
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Autonomous Probabilistic Coprocessing With Petaflips per Second

Permalink
https://escholarship.org/uc/item/6mg4d18h

Authors
Sutton, Brian
Faria, Rafatul
Ghantasala, Lakshmi Anirudh
et al.

Publication Date
2020

DOI
10.1109/access.2020.3018682
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mg4d18h
https://escholarship.org/uc/item/6mg4d18h#author
https://escholarship.org
http://www.cdlib.org/


1

Autonomous Probabilistic Coprocessing with
Petaflips per Second

Brian Sutton, Rafatul Faria, Lakshmi A. Ghantasala, Risi Jaiswal, Kerem Y. Camsari, and Supriyo Datta

Abstract—In this paper we present a concrete design for a
probabilistic (p-) computer based on a network of p-bits, robust
classical entities fluctuating between -1 and +1, with probabilities
that are controlled through an input constructed from the outputs
of other p-bits. The architecture of this probabilistic computer is
similar to a stochastic neural network with the p-bit playing the
role of a binary stochastic neuron, but with one key difference:
there is no sequencer used to enforce an ordering of p-bit updates,
as is typically required. Instead, we explore sequencerless designs
where all p-bits are allowed to flip autonomously and demonstrate
that such designs can allow ultrafast operation unconstrained
by available clock speeds without compromising the solution’s
fidelity. Based on experimental results from a hardware bench-
mark of the autonomous design and benchmarked device models,
we project that a nanomagnetic implementation can scale to
achieve petaflips per second with millions of neurons. A key
contribution of this paper is the focus on a hardware metric
− flips per second− as a problem and substrate-independent
figure-of-merit for an emerging class of hardware annealers
known as Ising Machines. Much like the shrinking feature sizes
of transistors that have continually driven Moore’s Law, we
believe that flips per second can be continually improved in later
technology generations of a wide class of probabilistic, domain
specific hardware.

I. INTRODUCTION

STOCHASTIC artificial neural networks (ANN) have broad
utility in optimization and machine learning (ML) tasks

such as inference and learning [1]. Even though stochastic
ANNs are relatively rare in modern ML architectures [1],
stochasticity is often viewed as a useful resource [2]–[4].
A class of emerging hardware accelerators, known as Ising
Machines, typically have stochastic neural network represen-
tations. Ising Machines designed to solve hard problems in
combinatorial optimization continue to emerge using a wide-
range of underlying technologies. Solvers for such problems
have been explored using quantum effects, optical approaches,
digital logic, and magnetic technologies [5]–[18]. In general,
these systems map a given optimization problem onto a
hardware whose operation is guided by a cost function [19],
[20].

A common version of such stochastic neural networks is
based on the concept of a binary stochastic neuron (BSN) [21],
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[22] which fluctuates between -1 and +1 with probabilities that
can be controlled through an input, Ii, constructed from the
outputs of other BSNs, mj . The synaptic function, Ii({m}),
can have many different forms depending on the desired
functionality, but we will restrict our discussion to linear
functions defined by a set of weights Wij such that

Ii(t+ τS) = β
∑
j

Wijmj(t) (1)

where β is a constant and τS is the ‘synapse time’, that is
the time it takes to recompute the inputs {I} every time the
outputs {m} change. In software implementations, each BSN
is updated repeatedly according to

mi(t+ τN ) = sgn
[
tanh (Ii(t))− r[−1,+1]

]
(2)

where r[a,b] represents a random number in the range [a, b],
and τN is the ‘neuron’ time, that is the time it takes for
a neuron to provide stochastic output mi with the correct
statistics dictated by a new input Ii.

It is well-known [23] that to ensure fidelity of operation
it is important to avoid simultaneous updates of two BSNs
that are connected through a non-zero Wij . The standard
approach to avoid this issue is to update each BSN sequentially
according to Eq. (2), recomputing the input from Eq. (1)
after each update, a procedure known as Gibbs sampling
[24]. With sequential updating, the p-bit update rate, given
as the number of flips per second (f ), is limited by the
clock speed of a given implementation. While it is possible
to optimize such an approach with high-speed hardware, the
sequential nature of the update limits is limiting. It is possible
to enable parallel updates for groups of neurons if an encoded
problem can be partitioned into decoupled groups of neurons
sequenced to update independently. However, this partitioning
is still constrained by the need to avoid simultaneous updates
while also requiring problem specific analysis to determine
the neuron update groupings. Existing hardware approaches
have used problem specific partitioning to improve f and we
will compare our approached with these implementations in
section V.

In contrast with sequenced BSN update approaches, the
objective of this paper is to explore the feasibility of ultrafast
operation through an autonomous architecture whereby each
BSN continually fluctuates between -1 and +1 with proba-
bilities that are controlled by the input Ii. We refer to this
autonomous BSN as a p-bit [25] to highlight its role as the
key element of an autonomous p-computer (ApC), similar to
the role of a q-bit in a quantum computer. We note that such
an autonomous architecture in the absence of any clocking
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circuitry that controls the updating p-bits has recently been
demonstrated in small scale using 8 magnetic tunnel junction
based p-bits [26]. With this experimental demonstration of an
8 p-bit design, it is important to understand if such a system
can scale effectively.

Herein we use FPGA emulation to demonstrate the oper-
ation of a scaled version of such an autonomous computer
up to 8100 (90×90) p-bits with all the necessary peripheral
circuitry, including programmable synapses that are used to
map different problems to the co-processor. The FPGA im-
plementation presented in this paper is specifically designed
to capture the autonomous operation of probabilistic bits that
fluctuate in time allowing us to make performance projections
of a scaled implementation of the demonstration presented in
Ref. [26]. This paper demonstrates the feasibility of an ApC
that performs the weight logic and p-bit functions defined by
Eqs. (1) and (2) without the aid of sequencers as portrayed
in Figs. 1(a) and 1(b). Our work is motivated by the com-
pact, fast, energy efficient hardware that are currently being
developed for the implementation of these functions [27] as
shown in Fig. 1(c), which we emulate using existing CMOS
devices on an easily reconfigurable, cloud accessible digital
FPGA platform, Fig. 1(d).

In the following sections, we will present an emulation
framework for the study of scaled autonomous probabilistic
coprocessing and use the framework to provide performance
predictions of a design based on nanomagnets, helping to
motivate such an implementation. Section II will provide an
overview of the ApC, our analysis methodology, and present
an abstract autonomous p-bit model with corresponding device
benchmarking. Section III provides an overview of the design
and implementation of a p-computing coprocessing framework
using a cloud-accessible FPGA platform. Section IV presents
results for two distinct applications using the coprocessor, one
involving combinatorial optimization and one involving emu-
lated quantum annealing. Finally, sections V and VI discuss
how these applications help show that accurate results can be
obtained with a sequencerless probabilistic computer of the
type envisioned by Feynman [28], implemented using modern
devices to enable operation at ultrafast rates unconstrained by
the available clock speed in a sequenced design.

II. AUTONOMOUS P-COMPUTING MODEL

The building block for our ApC has four components as
shown in Fig. 1(a):
• weight logic to implement Eq. (1),
• p-bit to implement Eq. (5) described below,
• write unit to program the weights Wij and β
• read unit to access the individual p-bit outputs

Fig. 1(b) shows how multiple building blocks can be inter-
connected to form a p-computer. The tiling shown is based on
nearest-neighbor connections, but the connections need not be
limited to nearest-neighbor. We have also implemented all-to-
all networks using the digital emulator shown in Fig. 1(d), as
discussed in section III. In the following sub-sections, we will
introduce what is meant by “autonomous” operation, present
a digital model for such an autonomous p-bit, and finally
benchmark the digital model against a physical device model.
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Fig. 1: Autonomous p-Computer (ApC): a. A weighted p-
bit building block is used to construct an ApC that comprises
four components supporting weight logic, p-bit logic, weight
programming, and p-bit readout. b. The individual building
blocks are interconnected to construct an ApC with a desired
topology. A nearest-neighbor coupling layout is depicted. c
A projected MRAM based ApC using nanomagnetic devices
for the p-bit with resistor-based weight logic can be used to
form a compact, efficient building block. d. Using all-digital
technology, an FPGA was used to construct and ApC that em-
ulates the MRAM based design. An example composition of a
p-bit with a linear, register based weight logic, a lookup table
based activation function, a linear-feedback shift register based
pseudo random number generator, and a pseudo-asynchronous
attempt logic is shown.
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A. Autonomous p-bit Operation

Superficially Fig. 1 looks like other existing neural network
architectures, like the one used for TrueNorth [29]. However,
to our knowledge, earlier implementations have used time-
multiplexing [29], [30] to share the same resource among
different neurons and synapses, while our objective is to
eliminate sequencing and time-multiplexing altogether so that
we are not constrained by available clock speeds. TrueNorth
for example uses 4096 neurosynaptic cores, each core having
dedicated neuron and synaptic memory forming 256 logical
neurons that are time multiplexed sequentially to implement
4096× 256 ≈ 1M logical neurons [29]. For our sequencerless
operation we would need 1M distinct building blocks for the
same number of neurons. This would be impractical if we were
relying on fully digital implementations, however the compact
hardware implementations currently being developed makes
such a design feasible. As an example, stochastic behavior of
nanomagnets has recently attracted attention in the context
of novel computing paradigms, and they show promise in
probabilistic and neuromorphic applications [31]–[45]. For
example, an MRAM-based p-bit requires only 3 transistors and
a magnetic tunnel junction [46], while its digital emulation
requires significantly more transistors. With such compact
hardware, it is feasible to have one building block for every
p-bit in order to support sequencerless operation that is not
limited by clock speeds.

We call this sequencerless operation of ANNs “au-
tonomous” to distinguish it from the asynchronous operation
that is widely used in the context of Spiking Neural Networks
[29], [30].

As a quantitative measure of an ApC’s speed of operation
we use the number of flips per second (f ), a flip being defined
as a p-bit update attempt (i.e. it may choose not to actually
flip). For purely sequential updating, the number of flips per
second is ∼ 1/(τS + τN ). However, as mentioned earlier,
updating need not be purely sequential since unconnected
BSNs can be simultaneously updated without loss of fidelity.
If a number (Np) out of the total number (N ) of BSNs can
be updated in parallel, then the number of flips per second
will be much larger ∼ Np/(τS + τN ). Note, however, that in
order to achieve this enhanced flip rate, the number of neurons
that are simultaneously updated, Np, have to be deliberately
selected using a digital sequencer, so that the clock period,
τclock, limits the maximum number of flips per second:

f ≤ Np

τclock
(Sequenced mode) (3a)

This clock speed will be limited by the synapse and neuron
times, τS , τN respectively, and the overhead associated with
clock distribution [47].

The objective of this paper is to present a framework for
clockless operation [23] whose speed is limited only by the
neuron and synapse speeds

f ≤ N

τN
=
sN

τS
(Autonomous mode) (3b)

where s ≡ τS/τN . We will show that this autonomous mode
provides high fidelity results without supervision keeping

the fraction of detrimental simultaneous updates down to an
acceptably low. Detrimental updates are managed simply by
choosing a small s so that τN is much longer than τS , without
using a digital sequencer to enforce a deliberate update order.
As a result, f is not limited by τclock and can continue to
operate faster as the synapse time τS is lowered. For example
if we have nearest neighbor connections with weights of
{−1, 0,+1}, then the synapse can be implemented with short
wires which respond in times less than 10 to 100 ps [48],
much shorter than typical clock periods.

Eqs. (3a) and (3b) suggest that an autonomous design will
allow faster operation (that is, more flips per second) if

τS <
sN

Np
τclock (4)

The factor Np/N represents the fraction of neurons that can be
updated simultaneously, which depends on the fan-in, the na-
ture of interconnections, and problem topology. For example,
with nearest neighbor connections on a 2D square lattice as
in Fig. 1(b), half the nodes can be updated simultaneously
so that Np/N = 1/2. The factor s also depends on the
interconnections, but it additionally depends on the nature of
the problem and the degree of solution fidelity needed, as we
will show in this paper.

Ideally, we would implement a scaled version of an ApC us-
ing nanomagnetic devices to explore the performance of such
a design. However, given current technological limitations, we
will model the operation of p-bit hardware using a digital
FPGA platform. In the following section we discuss how
we use a digital, synchronous device to emulate intrinsically
asynchronous nanomagnets.

B. Autonomous p-bit Model

As digital platforms are inherently synchronous, we mimic
autonomous operation by replacing Eq. (2) with a new
hardware-inspired model, Eq. (5) below that we benchmarked
against established device models (section II-C). These equa-
tions are based on SPICE simulations of Boltzmann networks
where the update order of p-bits becomes irrelevant due to
the symmetric coupling between connected p-bits. Such a
clockless circuit corresponds to the asynchronous parallelism
scheme used to realize Boltzmann Machines in hardware with
no asymptotic guarantees for convergence [23] unless all p-
bits operate with up-to-date information that is enabled by fast
synapses [49]. This model is valid for such networks, however,
for other networks such as those with directed connections, the
update ordering of p-bits may be important and other hardware
models more appropriate for these systems are likely required
and are not discussed in this paper.

At each time step, all p-bits are free to flip and they do so
with a probability ∼ s that is controlled by the input Ii having
a zero-input value s(Ii = 0) = s0 � 1.

mi(n+ 1) = mi(n)× sgn[e−s − r[0,1]] (5a)

s = s0e
−mi(n)Ii(n) (5b)

As each p-bit flips with a probability ∼ s in each time step,
the average time taken for a p-bit to respond is 1/s. Since time
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steps are measured in units of τS , we have τN = (1/s)× τS
as stated earlier. Unlike Eq. (2), Eq. (5) can be used to
update all p-bits in parallel without explicitly worrying about
simultaneous updates. With small values of s0, the fraction of
simultaneous updates is sufficiently small such that Eq. (5)
in an unsequenced mode gives results equivalent to those
obtained from careful sequencing using Eq. (2).

For a given network topology and embedded problem [50],
[51], the value of s that ensures convergence to thermal
equilibrium must be identified in order to assess the amount
of parallelism in the design. The desire is to find the smallest
value of s that converges the thermal equilibrium for the
problem specific Boltzmann distribution. In section IV we
explore two example problems and evaluate the degree of
parallelism obtainable. For example, in the nearest-neighbor
design of Fig. 7, a value of s = 1/4 ensures convergence
for a network of 8100 neurons. This value of s states that
on average the number of neurons that update within each
synapse delay is N × s = 2025. However, as the problem
complexity increases, i.e. the incorporation of on-site biases,
the acceptable value of s decreased to 1/12 as shown in Fig.
8. Ultimately, the term s drives the physical design of the
synapse and neuron implementation.

C. Model Benchmarking with Stochastic LLG

The autonomous p-bit model of (5a) and (5b) was bench-
marked against a coupled stochastic Landau-Lifshitz-Gilbert
(sLLG) equation. Magnetization dynamics of the modeled
circular stochastic nanomagnet are captured by solving the
sLLG equation [52]:

(1 + α2)
dm̂

dt
= −|γ|m̂× ~H − α|γ|(m̂× m̂× ~H)

+
1

qNs
(m̂× ~IS × m̂) +

(
α

qNs
(m̂× ~IS)

)
(6a)

where α is the damping coefficient, γ is the electron
gyromagnetic ratio, Ns = MsVol./µB is the total number
of Bohr magnetons in the magnet, Ms is the saturation
magnetization, ~H = ~Hd + ~Hn is the effective field
including the out-of-plane (x̂ directed) demagnetization field
~Hd = −4πMsmxx̂, as well as the thermally fluctuating

magnetic field due to the three dimensional uncorrelated
thermal noise Hn with zero mean 〈Hn〉 = 0 and standard
deviation 〈H2

n〉 = 2αkT/|γ|MsVol. along each direction, ~IS
is the applied spin current to the nanomagnet. The HSPICE
solver we employed is based on spherical coordinates that
solves for (θ,φ), but the noise is first included as three
uncorrelated random magnetic fields in Cartesian coordinates
before being turned into spherical coordinates [53]. The
HSPICE solver uses the .trannoise function [53] and
is benchmarked against our own MATLAB implementation
that uses the Stratonovich convention [54], as well as the
Fokker-Planck Equation [52], [53]. We have used a time step
of 1 ps for the chosen parameters which is verified by
comparing the equilibrium fluctuations of single nanomagnets
that are obtained numerically, against the expected Boltzmann
distribution.

Model

Model

Model

Fig. 2: Benchmarking the behavioral model with sLLG
using Euclidean distance: Using a random Sherrington-
Kirkpatrick spin glass instance for different network sizes,
N , the behavioral model is benchmarked against sLLG as
a function of time. Each point on the graph represents the
Euclidean distance from the ideal Boltzmann distribution and
the ensemble solution obtained from the behavioral model and
sLLG. The steady state error will depend on the number of
ensembles as shown by the black dotted line.

Normally, a nanomagnet based p-bit thresholds its con-
tinuous output with an inverter [25], [55] that is typically
included in SPICE simulations with additional transistors.
In order to simplify numerical simulations in the present
context, we artificially threshold the sLLG outputs (such that
mz > 0 → 1 and mz < 0 → 0) at each time step.
This allows a binarization of the sLLG outputs that allow
each p-bit to have a binary output, according to Eq. 2. Note
that in an actual device implementation, a single inverter is
enough to threshold the output given that a moderate tunneling
magnetoresistance value (TMR=RAP /RP − 1 ≈ 100%) leads
to voltage fluctuations of ≈ 200 mV’s over a voltage division
of VDD = 0.8 V, which is more than enough for a single
inverter to threshold these fluctuations to rail-to-rail voltages
[55]. For a detailed analysis of the nanomagnet based p-bit
design that includes device-to-device variations, see Ref [26].

Individual p-bits are coupled according to:

Izs,i(t+ ∆t) = βIs0
∑
j

Wij sgn(mz
j (t)) (7)

where, Is0 is the tanh fitting parameter of the sigmoidal
response (sgn(mz) versus spin current Izs along z-direction).
Equation 7 and Equation 5 constitute the autonomous behav-
ioral model that is used to benchmark the results of coupled
sLLG equations, which we refer to as “behavioral model”
hereon. In the benchmark, a circular disk magnet with a van-
ishing anisotropy (HK) is used with the parameters: diameter
D = 150 nm and thickness t = 2 nm, α = 0.01, Ms = 1100
emu/cc, HK = 1 Oe resulting in an autocorrelation time of
τcorr = 1.372 ns and Is0 = 1 mA. A fitting parameter of 1.4
is used in the behavioral model for τN , i.e. τN = 1.4τcorr.

We use a simulated Sherrington-Kirkpatrick [56] spin glass
network with a random coupling matrix and random bias
between -1 and +1. The benchmarking of the proposed be-
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Model

Model

Fig. 3: Benchmarking the behavioral model with sLLG
using Free Energy: The free energy calculated for the random
Sherrington-Kirkpatrick spin glass instance of Fig. 2 from the
behavioral model is benchmarked against sLLG as a function
of time for network sizes N = 16 and N = 24, showing
convergence to the free energy obtained from Boltzmann law.

havioral model with the coupled sLLG network, analogous to
the probabilistic circuit proposed in [57], is accomplished by
comparing two different quantities: (1) Euclidean distance and
(2) Free energy.

Euclidean distance is defined by:

ED =

√√√√ 2N∑
i=1

(Pi − Pi,Boltzmann)2 (8)

where Pi is the probability of occurrence of the i-th configura-
tion computed out of 4000 ensembles at each time step of the
simulation. Pi,Boltzmann is computed from the joint probability
distribution obtained from a Boltzmann law.

The second benchmark approach is based on a comparison
of the free energy of the system with what is expected from
the principles of statistical mechanics. Free energy is defined
by [58] the partition function Z:

FE =
ln(Z)

−β
‘ (9)

where, β is the pseudo-inverse temperature. Partition function
Z is given by:

Z =
∑
k

exp(−βEk) (10)

where k represents different configurations of the network.
Energy of a specific configuration is defined by:

Ek = −0.5
∑
i,j
i 6=j

Wijmimj − himi − hjmj (11)

When numerically calculating free energy from the sLLG
data, the following steps have been applied (similar to the
importance sampling method described in [59]):

1) The probability of different configurations, Pi, are cal-
culated out of 4000 ensembles for each time step

2) For each Pi larger than a certain threshold value Pth, the
partition function Zi = exp(−I0Ei)/Pi is calculated, so
that outliers are excluded

3) For each Zi, the free energy FEi = − ln(Zi)/I0 is
calculated.

4) Finally the mean of all FEi is computed.
The above method is suitable for small examples, but may

not scale due to the difficulty in empirically calculating dif-
ferent probabilities Pi as the network size grows. The striking
agreement between the sLLG model and the behavioral model
given by Eq. (5) shown in Fig. 2 and Fig. 3 helps establish the
validity of Eq. 5 as a suitable digital model of an autonomous,
stochastic MTJ-based computer.

III. EMULATION FRAMEWORK

Having established a model for the autonomous p-bit opera-
tion, in this section we describe the design and implementation
of an FPGA based framework to explore the performance,
scalability, and other characteristics of an ApC.

A. Autonomous FPGA Coprocessor

An all-digital framework based on Eqs. (5a) and (5b) was
developed, Fig. 4, to facilitate architectural exploration of
an ApC, study various trade-offs in p-bit, weight logic, and
topology design, and to accelerate the combinatorial opti-
mization and sampling problems explored in section IV. The
digital framework leverages reconfigurable computing devices
to support rapid exploration of different designs. A Xilinx
Virtex Ultrascale+ xcvu9p-flgb2104-2-i provided via
Amazon Web Services F1 cloud-accessible EC2 compute
instances was used for the ApC implementation. While a
Xilinx FPGA was used in this work, the design is hardware
agnostic and another device, e.g. an Intel Stratix FPGA, could
readily be used.

As shown in Fig. 1(b) and Fig. 4(b), an ApC comprises
multiple weighted p-bits arranged in various topologies, each
supporting programmable problem instances. There are many
options for the implementation of programmable control,
weight logic, p-bits, and p-bit readout in a digital platform.
The digital ApC of Fig. 4 comprises a modular weighted p-
bit, Fig. 4(c), that can be organized into various topologies,
Fig. 4(b), supporting programmed problem instances. An
example weighted p-bit implementation is shown in Fig. 1(d)
leveraging a memory-mapped weight-logic register bank sup-
porting linear weight coupling. The output of the weight logic
block is provided to a programmable, activation function look-
up table that is used in conjunction with a Linear Feedback
Shift Register (LFSR) based pseudo-random function to imple-
ment Eqs. (5a) and (5b). Additional options were developed
and explored for these building block elements, see section
III-B and Fig. 6, beyond what is shown in Fig. 1(d).

Interaction with the FPGA framework is provided through
MATLAB MEX programs in a client-server command driven
model, Fig. 4(a). Clients issue commands to select which
of the pre-built topologies to program into the cloud FPGA



6

FPGA 
Accel.

Network

C
lie

nt
 A

PI
s

All to All

DDR
CPUs

PCIe
Eth.

1. Topology
2. Weights
3. Pseudo T

1. 

a b

cNext Nearest Neighbor

Nearest Neighbor
Topologies

Synapse

Neuron

Activation

PRNG

Attempts

Programmability

Fig. 4: Cloud Accessible p-computing Co-processor a.
Client applications are used to specify a desired network topol-
ogy, problem specific weights, and current pseudo-temperature
through a network accessible pool of dedicated servers. The
servers provide general purpose processing, network connec-
tivity, and PCIe accessible FPGA accelerators. After loading
the desired topology into the FPGA, the system operates and
provides a sampling interface for the current state of the net-
work p-bits. b. The architecture supports multiple topologies
depending on the problem of interest ranging from nearest-
neighbor connectivity to all-to-all connectivity. c. Each of
the modular p-bits in the network comprises a bus accessi-
ble programmable interface, synapse block, and neuron. The
neuron is further modularized to support different approaches
for flip-attempt logic, pseudo random number generation, and
activation function implementations.

instance, the current pseudo-temperature for the network,
problem specific weights, and options to pause or resume
the network. Commands are also provided to support random
sampling from the network for readout operation. Online an-
nealing is directly supported through global update operations
of the activation function look-up. All weights are dynami-
cally programmable through memory-mapped operations. The
server interfaces with a PCI Express (PCIe) attached FPGA,
interacting with the programmed design as commanded. Other
clients such as Octave and Python are readily supported
through a C++ abstraction layer leveraging networking and
serialization libraries.

Fig. 5 depicts the logical organization of the FPGA ApC de-
sign used herein. All interaction with the FPGA is performed
using a PCIe Gen3 x16 interface supporting direct memory
access (DMA) transactions (requester). Programmable control
of the design is accomplished using an AXI-Lite 32-bit
completer interface and memory map decoder. The address
space for the ApC is divided into a few regions: global control
and information registers, p-bit readout array, and individual
control for each weighted p-bit in the design.

The global address space provides information on the ApC
pertinent for client interaction with the system. This includes
information such as the total number of p-bits in the design,
the p-bit network topology, weight precision, and other useful
run-time information such as the number of elapsed synapse
delays between client sampling requests. Additionally, global
control functions include the ability to pause and resume the

network so that a client can access the global p-bit readout
array. This readout array holds the current output of all p-bits
sampled on each system clock cycle. Reads from this interface
are performed when the network is paused to ensure atomic
readout of all p-bits given the limited bandwidth of the readout
interface.

Each p-bit in the system has a local memory space sup-
porting programmable control of its function. Each p-bit has
localized programmable weights enabled through registers or
internal memory (RAM), a programmable activation function
lookup table supporting direct look-up or interpolation, support
for seeding the chosen pseudo random number generation
(PRNG) function, and finally a set of control registers for the
p-bit. The output of the p-bit programmable elements directly
interface with the weight logic, activation function, PRNG, and
comparator operation of the weighted p-bits. Online annealing
is accomplished using a global bus broadcast when program-
ming the activation function lookup tables, so that all p-bits are
updated simultaneously. Alternatively, each p-bit’s activation
lookup table can be independently controlled, allowing the
exploration of non-uniform bias, local temperature effects,
and other non-idealities, facilitating future opportunities for
exploration.

B. Digital Building Blocks

A modular digital p-bit was designed to support different
options for the p-bit building block elements. Each p-bit is
logically partitioned into a unit for pseudo-randomness or
“entropy”, a block for computing the activation function, and
a portion that uses the results of a comparison between the
activation function and PRNG to determine if a p-bit update
attempt should occur. There are various ways to construct
these elements using digital logic. In this design, a few select
implementations were explored as shown in Fig. 6. A non-
exhaustive exploration of design options described below was
performed as part of initial trade-study. As quantitative results
were not pursued, a qualitative assessment of the various
options is provided for completeness.

Fig 6(a) and 6(b) show two methods for performing au-
tonomous updates of each p-bit. Shown in Fig. 6(a) is the
logic corresponding to Eq. (5a) where the comparator provides
sgn
(
e−s − r[0,1]

)
. This approach emulates autonomy while

preserving fully synchronous operation of the digital design.
This p-bit update logic was used for the problems in this work.
The activation look-up is programmed with e−s.

A single clock domain within the FPGA is used to syn-
chronize the digital elements of each synapse and p-bit. For
each global clock period, tck, the synapse logic requires
τs = Nsyntck time to compute where Nsyn is the number of
global clock events required. In the nearest-neighbor models,
it is possible for Nsyn to need only a single cycle, however, as
the the weight precision and number of neighbors is increased,
Nsyn also increases. Thus, when specifying an s ratio, cou-
pled with a design driven Nsyn, the neuron time, encoded
probabilistically in the look-up table, is τN = s−1Nsyntck.

Alternative approaches were explored and implemented
for the p-bit updates including the use of free-running ring
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Fig. 5: Logical Organization and Memory Map: The FPGA based ApC coprocessor is accessible to a host processor from a
dedicated PCIe endpoint within the FPGA. This endpoint provides logical access to the internal memory map of the ApC. The
ApC contains global information and control registers, a global p-bit array facilitating readout, and finally individual control
of each weighted p-bit through a localized, dedicated address space.

oscillators, Fig. 6(b), to mimic the naturally stochastic update
frequency of an MTJ based p-bit as described by Eq. (2). In
this implementation, each p-bit has a dedicated free running
ring oscillator that generates asynchronous “attempt” edges
that are synchronized into a system clock domain. Each
asynchronous edge determines when the p-bit should attempt
to update based on the current output from a comparator
according to Eq. (2), in which case the activation look-up is
programmed with tanh. While the use of oscillators provides
some degree of true randomness for when flip attempts occur,
this benefit was marginal and did not out weigh the design
complexity and overhead (e.g. area and power) introduced with
their use. As a result, the design of Fig. 6(a) was selected for
the attempt logic.

While the attempt logic is used to determine when an
update attempt should be made, the logic relies on the output
of a comparator to determine if a flip should occur. The
comparator computes the sign of the difference between the
output of a PRNG and the output of the programmed activation
function. Shown in the second row of Fig. 6 are two PRNG
implementations. A Linear Feedback Shift Register (LFSR) is
a PRNG that provides pseudo randomness in a compact design
at the expense of output quality, Fig. 6(c). While the LFSR
may be sufficient for many problems, a higher-quality PRNG
was implemented that requires minimal FPGA resources, but
significantly improves the PRNG quality [60].

The second input to the comparator is from an activation
function output, shown on the third row if Fig. 6(e). As im-
plemented, a straight-forward look-up table was sufficient for
the designs in this paper. However, an improved interpolation
based activation function [61] would improve the accuracy of
the lookup results and may be necessary for certain problem

classes.
An additional building block was created to leverage physi-

cal randomness and a built-in sigmoidal response from within
a digital design as shown in Fig. 6(g). Leveraging a delay
based building block [62] and flip-flop metastability, “true”
entropy was used to construct a sigmoidal response as depicted
in Fig. 6(f). However, over continued operation within the
device, temperature and other variations caused the sigmoidal
curves to drift, resulting in non-uniform bias and operation.
As a result, this building block is not currently being used in
the design; however, it does provide insight into non-idealities
that may be encountered in a chip design.

Finally, we note that an ApC that emulates the physics
of different hardware primitives including memristive [63]
stochastic neurons could be implemented in an autonomous
circuit, unlike the nanomagnet inspired equations Eq. 5a-
Eq. 5b. Additionally, as discussed earlier, we do not explore
directed networks in this work, however the overall FPGA ar-
chitecture was designed to support the exploration of different
hardware models and network topologies, hence they can be
included here with minimal effort in the future.

IV. APPLICATIONS AND VALIDATION

In this section we explore two applications of the ApC
using the FPGA framework: combinatorial optimization and
quantum emulation.

A. Combinatorial Optimization

A common architecture used to solve combinatorial op-
timization problems is the nearest-neighbor Ising model as
shown in Fig. 7(a). In the Ising model, each p-bit is connected
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Fig. 6: Modular Autonomous Digital p-bit Components: a. Using output from a comparator, the state of a given p-bit
is probabilistically flipped on any given system clock edge. b. Alternatively, a free-running ring oscillator can be used to
generated edges centered around a oscillator characteristic frequency, mimicking the attempt rate of a stochastic nanomagnet.
These edges control the enable of the p-bit which is then updated based on the output of a comparator. c. Pseudo-randomness
is used to provide the rand () function. A linear feedback shift register is an area efficient means to generate pseudo random
values, however the quality is limited. d. For improved quality of pseudo random output at the expense of more area, a
Xoshiro128+ [60] generator can be used. e The p-bit activation function can be implemented using a straight-forward look-up
table or through an interpolated look-up table output. g. By combining the source of “entropy” with the activation function, a
tunable delay chain can be used to leverage controlled metastability at the input of a flip-flop to produce a probabilistic output.
Outputs from three independent p-bits are shown overlaid in f.

to its neighbor through a coupling matrix, Jij , and is influ-
enced by an on-site bias hi. Note that this is trivially mapped
into Wij as in Eq. (1). By mapping a problem of interest to
this system, an Ising computer will intrinsically search for the
lowest energy solution to the problem.

Typical implementations of these systems leverage some
form of simulated annealing in hardware to guide the system
into a low energy solution, using careful control and sequenc-
ing of spin-flip updates to avoid non-ideal spin updates [6],
[64], [65]. In the context of a nearest-neighbor topology, the
network can be split into two groups in a checkerboard-like
pattern such that all spins in a given group can be updated in
parallel [66]. This results in the ability to update half of all
spins within a given clock period. According to Eq. (3a) this
results in

f =
N

2τclock
(12)

An ApC can be used to solve the same class of problems,
but to do so a value of s must be found that produces a
solution with the desired fidelity. By identifying this limit for
s, an upper bound is placed on the synapse speed that must
be obtained to achieve a competitive f from Eq. (4).

Shown in Fig. 7 is a Max-Cut problem for which a black
and white image was used to encode magnetic domains for the

p-bits. The network is initialized to run at a high effective-
temperature (low β) resulting in an effectively uncoupled
network. The temperature is then gradually reduced according
to an annealing scheduling until the network crystallizes at a
low energy, in this case ideal, solution as shown in Fig. 7(b).
Shown in Figs. 7(c), 7(d), 7(e), different values of s are used
to convey how simultaneous updating affects the ability of
the network to converge to the solution. As s is decreased
from 1 to 1/2 and 1/4, the smaller values of s result in a
more effective convergence. While these results are heuristic
in nature given their visual display, a quantitative energy based
analysis conveys the same relationship as discussed in the
following section with a demonstration of simulated quantum
annealing.

For this problem, a value of s = 1/4 resulted in effective
convergence to the ideal solution and well-behaved network
operation. Given this result, the ApC has

f =
N

4τS
(13)

Comparing (12) and (13), as long as the synapse is twice as
fast as the best τclock that could be obtained from a synchronous
implementation, the network will perform the same number of
flips per second without needing a sequencer.
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Fig. 7: Combinatorial Optimization: Max-Cut problem a.
An 8K spin (90× 90) nearest-neighbor Ising lattice of p-bits
supporting {±1, 0} weights can be used to solve a Max-Cut
combinatorial optimization problem. Here a black and white
image is used to generate magnetic domains corresponding
to each character. The problem is then solved leveraging an
FPGA ApC co-processor (see Methods). b. Online annealing is
used to transition the network from a high to low temperature
through a reduction of T (n+ 1) = 0.9 T (n) where T = β−1

(inset). During this process the network converges to a low
energy state solution to the problem of interest. c. The network
features begin to emerge as lower temperatures are reached.
The probability of an individual p-bit flipping is controlled
to explore how simultaneous updates effect the network or
s = 1 c, s = 1/2 d, and s = 1/4 e. If s is too large, there
is no convergence to the ideal solution. As s is lowered, the
network is more effective at finding low energy solutions, even
at higher temperatures.

B. Quantum Emulation

Simulating the behavior of quantum systems using classical
models has long attracted interest. After its introduction by
Ref. [67], it has been recognized that thermodynamic features

of quantum systems that avoid the “sign problem” [68] can
be efficiently simulated by classical computers. This allows
Quantum Annealing (QA) algorithms designed for quantum
systems to be simulated on classical computers, an approach
that is called Simulated Quantum Annealing (SQA). Com-
putationally, SQA uses a finite number of “replicas” where
each replica is sized to match the size of the original quantum
system. This replication enables a mapping of the quantum
system to a classical collection of p-bits. The number of
replicas that are needed depends on the temperature of the
quantum system [69], [70] and the desired accuracy to emulate
the quantum system. SQA algorithms are typically run on
software [69]–[71] and on sequencer-based hardware designs
[72], [73]. Here, we demonstrate how quantum systems can
be emulated using our ApC by solving a model quantum
system, the Transverse Ising Hamiltonian, and establish how
ApC exactly reproduces the thermodynamics of a many-body
quantum system at finite temperatures and magnetic fields.

Recently, it was theoretically argued [74] that a network
of p-bits described by Eq. (1) and interconnected according
to Eq. (2) can be used to emulate a quantum system with a
finite number of classical replicas, where a p-bit is represented
in hardware by the stochastic MTJ-based implementation of
Fig. 1(c).

We start from the nearest neighbor Transverse Ising Hamil-
tonian in 1D [75]:

HQ=−

(
M∑
i

Ji,i+1σ
z
i σ

z
i+1 + Γx

M∑
i

σx
i + Γz

M∑
i

σz
i

)
(14)

where Ji,i+1 represents the interaction between neighboring
spins, Γx and Γz are local magnetic fields in the x̂ and ẑ

directions, σ{x,y,z}i is the Pauli spin operator, and M is the
number of spins in the chain. After a Suzuki-Trotter mapping,
the 2D classical Hamiltonian that approximates this system
with n replicas is given as:

HC = −
( n∑

k=1

M∑
i=1

(J‖)i,i+1 mi,kmi+1,k + γzmi,k

+J⊥ mi,kmi,k+1

)
(15)

where the parallel coupling is (J‖)i,j = Ji,j/n,
γz = Γz/n and the vertical coupling term is
J⊥ = −1/(2β)log tanh(βΓx/n) and mi,j ∈ {−1,+1}
represent the classical spins in the 2D lattice.

Eq. (15) can be used to find each diagonal element of the
quantum density matrix and therefore, all diagonal operators,
and their correlations can be calculated from it. The corre-
sponding interaction matrix (Jij) to perform a p-bit simulation
can be calculated from the mapped classical Hamiltonian, such
that Ii = −∂HC/∂mi to yield the weight coefficients. Note
that the Suzuki-Trotter decomposition adds another dimension
to the classical system, therefore a 1D linear chain for a
quantum system is emulated by a 2D classical system.

In Fig. 8, we simulate a ferromagnetic linear chain (Ji,j =
+2) using M = 8 spins with periodic boundary conditions
at different transverse magnetic fields and we compute the
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Fig. 8: Emulating the Transverse Ising Hamiltonian: a. A
1D ferromagnetic linear chain (Jij=+2) with M = 8 spins
described by the transverse Ising Hamiltonian is emulated.
The average z magnetization is shown as a function of the
transverse magnetic field Γx at an inverse temperature of
β = 20 using a network of 8 × 250 p-bits with periodic
boundary conditions (shown as b). The 250 p-bits serve as
replicas generated using a Suzuki-Trotter decomposition. The
exact quantum Boltzmann solution is compared against the
average z magnetization for different values of s. As s is
decreased, the system converges to the Boltzmann solution
for a value of s = 1/12. As s decreases beyond s = 1/12, the
system begins to diverge from the solution for larger Γx/J
due to the chosen precision of the digital implementation.
For each ΓX and s, 200 samples from a free-running FPGA
implementation were collected spaced ≈ 30, 000 synapse
delays apart. c. Boxplots show the difference in computed
mean at each Γx/J from the ideal Boltzmann solution, for
each value of s.

average magnetization, 〈mz〉. We include a symmetry break-
ing field in the +z direction (Γz = +1) to obtain a net
magnetization at vanishing transverse fields (Γx = 0). We
obtain the exact density matrix by directly diagonalizing the
quantum Hamiltonian (Eq. (15)): ρ = exp(−βHQ), where we
chose an inverse temperature of β = 20. Once ρ is known,
we compute the average magnetization by tracing it with the
magnetization operator Sz , 〈m〉 = tr.[Szρ]/tr.[ρ]. The exact
solution is shown as a black solid line in Fig. 8(a).

The corresponding average magnetization is obtained by
running the classical system that is described by Eq. (15) with
n = 250 replicas (250 × 8 = 2000 spins) using Eq. (5) in the
FPGA emulator. Fig. 8(a) shows different s values that are
used to obtain the exact result. Clearly, choosing s too high
(s = 1/1) fails, but gradually decreasing s allows the result to

approach the exact result. We observe that s = 1/12 seems to
be an optimal choice, as decreasing s further does not yield
more improvement due to the chosen precision in the digital
implementation. Specifically, as s continues to reduce, the
chosen precision of the arithmetic logic and look-up tables in
the FPGA emulator design limits the accuracy of the solution.
Fig. 8(c) quantitatively shows a boxplot of the error incurred at
each s value across 200 trials. In the the Suzuki-Trotter decom-
position, increasing ΓX/J systematically increases the error
but a reasonably close agreement is observed for s ≤ 1/8.

Typically, SQA algorithms initialize the system at a high
magnetic field (ΓX) and slowly remove it to keep the system
in its ground state and guide it to the desired ground state
of the Ising Hamiltonian. In Fig. 8, however, we have not
changed the magnetic field as a function of time, but rather
sampled from 200 ensembles, each separated by ∼ 30, 000
synapse delays, to obtain the system statistics. This means that
not only was the system guided to the expected ground state
(ΓX → 0, 〈m〉 → 1), but it also followed the correct average
magnetization at high magnetic fields. As such, this could be
viewed as an example of sampling a probability distribution
rather than finding the ground state of the system [21], an
important problem space where an ApC could be useful.

It is important to note that to solve optimization problems
using SQA, an exact mapping of the quantum system may
not be optimal and a finite number of replicas that only
approximate the thermodynamics of the quantum system could
lead to more efficient results. In the present context, optimizing
the number of replicas for a given system can be arranged
since our system is not a natural quantum system nor is it
trying to faithfully reproduce the behavior of such a system.
Therefore, optimizing the number of physical replicas or
finding the replica with the lowest energy becomes possible
in our engineered system [70].

The replica discretization for the present implementation of
SQA incurs errors of order O(β3/r2) where β is the inverse
pseudo-temperature and r is the number of replicas [70]. The
explicit form of the error provides a guide to reduce errors at a
fixed β at the expense of adding more p-bits. As an example,
note the increasing error as Γx/J in Fig. 8 where increasing Γx

compared to a fixed J is like increasing β. In both examples
(Fig. 8-9) we discuss, we have made comparisons to exact
calculations that did not require a careful optimization of the
number of replicas since we were guided by the errors with
respect to exact calculations.

As a second example, we illustrate the trade-off between
the number of replicas and the size of the quantum system
when limited to a fixed number of p-bits, for example in an
FPGA with finite resources. The emulation in Fig. 8 modeled
a 1D Transverse Field Ising Model (TFIM) with M = 8 spins
and with 250 replicas (with a total of 2000 p-bits) to obtain an
accurate result at a low (dimensionless) temperature of β = 20.
In Fig. 9, we show another example with a much larger system
of M = 250 spins but using only 10 replicas per quantum spin
for a total of 2500 p-bits.

In this example, instead of plotting average magnetization,
we plot the average correlation (i.e, 〈mz

1m
z
1+L〉) between

lattice points at a fixed inverse temperature (β = 0.744) and
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Fig. 9: Transverse Ising system with M=250 q-bits: a. A
1D ferromagnetic linear chain (Jij=+1) with M = 250 spins
is modeled using a network of 10 × 250 p-bits with periodic
boundary conditions at an inverse temperature of β = 0.744
with Γx = 0.5. The measured quantity is the average corre-
lation measured between the first lattice point and different
lattice distances (L), which decay to zero as L increases.
Results are shown at different s values (inset). For each lattice
distance and s, 105 samples from a free-running FPGA im-
plementation were collected spaced ≈640,000 synapse delays
apart. Samples are further averaged over replicas to obtain the
mean correlation for the quantum system.

a given magnetic field Γ = 0.5. We compare the FPGA
results with an exact calculation that is known for the 1D
TFIM model at a finite magnetic field. Unlike the classical
Ising model where such correlations can be easily computed,
the exact calculation for the corresponding quantum problem
is quite involved and we omit the details here. In short, the
correlation for a finite sized 1D lattice at a given Γ and β can
be computed exactly by constructing a Toeplitz determinant,
Tn, where n represents the correlation value at a maximum
distance from a reference lattice point that is arbitrarily chosen
to be 1 in the present example (See Chapter 10, Equation
(10.58) and the preceding discussion in Ref. [76]). The results
that we obtain from this exact method and the FPGA sampling
are shown in Fig. 9 where we observe excellent agreement
between the ApC results and the exact calculation even for a
relatively low number of replicas (r = 10) when the s value is
less than or equal to 1/8 which corresponds to approximately
≈ 1/8 × 2500 ≈ 312 simultaneous updates. When the s pa-
rameter exceeds this value, we observe systematic oscillations
and large errors in the average correlation arising from a large
degree of parallel updates, reminiscent of similar oscillations
that are due to simultaneous parallel updating in Boltzmann
networks [77].

V. DISCUSSION

These example applications help demonstrate the feasibility
of an ApC governed by Eq. (5) to follow Boltzmann statistics
without the need for a controlling sequencer. But in order to

make use of ultrafast flip rates, f, enabled by short τS times,
it is important that the building blocks be energy efficient to
ensure that power levels are acceptable:

P = f ε (16)

where P is the power budget and ε is the energy required per
flip.

In Table I, we compare representative Ising computers
based on sequenced designs [6], [64] to the autonomous
designs implemented in and projected by this work, focusing
on nearest-neighbor implementations for this discussion. The
last row of the table shows ε for both the sequenced and
autonomous designs. As shown in the table, the FPGA based
8K-spin ApC achieves an energy per flip that is similar to
the Janus II sequenced FPGA implementation. However, this
comparison applies some artificial constraints on the Janus II
design: namely that all spins must be simultaneously resident
in the device at one time. This is a requirement for unclocked
autonomous designs that for the sake of comparison we
applied to the sequenced design. A clocked, sequenced design
can pause the system and leverage external memory for storage
of neuron state, providing a large pool of logical neurons,
though limited by available memory bandwidth. Additionally,
the ability to pause the network enables time-multiplexing and
can harness the ability to re-use logic resources.

The FPGA results naturally consume more power and have
reduced density [81]. The 8K spin result of Table I has
∼ 18 W of static power dissipation due to the periphery
included in the FPGA design, not all of which is used.
Using the FPGA to ASIC power ratio of 14 [81], a naive
migration of the design to an ASIC would result in an ε of
∼ 4.0 × 10−3. By translating these approaches to a tailored
ASIC implementation, the energy efficiency per flip increases
and the ability to increase the density of resident neurons
within a device increases substantially. Extending this further,
it should be feasible to obtain designs with ∼ 10 petaflips per
second with a power budget of ∼ 10 W, but we need devices
with ε ∼ 1 fJ that also support a density of 1M devices.

The CMOS based SRAM design of Hitachi [6] has an
estimated energy per flip of ε ∼ 50 fJ, though the neuron
density limits the ability of the approach to obtain an f of
petaflips per second. Using a hybrid CMOS and MTJ design
as would be encountered in modern commercial MRAMs [78],
it should be feasible to obtain ∼ 10 petaflips per sec as
projected in the last column of Table I [27]. Modern MRAMs
can achieve Gb densities; however, we limit the projection to
a 1 Mb density based on a target power consumption of ∼ 20
W for the neurons and synapses in the design.

It should be noted that the 20 W power target was arbitrarily
chosen. In principle the autonomous designs can leverage
clocking to choose when global p-bit updates should occur,
much like the FPGA emulator discussed in the methods
section. While this approach can save power, it limits the utility
of the MTJ based approach by constraining the flips per second
(f ) to the same limits of Eq. (3a) due to the clocking scheme.
Even with this limit in place, as the connectivity between neu-
rons increases beyond nearest-neighbor, the sequencing logic
becomes more complex while the ApC only requires a balance
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Sequenced Autonomous (This Work)
Hitachia Janus IIb 2K QAc 8K Isingc Projectedd

Technology CMOS (SRAM) CMOS (FPGA) CMOS (FPGA) CMOS (FPGA) CMOS + MTJ
Total Power (W) 0.05 25 55 32 19.25

Number of Neurons (N) 20K (80× 256) 2K 2K (8× 250) 8.1K (90× 90) 1M
s ≡ τS/τN 1† 1† 1/12 1/4 1/10

Synapse Delay (τS ) (ps) 10,000 4,000 8,000 8,000 10
Neuron Delay (τN ) (ps) 10,000 4,000 96,000 32,000 100

Flips per Second (f ) 1× 1012 2.5× 1011 2.08× 1010 2.5× 1011 1× 1016

Spin Update Time (1/f ) (ps/flip) 1 4 48 4 0.0001
Energy per Flip (ε) (nJ/flip) 5× 10−5 0.1 2.64 0.13 1.93× 10−6

a Calculations based on information extracted from [6]. Design used sequential implementation, therefore we assume (†) s = 1 and
an optimal updating scheme such that half of all neurons are updated every step such that f = (0.5)N/τS . Synapse and neuron
delays assumed to operate at interaction frequency of 100 MHz.

b Calculations based on information extracted from [64]. Janus II supports a much larger number of neurons using external memory,
multiple FPGAs, and data shuttling between devices. Here we limit the comparison to only a single spin processor assuming all
spins are co-located on one FPGA, as would be required for an autonomous design. As with (a), we assume (†) s = 1. With all
spins on one chip, an optimal updating scheme updates half of all neurons every step for f = (0.5)N/τS . Based on this, the spin
update time calculated here is 4 instead of 2 as in [64]. We note that this discrepancy is negligible when compared to the projected
autonomous coprocessor that can be orders of magnitude faster. Design assumed to operate at operating frequency of 250 MHz.

c Power consumption measured from maximum power draw during computation. 2K QA topology based on 16-bit precision operations
and 8K Ising is based on 2-bit precision operations. Selected s values based on Figs. 7 and 8.

d Assuming chip density of 1M based on memory density available from commercial ST-MRAM [78]. With nearest-neighbor
connections, a synapse delay of 10 ps assumed [48]. Assumed neuron delay of ∼100 ps and a steady-state neuron power consumption
10 µW [27]. Overhead from nearest-neighbor memresistive cross-bar and external communication logic estimated as ∼ 9.25 W
using 5 memresistors and 1 op-amp per neuron [79], similar order of magnitude values can be obtained from [80] .

TABLE I: Comparison of Sequential and Asynchronous Ising Computers: Ising computers proposed to-date have used
sequential updating mechanisms based on CMOS technology. These designs achieve spin update times of ∼ 1− 4 ps/flip. The
20K SRAM chip from [6] achieves an energy of 50 fJ per flip. The autonomous CMOS implementations demonstrated in this
work obtain a similar spin update time as sequenced implementations and comparative energy per flip as sequential FPGA
implementations. Using CMOS and MTJ technologies as proposed herein, a highly efficient design with petaflips per second
with 2 fJ per flip is projected.

of s to ensure proper convergence, though both approaches still
face challenges with routing congestion as N grows. In the
case of all-to-all connectivity, the sequencing logic reduces in
complexity and technically can be implemented with a single
time-multiplexed weighted p-bit. In this situation, the benefits
of an ApC begin to degrade, except for the elimination of
memory bottlenecks with the use of distributed weights and the
avoidance of time-multiplexing. A 500 node all-to-all network
was implemented using the FPGA emulator, and the resulting
s was directly proportional to the number of neurons, affirming
the reduced benefit.

VI. CONCLUSION AND FUTURE WORK

In this work we presented a vision for an autonomous
probabilistic computer for applications in optimization and
machine learning. Using stochastic nanomagnets as intrinsic
p-bits, an ApC based on these devices provides an opportunity
to realize a scalable co-processor achieving high-performance
operation. As the technology is not yet available to build a
scaled device, we presented a benchmarked behavior model
for the autonomous computer that facilitated direct study of the
ApC. This behavioral model was implemented in an FPGA to
establish a framework for the study of various applications and
design trade-offs. The results presented in Table I demonstrate
that with the removal of sequencers, the ability to run at speeds
limited only by synapse delays, and the ability scale to millions
of neurons, all within an accessible power budget, the proposed

ApC is a compelling alternative to clocked, sequential designs
for stochastic ANN coprocessing.

We have also emphasized a key metric, flips per second,
as a figure-of-merit for emerging probabilistic annealers that
quantify their performance in terms of a problem or substrate
independent manner. Improving flips per second by application
specific, massively parallel or autonomous architectures using
nanodevices as we have suggested could lead to efficient
domain-specific, probabilistic coprocessors that can outper-
form conventional implementations in the future.
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[69] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, “Theory of quantum
annealing of an ising spin glass,” Science, vol. 295, no. 5564, pp. 2427–
2430, 2002.

[70] B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, “Quantum versus
classical annealing of ising spin glasses,” Science, vol. 348, no. 6231,
pp. 215–217, 2015.

[71] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyan-
skiy, J. Martinis, and H. Neven, “What is the computational value of
finite-range tunneling?” Physical Review X, vol. 6, no. 3, p. 031015,
2016.

[72] T. Okuyama, M. Hayashi, and M. Yamaoka, “An ising computer
based on simulated quantum annealing by path integral monte carlo
method,” in 2017 IEEE International Conference on Rebooting Com-
puting (ICRC), Nov 2017, pp. 1–6.

[73] H. M. Waidyasooriya, M. Hariyama, M. J. Miyama, and M. Ohzeki,
“OpenCL-based design of an FPGA accelerator for quantum annealing
simulation,” The Journal of Supercomputing, Feb. 2019.

[74] K. Y. Camsari, S. Chowdhury, and S. Datta, “Scaled Quantum Circuits
Emulated with Room Temperature p-Bits,” arXiv:1810.07144 [quant-
ph], Oct. 2018, arXiv: 1810.07144.

[75] P. Pfeuty, “The one-dimensional ising model with a transverse field,”
ANNALS of Physics, vol. 57, no. 1, pp. 79–90, 1970.

[76] S. Sachdev, Quantum Phase Transitions, 2nd ed. Cambridge University
Press, 2011.

[77] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning,” Coursera, video lectures, no. 11, 2012.

[78] N. D. Rizzo, D. Houssameddine, J. Janesky, R. Whig, F. B. Mancoff,
M. L. Schneider, M. DeHerrera, J. J. Sun, K. Nagel, S. Deshpande,
H. Chia, S. M. Alam, T. Andre, S. Aggarwal, and J. M. Slaughter,
“A Fully Functional 64 Mb DDR3 ST-MRAM Builton 90 nm CMOS
Technology,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 4441–
4446, Jul. 2013.

[79] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, “Memristor-
based approximated computation,” in International Symposium on Low
Power Electronics and Design (ISLPED). Beijing, China: IEEE, Sep.
2013, pp. 242–247.

[80] F. Cai, S. Kumar, T. Van Vaerenbergh, R. Liu, C. Li, S. Yu, Q. Xia,
J. J. Yang, R. Beausoleil, W. Lu et al., “Harnessing intrinsic noise
in memristor hopfield neural networks for combinatorial optimization,”
arXiv preprint arXiv:1903.11194, 2019.

[81] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, Feb. 2007.

http://arxiv.org/abs/1903.11194

	I Introduction
	II Autonomous p-Computing Model
	II-A Autonomous p-bit Operation
	II-B Autonomous p-bit Model
	II-C Model Benchmarking with Stochastic LLG

	III Emulation Framework
	III-A Autonomous FPGA Coprocessor
	III-B Digital Building Blocks

	IV Applications and Validation
	IV-A Combinatorial Optimization
	IV-B Quantum Emulation

	V Discussion
	VI Conclusion and Future Work
	References



