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DEDICATION 

 For the vast majority of human history, we 
have had little choice but to make decisions based 
on instinct, gut feeling and subjective opinion. 
 For the last few centuries, we have seen 
unimaginable benefits stem from the adoption of 
scientific, fact-based thinking in our decision-
making. However, we have not always had the 
correct data or analysis to rightfully inform such 
decisions. 
 We are now standing on the fringes of a new 
world. Over the next century, we will achieve the 
capability to progress into a data-driven society. 
This will not necessarily make decisions easier but 
it will allow us to fully understand and accurately 
predict the effects of our decisions and not remain 
slaves to our own instincts. 
 The following dissertation is dedicated to 
everyone who values objective scientifically founded 
evidence over subjective opinions. That is, anyone 
who values truth over fantasy.   
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ABSTRACT OF THE DISSERTATION 

 

Integrated Omic Networks Reveal Regulatory Elements of 

Transcription and Translation 

 

By 

 

Ryan Charles Sartor 

 

Doctor of Philosophy in Biology 
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Professor Steven P. Briggs, Chair 

 

 Our world is becoming quantifiable. The IBM Corporation estimates that 

our society is collecting data at a rate of 2.5 quintillion bytes per day. To give 

some perspective, 90% of the data that humans now have access to has been 

collected in the last two years. Biological science is no exception. This 



 

 xviii 

information holds enormous potential but the biggest challenge now lies in 

data analysis and interpretation. 

 In biology, this data revolution has been led by sequencing technology. 

Therefore most data is either genomic or transcriptomic in nature. This 

dissertation focuses on protein mass spectrometry. We find that by integrating 

multiple data sets, we achieve the most powerful systems-level descriptions of 

biological systems. In the following dissertation we show how proteomic data 

can be integrated with both transcriptomic and epigenomic data sets to 

provide critical insight into biological systems.  

 In the first chapter, we show that proteomic and transcriptomic 

measurements have fundamental differences and lead to different specific 

results but similar “big-picture” conclusions. We use both to re-construct gene 

regulatory networks and find that the most accurate network results from 

integrating both data types.  

 In the second chapter, we expand on observations made in chapter one 

and incorporate DNA methylation data. We discover that, using random forest 

machine learning models and genic DNA methylation data, we are able to 

classify the subset of expressed mRNAs with high accuracy. Most 

interestingly, after incorporating proteomic data, we achieve near perfect 

classification accuracy and go on to discover a surprising association between 

genic DNA methylation and translations. Such models can be used to annotate 

the functional subset of maize genes with equal or better accuracy than 
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current manual annotations. These models show excellent accuracy in a 

diverse set of maize inbreds, leading to speculation that DNA methylation is 

playing a large role in crop domestication. 

 In the final chapter we use a novel method to integrates protein and 

transcript data to discover quantitative trait loci that are specifically controlling 

protein abundance in a mRNA independent manor in arabidopsis. We then 

demonstrate how transcript data can be used to prioritize causative genes. 
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CHAPTER 1 

Integration of omic networks in a developmental atlas 
of maize 

 
Reprint of “Integration of omic networks in a developmental atlas of maize”. 

Published August 2016 in Science.  

females (no additional effect of playback treat-
ment: Z = 0.39, P = 0.69) after controlling for
female mass as adult (Z = 2.83, P = 0.005).
Furthermore, this fitness effect of early mass
and thermal conditions persisted in females’
second year of life despite repairing (GLM: Z =
–2.31, P = 0.021; repairing: Z = 1.17, P = 0.24;
adult mass: Z = 2.82, P = 0.005, n = 36 females,
including 25 with a new partner). Males fol-
lowed a similar trend to females in their first
year [GLM with temperature in nest (i.e., am-
bient temperature + nest differential): Z = –1.97,
P = 0.049, n = 36 males] but not their second
year (GLM: Z = 1.65, P = 0.10, n = 38 males).
Last, the evolutionary advantage of maternal

effects has been questioned in unpredictable
environments, where environmental conditions
during development do not predict those en-
countered later in life (31). However, individuals
may partly compensate for this by seeking
microhabitats that best suit their phenotype.
Accordingly, treatment individuals exposed to
incubation calls in the egg went on to consist-
ently breed in hotter nest boxes than control
birds, because control males used cooler boxes
and treatment males used warmer boxes than
expected by chance in the first and second
years, respectively (Fig. 4B) (Monte-Carlo sim-
ulations: first-year control males: P = 0.024, n =
22, and females: P = 0.075, n = 15; second-year
treatment males: P = 0.046, n = 10; all others:
P > 0.05) (24).
Overall, we have demonstrated experimen-

tally that by acoustically signaling high ambient
temperatures to their embryos before hatch-
ing, zebra finch parents can program the de-
velopmental trajectories of their offspring in
response to this key environmental variable.
Our findings therefore provide both an adapt-
ive function for prenatal communication and
a type of maternal effect where parental con-
trol over signal production can be unambigu-
ously tested. By uncovering a mechanism for
a transgenerational effect of temperature on
development in endotherms, our study also ad-
vances our understanding of the acclimatization
capacities of organisms to rising temperatures.
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GENE REGULATION

Integration of omic networks in a
developmental atlas of maize
Justin W. Walley,1,2* Ryan C. Sartor,1* Zhouxin Shen,1 Robert J. Schmitz,3,4†
Kevin J. Wu,1 Mark A. Urich,3,4 Joseph R. Nery,4 Laurie G. Smith,1 James C. Schnable,5

Joseph R. Ecker,3,4,6 Steven P. Briggs1‡

Coexpression networks and gene regulatory networks (GRNs) are emerging as important
tools for predicting functional roles of individual genes at a system-wide scale. To enable
network reconstructions, we built a large-scale gene expression atlas composed of 62,547
messenger RNAs (mRNAs), 17,862 nonmodified proteins, and 6227 phosphoproteins
harboring 31,595 phosphorylation sites quantified across maize development. Networks in
which nodes are genes connected on the basis of highly correlated expression patterns of
mRNAs were very different from networks that were based on coexpression of proteins.
Roughly 85% of highly interconnected hubs were not conserved in expression between
RNA and protein networks. However, networks from either data type were enriched in
similar ontological categories and were effective in predicting known regulatory
relationships. Integration of mRNA, protein, and phosphoprotein data sets greatly
improved the predictive power of GRNs.

P
redicting the functional roles of individ-
ual genes at a system-wide scale is a com-
plex challenge in biology. Transcriptome
data have been used to generate genome-
wide gene regulatory networks (GRNs)

(1–4) and coexpression networks (5–7), the design
of which was based on the presumption that
mRNA measurements are a proxy for protein
abundance measurements. However, genome-
wide correlations between the levels of proteins
and mRNAs are weakly positive (8–15), which
indicates that cellular networks built solely
on transcriptome data may be enhanced by
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integration with proteomics data. We generated
an integrated developmental atlas of the tran-
scriptome, proteome, and phosphoproteome of
the model organism Zea mays (maize) and then
used these three different cellular descriptions
to generate transcriptome- and proteome-based
networks.
We profiled 23 tissues spanning vegetative

and reproductive stages of maize development
to generate a comprehensive and integrated gene
expression atlas. Specifically, transcriptome pro-
filing by mRNA sequencing (mRNA-seq) (three
biological replicates, 23 tissues) was carried out
on a subset of the samples used for proteome
profiling (three to seven biological replicates,
33 tissues) by electrospray ionization tandem
mass spectrometry (14, 16–19) (tables S1 to
S3). We assessed reproducibility of the bio-
logical replicates by calculating Pearson cor-
relations and found an average of 0.9, 0.84,
and 0.7 for the transcriptome, proteome, and
phosphoproteome data sets, respectively (table
S4). Transcripts were observed from 62,547 genes.
Proteins and phosphoproteins were observed
from 16,946 and 5587 genes, respectively. The
RNA-seq data were bimodal, as reported for
mouse and human (20, 21), with nearly all pro-
teins and phosphoproteins arising from the
34,455 transcripts in the high-abundance pop-
ulation (right peak), with an average FPKM (frag-
ments per kilobase of exon per million fragments
mapped) greater than 1 (Fig. 1A). Proteins were

observed from 46% of these transcripts (right
peak). To determine whether coverage of the
transcriptome by the proteome was constrained
by the diversity of tissues sampled, we generated
proteomics data from an additional 10 tissue
types yielding proteins from a total of 18,522
genes (proteins from 17,862 genes and phospho-
proteins from 6185 genes), but this only increased
coverage of the high-abundance transcriptome
to 48%.
There are a variety of possible technical and

biological explanations for why we detect pro-
teins from less than half of the high-abundance
transcript-producing genes and why we do not
observe corresponding mRNA for 245 quanti-
fied proteins. Previously, we found evidence
for multiple mechanisms that may explain the
detection of proteins but not mRNA. These
mechanisms include (i) differential stability of
mRNA and proteins; (ii) transport of proteins
between tissues; and (iii) diurnal, out-of-phase
accumulation of mRNAs and cognate proteins
(14). The heightened sensitivity of transcriptomics
relative to proteomics likely provides a partial
explanation for why we detect proteins corre-
sponding to less than half of the transcript-
producing genes. Additionally, we observed a
greater percentage of proteins arising from
the annotated filtered gene set, which consists
of 39,656 high-confidence gene models that
exclude transposons, pseudogenes, and other
low-confidence members present in the work-

ing gene set (Fig. 1B). Furthermore, a higher
proportion of proteins than transcripts arise
from genes annotated as protein coding (Fig.
1C), which suggests that transcripts from many
genes may not produce proteins. Genes con-
served at syntenic orthologous locations between
maize and sorghum exhibited a unimodal, high-
expression pattern, in contrast to genes in non-
syntenic locales (Fig. 1A). Considering all genes
that expressed mRNAs, syntenic genes were nine
times more likely than nonsyntenic genes to
express proteins (Fig. 1D). To show that this
observation is not due to the higher average
transcript expression level of syntenic genes,
we examined a range of transcript abundance
cutoffs and obtained similar results, even when
looking at the highest-abundance syntenic and
nonsyntenic transcripts (fig. S1). A greater fre-
quency of protein expression is a possible mech-
anistic explanation for the eightfold enrichment
of genes responsible for visible mutant pheno-
types among syntenically conserved genes in
maize (22).
We next examined how genes and biological

processes change throughout development. Ini-
tially, we focused on transcription factors (TFs),
as they are key regulators of development, growth,
and cell fate. Of the 2732 annotated TFs and
transcriptional co-regulators, we detected 2627
as mRNA (23 tissues), 1026 as protein (33 tis-
sues), and 559 as phosphoprotein (33 tissues).
We used hierarchical clustering to identify 712
(mRNA), 469 (protein), and 419 (phosphoprotein)
TFs that exhibited tissue-specific enrichment
(figs. S2 to S4 and table S5). We also examined
expression trends at the TF family level. First,
we used traditional overrepresentation analy-
sis to identify TF families whose members are
detected in a given tissue at a greater frequency
than chance (figs. S5A, S6A, and S7A). To augment
the overrepresentation analysis, we also examined
TF family–level expression profiles by quantify-
ing the total amount of each TF family’s mRNA,
protein, and/or phosphoprotein present in given
tissue (figs. S5B, S6B, and S7B). Taken together,
these data describe the spatiotemporal expres-
sion pattern of individual TFs and TF families
across development.
We expanded our analyses to examine the

patterns of all gene types across maize develop-
ment. We used the weighted gene coexpression
network analysis (WGCNA) R package (23) to
group similarly expressed genes—detected as
mRNA (23 tissues), protein (33 tissues), or phos-
phoprotein (33 tissues) in at least four tissues—
into modules (clusters). This approach enabled
us to group 31,447 mRNAs, 13,175 proteins, and
4267 phosphoproteins into coexpression mod-
ules (fig. S8 and table S6). We next plotted the
eigengene profile for each module in order to
assign the tissue(s) in which each module is
highly expressed (figs. S9 to S12). We observed
that 36 well-characterized genes required for
maize development—including the homeobox
TFs Knotted1 [KN1, Maize Genetics and Ge-
nomics Database (MGGD) accession number
GRMZM2G017087] (24) and Rough Sheath 1 (RS1,
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MGGD accession number GRMZM2G028041)
(25), as well as the transcriptional co-repressor
Ramosa1 Enhancer Locus2 (REL2, MGGD ac-
cession number GRMZM2G042992) (26) (table
S6)—are present in mRNA, protein, and phos-
phoprotein modules that correspond to dividing
and meristematic tissues. The phosphoryla-
tion pattern of these proteins is similar to their
mRNA profile and occurs in tissues known to
have altered developmental phenotypes in mu-
tant plants, which suggests that phosphoryl-
ation of these proteins might positively regulate
their function. Finally, we determined overrep-
resentation of MapMan functional categories
in each module (table S6). As expected, we found
that genes involved in photosynthetic light re-
actions have mRNA and protein that are en-
riched predominantly in the mature leaf. We did
not detect an enrichment of light-reaction phos-
phoproteins in the mature leaf module, which
suggests that phosphorylation is not a major
regulator of the light reactions (fig. S11 and
table S6).
Biological networks can be constructed based

on many different types of data and serve to

elucidate the structure underlying complex sys-
tems. Typically, transcript profiling data are
used to generate various types of gene ex-
pression networks. However, we observed a
weakly positive correlation between mRNA and
protein levels in our data set (supplementary
text, figs. S13 to S17, and table S7), in agree-
ment with research done in a range of orga-
nisms (8–15). Although the modest correlation
between mRNA and protein levels is well doc-
umented, a major outstanding question is
whether transcriptome-based networks pre-
dict the same relationships as proteome-based
networks. Given our extensive developmental
gene expression atlas, we addressed this ques-
tion by generating two different types of net-
works: coexpression networks and GRNs. We
first generated coexpression networks (table
S8), which are undirected networks where nodes
are genes connected on the basis of highly cor-
related expression patterns (Fig. 2A) (5–7). For
these network reconstructions, we used 10,979
genes that were detected as both transcripts
and proteins in at least 5 of the 23 develop-
mental gene expression atlas tissues in which
we profiled both mRNA and protein. Pairwise
mRNA-to-mRNA and protein-to-protein coex-
pression networks were built with Spearman
correlations using WGCNA (fig. S18 and table S8).
The biweight midcorrelation yielded similar
results (figs. S19 and S20). To directly compare
the mRNA- and protein-based coexpression net-
works and compile a high-confidence coexpression
data set, each network was constrained to
include only edges with a correlation score >0.75
(top 1 million edges), which is a frequently
used correlation threshold for coexpression net-
works (table S8). As a measure of similarity, we
calculated edge conservation by dividing the set
intersect by the union (known as the Jaccard
index) and reported this as a percentage. We
found that 122,029 of the combined 2 million
edges (6.1%) were conserved in both networks
(Fig. 2B). Though this edge overlap is greater
than the 0.8% expected by chance (P value =
0), the majority of relationships between genes
were specific to each network, even when we
expanded the network size to 10 million edges
(fig. S20).
To examine whether the lack of edge over-

lap was due to experimental noise, we used
single biological replicates (three mRNA and
three protein networks) to create six new co-
expression networks. Pairwise comparisons re-
vealed a similar low level of edge conservation
(5%) between the mRNA and protein coexpression
networks. However, 46% of mRNA-to-mRNA
edges and 36% of protein-to-protein edges were
conserved between replicate coexpression net-
works (fig. S21). These data suggest that biolog-
ical phenomena underpin the observed lack of
edge conservation between transcriptome- and
proteome-derived coexpression networks.
A key feature of scale-free networks is a small

number of highly interconnected hubs. Because
hubs are more likely than nonhubs to be re-
quired for network integrity and organism sur-

vival, the identification of so-called “hub genes”
is of interest (23, 27–30). We therefore determined
the highly interconnected hub genes in each co-
expression network, which we categorized as
nodes in the top 10th percentile for most edges
(Fig. 2C and fig. S22A). When we compared the
hub genes from each network, we found that
the majority (85%) were not shared between the
mRNA and protein coexpression networks (Fig.
2C and fig. S22).
Groups of coexpressed genes (modules) were

derived from the two networks. Each module
was examined for over- or underrepresentation
of MapMan categories (table S9). The majority
of modules from each network (mRNA: 17 of 19;
protein: 18 of 25) showed significant enrichment
for one or more categories (adjusted P value <
0.05). Overall, we observed similar enrichment
of categories between the two coexpression net-
works (fig. S23). Whereas the overall degree of
enrichment was very similar for most categories
in both coexpression networks, the actual genes
that accounted for the significantly enriched
categories were mostly specific to one network
(35% protein-specific, 27% mRNA-specific, and
38% shared) (Fig. 3). Taken together, these results
demonstrate that transcript- and protein-based
coexpression networks yield differing predictions
of gene relatedness and function. Presumably,
the discrepancy between transcriptome and
proteome coexpression networks arises from
the limited correlation between mRNA and pro-
tein abundance, which has been attributed to a
range of factors that include differing stabilities
of mRNA and protein, translational control, and
protein movement from the tissue of synthesis
(8, 14, 31).
To further explore the regulatory patterns

of gene expression across maize development,
we generated GRNs, which are directed net-
works of TFs and their target genes (Fig. 4A)
(1). Unsupervised GRNs were created using
GENIE3, which takes advantage of the ran-
dom forest machine learning algorithm and
was the top-performing method in the DREAM4
and -5 GRN reconstruction challenges (32, 33).
Three independent GRNs were generated from
the 23 tissues in which we profiled both mRNA
and protein. To construct these networks, we
varied whether the TFs (termed “regulators”)
were quantified as mRNAs (2200 TFs), pro-
teins (545 TFs), or phosphopeptides (441 TFs)
and used a common set of 41,021 quantified
mRNAs (termed “target genes”) (table S10). We
evaluated the GRNs by using published data
for two classical maize TFs, the homeobox TF
KN1 and the bZIP TF Opaque2 (O2). These TFs
were chosen as benchmarks because they have
been the subject of high-quality RNA-seq and
chromatin immunoprecipitation (ChIP)–seq
studies in both wild-type and null mutant back-
grounds, and they represent two distinct types
of TFs with key developmental roles (24, 34).
Target genes are bound by their TF in a ChIP-
seq assay, and their mRNA levels change when
their TF is knocked out. Using the published
direct targets of KN1 and O2, we generated
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receiver operating characteristic (ROC) and
precision-versus-recall curves, which are two
methods commonly used to evaluate the power
of a predictive model (35). These curves showed
that the overall qualities of all three GRNs were

similar (fig. S24). However, when we looked at
the top 500 scoring GENIE3 predictions for
KN1 and O2 in each GRN, we observed a per-
formance advantage for the two protein-based
GRNs in accurately predicting target genes

(Fig. 4B and fig. S25A). Specifically, the KN1
subnetworks accurately predicted 108 (mRNA),
129 (protein), and 125 (phosphopeptide) tar-
gets, with the O2 subnetworks performing sim-
ilarly. Additionally, 44% (KN1) and 31% (O2) of

SCIENCE sciencemag.org 19 AUGUST 2016 • VOL 353 ISSUE 6301 817

Fig. 4. Unsupervised GRN analyses. (A) Hypothet-
ical GRN subnetwork depicting a TF regulator (square)
and potential target genes (circle) quantified asmRNA
(red) or protein (blue). GRN-specific and -conserved
predictions are depicted by dotted and solid lines,
respectively. (B) Overlap of the true-positive pre-
dictions from the top 500 true GRN predictions for
KN1 quantified as mRNA, protein, or phosphopeptide.
True KN1 targets were identified by Bolduc et al. (24).
(C) Overlap of the top 1 million TF target predictions
between the GRNs reconstructed using TFabundance
quantified at the mRNA, protein, or phosphopeptide
level. (D) ROC curves and (E) precision-recall curves
generated using known Kn1 and O2 target genes for
a mRNA-only GRN (red) and a fully integrated GRN
built by combining mRNA, protein, and phospho-
protein data into a single GRN (blue).
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Fig. 3. Categorical enrichment analysis of coexpression modules. Coexpression modules were determined by WGCNA and functionally annotated
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all correctly predicted targets were specific to a
single type of GRN (Fig. 4B and fig. S25A).
These results indicated that predictions made
by all three GRNs were largely complemen-
tary to each other.
We expanded our analyses to examine all

TFs in the three GRNs. Again, we found that
there was low edge conservation between the GRNs,
with the vast majority of edges being present in
a single GRN (fig. S26). Specifically, when con-
sidering one million edges, 93% were present in
a single GRN (Fig. 4C). This amount increased
to 96% for the 200,000 highest-confidence pre-
dictions, which we determined using KN1 preci-
sion data as the cutoff (fig. S25, B and C). This
finding illustrates that the different accumu-
lation patterns of mRNA, protein, and phos-
phorylation for a given TF (fig. S27) result in
disparate GRN predictions.
The three preceding GRNs were constructed

using different-sized sets of TF regulators, which
complicated direct comparisons of networks
constructed using TF abundance measurements
at the mRNA or protein level. Therefore, we
used 539 TFs quantified as both mRNAs and
proteins to reconstruct GRNs. Evaluation of these
GRNs using the KN1 and O2 data indicated
quality and accuracy similar to those of the
full-sized networks (fig. S28). We still observed
a performance advantage for the protein GRN,
as well as limited edge conservation between
the mRNA- and protein-based GRNs, with only
6% of the top 200,000 edges being shared (figs.
S28 and S29). We examined several possible
features of the TF regulators to help further our
understanding of the limited overlap in TF
target predictions. The TFs connected by edges
that were present only in the transcript GRN
had lower and more variable protein abundance
than the TFs connected by edges that were
shared with or specific to the protein GRN (fig.
S30, A to D). As expected, the mRNA-to-protein
correlations were higher for targets of edges
present in both GRNs (fig. S30E).
To further validate GRN predictions and test

whether network relationships were con-
sistent between different maize varieties, we
took advantage of natural variation in regulator
abundance arising from the natural genetic
variation present in another inbred line, Mo17.
Specifically, we compared mRNA and protein
abundance in primary roots of Mo17 to B73.
Whereas most TFs and target genes were ex-
pressed at similar levels in B73 and Mo17, we
identified 149 (mRNA), 26 (protein), and 16 (phos-
phopeptide) regulatory TFs that were expressed
at significantly different levels. We found, with
high confidence, that for many of these dif-
ferentially expressed TFs, their GRN predicted
target groups were also significantly enriched
for differentially expressed transcripts (figs. S31
to S33). Thus, elements of the GRN structure
were preserved, and quantitative changes in
regulator abundance levels are associated with
altered network output and gene expression pat-
terns. Additionally, these findings validated the
GRN approaches used in this study and dem-

onstrated the utility of applying this method
to examine dynamics of gene regulation.
After analyzing separate mRNA- and protein-

based GRNs, we considered integrating the
data sets to determine whether the resulting
single GRN would have improved inference
over the individual GRNs. Specifically, we con-
structed four additional GRNs, each consist-
ing of combinations of TF regulators quantified
as mRNA, protein, and/or phosphopeptides
(table S10). Details of how the combined mRNA,
protein, and phosphopeptide GRNs were made
are described in the supplementary materials.
We examined the performance of the result-
ing networks using the validation set of KN1
and O2 published targets (Fig. 4 and fig. S24).
All GRNs reconstructed with combinations of
TF regulators performed better than single-
input GRNs. This finding demonstrates that in-
tegrating readouts of gene expression quantified
at different levels results in improved GRN in-
ference. Our use of TF mRNA levels to infer
TF activity had provided good GRN predictive
power. The area under the ROC curve (AUC)
was 0.657, compared with 0.500 for random
predictions. When the mRNA measurements
were combined with protein abundance and
phosphorylation levels to infer TF activity, the
AUC increased to 0.717. Thus, if an investiga-
tor wished to use network predictions with a
false-positive rate of 20%, the mRNA-only net-
work would predict 40% of the true positives,
compared with 50% for the combined network
(Fig. 4D and fig. S24A). Likewise, examination
of Fig. 4E and fig. S24B reveals that if an in-
vestigator wished to use network predictions
with a precision of 0.021 (which is three times
higher than expected at random), then 16% of
the true positives would be recalled from the
mRNA-only network versus 41% for the com-
bined network.
By quantitatively measuring mRNAs, pro-

teins, and phosphoproteins in parallel in a
tissue-specific manner, we discovered unex-
pected relationships among these cellular read-
outs across maize development. In particular,
our comparison of transcriptome- to proteome-
based dendrograms and coexpression networks
showed little overlap at the gene level, even
though the samples were classified similarly
and had similar ontological enrichments. The
discovery that most protein-expressing genes
are conserved and syntenic also was unexpected.
The coexpression networks and GRNs provide
a conceptual framework for future detailed
studies in a model organism that is central to
food security and bioenergy. Our findings high-
light the importance of studying gene regula-
tion at multiple levels.
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Supplemental Materials and Methods 

Plant material  

For paired RNA read and peptide profiling we collected 23 tissues from the B73 inbred including 

vegetative meristem (16-19 days), 6-7th internode and 7-8th internode (28-30 days), 3 zones from leaf 8 

(30 day old), mature leaf 8 (43 days old), intact primary and secondary roots (5 days old), dissected 

primary roots (meristem, cortex, and elongation zones), mature pollen, female spikelet, ear primordium 

(2-4 mm), ear primordium (6-8 mm), unpollinated silks, endosperm (12 days after pollination; DAP), 

endosperm crown (27 DAP), pericarp/aleurone (27 DAP), embryo (20 and 38 DAP), and germinated 

embryo (2 days after imbibition; DAI). Additionally, we sampled 5-day-old primary roots from the Mo17 

inbred.  For proteome analyses only we also sampled tissue from B73 including primary root stele, 

juvenile leaf 3 (19 day), germinated pollen, ear primordium (1 mm), and endosperm (8 and 10 DAP) as 

well as the W23 inbred, which included 2 cm tassels, 1 mm anthers, 2 mm anthers, and mature pollen.  
Mass spectrometry 

Approximately 1-2 grams of frozen tissue were ground in liquid nitrogen using a mortar/pestle for 

15 minutes to a fine powder and then transferred to a 50ml conical tube.  Proteins were precipitated and 

washed with 50ml -20oC methanol with 0.2mM Na3VO4 three times, then 50ml -20oC acetone three times.  

Protein pellets were aliquoted into four 2ml Eppendorf tubes and dried in a SpeedVac at 4 oC.  

Protein pellets were suspended in 1 ml extraction buffer (0.1% SDS, 1mM EDTA, 50mM HEPES 

buffer, pH 7). Cysteines were reduced and alkylated using 1 mM Tris (2-carboxyethyl)phosphine (Fisher, 

AC36383) at 95 °C for 5 minutes then 2.5 mM iodoacetamide (Fisher, AC12227) at 37°C in dark for 15 

minutes, respectively.  Protein amount was quantified using a Bradford assay (Pierce). Proteins were 

digested with trypsin (Roche, 03 708 969 001, enzyme:substrate w:w ratio = 1:100) overnight.  A second 

digestion (enzyme:substrate w:w ratio = 1:100) was perform the next day for 4 hours. Digested peptides 

were purified on a Waters Oasis MCX cartridge to remove SDS.  Peptides were eluted from the MCX 

column with 1ml 50% isopropyl alcohol and 400mM NH4HCO3 (pH 9.5) and then dried in a vacuum 

concentrator at 4oC.  Peptide amount was quantified following MCX using the Pierce BCA Protein assay 

kit. For non-modified proteome profiling peptides were re-suspended in 1% formic acid to a final pH of 3 

and used for mass spectrometry analysis.  For phospho-proteome profiling peptides were re-suspended in 

3% TFA to a final pH of 1 and then used for phosphopeptide enrichment. 

Phosphopeptide enrichment was performed using CeO2 affinity capture.  1% colloidal CeO2 

(Sigma, 289744) was added to the acidified peptide solution (CeO2:peptide w:w ratio = 1:10).  After brief 

vortexing, CeO2 with captured phosphopeptides was spun down at 1,000g for 1 minute.  Supernatant was 
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removed and the CeO2 pellet was washed with 1ml of 1% TFA.  Phosphopeptides were eluted by adding 

eluting buffer (200mM (NH4)2HPO4, 2M NH3.H2O, 10mM EDTA, pH 9.5; same volume as the added 1% 

colloidal CeO2) and vortexing briefly.  CeO2 was precipitated by adding 10% formic acid with 100mM 

citric acid (same volume as the added 1% colloidal CeO2) to a final pH of 3.  Sample was centrifuged at 

16,100 g for 1 minute.  The supernatant containing phosphopeptides was removed and used for mass spec 

analysis.  

An Agilent 1100 HPLC system (Agilent Technologies) delivered a flow rate of 600 nL min-1 to a 

3-phase capillary chromatography column through a splitter. Using a custom pressure cell, 5 µm Zorbax 

SB-C18 (Agilent) was packed into fused silica capillary tubing (250 µm ID; 360 µm OD; 30 cm long 

non-modified and 20 cm long phospho) to form the first dimension reverse phase section of the column 

(RP1). A 5 cm long strong cation exchange (SCX) section of the column packed with 5 µm 

PolySulfoethyl (PolyLC) was connected to RP1 using a zero dead volume 1 µm filter (Upchurch, M548) 

attached to the exit of the RP1 column. A fused silica capillary (200 µm ID, 360 µm OD, 20 cm long) 

packed with 5 µm Zorbax SB-C18 (Agilent) was connected to SCX as the analytical section of the 

column (RP2). The electrospray tip of the fused silica tubing was pulled to a sharp tip with the inner 

diameter smaller than 1 µm using a laser puller (Sutter P-2000). The peptide mixtures were loaded onto 

the RP1 column section using the custom pressure cell. Then the 3 sections were joined and mounted on a 

custom electrospray adapter for on-line nested elutions. A new set of columns was used for each LC-

MS/MS analysis.  Peptides were first eluted from the RP1 column section to the SCX column section 

using a 0 to 80% acetonitrile gradient for 150 minutes.  The peptides were then fractionated by the SCX 

column section using a series of 19 step salt gradients for phosphoproteome (0mM, 5mM, 6mM, 7mM, 

8mM, 9mM, 10mM, 12mM, 15mM, 20mM, 30mM, 40mM, 50mM, 60mM, 70mM, 80mM, 90mM, 

100mM, and 1M ammonium acetate for 20 minutes) and 29 step salt gradients for the non-modified 

proteome (0mM, 5 mM, 10 mM, 15 mM, 20 mM, 22.5 mM, 25 mM, 27.5 mM, 30 mM, 32.5 mM, 35 

mM, 37.5 mM, 40 mM, 42.5 mM, 45 mM, 47.5 mM, 50 mM, 52.5 mM, 55 mM, 57.5 mM, 60 mM, 65 

mM, 70 mM, 75 mM, 80 mM, 85 mM, 90 mM, 150 mM, 1M ammonium acetate for 20 minutes), 

followed by high-resolution reverse phase separation on the RP2 section of the column using an 

acetonitrile gradient of 0 to 80% for 120 minutes. 

Spectra were acquired on a LTQ Velos linear ion trap tandem mass spectrometer (Thermo 

Electron Corporation, San Jose, CA) employing automated, data dependent acquisition. The mass 

spectrometer was operated in positive ion mode with a source temperature of 250 °C. As a final 

fractionation step, gas phase separation in the ion trap was employed to separate the peptides into 3 mass 

classes prior to scanning; the full MS scan range was divided into 3 smaller scan ranges (300–800, 800–
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1,100, and 1,100–2,000 Da) to improve dynamic range. Each MS scan was followed by 5 MS/MS scans 

of the most intense ions from the parent MS scan. A dynamic exclusion of 1 minute was used to improve 

the duty cycle. 

The raw data were extracted and searched using Spectrum Mill v3.03 (Agilent 

Technologies). MS/MS spectra with a sequence tag length of 1 or less were considered to be poor spectra 

and were discarded. The remaining MS/MS spectra were searched against maize B73 RefGen_v2 5a 

Working Gene Set downloaded from www.maizesequence.org. The enzyme parameter was limited to full 

tryptic peptides with a maximum mis-cleavage of 1. All other search parameters were set to Spectrum 

Mill’s default settings (carbamidomethylation of cysteines, +/- 2.5 Da for precursor ions, +/- 0.7 Da for 

fragment ions, and a minimum matched peak intensity of 50%). Ox-Met, n-term pyro-Gln, and 

phosphorylation on Serine, Threonine, or Tyrosine were defined as variable modifications for 

phosphoproteome data. A maximum of 2 modifications per peptide was used. A 1:1 concatenated 

forward-reverse database was constructed to calculate the false discovery rate (FDR).  The tryptic 

peptides in the reverse database were compared to the forward database, and were shuffled if they 

matched to any tryptic peptides from the forward database. Cutoff scores were dynamically assigned to 

each dataset to obtain the false discovery rates (FDR) of 0.02% for spectra, 0.14% for peptides, and 

1.004% for proteins in the non-modified proteome (Table S2). FDRs for the phosphoproteome (Table S3) 

were 0.13% for spectra and 0.63% for phosphopeptides. Phosphorylation sites were localized to a 

particular amino acid within a phosphopeptide using the variable modification localization (VML) score 

in Agilent’s Spectrum Mill software (36). Proteins that share common peptides were grouped using 

principles of parsimony to address protein database redundancy. Thus, proteins within the same group 

share the same set or subset of peptides.  Phosphorylation levels were quantified by spectral counting.  

Spectral counts for each protein represent the total number of peptide spectral matches to that protein (14, 

18, 19, 37, 38). Non-modified abundance was quantified using the distributed normalized spectral 

abundance factor (dNSAF) method (39), which distributes the spectral counts from shared peptides 

between the matching protein isoforms.   Mass spectrometry technical replicate runs, when present, were 

summed to yield biological replicates. All biological replicates were normalized so that the total number 

of spectral counts was equal for each run. The proteomics quantification methodology was previously 

validated for the seed and leaf samples and shown to match known protein accumulation patterns (14, 18).  

 

RNA-seq library preparation, sequencing and analysis 
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Total RNA was isolated by TRIzol extraction (Life Technologies) from the same tissue samples used for 

proteomics. TRIzol isolated RNA was further purified using Qiagen RNeasy kit with on-column DNase 

treatment (Qiagen Inc.). Approximately four micrograms of total RNA was used as input. Each 

sequencing library was constructed using the TruSeq RNA Sample Prep Kit V2 (Illumina, San Diego, 

CA) according to manufacturer’s instructions with the following modifications to confer strand-

specificity. The polyA-selected RNA was used for first strand synthesis and the resulting cDNA:RNA 

hybrid was purified using RNAClean XP beads (Beckman, Brea, CA). The second strand synthesis was 

performed using a dNTP mix containing dUTPs (10mM dATPs, 10mM dGTPs, 10mM dCTPs, and 

20mM dUTPs) and DNA Polymerase I (New England Biolabs, Ipswich, MA). The purified ligation 

products were incubated with Uracil DNA Glycosylase (Fermentas) before PCR amplification. The 

completed libraries were pooled in sets of 24 and each pool was sequenced on 4 lanes. RNA-seq libraries 

were sequenced using the Illumina HiSeq 2500 (Illumina) instrument as per manufacturer’s instructions. 

Sequencing of libraries was performed up to 101 cycles. Image analysis and base calling were performed 

with the standard Illumina pipeline. RNA-seq libraries were prepared as biological triplicates for each 

tissue except for the vegetative meristem samples. Illumina HiSeq2500 output files in the FASTQ format 

were aligned to the Zea mays reference genome version AGPv2.0 

(http://ftp.maizesequence.org/current/assembly/) using Bowtie version 2.1.0 (40) and Tophat version 

2.0.8b (41) (flags = –F 0 –i 30 -M). Gene expression values were calculated using Cufflinks version 2.1.1 

(flags = -u --library type fr-firststrand -b) (42). The B73 RefGen_v2 5a annotation file was used for 

quantitation of gene expression (http://ftp.maizesequence.org/current/working-set/). 

 

Syntenic and non-syntenic gene annotations  

 

As described previously (42), 24,249 genes conserved at syntenic orthologous locations between maize 

and sorghum as well as 82,974 non-syntenic genes were identified from the maize B73 RefGen_v2 5a 

Working Gene Set.  

 

mRNA abundance distributions 
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For all 62547 detected mRNAs, the abundance in all non-zero samples was averaged to get average 

FPKM. The average FPKM was then log2 transformed. A kernel density estimation of this log2 FPKM 

distribution was calculated using the R function density() with default settings. Other kernel density 

estimates were calculated in the same way for the subsets of mRNAs where proteins (17,582) and 

phosphoproteins (6,105) were observed as well as the set of syntenic (23,783) and non-syntenic (36,394) 

genes. The distributions were plotted using R (plot(), lines() and legend()). 

 

Principal Component Analysis 

 

Data from averaged biological replicates were used for both protein and mRNA. The full protein set in the 

23 tissues with RNA-seq data was used (16,946 proteins) as well as all RNA-seq data from genes that 

were detected with > 1 FPKM in at least one tissue sample (43,994 genes). All values were incremented 

by 1 in order to eliminate zero values and the data was log transformed using base 2. Principal component 

analysis (PCA) was carried out separately on each data set using the R function prcomp() from the stats 

package with default parameters. The summary() function was used on the prcomp objects to extract the 

proportion of variance explained by each principal component (PC). The values of the first 4 PCs for each 

tissue was extracted by indexing the “x” matrix of each prcomp object (prcomp$x[,1:4]) and used to 

generate 2D PCA plots using the R plot() function. For both protein and mRNA data, using these 4 PC 

values for each tissue, the Euclidean distance was calculated between each tissue type using the R 

function dist( method=”euclidean” ). These distances were used for hierarchical clustering using average 

linkage with the R function hclust( method=”average”). The two resulting dendrograms were manually 

reordered using the R reorder() function to make for easier visualization. For both the protein and mRNA 

data sets, the contributions of each gene to each of the first 4 principal components (the PCA loadings) 

were extracted from the prcomp objects by indexing the “rotation” matrix (prcomp$rotation[,1:4]). The 

absolute values were taken from each matrix. The union of genes represented in either the protein or 

mRNA data was used and zero values were filled in for genes that were not represented in either set. For 

all 4 principal components, the protein contributions were plotted against the corresponding mRNA 

contributions for each gene using the R plot() function. The Pearson correlation coefficients of each of 

these comparisons was calculated using the cor() function. 

 

Tissue-wise mRNA-to-protein correlations 
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All detected mRNAs were filtered by retaining only genes that have average FPKM >= 1 in at least one of 

the 23 samples to give a set of 34,455 genes. All proteins detected in these 23 samples were filtered by 

retaining only those with at least 1 uniquely mapped peptide to give a set of 15,743 genes. The 

intersection of these two lists is a set of 15,364 genes. All available mRNA biological replicates were 

used for this set of genes along with the matching set of protein biological replicates. For each gene, the 

biological replicates were averaged to yield protein and mRNA abundance. For each sample, the genes 

with detected protein and mRNA were used to calculate the Spearman correlation coefficient using the R 

function cor(). 

 

Spearman correction 

 

Using the separate biological data from the set described above for tissue-wise mRNA-to-protein 

correlations, the corrected Spearman correlation coefficient was calculated for each sample using the 

method described in (43). 

 

mRNA-to-protein correlations within MapMan Bins 

 

The set of genes described above in tissue-wise mRNA-to-protein correlations was used. The average of 

all biological replicates were used for both mRNA and protein abundance measurements. For each 

MapMan Bin, in each sample, calculations were done on the set of genes that had non-zero abundance for 

both mRNA and protein in that tissue. For sets with less than 3 genes, NA was returned. The R function 

cor() was used to calculate both Spearman and Pearson correlation coefficients for each set.  

 

Gene-wise mRNA-to-protein correlations 
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For these calculations the average of all biological replicates was used as abundance measurements. A set 

of 16089 genes was found that have mRNA abundance >= 1 FPKM in at least one tissue and detectable 

protein in one of the 23 tissues profiled by RNA-seq. For each gene, the Spearman correlation coefficient 

was calculated for the abundance data across all 23 samples using the R function cor().  

 

mRNA and protein CV binning and correlation coefficient distributions 

 

The coefficient of variation was calculated for each protein abundance measurement using R ( 

sd(Biological Replicates) / mean(Biological Replicates) ). Five separate gene bins were constructed using 

CV ranges: [0,0.37), [0.37,0.65), [0.65,1.02), [1.02,1.73) and [1.73,2.45). The criteria for each bin were 

that the gene must have >= 10 samples (out of 23) where the protein CV is in that bin or lower. This 

results in overlapping bins where a gene will also be in every bin with higher CVs. This redundancy was 

eliminated by retaining genes only in the lowest CV bin that they could be put into. The correlation scores 

were then calculated using only the samples that met the given cutoff. The kernel density estimates of 

these four distributions along with the full gene set distribution from above (Gene-wise Protein Vs. 

mRNA Correlations) were calculated using the R function density() with default parameters and plotted 

using the R functions plot(), lines() and legend(). 

 

Co-expression networks 

 

The WGCNA R package (23) was used to build both co-expression networks. All available biological 

replicates were averaged. A set of 3 networks was constructed in order to capture all available 

information and using all available genes that were detected in at least 4 tissues. These networks consist 

of 31,447 mRNA, 13,175 proteins, and 4,267 phosphoproteins. Another set of two networks was created 

for comparison between mRNA and protein. For this set, the 16,089 genes from above (Gene-wise 

mRNA-to-protein Correlations) was filtered down to 10,979 by removing genes that had fewer than 5 

non-zero expression values in the 23 samples. The protein and mRNA data were used separately to create 

two networks. The parameters used for each network were identical. A soft power threshold of 12 was 

found to be satisfactory across all networks and both correlation methods. Adjacency matrices were built 

using the adjacency() function with type=”signed” using either Spearman correlation or biweight 
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midcorrelation (bicor). Next, topographical overlap matrices (TOMs) were constructed using the 

TOMsimilarity() function with default parameters. The TOM scores were used as edge weights in the 

analysis. Co-expression modules were constructed through hierarchical clustering of the TOM distance 

(1-TOM) using hclust() function with (method=”average”). Modules were derived using the 

cutreeDynamic() function with parameters (deepSplit=2, pamRespectDendro=F, minClusterSize=30). 

Finally, similar modules were merged using the mergeCloseModules() function with (cutHeight=0.15). 

 

Categorical enrichment 

 

Enrichment analysis was carried out on the modules constructed from the co-expression networks. Each 

module represents a list of co-expressed genes. A custom R script was written to carry out the analysis 

separately on each module using the MapMan categories. For each module, every MapMan bin that was 

represented was examined for enrichment. A hypergeometric test was performed using the R function 

phyper() from the stats package. The total set of genes (Number of black and white balls) used was the 

intersection of genes with MapMan annotations and genes in the co-expression analysis. For this test, the 

number of white balls was the total number of genes annotated with the MapMan category. The number 

draws was the number of genes in the module and the number of white balls drawn was the number of 

genes in the module with the MapMan annotation – 1 (1 must be subtracted for right-tail calculations due 

to the implementation of this function). Within each module, p-values were corrected for multiple testing 

using the p.adjust() function with (method=”fdr”) which performs the Benjamini & Hochberg correction. 

 

Comparison of categorical enrichment 

 

All categories and their adjusted p-values for over-representation were extracted from every module in 

both the protein and mRNA networks. The p-values were converted to –log10(p-value). For each 

category, these scores were summed. The results for the protein and mRNA networks were plotted against 

each other using the R functions plot(). To compare the genes that are accounting for the category 

enrichments, all over-represented categories with adj. p-values < 0.05 were extracted from each network. 

All genes that were responsible for enrichment were extracted from each category. The categories with 

significant enrichment in both networks that contained at least 20 genes between the networks (union) 
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were retained. The genes representing each category fell into three groups: 1) genes accounting for 

enrichment in the protein network only, 2) genes accounting for enrichment in the mRNA network only 

and 3) genes accounting for enrichment in both networks. The fraction of the total number of genes 

represented from each category was calculated for the above 3 groups. These fractions were plotted as a 

percentage of the total genes using the R functions barplot() and axis(). 

 

Gene Regulatory Networks 

 

For all Gene Regulatory Networks (GRNs), the biological replicates for each sample were averaged. A 

common set of 41,021 mRNAs were used as potential targets in the analyses. These mRNAs were 

observed with FPKM >= 1 in at least 1 tissue and also have non-zero values in at least 3 tissues. 

Transcription Factors (TFs) were defined using the GRASSIUS transcription factor list (44). For the three 

full GRNs, every available Transcription Factor (TF) was used that was detected in at least 3 samples 

resulting in 2,200 transcript, 545 protein, and 441 phosphopeptide quantified TFs being used as potential 

regulators. For the two normalized GRNs, the 539 TFs quantified as both mRNAs and proteins were used. 

GRNs were constructed using the GENIE3 algorithm (32). The GENIE3 R code was downloaded from 

the author’s web page, http://www.montefiore.ulg.ac.be/~huynh-thu/software.html. This code was 

modified to take in separate regulator and target data.  

 

Combining Multiple GRNs 

 

To consolidate two or three networks, a new network was generated using the union of all TF expression 

data from the single networks as regulator inputs into the network and the same set of 41,021 target 

transcripts. This results in a network with redundancy at the gene level for TFs regulators that were 

quantified with multiple data types. To alleviate this redundancy, and obtain a combined score for each 

TF-Target edge, the product of all redundant edges was taken. When only a single edge existed (i.e. the 

TF was only quantified in one data type) when combining two data types, the square of the edge score 

was taken. For the final combined network consisting of all three data types, if only one edge was present, 

the edge score was cubed. If two edges were present, the product of the two edges was multiplied by the 

average of the two edges.  
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For the phosphorylation data, the networks were constructed using phosphopeptide quantification but 

when combined, all phosphopeptides from a given protein were averaged in order to get phosphoprotein 

level information. 

 

ROC and PR curves 

 

ChIP-Seq and RNA-seq studies in both wild-type and null mutant backgrounds have been previously 

performed for the maize transcription factors KNOTTED1 (KN1) (24) and Opaque2 (O2) (34). In these 

studies, gene sets were defined for TF bound genes (ChIP-Seq) as well as genes whose transcript 

abundance was modulated as a result of a null mutation in each TF. For our study, we used the 

intersection of these predefined lists as our standard set of targets for each TF. For each GRN, the 

GENIE3 score for the total set of potential mRNA targets was used for either KN1 or O2. This score was 

used to rank the predictions. The predictions for KN1 and O2 were then combined into one ordered list. 

Using the ROCR R package, these ranked lists were compared to the standard target sets using the 

prediction() function. Using the outputs of the prediction function, the performance() function was used to 

generate curve objects. For ROC curves, the parameters were (measure=”tpr”, x.measure=”fpr”) and for 

PR curves, the parameters were (measure=”prec”, x.measure=”rec”). To calculate the area under the ROC 

curves, the performance() function was used with (measure=”auc”). For the area under the PR curves, the 

PR curve objects were integrated by taking the mean of the y-values. The curves were plotted using the R 

functions plot(), lines(), abline() and legend(). 

 

Feature analysis of transcription factors that were preferential to each GRN 

 

We examined 5 features of TFs weighted by their frequency in each network. In this way, distributions of 

abundance and CV were generated for both protein and mRNA data as well as distributions of protein vs. 

mRNA correlation scores. Using the protein and mRNA networks with the common 539 TF regulators, 

the top 200,000 edges were examined and each edge was distributed into 3 categories [1] unique to 

protein GRN, [2] shared between protein and mRNA GRNs and [3] unique to mRNA GRN. Next, the TF 

of each of these edges was used to create a redundant list for each category. The redundancy results from 

the same TF being predicted to regulate several targets and therefore having multiple edges in the 
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network. This redundancy was retained and acts as a weight to represent each TFs preference in the three 

categories. . Using these weighted lists, for all three categories, the distributions of the 5 features 

mentioned above were examined. In order to determine if the median of each distribution was high or 

low, a permutation test was conducted independently for each of the 3 categories for all 5 features. The 

permutation test was carried out by randomly sampling the 539 TFs and calculating the median value of 

the feature in question. For the randomly sampled lists, the weights (number of times a TF was repeated 

in the list) were eliminated and the number of unique TFs was randomly sampled. The original weights 

were then reapplied to the random list. This process was repeated 10,000 times for each distribution. The 

average median from the 10,000 permutations is plotted as a grey line (Fig S30). P-values were calculated 

by dividing the number of permuted medians that were either greater than or less than the true distribution 

median by 10,000.  

 

Functional annotations 

 

The MapMan functional annotation file Zm_B73_5b_FGS_cds_2012 was downloaded from 

http://mapman.gabipd.org (45). GRASSIUS transcription factor annotations were downloaded from 

http://grassius.org on 12-3-2013 (44). CoGe “classical maize genes” were downloaded from 

http://genomevolution.org/wiki/index.php/Classical_Maize_Genes on 3-27-2012 (22).  

 

Clustering Transcription Factors 

 

Hierarchical clustering of the 393 transcription factors that were detected as mRNA, protein, and 

phosphoprotein was performed using MultiExperiment Viewer (MeV v4.8; http://www.tm4.org/mev/) 

software. Hierarchical clustering results were visualized as heat maps in MeV following row 

normalization using the “Normalize Gene/Row Vectors” row adjustment.   
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Supplementary Text 

Recent studies, ranging in scope and complexity, have examined mRNA-to-protein correlation values and 

found a weakly positive relationship (8–15). Our integrated transcriptome and proteome datasets enabled 

correlation analyses across development encompassing 4,277 to 9,334 genes per tissue (Table S7). Both 

Spearman and Pearson correlations were calculated but we focused on Spearman correlations because 

they are less susceptible to outliers and do not rely on a linear dependence between variables. Within a 

given tissue the Spearman correlations ranged from 0.31 to 0.65  (Fig. S13A and Table S7), which is 

consistent with mRNA-to-protein correlations observed in a range of eukaryotic organisms (8–15). 

Recently, Csárdi et al. (43) reported that using a Spearman correction to account for experimental noise 

increases correlation values in yeast. However, applying their method to our data provided only a slight 

improvement for a corrected range of 0.39 to 0.74 (Fig. S13A and Table S7). Thus, other factors besides 

experimental noise underlie the modest correlations. Principal component analysis of the transcriptome 

and proteome uncovered similar relationships between tissue types (Fig. S14-16). However, the principal 

components of the transcriptome were different from those of the proteome (Fig. S17).  

Similar to previous findings, we observed a wide range of mRNA-protein correlations dependent upon 

MapMan functional category (Table S7) (12, 14).  Intriguingly, the correlations for many MapMan 

categories varied widely depending on the tissue (Table S7). For example, the correlation for genes 

involved in Cell Wall Degradation varied more than ten-fold from 0.06 in the Mature Leaf to 0.8 in the 

Secondary Root. Thus, the outcome of a specific gene regulatory pathway within a given tissue is subject 

to complex regulatory relationships, which underlie the unique developmental biology of each tissue type. 

As an alternative to looking at correlations between genes within a tissue type we calculated correlation 

values across all samples for each gene. These data validated the inference of protein levels from mRNA 

measurements for 1,468 genes (9.1%) whose Spearman correlations of mRNA to protein abundance were 

≥ 0.75 (Table S7). Conversely, 1,247 genes (7.6%) exhibited negative correlations. We also examined the 

impact of experimental noise from protein data on gene-level correlations by calculating the average 

coefficient of variation (CV) of the biological replicates for protein abundance of each gene. We then 

grouped genes into discrete bins based upon maximum CV to examine general patterns among genes with 

low versus high CV values (Fig. S13B). We observe that the bins with larger CV have lower correlation 

scores. However, even the highest confidence measurements (Lowest CVs) show a modest median 

correlation score of 0.45, which is a small shift from the median of 0.41 that we see in the background of 

all observed genes. These data highlight the complex mechanisms of regulation that act on protein-coding 

genes and illustrate the need for examining both mRNA and protein outputs of gene expression. 
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Supplemental Figures 

Figure S1. Non-syntenic vs syntenic expression. For transcribed genes, syntenic genes are several times 
more likely to be detected as protein than non-syntenic genes. The “ratio” represents the ratio of blue bars 
(Translated Syntenic/ Translated Non-syntenic). An array of 6 mRNA expression level cutoffs was used 
to show that this observation is independent of transcript expression level.  

Figure S2. Hierarchical clustering of transcription factor mRNA expression levels. Transcription factors 
enriched in specific tissues are listed in Table S5. 

Figure S3. Hierarchical clustering of transcription factor protein expression levels. Transcription factors 
enriched in specific tissues are listed in Table S5. 

Figure S4. Hierarchical clustering of transcription factor phosphoprotein expression levels. Transcription 
factors enriched in specific tissues are listed in Table S5. 

Figure S5. Family-wise analysis of transcription factors at the mRNA level. (A) For each TF family, over-
enrichment of family members was determined for each tissue. (B) The mRNA abundance of each TF for 
a given family is summed for each tissue, then hierarchically clustered and row-normalized.   

Figure S6. Family-wise analysis of transcription factors at the protein level. (A) For each TF family, over-
enrichment of family members was determined for each tissue. (B) The protein abundance of each TF for 
a given family is summed for each tissue, then hierarchically clustered and row-normalized.   

Figure S7. Family-wise analysis of transcription factors at the phosphoprotein level. (A) For each TF 
family, over-enrichment of family members was determined for each tissue. (B) The phosphoprotein 
abundance of each TF for a given family is summed for each tissue, then hierarchically clustered and row-
normalized.   

Figure S8. Co-expression Network Clusters. WGCNA derived co-expression dendrograms and 
corresponding modules (colored boxes) for (A) mRNA network, (B) protein network and (C) 
phosphoprotein network. Colors correspond to co-expression modules and are manually annotated based 
on the tissue(s) of highest expression. Module expression and membership is described in Figs S9-12 and 
TableS6. 

Figures S9-S12. Expression of co-expression clusters. The eigengenes derived from all WGCNA clusters 
(modules) depict a summarized expression vector of the whole module. Modules for mRNA (red), protein 
(blue) and/or phosphoprotein (green) are plotted. Each panel represents a different module. Modules with 
similar expression from different data types are depicted in the same panel. The titles of each plot along 
with the colored boarder are manual annotations based on the tissue(s) of highest expression and 
correspond to the module color in Figure S8. Each module has a separate tab in Table S6 with the same 
name as the plot in this figure. This tab lists all the genes in this module as well as the enriched MapMan 
categories. 

Figure S13. Correlation of protein vs. mRNA expression. (A) The sample-wise spearman correlation was 
calculated for each tissue. A correction for correlation scores based on replicate reproducibility was also 
calculated (35). (B) The gene-wise spearman correlation was calculated by examining the protein and 
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mRNA levels for each gene individually across all tissues and plotting the distribution (black dashed 
line). The genes were then binned based on the CV of protein expression and the distribution for each bin 
is shown. The upper left legend displays the CV range for each bin, the number of genes in each bin (“n”) 
and the mean normalized protein abundance for each bin (“dNSAF”)  

Figure S14. Comparison of principle component analysis (PCA) between transcript and protein data sets. 
(A) The proportion of total variance explained by each principal component from mRNA data. (B) The 
proportion of total variance explained by each principal component from the protein data.  

Figure S15. PCA results for transcript and protein data sets. Two-dimensional principal component plots 
of the first 4 principal components plotted pairwise against each other for both protein (upper right 
triangle) and mRNA (bottom left triangle). Colors represent developmentally similar tissues. See figure 
S16 for color-to-tissue assignments 

Figure S16. Comparison of PCA between transcript and protein data sets. Hierarchical clustering 
dendrograms constructed using values of the first 4 principal components for each sample type. Colors are 
the same as in Fig. S15.  

Figure S17. Comparison of PCA between transcript and protein data sets. For the first 4 principal 
components (PC), the contributions (PCA loadings) of each gene from the protein data (x-axis) and 
mRNA data (y-axis) are plotted against each other. The Pearson correlation coefficient (PCC) is indicated 
for each PC.  

Figure S18. Assessment of soft thresholds used in WGCNA to generate the Spearman based co-
expression networks. A range of soft thresholds was evaluated by looking at (A) Scale independence for 
the mRNA co-expression network. (B) Mean connectivity in the mRNA co-expression network. (C) Scale 
independence for the protein co-expression network. (D) Mean connectivity in the protein co-expression 
network. 

Figure S19. Assessment of soft thresholds used in WGCNA to generate the Bicor based co-expression 
networks. A range of soft thresholds was evaluated by looking at (A) Scale independence for the mRNA 
co-expression network. (B) Mean connectivity in the mRNA co-expression network. (C) Scale 
independence for the protein co-expression network. (D) Mean connectivity in the protein co-expression 
network. 

Figure S20. Edge overlap of mRNA and Protein co-expression networks. Using co-expression networks 
generated using either spearman correlation or biweight midcorrelation from a common set of detected 
proteins and mRNAs, the edge overlap is shown vs. network size (blue) compared to random (black 
dashed). For reference, the minimum edge score (correlation) is also shown vs. network size (red).  

Figure S21. Heatmap showing the jaccard index (intersect/union) of co-expression networks built using 
single biological replicates of protein or mRNA abundance measurements. 

Figure S22. mRNA to protein co-expression hub overlap (A) For the Co-expression networks built using 
the biweight midcorrelation and a common set of detected mRNA and protein, the number of edges a 
given gene (node) has in the protein (x-axis) and mRNA (y-axis) is shown. Nodes above the 90th 
percentile for number of edges (degree) are considered hubs and colored based on whether they are a hub 
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in the protein (blue), mRNA (red), or both (green) networks. Black dots represent non-hub nodes. (B) For 
the Co-expression network built using spearman correlation (Fig 2), the percentage of all hub genes that 
are unique to the RNA network, unique to the protein network or shared between networks is plotted as a 
function of network size. 

Figure S23. MapMan functional category enrichment in mRNA vs. protein co-expression network 
modules. In total 1,089 MapMan categories were enriched. Data are the sum of the log-10 P-value for 
every module in which a given MapMan category was present.  

Figure S24. Quality of the full gene regulatory networks. Both single networks and combined networks 
are shown. KN1 and O2 target genes were obtained from previously published ChIP-seq datasets (24, 34).  
(A) Receiver operating characteristic (ROC) curve. (B) Precision-recall curve. Phosphorylation 
modifications were predominantly localized to a specific site on both KN1 (GRMZM2G017087, peptide 
– NILSSGSSEEDQEGsGGETELPEVDAHGVDQELK, site-S225) and O2 (GRMZM2G015534, peptide 
– DPsPSDEDMDGEVEILGFK, site-S225).  

Figure S25. Comparison of the full-sized gene regulatory networks. GRNs were reconstructed using TF 
regulators quantified as mRNAs (2,200 TFs), proteins (545 TFs), or phosphopeptides (441 TFs), and 
41,021 shared potential target genes were quantified as mRNAs. (A) Overlap of the true positive 
predictions from the top 500 true GRN predictions for O2 quantified as mRNA, protein, or 
phosphopeptide. (B) GRN precision as a function of network size was calculated using KN1 by 
comparing the number of true positive (TP) vs false positive (FP) predictions. As the number of edges 
increased the prediction score decreased. A cutoff of 200,000 edges (vertical dashed line) was used to 
select the set of high-confidence predictions for all three GRNs. (C) Overlap of the TF-target predictions 
for the top 200,000 scoring predictions in each GRN.  

Figure S26. Edge Overlap of full-sized gene regulatory networks. Using the GRNs that were constructed 
using all available TF information for each data type, the edge overlap was evaluated for an array of 
network sizes ranging from 100,000 to 10 million. For each size, all edges were categorized as being 
specific to one network or shared between two or all networks. The sizes of each category are represented 
by stacked colored bars as a percentage of all edges represented. 

Figure S27. Differential expression of 393 TF genes measured as mRNAs, proteins, and phosphoproteins. 
(A) Heat maps ordered by hierarchical clustering of mRNA abundance. (B) Heat maps ordered by 
hierarchical clustering of protein abundance. (C) Heat maps ordered by hierarchical clustering of 
phosphoprotein abundance. 

Figure S28. Quality of the GRNs reconstructed using 539 TFs quantified by their mRNA or protein 
abundance. (A) Receiver operating characteristic (ROC) curve. (B) Precision-recall curve. Standard sets 
based on KN1 and O2 target genes, obtained from previously published ChIP-seq datasets (24, 34). 
Overlap of the true positive predictions from the top 500 true GRN predictions for (C) Kn1 and (D) O2. 

Figure S29. Comparison of predictions in GRNs made using only 539 TFs. (A) Percentage of predictions 
(edges) that were conserved between GRNs made using the mRNA or protein to measure TF abundance. 
(B) Overlap of the TF-target predictions for the top 200,000 scoring predictions in each GRN. 
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Figure S30. TF regulator expression. TF regulators were weighted based on the number of edges they 
have in each of 3 categories; [1] edges unique to the protein network, [2] edges shared between the two 
networks and [3] edges unique to the transcript network. Features of the TFs were then examined for each 
category after applying the category weights. (A) The distributions of weighted protein abundance of TF 
regulators in the 3 categories. (B) The distributions of weighted coefficient of variation (CV) for protein 
abundance of TF regulators in each category. (C) The distributions of weighted transcript abundance of 
TF regulators in each category. (D) The distributions of weighted CVs  for transcript abundance of TF 
regulators in each category. (E) The distributions of Spearman correlations of mRNA-to-protein 
abundance for TF regulators in each category. P-values were determined using a permutation test with 
10,000 repetitions. Grey lines represent the average median of all permutation tests. 

Figure S31. Conservation of mRNA GRN predictions in Mo17.  TF regulators from the mRNA GRN 
who’s mRNA is differentially expressed between B73 and Mo17 are shown on the left. The “N=” number 
next to the gene accession is the number of predicted targets for that regulator. On the right, bars represent 
the percentage of a given regulators target genes that are also differentially expressed between B73 and 
Mo17. Colored bars indicate a significant overrepresentation in differentially expressed target genes. P-
values for this overrepresentations are printed to the right of each bar. 

Figure S32. Conservation of protein GRN predictions in Mo17.  TF regulators from the protein GRN 
whose protein is differentially expressed between B73 and Mo17 are shown below the x-axis. The “N=” 
number next to the gene accession is the number of predicted targets for that regulator. Bars above 
represent the percentage of a given regulators target genes who are also differentially expressed between 
B73 and Mo17. Colored bars indicate a significant overrepresentation in differentially expressed target 
genes. P-values for this overrepresentations are printed on top of each bar. 

Figure S33. Conservation of phosphopeptide GRN predictions in Mo17.  TF regulators from the 
phosphopeptide GRN that are differentially expressed between B73 and Mo17 are shown below the x-
axis. The “N=” number next to the gene accession is the number of predicted targets for that regulator. 
Bars above represent the percentage of a given regulators target genes who are also differentially 
expressed between B73 and Mo17. Colored bars indicate a significant overrepresentation in differentially 
expressed target genes. P-values for this overrepresentations are printed on top of each bar. 
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Supplemental Table Legends 

Table S1. Transcriptome. Abundance values are FPKM.  

Table S2. Non-modified proteome. Abundance values are dNSAF. 

Table S3. Phosphoproteome. Abundance values are spectral counts of both phosphopeptides and 
phosphoproteins.  

Table S4. Pearson correlations of biological replicates within each tissue. 

Table S5. Transcription factors and the tissues they are enriched in. Tissue enrichment was determined 
using hierarchical clustering (Figs. S3-S5). 

Table S6. Overrepresentation of MapMan functional categories and gene lists for co-expression modules 
generated using WGCNA. For this analysis all genes quantified as mRNA, protein, or phosphoproteins 
were used. The tissue(s) corresponding in each module were determined from Figures S9-S12. 

Table S7. Correlation of mRNA-to-protein abundance. Spearman and Pearson correlations at the tissue, 
MapMan bin, and gene levels.  

Table S8. Pairwise transcript and protein co-expression networks. For these network reconstructions we 
used only the 10,979 genes that were detected both as transcripts and proteins in at least 5 of the 23 
developmental gene expression atlas tissues in which we profiled both mRNA and protein. 

Table S9. Transcript and proteins present in co-expression modules derived from Table S8. Lists all genes 
that group into co-expression modules in either the transcript or protein co-expression networks as well as 
the MapMan functional categories that were enriched within each module.  

Table S10. Full-sized gene regulatory networks. The top 1 million edges (predictions) for GRNs 
reconstructed using the mRNA, protein, and/or phosphopeptide abundance of quantified transcription 
factors (regulators) to predict genes that they regulate (quantified as mRNA).  
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Figure S1. Non-syntenic vs syntenic expression. For transcribed genes, syntenic genes are several times more likely to be detected as protein than non-syntenic genes. 
The “ratio” represents the ratio of blue bars (Translated Syntenic/ Translated Non-syntenic). An array of 6 mRNA expression level cutoffs was used to show that this 
observation is independent of transcript expression level. 
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Figure S2. Hierarchical clustering of transcription factor mRNA expression levels. 
Transcription factors enriched in specific tissues are listed in Table S5.
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Figure S3. Hierarchical clustering of transcription factor protein expression levels. Transcription factors enriched in specific 
tissues are listed in Table S5.
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Figure S4. Hierarchical clustering of transcription factor phosphoprotein expression levels. Transcription factors enriched in specific 
tissues are listed in Table S5.
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Figure S5. Family-wise analysis of transcription factors at the mRNA level. (A) For each TF family, over-enrichment of family members 
was determined for each tissue. (B) The mRNA abundance of each TF for a given family is summed for each tissue, then hierarchically 
clustered and row-normalized.  
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Figure S6. Family-wise analysis of transcription factors at the protein level. (A) For each TF family, over-enrichment of family members was determined for each tissue. 
(B) The protein abundance of each TF for a given family is summed for each tissue, then hierarchically clustered and row-normalized.  
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Figure S7. Family-wise analysis of transcription factors at the phosphoprotein level. (A) For each TF family, over-enrichment of family members was determined for each 
tissue. (B) The phosphoprotein abundance of each TF for a given family is summed for each tissue, then hierarchically clustered and row-normalized.  
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Figure S8. Co-expression Network Clusters. WGCNA derived co-expression dendrograms 
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annotated based on the tissue(s) of highest expression. Module expression and 
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Figure S14. Comparison of principle component analysis (PCA) between transcript and protein 
data sets. (A) The proportion of total variance explained by each principal component from
 mRNA data. (B) The proportion of total variance explained by each principal component
 from the protein data. 
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Figure S15. PCA results for transcript and protein data sets. Two-dimensional principal component plots of the first 4 principal components plotted 
pairwise against each other for both protein (upper right triangle) and mRNA (bottom left triangle). Colors represent developmentally similar tissues. 
See figure S16 for color-to-tissue assignments
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Figure S16. Comparison of PCA between transcript and protein data sets. Hierarchical clustering dendrograms constructed using values of the first 4 principal components for each sample type. 
Colors are the same as in Fig. S15. 
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Figure S17. Comparison of PCA between transcript and protein data sets. For the first 4 principal components (PC), 
the contributions (PCA loadings) of each gene from the protein data (x-axis) and mRNA data (y-axis) are plotted against 
each other. The Pearson correlation coefficient (PCC) is indicated for each PC. 
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A

Figure S20. Edge overlap of mRNA and Protein co-expression networks. Using co-expression networks 
generated using either spearman correlation or biweight midcorrelation from a common set of detected 
proteins and mRNAs, the edge overlap is shown vs. network size (blue) compared to random 
(black dashed). For reference, the minimum edge score (correlation) is also shown vs. network size 
(red). 
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Figure S21. Heatmap showing the jaccard index (intersect/union) of co-expression networks built 
using single biological replicates of protein or mRNA abundance measurements.

Pr
ot

ei
n_

Re
p1

Pr
ot

ei
n_

Re
p2

Pr
ot

ei
n_

Re
p3

m
RN

A_
Re

p1

m
RN

A_
Re

p2

m
RN

A_
Re

p3

mRNA_Rep3

mRNA_Rep2

mRNA_Rep1

Protein_Rep3

Protein_Rep2

Protein_Rep1

0.05 0.05 0.05 0.46 0.49 1

0.05 0.05 0.05 0.42 1 0.49

0.06 0.06 0.06 1 0.42 0.46

0.33 0.37 1 0.06 0.05 0.05

0.37 1 0.37 0.06 0.05 0.05

1 0.37 0.33 0.06 0.05 0.05

0.2 0.6 1
Percent Overlap

0
5

10
15



 

 

45 

 

 

 

 

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒

࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒
࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒
࢒
࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒
࢒

࢒࢒

࢒

࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒
࢒࢒

࢒
࢒

࢒

࢒

࢒࢒
࢒
࢒

࢒࢒

࢒

࢒
࢒

࢒
࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒
࢒

࢒
࢒࢒࢒࢒
࢒

࢒

࢒࢒
࢒
࢒࢒

࢒

࢒

࢒࢒

࢒
࢒

࢒
࢒࢒

࢒
࢒

࢒

࢒
࢒

࢒
࢒

࢒

࢒
࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒
࢒࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒
࢒࢒࢒࢒
࢒࢒

࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒
࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒
࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒

࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒࢒
࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒࢒࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒࢒࢒
࢒࢒
࢒
࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒
࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒
࢒

࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒

࢒࢒

࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒
࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒
࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒

࢒

࢒

࢒࢒

࢒
࢒

࢒

࢒

࢒

࢒
࢒

࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒
࢒

࢒

࢒

࢒
࢒࢒
࢒

࢒

࢒
࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒
࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒࢒
࢒࢒࢒
࢒
࢒࢒࢒
࢒
࢒

࢒࢒
࢒࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒࢒࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒

࢒࢒࢒

࢒࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒
࢒

࢒࢒

࢒࢒

࢒࢒

࢒
࢒

࢒࢒࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒
࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒࢒࢒

࢒
࢒

࢒࢒

࢒࢒࢒

࢒
࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒

࢒
࢒࢒࢒

࢒

࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒
࢒
࢒

࢒

࢒
࢒
࢒
࢒

࢒

࢒
࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒࢒
࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒࢒࢒࢒
࢒࢒
࢒

࢒

࢒
࢒
࢒࢒࢒

࢒
࢒

࢒࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒
࢒࢒࢒

࢒

࢒
࢒
࢒
࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒
࢒
࢒
࢒

࢒࢒

࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒࢒

࢒
࢒
࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒
࢒

࢒

࢒࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒
࢒
࢒
࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒࢒

࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒
࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒

࢒
࢒
࢒࢒࢒
࢒࢒
࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒
࢒
࢒࢒

࢒

࢒

࢒࢒

࢒
࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒

࢒࢒࢒࢒

࢒
࢒

࢒࢒
࢒
࢒
࢒࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒
࢒

࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒࢒

࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒
࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒
࢒

࢒࢒࢒࢒࢒

࢒
࢒

࢒
࢒
࢒

࢒

࢒

࢒
࢒
࢒

࢒

࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒࢒

࢒
࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒
࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒
࢒
࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒
࢒

࢒࢒

࢒࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒࢒
࢒

࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒
࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒
࢒

࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒࢒࢒

࢒

࢒

࢒
࢒
࢒࢒

࢒࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒
࢒
࢒
࢒
࢒࢒࢒
࢒
࢒
࢒
࢒࢒࢒࢒
࢒
࢒
࢒
࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒࢒࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒
࢒
࢒࢒

࢒
࢒

࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒

࢒
࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒࢒
࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒

࢒࢒
࢒࢒
࢒࢒
࢒
࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒

࢒࢒࢒
࢒
࢒࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒
࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒
࢒
࢒

࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒࢒
࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒࢒

࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒
࢒

࢒࢒࢒࢒
࢒
࢒

࢒

࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒
࢒

࢒
࢒࢒
࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒
࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒࢒࢒࢒࢒
࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒
࢒

࢒
࢒
࢒

࢒

࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒࢒

࢒࢒࢒࢒࢒࢒
࢒࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒
࢒
࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒
࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒
࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒
࢒࢒
࢒࢒࢒࢒࢒࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒
࢒࢒
࢒࢒
࢒
࢒࢒࢒࢒
࢒
࢒

࢒

࢒
࢒࢒

࢒

࢒࢒࢒࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒
࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒

࢒࢒

࢒

࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒
࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒࢒

࢒࢒࢒
࢒

࢒

࢒࢒࢒࢒
࢒
࢒

࢒

࢒
࢒
࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒
࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒࢒
࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒
࢒

࢒

࢒

࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒
࢒࢒
࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒

࢒
࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒
࢒
࢒
࢒
࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒
࢒

࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒
࢒
࢒࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒
࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒
࢒
࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒

࢒࢒
࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒

࢒

࢒
࢒
࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒
࢒࢒
࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒

࢒࢒
࢒
࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒
࢒
࢒

࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒

࢒࢒࢒࢒

࢒

࢒

࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒
࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒࢒

࢒࢒

࢒࢒

࢒

࢒

࢒
࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒

࢒
࢒࢒
࢒࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒
࢒
࢒
࢒
࢒࢒࢒࢒࢒

࢒࢒

࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒
࢒࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒

࢒࢒࢒
࢒
࢒

࢒

࢒

࢒

࢒࢒࢒࢒࢒

࢒࢒
࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒
࢒

࢒

࢒࢒
࢒࢒

࢒

࢒࢒࢒࢒࢒

࢒

࢒

࢒

࢒
࢒

࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒
࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒

࢒

࢒࢒࢒
࢒
࢒

࢒࢒࢒࢒
࢒
࢒
࢒
࢒

࢒
࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒࢒

࢒

࢒࢒
࢒

࢒

࢒࢒࢒࢒࢒
࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒

࢒

࢒࢒࢒࢒࢒࢒

࢒

࢒࢒

࢒

࢒࢒

࢒

࢒

࢒

࢒࢒࢒

࢒

࢒

࢒

࢒࢒
࢒
࢒

࢒

࢒࢒

࢒
࢒࢒࢒࢒࢒࢒࢒
࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒࢒
0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00

࢒
࢒
࢒
࢒

mRNA Hub
Protein Hub
Shared Hub
Non−+XE

Number of Edges per node (Protein)

N
um

be
r o

f e
dg

es
 p

er
 n

od
e 

(T
ra

ns
cr

ip
t)

Network Size (Edges)

Pe
rc

en
ta

ge
 o

f H
ub

 G
en

es

0
20

40
60

80
10

0

50000 2e+06 4e+06 6e+06 8e+06 1e+07

RNA Hub
Shared Hub
Protein Hub

A

B

Figure S22. mRNA to protein co-expression hub overlap (A) For the Co-expression networks built using the 
biweight midcorrelation and a common set of detected mRNA and protein, the number of edges a given gene 
(node) has in the protein (x-axis) and mRNA (y-axis) is shown. Nodes above the 90th percentile for number 
of edges (degree) are considered hubs and colored based on whether they are a hub in the protein (blue), 
mRNA (red), or both (green) networks. Black dots represent non-hub nodes. (B) For the Co-expression 
network built using spearman correlation (Fig 2), the percentage of all hub genes that are unique to the RNA 
network, unique to the protein network or shared between networks is plotted as a function of network size.
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A B

Figure S24. Quality of the full gene regulatory networks. Both single networks and combined networks are shown. KN1 and O2 target genes 
were obtained from previously published ChIP-seq datasets (24, 34).  (A) Receiver operating characteristic (ROC) curve. (B) Precision-recall 
curve. Phosphorylation modifications were predominantly localized to a specific site on both KN1 (GRMZM2G017087, 
peptide – NILSSGSSEEDQEGsGGETELPEVDAHGVDQELK, site-S225) and O2 (GRMZM2G015534, 
peptide – DPsPSDEDMDGEVEILGFK, site-S225).
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Figure S25. Comparison of the full-sized gene regulatory networks. GRNs were reconstructed using TF regulators quantified as 
mRNAs (2,200 TFs), proteins (545 TFs), or phosphopeptides (441 TFs), and 41,021 shared potential target genes were quantified 
as mRNAs. (A) Overlap of the true positive predictions from the top 500 true GRN predictions for O2 quantified as mRNA, protein,
 or phosphopeptide. (B) GRN precision as a function of network size was calculated using KN1 by comparing the number of true 
positive (TP) vs false positive (FP) predictions. As the number of edges increased the prediction score decreased. A cutoff of 
200,000 edges (vertical dashed line) was used to select the set of high-confidence predictions for all three GRNs. (C) Overlap of 
the TF-target predictions for the top 200,000 scoring predictions in each GRN. 
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Figure S27. Differential expression of 393 TF genes measured as mRNAs, proteins, and phosphoproteins. (A) Heat maps ordered by hierarchical clustering of mRNA 
abundance. (B) Heat maps ordered by hierarchical clustering of protein abundance. (C) Heat maps ordered by hierarchical clustering of phosphoprotein abundance.
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Figure S28. Quality of the GRNs reconstructed using 539 TFs quantified by their mRNA or protein abundance. (A) Receiver 
operating characteristic (ROC) curve. (B) Precision-recall curve. Standard sets based on KN1 and O2 target genes, obtained 
from previously published ChIP-seq datasets (24, 34). Overlap of the true positive predictions from the top 500 true GRN 
predictions for (C) Kn1 and (D) O2.
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Figure S29. Comparison of predictions in GRNs made using only 539 TFs. (A) Percentage of predictions 
(edges) that were conserved between GRNs made using the mRNA or protein to measure TF abundance. 
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CHAPTER 2 

Genic DNA Methylation Plays a Key Role in Establishing the 
Maize Expressome: A Machine Learning-Based Approach to 

Systems-level Discovery. 
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1Division of Biological Sciences, University of California San Diego, La Jolla, 
CA 92093, USA.  
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ABSTRACT 

 We used a machine learning approach to classify genes according to 

their expression potentials. The algorithmic models use only genic DNA 

methylation, operate on a genome-wide scale, and perform as good or better 

than manually curated classifications. Methylation patterns distinguish 

between gene classes with high accuracy: 8,065 can express mRNA only; 

32,995 can express both mRNA and protein; 57,236 are constitutively silent. 

Naturally occurring differential methylation of genes between genetically 

diverse inbreds is associated with differences in expression predicted by the 

models. Therefore, while more than half of the protein-coding genes are silent 

in a given inbred, many can be expressed in the diverse germplasm of the 

species, providing a reservoir of adaptive potential that may play a role in plant 

breeding and evolution.  
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INTRODUCTION 

 Methods for genome-wide annotation of protein-coding genes are 

based on homology to genes in related species and on mRNA expression 

data. Except for a relatively small number of studied genes, these two criteria 

provide the primary evidence for gene functions. While useful, these methods 

of annotation are incomplete because in most species a significant fraction of 

genes are not known to be expressed or they have no known homologs. 

Furthermore, a large proportion of transcribed genes are not known to express 

proteins. Genes naturally form two groups according to their mRNA expression 

levels of high vs. low/no expression (Walley & Sartor, 2016; Hebenstreit, 2011; 

Nagaraj, 2011). Nearly all genes shown to have a function are in the high 

mRNA expression group. Correspondingly, nearly all observed protein-

expressing genes are in this group and 90% of these observed protein-

expressing genes are syntenic orthologs. DNA methylation within the gene 

body is lower in syntenic genes (Eichten, 2011). DNA methylation can repress 

the expression and transposition of transposable elements (TEs) (Slotkin & 

Martienssen, 2007; Zemach, 2010; Regulski, 2013; West, 2014). Spreading of 

methylation from TEs to nearby genes is thought to influence their expression 

(Weil and Martienssen, 2008; Eichten, 2012). To explore the possibility of a 

genome-wide silencing system that extends to all protein-coding genes, we 

developed a method for algorithm-based annotation that describes the 
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expression potentials for all protein-coding genes. This revealed that mRNA-

expressing genes have no/little methylation at their 5’ and 3’ ends and protein-

expressing genes additionally have methylation in their centers.  

 

RESULTS 

Algorithmic Models of Expression Potential 

Genes can be grouped into categories based on the abundance of their 

transcripts. We used three categories: i) High abundance mRNA (HR), Low 

abundance mRNA (LR) and Non-Observed mRNA (NR) (Fig2.1_B). Each 

category can be split into two based on whether a gene has: Observed Protein 

(OP) or Non-Observed Protein (NP) resulting in 6 categories total (Fig2.1_B). 

We examined three sets of genes for which there is independent, published 

evidence of expression or function and saw that these genes reside in the high 

abundance mRNA group (S2.1). We trained the random forest machine 

learning algorithm (Breiman, 2001) to classify genes of the inbred B73 by 

using genic methylation as predictive features to explain gene expression: 

genes were classified as able to express both mRNAs and proteins; as able to 

express only mRNAs; or as silent (Fig2.1).  Genic methylation was 

summarized into multiple features. All three methylation sequence contexts 

(CHG, CpG and CHH) were quantified separately and summarized within gene 

regions (Fig2.1_A); gene regions included the transcription start site (TSS), 5’ 

UTR, 3’  
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UTR, introns, exons, and summed across the whole gene model.   

These 6 regions combined with 3 methylation contexts provided 18 features 

that were used for training the algorithmic models (S2.2). The LR and HR were 

separated using an mRNA abundance value of 1 Fragment Per Kilobase per 

Million reads (FPKM) (Fig2.1_B). The NR and LR were generally grouped 

together because it is likely that the NR is an extension of the lower tail of the 

LR that is below the detection limit. 

The methylation data were used as training features (independent 

variables) in every model. Several different class variables (dependent 

variables) were tested, each being used to train a different model. These class 

variables were determined using transcript abundance or a combination of 

transcript and protein abundance (Walley & Sartor, 2016). Two classifiers 

were built. The first used a combination of protein and transcript data. The 

silent class consists of genes with no observed mRNA or protein (NR/NP). The 

express-able class consists of genes with high mRNA and observed proteins 

(HR/OP). This classifier is therefore defining two populations of genes based 

on mRNA abundance but also conditioned upon protein observation and 

attempting to differentiate between the two populations using genic DNA 

methylation. We refer to this as the Express-able Protein Classifier (EPC). The 

Express-able mRNA Classifier (ERC) does not use protein data and the class 

variable is defined using all HR genes vs. all NR genes (Fig2.1_C).  
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Random forest feature importance is shown in Figure S2.2. Based on 

these scores, multiple features were deleted from the model. Most of the 

classification power was from CHG and CpG methylation in exons, introns, or 

the aggregation of all features (labeled “Gene”). Therefore, these elements 

were retained in the models. In addition, methylation levels were seen to be 

variable across the gene. Patterns of methylation were observed (S2.3 & S2.4) 

especially with CpG methylation and to a lesser extent CHG methylation. To 

characterize these patterns we divided each gene into 5 equivalent bins. Bin 1 

covers the 5’ end of the gene through the first 20% of the gene model and bin 

5 covers the 3’ end and the last 20% of the gene model (Fig2.1-A). Use of the 

aggregated features; exonic; or intronic regions; the 5 bins; and CpG or CHG 

methylation provided 30 methylation features (Fig2.2-C).   

Classification accuracies were determined using the random forest out-

of-bag cross-validation (Fig2.2_A). Both the EPC and ERC models had 

Receiver Operator Characteristic (ROC) and Precision vs. Recall (PR) curves 

with areas under the curve (AUC) of 0.94 or higher. The EPC achieved a near-

perfect area under the ROC curve of 0.99 indicating that nearly all of the 

genes (true positives and false positives) were classified correctly.   
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Figure 2.1 Overview of model features and training set definitions. (A) The 
various genomic regions where DNA methylation levels were quantified and used as 
features for classification. Grey features were discarded after initial testing and only 
the whole gene, exons and introns were used as features in the final models. 
Because methylation levels vary across the gene body, each gene was also split into 
five equivalent regions, called bins and separate features were quantified in each bin. 
(B) The distribution of detected mRNA abundance is bimodal with nearly all detected 
proteins existing in the High mRNA population. The two mRNA populations can be 
roughly separated using an FPKM of 1. Here the non-detected mRNA (No mRNA) is 
represented as a separate population and given an artificial value of -12. Red dashed 
lines separate all populations. Each population can be further refined into observed 
vs. non-observed protein (No Protein) to yield 6 different groups of genes to use as 
training sets, indicated by the different colors. (C) Three separate random forest 
models were built using classes defined in B. 
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The random forest feature importance was determined using the mean 

decrease in accuracy upon random permutation of each individual variable 

(Breiman, 2001). This value is unsigned, so to determine whether silent genes 

are caused by high or low methylation levels, a t-statistic was calculated for 

the values of each feature and the sign of the t-statistic was assigned to 

feature importance (Fig2.2_C).   

The structures of the EPC and ERC models were very similar based on 

feature importance (Fig2.2_C). In each case, the beginnings and ends of 

genes (bins 1 & 5) were the most important. The exons were more important 

than introns and CHG methylation contributed more than CpG. All of the 

relationships between methylation and class variables were negative. That is, 

in both the ERC and EPC we observed that high methylation levels had a 

silencing effect on expression and genes with high methylation across the 

entire gene body (particularly at both ends) were classified as silent (Fig2.2_C, 

S2.6_A&B).  

We tested whether genic methylation can be used to predict quantities 

of mRNAs and proteins. Random forest models were run using the same 

methylation training data but replacing the binary class vector with quantitative 

mRNA or protein abundance for the ERC and EPC, respectively. We call these 

models the Protein Expression-level Predictor (PEP) and the mRNA 

Expression-level Predictor (REP). We found that methylation levels did not 

predict expression levels. When examining the full set of predictions 
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(S2.5_C&D), we see good R2 values, but this correlation is entirely due to the 

ability of the model to separate observed from non-observed proteins or 

mRNAs, which is analogous to the classifiers described above. When looking 

only at the genes with detectable expression (Fig2.2_B and S2.5_B), we see 

very low R2 values. 

Genome-Wide Re-Annotation of Protein-Coding Genes 

 The ERC and EPC were used to classify the expression potentials for 

98,296 protein-coding genes for which we have whole genome bisulfite 

sequencing (WGBS) coverage. This identified 41,060 genes with potential to 

express mRNAs and 32,995 genes with potential to express proteins; only 

three genes in the latter set were missing from the former. For breakdowns of 

training vs. test data, see S2.11. The final classifications for the genes in the 

training set were determined using the random forest out-of-bag cross-

validation.   

The maize genome contains over 110,000 annotated genes. This set is 

called the working gene set (WGS). The MaizeGDB group (Andorf, 2016) 

curates the genome. They have annotated 45,354 genes 
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Figure 2.2 Results for random forest models. (A) Receiver operating characteristic 
(ROC) curves showing classification accuracy of the EPC, ERC, and PFI models. The 
random forest “votes” from the out-of-bag cross-validated classifications were used 
for all models. (B) Prediction accuracy for quantitative mRNA abundance model. (C) 
Signed feature importance measures. The values reflect the random forest “mean 
decrease in accuracy” measure of feature importance. The sign is based on the 
relationship of the feature values to the training class assignments. Positive values 
indicate a positive correlation between the feature and either protein observation 
(EPC and PFI) or high mRNA (ERC). 
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 (ZmB73_5b.60_FGS) as the most likely to be functional and named 

them the Filtered Gene Set (FGS). The FGS is derived from the WGS using 

multiple avenues of evidence including TE and pseudo-gene exclusion, 

orthology to rice/sorghum, protein length, CDS completeness, synteny to close 

species, and RNA-seq expression. We compared the 43,700 FGS genes that 

have WGBS data to our DNA methylation-based gene sets. The ERC set 

(41,068 genes) excluded 10,176 genes of the FGS and contained 7,544 genes 

absent from the FGS (Fig2.3_A). The EPC set (32,986 genes) excluded 

14,303 genes of the FGS and contained 3,592 genes absent from the FGS.  

We evaluated the FGS, ERC, and EPC gene sets by comparison to four 

high-confidence operative gene sets: i) a set of 434 “classical” maize genes 

(Schnable, 2011) (Fig2.3_B); ii) 24,092 syntenic orthologs between maize and 

sorghum (Walley & Sartor et al., 2016) (Fig2.3_C); iii) 9,940 genes with 

observed full length cDNA (FLcDNA) (Soderlund et al., 2009) (Fig2.3_D); and 

iv) 4,329 genes that have been curated by MaizeGDB (S2.11_C). The 

methylation-based classifications out-performed the FGS for fold-enrichment, 

precision, and false-positive rates. The FGS had higher recall rates as a result 

of curation. The EPC model not only performed best; it enabled reconstruction 

of the mRNA bimodal distributions to distinguish each gene in the LR and HR 

populations (S2.10_A). 

 We found that genic methylation-associated gene silencing is 

widespread amongst protein-coding genes. The ERC/EPC classified 23/33% 
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of FGS genes as silent; these proportions rose to 58/66% for silencing of WGS 

genes. The MaizeGDB project (Andorf, 2016) annotates a biotype to each 

gene model, which can be used to filter out all likely TEs and pseudo-genes, to 

yield 63,331 probable protein-coding genes. Of these, 60,295 have coverage 

in the WGBS data. Using the higher confidence EPC classifier, 48% (28,779) 

were classified as silent (S2.12) and nearly all of the TEs (97%) and pseudo-

genes (94%) in the WGS were classified as silent.  

 High levels of CHG and CpG methylation repress expression of 

transposable elements (TEs) and repetitive elements (REs) (Slotkin & 

Martienssen, 2007 ; Zemach, 2010 ; Regulski, 2013 ; West, 2014). Due to the 

abundance of these elements in the genome, many gene models in the WGS 

are TEs that have escaped sequence masking. Of the 110,028 gene models, 

29,082 have been categorized as likely TEs. In addition, we identified 7,612 

gene models that have a high blast hit to one or more reference TE sequences 

(Wessler et al., 2015). Many of these are likely protein-coding genes with TEs 

inserted into the gene body. To determine the extent to which these previously 

characterized, highly methylated elements are affecting our classifiers and 

conclusions, we re-built all the classification models after filtering out all 

36,694 TEs and TE-containing gene models. The new classifier is nearly 

identical to the original both in classification accuracy (S2.9_A&B) and in 

feature importance (S2.9_C). We have left the TEs in the final models because 

our goal is to examine the relationship between genic methylation and 
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expression potential. A subset of these 36,694 TEs and TE-containing genes 

were observed as proteins (2423) or highly expressed mRNAs (5,065).  

 

Figure 2.3 Express-able gene set annotations. (A) Overlap between the EPC 
express-able class genes, the ERC express-able class genes and the pre-defined 
maize filtered gene set (FGS). (B) Comparison between EPC, ERC and FGS using 
the pre-defined set of maize “classical” genes as a gold standard. (C) Comparison 
between EPC, ERC and FGS using the pre-defined set of syntenic orthologs between 
maize and sorghum as a gold standard. (D) Comparison between EPC, ERC and 
FGS using the pre-defined set of maize full-length cDNAs as a gold standard. 
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Expression Potential Associated with Genic Methylation Varies between 

Inbreds and between Tissues 

 To determine whether inbred-specific variation in genic methylation is 

associated with inbred-specific gene expression potentials, the EPC, which 

had been based on data from inbred B73, was extended to genetically diverse 

inbreds Mo17, CML322, Oh43 and Tx303. The new methylation data for each 

inbred were processed by quantifying weighted methylation levels for 

consecutive 100bp tiles along the genome. A new classifier, EPC-2, was 

trained on B73 14 day-old seedling data using the same class variable and 

methylation features as the original EPC but it was quantified using the tiled 

WGBS data; RNA-seq data from the other inbreds also came from 14 day-old 

whole seedlings. The new inbred WGBS samples were then used as test data 

and classified using EPC-2. 
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Figure 2.4 Testing random forest classifiers on separate maize inbred lines. (A) 
Receiver operating characteristic (ROC) curve showing prediction accuracies 
achieved when the EPC model is tested with new methylation data from different 
maize inbreds. (B) Scatter plot of cross-validated classification scores from the whole 
seedling (training set) vs. the other 3 test sets (tissues). Each point represents one 
gene for one seedling–to-tissue comparison. Upper left (green) and lower right (blue) 
sections represent genes that are classified differently in one tissue compared to the 
whole seedling. (C) Boxplot showing the difference in mRNA expression between 
whole seedling and individual tissues for all genes (white) and the differentially 
classified genes from B (green and blue). P-values were determined with a two-sided 
t-test for each subset (blue or green) against the background of all genes (white). 
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 EPC-2 was accurate for all inbred lines (Fig2.4_A), with area under 

ROC curves of 0.88 or higher. As expected, the EPC-2 classification scores 

between B73 and other inbreds were highly correlated for most genes. 

However, some genes had reversed classification compared to B73 because 

of differential DNA methylation (Fig2.4_B blue and green dots). Upon 

examination of the corresponding changes in mRNA expression for these 

uncorrelated genes, we saw the expected differences in mRNA abundance 

(Fig2.4_C). That is, compared to B73, when genes in another inbred were re-

classified as silent (blue), we observed lower/no expression; when genes that 

are silent in B73 were re-classified as expressed, a gain in expression was 

often observed (green). 

 EPC-2 was additionally used to determine whether developmentally 

regulated differences in genic methylation are associated with tissue-specific 

gene expression potentials. Three B73 tissues (developing ear, flag leaf and 

shoot apical meristem or SAM) were compared to 14 day-old whole seedlings. 

Each sample was characterized using WGBS and RNA-seq. We observed that 

EPC-2 accurately predicted loss of gene expression from genes that were re-

classified as silent according to tissue-specific differences in genic methylation 

(blue in Fig2.5). However, silent genes that were re-classified (green) did not 

show a gain of expression. 
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Figure 2.5 Testing random forest classifiers on separate B73 tissues. (A) 
Receiver operating characteristic (ROC) curve showing prediction accuracies 
achieved when the EPC model is tested with new methylation data from different 
maize tissues. (B) Scatter plot of cross-validated classification scores from the whole 
seedling (training set) vs. the other 3 test sets (tissues). Each point represents one 
gene for one seedling–to-tissue comparison. Upper left (green) and lower right (blue) 
sections represent genes that are classified differently in one tissue compared to the 
whole seedling. (C) Boxplot showing the difference in mRNA expression between 
whole seedling and individual tissues for all genes (white) and the differentially 
classified genes from B (green and blue). P-values were determined with a two-sided 
t-test for each subset (blue or green) against the background of all genes (white). 

B

C

Non-Express-Able	

A

Express-Able	



 

 

77 

Genic Methylation Patterns Associated with Protein Expression 

Of the 33,696 genes with observed mRNAs in the HR, less than half 

(15,421) had observed proteins. A third random forest model, the Protein-

specific Feature Illuminator (PFI), was built to find genic methylation patterns 

which distinguish between genes that express high mRNA levels but no 

proteins and genes that have high mRNA levels plus observed proteins 

(HR/NP vs. HR/OP).. The PFI was able to differentiate between the HR/NP 

and HR/OP with good accuracy (Fig2.2_A & S2.5_A), achieving an area under 

the ROC curve of 0.8.  Comparison of the feature importance between PFI and 

the EPC/ERC showed that most of the important features were shared 

including an inverse association between high CHG methylation in exons and 

protein expression. However, there were key differences. We observed a 

change in sign for mid-gene CpG methylation (bins 2-4), indicating an 

association between protein expression and high CpG methylation in the 

middle of genes (Fig2.2_C), a pattern previously described as gene body 

methylation (gbM) (Zhang, 2006 ; Zilberman, 2007). In particular, CpG 

methylation of introns and exons in the middle region of genes marked genes 

that expressed proteins compared with genes that only expressed high mRNA 

levels (S2.5_E). 

We examined the association between gbM and protein expression 

directly. Genes with < 50% methylation in bins 1 and 5 plus > 50% methylation 

in at least one of bins 2-4 were defined as having gbM. Of these 9,071 genes,  
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59% had observed proteins, which is 3.5 times more than expected by chance 

(p-value = 0, based on hypergeometric test using the upper tail) (S2.8_A). 

High mRNA/ no protein genes showed a lesser enrichment of 1.4 fold (p-value 

= 1e-62) while low mRNA and non-expressed genes were under-enriched at 

0.4 and 0.1 fold respectively (p-values = 0 for both, based on hypergeometric 

test using the lower tail). Of the 9,071 gbM genes, 88% were classified by the 

EPC as able to express proteins (S2.8_B).   

 Intronic regions were very important in the PFI model. Of the 110,028 

genes in the WGS, only 55,558 (50%) contain introns; 70% of the FGS contain 

introns. Of genes with observed proteins, 88% contain 1 or more introns 

(S2.7_A). A link between introns and protein expression has been reported 

previously (Hir, 2003). We observed that 93% of genes with gbM contained 

introns; this is consistent with the hypothesis that gbM plays a role in RNA 

splicing (Wang, 2016 ; Maor, 2015; Regulski, 2013). We observed that the 

presence of introns distinguishes protein expressing genes from the other high 

mRNA expressing genes (S2.7_B). 

 

DISCUSSION 

Silencing and Protein Expression both Require Genic Methylation 

Evidence supporting the hypothesis that genic DNA methylation affects 

gene expression has been developing for decades (Razin & Riggs, 1980). 

Genic cytosine methylation occurs from the transcription start site (TSS) to the 
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transcription termination site (TTS) in the context of CHH, CHG, and CpG. 

Advances in whole-genome bisulfite sequencing (WGBS) and mRNA profiling 

(RNA-seq) have made it possible to examine impacts of methylation in detail. 

It is known that, "Retrotransposons, viruses, transgenes, or repetitive genes 

are subject to silencing by RdDM" (Pikaard review CSHL). Genic methylation 

can silence protein-coding genes (Cubas, 1999; Melquist, 1999; Silveira, 

2013) or small groups of genes with hyper-methylation at their transcription 

start sites (West, 2014). We found that silencing of protein-coding genes by 

genic methylation occurs on a genome-wide scale, affecting tens of thousands 

of genes.  

Using random forest (RF) algorithmic classifiers, we identified patterns 

of DNA methylation in the gene body that robustly identified which genes were: 

able to express mRNA only; able to express mRNA plus protein; or were 

unable to express either mRNA or protein (S2.10). Examination of the most 

important features of these algorithmic classifiers revealed genic methylation 

patterns that corresponded to the mRNA and protein expression potentials of 

all protein-coding genes. In this study we demonstrated a strong association 

between levels of DNA methylation within gene models and their classification 

into populations based on observed proteins and/or mRNA abundance. More 

specifically, we found that high levels of DNA methylation from both 

symmetrical sequence contexts (CpG and CHG) at the beginning and ends of 

gene models is associated with silent genes. This does not prove causation 
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but the most parsimonious explanation is that genic methylation plays a key 

role in silencing a large proportion of protein-coding genes, which we refer to 

as Symmetrical DNA methylation-based Gene Silencing (SDGS). 

A different pattern of methylation, known as gene-body methylation 

(gbM) has been observed in both plants and animals. This pattern is 

specifically defined as CpG hyper-methylation that occurs in the middle of the 

gene while both the 5’ and 3’ end of the gene body remain hypo-methylated 

(Zilberman, 2007). The occurrence of gbM in plants appears to be specific to 

angiosperms (Niederhuth, BBA-Gene Regulatory Mechanisms, 2016). 

However, within angiosperms, there are several reports of species that do not 

have detectable gbM (Bewick, 2016 ; Niederhuth, Genome Bio., 2016). gbM 

has been shown to be associated with constitutive mRNA expression and 

these mRNAs also tend have relatively high abundance (Zhang, 2006 ; 

Zilberman, 2007).  The purpose of gbM remains unknown. One interesting 

hypotheses is that it acts to block TE insertion (Regulski, 2013) and therefore 

prevents mutagenesis of critical genes. Our finding that gbM is specifically 

associated with protein expression within the context of SDGS is unexpected 

and it suggest that gbM confers necessary properties for expression onto 

mRNAs. However, the level of expression is unrelated to the level of genic 

methylation. 

 

Genome-Wide Annotations of Gene Expression Potentials 
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 Both the EPC and ERC performed better than the FGS; the EPC was 

best and its application to the 98,296 members of the WGS for which we had 

WGBS data identified 32,995 genes with potential to express proteins (Fig2.3). 

The main advantage of our models appears to arise from exclusion of many 

thousand false-positive genes in the FGS. It should be noted that the classical 

and curated gene lists used for validation may not be completely independent 

from the FGS. It is possible that these lists themselves could have been used 

to inform the FGS. It is difficult to determine how much influence the former 

had on the later.  Also, the FGS is not independent of the syntenic gene list 

since it incorporates synteny as one piece of evidence for inclusion. These 

dependencies may or may not contribute to the near prefect recall for the FGS 

on each of these validation sets.  

 We demonstrated that a single model, trained on B73 whole-seedling 

data, had the power to accurately classify diverse maize inbred lines (Fig2.4). 

These results show that each inbred has a unique “expressome” arising from 

its specific genic methylation patterns. We were able to accurately predict the 

“pan-expressome” of diverse inbreds based on features of their methylomes. 

This suggests that SDGS signatures can be used in genome selection-like 

models for breeding. 

 Our findings may shed light on the mechanisms of evolution and 

domestication. Plant genomes are very large. During the course of evolution, 

plant genomes were subjected to whole genome duplications (for recent 
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review, see [Panchy, 2017]). SDGS may be a mechanism for temporarily 

silencing genes after genome duplication.  This nascent genetic material 

can then exist as a reservoir for potential variation that is tapped during the 

course of evolution/domestication as certain genes become un-methylated and 

express-able.  

 

MATERIALS AND METHODS 

Data Processing and Manipulation 

 The R Statistical Programing Language (R Core Team, 2016 ;  Liaw 

and Wiener, 2002) along with the Rstudio integrated development environment 

(Rstudio, 2015) was used for all data processing and manipulation unless 

otherwise specified.  

Figure Plotting 

 All figure were generated using R software. All details can be found in 

the supplemental source code file (Supplemental_Text01.R: Lines 170:905) 

Quantitation of Whole Genome Bisulfite Sequencing Data  

 Raw sequencing reads for Whole Genome Bisulfite Sequencing 

(WGBS) of maize B73 14-day old seedlings were downloaded form the NCBI 

Sequence Read Archive (SRA) (SRA# SRR850328). Files were converted to 

fastq format using fastq-dump from the SRA toolkit. The Trim Galore program 
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(Krueger, 2007) was used with the “--paired” argument to remove paired-end 

adapter sequences. The Bismark program (Krueger, 2011) was used to 

identify methylated cytosines against the maize B73 RefGen_v2 genome, 

allowing for 1 miss-match “-N 1”.  Individual methylated cytosines were 

summarized separately for the 3 methylation contexts (CpG, CHG and CHH) 

using “bismark_methylation_extractor” with arguments “--paired-end” and “--

no-overlap” which prevents duplicated methyl-C counts from read pairs. Gene 

model chromosomal coordinates were obtained from the B73 RefGen_v2 

working gene set (known as 5a_WGS). These loci were extended 250 bp 

upstream in order to include sequences around the transcription start sight 

(TTS). All three methylation contexts were then mapped to these loci using the 

R statistical computing language. Several genomic regions were identified for 

each gene model using the 5a WGS annotations. These regions included 500 

base pairs around the TTS (250 bp up and down stream), the 5’UTR, All 

Exons, All Introns, the 3’ UTR and the whole gene model (from TSS to 

transcription stop sight). Methylation of each of these regions was quantified 

separately. For each context, the fraction of methylated cytosines relative to 

the total detected cytosines was used as a measure of methylation level, 

known as the weighted methylation level (Schultz, 2012).    

Gene-wise Binning of DNA Methylation Levels 
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 All gene models were divided into 5 equal sized, consecutive sections 

called bins (Fig2.1_A). Quantitation of DNA methylation levels was carried out 

separately for each bin.  

Handling of Missing DNA Methylation Data 

 Of the 110028 gene models in the maize B73 5a Working Gene Set, 

11732 did not have coverage in the WGBS data. These genes were discarded 

from further analysis. For genes with coverage along the gene model, not all 

genomic features have WGBS coverage. In this case, missing data was simply 

substituted with a place-holder value of 0.5 which represents an un-informative 

number as this feature is neither hypo or hyper-methylated. 

Observed Protein List and Protein Abundance Data 

 All protein data is from (Walley & Sartor, et al., 2016). 

mRNA Abundance Data 

 mRNA abundance used for the Express-able mRNA Classified (ERC) 

and the Protein-specific Feature Illuminator (PFI) was take from (Walley & 

Sartor, et al., 2016). RNA-sequencing of Multiple B73 Tissues. 

 For comparison of mRNA abundance to DNA methylation in various 

tissues, the closest approximation of one or more samples from (Walley & 

Sartor, et al.) was used to quantify mRNA in 3 different B74 tissues. For the 
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shoot apical meristem (SAM), this same tissue was sampled. For the flag leaf, 

the mRNA data for mature leaf 8 was used and for the ear shoot, two mRNA 

samples form 2-4 mm ear primordial and 6-8 mm ear primordial were 

averaged.  

Filtered Gene Set Annotation 

 The list of 45348 gene models (parent genes) was taken from the 

Maize GDB annotation file “ZmB73_5b.60_FGS.translations.fasta” found on 

the Maize GDB ftp site (http://ftp.maizegdb.org/). This list is constructed and 

maintained by the Maize GDB project. Its construction is described on the site 

as: 

 “The Filtered Gene Set (FGS) is a subset of the Working Gene Set intended 

to exclude transposons, pseudogenes, contaminants, and other low-

confidence annotations. [Maizesequence.org] used essentially the same 

method as described in (Schnable et al. 2009. 326:1112) but with 

modifications. First, the inclusion criterion of synteny (relative rice, sorghum, 

and Brachypodium distachyon) was given higher precedence than the 

exclusion criteria of pseudogene and transposon. This measure was taken to 

avoid exclusion of possibly legitimate genes that may have been miss-

assembled or miss-annotated. Second, selection of the FGS was additionally 

informed by evidence of expression, taking advantage of RNA-seq data 

displayed on this site (Li et al 2010. Nature Genetics 42:1060). In addition, a 
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total of 786 genes in the 4a filtered set (Schnable et al) were rejected this time 

around primarily because they physically overlap with other genes in the FGS 

and have inferior evidence/confidence.” 

Gene Biotype Annotation 

 Gene Biotypes were extracted for the gff annotation file  

“ZmB73_5a_WGS.gff” that was downloaded from the Maize GDB ftp site 

(http://ftp.maizegdb.org/). Biotype information is listed under “gene” features in 

the information field. 

Annotation of the Number of Introns 

 For each gene model in the working gene set, the number of introns 

was determined by counting all unique introns listed in the gff annotation file 

“ZmB73_5a_WGS.gff” that was downloaded from the Maize GDB ftp site 

(http://ftp.maizegdb.org/). 

Validation Lists of Known Functional Genes 

 Four separate gene lists were used to validate classification results of 

this study: i) The Classical maize genes are a list of 464 manually curated 

gene models where at least 3 publications are listed on maize GDB that are 

associated with that locus (Schnable, 2011). ii) The Syntenic genes are a list 

of 24,092 gene models conserved at syntenic orthologous locations between 

maize and sorghum, take from (Walley & Sartor, et al., 2016). iii) The Full 
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Length cDNA genes are a list of 9,940 genes. These are gene models taken 

from the Maize Full Length CDNA Project (Soderlund, 2009) that could be 

cross-referenced with accessions used for the RefGen_v2 annotations. iv) The 

Curated genes are a list of 4,329 gene models that have been manually 

assigned a name by Maize GDB (Andorf, 2016).  

Construction of Classification Models (ERC and EPC) 

(Supplemental_Text01.R: Lines 57 – 118) 

 All models used for classification were constructed in the same way, 

with differences only in the class variable on which they were trained. Random 

Forest classification models were used (Breiman, 2001) as implemented in the 

R statistical programing language. For training sets, a matrix of methylation 

data described above was used as features (independent variables) for every 

model and a unique classification variables (dependent variables) was used to 

train the Express-able Protein Classified (EPC) and the Express-able mRNA 

Classifier (ERC) separately. These class variables were defined using 

transcript abundance data (ERC) or a combination of transcript and protein 

abundance data (EPC). Therefore two classifiers were built. For the ERC 

classification training vector, the “Non Express-able” class was defined as 

genes with no detectable mRNA abundance (No RNA: 37588 genes) and the 

“Express-able” Class was defined as high abundance mRNA genes with 

FPKM >1 (High RNA: 33696 genes). For the EPC, this classification vector 
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was further refined by also requiring no detectable Protein in the “Non 

Express-able” class (No RNA / No Protein: 37487 genes) and detected protein 

in the “Express-able” class (High RNA / Observed Protein: 15421 genes). The 

random forest models were built with the classification vector as a factor type 

using 1000 trees and importance = T which returns the “Mean Decrease in 

Accuracy” measure of importance. The DNA-methylation data used when 

looking across different genotypes and different B73 tissues (Fig2.4 and 2.5) 

was summarized independently and 100bp tiling was done for quantitation 

(see below). Therefore a new EPC model was re-trained on this tiled data. The 

same training classification vector for the EPC was used 

(Supplemental_Text01.R: Line 627-686) 

Classification of Test Data 

(Supplemental_Text01.R: Lines 150 – 157) 

 The Random forest classifiers (ERC and EPC) were used to classify the 

remaining genes that were not represented in the training set. The Random 

Forest “predict()” function was used along with the DNA methylation data for 

the test genes. This same procedure was used to classify genes based on 

methylation data from the different maize inbred seedlings 

(Supplemental_Text01.R: Lines 831 – 833)  and different B73 tissues 

(Supplemental_Text01.R: Lines 690-692). The classifications for genes in the 
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training set were obtained form the Out-of-Bag cross-validated predictions of 

each model (“$predicted” slot from the Random Forest object). 

Construction of Regression Model (PFI) 

(Supplemental_Text01.R: Lines 57 - 118) 

 The PFI regression model was built in the same manor as the 

classification model described above. The only difference is the classification 

vector used for training. For the PFI, the first class was defined as genes with 

mRNA expression > 1 FPKM and non-observed protein (High RNA / No 

Protein: 18275 genes). The other class is composed of genes with mRNA 

expression >1 and observed protein (High RNA / Observed Protein: 15421 

genes).  

Construction of Quantitative Expression Predictors 

(Supplemental_Text01.R:  Lines 101 - 125) 

 Two predictive models were constructed in an attempt to predict 

quantitative mRNA and Protein expression levels using DNA methylation data. 

The mRNA Expression-level Predictor (REP) and Protein Expression-level 

Predictor (PEP) were built using random forest models in much the same way 

as the ERC and EPC (described above), with one difference. The dependent 

variable training vector was a continuous numeric variable representing either 

observed mRNA or observed Protein log2(abundance). Non observed values 
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are represented as the integer less than the lowest observed value for the 

data set (since log2(0) = -infinity). This is -12 for the mRNA data and -1 for the 

protein data. The Out-Of-Bag cross-validated results were extracted from the 

“$predicted” slot in the Random Forest objects. These values were used for 

further analysis and plotting (Fig2.2_B & S2.5_B, C & D). 

Feature Importance (Regression) Measure 

(Supplemental_Text01.R: Line 129) 

 The feature importance was determined by the random forest algorithm, 

using the mean decrease in accuracy upon random permutation of each 

individual variable (Breiman, 2001). This requires the parameter “importance = 

TRUE” in the call to the “randomForest()” function. 

Determination of the Mathematical Sign (Direction) of Relationships 

Between Methylation Features and Classification 

(Supplemental_Text01.R: Lines 133 - 146) 

The sign of the relationship between DNA-methylation features and 

classifications was determined as follows. Genes in the training set were split 

between the two training classes (Non Express-able and Express-able) to 

yield two populations (S2.06). For each feature, the corresponding feature 

values were assigned to each of the class populations and a student’s t-test 

was carried out between the populations. The sign of the resulting t-statistic 
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was assigned to each feature while the magnitude of each was taken from the 

RF variable importance (Fig2.2_C).   

Receiver Operating Characteristic (ROC) Curves and Precision Vs. 

Recall Curves 

(Supplemental_Text02.R: PlotROCPR(): Lines 88 - 220) 

 The “ROCR” R package was used to generate all ROC curves. For 

each gene, the number of votes in the random forest model was used as a 

quantitative classification score and this was evaluated against the 

classification vector. For the ERC and EPC, the votes were taken from the out-

of-bag cross-validated predictions (Supplemental_Text01.R: Line 313). When 

evaluating model accuracies of independent test samples (different B73 

tissues and different maize inbreds) the random forest model trained on B73 

seedling data was used to classify these independent test sets. Again, the 

number of votes was used as a quantitative classification score. These scores 

were evaluated against a response vector that was generated from separate 

RNA-seq data sets corresponding to each test sample. In these response 

vectors, “positive” genes were ones with mRNA abundance > 1 FPKM and 

“negative” genes were ones with undetected mRNA abundance 

(Supplemental_Text01.R: Lines 703-714 & 846 – 857). 
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 For all curves, the “prediction()” function from the ROCR package was 

used to evaluate the model. For the ROC curves, the “performance()” function 

was used with arguments “tpr” and “fpr” to generate curves and the argument 

“auc” was used to calculate the area under the curves 

(Supplemental_Text02.R: Lines 118-119). For PR curves, the “performance()” 

function was used with arguments “prec” and “rec” to generate curves 

(Supplemental_Text02.R: Line 120). The area was calculated by estimating a 

function for the curve with “approxfun()” and integrating across its entire length 

(Supplemental_Text02.R: Lines 226-240)  

CpG Gene Body Methylation Genes 

(Supplemental_Text02.R: RetrurnGBMGenes(): Lines 359 - 371) 

 All genes with DNA-methylation data were tested for CpG Gene body 

methylation (gbM). A gene was said to have gbM if the average methylation of 

the end bins (1 and 5) was less than 0.5 and the average methylation of the 

center bins (2-4) was greater than 0.5.  

Validation of Express-able Gene Lists Vs. Known Functional Gene Sets 

(Supplemental_Text01.R: Lines 561 – 576) 

 All validation lists (listed above) were compared to the Express-able 

protein and Express-able mRNA classes and the set of all genes with 

methylation data was used as a background. A number of statistics were 
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computed for each (Supplemental_Text02.R: GetOverLapStats: Lines 295 – 

317). These include the Fold Enrichment (Observed Frequency / Expected 

Frequency), False Positive Rate, Precision and Recall. 

 

SUPPELEMENTAL FIGURES 

 

Figure S2.1 mRNA abundance distributions with various sub-distributions of 
annotated gene sets highlighted (blue). (A) Shows the set of curated genes from 
the Maize GDB project. (B) Shows the set of maize syntenic orthologs against 
sorghum.  (C) Shows the set of maize full-length cDNAs.  
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Figure S2.2 Summarized measures of feature importance summed over various 
methylation features.  
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Figure S2.3 Binned DNA methylation levels in the CpG context. Boxes show 
distributions of the proportion of (methylated cytosines / All cytosines) for all 5 bins for 
various gene sets determined based on mRNA abundance and the presence of 
observed or non-observed proteins. (A-D) Summarized over the whole gene models. 
(E-H) Summarized over exons only. (I-L) Summarized over introns only. 
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Figure S2.4 Binned DNA methylation levels in the CHG context. Boxes show 
distributions of the proportion of (methylated cytosines / All cytosines) for all 5 bins for 
various gene sets determined based on mRNA abundance and the presence of 
observed or non-observed proteins. (A-D) Summarized over the whole gene models. 
(E-H) Summarized over exons only. (I-L) Summarized over introns only. 
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Figure S2.5 Results for random forest models. (A) Precision vs. Recall (PR) 
curves showing classification accuracy of the EPC, ERC, and PFI models. The 
random forest “votes” from the out-of-bag cross-validated classifications were used 
for all models. (B) Prediction accuracy for quantitative protein abundance model, only 
looking at genes with observed proteins. (C) Prediction accuracy for quantitative 
mRNA abundance model, looking at all genes with methylation data. (D) Prediction 
accuracy for quantitative protein abundance model, looking at all genes with 
methylation data. 
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Figure S2.6 Boxplots showing all methylation feature levels for the two 
different training classes of each random forest model. (A) Results for the EPC 
model. (b) Results for the EPC model and (C), results for the PFI regression model. 
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Figure S2.7 Analysis of genes with one or more introns. (A) The relative 
proportions of intron-containing and non-intron genes in various pre-defined gene 
sets. “N” specifies the total number in that set. “Pval” specifies the p-values calculated 
for the significance of enrichment of intron-containing genes for each category relative 
to the filtered set, using a hypergeometric test and the upper tail. It should be noted 
that this calculation, by default, only includes genes present in the filtered set. 
Therefore, the ratios used in the p-value calculation will differ slightly from those 
shown in the plot that are relative to all genes. (B) The distribution of CpG methylation 
levels across all 5 bins for genes in the HR with no introns. (C) The distribution of 
CpG methylation levels across all 5 bins for genes in the HR with one or more introns. 
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Figure S2.8 Classes of genes with CpG gene body methylation. (A) Pie chart 
displaying the observed distribution of 9071 genes with CpG gene body methylation 
patterns into various expression populations along with the fold enrichment ratio 
(Observed / Expected) for each set. (B) Pie chart displaying the distribution of 
Express-able Protein Classifier and Express-able RNA Classifier results for the 9071 
genes with CpG gene body methylation patterns. Note that no “EPC only” is shown 
because only 1 gene exists in this category and it is not gbM. 
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Figure S2.9 Classifiers built with no transposable elements. Out of the 98,296 
genes with methylation data, 32,400 were identified as likely transposable elements 
(TEs). After filtering out these TEs, classifiers were re-built. (A) Receiver Operating 
Characteristic (ROC) curve and (B) Precision vs. Recall (PR) showing predictive 
accuracy of out-of-bag cross validated classification results against observed mRNA 
and Protein abundance-based classifications. (C) Feature importance measures for 
each methylation feature used in the classification models. The sign indicates the sign 
of the relationship between the quantity of the feature vs. the positive (Observed 
Protein and/or High mRNA) class.  
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Figure S2.10 mRNA abundance distributions of classifier results. (A) Results 
from the EPC of all genes with methylation data. (B) Results from the ERC of all 
genes with methylation data. (C) Results from the EPC of all genes with “protein 
coding” biotype. (D) Results from the ERC of all genes with “protein coding” biotype. 
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Figure S2.11 Results from EPC and ERC classification. (A) Venn diagram 
showing the EPC results for genes classified as express-able proteins (top circle), all 
genes with observed proteins in the training set (bottom left) and the maize filtered set 
(bottom right). (B) Venn diagram showing the EPC results for genes classified as 
express-able mRNA (top circle), all genes with high mRNA in the training set (bottom 
left) and the maize filtered set (bottom right). (C) Comparison between EPC, ERC and 
the filtered gene set using the pre-defined set of maize GDB named genes as a gold 
standard. 
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Figure S2.12 Classification results from the EPC classifier. Stacked bar plot 
showing multiple pre-defined gene sets and the relative proportions that are classified 
as express-able or silenced by the EPC model. 
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CHAPTER 3 

A Novel Protein vs. mRNA Correlation QTL Identifies 
Arabidopsis Genes Involved in Translational Control 
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INTRODUCTION 

 The Arabidopsis Bay-0 x Sha Recombinant Inbred Line (RIL) population 

(Loudet, 2002) is a structured population of arabidopsis lines that was developed 

for the purpose of mapping phenotypic traits to genetic loci. Most phenotypic traits 

of interest are quantitative in nature and manifest on a continuous distribution. The 

genomic regions that control such traits are known as quantitative trait loci (QTL). 

The idea behind any QTL experiment is to associate regions of the genome with a 

certain trait that they are likely to influence. Traditionally, the trait would be 

something of agricultural interest such as grain yield (Veldboom, 1994) or 

pathogen resistance (Kump, 2011). However, more recently, molecular traits such 

as mRNA levels are being investigated in eQTL studies to map loci that control 

transcript expression (West, 2007). This study employs a similar method but uses 

protein abundance as the trait of interest, known as a pQTL analysis. We have 

attempted to map QTL that regulate protein abundance with a focus on the FLS2 

signaling pathway. FLS2 is a well-studied Arabidopsis Leucine-Rich Repeat 
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Receptor-Like Kinase (LRR-RLK). It perceives bacterial flagella and initiates 

signaling that activates the plant defense response (Chinchilla et al., 2006) 

 We have successfully developed a multiple reaction monitoring (MRM)  

assays, also known as selective reaction monitoring (SRM) to quantify the 

abundance of each protein. An MRM assay is run on a type of mass spectrometer 

called a triple quadrupole (QQQ) (see Fig3.1). A QQQ is joined to an HPLC 

system. Whole proteins are extracted from a sample and enzymatically digested 

into peptides. The digested sample is separated in the LC and then runs into the 

mass spectrometer. First, the peptides are ionized. This simply adds 1 or more 

positive charges to each peptide turning them into ions. Once the peptides are 

ionized, they are able to get passed into the mass spectrometer. A QQQ is three 

quadrupole mass analyzers set up in a straight line with a detector at the end. 

After a peptide of interest is ionized, it is know as the precursor ion. The first 

quadrupole is used to filter out every ion except ones with the specific 

mass/charge ratio (m/z) of our precursor ion.  Unfortunately, our samples are so 

complex that this one filter is not enough to isolate a particular peptide and an 

unacceptable amount of noise will make it through this first step. The second 

quadrupole is set up as a collision cell. The chamber is filled with nitrogen and an 

electrical voltage is applied across the cell, which excites the nitrogen causing it to 

collide with the peptide ions and break each one into two fragments. These 

resulting fragment ions are known as product ions (Fig3.2). Each peptide has a 

distinct and reproducible product ion abundance distributions and by monitoring 
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multiple product ions, the peptide of interest can be both identified and quantified. 

Finally the third quadrupole is used as another mass analyzer and filters out 

everything except a specific product ion. These multiple levels of filtering enable us 

to quantify specific peptides with high specificity and sensitivity. 

 

Figure 3.1 Experimental Setup. The Bay-0 x Sha RIL population was treated with 
the defense elicitor peptide Flg22 or a non-elicitor control. Proteins were extracted 
and enzymatically digested. Synthetic versions of selected peptides were produced 
with heavy isotopes and spiked in at known quantities. Endogenous and heavy 
peptides are quantified in tandem on a triple quadrupole mass spectrometer.  

RESULTS 

Initial Protein QTL 

We have developed a quantitative mass spectrometry assay for a panel of 

33 proteins (Table 3.1). 22 of these are known to be involved in plant defense. The 

remaining proteins are either proteins used for controls or proteins for which we 

attempted, unsuccessfully, to quantify modifications. Of these 33, 30 were 

observed in a published eQTL analysis (West et al., 2007). The remainder of the 
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analysis was conducted on this set of 30. By measuring the abundance of these 

proteins in the RIL population, we have identified significant QTLs (P-value <= 

0.01) that are controlling the abundance of 8 of these proteins (Fig3.3_A).  

 

 

Figure 3.2 Diagram of peptide fragmentation. When a peptide is fragmented by 
cleavage of a single peptide bond (red lines), the C terminal side of the cleavage site 
is known as the y ion. This peptide has 3 possible cleavage sites, resulting in 3 
possible y-ions. The ion from the N-terminal half is known as a b-ion. However, any 
bond along the backbone may be cleaved, resulting in 6 possible ions (a,b,c,x,y,z) for 
every amino acid. 

Protein QTL Hotspots Overlap with eQTL Hotspots 

A single locus on the top of chromosome 2 accounts for a large number 

of these significant associations (Fig3.3_A). Such an event is known as a QTL 

hotspot. This is where a single locus has a large effect on the expression of 

many genes. QTL Hotspots are also routinely observed in eQTL analyses 

where they represent one or more genes that have a large effect on the 

expression of many different transcripts.  
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Table 3.1 Protein panel for MRM assay. Grey rows indicate genes that were not 
observed in eQTL data.  

Accession Name Description Type 

AT1G42970 GAPB 
glyceraldehyde-3-phosphate dehydrogenase B 
subunit Control 

AT1G67090 RBCS1A ribulose bisphosphate carboxylase small chain 1A Control 
AT3G18780 ACT2 actin 2 Control 
ATCG00490 RBCL ribulose-bisphosphate carboxylases Control 
AT1G20440 COR47 cold-regulated 47 Defense 
AT1G32060 PRK phosphoribulokinase Defense 

AT1G59870 PEN3 
ABC-2 and Plant PDR ABC-type transporter family 
protein Defense 

AT1G75040 PR5 pathogenesis-related gene 5 Defense 
AT2G06050 OPR3 oxophytodienoate-reductase 3 Defense 
AT2G13790 SERK4 somatic embryogenesis receptor-like kinase 4 Defense 
AT2G18960 AHA1 H(+)-ATPase 1 Defense 

AT2G30770 CYP71A13 
cytochrome P450, family 71, subfamily A, 
polypeptide 13 Defense 

AT3G02260 BIG auxin transport protein (BIG) Defense 
AT3G12780 PGK1 phosphoglycerate kinase 1 Defense 
AT3G21220 MKK5 MAP kinase kinase 5 Defense 
AT3G25070 RIN4 RPM1 interacting protein 4 Defense 
AT3G26830 PAD3 Cytochrome P450 superfamily protein Defense 
AT3G45140 LOX2 lipoxygenase 2 Defense 
AT3G48090 EDS1 alpha/beta-Hydrolases superfamily protein Defense 
AT3G52430 PAD4 alpha/beta-Hydrolases superfamily protein Defense 
AT4G01370 MPK4 MAP kinase 4 Defense 
AT4G33430 BAK1 BRI1-associated receptor kinase Defense 
AT5G20480 EFR EF-TU receptor Defense 
AT5G24780 VSP1 vegetative storage protein 1 Defense 
AT5G42650 AOS allene oxide synthase Defense 
AT5G47910 RBOHD respiratory burst oxidase homologue D Defense 
AT1G48030 mtLPD1 mitochondrial lipoamide dehydrogenase 1 Modified 
AT2G43750 OASB O-acetylserine (thiol) lyase B Modified 
AT3G09630   Ribosomal protein L4/L1 family Modified 
AT4G35230 BSK1 BR-signaling kinase 1 Modified 
AT4G40040   Histone superfamily protein Modified 
AT5G17310 UGP2 UDP-glucose pyrophosphorylase 2 Modified 
AT5G22880 HTB2 histone B2 Modified 
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Figure 3.3 pQTL and eQTL Hotspots Overlap. (A) A novel protein QTL hotspot was 
identified on the top of chromosome 2. (B) However, an analogous transcript 
expression QTL has been identified (Data from West et al. 2007) in the same region 
and likely represents the underlying cause of the protein abundance variation.  
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This protein QTL hotspot is of interest because it likely harbors one or 

more regulators that act on multiple members of the FLS2 response pathway. 

However, after comparing to a similar eQTL study using the same population 

(West, 2007). We found that a strong eQTL hotspot underlies our pQTL 

hotspot (Fig3.3_B). This indicates that the locus is effecting transcriptional 

regulation and may not be specific to protein regulation.  

 

A Novel QTL Method Based on Protein-mRNA Correlation Uncovers 

Candidate Genes Involved in the Regulation of Defense-Related 

Proteins. 

 By making use of the published eQTL dataset (West, 2007), the protein 

vs. mRNA abundance correlation can be examined across the RIL population 

for the 30 proteins that were represented in both sets. In addition, the 

population can be split into two sets at each marker to give Bay-O and a Sha 

subpopulations. The protein vs. mRNA spearman correlation was calculated 

for each sub-population at each marker and the difference in correlation 

scores between the sub-populations was taken (Fig3.4). This measurement 

represents the change in protein vs. mRNA correlation between the Bay-0 and 

Sha versions of any given locus. When a large change is observed, this would 

indicate that something at that locus is causing protein and mRNA to become 

more or less correlated. Another view is that it’s a way to examine protein 
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expression while factoring out mRNA expression and any causative gene we 

identify is likely to have an effect down-stream of transcription. 

 This procedure was carried out looking specifically at the list of 20 

defense related proteins and 14 significant (P-value <= 0.01) protein-transcript 

correlation QTL (ptcQTL) were identified in 13 different proteins (Fig3.5_A). 

One small hotspot was identified at the top of chromosome 5 where 2 proteins 

(BAK1:AT4G33430 and PAD3:AT3G26830) had the same significant ptcQTL 

(Fig3.5_B). One additional protein, PEN3:AT1G59870, shares this locus with 

P-value < 0.05. This hotspot represents the locus that likely has the strongest 

effect on the overall proteome and therefore is the focus of the remainder of 

the investigation. It should be noted that this is a different locus than the eQTL 

hotspot that is on the other end of chromosome 5 (Fig3.3_B). 

A combined score from BAK1 and PAD3 was calculated at each marker 

by taking the sum of the delta spearman correlation scores for both proteins. 

Another permutation test was carried out on the random data using this same 

summed score. This results in a single combined ptcQTL trait for our two 

proteins and allows for a finer QTL interval to be determined. The 95% Bayes 

credible interval was estimated (Broman, 2003) (Fig3.5_C). This interval was  

found to contain 542 genes. 
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Figure 3.4 Procedure and example of protein vs. transcript QTL analysis. (A) 
Chromosomes are scanned and the following procedure is carried out for each 
marker. This example depicts a marker at the top of chromosome 5. (B) At the 
At5g05780-3 marker, the RIL population has 56% of the lines with the Sha version 
and 44% with the Bay-0 version. (C) The PAD3 gene is shown at this locus. A 
positive protein vs. mRNA correlation is shown for the Sha sub-population and a 
negative correlation for the Bay-0 sub-population. Boxplots are summarized data 
splitting each point at the median mRNA abundance. (D) Calculation for score 
statistic. (E) Example null distribution generated by repeated random permutation of 
Bay-0/Sha genotypes at the specific marker.  
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Figure 3.5 Significant protein-transcript correlation QTL (ptcQTL). (A) A 
heatmap displaying only significant (P-value <= 0.01) ptcQTL. Each column is a 
marker arrayed along 5 chromosomes and each row is a genes whose protein-
transcript correlation trait was examined. (B) The number of significant ptcQTL was 
summed for each marker, showing one with a ptcQTL for multiple genes, indicating a 
ptcQTL hotspot (yellow circle). (C) The chromosome 5 hotspot is shown. The y-axis is 
a significance score calculated from combining the two significant ptcQTL hits at the 
hotspot locus (BAK1 and PAD3). The 95% confidence interval of this locus is shown 
with red vertical lines. 
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Utilization of eQTL Transcript Abundance Data To Prioritize Potential 

Causative Genes 

 Within any QTL that was mapped using an RIL population, the number 

of potential causative genes in the interval is very large sometimes up to 

several thousand genes. In most cases, the most difficult challenge comes in 

identifying causative genes. To do this, we turned back to the eQTL transcript 

expression data. There are two general probable mechanisms by which 

natural genomic variation can have an effect on a given trait; i) One of the 

alleles causes a change in protein sequence of the causative gene which 

results in a protein with decreased or increased effectiveness related to the 

trait. ii) One of the alleles causes a change in transcript expression of the 

causative gene that negatively or positively impacts the trait of interest. Both of 

these mechanisms can be queried given genomic sequences of the RIL parent 

lines or transcript expression from the RIL population respectively. The Bay-0 

and Sha re-sequencing data was used to determine which genes have 

potential non-synonymous single nucleotide polymorphisms (SNPs). 253 

genes in the interval are predicted to have amino acid polymorphisms. While 

this is a significant decrease, it still leaves us with too many to attempt to 

validate. Next we attempted to look for extreme transcript variation between 

the Bay-0 and Sha alleles for each gene in the interval. This is analogous to 

mapping cis-eQTL within the interval. These are expression QTL that have an 
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effect on a transcript whose gene is within the QTL interval. Mechanistically, 

this is simply where a genetic polymorphism is effecting the transcript 

abundance for a gene that is nearby. A common example would be a 

polymorphism in the promoter of a gene that effects transcription of that same 

gene. A standard eQTL was carried out and all cis-eQTL were identified. A 

LOD score cutoff of 45 was used to discover 11 cis eQTL with extreme effect 

within the interval (Fig3.6_A). Each of these genes has an extreme expression 

difference between RILs with the Bay-0 and Sha alleles. These 11 were further 

refined by manually examining the known or predicted gene function for each. 

3 were chosen that have a potential impact on protein life-cycle (Fig3.6_B). 

AT5G05230 is a RING/U-box domain containing protein that likely functions as 

an E3 ubiquitin ligase and is presumably involved in ubiquitin mediated protein 

degradation. This protein will be referred to as the hot spot RING protein 

(HsRING). AT5G05750 is a DNAJ domain containing heat shock protein likely 

involved in promoting correct protein folding and stability. This protein will be 

referred to as the hot spot DNAJ protein (HsDNAJ). AT5G05760 (SYP31) is a 

syntaxin involved in ER to Golgi vesicle trafficking (Chatre et al., 2005 ; 

Bubeck et al., 2008).  
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Figure 3.6 RIL Transcript expression is used to select potential causative 
genes. (A) Heatmap of eQTL LOD scores for 11 genes in the ptcQTL chromosome 5 
hotspot interval with extreme cis-eQTL (LOD > 45). These genes represent cases 
where a very large difference exists in transcript level between all RILs containing the 
Bay-0 and Sha versions of a given locus. (B) Three of these genes have a predicted 
function with high likelihood of effecting protein life-cycle. These three were chosen 
for validation. Scatter plots show relative expression levels of each gene in all RILs 
with the Sha and Bay versions of the hotspot locus. Bars are showing standard 
deviation. 
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Validation of Candidate Genes 

 For validation we chose to obtain T-DNA insertion lines (O’Malley, 

2015) for each of our candidate genes and query the proteomes of these lines. 

For each of these candidate genes, we see a significant change in transcript 

expression between the Bay-0 and Sha genotypes. In each case, we find that 

the Col-0 genotype expresses the transcript at approximately the same level 

as Bay-0. Therefore we refer to the Bay-0 expression as “wildtype” and say 

that in the Sha genotype, all three of our candidate genes are significantly 

knocked down or possibly knocked out. Since the Arabidopsis T-DNA 

collection uses the Col-0 background, a knock out or significantly knocked 

down version of any or our candidate genes would mimic Sha. Based on our 

analysis, we would expect the mutant line of our causative gene to have 

decreased protein expression for PAD3 and BAK1. However, this specific 

change in protein expression is only expected for lines expressing relatively 

low mRNA. We chose this locus because we observe 2 out of 20 defense 

genes modulated specifically at the protein level. We expect that many more 

genes may be influenced by this locus and therefore we would also consider a 

candidate gene successful if we observe a significantly large modulation of the 

proteome while the transcriptome remains relatively constant. 

 We are analyzing two separate T-DNA inserts for both HsRING and 

SYP31, and 3 inserts for HsDNAJ (Fig3.7). Currently, we have no results for 

HsRING. We have obtains homozygous lines for all 3 hsdnaj inserts and both 
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syp31 inserts. Quantitative real-time PCR (qPCR) was carried out on each line 

to determine if the respective transcript was knocked out or knocked down. 

None of the hsdnaj insertions show decreased HsDNAJ expression, but 

hsdnaj_3 shows significant over-expression (Fig3.7_B). This can results from 

a constitutive promoter that is present in the T-DNA insert. It is unknown to us 

if this transcript results in a viable protein as HsDNAJ remains undetected at 

the protein level. Both of the syp31 insertion lines resulted in a significant 

knock down (Fig3.7_C). We went on to query the proteomes of each of these 

syp31 lines as well as the hsdnaj_3 overexpressor. 

 The ptcQTL hotspot locus was discovered by looking specifically at 

proteins involved in defense and the FLS2 pathway. Two out of twenty 

proteins share this ptcQTL, with an additional protein at P-value < 0.05. It is 

possible that this locus has an effect specific to or enriched for defense related 

proteins. Or it is possible that it is not related to defense and has a general 

effect on some subset of the proteome. In order to address both possibilities, 

we grew mutant and wildtype (Col-0) seedlings in both mock treatment (H2O) 

and flg22 treatment to elicit a defense response. We harvested seedlings 3 

hours after treatment and quantified proteins using nano-LC tandem mass 

spectrometry.  
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Figure 3.7 Schematic of T-DNA insertion lines. (A) Three separate insertions were 
analyzed for HsDNAJ and two separate insertions for SYP31. Red triangles indicate 
lines that were shown to have significant alteration of the target gene transcript levels 
and were assayed by mass spectrometry. (B) hsdnaj_3 was the only line that showed 
significant expression difference compared to wild type and it appears to be an 
overexpressor. (C) Both syp31 lines show significant decreases in SYP31 expression. 
(D) Two separate insertions are being examined for HsRING. 
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analysis (Ritchie et al., 2016 ;  Phipson et al., 2016). Two tests were carried 

out on each data set for all genes: (i) between mutant and wildtype and (ii) an 

interaction effect between the mutation and defense elicitor treatment. This 

interaction effect would indicate genes that show a different response to 

treatment in mutant compared to wildtype plants. An adjusted P-value <= 0.05 

was deemed significant. The HsDNAJ overexpressor (hsdnaj_3) showed no 

significant differential expression of any proteins. The SYP31 knockdown, 

syp31_1 showed only one gene differentially expressed between mutant and 

wildtype. However, syp31_2 shows a massive impact on the overall proteome. 

6935 proteins had sufficient data to calculate DE. 1203 of these show 

differential protein abundance between syp31_2 and Col-0 (Fig3.8_A), with 

similar numbers of “Up” and “Down” genes. Only one gene (AT1G29700) 

shows significant interaction for flg22 response between syp31_2 mutant and 

Col-0. We are currently in the process of running RNA-seq samples for this 

mutant in order to determine if these expression changes are specific to the 

proteome (as we hypothesize) or if they are underpinned by the transcriptome.  

 Next we examined the set of DE proteins in the syp31_2 line. We see 

very little categorical enrichment for proteins that are down-regulated in the 

mutant (Fig3.8_A). However, we see that the up-regulated proteins show 

strong enrichment for eukaryotic ribosomal proteins (P-value = 2.9e-17), 

where 59 of the 77 (77%) DE ribosomal proteins show significant up-regulation 

(Fig3.8_B).  
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Figure 3.8 Results for SYP31 validation. (A) The syp31_2 T-DNA insertion line 
shows a large number (1203) of differentially expressed proteins with similar numbers 
of up and down regulated proteins. Down regulated proteins show very little 
categorical enrichment. However, Up regulated proteins show strong enrichment for 
ribosomal proteins. (B) 77 ribosomal proteins were differentially expressed between 
Col-0 and syp31_2, with a majority (77%) being up regulated.  
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Conclusion 

 The above work describes the development and implementation of a 

novel QTL-based analysis that specifically identifies loci involved in modulating 

protein abundance while changes in mRNA abundance are normalized out. 

This method was used to identify 14 ptcQTL that have an impact on the 

protein abundance of 13 different proteins. This method makes it possible 

carry out pQTL analyses and discover loci that are affecting post-

transcriptional steps. Most large scale data analysis has a very transcription-

oriented focus and for good reason. We show here that even at the QTL level, 

we see transcription playing a major role in determining protein abundance. 

However, it is not the whole story and much regulation happens post-

transcriptionally. This method allows one to examine such processes.  

 Here, we have demonstrated the use of published eQTL data to aid in 

the identification of causative loci through a transcript-based approach. We 

have prioritized 3 candidate genes for validation. At present we have only 

been able to test one of these genes, SYP31. This prioritization approach has 

very broad application. If shown to be effective, it could be used on any 

mapped trait in any population that has existing eQTL data to significantly 

narrow down the number of potential causative genes. Hundreds of QTL 

analyses exist in dozens of organisms. The vast majority only report a locus 

but were unable to identify the causative gene because testing hundreds or 

thousands is usually far beyond the ability of most projects. In studies done for 
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populations with published eQTL data, this method would make it possible to 

prioritize very small numbers of potential causative genes with no extra data or 

experiments required.  

 We have shown that knocking down SYP31 via a T-DNA insert has a 

dramatic effect on the plant proteome with over 1,200 proteins being 

differentially expressed in the syp31_2 mutant compared to wildtype Col-0. 

The most strongly effected group of proteins is ribosomal proteins where we 

see significant enrichment of ribosomal proteins in the group that is up-

regulated in the mutant. 

 SYP31 is a syntaxin protein that is involved in ER to Golgi vesicle 

trafficking (Chatre et al., 2005 ; Bubeck et al., 2008). Syntaxins are required to 

form a SNARE complex that initiates membrane fusions. Transient over-

expression of arabidopsis SYP31 in tobacco protoplast inhibits ER to Golgi 

vesicle trafficking (Bubeck et al., 2008). We cannot say what the effect on ER 

to Golgi trafficking is in the syp31_2 mutant but we speculate that this primary 

step in cellular protein trafficking is the cause of the proteome modulation that 

we observe. However, it is also unclear how this relates to ribosomal proteins. 

Additional proteome modulation may also result from altered ribosomal protein 

composition in the cell that may cause an imbalance in protein synthesis. 
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FUTURE WORK 

 We are in the  process of obtaining homozygous lines for two HsRING 

mutants in order to determine the potential for this gene to be causative for the 

ptcQTL hotspot.  

 We are also going to profile transcript abundance (RNA-seq) in the 

syp31_2 mutant as well as any of the HsRING mutant lines that show 

proteomic modulation. Based on the ptcQTL results, we hypothesize that a 

causative mutation will show little or no impact on the transcriptome and that 

the severe proteomic modulation that we observe is a result of post-

transcriptional control that specifically effects proteins levels.  

 

MATERIALS AND METHODS 

 

RIL Plant Growth 

 The Bay x Sha Recombinant Inbred Line Population (Loudet et al., 

2002) consist of 211 lines + the two parent. Seeds were germinated in 2’ x 2’ 

pots in soil. ~4 seeds were placed in each pot and subsequently culled after 

germination to result in 2 plants / pot. Plants were grown under short days until 

the first RIL lines began to bolt.  

RIL Treatment and Harvesting 

 Plant surfaces were sprayed with an aerosol solution of 10uM flg22 

elicitor peptide in 0.01% silwet surfactant (treatment) or just 0.01% silwet 
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(control). 20 minutes after treatment, all areal parts of the plant was harvested 

and immediately frozen in liquid nitrogen. Two plants were harvested per 

biological replicate. One replicate was taken for treatment and one for control.   

MRM Assay Development 

 The process of MRM assay development, involves determining the 

precursor and product m/z settings that yield the highest amount of detectable 

product ions for each peptide. The combination of these two numbers is 

known as a transition. This is followed by a procedure to optimize the energy 

applied to the collision cell (Q2). For this project, we started with 174 peptides 

total and so we chose to develop in a more high-throughput way. We 

computationally predict the 5 best possible transitions for each peptide. This 

method makes several assumptions, only considering precursors with +2 or +3 

charge state and only y-ions (i.e. ions that result from C-terminal side of a 

fragmentation where the peptide backbone is split along the peptide bond). 

After examining 5 possible y-ion transitions for each heavy peptide, 34 

unmodified peptides were eliminated that had low or no signal, leaving 139. 

For each remaining peptide, assay methods were created by choosing the 3-4 

transitions with the highest signal then finding the optimum collision energy for 

each transition. Using these methods, we have altered the m/z for each 

transition to reflect the mass of the naturally occurring isotopes and obtain 

methods for the endogenous (light) peptides.  

MRM Sample Prep and Mass Spectrometry Assay 
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 Frozen samples were course ground manually inside a 2mL vial. ~ 2cc 

of crushed frozen tissue was transferred to a new 2mL vial. Two stainless 

steel balls were added to the vial. Tubes were place in cartridge designed 

specifically for 2mL tubes that fit a Qiagen tissue homogenizer. Keeping 

everything frozen, samples were homogenized at 25Hz for 1 minute. 

Cartridges were rotated to expose all tubes to the maximum possible 

wavelength of the shaker and again homogenized at 25Hz for 1 minute. 

 Samples were washed 3 times with MeOH containing 0.2mM Na3VO4 

at -20 °C and then twice with Acetone at -20 °C then vacuum-evaporated until 

dry.  

 Samples were re-suspended in 1 mL Extraction Buffer (0.1% SDS in 50 

mM Hepes / 1mM EDTA) plus 20 μL 50x Phosphatase inhibitor (125mM NaF, 

12.5 mM NaVO4, 12.5 mM Na4P2O7 [Sodium Pyrophosphate tetrabasic 

decahydrate] and  12.5 mM C3H7Na2O6P * 5H2O [B-Glycerophosphate, 

Disodium Salt, Pentahydrate]), plus 10 uL of 100x HDAc Inhibitor (100uM TSA 

[Tricostatin A], 1M Nicotinomide in 50 mM Hepes) and 10 uL of 100mM TCEP. 

 Samples were incubated at 94 °C for 20 minutes to denature and 

extract proteins.  The pellet was then centrifuged down at max speed for 2 

minutes and supernatant was taken to be used for BCA assay.  

 A BCA assay was then carried out to determine the precise total protein 

concentration in each sample. Using Thermo Scientific BCA assay kit, assays 

were performed on 96-well plates with 6 technical replicates of each sample 
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and 4 replicates of BCA standards (125, 250, 500, 750, 1000,1200, 1500 and 

2000 ug/mL).  

  Tissue pellets were then re-suspended by pipetting and a volume 

containing 250 ug total protein (as determined by BCA) was transferred to a 

new 2 mL vial. This was then brought to 1.0 mL with Extraction buffer.  

 Heavy peptides were synthesized by Thermo Scientific. Optimum 

concentrations of heavy peptides were determined by attempting to match the 

heavy peak intensity of each transition to that of the endogenous peak. 6.5uL 

of the same standard mix of heavy peptides was then spiked into the sample. 

 Sample pH should be between 7 and 8. Next, 5 uL of 0.5 mg/mL 

Trypsin was added and peptide digest was allowed to proceed over night in a 

37 °C shaker.  

 Samples were then treated with 5 uL of 500mM iodoacetamide and 

incubated at 37 °C in the dark to reduce cysteines. 

 Samples were centrifuged at 25,000g for 5 minutes at room 

temperature and 0.9uL of supernatant was transferred to a new tube. Pellet 

was then washed with 0.6 mL Hepes, centrifuged at 25,000g and supernatant 

was added to previous supernatant. The palette is then discarded.  

 An additional trypsin digest is carried out by adding 2.5 uL of 0.5 mg/ml 

trypsin and incubating at 37 °C for 4 hours.  

Samples were then acidified by adding 7.5 uL of 100% formic acid and 

centrifuged at 25,000 for 10 minutes.  
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 Peptides were cleaned up using Oasis MCX LP Extraction kit (1cc 

size). Columns are rinsed with pure MeOH followed by 2 rinses with pure 

H2O. Samples are then added to the column and washed two times with pure 

H2O then with 3mL solution of 80% Acetonitrile / 0.05% formic acid. Peptides 

are eluted from column using 1.5 mL of 60%IPA/500mM NH4HCO3. 

 Samples are then vacuum-centrifuged overnight at 4°C to dry and then 

re-suspended in 40uL 2% formic acid. 

 Finally, any precipitate is removed by centrifuging through a 2.2uM filter 

at 25,000g for 10 minutes. 

8 uL of sample was injected into a 10-inch SCX C-18 nano Liquid 

Chromatography column packed in-house. This column was eluted with a 3 

hour acetonitrile gradient from 10% - 80% that fed directly into the electro-

spray source of an Agilent 6410 triple quadrupole mass spectrometer. 

MRM Quantification 

3 or 4 transitions were measured for each peptide with 1 or two 

peptides per protein. For each transition, both a heavy (control) and light 

(endogenous) transition is measured. Quantification of the data was carried 

out using the Skyline software package (McLean et al., 2010) all peaks were 

manually annotated for integration. The first round of quality control was 

carried out at this step and if the heavy peptide peak was not obvious with all 

precursor peaks aligned at the same retention time, the measurement for that 

peptide in that run was discarded and not carried through to the next steps. 
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Next, the dot product for the ratio of heavy to light transition peak areas was 

used to filter low quality measurements. Any peak with a dot product below 0.9 

was discarded. Each peptide was than quantified as the ratio of the total area 

for all transitions of the light peptide to the total area of all transitions of the 

heavy peptide. For proteins with multiple peptides, the mean was used for 

protein quantification.  

pQTL and eQTL analysis 

 The R package R/qtl (Broman et al., 2003) was used to map protein 

QTL. Each protein quantity measured in the MRM assay across the RIL 

population was taken as a separate traits. A high density genotype map of the 

Bay x Sha RIL population was obtained from: 

http://elp.ucdavis.edu/data/analysis/211_RILs_SFP_map/211_RILs_SFP_map

.html and described in (West et al., 2006). Data was imported from .csv format 

using the read.cross() function with crosstype = “bc”. In order to model an RIL 

population, the convert2riself() and then the calc.genoprob() functions were 

run. Haley-Knott regression was used to map QTL with the scanone() function 

using method = “hk”. Finally, P-values were calculated by generating a null 

distribution of 1000 random permutations of the input data set for each trait 

(protein) using the scanone() function with n.perm = 1000.   

ptcQTL analysis 

 This analysis operates by examining each marker separately. At each 

marker, the genotype for all the RILs is either Bay or Sha. Therefore the RIL 
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population is split between two groups (Bay and Sha). The spearman 

correlation of protein vs. mRNA is then calculated for each group separately 

and the absolute value of the difference in correlation scores is used as the 

statistic. A large number would indicate that there is a change in protein vs. 

mRNA correlation between the groups and that this regulatory alteration is 

linked to the marker in question.  

 Significance of the delta correlation statistic is then determined by 

randomly permuting the genotype assignments at each marker 1000 times. 

The same statistic is calculated for each of these 1000 permutations to give a 

null distribution. A P-value is than calculated by taking the proportion of 

random statistics that are greater than the actual statistic.  

T-DNA Plant Growth 

 T-DNA lines indicated in figure 07 were obtained from the Arabidopsis 

Biological Resource Center (ABRC): https://abrc.osu.edu/ . Next, 24 or 48 

plants from All lines were planted in soil. For SALK “homozygous” lines, 6 

plants were randomly selected and genotyped as described by (O’Malley et 

al., 2015) In order to confirm homozygosity. For all other lines, all plants were 

genotyped and any plant not homozygous for the T-DNA insertion was 

removed. All lines were bulked for one generation in order to obtain enough 

seeds. 

T-DNA Flg22 treatment and harvest 
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 All T-DNA and Col-0 lines were surface sterilized by first washing with 

70% EtOH, followed by 50% Bleach and 0.02% Triton X-100 for 10 minutes. 

Seeds were germinated and grown in liquid ½ Murashige and Skoog (MS) 

media (2.2g MS/ Liter) with 0.5% sucrose. Plants were grown in 50 mL sterile 

culture tubes with 35 mL media. In a shaker at 80 rpm inside a growth 

chamber. Plants were stratified at 4°C for 2 days and then alowed to grow for 

~10 days. When the second set of true leave was ~ 50% developed, seedlings 

were treated with flg22 peptide disolved in H2O or with H2O control by adding 

it directly to the liquid media. Flg22 treatment was a final concentration of 1uM 

in the culture media. Plants were harvested after 3 hours by draining liquid, 

briefly wraping in paper towel to dry excess liquid and imediately feezing in 

liquid nitrogen. 

iTRAQ Quantitative Proteomics 

 For global protein abundance profiling 50 μg of peptides from each 

sample was treated with one tube of 8-plex iTRAQ reagent for 2 hours at room 

temperature. Labeled samples were dried down in a vacuum concentrator and 

re-suspended in H2O. Samples tagged with the 8 different iTRAQ reagents 

were pooled together. Using the above protocol we obtained higher than 95% 

iTRAQ labeling efficiency. 

 An Agilent 1200 HPLC system (Agilent Technologies) delivered a flow 

rate of 600 nL min-1 to a 3-phase capillary chromatography column through a 

splitter. Using a custom pressure cell, 5 μm Zorbax SB-C18 (Agilent) was 
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packed into fused silica capillary tubing (250 μm ID, 360 μm OD, 30 cm long) 

to form the first dimension reverse phase column (RP1). A 5 cm long strong 

cation exchange (SCX) column packed with 5 μm PolySulfoethyl (PolyLC) was 

connected to RP1 using a zero dead volume 1 μm filter (Upchurch, M548) 

attached to the exit of the RP1 column. A fused silica capillary (250 μm ID, 360 

μm OD, 20 cm long) packed with 2.5 μM C18 (Waters) was connected to SCX 

as the analytical column (RP2). The electrospray tip of the fused silica tubing 

was pulled to a sharp tip with the inner diameter smaller than 1 μm using a 

laser puller (Sutter P-2000). The peptide mixtures were loaded onto the RP1 

column using the custom pressure cell. A new set of columns was used for 

each LC-MS/MS analysis. 

 Peptides were first eluted from the RP1 column to the SCX column 

using a 0 to 80% acetonitrile gradient for 150 minutes. The peptides were then 

fractionated by the SCX column using a series of 19 step salt gradients for 

non-modified iTRAQ profiling (0, 30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 

100, 110, 120, 130, 150, 200, 1000 mM ammonium acetate) followed by high-

resolution reverse phase separation using an acetonitrile gradient of 0 to 80% 

for 120 minutes. 

 Spectra were acquired using a Thermo Q-Exactive-HF mass 

spectrometer (Thermo Electron Corporation, San Jose, CA) employing 

automated, data-dependent acquisition. The mass spectrometer was operated 

in positive ion mode with a source temperature of 275oC, spray voltage 
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3,000V, and S-lens RF level of 70.  A full MS - data dependent MS2 scan 

method was used to acquire the data.  Full MS scan parameters are: 

resolution = 60,000; AGC target = 1e5; max IT = 10ms; scan range = 400-

2000.  Data dependent MS2 scan parameters are: resolution = 15,000; AGC 

target = 1e5; max IT = 50ms; TopN = 20; isolation windows = 3.0Da; Fixed 

first mass = 110Da; NCE = 28; charge exclusion = unassigned, 1, 5-8, >8;  

dynamic exclusion =10 seconds.  

 The raw data were extracted and searched using Spectrum Mill vB.06 

(Agilent).  MS/MS spectra with a sequence tag length of 1 or less were 

considered to be poor spectra and were discarded. The remaining MS/MS 

spectra were searched against the TAIR10 protein database. The enzyme 

parameter was limited to fully tryptic peptides with a maximum miscleavage of 

1. All other search parameters were set to default settings of Spectrum Mill 

(carbamidomethylation of cysteines, iTRAQ modification, or K-Ac). A 

concatenated forward-reverse database was constructed to calculate the in-

situ false discovery rate (FDR). There are 70,800 protein sequences in the 

database (35,386 TAIR10 proteins, 35,386 decoy sequences, and 28 common 

contaminant proteins such as trypsin, Lys-C, keratins, etc.)  Cutoff scores 

were dynamically assigned to each dataset to maintain the false discovery rate 

less than 0.1% at the peptide level. Proteins that share common peptides were 

grouped to address the database redundancy issue. The proteins within the 

same group shared the same set or subset of unique peptides.   
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 iTRAQ intensities were calculated by summing the peptide iTRAQ 

intensities from each protein group. Peptides shared among different protein 

groups were removed before quantitation. Isotope impurities of iTRAQ 

reagents were corrected using correction factors provided by the manufacturer 

(Applied Biosystems). Median normalization was performed to normalize the 

protein iTRAQ reporter intensities in which the log ratios between different 

iTRAQ tags (114/113, 115/113 ...) are adjusted globally such that the median 

log ratio is zero. Quantitative analysis was performed on the normalized 

protein iTRAQ intensities. Protein ratios between the mock and each treatment 

were calculated by taking the ratios of the total iTRAQ intensities from the 

corresponding iTRAQ reporter. Protein ratios were then log2 converted. 

Proteins that significantly changed in each treatment, relative to mock, were 

determined using t-tests (two tailed, paired). Proteins with more than 1.5 fold 

change and P-value less than 0.05 were considered significantly changed in 

abundance.  

Differential Protein Expression 

 The R Limma package (Ritchie et al., 2015 : Phipson et al., 2016) was 

used to determine differential protein abundance. A design matrix was built 

using categories of every Genotype-Treatment combination. For each T-DNA 

insertion line and therefore each iTRAQ run, a separate analysis was done. To 

find proteins with differential abundance in mutant vs. wildtype, a contrast of 

(Mutant_Treated + Mutant_Untreated) – (Col-0_Treated + Col-0_Untreated) 
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was used. To find proteins where and interaction between genotype and 

treatment was observed, a contrast of (Mutant_Treated - Mutant_Untreated) – 

(Col-0_Treated - Col-0_Untreated) was used. Genes were determined 

significant using an adjusted P-value cutoff of 0.05. 
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