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An Efficient FPGA Implementation of Scalable

Matrix Inversion Core using QR Decomposition

Abstract. We present a novel scalable architecture for matrix inversion
that uses the modified Gram-Schmidt algorithm based on QR decompo-
sition. Our core achieves a throughput of 0.18M updates per second for
a 4 x 4 matrix using 19 bits of precision on a Xilinx Virtex4 SX FPGA.
We also present two different designs which use longer data lines, 26 and
32 bits, and compare our results with another matrix inversion architec-
ture which is the only scalable approach so far. We show that our core is
significantly faster than the other published FPGA implementation as it
requires fewer resources due to the usage of fixed point arithmetic and
an effective resource utilization. We show that our proposed architecture
is scalable by presenting the results for 6 x 6 and 8 x 8 matrices.

1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is one of the most promis-
ing technologies for high data rate wireless communications due to its robust-
ness to frequency selective fading, high spectral efficiency, and low computa-
tional complexity. Multiple Input Multiple Output (MIMO) systems, which im-
prove the capacity and performance of wireless communication by using multi-
ple transmit and receive antennas, are often used in conjunction with OFDM
to improve the channel capacity and reduce intersymbol interference (ISI) [1].
MIMO-OFDM systems require equalization at the receiver side to remove the
effect of channel on the signal. Matrix inversion is an essential computation for
equalization where the size of the matrix depends on the number of transmitter
and receiver antennas. Higher data rates can be achieved by using more antennas
at the both sides; however this creates more computation, e.g. a bigger matrix
must be inverted during equalization.

Matrix inversion with analytic approach using determinants results in non-
scalable architectures, thus the usage of decomposition methods need to be intro-
duced for the inversion of bigger matrices. QR decomposition is the traditionally
used decomposition method for matrix inversion because of its stability. Further-
more, Cholesky and LU decompositions are generally used for positive definite
and non-singular square matrices while QR decomposition can be used with any
kind of matrices. We present a scalable architecture for matrix inversion using
QR decomposition in this paper.

There are three different QR decomposition methods: Gram-Schmidt or-
thogonormalization, Givens Rotations (GR) and Householder reflections [2]. GR
has been the focus of previously published hardware implementations due to its
stability and accuracy, and the fact that it easily lends itself to a systolic array
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architecture using CORDIC blocks. However, it was shown that the modified
Gram-Schmidt (MGS) method is numerically equivalent to GR method [3]. We
choose to use QRD-MGS method for our implementation to provide a compari-
son with GR method in terms of area and throughput. We achieve better results
than previous GR implementations because of the fixed point arithmetic and
effective resource utilization.

The choice of a computing platform plays an important role in the over-
all design of a communication systems. Previously, designers decided between a
hardware or software implementation. The hardware implementation consisted
of designing an ASIC, which offers exceptional performance, but long time to
market and high costs for all but the largest production chips. The software
route tended towards the use of DSPs due to the ease of development and fast
time to market. However, they lack the performance for high throughput appli-
cations. Recently FPGAs have become prevalent for signal processing applica-
tions. FPGAs play a middle role between ASICs and DSPs, as they have the
programmability of software with performance approaching that of a custom
hardware implementation.

We select Xilinx Virtex 4 SX as our implementation platform. Virtex 4 SX
provides a rich set of resources, including Block RAMs for on chip memory
and FIFOs, DSP blocks for mathematical operations such as Multiply Accumu-
lates (MACs), division, square root, etc., and clocking management features for
frequency synthesis. If these resources are utilized correctly, these features can
significantly enhance the performance, area and throughput.

In this paper we present a scalable matrix inversion core which uses QRD-
MGS with fixed-point arithmetic and map it onto Xilinx Virtex 4SX FPGA. We
explore practical hardware design and implementation issues for FPGAs. Our
core results in a high performance scalable architecture for matrix inversion.
We achieve 3.8 times smaller design in terms of slices with 1.4 times higher
throughput for 4 x 4 matrix inversion compared to the GR implementation [13].

The rest of this paper is organized as follows: Section 2 presents related work.
Section 3 describes the QRD-MGS algorithm for matrix inversion. Section 4 ad-
dresses the advantages of fixed-point arithmetic and subsequently presents error
analysis for different amounts of precision. Section 5 explains the architectural
design of the core. Section 6 introduces FPGA resources, discusses design deci-
sion and challenges, and presents implementation results in terms of area and
timing. We conclude in Section 7.

2 Related Work

Several approaches can be used for matrix inversion. These include Cholesky
[4], LU [5] and Gauss Jordan [6] [7]. There are some VLSI architectures for
matrix inversion using QR decomposition which do not specifically target FP-
GAs. Dharmarajan et al. [8] present an algorithm to perform matrix inversion
of dense square matrices. They use GR method with systolic array VLSI archi-
tecture. Singh et al. [9] present a fully parallel architecture for matrix inversion



using QRD-MGS algorithm. Most previous work using FPGA for matrix inver-
sion is concentrated on smaller matrix sizes and use architectures that will not
easily extendable to larger matrix sizes. Liu et al. [10] presented a new method by
partitioning the matrix into smaller matrices. However, they didn’t consider scal-
ability of their architecture; they found a practical solution for matrices which
are not larger than 4 x 4. In [11], they extended their work to bigger matrices, 16
x 16, and the precision analysis for this dimension is presented. However FPGA
implementation results are reported for 4 x 4 matrices only.

Edman et al. [12] presents a scalable linear array architecture for inverting
complex valued matrices. They use squared Givens rotations algorithm for their
implementation with 12 bit fixed-point representation. Their architecture for
inversion of a 4 x 4 matrix consumes 86% of the Virtex-IIs capacity and requires
175 cycles to invert a matrix. Karkooti et al. [13] presents an architecture for
matrix inversion using QR decomposition based recursive least square (RLS)
algorithm. They use squared Givens rotations as their algorithm and implement
their design as a folded systolic array with 20 bits floating point representation.

The focus of our work is to design a scalable architecture with a small area
requirement for matrix sizes suitable for use in communication applications.
Therefore, we use QR decomposition approach instead of an analytical approach
where complexity increases very quickly with the size of the matrix. We intro-
duce an effective resource utilization methodology that automatically analyzes
dependencies between resources and eliminates unneeded routing circuitry. This
is extremely effective in reducing area and enables a scalable architecture. This
architecture can be used in two different areas. Firstly, because the area is al-
ready small for a 4 x 4 matrix inversion core and the architecture is scalable
to the bigger matrix sizes, it is possible to use the rest of the FPGA resources
for bigger matrices inversion. Secondly, it is possible to reuse the same FPGA
device for other wireless ommunication operations such as FFT/IFFT, matrix
multiplication and adaptive weight calculation.

3 Matrix Inversion using QR Decomposition

Matrix Inversion has many applications, like equalization/detection algorithms
in MIMO-OFDM systems. The inverse of a square matrix A is a matrix which
is shown as A−1 and satisfies:

A×A−1 = I (1)

where I is the identity matrix and it’s matrix form can be seen as:
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However, matrix inversion becomes a bottleneck because of its complexity,
especially for bigger matrix sizes. Applying QR decomposition decreases this
complexity using its properties.

QR decomposition is an elementary operation, which decomposes a matrix
into an orthogonal and a triangular matrix. QR decomposition of a matrix A is a
decomposition of A as A = QR, where Q is an orthogonal matrix (QT ×Q = I)
and R is an upper triangular matrix. The decomposition of m × n matrices
(with m ≥ n) of full rank is the product of an m × n orthogonal matrix where
QT ×Q = I and an n× n upper triangular matrix. The QR decomposition of a
given 4 x 4 matrix A can be seen as follows:
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The solution for the inversion of matrix A, A−1, using QR decomposition
can be seen as follows:

A×A−1 = I (2)

Q×R×A−1 = I (3)

A−1 =
I

R×Q
(4)

A−1 = R−1 ×QT (5)

The matrix representation of (5) is shown as:
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This solution consists of three different parts, QR decomposition, matrix in-
version for upper triangular matrix and matrix multiplication. Most number of
calculations are done while decomposition of the matrix A. The inverse of R

matrix, R−1, is a less complex matrix inversion because of the upper triangular
matrix structure of R. And it is calculated with simple back-substitution using
identity matrix which can be seen as:

R×R−1 = I (6)

The transpose matrix, QT , requires simple register renaming due to usage of
scheduling and does not require any calculation. The multiplication of the in-
verse upper triangular matrix, R−1, and transpose of Q, QT , gives the result



A−1. The required calculations for Matrix Inversion are shown in Figure 1.

Fig. 1. Matrix Inversion using QR decomposition consists of there different

parts to calculate the inverse of A, QR decomposition, the simple inversion

of R and matrix multiplication.

3.1 QR decomposition using Modified Gram-Schmidt Algorithm
and Matrix Inversion

Applying slight modifications to the Classical Gram-Schmidt (CGS) algorithm
gives the modified Gram-Schmidt (MGS) algorithm. QRD-MGS is numerically
more accurate and stable than the QRD-CGS. And it is numerically equivalent
to the Givens Rotations solution. If the given matrix, A, is well-conditioned, the
resulting matrices satisfy their required matrix characteristics. The algorithm
for QRD-MGS is shown in Figure 2.

Fig. 2. QRD-MGS Algorithm

We simply start every decomposition by storing the given matrix, A, into
the Q matrix entries in the register file. (1) shows this transfer and A matrix is
denoted as t matrix which is temporary while creating Q matrix. Every diagonal
entry in the R matrix is the euclidean norm of the t matrix columns which is



shown as (2). The Q matrix is created by the division of t with the euclidean
norm (3) column by column. Non-diagonal entries of R matrix is computed by
multiplication of the real Q matrix column and temporary t matrix columns one
by one (4). For example, we first compute the first column of Q matrix and then
project this column to the next t matrix columns. Every multiplication gives us
the other R matrix entry of the first row. Then, t matrix columns are updated
by (5).

Matrix Inversion of an upper triangular matrix requires less calculations com-
pared to full matrix inversion because of its zero entries. The matrix represen-
tation is shown as:
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The algorithm for matrix inversion is shown in Figure 3.

Fig. 3. Matrix Inversion Algorithm for Upper Triangular Matrix, R.

Upper triangular matrix inversion is performed column by column. Calculat-
ing the diagonal entries of the R−1 matrix is simply dividing 1 by the diagonal
entry of R matrix (3) and the rest of the column entries introduces multiplication
and addition iteratively (1) which is then divided by R matrix entry (3).

4 Fixed Point Arithmetic and Error Analysis

Fixed point arithmetic is important as it results in faster and smaller functional
units. However, it can result in less accurate results if it is not carefully designed.
In this section, we discuss these tradeoffs and formulate an appropriate fixed
point representation that provides results that are similar to a floating point
implementation, yet they are much faster and smaller.



4.1 Fixed Point Arithmetic

Usage of floating point arithmetic is expensive in terms for hardware and leads
to inefficient designs especially for FPGA implementation. On the other hand,
fixed point arithmetic results in efficient hardware designs. Our design uses two’s
complement fixed point arithmetic, which is shown in Figure 4. The data lines
used in implementation for fixed point arithmetic consist of an integer part, a
fractional part and a sign bit.

Fig. 4. Two’s complement fixed-point representation is used in the calcula-

tions of the matrix inversion core. The limited nature of the representation

leads round-off and truncation errors. These errors must be investigated

carefully for the precision analysis.

Matrix inversion using QR-MGS algorithm requires the usage of addition,
subtraction, multiplication, division and square root operations. Number of cal-
culations increases as the matrix dimensions increases. Some of these calculations
are straightforward such as addition, subtraction and multiplication; however,
division and square root operations are complex and can affect the precision sig-
nificantly. Furthermore, they are inefficient in terms of FPGA implementation.
Fixed-point arithmetic reduces precision and consequently introduces two types
of errors: round-off and truncation errors. Round-off error occurs when the result
requires more bits than the reserved bit length after a computation. Truncation
error occurs due to the limited number of bits to represent numbers. These issues
must be handled carefully to prevent overflow which leads to incorrect results.
Error analysis is a crucial step and will be considered in the next section.

4.2 Error Analysis

Error analysis is performed for whole matrix inversion core to determine the
tradeoffs between precision and area. We investigate the usage of 16 to 64 num-
ber of bits to perform matrix inversion. One of the major problems while working
with fixed-point arithmetic is preventing overflows. While performing arithmetic
calculations, a result may not fit into the reserved bits and if this case is not
handled carefully, it causes overflow and incorrect results. To prevent overflow,
every entry in the given matrix is normalized as the first step before starting
decomposition. Normalizing is performed by dividing every entry by the largest



matrix entry. Therefore, the given matrix entries are always in the [0, 1]. Nor-
malization allows us to calculate the maximum number of bits required for the
biggest possible integer assuming that given matrix is well-conditioned. We then
reserve this number of bits to ensure that overflow does not occur.

The error analysis is performed by comparing the fixed point arithmetic re-
sults with the double precision floating point artihmetic results using Matlab
software. We also compare our simulation results which are derived using Mod-
elsim software by simulating our proposed architecture with the actual results.
The error analysis is done for 4 x 4 matrices with 16 to 64 bits. We considered
mean error for our error analysis which is computed by finding the error for all
entries and then dividing the sum of these errors by the total number of entries.
This calculation can be seen as:

∑

m

i=1
|yi − ŷi|

m
(7)

We generate 100 random matrices for our error analysis which have entries
in the [0, 1] and matrix inversion is performed. The mean error for different
number of bits is shown in Figure 5 with log domain scale.

Fig. 5. The mean error is an important metric for error analysis. For bet-

ter precision, more bits must be used in calculations which introduce the

tradeoff between the precision and area of the design. We perform error

analysis by comparing the fixed point arithmetic results with the double

precision floating point artihmetic results using Matlab software. We also

compare our simulation results which are derived using Modelsim software

by simulating our proposed architecture with the actual results.



5 Architectural Design of Matrix Inversion Core

The proposed architecture works at the instruction-level where the instructions
define the required calculations for the matrix inversion. For better performance
results, instruction level parallelism is exploited. The dependencies between the
instructions limit the amount of parallelism that exists within a group of com-
putations. Dynamic Scheduling using Tomasulo’s approach is a widely known
approach to produce instruction level parallelism in presence of dependences
[14]. In this approach, controller units track the operands to determine whether
they are available and perform register renaming which assigns a free arithmetic
unit for the desired calculation. Register renaming is provided by reservation sta-
tion usage in every arithmetic unit where reservation stations fetch and buffer
an operand as soon as the operand is ready. Our proposed design consists of two
controller units and three arithmetic units. The arithmetic units are capable of
computing decomposition, simple matrix inversion using back-substitution and
matrix multiplication. The control units are instruction and timing and operand
controller. The arithmetic units are adder/subtractor, multiplier/divider and
square root units. The proposed matrix inversion core is shown in Figure 6.

Fig. 6. The proposed Matrix Inversion core is capable of doing QRD, simple

matrix inversion and matrix multiplication. Matrix Inversion core consists

of 2 controller and 3 arithmetic units.

The Instruction and Timing controller unit keeps the instructions which are
required to perform matrix inversion. The control elements supervise the sta-
tus of the reservation stations of the arithmetic units and the current place of
the operands. The Instruction and Timing controller function is as follows: 1)
it gets the instructions from the memory element by ensuring the maintenance
of correct data flow, 2) decodes the instruction to understand the desired cal-
culation, the required operands and the destination memory entry in operand
controller unit, 3) creates scheduled instructions by performing register renam-
ing, 4) checks the current status of the arithmetic units and the current place



of the operands and sends the scheduled instruction to the other units of the
design or stall the core if there is no free reservation station. Every calcula-
tion starts by storing the given matrix data, A into the memory entries of the
Operand Controller. The Operand Controller sends the required operands for
calculations if the operand is ready. Otherwise it waits until the calculation of
the operand is completed and then sends the data after updating the memory.
Arithmetic units are reserved for specific calculations. The arithmetic units are
adder/subtractor, multiplier/divider and square root finder. Each unit, except
the square root unit, consists of matrix size number of reservation stations to
perform desired calculations concurrently. Every arithmetic unit has three dif-
ferent stages: fetching the instruction from Instruction and Timing Controller,
fetching the required operands from the outputs of the arithmetic units or from
the memory unit of Operand Controller unit and performing the calculation. Ad-
dition, subtraction and multiplication use one clock cycle. Division and square
root operations use N clock cycles, where N is equal to the number of bit in the
input data. If the input matrix is 4 × 4, our core uses 4 reservation stations in
each adder/subtractor and multiplier/divider units due to the fact that they are
able to perform most of these calculations in parallel. The square root function
unit uses only one reservation station because it is rarely needed during the QR
decomposition. We choose maximum parallelism for QR decomposition and the
calculations for matrix inversion and multiplication use the same resources with
different scheduling.

6 FPGA Implementation Results

The proposed architecture is implemented on a Virtex4-SX FPGA. We use 19,
26 and 32 bits for the data representations and compare their results. The ad-
dition and subtraction functional units are implemented by using SLICEs with
low delay carry chain network, the multiplications use XtremeDSP blocks which
are very efficient for this purpose and finally square root function uses CORDIC
core, all provided by Xilinx Coregen toolset. We use Block RAMs available on
Xilinx FPGAs as memory storage space for instructions. The Block RAM mod-
ules provide flexible 18Kbit dual-port RAM, that are cascadable to form larger
memory blocks. Embedded XtremeDSP slices with 18 x 18 bit dedicated multi-
pliers and 48-bit accumulator provide flexible resources to implement multipliers
to achieve high performance. Furthermore, Xilinx Coregen toolset implements
these cores very efficiently since it uses special mapping and place and route
algorithms to implement the above mentioned cores to attain high performance
design.
Matrix inversion core which uses 19 bits achieves 116 MHz of speed on the FPGA
with a throughput of 0.18M updates per second. The latency for matrix inver-
sion is 663 cycles. Matrix inversion core which uses 26 bits achieves 113 MHz of
speed on the same FPGA with a throughput of 0.14M updates per second. The
latency for matrix inversion is 803 cycles. And matrix inversion core which uses
32 bits achieves 96.2 MHz of speed on the same FPGA with a throughput of



0.11M updates per second. The latency for matrix inversion is 923 cycles. The
resources used for these designs are shown in Table 1.

Table.1. Area results for 4 × 4 matrices with 19, 26 and 32 bits of
data lines.

19 bits LUTs FFs BRAMs DSP48 SLICEs

Instruction and Timing Controller 172 46 1 0 92
Operand Controller 1,338 268 0 0 866
Arithmetic Units 2,018 1,417 0 12 1,457

Total 3,528 1,731 1 12 2,415

26 bits
Instruction and Timing Controller 172 46 1 0 92

Operand Controller 4,488 1,136 0 0 2,505
Arithmetic Units 2,826 2,094 0 12 2,059

Total 7,486 3,276 1 12 4,656

32 bits
Instruction and Timing Controller 172 46 1 0 92

Operand Controller 5,041 1,408 0 0 2,910
Arithmetic Units 3,591 2,754 1 12 2,638

Total 8,804 4,208 1 12 5,640

The comparison between [13] and our architecture can be seen in the Table 2.

Table.2. Area and throughput comparisons with [12]

Wordlength(bit) LUTs FFs BRAMs DSP48 SLICEs Throughput

[13] 20 NR NR 9 22 9,117 0.13M

Our 19 3,528 1,731 1 12 2,415 0.18M

Our 26 7,486 3,276 1 12 4,656 0.14M

Our 32 8,804 4,208 1 12 5,640 0.11M

Due to the usage of scheduling, our design is easily extendable for larger ma-
trix sizes. This can be done by changing the instructions for scheduling which
are required for matrix inversion and using more memory elements and control
elements. For best timing results n number of reservation stations in arithmetic
units are added in the core which is 4 in our design and works for 4×4 matrices.
It is important to state that more area efficient designs can be implemented using
less reservation stations with the cost of more clock cycles to perform inversion.
We also compare our results of 4× 4 with 6× 6 and 8× 8 which use 19 bits of
data lines in Table 3.

Table.3. Area and throughput comparisons for bigger matrix sizes.

SLICEs BRAMs DSP48 Throughput

4× 4 2,415 1 12 0.18M

6× 6 7,820 2 18 0.07M

8× 8 11,761 4 24 0.03M



7 Conclusion

A matrix inversion core is designed and implemented on Xilinx4-SX FPGA us-
ing QRD Modified Gram-Schmidt algorithm with fixed-point arithmetic. The
error analysis for matrix inversion is investigated for different data lengths. The
proposed design for 4 × 4 matrix inversion runs with a clock rate of 116 MHz
and achieves a throughput of 0.18M updates per second using 19 bits of data
length. The proposed design has better results than the previous work in terms
of area and throughput. We also present the results for 26 and 32 bits of data
lengths. Our design is easily extendable to other matrix sizes and the results for
6× 6 and 8× 8 matrices are also presented.
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