
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion
Code

Permalink
https://escholarship.org/uc/item/6mk0f0x8

Author
Grcar, Joseph F.

Publication Date
2007-08-29

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mk0f0x8
https://escholarship.org
http://www.cdlib.org/

Lawrence Berkeley National Laboratory report LBNL-63375

An Explicit Runge-Kutta Iteration for Diffusion

in the Low Mach Number Combustion Code

Joseph F. Grcar

August 2007

Abstract

This report describes the implementation of a Runge-Kutta iteration both for mixture-
averaged and for multicomponent diffusion with Dufour and Soret effects in the low
Mach number combustion code.

Contents

1 Introduction 3

2 Equations 3
2.1 Conservation Equations . 3
2.2 Flux Formulas . 3
2.3 Sources . 4

3 Algorithmic Changes 4
3.1 Overview . 4
3.2 Runge-Kutta Method . 5
3.3 Timestep Selection . 6
3.4 Formula for ∇ · v . 6

4 Software Changes 7
4.1 Activation Keywords . 7
4.2 Operator Procedures . 7
4.3 Boundary Conditions and the Operator Procedures 8
4.4 Complete Implementation 9

5 Tests 9
5.1 1D Problem . 9
5.2 2D Problem . 10

6 Timing 12
6.1 Data . 12
6.2 Performance Improvements 13

A Appendix. Notation 13

B Appendix. Convective Derivative 14

C Appendix. Temperature Equation 15

D Appendix. Alternate Enthalpy Equation 16

List of Figures

1 Species in a 1D hydrogen flame 10
2 Atomic hydrogen in a 2D hydrogen flame 11

List of Tables

1 Edge values for different boundary conditions 8
2 Flame speed in the 1D flame 10
3 Peak X(H) in the 2D flame 12
4 Time steps in the calculations 12

2

1 Introduction

This report describes the implementation of a Runge-Kutta iteration for both mixture-
averaged and multicomponent diffusion in the low Mach number combustion code, LMC.
The multicomponent model includes Dufour and Soret effects. Following a description of the
relevant transport equations, the algorithm for performing the diffusive step is explained,
the software modifications are outlined, and some tests are discussed.

This report assumes familiarity with the algorithm of Day and Bell [3] and with its
implementation in the LMC code. This implementation of a new diffusion algorithm and
new diffusion models is only for the 2D version and only for Cartesian coordinates. The
modifications to the LMC software are in the LMC/MultiCompDiff subdirectory.

2 Equations

2.1 Conservation Equations

Mass diffusion enters into the conservation equation for each species [2, p. 1917, eqn. 1]

ρ
DYk

Dt
=

∂ρYk

∂t
+∇ · ρYkv = −∇ · jk + ρ̇k (1)

and into the conservation equation for enthalpy [2, p. 1917, eqn. 2]

ρ
Dh

Dt
=

∂ρh

∂t
+∇ · ρhv = −∇ · jq . (2)

The right side of equation (2) omits pressure, radiative, and viscous terms. The notation is
defined in Appendix A.

2.2 Flux Formulas

The fluxes in the conservation equations depend on whether diffusion is treated by a sim-
plified mixture-averaged model or a full multicomponent model. The diffusive flux vectors
for the two models are

j(Mix)
k = −ρDk,mix∇Yk (3)

j(Multi)
k =

(∑
`

−ρYkDk,`∇X`

)
− ρYkθk

T
∇T . (4)

The mixture averaged formula is alternatively stated in terms of ∇Xk, see the discussion
by Bongers and de Goey in [2, p. 1921]. They also give the multicomponent formula [2, p.
1918, eqns. 4, 5 and intervening text]. The final term in equation (4) is the Soret effect.
The heat flux vectors for the two models are

j(Mix)
q =

(∑
k

hkjk
)
− λ∇T (5)

j(Multi)
q =

(∑
k

hkjk
)
− λ′∇T −

∑
k

pθk∇Xk (6)

3

where jk = j(Mix)
k or j(Multi)

k , respectively. The multicomponent formula is given in [2,
p. 1918, eqn. 3]. The final term in equation (6) the Dufour effect. The ∇Xk term in
equations (4) and (6) can be supplemented by a pressure term and body forces that will
be neglected here. The subroutine EGSLTDR5 [4, p. 22] in EGLIB calculates ρYkDk,` and
ρθk, so for purposes of evaluation, equation (6) is rewritten as

j(Multi)
k =

(∑
k

hkjk
)
− λ′∇T −

∑
k

p

ρ
(ρθk)∇Xk .

2.3 Sources

The low Mach number combustion code originally used the mixture model. The combination
of equations (1) and (3) agrees with Day and Bell’s [3, p. 537, eqn. 2]

∂ρYk

∂t
+∇ · ρYkv = ∇ · ρDi,mix∇Yk + ρ̇k ,

except they write ω̇k for ρ̇k. The combination of equations (2, 5) agrees with their [3, p.
537, eqn. 3]

∂ρh

∂t
+∇ · ρhv =

(∑
k

∇ · hkρDk,mix∇Yk

)
+∇ · λ∇T . (7)

The multicomponent fluxes in equations (4) and (6) are given by Bongers and de Goey,
as cited above. Giovangigli [5, p. 159, eqns. 7.1.6–7] uses different notation for the fluxes,
Fk = j(Multi)

k and Q = j(Multi)
q , and he writes them in terms of “flux diffusion coefficients”

Ck,` = ρYkDk,` [5, p. 23, eqns. 2.5.14]. The combination of equations (2) and (6) agrees
with Giovangigli [5, p. 12, eqn. 2.3.16; p. 21, eqns. 2.5.2, 2.5.3].

3 Algorithmic Changes

3.1 Overview

The algorithm uses the diffusive terms of equations (1) and (2) in four places.

1. A Godunov method that depends on diffusive terms is used to form cell-centered
values for (∇ · ρYkv)(n+ 1

2
) and (∇ · ρhv)(n+ 1

2
) at half timesteps [3, pp. 541–542, eqns.

13–14] .

2. A Crank-Nicolson method is used to solve equations (1) and (2) for ρYk and ρh at
time n + 1 with fixed advective and reactive terms [3, p. 542, eqns. 16–17]. The
Crank-Nicolson method is part of a nonlinear Gauss-Seidel method [3, p. 541, top].

3. A projection method is used to solve the underdetermined equation [3, pp. 537–538,
eqns. 7–8]

∇ · v(n+1) = S + regularization term

where S is a complicated expression for ∇·v that is evaluated with the best available
data at the end of the timestep.

4

4. The preceding calculations are with respect to the grid at a given level. The diffusive
and other fluxes calculated on each level are used to adjust the solutions on the coarser
levels.

An earlier effort was unsuccessful in implementing a multicomponent model with the Gauss-
Seidel and Crank-Nicolson methods in item 2. The present work therefore replaces those
methods by an explicit Runge-Kutta formula. The Runge-Kutta method is implemented
for both the mixture-averaged and the multicomponent diffusion models.

3.2 Runge-Kutta Method

The explicit midpoint rule or Heun’s method is a standard ODE integration formula. To
integrate v′ = f(v) it performs the steps:

1. v′n = f(vn)

2. vn+1
∗ = vn + ∆t v′n

3. (vn+1
∗)′ = f(vn+1

∗)

4. vn+1 = vn + ∆t
v′n + (vn+1

∗)′

2

Stars, ∗, indicate provisional values (in this case at time n + 1). John Bell suggested
implementing this in the following manner.

1. The starting values at time n are:

(a) the old state values,

state
(n)
Y = (ρYk)(n) state

(n)
h = (ρh)(n)

(b) the divergences of the advective fluxes at the half timestep,

adv
(n+1/2)
Y = ∇ · (ρYkv)(n) adv

(n+1/2)
h = ∇ · (ρhv)(n)

(c) the contribution from the chemistry over the first half time step,

chem
(n+1/2)
Y =

∫ tn+1/2

tn

ρ̇kdt

In addition, there are functions, or operators, that evaluate the divergences of the
diffusive fluxes.

LY (state data) = ∇ · jk for all species k

Lh(state data) = ∇ · jq

These two operators LY and Lh collectively constitute the function f in the equations
of the Runge-Kutta method.

5

2. Evaluate operators at time n.

(a) diff
(n)
Y = LY (state

(n)
Y + chem

(n+1/2)
Y)

(b) diff
(n)
h = Lh(state

(n)
h)

3. Form provisional values for time n + 1.

(a) state
(n+1)
Y

* = state
(n)
Y + chem

(n+1/2)
Y + adv

(n+1/2)
Y + ∆t diff

(n)
Y

(b) state
(n+1)
h

* = state
(n)
h + adv

(n+1/2)
h + ∆t diff

(n)
h

4. Evaluate operators at provisional values for time n + 1.

(a) diff
(n+1)
Y

* = LY (state
(n+1)
Y

*)

(b) diff
(n+1)
h

* = Lh(state
(n+1)
h

*)

5. Form values for time n + 1.

(a) state
(n+1)
Y = state

(n)
Y + chem

(n+1/2)
Y + adv

(n+1/2)
Y + (∆t/2) (diff

(n)
Y + diff

(n+1)
Y

*)

(b) state
(n+1)
h = state

(n)
h + adv

(n+1/2)
h + (∆t/2)(diff

(n)
h + diff

(n+1)
h

*)

3.3 Timestep Selection

John Bell suggested the following limit on the diffusive time step for the Runge-Kutta
method,

∆t ≤ c
∆x2

2 N Dk,mix
, (8)

where the coefficient is chosen conservatively as c = 0.5. Note that this formula depends
on the mixture-averaged diffusion coefficients whether or not the mixture-averaged or mul-
ticomponent model is used in the algorithm. This time step limit is in addition to the CFL
limit of the LMC code. For laminar flows, this limit should be more stringent.

3.4 Formula for ∇ · v

As explained in Day and Bell [3, p. 537], the constraint is obtained by taking the convective
derivative of the equation of state written in the first of the following forms (the second
equality is just the definition of the mean molecular weight)

p0 = ρRT
∑

k

Yk

mk
=

ρRT

m̄
.

The derivative is

0 = RT
∑

k

Yk

mk

Dρ

Dt
+ ρR

∑
k

Yk

mk

DT

Dt
+ ρRT

∑
k

1
mk

DYk

Dt

6

The equation of state simplifies all three terms to

0 = p0
1
ρ

Dρ

Dt
+ p0

1
T

DT

Dt
+ p0

∑
k

m̄

mk

DYk

Dt

so that
−1

ρ

Dρ

Dt
=

1
T

DT

Dt
+
∑

k

m̄

mk

DYk

Dt
.

Equation (10) removes the convective derivative of ρ,

∇ · v =
1
T

DT

Dt
+
∑

k

m̄

mk

DYk

Dt

=
1

ρcp,mixT

(
−∇ · jq −

∑
k

hk (ρ̇k −∇ · jk)

)
from equation (12)

+
1
ρ

∑
k

m̄

mk
(ρ̇k −∇ · jk) from equation (1).

Therefore

S = ∇ · v

=
−1

ρcp,mixT
(∇ · jq) +

∑
k

1
ρ

(
hk

cp,mixT
− m̄

mk

)
(∇ · jk − ρ̇k) . (9)

The simplification has been checked using Mathematica. This formula can be applied to
both the mixture-averaged and the multicomponent fluxes.

4 Software Changes

4.1 Activation Keywords

In the inputs file, the keyword ht.do rk diffusion = 1 (default 0) selects the Runge-
Kutta algorithm. With this option it is then the default to use the multicomponent model
for diffusion. The additional keyword ht.rk mixture averaged = 0 (default 1) can be
used to choose the mixture-averaged model instead. The coefficient c = 0.5 in the timestep
equation (8) can be changed by the keyword ht.rk time step multiplier.

4.2 Operator Procedures

The main part of the implementation of the Runge-Kutta method consists of a single pro-
cedure rk diffusion operator to evaluate the operators of the Runge-Kutta method in
section 3.2. Both the fluxes jk and jq and their divergences are evaluated. This procedure
is added to LMC/HeatTransfer.cpp.

The actual calculations are done in fortran subroutines FORT RK MIXTURE AVERAGED
and FORT RK MULTICOMPONENT for the mixture-averaged and multicomponent models, re-

7

spectively. These routines are added to LMC/HEATTRANSFER 2D.F. Inputs are Fabs in the
MultiFabs for a given level of the new or old state, with one layer of ghost cells filled by a
FillPatchIterator. Unlike much of the LMC software, these routines are self-contained.
Transport properties are formed by calls from the fortran routines to CHEMKIN [6] or
EGLIB [4] subroutines. Derivatives and edge values are formed in-line as needed.

4.3 Boundary Conditions and the Operator Procedures

The FORT RK MIXTURE AVERAGED and FORT RK MULTICOMPONENT subroutines require infor-
mation about boundary conditions to be able to evaluate values and derivative on cell edges
that coincide with boundaries. The boundary condition array for a Fab is determined by
the index of the Fab in its MultiFab and is accessed by AmrLevel::getBCArray. The ar-
ray entry bc(SDIM,2,ncomps) gives the type of boundary for: a given axis, for the low or
high (1 or 2) side, and for a given component in the state. The meanings of the numeric
codes for the boundary condition types are described in amrlib/BC TYPES.H.

The boundary conditions determine how the values and the derivatives of state variables
should be obtained on cell edges that coincide with the boundary. This information is
summarized in Table 1.

1. For internal boundaries, the FillPatchIterator places the value from the adjacent
grid into the ghost cell. Edge values are obtained by averaging. Derivatives are
obtained by centered divided differences.

2. For external Dirichlet boundaries, the FillPatchIterator places the value desired on
the edge into the ghost cell. No averaging is needed, but derivatives must be obtained
using one-sided, three-point formulas for second order accuracy. The low-side or left-
side formula is

dy

dx

∣∣∣∣
−1/2

≈
(
−8

3 ∆x

)
y−1/2 +

(
3

∆x

)
y0 +

(
−1

3 ∆x

)
y1 .

where y is the variable, ∆x is the grid spacing, and the subscripts refer to cell centered
(integer subscripts) or to edge values. The high-side or right-side formula is

dy

dx

∣∣∣∣
1/2

≈
(

1
3 ∆x

)
y−1 +

(
−3
∆x

)
y0 +

(
8

3 ∆x

)
y1/2 .

3. For other boundaries, edge values should be obtained by averaging. Derivatives should
be set to zero.

Table 1: Evaluation of edge values and derivatives in the FORT RK MIXTURE AVERAGED and
FORT RK MULTICOMPONENT routines as determined by the type of boundary condition.

case boundary flag edge value edge derivative
1 internal Dirichlet mean centered, 2-point
2 external Dirichlet ghost cell 1-sided, 3-point
3 other mean 0

8

4.4 Complete Implementation

The rk diffusion operator procedure is accessed wherever diffusive fluxes or divergences
are needed. To that end, the following changes are made to LMC/HeatTransfer.cpp, which
respectively address the four items in section 3.1. These changes can be identified by
searching for logical tests of the Boolean variable do rk diffusion.

1. The getViscTerms procedure is modified to call rk diffusion operator to obtain
flux divergences of ρYk and ρh.

2. The advance procedure is modified to perform the explicit Runge-Kutta method
described in section 3.2.

3. The calc divu procedure is modified to evaluate S by equation (9).

4. The fluxes underlying the calculation in item 2 are tabulated and stored in the data
structure supplied by the existing multilevel synchronization algorithm. Data are
entered using the existing procedures CrseInit and FineAdd. The calls to these
routines are contiguous with the changes to the advance procedure for item 2.

The flux corrections are applied in the mac sync procedure. The more accurate fluxes
on a fine grid are applied as corrections to the solution on the underlying coarse
grid. In the original algorithm, since the diffusive contributions to the cell centered
values are obtained implicitly, by the Crank-Nicolson method, the corrections are
also obtained implicitly [3, p. 545, eqns. 18 and 19]. However, in the Runge-Kutta
algorithm, since the diffusive contributions are obtained explicitly, the corrections
are also explicit and affect only the coarse cells immediately surrounding the fine
grid boundary. The original algorithm is structured in such a way that the explicit
corrections can be applied by omitting the relevant Crank-Nicolson update to the
coarse grid in the mac sync procedure.

An additional change is needed to choose the Runge-Kutta timestep:

5. The estTimeStep procedure is expanded to select a timestep for the Runge-Kutta
method by equation (8). That is done by the new procedure rk step selection
in LMC/HeatTransfer.cpp, and by the new subroutine FORT RK STEP SELECTION in
LMC/HEATTRANSFER 2D.F.

5 Tests

5.1 1D Problem

The first test problem consists of a freely-propagating, planar, hydrogen-air flame with fuel
equivalence ratio φ = 0.37. The computational domain is x × y = 0.25 × 4.0 (cm). The
grid has 8 × 128 cells at the coarsest level with two levels of ×2 refinement. The fine grid
resolution is therefore 78.125 (micron). The flame evolves over 0.05 (sec) during which it is
steadied at y = 2.0 (cm) using the control algorithm discussed in [1].

Figure 1 displays the mole fractions of the species with respect to distance along the y
axis. The CFL limit of 0.9 allowed rather large timesteps in the original LMC algorithm.

9

Figure 1: Three calculations of mole fractions in the same freely-propagating, planar,
hydrogen-air flame.

As a result, the simulation performed by the original LMC algorithm is under-resolved in
time. Table 2 lists the computed flame speeds. The speed predicted by the original LMC
algorithm can be neglected because of the under-resolution.

Both Figure 1 and Table 2 show very little difference between the mixture-averaged and
the multicomponent diffusion models. This agreement was also found by Bongers and de
Goey [2, p. 1922, fig. 1, lower left panel]. They saw little or no difference between the two
models except for rich flames or for flames burning in pure oxygen.

Table 2: Three calculations of flame speed for the same freely-propagating, planar, hydrogen-
air flame.

diffusion model solution algorithm flame speed (cm / sec)
mixture-averaged original LMC 12.133
mixture-averaged Runge-Kutta 15.224
multicomponent Runge-Kutta 15.153

5.2 2D Problem

The second test problem consists of a vortex encountering a freely-propagating, planar,
hydrogen-air flame with fuel equivalence ratio φ = 0.37. This problem resembles but is
not identical to a test case of Day and Bell [3, pp. 546–549, figs. 1–3]. The computational
domain is x×y = 1.2×4.8 (cm). The flame is again located at y = 2.0 (cm) and is steadied
there this time by fixing an inflow velocity of 15 (cm/s). The grid has 48× 192 cells at the

10

coarsest level with two levels of ×2 refinement. The fine grid resolution is therefore 62.5
(micron).

Figure 2 displays the mole fraction of the hydrogen radical, X(H), after 0.01 (s) of
simulated time. The CFL limit in this calculation is 0.80 so the flame again may not be

Figure 2: Three calculations of the mole fraction of hydrogen, X(H), in a freely-propagating,
planar, hydrogen-air flame encountering a vortex.

11

temporally resolved. Nevertheless, the shape of the flame is determined by convection from
the vortical flow, so all three calculations show good agreement.

This problem shows some difference between the mixture-averaged and multicomponent
models. In the multicomponent model X(H) attains a maximum of 0.0025 whereas in the
mixture-averaged model the value is no larger than 0.0022. See Table 3. The much larger
time steps taken by the original LMC code accounts for the differences between the two
mixture-averaged models. Decreasing the CFL limit from 0.80 to 0.14 decreases the time
step of the original code from 22 to 4 microseconds and brings the peak X(H) into agreement
for both mixture-averaged models. Section 6.1 presents more information about time steps.

Table 3: Centerline peak mole fraction of atomic hydrogen at 0.01 (sec) in the three calcu-
lations of a hydrogen-air flame encountering a vortex.

diffusion model solution algorithm peak X(H)
mixture-averaged original LMC 0.002424
mixture-averaged Runge-Kutta 0.002198
multicomponent Runge-Kutta 0.002484

6 Timing

6.1 Data

Table 4 shows information of the computer time required for (coarse-level) time steps in the
two algorithms and two models, for both the 1D and 2D test cases.

Table 4: (top) Time steps in the 1D calculations on the LBNL/HPCRD hive cluster. (bot-
tom) Time steps in the 2D calculations on the NERSC bassi cluster. Values are determined
by examining the final few time steps of the calculations.

3-level, 2-processor calculations one time step

diffusion model solution algorithm
size

(micro s) number
wall clock
time (s)

mixture-averaged original LMC 422 144 6.94
mixture-averaged Runge-Kutta 1.76 28168 2.16
multicomponent Runge-Kutta 1.76 28380 3.24

3-level, 8-processor calculations one time step

diffusion model solution algorithm
size

(micro s) number
wall clock
time (s)

mixture-averaged original LMC 22.4 406 21.1 – 23.3
mixture-averaged Runge-Kutta 0.96 9435 11.0 – 11.4
multicomponent Runge-Kutta 0.94 9672 14.2 – 14.7

12

6.2 Performance Improvements

Two performance improvements are possible. First, the Runge-Kutta algorithm evaluates
rk diffusion operator 5 times:

1,2 A peculiarity in the coding of the getViscTerms procedure results in it being called
twice, once for flux divergences of the ρYk and then again for flux divergence of ρh.
Each of these calls to getViscTerms evaluates rk diffusion operator.

3,4 The advance procedure evaluates rk diffusion operator twice during the Runge-
Kutta algorithm.

5 The calc divu procedure calls rk diffusion operator once to obtain values for the
evaluation of equation (9).

Evaluations 1, 2, and 3 are all applied to the same (old) state data, so by saving the output
of rk diffusion operator, the number of calls could be reduced from 5 to 3 per time step.

Second, subroutines FORT RK MIXTURE AVERAGED and FORT RK MULTICOMPONENT store
state data in the natural Fab indexing order (i, j, n), where i and j specify the cell and
n specifies the component. Consequently, the data for a given cell are not contiguous.
Memory performance might be improved by transposing the data to an (n, i, j) ordering.

A Appendix. Notation

cp,mix Specific heat of the mixture, at constant pressure, per unit mass.

D /Dt Convective derivative, see Appendix B.

Dk,` Multicomponent diffusion coefficient for the k-th and `-th species.

Dk,mix Mixture-averaged diffusion coefficient for the k-th species.

∆t Timestep.

∆x Mesh spacing.

h Mixture enthalpy per unit mass.

hk Enthalpy per unit mass of the k-th species.

jk Diffusive flux vector of the k-th species, either j(Mix)
k or j(Multi)

k .

jq Heat flux vector, either j(Mix)
q or j(Multi)

q .

λ Thermal conductivity.

λ′ Partial thermal conductivity.

m̄ Mean molecular weight.

mk Molecular weight of the k-th species.

13

N Spatial dimension of the problem, 2 or 3.

n Time step index.

ρ Mass density.

ρk Mass density of the k-th species, ρk = ρYk.

ρ̇k Rate of change in the mass density of the k-th species due to chemical reactions,
ρ̇k = mkω̇k

S Formula for ∇ · v, see section 3.4.

T Temperature.

t Time.

tn Time at index n.

θk Thermal diffusion coefficient for the k-th species.

v Velocity.

Xk Mole fraction of the `-th species.

Yk Mass fraction of the k-th species.

ω̇k In the notation of [6], molar production rate of the k-th species (mol / vol sec).

B Appendix. Convective Derivative

The convective derivative (also known as the substantive derivative, the material derivative,
the Lagrangian derivative, and the derivative along particle paths) is

Dφ

Dt
=

∂φ

∂t
+ v · ∇φ

The continuity equation
∂ρ

∂t
+∇ · ρv = 0

implies two identities for the convective derivative. First, it removes the time derivative
from the convective derivative of density,

Dρ

Dt
=

∂ρ

∂t
+ v · ∇ρ

=
∂ρ

∂t
+ (∇ · ρv −∇ρ · v − ρ∇ · v) + v · ∇ρ

= −ρ∇ · v .

(10)

14

Second, it places the convective derivative into equations (1) and (2),

∂ρφ

∂t
+∇ · ρφv = φ

∂ρ

∂t
+ ρ

∂φ

∂t
+ ρv · ∇φ + φ∇ · ρv

= ρ
∂φ

∂t
+ ρv · ∇φ

= ρ
Dφ

Dt
.

(11)

C Appendix. Temperature Equation

The mixture and species enthalpies are related by

h =
∑

k

hkYk .

In a Newtonian fluid the enthalpies are functions only of pressure and temperature, and in
our case pressure is constant. Differentiating this equation and using the chain rule gives

Dh

Dt
=

∑
k

Dhk

Dt
Yk +

∑
k

hk
DYk

Dt

=
∑

k

∂hk

∂T

DT

Dt
Yk +

∑
k

hk
DYk

Dt

Multiplying by ρ, and since ∑
k

∂hk

∂T
Yk = cp,mix ,

and by equations (1) and (2), therefore

−∇ · jq = ρcp,mix
DT

Dt
+
∑

k

hk (ρ̇k −∇ · jk)

which rearranges to

ρcp,mix
DT

Dt
= −∇ · jq −

∑
k

hk (ρ̇k −∇ · jk) . (12)

For the mixture-averaged model this equation simplifies to

ρcp,mix
DT

Dt
= ∇ · λ∇T +

∑
k

ρDk,mix∇hk · ∇Yk −
∑

k

hkρ̇k ,

which is the formula given by Day and Bell [3, p. 540, eqn. 12].

15

D Appendix. Alternate Enthalpy Equation

The LMC code currently uses a Crank-Nicolson method to update h from diffusion, so the
∇T term in equation (5) is replaced by another term involving ∇h. This equation is not
needed for the implementation of the Runge-Kutta method. Nevertheless, the following
derivation is given for completeness. Since enthalpies are functions only of T for an ideal
gas, and from

h =
∑

k

hkYk
∂hk

∂T
= cp,k cp,mix =

∑
k

cp,kYk

follow

∇h =
∑

k

hk∇Yk +
∑

k

(∇hk)Yk

=
∑

k

hk∇Yk +
∑

k

cp,kYk∇T

=
∑

k

hk∇Yk + cp,mix∇T

therefore
∇T =

1
cp,mix

∇h−
∑

k

hk

cp,mix
∇Yk . (13)

Equation (13) may be substituted into either of the models for heat flux, equations (5)
or (6), for use in the enthalpy equation (2). For the mixture-averaged model, this gives
equation (11) in Day and Bell [3],

∂ρh

∂t
+∇ · ρhv = ∇ · λ

cp.mix
∇h +

∑
k

∇ · hk

(
ρDk,mix −

λ

cp,mix

)
∇Yk .

For the multicomponent model, the formula is more complicated because there are ∇T
terms in the diffusive flux vectors.

References

[1] J. B. Bell, M. S. Day, J. F. Grcar, and M. J. Lijewski. Active control for statistically
stationary turbulent premixed flame simulations. Comm. App. Math. Comput. Sci.,
1(1):29–52, November 2005.

[2] H. Bongers and L. P. H. de Goey. The effect of simplified transport modeling on the
burning velocity of laminar premixed flames. Combust. Sci. Technol., 175:1915–1928,
2003.

[3] M. S. Day and J. B. Bell. Numerical simulation of laminar reacting flows with complex
chemistry. Combust. Theory Modelling, 4:535–556, 2000.

[4] A. Ern and V. Giovangigli. EGLIB: A General-Purpose Fortran Library for Multicom-
ponent Transport Property Evaluations. Technical report, 2004. Version 3.4.

16

[5] V. Giovangigli. Multicomponent Flow Modeling. Birkhäuser, Boston, 1999.

[6] R. J. Kee, R. M. Ruply, E. Meeks, and J. A. Miller. Chemkin-III: A FORTRAN chemical
kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical
Report SAND96-8216, Sandia National Laboratories, Livermore, 1996.

17

