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Figure 1. Illustration of Abacus Gestures (Ehtesham-Ul-Haque & Billah, 2023). Left: The set of numbers assigned to the 
10 fingers in abacus gestures. On the non-dominant hand, each finger represents a value of 10, while the thumb represents 
a value of 50. On the dominant hand, each finger represents a value of 1, while the thumb represents a value of 5. Right: An 
example of an abacus gesture representing the number 26, formed by opening the index and middle fingers of the non-
dominant hand and the thumb and index finger of the dominant hand. 

 
Abstract 

In this paper, we developed three ACT-R cognitive models to 
simulate the learning process of abacus gestures. Abacus 
gestures are mid-air gestures, each representing a number 
between 0 and 99. Our models learn to predict the response 
time of making an abacus gesture. We found the accuracy of a 
model's predictions depends on the structure of its declarative 
memory. A model with 100 chunks cannot simulate human 
response, whereas models using fewer chunks can, as 
segmenting chunks increase both the frequency and recency of 
information retrieval. Furthermore, our findings suggest that 
the mind is more likely to represent abacus gestures by dividing 
attention between two hands rather than memorizing and 
outputting all gestures directly. These insights have important 
implications for future research in cognitive science and 
human-computer interaction, particularly in developing vision 
and motor modules for mental states in existing cognitive 
architectures and designing intuitive and efficient mid-air 
gesture interfaces.  

Keywords: Finger counting, abacus gesture, mid-air 
interaction, cognitive model, ACT-R, cognitive architectures.  

Introduction 
Abacus gestures are a large set of bare-hand gestures (Cho & 
So) that can be easily performed by users through opening 
and closing their 10 fingers (Ehtesham-Ul-Haque & Billah, 

2023). Each gesture in this set corresponds to a numeric value 
between 0 and 99, with each finger having a specific worth. 
On the dominant hand, when opened, the thumb is worth 5, 
and each of the other four fingers is worth 1 (Figure 1). On 
the non-dominant hand, when opened, the thumb is worth 50, 
and each of the other fingers is worth 10. A finger is worth 0 
when closed. Finger abacus has its root in East Asian culture 
and is used to perform basic arithmetic operations rapidly by 
counting fingers (Pai et al., 1981).  

In the field of Human-Computer Interaction (HCI), abacus 
gestures are broadly categorized as mid-air gestures that can 
facilitate mid-air interaction. Our prior work has shown that 
abacus gestures are not only easy to learn but also easily 
detectable by 2D commodity cameras, such as webcams, 
using readily available computer vision packages (Ehtesham-
Ul-Haque & Billah, 2023). As we transition from the post-PC 
and post-mobile era to virtual reality and spatial computing, 
abacus gestures have the potential to be utilized in a wide 
range of applications, such as target acquisition, 
alphanumeric symbol input, and command issuing. 

Although empirical evidence has shown that abacus 
gestures are easy to learn, it is currently unknown why and 
how individuals process them in their minds. This paper aims 
to fill this gap. Specifically, we aim to understand the 
following research questions:  
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(1) Can a cognitive model predict human mind behavior 
when using abacus gestures to represent the numbers 0-99?  

(2) How accurate are the predictions made by cognitive 
models?  

(3) What factors contribute to the process of learning 
abacus gestures? 

To address these questions, we first utilized human-subject 
data on the time taken to make abacus gestures from our prior 
work (Ehtesham-Ul-Haque & Billah, 2023) as ground truth. 
Next, we created three different cognitive models using 
Adaptive Control of Thought-Rational (ACT-R) (Anderson 
et al., 1997; Ritter et al., 2018, 2019) and compared their 
predicted response times for making each abacus gesture to 
those of the ground truth. Our findings strongly suggest that 
it is possible to create cognitive models that mimic how 
humans learn to make abacus gestures. Such models must 
consider the dominant and non-dominant hands separately 
and utilize a smaller number of chunks. Thus, we contribute 
to cognitive science by providing insights into the mental 
processes involved in learning and performing abacus 
gestures, which can inform the design of more intuitive and 
efficient mid-air interaction techniques in HCI. 

Cognitive Model & ACT-R 
Cognitive models are designed to predict individuals’ 
behavior and provide insights into how the mind works 
(Newell, 1990). However, these models are not complete, and 
the process of developing them is not well understood 
because it is challenging to comprehend how the mind 
processes or completes a task (Ritter et al., 2020). Moreover, 
defining the knowledge that a model needs to perform and 
predict is a complex undertaking. Although cognitive 
architectures are designed and developed to assist in this 
model development process, there is still a lack of 
information and tools (Gonzalez et al., 2003; Laird, 2019; 
Ritter et al., 2019). 

ACT-R (Anderson, 1990; Anderson & Lebiere, 1998), a 
well-known cognitive architecture, is a set of programmable 
information processing mechanisms. It encompasses 
cognition and interaction with the environment (Byrne, 2012; 
Newell, 1990; Ritter et al., 2019; Tehranchi & Ritter, 2017). 
As a theory of cognition used to build models, ACT-R can 
predict and explain human behavior. 

ACT-R distinguishes between two types of knowledge 
(Bothell, 2017): declarative and procedural. Declarative 
knowledge represents what we know, while procedural 
knowledge represents what we exhibit. The ACT-R 
architecture consists of a set of modules, such as goal 
module, declarative module, and procedural module, that 
communicate through an interface called a buffer. The goal 
module holds the information the model needs to perform its 
current task. The declarative module stores chunks found in 
declarative knowledge, while the procedural module holds 
rules found in procedural knowledge, which are called 
productions. 

Researchers have used ACT-R to evaluate different ranges 
of learning schedules and have demonstrated its capability to 

implement short and long decay (Tehranchi et al., 2021). 
Various studies have investigated the learning curve 
demonstrated by ACT-R (Rasmussen, 1987; VanLehn, 
1996). Kim, Ritter, and Koubek (Kim et al., 2013) discussed 
and implemented a learning theory in a complex 
implementation and recommended using optimized learning 
for short and long decays. This work investigates how 
individuals learn and activate corresponding declarative 
memory while making abacus gestures. 

Abacus Gesture Study  
In this section, we briefly describe the procedure for 
collecting human-subject data in our prior work (Ehtesham-
Ul-Haque & Billah, 2023), which we utilized to evaluate our 
cognitive models in the present study. The aim of the 
previous study was twofold: (1) to collect data on the time 
required to make different abacus gestures across multiple 
blocks; and (2) to evaluate an algorithm using an off-the-shelf 
computer vision library to detect abacus gestures from a 2D 
commodity camera. The study recruited 20 participants, 
including 19 right-handed individuals and 1 left-handed 
individual. The study was designed with three distinct phases.  

The first phase was designed for practice. The participants 
were instructed on the worth of each finger and how to make 
different numbers (integers from 0 to 99) by opening and 
closing their fingers. They were also informed that some 
numbers can be made in multiple ways. For example, to make 
26, one can open any two fingers (not the thumb) on their 
non-dominant hand and open the thumb and any one finger 
on the dominant hand. Next, they practiced making some 
abacus gestures for a few given numbers. Participants 
continued practicing until they became familiar with abacus 
gestures before moving forward to the next phase.  

The second phase involved participants making a series of 
abacus gestures, one at a time, each corresponding to a non-
zero random number (between 1 and 99) shown on the screen. 
Each task block contained 20 such gestures, and there was a 
total of 5 such blocks. The gesture representing the number 
zero (i.e., all fingers are closed) was a delimiter, reserved to 
mark the end of making a non-zero abacus gesture. As soon 
as the participants made a gesture and returned to the zero 
state, the study conductor pressed a button to show the next 
random number. Participants were allowed to take a rest 
between the blocks. In total, each participant completed 100 
abacus gestures (= 5 blocks × 20 gestures/block). Each 
session was audio-video recorded, and we manually 
annotated the video to measure the gesture-making time. 

In the third phase, similar to the second phase, participants 
were instructed to make a series of abacus gestures shown in 
a sentence containing 10 two-digit numbers in front of a 
commodity camera. Participants used the zero state to delimit 
between two gestures. This phase involved the computer 
vision module to accurately detect the abacus gestures. The 
response time was the duration between the computer 
generating a random number on the screen and detecting the 
participant's abacus gesture. 
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We used the observed human data generated in the second 
phase since our models aim to focus on human response 
times, excluding the processing time from the computer. 

Modeling 
We developed three cognitive models using ACT-R 7.26 
within Emacs 29.11, an extensible and customizable editor. 
ACT-R was written in the Lisp programming language, and 
Emacs served as a compiling platform. The model output 
included a trace of modules, buffers, and fired productions, 
along with the predicted response time. The response time 
was the primary output for this study since we compared the 
average response times obtained from the three cognitive 
models. For the learning phase, we assume that the 
participants have already acquired the necessary knowledge 
and their declarative knowledge with different structures 
have been defined. 

Model 1  
In this model, we hypothesized that participants can express 
abacus gestures by quickly opening the required fingers all at 
once. We also hypothesized that participants could express 
each of the 100 abacus gestures more rapidly as they 
proceeded through task blocks. 

A single chunk type with 10 slots was defined, each 
representing one of the 10 fingers. In the declarative module, 
we stored 100 chunks (integers from 0 to 99). In the 
production rules, the model received a random number from 
0 to 99, searched for the corresponding chunk, and repeated 
these steps 100 times. Figure 2 shows how the number 26 was 
defined in Model 1. 

 

 
 

Figure 2: The abacus gesture for the number 26 in Model 
1's chunk. To represent 26, the index and middle fingers 
of the non-dominant hand are raised (as indicated by the 
Boolean flag 1), while the index finger and thumb of the 
dominant hand are raised (also indicated by the Boolean 
flag 1). All other fingers are closed, as indicated by the 
Boolean flag 0. 
 
Recall that for some numbers, there exist multiple possible 

finger combinations. However, Model 1 only considered one 

 
1  The code for the models can be found at 

https://github.com/HCAI-Lab/Abacus-Gestures-Code-for-CogSci-
2024. 

possible combination and defined only one chunk for each 
number. After defining declarative knowledge, the cognitive 
model defines production rules to simulate the cognitive 
process in the human mind for making abacus gestures. These 
production rules constitute the procedural knowledge of the 
model. 

A function generates a random number, and the model 
places it in the retrieval buffer. The model reads the number 
in the production rule called "start". Then, the model retrieves  
the representation of the number by using the retrieval buffer 
to recall the specific chunk matching the information 
previously saved by the model. Model 1 recalls the chunk, 
such as the one shown in Figure 3, after the production rule 
"start" is fired. The selected chunk with the values in its slots 
is stored in the production rule variables. The last step is to 
output the representation of the number using the Boolean 
flags 0 and 1, as shown in Figures 3 and 4. The second 
production rule, called "search", completes these steps. 
 

 

 
Figure 3: Sample ACT-R model trace of thoughts for 
outputting the number 26. The first column in the initial 
four rows shows the running time in seconds. 

 
The workflow of Model 1 is shown in the left side of Figure 

4. It demonstrates a flowchart of the steps needed in each 
block containing 20 gestures for Model 1. 

Model 2 
Model 2 was developed based on feedback regarding user 
experience in our prior study, where participants mentioned 
that focusing on both hands simultaneously could be 
challenging at times (Ehtesham-Ul-Haque & Billah, 2023). 
For instance, the fifth participant said, "When both of my 
hands are involved, this attention gets divided, and I need to 
make sure I am combining the correct fingers from both 
hands." She also stated, "Although I need to focus on both 
hands when making numbers like 87, I can take my time and 
divide the attention. For example, I can focus on my left hand 
first to make an 80, and the system also shows 80. Then it 
waits until I focus on my right hand to make a 7". This 
feedback suggests that participants are more likely to focus 
on their non-dominant hand to form tens and then focus on 
the dominant hand to form the unit digits.  
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The defined chunks in Model 2 were similar to those in 
Model 1, but the difference was that it had 19 chunks to 
represent numbers from 0 to 9 and 10, 20, …, 90. There were 
three production rules in Model 2. The first production rule 
generated the number and read the numbers in tens and units 
separately. Then, Model 2 retrieved and reported the numbers 
in two different production rules. The second production rule 
outputted the representation of the non-dominant hand, while 
the third production rule outputted the representation of the 
dominant hand. The workflow of Model 2 is also shown in 
the right side of Figure 4. 

 

 

 
Figure 4: Work Flowchart of the Model 1 and Model 2. 
 

Model 3 
Model 3 was developed with only 14 chunks. It categorized 
the fingers into four chunk types based on non-dominant vs. 
dominant hands and thumb vs. non-thumb fingers. We used 
the Boolean flag 0 or 1 for the thumb to represent its closed 
or open state, respectively. For the other non-thumb fingers, 
the numbers 0, 1, 2, 3, and 4 were used, representing the total 
number of open fingers. This approach decreased the number 
of chunks required. There were five production rules: the first 
production rule started the process, while the other four 
production rules generated the numbers for the non-dominant 
thumb, non-dominant other fingers, dominant thumb, and 
dominant other fingers and outputted them. 

For example, to represent the number 26, the following 
steps are taken: (i) The number of tens is less than 50, so the 
thumb of the non-dominant hand is closed. (ii) The number 
of tens is 20, so two fingers of the non-dominant hand 
(excluding the thumb) are open. (iii) For the unit digit, 6 is 
greater than 5, so the thumb of the dominant hand is open. 
(iv) The remaining value is 6-5=1, so one finger of the 
dominant hand (excluding the thumb) is open. The workflow 
of Model 3 is shown in Figure 5. 

 

 

 
Figure 5: Work Flowchart of the Model 3. 
 

Model Output & Parameters 
We now describe the model parameters we scaled for the 
three cognitive models. The response time, the primary 
output for this work, consists mainly of the sum of each 
chunk’s retrieval time – the time the declarative module takes 
to respond to each chunk (Bothell, 2017). In ACT-R, retrieval 
time includes various mathematical equations, displaying 
different outcomes based on their parameters. The retrieval 
time for a chunk 𝑖 is given by this equation: 
 

𝑇𝑖𝑚𝑒 (𝑠) = 𝐹𝑒ି(∗) 
 
which includes three parameters: activation value ( 𝐴 ), 
latency factor (𝐹, default = 1 second), and latency exponent 
(𝑓, default = 1 second). Activation value particularly controls 
how long it takes for the chunk to be retrieved.  The activation 
value is defined as  
 

𝐴 =  𝐵 + 𝜖 
 
indicating the sum of base-level activation (𝐵) and noise (𝜖). 
The base-level activation increases as the model uses specific 
chunks more recently and frequently. Base-level activation 
can be calculated differently based on the optimized learning 
(:ol) parameter. We adopted the optimized base-level 
activation to better predict the human mind. The optimized 
base-level activation of chunk i is calculated as 
 

𝐵 = ln(𝑛/(1 − 𝑑)) − 𝑑 ∗ ln(𝐿) 
 

where 𝑛 indicates the number of presentations of chunk i, 𝐿 
indicates the time since the chunk was created, and 𝑑 
indicates the decay parameter. Table 1 shows configurations 
for three cognitive models, which make them more consistent 
with human data. 
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Table 1: Configurations for three models (ol indicates 
whether optimized learning is enabled. 'T' means it is 
enabled. Other parameters are discussed in the Model 

Output & Parameters section.) 
 

 DEFAULT 
VALUE 

MODEL 
1 

MODEL  
2 

MODEL 
3 

𝒅 0 0.1 0.01 0.01 
𝒐𝒍 F T T T 
𝑭 1 1 1.22 0.66 
𝒇 1 1 0.16 0.16 
𝝐  0 0.5 0.5 0.5 

 

 Results 
The models’ responses and corresponding decelerative 
memory activation values are used to illustrate the models’ 
learning curve in our abacus gesture study.  

Comparison with Human Responses 
Performance metrics: We chose the Root Mean Squared 
Error (RMSE) to compute the average magnitude of errors 
between the models' predicted responses and human 
responses in different blocks. This metric makes it easier to 
compare the performance of our three proposed models; the 
lower the value, the better. Besides RMSE, we also report the 
correlation between the responses of a model and human 
responses (the higher the value, the better). 

Human responses: We utilized human responses for each 
block – 2.42, 2.14, 1.98, 1.87, and 1.84 seconds – as shown 
by the blue line in Figure 6. The human responses show a 
clear learning curve. On average, humans take 2.42 seconds 
to make an abacus gesture, which converges to 1.84 seconds 
over five blocks. 

Model 1 responses: Similar to the human study, this model 
outputted the abacus representation of 20 random numbers in 
each block. The average response times for these blocks are 
1.75, 1.88, 1.67, 1.77, and 1.81 seconds,  as shown by the red 
line in Figure 6. On average, the response time for one abacus 
gesture is 1.78 seconds. Compared to human responses, these 
numbers do not indicate any learning. Even though there is a 
decrease in response time for block 3, with a sign that the 
difference with human data is less than 0.01 for block 5, the 
RMSE between Model 1's response and the human responses 
is still noticeable, as shown in Table 2.  

This discrepancy strongly suggests that our hypothesis in 
Model 1, that participants might have remembered the 
knowledge required to make the corresponding abacus 
gesture for any random number, is not correct. It also 
suggests that (a) the usage of two hands simultaneously limits 
the learning behavior, and consideration of the dominant 
hand and order of using hands needs to be included; and (b) 
100 chunks need to be broken into meaningful gestures to 
indicate learning. 

Recall that in the human experiment, participants could 
make new abacus gestures by transferring knowledge from 
making previous gestures. For example, the numbers 86 and 

87 share the same gestures for the non-dominant hand, 
meaning that participants could have reduced the time to 
make 87 if they already knew how to make 86. This likely 
caused the differences in response time and learning curve. 

Model 2 and Model 3 responses: Model 2 and Model 3 
overcome the limitations of Model 1 by considering the 
dominant hand and non-dominant hand separately and 
utilizing a smaller number of chunks – 19 chunks for Model 
2 and 14 chunks for Model 3. As such, their learning process 
is closely correlated with human data (Figure 6). Table 2 
shows both Model 2 and Model 3 have smaller RMSEs and 
higher correlations, compared to Model 1. 

 

 
 
Figure 6: Average response time for five blocks by 
humans and the three proposed models. 

 
Table 2: Comparing the fit of learning curves to human 

data for the Abacus Gestures. 
 

Model RMSE (Human 
vs. Model) 

Correlation  
(Human vs.  
Model) 

Model 1 0.352 - 0.053 
Model 2 0.036 0.995 
Model 3 0.056 0.992 

 
Activation value: The activation value is obtained from 1 

round consisting of 100 abacus gestures.  For every 20 abacus 
gestures, the average activation values are calculated. The 
activation values for model 1 do not show a trend, meaning 
that model 1 does not learn from the process and the retrieval 
time did not change.  Results show the improvement for 
models 2 and 3.  In Figure 7, the activation values of model 
2 and model 3 increase, suggesting that models are learning 
from the process. 
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Figure 7: Activation value for five blocks (20 abacus 
gestures per block, totaling 100 abacus gestures). 

 

Discussion and Future Work  
We developed three models to predict the response time for 
representing abacus gestures to answer our research 
questions. Can a cognitive model predict human mind 
behavior by using abacus gestures to represent the numbers 
0-99? The answer is yes -- all three models were able to 
complete the task and successfully represent abacus gestures. 
How accurate are the predictions made by cognitive models? 
While Model 1 does not perform very well, Model 2 and 
Model 3 demonstrate strong correlations with the human data 
(0.995 and 0.992, respectively), indicating human-like 
learning curves with increased activation values. What 
factors contribute to the process of learning abacus gestures? 
These models provide several insights, including a new type 
of input (i.e., mid-air gestures) in cognitive models, 
predicting response times for a repetitive task, and 
developing the learning curves for the ACT-R procedure. 
These will inform researchers to understand the cognitive 
processes in the human mind and how the knowledge of the 
abacus gestures can be represented, as well as retrieved to 
perform basic arithmetic operations mentally. 

Limitations: One limitation of our current work is that it 
does not consider the time required for the physical 
movement of fingers while making abacus gestures. Our 
models assume that the time to generate a gesture is solely 
based on the cognitive processes involved in retrieving the 
correct representation from memory. However, in reality, 
there is an additional time component associated with the 
motor execution of the gesture, which can vary depending on 
factors such as the complexity of the gesture and the dexterity 
of the individual. Incorporating this motor execution time 
into the models would provide a more accurate representation 
of the total time required to generate abacus gestures. 

Another limitation of this work is that it does not use the 
vision module. We plan to expand this work by adding a 
vision module and using interaction tools such as VisiTor 

(Bagherzadeh & Tehranchi, 2022) to simulate vision and 
motor processes more accurately.  

Yet another limitation of our current models is the lack of 
error handling. In real-world scenarios, individuals may 
make errors while performing abacus gestures, such as 
incorrect finger positions or miscalculations. Our models do 
not account for these errors and their potential impact on 
learning and response times. We plan to incorporate error 
detection and correction mechanisms, as well as learning 
from errors (Bagherzadehkhorasani & Tehranchi, 2023; 
Lebiere, 1999) in order to provide a more realistic 
representation of the cognitive processes involved in abacus 
gesture learning.  

Conclusion  
This work enhances our understanding of how the human 

mind processes a comprehensive set of 100 numeric gestures 
that can be used in mid-air interaction. Our findings suggest 
that the human mind is more likely to represent these gestures 
by dividing attention between two hands rather than 
memorizing and outputting all gestures directly. 
Furthermore, we have demonstrated that using fewer chunks 
in cognitive models is closely correlated with human 
behavior and increased proficiency, as segmenting chunks 
can increase both the frequency and recency of information 
retrieval. These insights have important implications for 
future research in cognitive science and human-computer 
interaction. Adding a motor module represents an 
opportunity to expand our work and cognitive architectures. 
Furthermore, developing new heuristics that reduce the 
potential for overfitting of model parameters is another 
opportunity to expand our work.  
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