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Abstract
The newly discovered exotic Θ baryon of mass 1540 MeV (and very small width) truly has a very

low mass, if it is a pentaquark system of even parity. A schematic model in which the coherent

interaction of us̄ and ds̄ pairs leads to a very large residual (non-confining) attractive interaction is

introduced. This collective vibrational model accounts for the mass and small decay width to the

KN channel, but yields a significant coupling to the virtual K∗N channel. The schematic model

predicts an attractive Θ-nucleon interaction strong enough to bind a Θ particle to a nucleus in

a state that is stable against decay via strong interactions. The discovery of Θ-nuclei could be a

definitive proof that the Θ parity is even.

PACS numbers: 12.39.Mk,21.80.+a,25.20-x,25.80.Nv

Keywords: exotic baryons, exotic nuclei

1



Stimulated by the prediction[1] of the existence of an extremely narrow positive
strangeness pentaquark state Θ of mass 1.54 GeV and JP = 1/2+, a member of an an-
tidecuplet, several experimental searches were successfully undertaken[2]-[8]. Other possible
strangeness -2 partners in the Θ-antidecuplet were also detected[9].

A study of the implications of the existence of the state with the quantum numbers
predicted in Ref. [1] is presented here. An even-parity, low-lying S=+1 state must have very
unusual properties[10], with the most unusual being is its very low mass. Indeed, lattice
calculations[11] find the expected result that the odd parity S = +1 state is the one of lowest
energy. Furthermore, the lack of a presence in KN scattering seems to limit the width to an
usual small value (perhaps on the order of an MeV)[12], but its relatively large production
cross section could arise from the exchange of K∗ mesons[13]. A state with such unique
properties does not arise in an obvious way from previously existing quark models of baryon
spectroscopy, so it would be interesting to create new models with new implications.

The unusual nature of the Θ can be seen immediately using the naive quark model. The
Θ and nucleon have the same JP , their mass difference arises from the addition of a pair
of constituent quarks ds̄ or us̄ (of mass 340 and 510 MeV) and one unit of orbital angular
momentum to the nucleon. is present. The energy cost of the unit of angular momentum
can be estimated as the mass difference between the nucleon and lowest-lying odd parity
excited states, or about 600 MeV. Thus the naive quark model gives the energy of the
Θ − N mass difference, h̄ω0, as about 1.4 GeV! This truly astonishing number makes it
clear that the naive quark model does not contain the interactions between quarks needed
to explain low mass of the Θ. In the original work[1], the attraction was assumed to arise
from the non-perturbative effects of the chiral soliton field. Such a field can only have its
quark model interpretation in terms of non-confining residual interactions. Indeed the aim
of understanding the Θ dynamics has attracted several proposed mechanisms, including:
flavor and color hyperfine interactions (see the review in Ref. [14]), and strong quark-quark
interactions leading to di-quarks[15] (perhaps caused by the influence of instantons in the
vacuum[16]). We’ll provide another mechanism, perhaps similar to some of the others, to
obtain a wave function that differs significantly from that of the naive quark model.

Here is an outline of our logic. We’ll work in the framework of the quark model, so that
some gargantuan residual interaction is needed. Since no ultra-large coupling constants can
be expected to arise from QCD, the extreme strength must arise from collective effects. We
introduce a schematic interaction that causes the Θ to be described as a coherent set of
color-singlet ds̄, us̄ pseudoscalar excitations that move in a p-wave relative to the nucleon.
This interaction between these excitations and the nucleon must be assumed to be attractive,
but need not be very strong. In this case, the Θ can be regarded as a collective vibration of
the nucleon. This mechanism is reminiscent of one used to describe the nuclear giant dipole
resonance[17]. The model can account for the mass, width and K∗ interactions of the Θ.
But the most dramatic implication of the model is that Θ to binds to nuclei with a binding
energy considerably greater than 100 MeV. This new Θ-matter would therefore be stable
against decay by the strong interaction.

It is worthwhile to stress that the unusual implications we draw stem entirely from the
presumed even parity of the Θ. An unambiguous experimental determination of the Θ parity
would be very important, and necessary experiments are being planned[18], [19].

Let’s turn to the calculation of the Θ wave function. The goal is to model a effective
interaction between the pseudoscalar excitations and the nucleon that reproduces the energy
and decay properties of the Θ. Consider a color-singlet ds̄ configuration of even parity that
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moves in a relative p-wave around the nucleon. The d quark can have any one of three colors,
and the pair can have any of three values of Lz, so there are 9 possible states. Similarly
there can be us̄ configurations, so there are 18 possible states. The coherence of 18 states
will lead to considerable collective effects. Furthermore, we can include radial excitations.
In this case, number of states will be unlimited.

We’ll use a specific schematic model to see how coherent effects can cause strong attrac-
tion. Let an(k) denote the operator that destroys a pseudoscalar excitation in a discrete
level n, and let bm(p) denote the nucleon destruction operator. Our proposed wave function
for the Θ state of total momentum P and spin m is given by

|Θ(P, m)〉 =
∑

n

∫
d3q a†

n(q)
∑

m′

〈m|σ · qr|m′〉b†m′(P− q)cn(qr)|0〉, (1)

where qr ≡ (Mq − µ(P − q))/(M + µ) is the relative momentum between the meson (of
mass µ) and nucleon constituents of the Θ. The function cn will be determined by solv-
ing the Schroedinger equation. The wave function of Eq. (1) is a coherent superposition
of states, and this coherence will generate a huge attraction. The normalization condition
is 〈Θ(P′, m′)|Θ(P, m)〉 = δm,m′δ(P − P′). We’ll show below that using color-singlet pseu-
doscalar excitations in a p-wave relative to the nucleon substantially suppresses the decay
to KN , while allowing the virtual transition to K∗N .

Now let’s write the Hamiltonian. The nucleon and Θ are treated as heavy objects, and
the energy carried by the the i’th excitation is denoted as ωi, with

ωi = µ + ∆E1 + ∆Ei, (2)

where the energy required by having a relative p-wave is ∆E1, the energy due to a possible
radial excitation is ∆Ei, and the energy required by having two extra quarks of total effect
mass is µ. As noted above the naive quark model gives ω0 ≈ 1400 MeV, if radial excitations
are ignored. The value of µ in the naive quark model would be about 850 MeV, but this
ignores the potential influence of an attractive confining and hyperfine interactions between
the s̄ and its partner. This attraction could be about 600 MeV [20] so that ωi is at least
aproximately 900 MeV, and µ is at least 250 MeV. Such energies are much larger than the
expected kinetic energies of the pseudoscalar excitations and the nucleon, so the latter are
neglected.

Given the above definitions and aproximations, the unperturbed Hamiltonian H0 can be
expressed as

H0 = M
∑

ms

∫
d3p b†ms

(p)bm(p) +
∑

i

ωi

∫
d3k a†

i(k)ai(k), (3)

where M is the nucleon mass. The residual interaction V̂ is chosen as

V̂ = −λ
∑

i,j,ms

∫
d3kd3k′d3p a†

i(k
′)b†ms

(p + k − k′)aj(k)bms
(p)Di(k

′
r)Dj(kr)k

′
r · kr, (4)

where kr = (Mk − µp)/(M + µ),k′
r = (Mk′ − µ(p + k − k′))/(M + µ), and kr =| kr |

If the Θ is in its rest frame (k + p = 0), the relative momenta can be taken to be that
of the pseudoscalar excitation (or the negative of the nucleon momentum). In this case,
kr = k,k′

r = k′. The real functions Di are to be defined as part of the model, with a spatial
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FIG. 1: Graphical solution of Eq. (6). The variable x represents the quantity MΘ − M .

extent determined by the nucleon radius, R0. The interaction V̂ involves all 5 quarks, and can
arise through two successive three-quark ’t Hooft interactions proceeding via the instantons
in the vacuum. Thus three separate flavors are required for this mechanism to occur.

Proceed by using Eq. (1) (for P = 0) in the Schroedinger equation with the Hamiltonian

H = H0 + V̂ , and then acting with aj(l), where l is an arbitrary momentum vector, on both
sides. After some algebra, one obtains the result:

cj(l) = −λ

3

Dj(l)

(MΘ − M − ωj)

∑

n

∫
d3q Dn(q)cn(q)q

2. (5)

This relation is a consistency condition between the Hamiltonian and wave function, and can
be re-written as a transcendental equation for MΘ using techniques developed long ago[17].
To see this, multiply Eq. (5) by l2Dl(l), integrate over d3l, sum over j and divide by a
common factor to obtain:

1 =
λ

3

∑

j

∫
d3l l2Dj(l)cj(l)

(−MΘ + M + ωj)
. (6)

Consider the right-hand-side to be a function of MΘ, F (MΘ) that has poles at MZ = M +ωi,
with F (MΘ) small and positive at MΘ = 0, but increasing to infinity, crossing unity on its
way, as MΘ approaches M + ω1. This crossing point is the lowest value of MΘ that solves
Eq. (7). For MΘ slightly greater than M + ω1, F (MΘ) will rise from negative infinity and
cross unity at a value between M +ω1 and M +ω2, which is a much higher value. See Fig. 1
which shows that one solution occurs at a much lower energy than all of the others; this
corresponds MΘ, with the Θ as a collective vibration.

The graphical solution shows that all but one of the eigenvalues occur between the energies
of the unperturbed states. A useful simplification [17] is to let the ωj of Eq. (6) become
equal to a common value, taken as ω. Then the vertical lines of Fig. 1 coalesce and all but
one the eigenvalues are equal to ω. One value is considerably lower than the others, the one
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of the Θ. Then

MΘ = M + ω − λ

3

∑

j

∫
d3qq2D2

j (q). (7)

Since our treatment is meant to be schematic, we take each Di to be the same, Di(q) =
D(q), and take the number of states to be N(≥ 18). The essential feature here is that N is
large; its exact value will not matter. Then eqn. (5) can be solved as

cj(q) = γD(q), (8)

with γ determined from the normalization of the Θ as γ = 1/
√

N
∫

d3qq2D(q)2, and Eq. (7)
becomes

M + ω − MΘ ≈ µ =
λ

3
N
∫

d3q q2D2(q). (9)

The result Eq. (9) shows the power of the coherence in increasing the importance of the
residual interaction by a factor of at least 18! This mechanism is an attractive version of the
repulsive mechanism used to describe the nuclear giant dipole resonance[17]. The discovery
of this huge collective resonance involved a puzzle. Simple shell model considerations gave
the energy of the excited state as one unit of h̄ω, while the observed value is ≈ 2h̄ω. The
coherent effect of a repulsive particle-hole interaction was shown[17] to increase the energy
of the giant dipole resonance. Here there is an attractive residual interaction between the
excitations and the core nucleon. The replacement of M + ω − MΘ by µ involves noting
that ∆E1 ≈ MΘ − M(≈ 600) MeV (recall Eq. (2)) and then including any effects of radial
excitations in the parameter µ.

We next argue that the wave function Eq. (1) leads naturally to a very weak decay to the
KN channel. What are the mechanisms for decay? One might think of gluon exchange, but
the effects of one gluon exchange are eliminated by the color singlet nature of the nucleon and
its excitation. One is left with multi-gluon exchanges at low energies, but these effects must
be non-perturbative so it is natural to think of chiral mechanisms. Indeed, a natural model
to use when considering low-energy excitations is the cloudy-bag model[21], or its relativistic
form[22]. In this model, the pseudoscalar excitation interacts by exchanging a pion with the
nucleon core. The pion is emitted only by the u or d quark in the pseudoscalar excitation,
the interaction can be expressed as σ ·v where v is the relative momentum between the pion
and the light quark. The matrix element for the transition to a state with kaonic quantum
numbers ∝ Tr [σ2σ · vσ2] = 0, but the one for the transition to a state with K∗ quantum
numbers is ∝ Tr [σ · vσ2] 6= 0. Thus transitions between the Θ and nucleons involving virtual
K∗ mesons can be strong. Indeed, the absorption of a virtual K∗ by a nucleon making a Z
will be strongly enhanced due to coherent collective effects.

The next step is to use the present model to estimate the Θ-nucleon interaction. We shall
see that the resulting ΘN potential will be proportional to −µ, and therefore very strong.

The interaction between the Θ and the nucleon is expressed in terms of a po-
tential. The initial ΘN state is defined by the quantum numbers (P, mΘ;p, m)
and the final state is similarly (P′, mΘ′;p′, m′). The relevant matrix element

is 〈Θm′

Θ
(P′), Nm′(p′)|V̂ |ΘmΘ

(P), Nm(p)〉c = δ(P + p − P′ − p)〈Θm′

Θ
(P + p −

p′), Nm′(p′)|v|ΘmΘ
(P), Nm(p)〉c. The subscript c indicates that the matrix element contains

a reproduction of the Θ self-energy proportional to V0 that must be subtracted. Evaluation
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FIG. 2: ΘN interaction. The heavy lines represents the Θ and the light one the nucleon. Coherent

excitations in the Θ are denoted by the dashed line V̂ is represented by the circle.

of the matrix element shows that only the term in which the coherent cloud of theta interacts
with the nucleon survives the evaluation[23], see Fig. 2. Then one finds

〈Θm′

Θ
(P + p− p′), Nm′(p′)|v|ΘmΘ

(P), Nm(p)〉c =

−µNδm,m′δmΘ,m′

Θ

∫
d3qC(q′r)D(k′

r)C(qr)D(kr)k
′
r · kr〈m′

Θ|σ · qr σ · q′
r|mΘ〉, (10)

where qr = (Mq − µP)/(M + µ), kr = (Mq − µp)/(M + µ), q′
r = qr + ∆, k′

r = kr + ∆,
and ∆ ≡ P′ − P. This mechanism involves the mutual polarization of two interacting
composite quantum systems, and e.g has some features in common with the two-photon
exchange interaction responsible for the Van der Waals force.

Let’s see what Eq. (10) tells us about the ΘN interaction. First, simplify the integral
over d3q by changing variables: q → q + µ/MP → (M + µ)/MQ,Q → Q − ∆/2. This
allows us to re-write Eq. (10) as

〈Θm′

Θ
(P + p − p′), Nm′(p′)|v|ΘmΘ

(P), Nm(p)〉c = δm′,m(−µN)
(

M + µ

M

)3

γ2 ×
∫

d3QD(|Q − ∆/2|)D(|Q + ∆/2|)D(|Q− L− ∆/2|)D(|Q− L + ∆/2|) ×
[
(Q − L)2 −∆2/4

] [
δmΘ,m′

Θ

(
Q2 − ∆2/4

)
+ 2〈m′

Θ|iσ · (Q ×∆/2)|m′
Θ〉
]
, (11)

where L ≡ µ/(M + µ)(p − P). The quantity p − P is essentially the relative momentum
between the Θ and the nucleon[24]. We’ll apply this expression to compute the properties
of the Θ in nuclear matter. In that case both p and P have small magnitudes on the order
of the inverse nuclear radius. Furthermore, the symmetries of the integrand allow one to
show that only terms involving powers of L ·L ∼ (µ/(M +µ))2(R0/RA)2, and are neglected.
Then Eq. (11) leads to an expression in which the potential is expressed as δmΘ,m′

Θ
δm′,m

times a function of the variable ∆. Thus, the matrix element of V̂ is equivalent to one for a
spin-independent local potential v(r), where r is the distance between the nucleon and the
Θ. To be specific, take

D(K) = e−αK2R2
0 , (12)
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where
√

αR0 is of the order of the nucleon size ∼ 1 fm. Then we obtain:

v(r) = −V0

(

1 − 1

6

r2

αR2
0

+
r4

48α2R4
0

)

exp

(
−r2

4αR2
0

)

, V0 ≡ µ
(

M + µ

M

)3

. (13)

The strength of v(r) is constrained by the known mass of the Θ, but also depends on the
paramter µ. We have argued above that possible values of µ range between 250 and 800
MeV. We use the lowest value to obtain V0 ≈ 420 MeV. This is amazingly strong potential
persists to relatively long ranges on the order of a fm for any reasonable choice of α. Thus
there will be substantial ΘN attraction, even if there is a repulsive interaction at short
distances between the nucleon and the nucleon constituent of the Θ.

The result (13), with its huge attraction, is the essential finding of this paper. It arises
from the assumed even parity of the Θ and the assumption that the surprisingly small mass
of 1540 MeV arises from a coherent interaction.

How can the influence of such an attraction be made observable? The immediate implica-
tion is that the Θ would be bound to nuclei with a binding energy of the lowest energy state
is substantially greater than the 105 MeV threshold energy. This can be seen by observing
that the Θ-nucleus mean field U is the convolution of the interaction (13) with the density
ρ of nucleons within the nucleus. Then, with RΘ as the distance between the Θ and the
nuclear center,

U(RΘ) =
∫

d3sv(s)ρ(RΘ + s) ≈ ρ(RΘ)
∫

d3sv(s), (14)

in which the second equation arises from taking the nuclear radius to be much, much greater
than R0. Carrying out the integral one finds

U(RΘ) ≈ −V0ρ(RΘ)10(απ)3/2. (15)

To estimate the central maximum value take ρ(0) to be the density of infinite nuclear matter,
(1/6)fm−3 and α = 1/4 so that the exponential term of the interaction v(r) has a range of
R0 = 1 fm. This gives the central nuclear potential a value of about 490 MeV. This is a huge
attractive potential. For such a deep potential, the binding energy is close to the central value
of the potential. This is much larger than the 105 MeV threshold energy, so the Θ bound to
the nucleus will be stable against decay by strong interaction effects. A more sophisticated
calculation would include the repulsive influence of nucleon-nucleon correlations and reduce
the strength of the attractive interaction. However, with the mean field calculation giving a
binding energy of 490 MeV, we can be sure that a huge attraction survives. Thus we predict
that a new state of nuclear matter, Θ-matter of positive strangeness and excitation energy
of the order of hundreds of MeV exists.

How can Θ-matter be detected? It has long been known that hypernuclei can be made in
reactions in which a nucleon is replaced by a hyperon of roughly the same momentum[25].
With this in mind, it’s a straightforward exercise in kinematics to see that Θ nuclei can
be made using photon or kaon beams of energies from about 1 to 5 GeV or more. Denote
(A − 1)Z as a state of baryon number A − 1 containing one Θ. Then reactions γ + A →
Σ + (A − 1)Θ, K + A → π + (A − 1)Θ, are prime candidates for reactions that would
copiously produce Θ-nuclei. This because the required transfer to the nucleus is very small.
For example, for a 40Ca target, Θ binding energy of 200 MeV, and a photon beam of 3 GeV,
(pγ −pΣ)2 = .004 GeV2 for forward production. Similarly a kaon beam of 3 GeV would have
(pK − pπ)2 = .026 GeV2.
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There are other implications of the present model. Since the low mass of the Θ is caused
by a non-confining residual interaction involving a us̄ or ds̄ pair, it is reasonable to expect
that uc̄, uc̄ and db̄,dc̄ will interact with nucleons in a similar manner. Thus there should
be a charmed pentaquark at about 1540 MeV plus the c-s quark mass difference of about
1000 MeV. Such state would be stable against strong decay into a D meson and a nucleon.
Similarly, the bottom pentaquark system would be stable against decay into a a B meson
and a nucleon. Thus, in agreement with previous authors[15], we expect that the charmed
and bottom versions of the pentaquark will be stable against particle decay.

The present schematic model is too naive for detailed applications to spectroscopy, which
generally is a difficult subject to pursue[26]. However, discussing the energy of the doubly
strange version, a possible Σ(3/2), of the pentaquark observed in Ref. [9] is worthwhile. If
the doubly strange system and the Θ really are members of the same multiplet then we may
estimate MΞ(3/2) as MΞ(3/2) = MΘ + (Ms − md) + (E3/2 − E1/2) in which the The term in
parenthesis is an estimate of the influence of the difference in angular momentum. Taking
this from the mass difference between doubly strange Ξ(1530) J=3/2 and Ξ(1320) J=1/2
states gives MΞ(3/2) ≈ 1920 MeV, which is in fair agreement with the experimental value of
1862 MeV.

We have presented a schematic model of quark-pair interactions with nucleons that repro-
duces the essential features of an even parity strange pentaquark. The attractive schematic
interaction gets a huge strength from collective coherent effects and therefore reproduces the
low mass (1540 MeV) small width (to the KN channel) but does not lead to a suppression
of the production of a virtual kaon, K∗. In this model, the Θ can be regarded as a collective
vibration of the nucleon. Determining the fundamental origin of the schematic interaction
would be a task for further work.

A natural consequence of the strong attraction is that Θ nuclei, stable against strong
decay, may exist. Such states can be made in photon and kaon beam experiments. Suppose
the Θ has odd parity. Then one need not account for the excitation energy of 600 MeV,
using an attractive residual interaction, and one would not predict that Θ-nuclear matter
would be stable against decay by the strong interaction. Therefore, the discovery of such
stable Θ-nuclear matter could be a definitive proof that the Θ parity is even.
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