribution N(A) of the activation parameter (A) at

T* = 0.4, B_ = 0.63, and a = 300. The dashed curve gives the distri-

;
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bution along the path.xo; the solid curve is the average of the dis-

tributions of the actual paths taken in six trials.

‘

Comparison of the Qelocity—temperature relations for four arrays of
999 obstaclés having Bc.= 0.63 at each of four stresses;' Also in-
cluded are the velocity-temperature curves for a crystal made up of
these four arrays under each of two aésumptions: an ergodic distri-
bution of dislocatioﬂs over the planes (~---) and a uniform distri-

bution of disloéatidns over the planes (--—-),

Illustration of the'deformation of a hypothetical crystal ﬁéde up éf
'the four glide plahes whose properties are shown in figure 12. This
figure shows the change in the appearance of the deformed crystal
with temperature, aSSuming that ;he crystal contains a uniform dis-
tribution of dislocations of fixed density, and is given a total

shear strain y = 0.2 at a fixed strain rate such that -ln 3* = 10,
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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