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Crafting chirality in three dimensions via a novel
fabrication technique for bound states in the
continuum metasurfaces
Zaid Haddadin 1, Anna My Nguyen2 and Lisa V. Poulikakos2,3✉

Abstract
An additional deposition step was added to a multi-step electron beam lithographic fabrication process to unlock the
height dimension as an accessible parameter for resonators comprising unit cells of quasi-bound states in the
continuum metasurfaces, which is essential for the geometric design of intrinsically chiral structures.

Circularly polarised light possesses chirality, i.e., tracing
the light path reveals a structure with a mirror image that
is not superimposable through rotation or translation
operations1,2. This distinctiveness of the structure and its
mirror image allows for the arbitrary yet specific assign-
ment of left- or right-handedness1,2. Illuminating a chiral
probe with circularly polarised light results in differential
light-matter interactions depending on whether the light
is left- or right-handed1,2. Manipulating the geometric
design of the chiral probe can further tailor these selective
light-matter interactions1,2.
One technology that can be designed to exhibit chiral

optical properties is a metasurface2. Metasurfaces are
engineered arrangements of subwavelength resonators
that can provide tuneable systems to control the inter-
action of different polarisation states of light with matter2.
These resonators can be made from different materials—
plasmonic3, dielectric4–6, or a combination of both7. To
address the high optical losses associated with plasmonic
materials, research in metasurfaces has shifted towards
all-dielectric material systems3,5.

Within this realm of dielectric metasurfaces, the phe-
nomena of bound states in the continuum (BICs) and
quasi-bound states in the continuum (qBICs) have been
demonstrated7–9. BICs are discrete energy states trapped
in a system surrounded by a continuum of energy
states7–9. In contrast, qBICs approximate BICs but allow
the release of the trapped discrete energy7–9. The inten-
tional design of the resonators enables control over the
release of energy in qBIC metasurfaces7–9. Transforming a
BIC system to a qBIC system necessitates breaking the
symmetry of the resonator geometry10–12, the resonator
arrangement13, or the incidence angle of light10.
However, most qBIC metasurfaces realized by breaking

the symmetry of resonator geometry are constrained to
two-dimensional manipulations (Fig. 1a), a consequence of
the limitations of fabrication techniques available for all-
dielectric metasurfaces5,10,14–16. All fabrication techniques
must build resonators that are smaller than the operational
wavelength17. For visible wavelengths, the fabrication
techniques can be categorized into lithographical methods,
laser methods, or chemical methods17,18. Electron beam
lithography, used for the majority of reported all-dielectric
metasurfaces17, offers precision, reliability, and repeatability,
but it is limited to two-dimensional elements16–18. This
drawback hinders the manipulation of the three-
dimensional geometry of resonators, which is crucial for
the design of maximally chiral probes19,20. Consequently,
this restricts applications in the study of chirality, including
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but not limited to fields of analytical chemistry10–12, phar-
maceutics6,10, and the extraterrestrial search for life6,10,21.
In a recent publication by Kühner and Wendisch et al.

in Light: Science & Applications, the research team pre-
sented an additional deposition step to a multi-step
electron beam lithography fabrication process5. This
novel nanofabrication methodology provided control over
the heights of individual resonators within unit cells
comprising all-dielectric metasurfaces5. Employing a unit
cell composed of two anti-parallel rods (Fig. 1b, Top), the
study introduced height disparities between the rods to
convert an achiral BIC metasurface into an achiral qBIC
metasurface (Fig. 1b, Middle). By tilting the rods of
varying heights toward each other, the achiral qBIC
metasurface was transformed into a chiral qBIC meta-
surface (Fig. 1b, Bottom). Continued adjustments to the
height difference and angular orientation of the two rods
tuned the differential interactions of the chiral qBIC
metasurface when illuminated by left- or right-handed
circularly polarised light. The final parameters selected
yielded a 70% difference in transmittance signals between
the two polarisation states of light, underscoring the
potential for achieving maximum optical chirality—
wherein information from one handedness of
light–matter interactions cannot be obtained from the
opposite handedness, i.e., a 100% difference in signals22.
This work introduced a new level of fabrication com-

plexity, offering a previously unattainable degree of

freedom for tailoring the optical response of chiral
metasurfaces by unlocking the height dimension of reso-
nators for geometric manipulation5. Further efforts to
expand this freedom to the Angstrom level could pave the
way for maximum chirality in response to electromagnetic
waves from arbitrary angles of incidence because such
small resolutions may permit the systematic study of the
asymmetry of all reflection and transmission pro-
cesses5,6,19,22–24. Nonetheless, these results hold promise
for chiral nanophotonic applications in biochemical sen-
sing25, enantiomeric separation11,12, polarisation conver-
sion13, and chiral emission26.
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Fig. 1 BIC to qBIC by breaking the symmetry of resonator
geometry. a Two-dimensional and b three-dimensional geometric
manipulations of anti-parallel rods that can make up the unit cell of a
qBIC metasurface. (Top) Symmetric, achiral rods. (Middle) Through
resonator symmetry-breaking, the rods comprise an asymmetric unit
cell. (Bottom) By tilting the rods towards one another, the unit cell
becomes chiral
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