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This dissertation describes efforts towards understanding the Higgs bo-

son at the highest energies humanly accessible, using the CMS experiment at the

Large Hadron Collider and advances in artificial intelligence (AI) and machine
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learning (ML). We present searches for resonant and nonresonant Higgs-boson

(H) pair production in the all-hadronic two beauty-quark and two vector boson

(V) final state, using a novel strategy tomeasure the quartic HHVV coupling and

search for new Higgs-like bosons. By targeting highly Lorentz-boosted Higgs

pairs, we probe effects of potential new physics in the high energy Higgs sector,

which could hold answers to fundamental mysteries of nature such as baryon

asymmetry.

To enable these and future searches, we introduce as well significant de-

velopments in AI/ML, including in the identification of boosted H → VV de-

cays with deep transformer networks and advances in AI-accelerated fast simu-

lations of the CMS detector. The latter notably includes the development of the

first, highly performant generative models for point-cloud data in high energy

physics, which have the potential to improve CMS’ computational efficiency by

up to three orders of magnitude. We also highlight novel solutions to the im-

portant and challenging problems of calibrating and validating these ML tech-

niques. Finally, we present new approaches to search for newphysics in amodel-

agnostic manner, using physics-informed ML methods equivariant to Lorentz

transformations.

The quartic HHVV coupling is observed (expected) to be constrained to

[−0.04, 2.05] ([0.05, 1.98]) at the 95% confidence level relative to the standard

model prediction, representing the second-most sensitive measurement of this

coupling by CMS to date. Exclusion limits on the production cross section of
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new heavy resonances decaying to two Higgs-like bosons are expected to be as

low as 0.3 fb for high resonance masses.
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Introduction

The story so far: In the beginning the Universe was created. This has made a lot of

people very angry and been widely regarded as a bad move.

- Douglas Adams, The Restaurant at the End of the Universe

Big Bang

Gravity
Strong
Weak
ElectroMagnetism

0s 10-43s

G

S
W
EM

G
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W
EM

Grand unification epoch

10-36s

Electroweak epoch

10-12s

G

S

W

EM

Higgs

Physics as we know it

The Standard Model

Expansion and cooling

Figure 1. The timeline and evolution of forces in the early universe.
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The universe started with a bang. A massive burst of energy, tempera-

ture, and pressure, with all four fundamental forces — electromagnetism, nu-

clear weak, nuclear strong, and gravity — as one. Immediately after, the uni-

verse expanded and cooled, and after about 10−43 seconds, gravity parted ways.

10−36s later, the strong force separated as well and finally, by around 10−12s, so

did the weak and electromagnetic forces,“turning on” the Higgs field in the pro-

cess and leaving us with the fundamental forces and laws of physics as we know

them today (Figure 1).

Electromagnetism, the nuclear weak and strong forces, the Higgs field,

and all known elementary particles can be elegantly described by the standard

model (SM) of particle physics. Over the last 60 years, it has proven a monumen-

tally successful theory, both explaining and predicting physical phenomena up

to energies produced naturally only within a nanosecond of the Big Bang. These

include the prediction of the Higgs boson 50 years before its discovery, explana-

tions for radioactive decay and the binding of atomic nuclei, and the unification

of the electromagnetic and weak forces. However, despite its triumphs, there

remain fundamental mysteries that the SM cannot explain.

Themost glaring of these is its reconciliation, or lack thereof, with gravity,

for which a quantum, SM-compatible theory has proven elusive. There is also

abundant cosmological evidence of “dark” matter and energy, constituting 95%

of the universe and yet finding no justification from the SM. Other subtle mys-

teries include the inconsistency between the matter-antimatter asymmetry we
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observe and the symmetry the SM predicts, the mechanism for neutrino masses,

and the origin of flavor.

The work in this dissertation is motivated by the strong possibility of

many of the answers being tied to the Higgs boson. It is our newest discovered

and least understood elementary particle, and the unique nature of the Higgs

field and its interactions leaves open vast potential for intriguing new physics in

this sector. As electroweak symmetry breaking, i.e., the separation of the weak

and electromagnetic forces, is intimately connected to a phase transition of the

Higgs field, many theories naturally link this transition with the breaking of the

matter-antimatter [69] and flavor symmetries [70] as well. The Higgs boson may

also be the connection between the SMand the dark sector [71], while the “Higgs-

Saw” [72] mechanism is a promising explanation for dark energy.

Predictions of these theories include new, rare, Higgs-like particles

and/or minute deviations to the interactions of the Higgs boson from the SM.

However, as many of the phenomena therein would have occurred during the

electroweak epoch or earlier (see Figure 1), these effects would manifest only at

the highest energies, comparable to that of < 1ps after the Big Bang. This disser-

tation presents two complementary efforts to probe such effects, by (1) searching

for new, highly energetic Higgs bosons, and (2) measuring Higgs interactions

uniquely sensitive to new, high energy physics.

We do so using the Large Hadron Collider (LHC) at CERN. The LHC

accelerates and collides extremely high-speed protons, producing energies com-
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parable to the early universe just 10ps after the Big Bang. We observe these colli-

sions with the Compact Muon Solenoid (CMS) experiment, one of four massive

detectors at the LHC, and one of the two that discovered theHiggs boson in 2012.

Crucially, we emphasize that, with the exponentially increasing rate of collisions

and data at the LHC, the CMS experiment is entering an era of unprecedented

potential for scientific discovery.

To fully realize this, however, and maximize the impact of our new data,

significant computational innovation is required. To this end, we also present

in this dissertation several novel AI techniques to identify high energy Higgs

bosons, accelerate simulations of the CMS detector, and complement traditional

data analysis techniques with model-agnostic searches for new physics. Particu-

lar emphasis is placed on the development of physics-informed machine learn-

ing (ML) algorithms, which uniquely leverage biases of high energy physics

(HEP) data to improve their performance and robustness. Namely, we intro-

duce the first generative models for point-cloud data in HEP, which respect the

sparsity and high granularity of detector data, and the first anomaly detection

models equivariant to Lorentz transformations.

We also describe significant efforts towards validating such AI techniques,

which is critical for them to ultimately have an impact in the field. Specifically,

we apply a novel method for calibrating ML algorithms targeting Higgs to vec-

tor boson decays, which has proven effective not only for the analyses presented

in this dissertation but for the broader CMS physics program as well. We addi-
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tionally present several studies and new statistical techniques for evaluating fast

simulations. The combination of these and our new AI models has the potential

to revolutionize the computing paradigm in CMS, improving the computational

efficiency of our simulations by up to three orders of magnitude, and ensuring

trust in their modeling of the underlying physics.

This dissertation is organized as follows. Part I introduces the theoreti-

cal basis for this dissertation, starting with the mathematical framework behind

symmetries in physics (Chapter 2) and of quantum field theory (Chapter 3) be-

fore detailing the SM of particle physics (Chapter 4). Part II then describes the

experimental apparatus used in this dissertation: the LHC (Chapter 5) and the

CMS experiment (Chapter 6). Part III concludes the background material with

an introduction to ML in HEP (Chapter 7), as well as the data analysis and sta-

tistical framework used in this dissertation (Chapter 8).

Parts IV—VI comprise the novel contributions of this dissertation. Part IV

presents newmethods for producing and validating fast simulations of the CMS

detector using ML, which will be critical to maximizing the scientific output of

the LHC in the coming decade. These methods leverage advancements in gen-

erative modeling to develop novel, physics-informed simulation techniques that

are orders of magnitude faster than traditional methods. We also discuss new

techniques for robust evaluation of such fast simulation techniques, and the out-

look for their use in CMS.

Part V then presents two novel searches to understand the high energy
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Higgs sector of the SM, targeting the production of Lorentz-boosted Higgs bo-

son pairs, which decay into two beauty quarks and two vector bosons. Such

searches are critical to understanding the properties of the Higgs boson and

searching for the effects of new physics at very high energies. We discuss the

analysis techniques used in these searches, particularly the use of deep trans-

former networks to identify Higgs-boson decays to two vector bosons for the

first time, and competitive constraints achieved on new physics models and the

two-Higgs-two-vector-boson coupling.

Finally, Part VI outlines the development of new software to facilitate re-

search in ML and HEP and ML techniques that respect the symmetries of the

high energy collisions that we study. Namely, we introduce the JETNET Python

package, which has proven impactful in this field, and a novel ML algorithm for

searching for new physics while remaining robust to Lorentz-transformations of

our data.
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Part I

Theoretical Background
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Chapter 1

Introduction to the Standard Model

God used beautiful mathematics in creating the world. — Paul Dirac [73]

The standard model (SM) of particle physics is perhaps the greatest sci-

entific theory of all time. It is a mathematical representation of three fundamen-

tal forces, all known elementary particles, and their collective interactions. In a

broader sense, it is also the culmination of centuries of iterative, syncretic experi-

mental results and theoretical advances, fromNewton’s laws ofmotion up to the

discovery of the Higgs boson. That such a wide array of seemingly idiosyncratic

physical phenomena and theories — electricity, magnetism, radioactive decays,

quantum mechanics, special relativity, the structure of the atom, the binding of

the nucleus, the behavior of elementary particles, and more — can all be encap-

sulated at their most primordial level into a single theory exemplifies the beauty

of the SM.
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This beauty is perhaps most apparent when viewing the SM through the

lens of symmetries. Symmetries provide an elegant way to precisely describe the

extremely complex physics mentioned above. Indeed, superficially, the SM can

be viewed simply as a classification of elementary particles and their interactions

according to their behavior under different symmetries of the universe and its

mathematical description.

This is illustrated in Figure 1.1, listing the SM particles and their prop-

erties. They are first divided into two classes, fermions and bosons, based on

how they behave under Lorentz transformations— a fundamental physical sym-

metry of nature. This simple distinction has profound implications: fermions

constitute matter, i.e. what all the “stuff” in the universe is made out of, while

bosons are the particles responsible for forces and their interactions. Specifi-

cally, the photon mediates electromagnetism, the 𝑊± and 𝑍 bosons the weak

force, and gluons the strong force. There is also the Higgs boson, which is spe-

cial: it does not mediate a force in the classical sense, but its interactions with

elementary particles are what imbues them with mass.

Each force is intimately tied to a symmetry in the SM, and particles are fur-

ther distinguished by their behavior under these symmetries — or, equivalently,

how they are affected by this force. Fermions are divided by those interacting

(quarks) and not interacting (leptons) with the nuclear strong force, while each

of their rows in Figure 1.1 further separates them by different “charges” under

the weak force. Additionally, each particle’s mass and electric charge represent

9



Figure 1.1. Particles and their classifications in the SM, reproduced fromRef. [1].

the strength of its interaction with the Higgs and electromagnetic fields, respec-

tively. Finally, we can see a mysterious almost-symmetry: there are three copies,

or “flavors” or “generations”, of each fermion, which are entirely identical but

for their masses (e.g. the electron, muon, and tau family of particles). Such a

structure may suggest the presence of new, yet-to-be-discovered forces tied to

this symmetry.

The goal of Part I is to make this picture more precise, and lay the theo-

retical foundation for the work discussed in this dissertation. The mathematical
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frameworks needed to do so are called group theory and quantum field theory

(QFT), and are the subjects of Chapters 2 and 3, respectively. Equipped with

these tools, we then describe the SM in Chapter 4, including the interactions

discussed above and, of most relevance to the subject of this dissertation, the

phenomenon of jets, the Higgs sector, and Higgs boson pair production within

and beyond the SM.

These chapters build off of several great resources, including:

• David Tong’s extremely useful and insightful lecture notes on QFT [74],

gauge theories [75], and the standard model [76];

• John McGreevy’s great course on symmetry in physics [77] (which I had

the pleasure of attending in the Fall of 2020);

• Frederic Schuller’s precise lectures on the geometric anatomy of theoretical

physics [78];

• Tony Zee’s Group Theory in a Nutshell for Physicists [79] and Quantum Field

Theory in a Nutshell [80];

• Peskin and Schroeder’s classicAn Introduction to Quantum Field Theory [81];

• Gavin Salam’s lectures on Elements of QCD for hadron colliders [21];

• and Hong Liu [82] and Ricardo Matheus’ [83] clear, recorded lectures on

QFT.
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Chapter 2

Symmetries in physics

Perfectly balanced, as all things should be. — Thanos

Symmetry is a powerful and beautiful way to understand nature. Intu-

itively, a symmetry is a transformation that leaves an object unchanged. For

example, a plain square has a four-fold rotational symmetry: it looks identical

rotated once, twice, thrice, or four times by 90◦.

Similarly, in physics, a symmetry is a transformation that leaves the laws

of physics unchanged. Electromagnetism, for example, is invariant to transla-

tions in space or time: electric charges and currents should behave the same

in San Diego 5 years ago as in Geneva today. Understanding such symmetries,

and accounting for them in our mathematical formulation, has been a guiding

principle in the development of the SM over the 20th century, and is one in un-

derstanding it as well.
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In recent years, symmetries have also guided the development ofmachine

learning algorithms in becomingmore powerful and efficient. A particular focus

is placed in this dissertation on such equivariant algorithms, which respect the

symmetries and inductive biases of our high energy physics data. This chapter

lays the foundation for these ideas, which we discuss in more detail in Chapter 7

and contribute to in Chapter 16.

In this chapter, we first introduce the framework for describing symme-

tries, group theory, in Section 2.1. We then describe Lie algebras for continu-

ous symmetries, and derive representations for the algebra corresponding to 3D

rotations, in Section 2.2. We conclude in Section 2.3 with a discussion of the

Lorentz and Poincaré groups, comprising the fundamental symmetries of space-

time, whose irreducible representations are what we call particles.

2.1 Group theory

The mathematical formalism for describing symmetries is called group

theory.

Definition 2.1.1. The fundamental object in group theory is a group, defined as

a pair (𝐺, •), where 𝐺 is a set and • : 𝐺 × 𝐺 → 𝐺 is the group operation, which

together satisfies the following properties:

i) Associativity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : (𝑎 • 𝑏) • 𝑐 = 𝑎 • (𝑏 • 𝑐).

13



ii) Identity element: ∃𝑒 ∈ 𝐺 : ∀𝑎 ∈ 𝐺 : 𝑎 • 𝑒 = 𝑒 • 𝑎 = 𝑎.

iii) Inverse element: ∀𝑎 ∈ 𝐺 : ∃𝑎−1 ∈ 𝐺 : 𝑎 • 𝑎−1 = 𝑎−1 • 𝑎 = 𝑒.

Definition 2.1.2. Note from Definition 2.1.1 that the group operation is not nec-

essarily commutative (∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 • 𝑏 = 𝑏 • 𝑎). If this condition does hold, the

group is called an abelian group.

Example 2.1.1. To formalize the four-fold rotation symmetry of a square dis-

cussed above, we can define the group Z4 as ({0, 1, 2, 3}, +4), where +4 is ad-

dition modulo 4, and the elements of the set can represent rotations by 0◦, 90◦,

180◦, and 270◦, respectively. One can check that Z4 satisfies all the properties of

an abelian group.

Group representations

To make the abstract mathematical structure of the group more concrete,

we next consider representations of groups.

Definition 2.1.3. A group representation 𝑅, of dimension 𝑑, is a mapping of the

group elements to 𝑑 × 𝑑 matrices 𝐷(𝑔) in some 𝑑-dimensional vector space 𝑉 ,

such that the group operation is preserved: 𝐷(𝑔1)𝐷(𝑔2) = 𝐷(𝑔1 • 𝑔2). Neces-

sarily, this means that 𝐷(𝑒) = 1, the identity matrix of 𝑉 . Representations of

a group are not unique, and arbitrarily many new represenations can be con-

structed simply by taking tensor sums and products, denoted by the ⊕ and ⊗
symbols respectively, of existing ones.
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Definition 2.1.4. An irreducible representation (irrep) is one with no non-trivial in-

variant subspaces, i.e., it cannot be decomposed into the tensor sums of smaller-

dimensional representations.1

Example 2.1.2. The group Z4 from Example 2.1.1 can be represented simply as

scalar complex numbers (𝑉 = C):

0 1 2 3

↓ ↓ ↓ ↓
1 𝑒 𝑖

𝜋
2 𝑒 𝑖𝜋 𝑒 𝑖

3𝜋
2

(2.1.1)

One can check this satisfies the conditions of Definition 2.1.3, and since it is 1-

dimensional, it is also irreducible.

Definition 2.1.5. Every group has a |𝐺|-dimensional regular representation 𝑅reg,

where |𝐺| is the number elements of the group, called the order of the group. The

vector space 𝑉 = span{| 𝑔〉 | 𝑔 ∈ 𝐺}, and the representation is defined such that

𝐷reg(𝑔) |ℎ〉 = | 𝑔ℎ〉 . (2.1.2)

Example 2.1.3. For our Z4 group, we can use the set of four basis vectors {|0〉 =
e0, |1〉 = e1, |2〉 = e2, |3〉 = e3} in R4, and derive the matrices 𝐷reg(𝑔) such that

1Technically, certain pathological reducible representations of non-compact groups also can-
not be decomposed into irreps, so “non-decomposability” is a necessary but insufficient condi-
tion for irreps.

15



they transform | 𝑔〉 according to the respective group operations:

𝐷reg(0) =

©«

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®®¬
, 𝐷reg(1) =

©«

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

ª®®®®®®®®¬
,

𝐷reg(2) =

©«

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

ª®®®®®®®®¬
, 𝐷reg(3) =

©«

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

ª®®®®®®®®¬
.

(2.1.3)

The regular representation has some fun properties, such as its reducibil-

ity into irreps with each irrep appearing as many times in the decomposition

as its dimension. For us, it will mostly serve as a useful way to think about the

adjoint representation we will encounter below.

Continuous symmetries

Symmetries can be discrete, as above, as well as continuous.

Example 2.1.4. A circle has a continuous 2D rotational symmetry; rotations by

any angle 𝜃 leave it invariant. This corresponds to the special orthogonal group in

2-dimensions SO(2).
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Definition 2.1.6. More generally, the orthogonal group in 𝑛 dimensions, O(𝑛),
is defined as the group of orthogonal, or “distance-preserving”, 𝑛 × 𝑛 matrices

𝑀, s.t. 𝑀𝑀𝑇 = 1. The special orthogonal group SO(𝑛) is the subgroup of 𝑛 ×
𝑛 orthogonal matrices with determinant 1, essentially retaining only rotations

while removing reflections.

As their definition suggests, the SO(𝑛) group elements have a natural rep-

resentation as the 𝑛 × 𝑛 rotation matrices. For SO(2), these are of the form:

𝑀(𝜃) = ©«
cos𝜃 − sin𝜃

sin𝜃 cos𝜃
ª®¬ , (2.1.4)

where 𝜃 ∈ [0, 2𝜋) is the angle of rotation. These 𝑛×𝑛 matrix representations are

called the fundamental or defining representations of SO(𝑛).

Definition 2.1.7. SO(2) is isomorphic—meaning identical to in terms of its group-

theoretic properties — to the unitary group U(1). The unitary group U(𝑛) is the

group of 𝑛 × 𝑛 unitary matrices, i.e., those satisfying 𝑀†𝑀 = 𝑀𝑀† = 1, where

𝑀† is the conjugate transpose, or Hermitian conjugate (h.c.) of 𝑀. The special

unitary group SU(𝑛), again is the subgroup of 𝑛 × 𝑛 unitary matrices with de-

terminant 1. As we will soon see, these groups effectively define the structure of

the SM.
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U(1) has the simple 1D fundamental representation:

𝑀(𝜃) = 𝑒 𝑖𝜃 , (2.1.5)

i.e., all complex numbers of unit magnitude.

Definition 2.1.8. An infinite group is compact if a group-invariant sumor integral

over the group elements is finite. U(1) is compact, as∫ 2𝜋

0
𝑑𝜃 = 2𝜋 (2.1.6)

is finite. Indeed, all SO(𝑛) and SU(𝑛) groups are compact.

Examples of important non-compact groups include the group of trans-

lations in 𝑛 dimensions and the Lorentz group, which we will discuss in detail

in Section 2.3.

2.2 Lie algebras

We next introduce the concepts of Lie groups and Lie algebras, which are

highly useful in understanding the structure and representations of continuous

groups.

Definition 2.2.1. A Lie group is a group that is also a differentiable manifold, or

“smooth”. Virtually all continuous groupswe consider in physics are Lie groups.
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What this means is that we can think of the operation of any arbitrary group

element as equivalent to 𝑁 successive infinitesimal operations of the form

𝑔(𝜀𝐴) = 1 + 𝑖𝜀𝐴𝑇𝐴 , (2.2.1)

where 𝜀𝐴 are infinitesimal and indexing the continuous group parameters, e.g.

rotation angles for SO(𝑛), 𝑇𝐴 are called the generators of the group, and we are

using Einstein notation, implicitly summing over the index𝐴. Thus, for a general

element 𝑔(𝜃𝐴), where 𝜃𝐴 = 𝑁𝜀𝐴 as defined above, we have

𝑔(𝜃𝐴) =
(
1 + 𝑖𝜃𝐴

𝑁
𝑇𝐴

)𝑁
𝑁→∞−−−−→ 𝑒 𝑖𝜃𝐴𝑇𝐴 . (2.2.2)

This is somewhat analogous to Taylor expansion in calculus, except for Lie

groups only the first order / derivative term is necessary to capture the group

behavior.2

Definition 2.2.2. The Lie algebra, 𝔤, of a group is defined by the set of commuta-

tion relations between its generators:3

[𝑇𝐴 , 𝑇𝐵] = 𝑖 𝑓𝐴𝐵𝐶𝑇𝐶 , (2.2.3)

where [𝑇𝐴 , 𝑇𝐵] = 𝑇𝐴𝑇𝐵−𝑇𝐵𝑇𝐴 is the commutator of 𝑇𝐴 and 𝑇𝐵, and 𝑓𝐴𝐵𝐶 are called

2This is because, based on the Campbell-Baker-Hausdorff [84] formula, higher order terms in
the expansion of exponential form of 𝑔 in Eq. 2.2.2 involve only commutators of the generators.

3An algebra (𝑉, •) is a vector space 𝑉 with a bilinear operation • : 𝑉 ×𝑉 → 𝑉 . Examples in-
clude the cross product of vectors and matrix multiplication of square matrices. The Lie algebra
is the special case where • is the commutator.
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the structure constants of 𝔤. As [𝑇𝐴 , 𝑇𝐵] = −[𝑇𝐵 , 𝑇𝐴], the structure constants must

be totally antisymmetric in the swapping of their indices.

Example 2.2.1. For the U(1) group, we can see directly fromEq. 2.1.5 that the sole

generator of the group is𝑇 = 1. This has the rather uninteresting Lie algebra 𝔲(1)
of [1, 1] = 0, stemming from the fact that the group is abelian. Next, we look at

the more interesting SO(3) and SU(2) groups, where the power of Lie algebras

shines.

Fundamental and adjoint representations of the 𝔰𝔬(3) and 𝔰𝔲(2)
algebras

We now introduce two important representations of Lie algebras, using

the SO(3) and SU(2) groups as examples — both because of their importance in

physics, and as their derivation introduces a number of useful concepts for the

following sections. SO(3) and SU(2) are very closely related: SU(2) is a double

cover of SO(3), which means that every rotation in SO(3) can be mapped to two

elements of SU(2). Importantly, however, they are locally isomorphic near the

identity, meaning they have the same Lie algebra.

We can derive the generators of SO(3) by using the properties of the spe-
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cial orthogonal group (𝑅𝑇𝑅 = 1). From Eq. 2.2.1, we have

𝑅(𝜀) ≊ 1 + 𝑖𝜀𝑇
𝑅𝑇𝑅 = 1 + 𝑖𝜀(𝑇𝑇 + 𝑇) + O(𝜀2) !

= 1

⇒ 𝑇𝑇 = −𝑇.
(2.2.4)

Thus 𝑇 are antisymmetric matrices, of which for 𝑁 = 3 dimensions there are

three linearly independent ones:

𝐽𝑥 = 𝑖

©«
0 0 0

0 0 −1

0 1 0

ª®®®®®¬
, 𝐽𝑦 = 𝑖

©«
0 0 1

0 0 0

−1 0 0

ª®®®®®¬
, 𝐽𝑧 = 𝑖

©«
0 −1 0

1 0 0

0 0 0

ª®®®®®¬
, (2.2.5)

labeled as 𝑥, 𝑦, 𝑧 as they represent rotations around the respective axes. The

factor of 𝑖 ensures the reality of the infinitesimal rotations in Eq. 2.2.4 and also

that the generators are Hermitian.4 These provide us with the fundamental rep-

resentation of 𝔰𝔬(3), and should be familiar as the angular momentum operators

in quantum mechanics (QM). By exponentiating these, as in Eq. 2.2.2, we obtain

the fundamental representation of the SO(3) group: 𝑅( ®𝜃) = 𝑒 𝑖𝜃𝑖 𝐽𝑖 .

To find the fundamental representation of 𝔰𝔲(2), we can follow the same

procedure as above, using the unitarity constraint 𝑅†𝑅 = 1 for 𝑁 = 2 dimen-

4Note that the conventions around this factor are inconsistent in the literature and likely,
despite our best efforts, will be inconsistent in this chapter as well.
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sional complex matrices, which yields:

𝑇1 =
1
2𝜎𝑥 =

1
2
©«
0 1

1 0
ª®¬ , 𝑇2 =

1
2𝜎𝑦 =

1
2
©«
0 −𝑖
𝑖 0

ª®¬ ,
𝑇3 =

1
2𝜎𝑧 =

1
2
©«
1 0

0 −1
ª®¬ ,

(2.2.6)

where 𝜎𝑖 are the Pauli matrices — the angular momentum operators for the spin

of spin-1/2 particles in QM. Either set of generators yield the following Lie alge-

bra of both groups:

[𝑇𝐴 , 𝑇𝐵] = 𝑖𝜖𝐴𝐵𝐶𝑇𝐶 , (2.2.7)

where the structure constants 𝑓𝐴𝐵𝐶 of the algebra are simply 𝜖𝐴𝐵𝐶 , the totally

antisymmetric Levi-Civita tensor.

Structure constants themselves furnish the following representation of

the corresponding Lie algebra:

[𝑇𝐴]𝐵𝐶 = −𝑖 𝑓𝐴𝐵𝐶 . (2.2.8)

This can be confirmed by plugging this representation into the commutator in

Eq. 2.2.3 and using the Jacobi identity [85]. As 𝐵, 𝐶 index the number of gen-

erators, we see that this representation has a dimension equal to the number

of generators of the Lie algebra, and it is called its adjoint representation. It is
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analogous to the regular representation (Definition 2.1.5) for a Lie algebra, with

the underlying vector space spanned by the generators 𝑉 = span{|𝑇𝐴〉} and the

requirement that 𝐷(𝑇𝐴) |𝑇𝐵〉 = 𝑖 𝑓𝐴𝐵𝐶 |𝑇𝐶〉.

Definition 2.2.3. The dimension of a Lie group is defined as the number of gen-

erators of the group. Thus, it is the same as the dimension of the adjoint repre-

sentation.

As it turns out, for 𝔰𝔬(3) and 𝔰𝔲(2), the adjoint representation [𝑇𝐴]𝐵𝐶 =

−𝑖𝜀𝐴𝐵𝐶 is simply the fundamental representation of 𝔰𝔬(3). More generally, the

dimensions of the fundamental and adjoint representations of SO(𝑛) and SU(𝑛)
are given in Table 2.1. The significance of these representations, as wewill see, is

that the force carriers (i.e., gauge bosons) of the SM live in the adjoint represen-

tation of their associated gauge group, while the matter particles live in either

their fundamental or trivial representations.

Table 2.1. Dimensions of the fundamental and adjoint representations of the
SO(𝑛) and SU(𝑛) groups.

Group dim(Fundamental) dim(Adjoint)

SO(𝑛) 𝑛 𝑛(𝑛 − 1)/2

SU(𝑛) 𝑛 𝑛2 − 1
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General representations

So far we have discussed two representations of the 𝔰𝔬(3) and 𝔰𝔲(2) alge-
bras. The general representations can be derived in much the same way as find-

ing the eigenstates of the angular momentum operator in QM. We first choose

a basis in which one of the generators, conventionally 𝐽𝑧 , is diagonal, and label

eigenvectors of 𝐽𝑧 as |𝑚〉 with eigenvalue 𝑚:

𝐽𝑧 |𝑚〉 = 𝑚 |𝑚〉 . (2.2.9)

These eigenvectors, by definition, form a basis for the representations of the gen-

erators, so counting them tells us the dimensions of allowed representation. To

do so, we define the “raising” and “lowering” operators 𝐽± = 𝐽𝑥 ± 𝑖𝐽𝑦 , with com-

mutation relations

[𝐽𝑧 , 𝐽±] = ±𝐽±, [𝐽+, 𝐽−] = 2𝐽𝑧 . (2.2.10)

These are named so because

𝐽𝑧 𝐽± |𝑚〉 = [𝐽±𝐽𝑧 ± 𝐽±] |𝑚〉 = (𝑚 ± 1)𝐽± |𝑚〉 , (2.2.11)

i.e., 𝐽± |𝑚〉 are eigenvectors of 𝐽𝑧 with eigenvalues 𝑚 ± 1, implying

𝐽± |𝑚〉 = 𝑐±𝑚±1 |𝑚 ± 1〉 , (2.2.12)
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where 𝑐𝑚±1 are normalization constants. Now if we assume that the represen-

tation is finite-dimensional and label the highest-weight state | 𝑗〉 — such that

𝐽+ | 𝑗〉 = 0 ⇔ 𝑐+𝑗+1 = 0 — we can iteratively lower the state and solve for the nor-

malization constants until we reach the lowest-weight state. By doing so we find

that 𝑐−−𝑗−1 = 0 ⇒ the lowest weight state is in fact |− 𝑗〉.5

Thus, we conclude the algebra allows 2𝑗 + 1-dimensional representations

spanned by {|− 𝑗〉 , |− 𝑗 + 1〉 , . . . , | 𝑗 − 1〉 , | 𝑗〉}, with 𝑗 ∈ Z≥0/2 (non-negative inte-

gers and half-integers only). Each possible 𝑗 indexes a different representation

of the group, and any eigenstate can thus be labeled by | 𝑗, 𝑚〉. We have already

seen the 𝑗 = 1/2 and 𝑗 = 1 representations explicitly in Eqs. 2.2.6 and 2.2.5,

respectively, while the 𝑗 = 0 is simply the trivial representation of the group

(𝐷(𝑔) = 1 ∀𝑔 ∈ 𝐺).

Definition 2.2.4. More generally, irreducible representations of a group are

labeled by eigenvalues of the Casimir invariants, or Casimirs, of the group.

Casimirs are operators that commute with all generators of the group. For 𝔰𝔬(3)
and 𝔰𝔲(2), there is only one Casimir,

𝐽2 = 𝐽2𝑥 + 𝐽2𝑦 + 𝐽2𝑧 . (2.2.13)

This is the total angular momentum operator, which we know from QM com-

5See, for example, Chapter IV.2 in Zee [79] for a more detailed derivation.
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mutes with all the 𝐽𝑖s and for any eigenstate | 𝑗, 𝑚〉 has eigenvalue 𝑗(𝑗 + 1):

𝐽2 | 𝑗 , 𝑚〉 = 𝑗(𝑗 + 1) | 𝑗, 𝑚〉 . (2.2.14)

As expected, since the Casimir commutes with all the generators, its eigenvalues

depend only on the irrep 𝑗. We have also seen that individual states can be fur-

ther labeled using the eigenvalues of a set of maximally commuting operators,

in this case {𝐽2, 𝐽𝑧}.

These representations can directly be used to derive those corresponding

to the SU(2) and SO(3) group except that, surprisingly, the latter does not admit

the half-integer irreps; essentially, SU(2) has double the irreps because it is the

double cover of SO(3). Overall, the irreps of 𝔰𝔲(2) and 𝔰𝔲(3) are quite significant

in physics, with direct applications to classical and quantum mechanics, and,

moreover, they will also serve as the building blocks for the representations of

the Lorentz and Poincaré groups in the next section.

2.3 Particles are irreps of the Poincaré

group

The Poincaré group comprises all the physical symmetries of “flat” space-

time (i.e, without gravity), i.e. all the transformations which leave the laws of
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physics invariant. These include Lorentz transformations (boosts and rotations)

and spacetime translations.

Particles can be defined as a “set of states which mix only among them-

selves under Poincaré transformations” (Schwartz [86] Ch. 8.1), leaving at-

tributes like their mass and spin invariant. Elementary particles are those for

which there is no smaller subset of states that also have this property. Thus,

they correspond exactly to irreducible representations of the Poincaré group!

That the physical and seemingly nebulous concept of a particle can be so pre-

cisely defined and characterized by a mathematical analysis of the symmetries

of spacetime is one of the most beautiful results of fundamental physics.

In this section, we describe the irreps of the Poincaré group, starting first

with the Lorentz group alone.

The (proper, orthochronous) Lorentz group

We know from special relativity that “flat” spacetime (i.e., without grav-

ity) is described by 4DMinkowski spaceR1,3. This is a real vector space equipped

with the metric 𝜂𝜇𝜈 = diag(1,−1,−1,−1), which defines distances, or inner prod-

ucts 〈· , ·〉, between 4-vectors 𝑥𝜇 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) as:

〈𝑥, 𝑦〉 ≡ 𝑥𝜇𝑦𝜇 ≡ 𝜂𝜇𝜈𝑥𝜇𝑦𝜈 = 𝑥0𝑦0 − 𝑥1𝑦1 − 𝑥2𝑦2 − 𝑥3𝑦3. (2.3.1)

27



Definition 2.3.1. The Lorentz group is the group of all matrices 𝑀 orthogonal

under theMinkowski metric𝑀𝑇𝜂𝑀 = 𝜂, and is called O(1, 3). This is the analog

in flat spacetime to distance-preserving transformations in Euclidean space (e.g.,

O(3)).

Definition 2.3.2. The proper, orthochronous Lorentz group SO+(1, 3) is the sub-

group of O(1, 3) matrices continuously connected to the identity. Physically,

these are the transformations that preserve the orientation of space and di-

rection of time, and are typically what we refer to as Lorentz transformations.

The two transformations of O(1, 3) not included in SO+(1, 3) are parity 𝑃 =

diag(1,−1,−1,−1) and time reversal 𝑇 = diag(−1, 1, 1, 1) (shown in the 4-vector

representation), which flip the sign of spatial and temporal components of 4-

vectors, respectively. Surprisingly, these are not symmetries of nature — they

are violated by the weak interaction! Generally, in this chapter, when we talk

about the Lorentz group or Lorentz invariance, we are referring only to the

proper, orthochronous Lorentz group.

Generators of the Lorentz group

Lorentz transformations Λ are generated by six antisymmetric matrices,

three for boosts (𝐾𝑖) and three for rotations (𝐽𝑖). In the 4-vector representation,
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these are:

𝐾𝑥 = −𝑖

©«

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

ª®®®®®®®®¬
, 𝐾𝑦 = −𝑖

©«

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

ª®®®®®®®®¬
, 𝐾𝑧 = −𝑖

©«

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

ª®®®®®®®®¬
,

𝐽𝑥 = 𝑖

©«

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

ª®®®®®®®®¬
, 𝐽𝑦 = 𝑖

©«

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

ª®®®®®®®®¬
, 𝐽𝑧 = 𝑖

©«

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

ª®®®®®®®®¬
.

(2.3.2)

Lorentz transformations can thus be represented as

Λ( ®𝜃, ®𝛽) = 𝑒 𝑖(𝜃𝑖 𝐽𝑖+𝛽𝑖𝐾𝑖), (2.3.3)

where ®𝜃 and ®𝛽 are the rotation and boost parameters, respectively,

An important property of the Lorentz group is that it is not compact. This

is related to the fact that the generators for boosts 𝐾𝑖 in the representation above

are not Hermitian, which means the corresponding group elements 𝑒 𝑖𝛽𝑖𝐾𝑖 are

not unitary. In fact, there are no finite-dimensional unitary representations of

the Lorentz group [87]. Unitarity of operators is an important condition for the

invariance of physical properties under transformations in QM, and the conse-

quences of this for the SM will be discussed in Chapter B.4.
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Lie algebra of the Lorentz group

From Eq. 2.3.2, we can derive the commutation relations of the generators

and, hence, the Lie algebra:

[𝐾𝑖 , 𝐾 𝑗] = −𝑖𝜖𝑖 𝑗𝑘 𝐽𝑘 ,
[𝐽𝑖 , 𝐽𝑗] = 𝑖𝜖𝑖 𝑗𝑘 𝐽𝑘 ,

[𝐽𝑖 , 𝐾 𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝐾𝑘 .

(2.3.4)

Moreover, if we define the operators

𝐽+𝑖 =
1
2(𝐽𝑖 + 𝑖𝐾𝑖), 𝐽−𝑖 =

1
2(𝐽𝑖 − 𝑖𝐾𝑖), (2.3.5)

we find that 𝔰𝔬(1, 3) contains two mutually commuting 𝔰𝔲(2) subalgebras:

[𝐽+𝑖 , 𝐽+𝑗 ] = 𝑖𝜖𝑖 𝑗𝑘 𝐽+𝑘 ,

[𝐽−𝑖 , 𝐽−𝑗 ] = 𝑖𝜖𝑖 𝑗𝑘 𝐽−𝑘 ,

[𝐽+𝑖 , 𝐽−𝑗 ] = 0.

(2.3.6)

This implies the irreps of 𝔰𝔬(1, 3) are simply two copies of the irreps of 𝔰𝔲(2) from
Section 2.2, indexed as (𝑗1, 𝑗2)with 𝑗1, 𝑗2 ∈ Z≥0/2 and dimension (2𝑗1 + 1)(2𝑗2 + 1).

With this, we can easily obtain the generators 𝐽𝑖 , 𝐾𝑖 for the smallest few
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irreps:

(0, 0): 𝐽+𝑖 = 𝐽−𝑖 = 0 ⇒ 𝐽𝑖 = 𝐾𝑖 = 0. (2.3.7)

(1/2, 0): 𝐽+𝑖 =
1
2𝜎𝑖 , 𝐽

−
𝑖 = 0 ⇒ 𝐽𝑖 =

1
2𝜎𝑖 , 𝐾𝑖 = − 𝑖2𝜎𝑖 . (2.3.8)

(0, 1/2): 𝐽+𝑖 = 0, 𝐽−𝑖 =
1
2𝜎𝑖 ⇒ 𝐽𝑖 =

1
2𝜎𝑖 , 𝐾𝑖 =

𝑖
2𝜎𝑖 . (2.3.9)

...

The (1/2, 1/2) irrep is actually our familiar 4-vector representation, but it is more

involved to recover the generators in the same form as Eq. 2.3.2.6

Representations of the Lorentz group

It turns out the above four irreps of the Lorentz group are all we need for

the SM. Their nomenclature and corresponding elementary particle fields are

listed in Table 2.2. Notably, fermions are classified as those with half-integer to-

tal spin 𝑗 = 𝑗1 + 𝑗2, and bosons with integer 𝑗. Their radically different behavior

is a consequence of the Spin-Statistics theorem [89] (a notoriously difficult theo-

rem to prove [90]), which states that half-integer spin particles obey Fermi-Dirac

statistics and integer spin particles Bose-Einstein statistics.

All known fermionic particle fields live in the (1/2, 0) ⊕ (0, 1/2), or Dirac

spinor, representation. The (1/2, 0) and (0, 1/2) representations are called the left-

6See e.g. Ref. [88].
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and right-handed Weyl spinors respectively, where the handedness refers to the

direction of their spin angular momentum relative to their momentum. Physi-

cally, this means there is a left-handed and right-handed copy of each fermion,

and they have to be packaged together in a Dirac spinor to have masses without

violating parity, as we discuss in Chapter B.4. We will also see that left- and

right-handed representations can be equivalently thought of as particles and an-

tiparticles.

The (1/2, 0) ⊕ (0, 1/2) representation technically also includes realMajorana

spinors as a subspace, which can represent neutral fermions. The only candi-

date for these in the SM are right-handed neutrinos and, in fact, the existence of

suchMajorana neutrinos could potentially explain the curiously small left-handed

neutrino masses through a process called the seesaw mechanism [91, 92]. To date,

however, no experimental evidence for these, such as neutrinoless double beta

decay [93] or same-sign charged dilepton decays [94], has been observed.

On another technical note, the Lorentz group, similar to SO(3), does not it-
self admit half-integer, fermionic representations. Thus, the true spacetime sym-

metry group is actually the double cover of SO(1, 3), Spin(1, 3)! Indeed, there

are many subtleties to the Lorentz group, some of which will be revisited in the

context of Lorentz-group equivariant neural networks in Chapter 16. To con-

clude, however, it is worth emphasizing again the remarkable physical insight

these seemingly abstract group-theoretic concepts deliver. We are able to clas-

sify a fundamental dichotomy of particle physics— bosons versus fermions, and
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their completely different behavior — simply by their representation under the

Lorentz (or, rather, the Spin(1, 3)) group!

Table 2.2. Representations of the Lorentz group and their associated particle
fields in the SM.

Representation (𝑗1, 𝑗2) Name Elementary Fields

(0, 0) Scalar Higgs boson

(1/2, 0) Left-handed Weyl spinor —

(0, 1/2) Right-handed Weyl spinor —

(1/2, 0) ⊕ (0, 1/2) Dirac spinor All fermions

(1/2, 1/2) Vector 𝑔, 𝛾,𝑊±, and 𝑍 gauge bosons

Lie algebra of the Poincaré group

The Poincaré group is Lorentz transformations plus spacetime transla-

tions. Just as angular momentum generates rotations, translations are generated

by the momentum operator 𝑃𝜇. 𝑃𝜇 and the Lorentz generators 𝐽𝑖 and 𝐾𝑖 together

comprise the generators of the Poincaré group, and its algebra is thus the Lorentz
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algebra (Eq. 2.3.4) plus the commutation relations with the 𝑃𝜇s:7

[𝑃𝜇, 𝑃𝜈] = 0,

[𝐽𝑖 , 𝑃0] = 0,

[𝐽𝑖 , 𝑃𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝑃𝑘 ,

[𝐾𝑖 , 𝑃0] = −𝑖𝑃𝑖 ,
[𝐾𝑖 , 𝑃𝑗] = 𝑖𝜂𝑖 𝑗𝑃0.

(2.3.10)

As is conventional, the Greek indices run over all four spacetime dimensions,

while the Latin indices only the three spatial.

The Poincaré algebra can be expressedmore compactly by first combining

the Lorentz generators into the antisymmetric tensor 𝑀𝜇𝜈:

𝑀𝜇𝜈 =

©«

0 𝐾𝑥 𝐾𝑦 𝐾𝑧

−𝐾𝑥 0 𝐽𝑧 −𝐽𝑦
−𝐾𝑦 −𝐽𝑧 0 𝐽𝑥

−𝐾𝑧 𝐽𝑦 −𝐽𝑥 0

ª®®®®®®®®¬
⇒ Λ(𝜔) = 𝑒

𝑖
2𝜔

𝜇𝜈𝑀𝜇𝜈 , (2.3.11)

with 𝜔𝜇𝜈 another antisymmetric tensor containing the six rotation and boost pa-

7See Appendix A.1.1 for a derivation.
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rameters. The algebra can be then written as:

[𝑀𝜇𝜈 , 𝑀𝜌𝜎] = 𝑖(𝜂𝜈𝜌𝑀𝜇𝜎 − 𝜂𝜇𝜌𝑀𝜈𝜎 − 𝜂𝜈𝜎𝑀𝜇𝜌 + 𝜂𝜇𝜎𝑀𝜈𝜌),
[𝑀𝜇𝜈 , 𝑃𝜌] = 𝑖(𝜂𝜈𝜌𝑃𝜇 − 𝜂𝜇𝜌𝑃𝜈),
[𝑃𝜇, 𝑃𝜈] = 0.

(2.3.12)

Irreps of the Poincaré group

As we saw from Section 2.2, we can derive the irreps of an algebra using

its Casimir invariants (Definition 2.2.4). Each set of their eigenvalues uniquely

labels an irrep, while each basis state within the irreps is indexed by eigenvalues

of a maximal set of commuting operators (e.g., {𝐽2, 𝐽𝑧} → | 𝑗, 𝑚〉 for 𝔰𝔬(3)). Note

that in the following, we simply provide a sketch of the derivations and point to,

for example, Zee GT [79] Chapter VII.2 and Tong SM [76] Chapter 1.1.2 for more

detailed proofs and discussion.

The Casimirs of the Poincaré algebra are the operators

𝑃2 = 𝑃𝜇𝑃𝜇 and𝑊2 =𝑊𝜇𝑊𝜇, (2.3.13)

where

𝑊𝜇 =
1
2𝜖𝜇𝜈𝜌𝜎𝑀

𝜈𝜌𝑃𝜎 (2.3.14)
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is the Pauli-Lubanski vector, the relativistic analog of the angular momentum op-

erator 𝐽𝑖 . Furthermore, 𝑃𝜇 commutes with both, and we can label its eigenstates

as |𝑝〉,

𝑃𝜇 |𝑝〉 = 𝑝𝜇 |𝑝〉 , (2.3.15)

which represent single-particle states with 4-momentum 𝑝𝜇. These are therefore

eigenstates of 𝑃2 as well, with eigenvalues 𝑚2, the squared mass of the particle:

𝑃2 |𝑝〉 = 𝑝𝜇𝑝𝜇 |𝑝〉 = 𝑚2 |𝑝〉 . (2.3.16)

Thus, we see that the mass of a particle, 𝑚, is one label of the irreps, with states

therein indexed by 𝑝𝜇. The other label, the particle spin 𝑗, is based on the eigen-

value of𝑊2:

𝑊2 |𝑝, 𝑗〉 ∝ 𝑗(𝑗 + 1) |𝑝, 𝑗〉 . (2.3.17)

The easiest way to see this is to, for a given 𝑚 > 0, pick a single eigenstate |𝑝∗〉.
The simplest is the rest frame 𝑝∗𝜇 = (𝑚, 0, 0, 0). The subgroup of Poincaré trans-

formations which leave |𝑝∗〉 invariant is called its little group. In this case, it com-

prises all 3D rotations — i.e., SO(3). Indeed, if we look at the Pauli-Lubanski

vector acting on |𝑝∗〉,

𝑊𝜇 |𝑝∗〉 = 1
2𝜖𝜇𝜈𝜌𝜎𝑀

𝜈𝜌𝑝∗𝜎 |𝑝∗〉 ⇒𝑊0 = 0,𝑊𝑖 = −𝑚𝐽𝑖 , (2.3.18)
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we simply recover the generators 𝐽𝑖 of 𝔰𝔬(3).8 Therefore,

𝑊2 |𝑝∗, 𝑗〉 = 𝑚2𝐽2 |𝑝∗, 𝑗〉 = 𝑚2 𝑗(𝑗 + 1) |𝑝∗, 𝑗〉 , (2.3.19)

using the eigenvalues of 𝐽2 from Eq. 2.2.14. Although we chose here to look at a

specific state |𝑝∗〉, this can be shown to hold for all states |𝑝〉 in the irrep.9 Thus,

we see that irreps of the Poincaré group, and, hence, particles, are characterized

by their mass 𝑚 and spin 𝑗.

Massive versus massless particles

Continuing with the massive, 𝑚 > 0, particle case, we know as well

from Section 2.2 that the eigenstates within the |𝑝, 𝑗〉 irreps are further labeled

by their spin along a particular axis: 𝐽𝑧 |𝑝, 𝑗, 𝑚 𝑗〉 = 𝑚 𝑗 |𝑝, 𝑗, 𝑚 𝑗〉, with 𝑚 𝑗 ∈
{− 𝑗,−𝑗 + 1, . . . , 𝑗 − 1, 𝑗}. Thus, massive particles |𝑚, 𝑗〉 exist in 2𝑗 + 1 spin states

⊗ an infinite number of momentum states |𝑝〉 , 𝑝𝜇𝑝𝜇 = 𝑚2.

However, this is not the case for massless particles, which have a different

little group. Recall that we can never boost into the rest frame of a massless

particle to define the simple |𝑝∗〉 we did above. Instead, let us consider the next-

best state |𝑝′〉, 𝑝′𝜇 = (𝐸, 0, 0, 𝐸). Its little group turns out to be E(2), the Euclidean

8This also motivates why𝑊𝜇 can be thought of as relativistic angular momentum.
9By choosing an eigenstate |𝑝∗ , 𝑗〉 of 𝑃2 and looking for transformations which leave it invari-

ant, we “induced” a subgroup, SO(3), and used its representation theory to derive the irreps of
the Poincaré group. Such a representation is hence called an induced representation.
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group in 2D, whose representations and implications for massless particles are

considerably more involved. However, the upshot is that it as well has irreps

characterized by spin 𝑗 (and mass 𝑚 = 0), but with only two helicity eigenstates

therein.

As it turns out, physically, the mass of particles is based on the strength

of their interactions (or lack thereof) with the Higgs boson, the particle at the

center of this dissertation. We will discuss the mechanisms for these and all

fundamental interactions in the next chapter, and see that symmetries are crucial

in understanding them.
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Chapter 3

Quantum field theory

Quantum mechanics describes nature as absurd from the point of view of common

sense. And yet it fully agrees with experiment. So I hope you can accept nature as She

is — absurd. — Richard Feynman

The standard model is a quantum field theory (QFT). It describes the uni-

verse as a collection of fields associatedwith the various elementary particles. At

each point in spacetime, there is a random probability for these fields to interact

and create or destroy their respective particles.

This means we have an electron field, a photon field, a Higgs field, etc.

spread across the universe, and all electrons, photons, and Higgs bosons are

identical quantum excitations of these. The interactions of the electron and photon

fields, for example, are what we experience as electromagnetism.

As Feynman says, this may all sound absurd. Fields are highly unintu-
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itive, “unphysical” concepts. It can be hard to imagine that particles, matter,

and indeed all of us, are simply a collection of quanta probabilistically popping

out and dropping back into an abstract cosmic sea.

Not only that, historically, QFT often appeared intractable and even non-

sensical, yielding results such as negative energy and infinite mass particles. Its

development underwent multiple periods of stagnation and ardent opposition,

including by Richard Feynman who suggested in 1945 that field theory be aban-

doned altogether [95] before changing his mind and making seminal contribu-

tions to quantum electrodynamics.

Yet, through the collective efforts of generations of physicists, QFT can

now explain nearly every observed phenomenon in particle physics, up to the

highest experimental energies. Moreover, it has made some of the most stagger-

ing and precise predictions in the history of physics, all of which proved to be

in complete agreement with experiment. These range from the calculation of

the electron’s magnetic moment up to 12 significant digits, to the prediction of

the Higgs boson 50 years before its discovery. Its unprecedented experimental

success is why we believe “it is the language in which the laws of Nature are

written” (Tong SM [76]).

In this chapter, we first introduce classical and quantum field theory for

free particles in Section 3.1, before discussing their interactions and connection to

physical observables in Section 3.2. We then detail gauge theories and the beauti-

ful connection between symmetries, QFT, and the forces of nature, in Section 3.3.
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We conclude with a description of the Higgs mechanism, which is of particular

relevance to this dissertation, in Section 3.4. Further background on classical me-

chanics and mathematical details of quantization, interactions, and spinors can

be found in Appendix B.

3.1 Free scalar field theory

Historically, field theory was in part an attempt to develop local theories

rather than those, such as Newtonian gravity, implying action-at-a-distance.1 The

idea is to associate each point in space and time with a value or set of values

𝜙𝑎(®𝑥, 𝑡), called fields. As long as these fields interact only at the same point in

spacetime or, at most, with their immediate neighbors (via their derivatives),

the theory is guaranteed to be local. Classic examples include the vector-valued

electric and magnetic fields ®𝐸(®𝑥, 𝑡) and ®𝐵(®𝑥, 𝑡). The behavior of the fields is en-

capsulated by the Lagrangian of the system.

In this section, we briefly recap the Lagrangian formulation of classical

field theory (Section 3.1.1) andNoether’s theorem connecting symmetries to con-

served quantities (Section 3.1.2). We then present the quantized form of the free

scalar field, and the interpretation of particles as excitations of these fields, in

Section 3.1.3. Finally, we conclude in Section 3.1.4 with a discussion of parti-

1See Weinberg’s notes on a history of QFT [95] for a nice summary of its historical develop-
ment.
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cle propagators, which are the connection between these abstract fields and the

physical observables we can measure in experiments. Further background on

classical Lagrangian and Hamiltonian mechanics can be found in Appendix B.1,

and on quantization in Appendix B.2.

3.1.1 Classical field theory

The Lagrangian of a classical field 𝜙(®𝑥, 𝑡) is given as a function of the field

and its derivatives:

𝐿(𝑡) =
∫

𝑑3𝑥 ℒ(𝜕𝜇𝜙, 𝜙), (3.1.1)

where ℒ is the Lagrangian density. The action is the integral of 𝐿 over time, or ℒ
over spacetime:

𝑆 =
∫

𝐿 𝑑𝑡 =
∫

𝑑4𝑥 ℒ . (3.1.2)

The equations of motion (EOMs) of the field is derived from the principle of sta-

tionary action, which states that the true path is an extremum of 𝑆, yielding the

Euler-Lagrange (E-L) equations:

𝜕𝜇

(
𝜕ℒ

𝜕(𝜕𝜇𝜙)
)
− 𝜕ℒ

𝜕𝜙
= 0. (3.1.3)
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The Klein-Gordon equation

The Lagrangian for a free, scalar relativistic field 𝜙(®𝑥, 𝑡) is:

ℒ =
1
2𝜕𝜇𝜙𝜕

𝜇𝜙 − 1
2𝑚

2𝜙2, (3.1.4)

The E-L equation for this Lagrangian is called the Klein-Gordon equation:

𝜕𝜇𝜕
𝜇𝜙 + 𝑚2𝜙 ≡ (□ + 𝑚2)𝜙 = 0, (3.1.5)

where □ ≡ 𝜕𝜇𝜕𝜇 = 𝜕2
𝑡 − ∇2 is the d’Alembertian operator.

The Klein-Gordon equation is essentially the relativistic generalization of

the Schrödinger equation. Just as the Schrödinger equation quantizes the non-

relativistic EOM 𝐸 = 𝑝2/2𝑚, the Klein-Gordon equation converts the relativistic

EOM for a free particle

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 (3.1.6)

into quantum operator form, with 𝐸 → �̂� = 𝑖ℏ𝜕𝑡 and 𝑝 → �̂� = −𝑖ℏ∇:

�̂�2 = �̂�2𝑐2 + 𝑚2𝑐4

−ℏ2𝜕2
𝑡 𝜙 = −ℏ2𝑐2∇2𝜙 + 𝑚2𝑐4𝜙

⇒ (𝜕2
𝑡 − 𝑐2∇2 + 𝑚2𝑐4

ℏ2 )𝜓 = 0.

(3.1.7)

43



Natural units

It is conventional in high energy physics to use natural units:

ℏ = 𝑐 = 1. (3.1.8)

Besides being notationally convenient, this enables all dimensionful physical

quantities to be described by the same scale — conventionally, in terms of en-

ergy, e.g. in units of electronvolts (eV). For example:

• Mass: 𝐸 = 𝑚𝑐2 → 𝑚 = 𝐸,

• Compton wavelength: 𝜆 = ℏ/𝑚𝑐 → 𝜆 = 1/𝐸,

• Momentum: 𝑝 = ℏ/𝜆 → 𝑝 = 𝐸.

We define each quantity to have a dimension in terms of energy, i.e. energy,

mass, and momentum all have dimension [𝐸] = [𝑚] = [𝑝] = 1, while length has

dimension [𝜆] = −1. Thus, in natural units Eqs. 3.1.5 and 3.1.7 are identical.

3.1.2 Symmetries and Noether’s theorem

Noether’s theorem states an important consequence of continuous symme-

tries of a system: they are associated with a physical conserved currents. For
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example, translational and rotational invariance of the potential energy imply

conservation of momentum and angular momentum, respectively.

More precisely, if a continuous transformation on the field

𝜙(𝑥) → 𝜙′(𝑥) = 𝜙(𝑥) + 𝜖Δ𝜙(𝑥) (3.1.9)

is a symmetry, leaving the EOMs invariant, it can be shown to imply the existence

of a conserved current 𝑗𝜇:

𝜕𝜇 𝑗𝜇 = 0, 𝑗𝜇 =
𝜕ℒ

𝜕(𝜕𝜇𝜙)Δ𝜙 −J 𝜇, (3.1.10)

and conserved charge 𝑄

𝑄 =
∫

allspace
𝑑3𝑥 𝑗0. (3.1.11)

Example: translation symmetry

Consider a translation-invariant theory, such as for the free scalar field

(Eq. 3.1.4). A spacetime translation 𝑥𝜇 → 𝑥𝜇 − 𝑎𝜇 leads to the transformation

𝜙(𝑥) → 𝜙(𝑥 + 𝑎) ' 𝜙(𝑥) + 𝑎𝜇𝜕𝜇𝜙(𝑥), yielding the conserved current:

(𝑗𝜇)𝜈 = 𝜕ℒ
𝜕(𝜕𝜇𝜙)𝜕𝜈𝜙 − 𝛿

𝜇
𝜈ℒ , (3.1.12)
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which we call the energy-momentum tensor 𝑇𝜇
𝜈 . The associated conserved quan-

tities (or “charges”) are the total energy and momentum of the field configura-

tion:

𝐸 =
∫

𝑑3𝑥 𝑇00, 𝑃 𝑖 =
∫

𝑑3𝑥 𝑇0𝑖 . (3.1.13)

For our free scalar field, this turns out to be:

𝐸 =
∫

𝑑3𝑥
1
2
¤𝜙2 + 1

2(∇𝜙)
2 + 1

2𝑚
2𝜙2,

𝑃 𝑖 =
∫

𝑑3𝑥 ¤𝜙 𝜕𝑖𝜙.
(3.1.14)

The interpretation of these as energy and momenta is described further in Ap-

pendix B.2.3.

Example: a U(1) internal symmetry

Symmetries such as translational and rotational invariance are spacetime,

or external, symmetries. An internal symmetry is a transformation that acts only

on the fields, at each point of spacetime. A simple example is the complex scalar

field 𝜓(𝑥), for which we can write down the free Lagrangian:

ℒ = 𝜕𝜇𝜓
∗𝜕𝜇𝜓 − 𝑚2𝜓∗𝜓. (3.1.15)
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This Lagrangian possesses an internal U(1) symmetry: it is invariant under

𝜓(𝑥) → 𝑒 𝑖𝛼𝜓(𝑥) for any constant 𝛼. Noether’s theorem tells us this too has the

important physical consequences of a conserved current and charge:

𝑗𝜇 = 𝑖(𝜓∗𝜕𝜇𝜓 − 𝜓𝜕𝜇𝜓∗), 𝑄 =
∫

𝑑3𝑥 𝑖(𝜓∗𝜕0𝜓 − 𝜓𝜕0𝜓∗). (3.1.16)

Once quantized, we will see this exactly corresponds to the conservation of elec-

tric charge!

In fact, we say that a field that transforms as so under a global U(1) rota-
tion

𝜓(𝑥) → 𝑒 𝑖𝑞𝛼𝜓(𝑥),
𝜓∗(𝑥) → 𝑒−𝑖𝑞𝛼𝜓∗(𝑥),

(3.1.17)

is charged under the U(1) symmetry, with charge 𝑞 (and its complex conjugate

with charge −𝑞).

3.1.3 Quantization

Details of quantization can be found in Appendix B.2; briefly, the quan-

tized solution to the Klein-Gordon equation for a real field is akin to a superpo-
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sition of plane waves:

�̂�(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(�̂�®𝑝 𝑒 𝑖𝑝·𝑥 + �̂�†®𝑝 𝑒−𝑖𝑝·𝑥) (3.1.18)

where 𝑝 · 𝑥 = 𝑝𝜇𝑥𝜇 is the 4D spacetime inner product and 𝑝𝜇 = (𝜔𝑝 =√��®𝑝��2 + 𝑚2, ®𝑝). The quantum operators �̂�®𝑝 and �̂�†®𝑝 are annihilation and creation

operators, respectively, for a particle with momentum ®𝑝 and mass 𝑚, just as for

states in a quantum harmonic oscillator.2

The solutions for a complex scalar field are (see Appendix B.2.4):

�̂�(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑏®𝑝 𝑒 𝑖𝑝·𝑥 + 𝑐†®𝑝 𝑒−𝑖𝑝·𝑥),

�̂�†(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑏†®𝑝 𝑒−𝑖𝑝·𝑥 + 𝑐®𝑝 𝑒 𝑖𝑝·𝑥),
(3.1.19)

where we now have two sets of creation and annihilation operators, 𝑏®𝑝 and 𝑏†®𝑝 ,

and 𝑐®𝑝 and 𝑐†®𝑝 , again for particles with momentum ®𝑝 and mass 𝑚 but opposite

charges, respectively, under the U(1) symmetry described above. These are inter-

preted as particles and antiparticles.

2Indeed, one can view particles simply has excited states of a continuous set of QHOs for
different masses and momenta. This is made more precise in Appendix B.2.
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Particle eigenstates

The Hilbert space of the free scalar field theory comprises the vacuum —

0-particle — state |0〉 and the states — i.e., particles — created by the creation

operators acting on it:

�̂�®𝑝 |0〉 = 0 ∀®𝑝 ⇒ 𝐻 |0〉 = 0,

| ®𝑝〉 ∝ �̂�†®𝑝 |0〉 ⇒ 𝐻 |𝑝〉 = 𝜔®𝑝 |𝑝〉 .
| ®𝑝1, ®𝑝2〉 ∝ �̂�†®𝑝1

�̂�†®𝑝2
|0〉 ⇒ 𝐻 | ®𝑝1, ®𝑝2〉 = (𝜔®𝑝1 + 𝜔®𝑝2) | ®𝑝1, ®𝑝2〉

...

| ®𝑝1, . . . , ®𝑝𝑛〉 ∝ �̂�†®𝑝1
. . . �̂�†®𝑝𝑛 |0〉 ⇒ 𝐻 | ®𝑝1, . . . , ®𝑝𝑛〉 =

( 𝑛∑
𝑖=1

𝜔®𝑝𝑖

)
| ®𝑝1, . . . , ®𝑝𝑛〉 ,

(3.1.20)

where 𝐻 is the Hamiltonian operator of the theory (see Appendix B.2.2), and | ®𝑝〉
is a state with momentum ®𝑝 and energy 𝜔𝑝 =

√��®𝑝��2 + 𝑚2: i.e., a single particle of

mass 𝑚. This is essentially the sum of the Hilbert spaces of an infinite number

of QHOs, across all momenta, and is called the Fock space.

Themomentumeigenstates are normalized such that their inner products

are Lorentz scalars:

| ®𝑝〉 =
√

2𝐸®𝑝 �̂�†®𝑝 |0〉 ⇒ 〈®𝑞| ®𝑝〉 = 2𝐸®𝑝 𝛿3(®𝑞 − ®𝑝). (3.1.21)
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For a scalar field, the creation operators commute amongst themselves, which

means the states | ®𝑝1, . . . , ®𝑝𝑛〉 are symmetric under exchange of particles, and

thus describe bosons.3

Interpretation of the field operators

The action of the fields themselves on the vacuum is:

�̂�(®𝑥) |0〉 =
∫

𝑑3𝑝

(2𝜋)3
1

2𝐸®𝑝
𝑒 𝑖𝑝·𝑥 | ®𝑝〉 . (3.1.22)

This is very similar to the Fourier transform of the position eigenstate | ®𝑥〉 in non-

relativistic QM, except with an integral measure that is now Lorentz-invariant

due to our normalizations above. Thus, we can roughly interpret 𝜙(®𝑥) as an

operator which creates a particle at position ®𝑥. However, we will see next that

𝜙(®𝑥) |0〉 ≡ | ®𝑥〉, unlike in QM, is not exactly localized in position (although it’s

pretty close).

3Technically, the individual momentum eigenstates are not “physical”, as they are not nor-
malizable. Instead, particles exist in the form of a wavepacket with some spread in momenta
𝜑(®𝑝), which we typically assume to be smaller than our detector resolution can thus ignore (see
Appendix B.2.3.)
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3.1.4 Propagators and Green functions

We now discuss briefly the concept of propagators in QFT, primarily be-

cause of their importance in relating quantum fields to physical observables of

the theory, like scattering amplitudes (Section 3.2.2), but also because of some

interesting insights they offer regarding our quantized particle states. The prop-

agator is the amplitude for the associated particle at a spacetime point 𝑦 to be

found at 𝑥:

𝐷(𝑥 − 𝑦) ≡ 〈0|𝜙(𝑥)𝜙(𝑦)|0〉 =
∫

𝑑3𝑝

(2𝜋)3
1

2𝐸®𝑝
𝑒 𝑖𝑝·(𝑥−𝑦). (3.1.23)

This is also called the two-point correlation function between 𝑥 and 𝑦.

Interestingly, it can be shown that, for a particle with mass 𝑚 > 0, for

space-like separated points, e.g. 𝑥0 = 𝑦0,
��®𝑥 − ®𝑦�� ≡ 𝑟,

𝐷(𝑟) ∼ 𝑒−𝑚𝑟 , (3.1.24)

i.e., it is not 0!4 However, it exponentially decays at rate of 1/𝑚, or the Compton

wavelength. This tells us that there is a fundamental physical limit in relativistic

4Mathematically, this stems from the 1/2𝐸®𝑝 factor in the integral required for Lorentz invari-
ance. Note, however, that this does not violate causality, since the commutator [𝜙(𝑥), 𝜙(𝑦)] =
𝐷(𝑥 − 𝑦) − 𝐷(𝑦 − 𝑥) = 0 for spacelike separated points, meaning physically they cannot affect
each other. For a complex field, [𝜓(𝑥),𝜓∗(𝑦)] = 0 has the interesting interpretation of a particle’s
amplitude for 𝑥 → 𝑦 being canceled by its antiparticle’s amplitude for 𝑦 → 𝑥. Or, inversely,
this tells us that causality necessitates the existence of antiparticles (Peskin and Schroeder [81]
Chapter 2.4).
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QM to which a particle can be localized in space (or, at least, to which we can

measure its position, related to the uncertainty principle).

Green functions

The propagator is closely related to the Green function Δ(𝑥) of the Klein-

Gordon equation, which is the solution (or response) to a delta function source:

(□ + 𝑚2)Δ(𝑥) = 𝛿4(𝑥). (3.1.25)

The Green functionΔ(𝑥−𝑦) effectively describes the effect on the field at 𝑥 due to

a localized source at 𝑦; hence, the connection to the two-point correlation func-

tion, or propagator, above.

The form of Δ(𝑥) can be found by Fourier transforming this equation to

be:

Δ(𝑥) =
∫

𝑑4𝑝

(2𝜋)4
𝑖

𝑝2 − 𝑚2 𝑒
−𝑖𝑝·𝑥 , (3.1.26)

This has a pole on the real line at 𝑝2 = 𝑚2 ⇔ 𝐸 = ±√®𝑝2 + 𝑚2, which means there

is an ambiguity in defining the contour integral.

The choice of contour leads to four different Green functions, each with a

different physical interpretation. The one choice wemake in QFT is the Feynman
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prescription, often defined as

Δ𝐹(𝑥) =
∫

𝑑4𝑝

(2𝜋)4
𝑖

𝑝2 − 𝑚2 + 𝑖𝜀 𝑒
−𝑖𝑝·𝑥 , (3.1.27)

where the 𝑖𝜀 term resolves the ambiguity by shifting the poles infinitesimally

above and below the real line, Δ𝐹(𝑥) is called the Feynman propagator. It is related

to our normal propagator above by

Δ𝐹(𝑥 − 𝑦) =


〈0|𝜙(𝑥)𝜙(𝑦)|0〉 = 𝐷(𝑥 − 𝑦) if 𝑥0 > 𝑦0

〈0|𝜙(𝑦)𝜙(𝑥)|0〉 = 𝐷(𝑦 − 𝑥) if 𝑥0 < 𝑦0
≡ 〈0|𝑇𝜙(𝑥)𝜙(𝑦)|0〉 ,

(3.1.28)

where we call 𝑇 the time-ordering operator.

3.2 Interactions

Like the silicon chips of more recent years, the Feynman diagram was bringing

computation to the masses. — Julian Schwinger

We next make the field theory more interesting by adding interactions.

We will continue with our scalar fields, first discussing the types of interactions

we consider and the important concept of renormalizability in Section 3.2.1. We

then focus onweakly coupled theories, wherewe can treat the interactions as small

perturbations, as described in Section 3.2.2, and then discuss how to calculate the
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probability of interactions occurring using Feynman diagrams in Section 3.2.3.

Finally, we outline how to translate these probabilities into the physical quanti-

ties we measure, namely decay rates and cross sections, in Section 3.2.4.

3.2.1 Interactions in the Lagrangian

Before diving into the calculations, it is useful to get an idea of the types of

interactions that are “relevant” in a QFT using dimensional analysis. Consider

the following generic Lagrangian for a single real scalar field:

ℒ =
1
2𝜕𝜇𝜙𝜕

𝜇𝜙 − 1
2𝑚

2𝜙2 +
∞∑
𝑛=3

𝜆𝑛
𝑛! 𝜙

𝑛 . (3.2.1)

The 𝜙𝑛 terms are what are new, representing interactions, and 𝜆𝑛 are called their

coupling constants, determining their respective strengths. Broadly speaking, we

only know how to make meaningful analytic calculations for interactions which

we can treat as small perturbations to the free Lagrangian; indeed, there is much

we do not understand about strongly-coupled theories such as QCD.

Howdowedecidewhether an interaction is “small”? It certainly depends

on the coupling constant, but𝜆 is not necessarily dimensionless. The Lagrangian

has energy (or mass) dimension 1 (using natural units, see Section 3.1.1), so

[ℒ] = 4, [𝑚] = 1 ⇒ [𝜙] = 1 ⇒ [𝜕𝜇] = 1, [𝜆𝑛] = 4 − 𝑛. (3.2.2)
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We need 𝜆 to be small relative to different things, depending on its dimension.

In fact, we use its dimension (or, equivalently, that of the interaction term) to

categorize different interactions.

Relevant, marginal, and irrelevant interactions

[𝜆3] = 1: This means 𝜆3 must be small compared to some energy 𝐸, which is

typically the energy scale of our experiment or process of interest. Such an in-

teraction therefore becomes a larger perturbation at lower energies, and smaller

at high energies. These terms are called relevant because they affect the physics

that we usually deal with.

[𝜆4] = 0: These are called marginal interactions, which are small if 𝜆4 � 1.

[𝜆𝑛] < 0, 𝑛 > 4: These interactions are small at low energies and large at high

energies. Because of this, we typically do not need to consider them in a QFT;

hence, they are called irrelevant.

Thus, in a sense, QFT is quite simple — we need only consider relevant

and marginal interactions! In this case, 𝜆3𝜙3 and 𝜆4𝜙4. The same dimensional

analysis also shows why we do not consider terms with more than two deriva-

tives.

55



When we do want to explore the effects of irrelevant interactions, we can

parametrize them as generic operators in the Lagrangian which are suppressed

by powers of (𝐸/Λ)𝑛−4, where Λ is the energy scale at which we expect these

interactions to become relevant. This is (one of) the ideas behind effective field

theory (EFT) [96, 97].

Renormalizability

The types of interactions present in a theory also determine its renormal-

izability. Calculations in QFT are inherently plagued by infinities, one of which

we encountered as the zero-point energy of the quantized free scalar field (Sec-

tion B.2.2). A general method for handling ultraviolet (UV) infinities — those

which arise from integrating over momenta up to
��®𝑝�� → ∞ — is to impose a

cut-off energy scale Λ on these integrals.

By doing so, we are essentially admitting, rightfully so, that we do not

know what is going on arbitrarily high energies; hence, we do not expect our

theory to be valid beyond Λ. We then, after performing the integrals, can take

the limit Λ → ∞ and hope and pray our result is independent of Λ. This is a

simplified picture of renormalization.

However, the strength of irrelevant interactions only grows with energy,

so Λ → ∞ will lead to a divergence. Hence, we call theories with irrelevant in-

teractions non-renormalizable. The SM is a renormalizable QFT and thus, as for
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our simple scalar field theory, its possible interactions are helpfully constrained.

Most likely, it is simply an EFT of a higher energy theory, with the nonrenormal-

izable terms heavily suppressed by the scale of new physics!

3.2.2 S-matrix elements

As discussed above, wewill focus on interactions inweakly-coupled theo-

ries, where they can be treated as small perturbations to the free Lagrangian. The

quantized interaction terms comprise different combinations of creation and an-

nihilation operators, corresponding to existing particles interacting, getting de-

stroyed, and/or creating new ones. Broadly, we call these scattering processes,

and the amplitude of these occurring is called the S-matrix element 〈 𝑓 |𝑆| 𝑖〉 be-

tween the initial and final particles states | 𝑖〉 and | 𝑓 〉. The operator 𝑆, for scatter-

ing, is called the S-matrix.

Note that so far we have only been discussing the abstract notion of fields

in the Lagrangian. We have highlighted many connections and interpretations

relating fields to physical particles, but they are not the same; fields are not par-

ticles.5 The S-matrix elements between particles are the physical quantities we

measure: they are the basic observables of QFT.

Formally, fields and particles are related through the LSZ reduction for-

mula [98], which expresses S-matrix elements in terms of the Green functions of

5This point is well emphasized in Aneesh Manohar’s notes on EFT [96].
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the field (Section 3.1.4). The formula states that the S-matrix element between 𝑛

incoming and 𝑚 outgoing asymptotically free, on-shell particles is the residue

of the 𝑛 + 𝑚 particle pole of the associated fields’ Green functions.6

This is a very powerful result in QFT. In this section, we heuristically ex-

plain its practical consequence, which is that the S-matrix element can be cal-

culated using the time-ordered product of the interacting fields, up to different

orders in the interaction coupling constant. In the following section, we then

present the even more practical method of calculating such time ordered prod-

ucts using Feynman diagrams.

Scalar Yukawa Lagrangian

We will use scalar Yukawa theory as an example, which couples together

our real and complex scalar fields, 𝜙 and 𝜓:

ℒ =
1
2𝜕𝜇𝜙𝜕

𝜇𝜙 − 1
2𝑚

2𝜙2 + 𝜕𝜇𝜓
†𝜕𝜇𝜓 −𝑀2𝜓†𝜓 − 𝑔𝜙𝜓†𝜓. (3.2.3)

The interaction term 𝑔𝜙𝜓†𝜓 is called aYukawa interaction, and theweak coupling

condition is 𝑔 � 𝑚, 𝑀.

A similar theory was originally developed by Hideki Yukawa to model

the strong nuclear force between nucleons (𝜓) via a hypothesizedmeson (𝜙) [99].

6Useful discussions of this can be found in Peskin and Schroeder [81] Chapter 7 and
Schwartz [86] Chapter 6.
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Indeed, such amesonwas discovered a decade later via cosmic rays, and is called

the pion [100]. Nobel Prizes were awarded for both the prediction and discov-

ery. The difference in our theory is the scalar rather than fermionic nucleon, for

simplicity; we will still, however, be able to reproduce the iconic physical feature

of the theory: the Yukawa potential.

Under the weak coupling condition, we can treat the interaction term as

a perturbation to the free Lagrangian and use perturbation theory and the inter-

action picture of QM to calculate the S-matrix elements for processes at any order

in 𝑔 (see Appendix B.3.1). For example, diagrams of first-order processes such

as meson decay (𝜙 → 𝜓𝜓) and nucleon-antinucleon annihilation (𝜓𝜓 → 𝜙) are

shown in Figure 3.1.

𝜙

𝜓

𝜓†

𝑝

𝑞1

𝑞2

𝜓

𝜙

𝜓†

𝑞1

𝑞2

𝑝

Figure 3.1. Feynman diagrams for meson decay (left) and nucleon-antinucleon
annihilation (right).

Explicit calculation yields the S-matrix element for both processes (Ap-
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pendix B.3.2):

〈 𝑓 |𝑆| 𝑖〉(1) = −𝑖 𝑔(2𝜋)4𝛿(4)(𝑝 − 𝑞1 − 𝑞2). (3.2.4)

The delta function ensures momentum conservation, and is in fact a general fea-

ture of all S-matrix elements. We typically define

〈 𝑓 |𝑆 − 1| 𝑖〉 ≡ 𝑖(2𝜋)4𝛿(4)(Σ 𝑝)ℳ , (3.2.5)

where ℳ is called the matrix element of the process, and is the nontrivial com-

ponent we must compute. For our first-order processes, the matrix element is

simply ℳ = −𝑔. However, explicit calculations quickly become intractable at

higher orders; instead, we present a simpler alternative in the next section.

3.2.3 Feynman diagrams

Feynman diagrams are intuitive and powerful tools for calculating S-

matrix elements. We have already seen examples for our first-order meson de-

cay and nucleon-antinucleon annihilation processes in Figure 3.1. They encode

a lot of information (some of which is redundant, shown only for these first di-

agrams for clarity) and, as we will see, directly give us the matrix elements of

the processes. Feynman diagrams for higher-order processes can be constructed

by adding more vertices and internal lines connecting them. Details and some
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conventions used in this dissertation are given in Appendix B.3.3.

Feynman rules for scalar Yukawa theory

To read off thematrix element froma Feynmandiagram,we take the prod-

uct of factors associated to each element of the diagram, according to the Feyn-

man rules of the theory. These rules are ultimately derived from and encode all

our information about the underlying Lagrangian. They can be written in either

position ormomentum space; sincewe areworkingwithmomentumeigenstates,

we will use the latter.

Definition 3.2.1. For our scalar Yukawa theory, the Feynman rules for calculating

𝑖ℳ are:7

1. Vertices: = −𝑖 𝑔

2. Internal lines (propagators)

Mesons:
𝑝

=
𝑖

𝑝2 − 𝑚2 + 𝑖𝜀 Nucleons:
𝑞

=
𝑖

𝑞2 −𝑀2 + 𝑖𝜀

3. Impose momentum conservation at each vertex.

4. Integrate over the momentum 𝑘 flowing through each loop
∫
𝑑4𝑘/(2𝜋)4.

7These are derived nicely in Peskin and Schroeder [81] Chapter 4.7, albeit with fermionic
electrons instead of our scalar “nucleons”.
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Note that the factors associated with internal lines are exactly the Feyn-

man propagators from Section 3.1.4, which is in line with their interpretation as

the amplitude for a particle to propagate from one point to another. For inter-

nal lines, the convention is for momentum to flow in the same direction as the

particle flow, even for antiparticles. We see immediately that these rules repro-

duce the matrix element ℳ = −𝑔 for our first-order processes, as expected. We

discuss loops briefly at the end of this section; however, we focus primarily on

tree-level diagrams, those without loops.

Nucleon-antinucleon scattering

One interesting higher-order example is nucleon-antinucleon scattering

𝜓𝜓† → 𝜓𝜓†. At lowest order, we have the diagrams shown in Figure 3.2.

𝑘

𝑞𝑖1

𝑞𝑖2

𝑞 𝑓 1

𝑞 𝑓 2

𝑘

𝑞𝑖1

𝑞𝑖2

𝑞 𝑓 1

𝑞 𝑓 2

Figure 3.2. The two lowest order nucleon-antinucleon scattering diagrams.

The first two Feynman rules result in the same matrix element (Eq. B.3.6)
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for both. Imposing momentum conservation we find:

𝑖ℳ = 𝑖(ℳleft +ℳright) = (−𝑖 𝑔)2
[ 1

(𝑞 𝑓 1 − 𝑞𝑖1)2 − 𝑚2 +
1

(𝑞𝑖1 + 𝑞𝑖2)2 − 𝑚2

]
. (3.2.6)

Virtual particles

Note that bymomentum conservation, the exchangemeson does not have

mass 𝑚, as 𝑘2 ≠ 𝑚2. We say that this meson is a virtual particle and is off-shell

(referring to the “mass shell” in 𝑘 at 𝑘2 = 𝑚2). This may appear dangerously

unphysical; however, we are saved by the fact that such off-shell particles always

appear internally in the diagram and thus can never be observed. In a sense,

they can be viewed simply as a mathematical convenience in QFT; no one knows

their correct physical interpretation, if any.8

Mandelstam variables

Because these types of 2-by-2 scattering processes are so common in par-

ticle physics, they have standard names, based on the momenta in the denomi-

nator of the matrix element.

Definition 3.2.2. For incoming particle momenta 𝑝𝑖1 and 𝑝𝑖2 and outgoing mo-

8To quote Hong Liu, “In physics, when we don’t understand something, we give it a name
and then claim we understand it.” [82].
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menta 𝑝 𝑓 1 and 𝑝 𝑓 2, the Mandelstam variables are defined as:

𝑠 = (𝑝𝑖1 + 𝑝𝑖2)2 = (𝑝 𝑓 1 + 𝑝 𝑓 2)2,
𝑡 = (𝑝𝑖1 − 𝑝 𝑓 1)2 = (𝑝𝑖2 − 𝑝 𝑓 2)2,
𝑢 = (𝑝𝑖1 − 𝑝 𝑓 2)2 = (𝑝𝑖2 − 𝑝 𝑓 1)2.

(3.2.7)

We can see that the matrix elements for nucleon-antinucelon scattering

(Eq. 3.2.6) can be rewritten in terms of 𝑡 and 𝑠 as:

𝑖ℳleft = (−𝑖 𝑔)2 ·
1

𝑡 − 𝑚2,

𝑖ℳright = (−𝑖 𝑔)2 ·
1

𝑠 − 𝑚2.

(3.2.8)

Hence, they are referred to as 𝑡-channel and 𝑠-channel diagrams, respectively.

An example of a 𝑢-channel diagram appears for nucleon-nucleon scattering in

Figure B.2. Intuitively, 𝑠 is the total energy in the COM frame squared, while 𝑡

and 𝑢 are a measure of how much momentum is exchanged between the scat-

tered particles (see Appendix B.3.3).
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Resonances

Note an important point about 𝑠−channel diagrams: the amplitude di-

verges as 𝑠 → 𝑚2.9 Or, in other words, as the COM energy approaches the mass

of the exchanged particle (as long as 𝑚 > 2𝑀).

This divergence is interpreted as a resonance in the cross section (see be-

low) of the scattering process as a function of
√
𝑠, and allows us to discover new

particles. Figure 3.3 shows a great example for 𝑒+𝑒− → hadron scattering by a

series of HEP experiments with a magnificent peak at 96GeV, the 𝑍 boson mass.

The classical limit and the Yukawa potential

It is important to check our QFT recovers classical physics in the appro-

priate limit. It will also be useful to translate the somewhat abstract idea of am-

plitudes to the familiar concepts of forces and potentials. We will do so by con-

sidering the nonrelativistic limit (
��®𝑝�� � 𝑀) of our above amplitudes and using

the Born approximation relating the scattering amplitude between two particles

to the potential between them𝑈(®𝑟):

ℳ = 〈®𝑝 𝑓 |𝑈(®𝑟)| ®𝑝𝑖〉 = −𝑖
∫

𝑈(®𝑟)𝑒 𝑖(®𝑝 𝑓−®𝑝𝑖)·®𝑟𝑑3𝑟, (3.2.9)

9We are saved from this potential infinity by a factor to be added to the denominator due to
meson decay (Tong SM [76] Chapter 3.5).
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Figure 3.3. Cross section for 𝑒+𝑒− → hadron scattering as a function of
√
𝑠 with

a clear resonance at the 𝑍 boson mass, reproduced from Ref. [2].
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where ®𝑟 is the displacement between the particles.

First, let us consider what this potential would be classically. The static

Klein-Gordon equation for a delta-function source:

(∇2 − 𝑚2)𝜙(®𝑟) = 𝛿3(®𝑟), (3.2.10)

can be found via the Fourier transform to be:

𝜙(®𝑟) =
𝑒−𝑚𝑟

4𝜋𝑟 . (3.2.11)

We can interpret this to be the profile of 𝜙 around a nucleon (the delta func-

tion source), and thus conversely the potential felt by another nucleon via the

meson and the Yukawa interaction, under the assumption 𝑀 � 𝑚. This is en-

tirely analogous to gauge potential 𝐴0 in electrostatics generated by a 𝛿-function

source acting as the electric potential for a test charge.

Going back to our amplitude for nucleon-antinucleon scattering, the 𝑠-

channel diagram vanishes in the nonrelativistic limit (which essentially means

it does not have a simple classical interpretation), while the 𝑡-channel diagram

actually stays the same:

𝑖ℳ = −(−𝑖 𝑔)2 ·
1��®𝑝 𝑓 − ®𝑝𝑖
��2 − 𝑚2

. (3.2.12)

67



Plugging this into the LHS of Eq. 3.2.9 and inverting the RHS integral gives us:

𝑈(®𝑟) = −
𝑔2

4𝑀2 ·
𝑒−𝑚𝑟

4𝜋𝑟 . (3.2.13)

This is exactly the classical potential we found in Eq. 3.2.11! It is weighted by the

coupling constant 𝑔 and𝑀 to get the correct dimensions, and with a minus sign

telling us potential is attractive.

Thus, we are able to reproduce Newtonian forces from the nonrelativisic

limit of QFT. We also have the new interpretation of forces as simply manifesta-

tions of interactions in the Lagrangian, occurring through the exchange of virtual

particles.

This potential is called the Yukawa potential, describing a force mediated

by a massive boson. As expected, in the limit 𝑚 → 0, we recover the familiar 1/𝑟
Coulomb potential, which is mediated by the massless photon. We can check

that we obtain the same potential for nucleon-nucleon scattering and, more gen-

erally, that all forces mediated by scalars are attractive. In fact, this is true for

spin-2 particles as well, which is why gravity is universally attractive! On the

other hand, forces mediated by spin-1 particles, such as EM, can be either attrac-

tive or repulsive, with the charges of the particles involved determining the sign

of each diagram. See e.g. Zee QFT [80] Chapter I.5 for a useful discussion.
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Fourth-order diagrams and loops

So far, we have only considered tree-level diagrams, the simplest to calcu-

late. This is in contrast to diagrams with loops, which can occur at higher order

in perturbation theory. For example, at fourth-order we can have diagrams like

those in Figure 3.4 for nucleon scattering.

Such diagrams contribute integrals over the loopmomentum 𝑘 to the ma-

trix element, which can notoriously diverge. To deal with this requires a process

called renormalization, which, briefly, involves defining a cut-off energy scale Λ

for these integrals, beyondwhich we claim the theory is invalid. Experimentally,

the main consequence is that physical parameters like the mass of particles and

coupling constants in fact depend on the energy scale at which they are mea-

sured!

𝑘1

𝑘3

𝑞𝑖1

𝑞𝑖2

𝑞 𝑓 1

𝑞 𝑓 2

𝑘2

Figure 3.4. An example of a higher-order scattering diagram with a “loop”.
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3.2.4 Decay rates and cross sections

In this section, we translate our S-matrix elements to physical observables:

cross sections and decay rates.

Cross section

Classically for a scattering experiment, the number of particles scattered

𝑁 is related to the cross sectional area 𝜎 as:

𝑁 = 𝜎𝑇Φ, (3.2.14)

where 𝑇 is the total time and Φ is the flux of incoming particles (number of in-

coming particles per unit area and unit time). In QM, we define the cross section

𝜎 similarly, but in terms of the probability of scattering 𝑃 instead of 𝑁 :

𝜎 =
𝑃
Φ𝑇

. (3.2.15)

This is a more abstract quantity in QM, but it still has units of area. The number

of scattering events 𝑁 is related to 𝜎 by a factor we call the luminosity 𝐿:

𝑁 = 𝜎𝐿. (3.2.16)

70



Here, we simply consider this the definition of luminosity, but for a collider, for

example, it can be derived from the properties of the input particle beams (aswill

be discussed in Part II). Often, we are interested in the differential cross section 𝑑𝜎

with respect to kinematic variables like the solid angle Ω or energy, so we write:

𝑑𝜎 =
𝑑𝑃
Φ𝑇

. (3.2.17)

As inQM, this probability𝑃 is proportional to the square of the amplitude

| 〈 𝑓 |𝑆| 𝑖〉 |2:

𝑑𝑃 =

��〈 𝑓 |𝑆| 𝑖〉��2
〈 𝑓 | 𝑓 〉 〈𝑖| 𝑖〉 𝑑Π, (3.2.18)

where 〈 𝑓 | 𝑓 〉 and 〈𝑖| 𝑖〉 are the normalization factors for the final and initial states

(they are not equal to 1 as discussed in Section 3.1.4), and 𝑑Π is the differential

region of final state momenta.

For the case of two incoming particles (which is what is most relevant for

this dissertation), we can put all of this together to obtain the relation between

differential cross section and the matrix element ℳ:

𝑑𝜎 =
1

(2𝐸1)(2𝐸2)
��®𝑣1 − ®𝑣2

�� |ℳ|2 𝑑ΠLIPS, (3.2.19)

where 𝐸1 and 𝐸2 are the energies of the incoming particles, ®𝑣1 and ®𝑣2 are their

velocities, and 𝑑ΠLIPS is called the Lorentz-invariant phase space of the final state
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momenta:

𝑑ΠLIPS = (2𝜋)4𝛿(4)(Σ𝑝)
∏

final states 𝑗

𝑑3𝑝 𝑗
(2𝜋)3

1
2𝐸 𝑗

(3.2.20)

For the case of 2 → 2 scattering, in the COM frame, this simplifies consid-

erably: (
𝑑𝜎
𝑑Ω

)
CM

=
1

64𝜋2𝐸2
CM

��®𝑝 𝑓 ����®𝑝𝑖 �� |ℳ|2 𝜃(𝐸CM − 𝑚3 − 𝑚4), (3.2.21)

and even more so when the all four masses are equal:(
𝑑𝜎
𝑑Ω

)
CM

=
1

64𝜋2𝐸2
CM

|ℳ|2 . (3.2.22)

Decay rate

The other type of process we are interested in are decays. The decay rate

Γ is simply the probability of decay per unit time:

Γ =
𝑃
𝑇
. (3.2.23)

Using our expression for 𝑃 from above and simplifying, we find:

𝑑Γ =
1

2𝑚 |ℳ|2 𝑑ΠLIPS, (3.2.24)
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in the rest frame of the decaying particle, where 𝑚 is its mass. If multiple decays

of the same particle are possible, we sum over the final states in the phase space

integral. The total Γ is then called the width of the particle, and 1/Γ ≡ 𝜏 is its

half-life.

For our simple meson decay 𝜙 → 𝜓†𝜓, we have at tree level:

𝑑Γ =
𝑔2

2𝑚𝑑ΠLIPS ⇒ Γ =
𝑔2

32𝜋𝑚

(
1 − 4𝑀2

𝑚2

)1/2
, (3.2.25)

where we performed the integral over 𝑑ΠLIPS (see Ref. [101] 4.2). This is in fact

not too far off the expression for the decay width of the Higgs boson to fermions.

What we are missing of course is that fermions are spin-1/2 particles, and we

need to sum over their spin states. Fermions are described by spinor field theory,

detailed in Appendix B.4.

3.3 Gauge theories

Nature seems to take advantage of the simple mathematical representations of the sym-

metry laws. When one pauses to consider the elegance and the beautiful perfection of

the mathematical reasoning involved and contrast it with the complex and far-reaching

physical consequences, a deep sense of respect for the power of the symmetry laws never

fails to develop. — C. N. Yang
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So far, we have discussed spin-0 scalar bosons (and the spin-1
2 fermions in

Appendix B.4); the last set of SM particles are the spin-1 gauge bosons. These are

the particles which mediate all three fundamental forces in the SM: electromag-

netism, the weak force, and the strong force. Fortunately, compared to spinors,

they live in the simpler and familiar vector representation of the Lorentz group.

On the other hand, they are intrinsically tied to a unique type of internal,

local, symmetry in QFT: gauge symmetry. Unlike, say, Lorentz or spacetime trans-

lation invariance, this is not a fundamental physical symmetry of nature, and is

not associated with any consrervation law. Instead, it simply describes a redun-

dancy in our mathematical formulation of the gauge theory, stemming from the

fact that the vector fields used to describe the gauge bosons have more degrees

of freedom (DoFs) than the physical particles themselves. The DoFs are thereby

reduced by identifying fields related by a gauge symmetry transformation to be

the same physical state, known as the principle of gauge invariance. This is en-

tirely analogous to requiring that a change of coordinate system not affect the

physics. A deeper discussion of the motivations behind gauge invariance can be

found in Appendix B.5.1.

In this section, we first introduce the simplest gauge boson, the photon,

and its associated U(1) gauge symmetry in Section 3.3.1. Coupling this to mat-

ter and quantizing the theory gives us QED, the relativistic quantum theory of

electromagnetism (Section 3.3.2). We then generalize this to, and quantize, non-
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abelian gauge theories, known as Yang-Mills theories, in Sections 3.3.3 and 3.3.3,

respectively. We conclude with a discussion of renormalization and the running

of coupling constants in Section 3.3.4.

3.3.1 Maxwell Theory

Gauge symmetries are a generalization of internal global symmetries,

such as the U(1) symmetry from Section 3.1.2, to a local symmetry, where the

symmetry transformation can be a function of spacetime. We are most famil-

iar with this concept from classical E&M, in which Maxwell’s laws are invariant

under transformations of the 4-vector potential 𝐴𝜇 = (𝜙, ®𝐴) of the form:

𝐴𝜇(𝑥) → 𝐴𝜇(𝑥) + 1
𝑒
𝜕𝜇𝛼(𝑥), (3.3.1)

for an arbitrary function 𝛼(𝑥), where 𝑒 is a conventional constant that we will

soon interpret as the coupling constant of the theory.

Recall that 𝐴𝜇 is related to the electric and magnetic fields, ®𝐸 and ®𝐵, by:

®𝐸 = −∇𝜙 − 𝜕𝑡 ®𝐴, ®𝐵 = ∇ × ®𝐴, (3.3.2)

and the Maxwell equations can be derived from the Lagrangian:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 , (3.3.3)
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where

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 (3.3.4)

is the field strength tensor. One can confirm that (1) 𝐹𝜇𝜈 and, hence, the La-

grangian is invariant under the gauge transformation in Eq. 3.3.1, and (2) the

resulting E-L EOMs are exactly the homogeneousMaxwell equations. Thus, clas-

sical E&M was our earliest and simplest gauge theory, although the significance

and generalization of gauge invariance only became clear with the advent of

QFT.

Gauge invariance significantly restricts the possible terms in the La-

grangian (and thus considerably simplifies the theory). Notably, mass terms

like 𝑚2𝐴2
𝜇 violate gauge invariance, which is why gauge bosons are necessarily

massless, without something special like the Higgs mechanism (Section 3.4). As

discussed in Appendix B.5.1, gauge invariance also ensures the renormalizabil-

ity of the theory and reduces the DoFs of 𝐴𝜇 such that, once quantized, we can

identify it as the photonic field.

Interactions with scalars

The U(1) nature of the gauge transformation becomes more apparent

when we try to couple the photon to other particles. Note that our Lagrangian

above contains terms of the form (𝜕𝜇𝐴𝜈)2 so 𝐴𝜇 (and indeed all spin-1 fields)
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have dimension 1.

Let us consider a scalar field 𝜙: we canwrite renormalizable, scalar terms

like 𝐴2
𝜇𝜙

2 and 𝐴𝜇𝜙𝜕𝜇𝜙; however, they do not look gauge invariant. To make

them so, we must require that 𝜙 also transforms under the same gauge transfor-

mation in a way that compensates the change in 𝐴𝜇.

The simplest way is to take 𝜙 to be a complex scalar field and “promote”

its inherent global U(1) symmetry to a local one:

𝜙(𝑥) → 𝑒 𝑖𝑄𝜙𝛼(𝑥)𝜙(𝑥), (3.3.5)

where we say𝑄𝜙 represents the charge of 𝜙 under the U(1) symmetry.10 We can

then define the covariant derivative acting on 𝜙 as:11

𝐷𝜇𝜙 = (𝜕𝜇 − 𝑖𝑒𝑄𝜙𝐴𝜇)𝜙, (3.3.6)

where 𝑒 is the same coupling constant from Eq. 3.3.1.

One can check that 𝐷𝜇𝜙 transforms under the gauge transformation as:

𝐷𝜇𝜙 → 𝑒 𝑖𝑄𝜙𝛼(𝑥)𝐷𝜇𝜙, (3.3.7)

10Note that such a transformation is not possible with a real field, which necessarily has 0
charge and does not couple with the photon.

11As discussed above, this is the same concept as the covariant derivative in GR, with the
gauge field 𝐴𝜇 acting as a connection on a U(1) fiber bundle analogously to the Levi-Civita con-
nection between tangent bundles. Essentially, it encodes the change in the local phase of 𝜙 across
spacetime (see Peskin and Shroeder [81] Chapter 15.1 for a nice derivation of this).
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meaning (𝐷𝜇𝜙)†𝐷𝜇𝜙 provides us with a gauge invariant interaction term for the

Lagrangian. Thus, we have a gauge invariant scalar QED Lagrangian:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + (𝐷𝜇𝜙)†𝐷𝜇𝜙 − 𝑚2 ��𝜙��2 . (3.3.8)

Note that the commutator of the covariant derivative is in fact not a deriva-

tive at all, but proportional to the field strength tensor:

[𝐷𝜇, 𝐷𝜈]𝜙 = ([𝜕𝜇, 𝜕𝜈] − 𝑖𝑒[𝜕𝜇, 𝐴𝜈] + 𝑖𝑒[𝜕𝜈 , 𝐴𝜇])𝜙 = −𝑖𝑒𝐹𝜇𝜈𝜙. (3.3.9)

Thus, we can define 𝐹𝜇𝜈 ≡ 𝑖
𝑒 [𝐷𝜇, 𝐷𝜈], which will prove useful for non-abelian

gauge symmetries later in this section.

Generally, we choose the normalization 𝑄𝑒 = −1 for the electron field, so

𝑒 becomes our familiar elementary charge (in natural units) and 𝛼 ≡ 𝑒2/4𝜋 ≈ 1/137

is the famous dimensionless fine structure constant.12

Interactions with spinors

The case for spinors is not so different. The definition of the covariant

derivative remains the same, so combining the “covariant” Dirac Lagrangian

12Technically, this value varies with our energy scale, as we will discuss in Section 3.3.4, and
1/137 is its asymptotic value at low energies.
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with the free photonic yields the QED Lagrangian:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + �̄�(𝑖 /𝐷 − 𝑚)𝜓. (3.3.10)

This is in fact the most general possible Lorentz-invariant, renormalizable, 𝑃-

symmetric Lagrangian for a spinor field with a U(1) gauge symmetry, and can

thus be derived from the requirement of gauge invariance alone (as done in e.g.

Peskin and Shroeder [81] Chapter 15.1). This is a general feature of the SM: ev-

ery possible term permitted by gauge invariance and the usual physical require-

ments of Lorentz invariance etc. is included in the Lagrangian (with one possible

exception that forms the basis for the strong CP problem [102, 103]).

Expanding out the Lagrangian, we have:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + �̄�(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 − 𝑒�̄�𝛾𝜇𝜓𝐴𝜇, (3.3.11)

where we see this interaction term is simply −𝑒 𝑗𝜇𝐴𝜇 with 𝑗𝜇 = �̄�𝛾𝜇𝜓 the

conserved current associated with the global U(1) symmetry we found in Sec-

tion B.4.3. One can check that the E-L EOMs for 𝐴𝜇 now correspond to the inho-

mogeneous Maxwell equations with a source term 𝐽𝜇 ≡ −𝑒 𝑗𝜇:

𝜕𝜇𝐹𝜇𝜈 = 𝐽𝜈 , (3.3.12)

reproducing our beloved E&M from this field theory formulation!
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3.3.2 Quantum electrodynamics

The quantized version of the above is what we call quantum electrodynam-

ics (QED): the QFT of electromagnetic interactions. It has proven an extraordi-

narily successful theory, serving as a model for the remainder of the SM as well

as theories for condensed matter phenomena.

The exact path to quantizing 𝐴𝜇 depends on the choice of gauge. We will

forego those details and simply use physical intuition—namely, that the photon

has only two physical, transverse polarizations — to motivate the result:

𝐴𝜇(𝑥) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝐸𝑝

2∑
𝜆=1

(
𝜖𝜆𝜇(𝑝)�̂�𝜆𝑝 𝑒−𝑖𝑝·𝑥 + 𝜖𝜆∗𝜇 (𝑝)�̂�𝜆†𝑝 𝑒 𝑖𝑝·𝑥

)
, (3.3.13)

where 𝜖𝜆𝜇(𝑝) are the two transverse polarization basis vectors and 𝑎𝜆𝑝 and 𝑎𝜆†𝑝 are

the photon annihilation and creation operators.

The photon propagator depends as well on the choice of gauge. Expand-

ing the homogeneous photon EOM, Eq. 3.3.12, gives:

𝜕𝜇𝜕
𝜇𝐴𝜈 − 𝜕𝜈𝜕𝜇𝐴𝜇 = 𝐽𝜈 , (3.3.14)

which in momentum space becomes:

(−𝑝2𝜂𝜇𝜈 + 𝑝𝜇𝑝𝜈)𝐴𝜇 = 𝐽𝜈 . (3.3.15)
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Recall that the propagator is the inverse of the operator on the LHS for a delta-

function source; however, due to the redundant DoFs of 𝐴𝜇, this is not directly

invertible without first fixing a gauge.

The cleanest way to do so is to add a “Lagrange multiplier” term repre-

senting the gauge fixing condition to the Lagrangian. The most common choice

is the Lorenz gauge, 𝜕𝜇𝐴𝜇 = 0, which makes Lorentz-invariance manifest and to

enforce which we can include the term − 1
2𝜉 (𝜕𝜇𝐴𝜇)2. One can confirm that the

EOM for 𝜉 is exactly the Lorenz gauge condition. Inverting the new EOM for 𝐴𝜇

gives us the (Feynman) photon propagator:

Δ𝜇𝜈(𝑝) = −𝑖
𝑝2 + 𝑖𝜖

[
𝜂𝜇𝜈 + (1 − 𝜉)𝑝𝜇𝑝𝜈

𝑝2

]
. (3.3.16)

This is called the 𝑅𝜉 gauge and different values of 𝜉 correspond to different prop-

agators, each with their own advantages and disadvantages for calculations. In

QED, we typically take 𝜉 = 1, called the Feynman-’t Hooft gauge, for simplicity:

Δ𝜇𝜈(𝑝) =
−𝑖𝜂𝜇𝜈
𝑝2 + 𝑖𝜖 . (3.3.17)

Definition 3.3.1. With this, we canwrite down the Feynman rules for QED, with

spinor (𝛼, 𝛽) and 4-vector (𝜇, 𝜈) indices labeled explicitly for clarity:

1. Vertices: 𝜇

𝛼

𝛽

= −𝑖𝑒𝛾𝜇
𝛼𝛽
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2. Internal lines (propagators)

Fermions: 𝛼 𝛽
𝑞

=

( 𝑖(/𝑞 + 𝑚)
𝑞2 −𝑀2 + 𝑖𝜀

)
𝛼𝛽

Photons: 𝜇 𝜈
𝑝

= −𝑖
𝜂𝜇𝜈

𝑝2 + 𝑖𝜖

3. External lines (on-shell particles)

Incoming fermions: 𝛼

𝑞, 𝑠

= 𝑢𝑠𝛼(𝑞)

Incoming antifermions: 𝛼

𝑞, 𝑠

= �̄�𝑠𝛼(𝑞)

Outgoing fermions: 𝛼

𝑞, 𝑠

= �̄�𝑠𝛼(𝑞)

Outgoing antifermions: 𝛼

𝑞, 𝑠

= 𝑣𝑠𝛼(𝑞)
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Incoming photons: 𝜇

𝑝, 𝑠

= 𝜖𝜆𝜇

Outgoing photons: 𝜇

𝑝, 𝑠

= 𝜖𝜆∗𝜇

4. Impose momentum conservation at each vertex.

5. Integrate over the momentum 𝑘 flowing through each loop.

6. Figure out the sign based on statistics.

These Feynman rules can be applied to simple tree-level processes simi-

larly to Yukawa theory (see Sections 3.2.3 and B.4.5). These include several im-

portant processes such as electron-electron scattering 𝑒−𝑒− → 𝑒−𝑒− via a vir-

tual photon, Compton scattering 𝛾𝑒− → 𝛾𝑒−, electron-positron annihilation

𝑒+𝑒− → 𝛾𝛾, and electron-positron (or Bhabha) scattering 𝑒+𝑒− → 𝑒+𝑒−. The

former (and its variations with other charged particles) is what we generally ex-

perience as electromagnetism, and can recover the Coloumbpotential in the non-

relativistic limit.
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3.3.3 Yang-Mills Theory

Following the remarkable success of QED and GR, a generalization of

such gauge theories to non-abelian symmetries was proposed by ChenNing Yang

and Robert Mills in 1953 [104], today referred to as Yang-Mills theories. These

theories picked up steam in the 1960s when the concept of spontaneous symme-

try breaking was developed to give mass to the gauge bosons (Section 3.4) and

it was realized that both the weak and strong interactions can be described by

SU(2) and SU(3) Yang-Mills theories, respectively. They are hence a cornerstone

of the SM, and we will now briefly outline their construction, generalizing the

U(1) gauge symmetry from the previous section.

Non-abelian gauge transformations

In Yang-Mills theory, we allow non-gauge fields to transform locally un-

der any Lie group 𝐺, in an arbitrary representation 𝑅 of the group (generally, in

the SM, 𝑅 is either the fundamental or trivial representation). This means the

fields 𝜓 are actually vectors of dim(𝑅) (on top of their usual spinor or 4-vector

indices etc.), and transform as:

𝜓(𝑥) → 𝜓′(𝑥) = 𝑒 𝑖𝛼
𝑎(𝑥)𝑇𝑎𝑅𝜓(𝑥) ≡ 𝑉(𝑥)𝜓(𝑥), (3.3.18)
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where 𝑇𝑎𝑅 are the generators of 𝐺 in the representation 𝑅 and 𝑉(𝑥) = 𝑒 𝑖𝛼
𝑎(𝑥)𝑇𝑎𝑅

is the gauge transformation. To construct a 𝐺-invariant Lagrangian, we again

need to define a covariant derivative with gauge fields 𝐴𝑎𝜇 connecting the local

transformations of 𝜓 across spacetime:

𝐷𝜇𝜓 = (𝜕𝜇 − 𝑖 𝑔𝐴𝑎𝜇𝑇𝑎𝑅 )𝜓. (3.3.19)

Observe that we must have as many gauge fields as there are group generators

to counter all possible gauge transformations 𝑉(𝑥); i.e., there are dim(𝐺) 𝐴𝜇s,

living in the adjoint representation of 𝐺 (see Chapter 2.2). The gauge field is

often represented more conveniently as a “Lie-algebra-valued” field (i.e., as an

object in the Lie algebra):

𝐴𝜇 ≡ 𝐴𝑎𝜇𝑇
𝑎 . (3.3.20)

We can derive how 𝐴𝜇 transforms by requiring the covariant derivative

to transform identically to 𝜓 (the same as in the abelian case):13

𝐷𝜇𝜓 → 𝐷′
𝜇𝜓 = (𝜕𝜇 − 𝑖 𝑔𝐴′

𝜇)𝑉𝜓
!
= 𝑉𝐷𝜇𝜓(𝑥), (3.3.21)

where 𝑔 is the coupling constant. One can check this is satisfied for the trans-

13For a detailed derivation see e.g. Ricardo Matheus’ QFT Lectures [83] Part 34.
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formed gauge field:

𝐴′
𝜇 = 𝑉𝐴𝜇𝑉−1 − 𝑖

𝑔
(𝜕𝜇𝑉)𝑉−1. (3.3.22)

For infinitesimal gauge transformations 𝑉 ' 1 + 𝑖𝛼𝑎𝑇𝑎𝑅 , this can be written in

terms of the components as:

𝐴
′𝑎
𝜇𝑇

𝑎 = 𝐴𝑎𝜇𝑇
𝑎 + 1

𝑔
𝜕𝜇𝛼

𝑎𝑇𝑎 + 𝑖𝐴𝑎𝜇𝛼𝑏[𝑇𝑏 , 𝑇𝑎] = 𝐴𝑎𝜇𝑇
𝑎 + 1

𝑔
𝜕𝜇𝛼

𝑎𝑇𝑎 − 𝑓 𝑎𝑏𝑐𝐴𝑎𝜇𝛼
𝑏𝑇𝑐 ,

(3.3.23)

where 𝑓 𝑎𝑏𝑐 are the structure constants of the Lie algebra of 𝐺. The second term

represents the gauge transformation, same as in the abelian case, while the third

term is new and is the transformation property for a field in the adjoint repre-

sentation.

The field strength tensor

The final piece we need for the Lagrangian is a gauge-invariant kinetic

term for the gauge fields, generalizing the electromagnetic field strength tensor

𝐹𝜇𝜈. We can construct this, as in the abelian case, using the commutator of co-

variant derivatives:

𝐹𝜇𝜈 ≡ 𝑖
𝑔
[𝐷𝜇, 𝐷𝜈] = (𝜕𝜇𝐴𝑎𝜈 − 𝜕𝜈𝐴𝑎𝜇) − 𝑖 𝑔[𝐴𝜇, 𝐴𝜈]. (3.3.24)
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Again, this reduces to the E&M tensor for an abelian symmetry, where the com-

mutator term is 0. In the non-abelian case, the commutator term adds new self-

interaction terms to the gauge fields. One can check that 𝐹𝜇𝜈 transforms as:

𝐹𝜇𝜈 → 𝑉𝐹𝜇𝜈𝑉−1, (3.3.25)

or, infinitesimally, in terms of components as:

𝐹𝑎𝜇𝜈𝑇
𝑎 → 𝐹𝑎𝜇𝜈𝑇

𝑎 + 𝑓 𝑎𝑏𝑐𝐹𝑏𝜇𝜈𝛼
𝑐𝑇𝑎 , (3.3.26)

which we can recognize as the transformation of a field in the adjoint represen-

tation (Eq. 3.3.23 without the gauge transformation term).

Clearly, for non-abelian theories, the field-strength tensor alone, or even

𝐹𝜇𝜈𝐹𝜇𝜈, is no longer gauge-invariant; however, its trace is:

Tr
[
𝐹𝜇𝜈𝐹𝜇𝜈

] → Tr
[
𝑉𝐹𝜇𝜈𝑉−1𝑉𝐹𝜇𝜈𝑉−1] = Tr

[
𝐹𝜇𝜈𝐹𝜇𝜈

]
(3.3.27)

using the cyclic property of the trace, providing uswith a gauge-invariant kinetic

term for the gauge fields. In terms of components, this is:

Tr
[
𝐹𝜇𝜈𝐹𝜇𝜈

]
= 𝐹𝑎𝜇𝜈𝐹

𝑎𝜇𝜈 Tr [𝑇𝑎𝑇𝑎] (3.3.28)

The value of Tr [𝑇𝑎𝑇𝑎] is a normalization constant that is conventionally chosen

to be 1
2 for the fundamental representation. Expanding out (𝐹𝑎𝜇𝜈)2 gives us cubic
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and quartic self-interaction terms for the gauge fields.

The Yang-Mills Lagrangian

Combining all of the above, we have the gauge-invariant Yang-Mills La-

grangian:

ℒ = −1
2Tr

[
𝐹𝜇𝜈𝐹𝜇𝜈

] + �̄�(𝑖 /𝐷 − 𝑚)𝜓, (3.3.29)

or, in explicit, component form:

ℒ = −1
4𝐹

𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 + �̄�𝑖[𝛿𝑖 𝑗(𝑖 /𝜕𝜇 − 𝑚) + 𝑔 /𝐴𝑎𝑇𝑎𝑖𝑗 ]𝜓 𝑗 , (3.3.30)

where the indices 𝑖 and 𝑗 are running over the fermion fields in the representa-

tion 𝑅. Note again that a mass term 𝑚2𝐴𝑎𝜇𝐴
𝑎𝜇 would violate gauge invariance

without the Higgs mechanism.

Interestingly, despite the extra self-interaction terms, there remains only

one free parameter in the theory: the coupling constant 𝑔. This is why the SM,

despite its apparent complexity, has so few free parameters, particularly in the

“gauge sector” (the majority of free parameters are related to couplings in the

Higgs sector). It is also worth emphasizing that the primary difference physically

between abelian and non-abelian gauge theories is that the gauge bosons are

charged under the gauge group in the latter (and, hence, self-interact).

88



Quantum Yang-Mills Theory

The form of the quantized gauge fields in Yang-Mills are similar to the

U(1) case, except now with the extra adjoint representation indices. The process

of quantization and deriving the propagator, however, is considerably more in-

volved for non-abelian theories. The core idea of adding an 𝑅𝜉 gauge-fixing term

to the Lagrangian is similar, but due to the gauge fields’ non-trivial transforma-

tion property, the proper treatment necessitates the introduction of imaginary

internal particles called Faddeev-Popov ghosts to cancel gauge-dependent terms.

Somewhat similar to virtual particles, these ghosts are purely mathematical ar-

tifacts required to maintain gauge- and Lorentz-invariance of the quantized the-

ory. The full details of this process can be found in e.g. Peskin and Shroeder [81]

Chapter 16; the upshot is simply some extra Feynman rules involving ghost par-

ticles in the theory.

The new Feynman rules for non-abelian Yang-Mills theories are shown in

Figure 3.5. The gauge bosons are conventionally referred to as “gluons” but these

rules are general. Note the cubic and quartic gauge boson vertices, as well as the

ghost particle (𝑐) diagrams, unique to non-abelian theories. The phenomenology

of Yang-Mills theories in the SM will be discussed in the next chapter.
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Figure 3.5. Feynman rules unique to non-abelian Yang-Mills theories, repro-
duced from Ref. [3].
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3.3.4 Running couplings and asymptotic freedom

As discussed briefly in Section 3.2, in order to handle divergences from

higher order “loop” diagrams in perturbation theory, a class of mathematical

techniques called renormalization is employed. A perhaps surprising physical

consequence of this is that parameters of the theory are dependent on the energy

scale at which they are probed. Their dependence is described the renormaliza-

tion group equations or flow.

The renormalization group is an extremely deep subjectwith applications

in many areas of physics. The most relevant result for us is the running of the

coupling constants in gauge theories — i.e., the strength of the corresponding

forces as a function of the energy scale. This is shown for the relevantU(1), SU(2),
and SU(3) gauge symmetries of the SM in Figure 3.6.

We see firstly that the electromagnetic interaction strength increases with

energy scale. Physically, this is understood through the vacuum polarization via

virtual electron-positron pair creation, which “screen” the electric charges of real

particles more effectively at longer distances, thereby weakening the force.14

A notable, Nobel-prize winning, 1973 result of Frank Wilczek, David

Gross, and David Politzer, however, was an inverse dependence on energy for

14Interestingly, QED has a Landau pole: a finite value of the energy scale for which the in-
teraction strength is infinite. However, this value is so high (10286 GeV) as to have no practical
consequence, and likely points to the breakdown of perturbation theory, that is used to derive
the running coupling, at such a scale.
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Figure 3.6. The running of the inverse strength of the SM coupling constants,
with the strong coupling constant (SU(3)) in green, weak (SU(2)) in red, and
electromagnetic (U(1)) in black, reproduced from Ref. [4].

non-abelian gauge theories [105, 106], as shown for the SU(2) and SU(3) cou-

plings in Figure 3.6.15 This phenomenon is called asymptotic freedom, as in the

high energy limit the theory is effectively one of free particles. It is a notable

feature of the strong force, as will be discussed in Chapter 4.1.

15Technically, this depends on the gauge group and the number of fermions in the theory;
for both the weak and strong forces, this number is sufficiently small (see e.g. Peskin and
Shroeder [81] Chapter 16).
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3.4 The ABEGHHK (Higgs) mechanism

As highlighted in the previous section, gauge bosons in pure Yang-Mills

theories are massless. This is in conflict, however, with the short observed range

of the weak force, implying massive mediatory bosons. To resolve this, a series

of work in the early 1960s by Anderson, Brout, Englert, Guralnik, Hagen, Higgs,

and Kibble (ABEGHHK) yielded a mechanism to give mass to the gauge bosons

without violating gauge invariance [107–110], based on the concept of sponta-

neous symmetry breaking developed by Nambu [111, 112] and others.

By 1970, Glashow, Salam,Weinberg and otherswere able to use thismech-

anism to formulate a combined theory of weak and electromagnetic interactions,

known as “electroweak” or Weinberg-Salam theory [113–115]. Electroweak uni-

fication has been one of themost significant breakthroughs in theoretical physics

with several Nobel prizes cumulatively awarded for these developments.

In this section we outline the ABEGHHK mechanism — commonly (but

reductively) referred to as the “Higgs mechanism” — first for an abelian gauge

theory in Section 3.4.1 and then for non-abelian gauge theories 3.4.2 like the SM.
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3.4.1 The abelian Higgs mechanism

The Higgs mechanism is based on the idea of spontaneous symmetry

breaking (SSB), where the ground states of a physical system violate the over-

all symmetry. The classic example is the so-called “sombrero” potential for a

complex scalar field 𝜙:

𝑉(𝜙) = −𝜆
2 (
��𝜙��2 − 𝑣2)2, (3.4.1)

for constants 𝜆 and 𝑣, shown in Figure 3.7. The potential has is symmetric under

a U(1) transformation of 𝜙 → 𝑒 𝑖𝛼𝜙, but any specific ground state of
��𝜙�� = 𝑣 will

break this symmetry, as shown in the figure. SSB is a crucial concept in physics,

with several applications in condensed matter and particle physics, including

chiral symmetry breaking in QCD (see e.g. Tong SM [76] Chapter 3.2).

The Higgs mechanism is an application of SSB to gauge symmetries. The

interpretation here of SSB a bit fiddly since, as emphasized above, gauge sym-

metries are not physical and cannot be spontaneously broken;16 what actually

breaks is the corresponding global symmetry, as we outline below.

Consider our QEDLagrangian for a complex scalar field 𝜙with the above

16This is an implication of Elitzur’s theorem [116].
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Figure 3.7. The “sombrero” potential for the Higgs field, reproduced from
Ref. [5]. An initial state and a ground state breaking the U(1) symmetry are rep-
resented by the green balls at the top and bottom of the potential, respectively.

potential:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + (𝐷𝜇𝜙)†𝐷𝜇𝜙 + 𝜆
2 (
��𝜙��2 − 𝑣2)2. (3.4.2)

As before, this Lagrangian possesses a U(1) gauge symmetry; however, this sym-

metry is “broken” by a particular ground state 𝜙 = 𝑣𝑒 𝑖𝛿 (we can take 𝛿 = 0

WLOG). The fluctuations around the ground state can be parametrized as:

𝜙(𝑥) = (𝑣 + 𝜎(𝑥))𝑒 𝑖𝜃(𝑥), (3.4.3)
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where 𝜎 and 𝜃 are two real fields. Plugging this into the Lagrangian gives us:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝜕𝜇𝜎𝜕
𝜇𝜎 + (𝑣 + 𝜎)2(𝜕𝜇𝜃 − 𝑒𝐴𝜇)(𝜕𝜇𝜃 − 𝑒𝐴𝜇) − 𝜆(2𝑣2𝜎2 + 2𝑣𝜎3 + 𝜎4

4 ).
(3.4.4)

We see first that 𝜎 can be interpreted as a normal scalar quantum field, with a

quadratic mass termwith 𝑚2
𝜎 = 2𝜆𝑣2. The 𝜃 term is a bit more unusual;17 it only

appears in the combination 𝜕𝜇𝜃− 𝑒𝐴𝜇. Hence, we can simply redefine the gauge

field as 𝐴′
𝜇 ≡ 𝐴𝜇+ 1

𝑒 𝜕𝜇𝜃, allowing it to “absorb” this DoF. Note that this takes the

form of a gauge transformation of 𝐴𝜇 and thus does not affect the field strength

tensor 𝐹𝜇𝜈. The resulting Lagrangian is then:

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝜕𝜇𝜎𝜕
𝜇𝜎 + 𝑒2(𝑣 + 𝜎)2𝐴′

𝜇𝐴
′𝜇 − 𝜆(2𝑣2𝜎2 + 2𝑣𝜎3 + 𝜎4

4 ), (3.4.5)

where we now have a mass term for the “gauge boson”, 𝑚2
𝐴 = 2𝑒2𝑣2!

3.4.2 The non-abelian Higgs mechanism

There is an analogous mechanism for a non-abelian gauge symmetry, as

in the SM. One crucial difference is that the symmetry may only partially break

from the gauge group 𝐺 to a subgroup 𝐻 (for example from SU(2) to a U(1)).
In this case, the gauge bosons corresponding to the generators of 𝐺’s broken

17In a non-gauge-theory, the 𝜃 field would be considered a massless “Goldstone boson” re-
sulting from the spontaneously breakdown of the symmetry.
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symmetries acquire mass as above, while the generators of 𝐻 remain massless

Goldstone bosons; as we will see in Chapter 4.2, in the SM these correspond to

the massive𝑊± / 𝑍 bosons and the massless photon, respectively. See e.g. Tong

SM [76] Chapter 2.3.3 for an example.
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Chapter 4

The Standard Model of Particle
Physics

Before I came here, I was confused about this subject. Having listened to your lecture, I

am still confused. But on a higher level. — Enrico Fermi1

We are now ready to describe the standard model (SM)! It is a renormal-

izable, quantum Yang-Mills theory, and is illustrated nicely in Figure 4.1. Before

electroweak symmetry breaking (EWSB) — a form of spontaneous symmetry

breaking (SSB)— it possessed the gauge symmetry SU(3)C×SU(2)L×U(1)Y, with

𝐶, 𝐿, and 𝑌 standing for color, left, and hypercharge, respectively. These three

groups correspond to the strong, weak, and electromagnetic forces, with eight,

three, and one generators or gauge bosons, respectively. The relative strengths

of each interaction, as well as gravity’s, are shown in Table 4.1, based on the

equivalent of the fine structure constant of each force, 𝛼 𝑓 = 𝑔 𝑓/4𝜋, where 𝑔 𝑓 is the
1Also an accurate representation of my understanding of the SM before and after my PhD.
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Figure 4.1. A graphical summary of the SM, reproduced from Ref. [6].
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respective coupling constant.

The SM contains six fermions charged and uncharged under the SU(3)C
symmetry each, called the “quarks” and “leptons”, respectively. The left-handed

fermions live as pairs in SU(2)L doublets, while the right-handed fermions in

singlets. The six types of fermions are referred to as different “flavors”, grouped

into three generations as in Figure 4.1.

The SM also contains a complex scalar SU(2)Y-doublet called the Higgs

field, which is associated with EWSB. As shown in Figure 4.1, it initially is at

the center of a “sombrero” potential because of which, before EWSB, the gauge

bosons, fermions, and the Higgs field are all massless.

EWSB is hypothesized to have occurred during the electroweak epoch

(see Figure 1), where the SU(2)L × U(1)Y global symmetry broke to the U(1)EM

of QED. Through this, the Higgs field obtained a non-zero vacuum expectation

value (VEV), imbuing all the fermions, three of the gauge bosons, and the Higgs

boson with mass — a process referred to as the Higgs mechanism. The outcome

is the state of the universe and physics as we know it.

Of course, as outlined in the introduction, this picture does not explain

myriad phenomena in fundamental physics, including dark matter, dark energy,

baryon asymmetry, and neutrino masses. This is why it is crucial to test the SM

as rigorously and in as broad a phase space as possible, in order to identify any

cracks that may point to new physics.
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Table 4.1. Approximate magnitude of the strengths of the four fundamental
forces at an energy scale of around 100MeV.

Force Strength

Electromagnetic 𝛼EM ≈ 1
137

Weak 𝛼𝑊 ≈ 1
30

Strong 𝛼𝑠 ≈ 1

Gravity 𝛼𝐺 ≈ 10−38

In this chapter, we will briefly walk through different areas of the SM.

Having discussed QED in Chapter 3.3, we begin with the remaining two funda-

mental interactions: quantum chromodynamics (Section 4.1); and weak interac-

tions and electroweak unification (Section 4.2). Finally, in Section 4.3, we will

discuss the Higgs sector and pair production of the Higgs boson, which is the

focus of this dissertation.

4.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is a quantum Yang-Mills field the-

ory describing the strong force, with the gauge group SU(3). SU(3) has eight

generators and, hence, eight gauge bosons (𝐺𝜇) called gluons. The only other

elementary particles which interact with the strong force — i.e., which don’t

live in the trivial representation of SU(3) — are the quarks. They live in

the three-dimensional fundamental representation and thus possess three ex-

101



tra DoFs beyond vanilla spinors, which we call their “color” (hence, quantum

chromodynamics). The three orthogonal eigenstates in this representation are

colloquially referred to as labeled red, green, and blue, and mathematically the

quark fields (𝑞𝛼) labeled with extra color indices 𝑖 = 1, 2, 3.

Putting this together, the QCD Lagrangian, with all the indices labeled

explicitly is:

ℒ = −1
4𝐺

𝑎
𝜇𝜈𝐺

𝑎𝜇𝜈 +
6∑
𝑓=1

�̄�𝛼 𝑓 𝑖[𝛿𝑖 𝑗(𝑖 /𝜕𝛼𝛽 − 𝑚𝛿𝛼𝛽) + 𝑔𝑠 /𝐺𝑎
𝛼𝛽𝑡

𝑎
𝑖𝑗]𝑞𝛽 𝑓 𝑗 (4.1.1)

where 𝑔𝑠 is the strong coupling constant, 𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝐺𝑎

𝜈 − 𝜕𝜈𝐺𝑎
𝜇 + 𝑔𝑠 𝑓 𝑎𝑏𝑐𝐺𝑏𝜇𝐺

𝑐
𝜈 is

the gluon field strength tensor, 𝑓 𝑎𝑏𝑐 are the structure constants of SU(3), 𝑡𝑎 are

the generators of SU(3) in the fundamental representation, the sum over 𝑓 is

running over the six flavors, and the indices 𝑎 and 𝑖 , 𝑗 label the eight gluons and

the three colors of quarks, respectively. The six flavors of quarks have different

masses and charges, as shown in Figure 4.2.

Figure 4.2. The quarks in the SM, reproduced from Ref. [1].
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QCD is an extremely rich and complex theory due to its non-abelian

gauge symmetry, the six different flavors of quarks, and the unique strength and

running of its coupling, shown in Figure 4.3. Observe its property of weak cou-

pling and asymptotic freedom at high energies, versus the extremely high O(1)
value of 𝛼𝑠 at low energies leading to the phenomenon of confinement. Note also

that 𝛼𝑠 appears to diverge in Figure 4.3 at around 200MeV, a sign of perturba-

tion theory breaking down. This 200MeV limit is considered the characteristic

energy scale of QCD, ΛQCD.2

The O(1) coupling strength means that the standard perturbative tech-

niques we have discussed are not applicable at our usual energy scales; instead,

we must rely on nonperturbative techniques such as numerical simulations of

QCD on a discretized spacetime lattice (see e.g. Schwartz [86] Chapter 25). Be-

cause of this, QCD is one of the least understood andmost exciting areas of study

in modern physics.

4.1.1 Asymptotic freedom and confinement

As discussed above, a key phenomenological characteristic of the strong

force is asymptotic freedom, wherein at high energies quarks and gluons be-

have as free particles. This also means that perturbative techniques can be ap-

plied at high energies; indeed, we can derive an analogous 1/𝑟2 “Coulomb force”,

2The phenomenon of an energy scale arising from a dimensionless coupling constant is
known as dimensional transmutation (see e.g. Tong SM [76] Chapter 3).
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Figure 4.3. The theoretically predicted running of the strong coupling 𝛼𝑠 = 𝑔2
𝑠/4𝜋

as a function of the energy scale along with experimental measurements, repro-
duced from Ref. [7].

based on tree-level quark-quark scattering amplitudes, for quarks at very short

distances. This force turns out to always be attractive between quarks and an-

tiquarks, as well as between two or even three quarks in different color states:

the “aim” of the force appears to always be to form color-neutral bound states.

These are called mesons for the case of an antiquark and quark pair, and baryons

for three quarks.

At longer distances we enter the strong-coupling and nonperturbative
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regime, in which the dynamics are harder to understand. However, through

lattice QCD simulations, we are able to see the emergence of a “flux tube”

pulling quarks together as they are pushed apart, as shown in Figure 4.4. This

phenomenon is referred to as confinement, and it means we can never observe

free quarks or gluons outside high-energy colliders. Both the long- and short-

distance behavior of the strong force conspire to always confine quarks in color-

neutral hadrons. The scale of confinement is naturally set by ΛQCD ≈ 200MeV,

which is hence roughly the radius of the proton and other hadrons (1fm in SI).

Figure 4.4. “Flux tubes” between a quark and anti-pair inside a meson (left) and
three quarks in a proton (right), reproduced from Refs. [8, 9].
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4.1.2 Quarks and the eightfold way

Since their discovery in the 1920s and 30s, the proton and neutron and

were believed to be elementary particles along with the electron and photon.

In fact, due to confinement, the first experimental evidence of quarks was not

found until the 1960s. However, already in 1932, the remarkably similar masses

of the two nucleons surprised physicists and led Heisenberg, Wigner, and oth-

ers to hypothesize an underlying SU(2) symmetry between them (later named

isospin) [117, 118]. The intrigue only increased in the next decades, duringwhich

new cosmic ray, cyclotron, and bubble chamber experiments discovered a ver-

itable “zoo” of hadrons, exemplified by a 1964 table of particles in Figure 4.5.

While all appeared elementary, several had surprisingly similar properties such

as mass and spin, and could also be grouped into invariant subspaces of the

isospin group.

In 1961, Murray Gell-Mann and Yuval Ne’eman independently realized

that the new hadrons could elegantly fit into representations of a larger sym-

metry group, SU(3) [119, 120]. Gell-Mann and George Zweig in 1964 then inde-

pendently showed that this could be explained physically by hadrons being com-

posed of combinations of three fundamental particles, named the “up”, “down”,

and “strange quarks”, with the former two carrying isospin up and down, re-

spectively [121, 122]. Gell-Mann named this model the “eightfold way” (since

dim(SU(3)) = 8) and was awarded the Nobel Prize in 1969 for this work.
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Figure 4.5. A table of what were considered to be elementary particles in 1964,
reproduced from Ref. [10].

Examples of baryons (three-quark hadrons) in the octet and decuplet (di-

mension 8 and 10, respectively) representations of SU(3) are shown in Figure 4.6,

sorted by their isospin along the “z” axis (𝐼3 = # of up quarks - # of down quarks)

and strangeness (𝑆 = # of strange quarks). Note that this SU(3) symmetry is only

approximate; it is broken by the different masses of the quarks. However, their

significantly smaller masses compared to ΛQCD mean it remains a useful sym-

metry for categorizing hadrons. On the other hand, broader “symmetries” such
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as SU(4) through SU(6) including the heavier charm, bottom and top quarks are

broken so heavily by their higher masses that they are not helpful for character-

izing the heavier hadrons.

Figure 4.6. Baryons in the octet (left) and decuplet (right) representations of
SU(3), reproduced from Ref. [11].

This fourth “charm” quark was notably predicted by Sheldon Glashow,

John Iliopoulos, and LucianoMaiani in 1970 to explain the observed suppression

of 𝑍-boson-mediated flavor-changing neutral currents [123] (and also to match

the number of known leptons at the time). This, and the quarkmodel as a whole,

was famously validated by the discovery of a 3.1GeV charm-anti-charm bound

state, named the 𝐽/𝜓meson, simultaneously by BurtonRichter’s teamat the Stan-

ford Linear Accelerator Center (SLAC) and Samuel Ting’s team at Brookhaven

National Laboratory in 1974 [124, 125], both of whom received the Nobel Prize

in 1976.
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A year before this, Makoto Kobayashi and Toshihide Maskawa had pro-

posed the existence of a third generation of quarks to explain the observed CP-

violation in weak interactions [126]. This proposal gained more traction after

the 𝐽/𝜓 discovery, as well as the discovery of a third-generation lepton, the 𝜏, by

Martin Lewis Perl’s team in electron-positron collisions at SLAC between 1973

and 1977 [127].

In the end, both third generation quarks were discovered at the Fermi

National Accelerator Laboratory (Fermilab): first the bottom quark in 1977 by

Leon Lederman’s team on the E288 experiment [128]; and then, much later, the

top quark in 1995 by the CDF and DØ experiments at the Tevatron [129, 130].

The bottom quark was discovered indirectly, as with the charm quark, through

the observation of a bottom quark-antiquark bound state called bottomium, or

the Υ meson, in proton-nucleon collisions.

The top quark, on the other hand, is highly unique because of its high

173GeV mass, and it decays too quickly to form bound states. Hence, it is the

only quark to have been observed “directly”, through its decays to a 𝑊 boson

and a bottom quark. It is the heaviest known elementary particle, which is why

its discovery required the 1 TeV center-of-mass energy proton-antiproton colli-

sions of the Tevatron. The unique nature of the heavy quarks leads to a rich

phenomenology at high energy colliders such as the LHC, particularly in the

context of the jets they form (Section 4.1.4).
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4.1.3 The parton model

Some physicists, including Gell-Mann himself, initially believed quarks

not to be real particles but simply mathematical conveniences to describe

hadrons. It was only through deep inelastic scattering (DIS) experiments in the

1960s and 70s at SLAC — in which high energy electrons were shot at protons

(in the form of hydrogen) to probe their inner structure — that it was confirmed

that protons are indeed not point-like particles.

To explain this behavior, Richard Feynman and others proposed the par-

ton model of the proton (and other hadrons). In this, protons are composed of

point-like particles called partons that are what actually interact with the elec-

trons in DIS, as illustrated in Figure 4.7. Though initially partons were abstract

entities, we now identify them as the quarks and gluons of QCD. At the energies

required for DIS (and modern hadron colliders), the “partonic” cross-section of

electron-parton scattering (or parton-parton scattering) (�̂�) can be calculated us-

ing standard perturbation theory and Feynman diagrams.

To then derive the total “hadronic” electron-proton cross-section, we

must integrate over all possible electron-parton interactions, weighted by the

probability of finding a parton carrying a fraction 𝑥 of the proton’s momentum

at an energy scale𝑄2. This is described by the parton distribution functions (PDFs)

𝑓𝑖(𝑥, 𝑄2), where 𝑖 represents the type of parton. PDFs cannot be calculated per-

turbatively and must be determined from experimental data. Examples for the
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proton at 𝑄2 = 10GeV are shown in Figure 4.8; observe that the up and down

quarks— called the valence or “real” quarks—dominate at high 𝑥, while at lower

𝑥 there are gluons as well as other sea (i.e., virtual) quarks.

The overall hadronic cross-section for DIS is thus:

𝜎𝑒ℎ =
∑
𝑖

∫ 1

0
d𝑥 𝑓𝑖(𝑥, 𝑄2)�̂�𝑒𝑖(𝑄2, 𝜇𝑟), (4.1.2)

where 𝜇𝑟 is the scale used for renormalization when calculating the partonic

cross-sections. The separation of the perturbative and nonperturbative parts of

the cross-section is called factorization, and the fact that this is possible is proved

in the factorization theorem [131].

As also illustrated in Figure 4.7, high energy hadron-hadron collisions

such as those at the LHC involve a similar, but more complicated, interac-

tion. The corresponding cross-section involves integrating over two partons’ mo-

menta (one each from the two colliding hadrons):

𝜎ℎℎ =
∑
𝑖, 𝑗

∫ 1

0
d𝑥1d𝑥2 𝑓𝑖(𝑥1, 𝑄2) 𝑓𝑗(𝑥2, 𝑄2)�̂�𝑖 𝑗(𝑄2, 𝜇𝑟). (4.1.3)

This is known as the “master formula” for cross-sections at the LHC.3 PDFs are

generally measured via DIS at electron-proton colliders, and are then crucial

inputs to the above equation for hadron colliders. There is also hope of deriving

these through lattice QCD simulations.

3See lectures by Torsten Pfoh [132] and JoeyHuston [133] for useful pedagogical discussions.
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Figure 4.7. Feynman diagram for deep inelastic scattering, reproduced from
Ref. [12] (left) and an illustrative example of proton-proton collisions reproduced
from Ref. [13] (right).

Figure 4.8. PDFs for the proton at 𝑄2 = 10GeV, reproduced from Ref. [14].

112



The partonic cross section

The partonic cross-section �̂�(𝑄2, 𝜇𝑟) is an important theoretical input for

measurements at high energy colliders. The dependence on 𝜇𝑟 is perhaps sur-

prising; however, it represents the fact that �̂� is calculated perturbatively: the

𝜇𝑟 dependence only appears in the highest order term of the expansion. Indeed,

this scale dependence would disappear at infinite order in perturbation theory.

While it may seem a nuisance, in fact, it provides a convenient handle to estimate

the uncertainties on our theoretical predictions by simply varying 𝜇𝑟 and 𝜇 𝑓 .4

One important feature to keep in mind regarding the perturbative calcu-

lations for hadron colliders is that the leading order (LO) predictions are often

a factor of ≳ 2 off the higher order next-to-LO (NLO) and next-to-NLO (NNLO)

calculations. This is exemplified in the predictions for Z boson production at

the LHC, shown in Figure 4.9. The reason for this, despite 𝛼𝑠 being reasonably

small (≈ 0.1) at the scale for this process 𝑚𝑍 ' 90GeV, is simply that the O(𝛼𝑠)
corrections have large coefficients [21]. This is why measurements at the LHC

relying on LO simulations often multiply the cross-section with an NLO / LO

“K-factor”.

Practically, matrix elements are first calculated as a function of the in-

put and output “hard particle” momenta, after which event generator programs

such as MADGRAPH [134] use Monte Carlo (MC) methods to sample events ap-

4See Ref. [21] 4.1 for further discussion.

113



propriately from the overall phase space. NLO andNNLO calculations aremore

complicated and often involve weighting events negatively to represent subtrac-

tions at higher orders [135].

Figure 4.9. LO,NLO, andNNLOpredictions and uncertainties for 𝑝𝑝 to Z boson
production, differential in rapidity 𝑌 at the LHC, reproduced from Ref. [15].

Parton evolution

Each parton has a certain probability of radiating another quark or gluon,

with a fraction of the original parton’s momentum, 𝑧. These are called parton

splitting functions, 𝑃𝑖 𝑗(𝑧), depicted in Figure 4.10, and can be calculated pertur-
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batively in QCD (see e.g. Ref. [21]). They are then further convolved with PDFs

to derive their evolution with the energy scale:

d 𝑓𝑖(𝑥, 𝑄2)
d𝑄2 =

1
𝑄2

∑
𝑗

∫ 1

𝑥

d𝑧
𝑧
𝑓𝑗(𝑥/𝑧, 𝑄2)𝑃𝑗𝑖(𝑧). (4.1.4)

Equations 4.1.4 are called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution equations, after five physicists who developed them in the

1970s, and are analogous to the renormalization group flows of coupling con-

stants. The dependence of the PDFs on the energy scale has been confirmed in

DIS experiments, which are then also used to fit the parameters of the PDFs, as

shown in Figure 4.11.

Figure 4.10. The splitting functions for quarks and gluons, reproduced from
Ref. [16].
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Figure 4.11. PDF measurements at different energy scales 𝑄2 and momentum
fraction 𝑥 by theH1 collaboration inDIS experiments, reproduced fromRef. [17].

4.1.4 Jets

As one may infer from the DGLAP equations (Eq. 4.1.4), when high en-

ergy partons are produced at a collider, they will probabilistically radiate fur-

116



ther and further partons — called parton showering — until they approach the

confinement scale and start forming bound hadrons — called hadronization. For

sufficiently high energy initial partons, the resulting hadrons will appear as a

collimated spray of particles in the detector, called a jet (Figures 4.12 and 4.13).

Since quarks and gluons are never observed in isolation, their production

can only be inferred by understanding the jets they form. Moreover, at a hadron

collider, the high-energy hadrons continuously radiate partons before and after

the collision as well, with the resulting jets referred to as initial and final state

radiation (ISR and FSR), respectively. Such jets are by far the most prevalent out-

puts of collisions at the LHC and, hence, represent a significant background in

many measurements and searches, particularly those searching for hadronic fi-

nal states.

Figure 4.12. A cartoon of a jet, reproduced from Ref. [18].
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Figure 4.13. An example of real jets in an event collected by CMS and identified
in the search described in Chapter 14 [19, 20]. An interactive version of this event
display is available at https://cms3d.web.cern.ch/HIG-23-012/.

Parton showering

Jets can be understood and modeled by factorizing the dynamics. As

above, the parton scattering cross section (referred to as the hard process and calcu-

lated perturbatively) is separated from the PDFs (measured from data) and their

evolution (DGLAP equations). This evolution is what produces the showering,

and is modeled by numerically iterating through 𝑄2 (or, equivalently, through

time) and randomly emitting new partons according to the splitting functions

via MC sampling.
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There are several subtleties involved in this process which numerical par-

ton shower generators, such as PYTHIA [136], HERWIG [137], and SHERPA [138]must

account for. First, the probability of gluon emission diverges in the soft — i.e.,

low gluon energy — and collinear — small gluon angle with the parent parton

— limits. Physically, this can be interpreted as the limit of our experimental reso-

lution: at a certain point we cannot resolve two close-by or detect arbitrarily soft

particles.

These are known as the infrared and collinear (IRC) divergences, respec-

tively, and are typically regulated by introducing cut-off energies and angles

for emissions (below which we can reasonably argue that perturbation theory is

anyway invalid). These divergences alsomean that when analyzing jets in exper-

imental data, care must be taken in defining observables to be IRC-safe, meaning

that jet clustering algorithms and physical properties derived therein should not

be sensitive to arbitrarily soft or collinear emissions.

Another issue is that a naive combination of the hard matrix element and

subsequent parton shower calculations may lead to double-counting of emis-

sions, as illustrated in Figure 4.14. This necessitates a careful “matching pro-

cedure”, such as the most commonMLM scheme [139], which defines cut-off en-

ergy and angular scales to separate the matrix element and parton shower phase

spaces. Other considerations include preserving unitarity, color coherence and

color flow, and differences between ISR and FSR (see e.g. Refs. [140, 141]).
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Figure 4.14. An illustration of double-countingwhen combiningmatrix element
predictions (in black) with parton showering algorithms (in red) for 𝑍+parton
and 𝑍+2-parton events, reproduced from Ref. [21].

Hadronization

The final element of the factorized process is hadronization, once the par-

ton shower approaches the confinement scale. This is a completely nonperturba-

tive process and, hence, like PDFs, we must rely on numerical simulations and

experimental measurements.

Lattice QCD simulations, such as those shown in Figure 4.4, indicate that

in the low energy limit, the effective potential between quarks increases linearly

with distance, resembling string tension:

𝑉(𝑟) = 𝜎𝑟, (4.1.5)

where 𝜎 is the string tension coefficient. In fact, this analogy can be extended

further: above a certain energy, the string appears to “snap”, in the sense that it

120



becomes possible and energeticallymore favorable to produce a quark-antiquark

pair.

This analogy the basis of the Lund stringmodel of hadronization [142], illus-

trated in Figure 4.15. The strong force between the final state partons is modeled

as a series of strings stretched between them that probabilistically break into new

partons. Other models are based on clustering partons into color-neutral combi-

nations [137].

Figure 4.15. An illustration of the Lund string model of hadronization, repro-
duced from Ref. [22].

4.2 Electroweak interactions

The weak interaction is the last of the three fundamental forces we dis-

cuss in the SM. Apart from its relatively weak coupling constant (Table 4.1), it

is unique in several ways: (1) it couples only to left-chiral fermions, thereby vio-

lating parity (𝑃) and charge conjugation (𝐶); (2) it is the only force with massive
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gauge bosons, resulting in short-range interactions; and (3) it is the only force

that “sees” and can change the flavors of the fermions. Hence, it is responsible

for radioactive decays and the instability of all hadrons and leptons bar the pro-

ton and electron. Its couplings to the different flavors also lead to 𝐶𝑃-violation,

as we discuss in Section 4.2.4.

4.2.1 Weak interactions

The first theory of weak interactions was Enrico Fermi’s 1933 theory of

beta decay [143]: the decay of the neutron to a proton, 𝑛 → 𝑝+ 𝑒−+ �̄�𝑒 , through a

four-fermion interaction (Figure 4.16, left). Fermiwas inspired byDirac’s nascent

theory of QED, and using similar perturbative techniques, his theory proved

successful in describing weak decays. The same principle was also applied to

other weak decays, such as muon decay (Figure 4.16, right) and pion decay.

As it turned out, the four-fermion interaction is of mass dimension 6 and

not renormalizable (see Chapter 3.2), leading to the scattering cross-section di-

verging at high energies. This is, of course, because these interactions are in fact

mediated by the massive weak𝑊± and 𝑍 gauge bosons, which become relevant

around their mass scale of O(100GeV). We now understand the Fermi theory

as an effective field theory (EFT) valid for energies much lower than 100GeV,

wherein the𝑊 and 𝑍 boson DoFs can be integrated out and nonrenormalizable

interactions are allowed — they are just suppressed by factors of (1/𝑀𝑊)2. This
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suppression is why the weak interaction is so weak, with a coupling constant of

≈ O(10−6) at the mass scale of the proton.

Figure 4.16. Feynman diagrams for beta decay (left) and muon decay (right) in
Fermi’s theory.

The weak interaction is described by an SU(2) Yang-Mills theory, and is

sometimes referred to as quantum flavordynamics (QFD) because of its deep

connection to flavor, as we will discuss. However, “vanilla” Yang-Mills theories

cannot accommodate massive gauge bosons; hence, it was only after the devel-

opment of the ABEGHHK (Higgs) mechanism in the 1960s that this description

gained traction. Specifically, Sheldon Glashow, Abdus Salam, Steven Weinberg

and others showed that the spontaneous breaking of an SU(2) × U(1) symme-

try to U(1) could not only yield massive weak gauge bosons, but also naturally

incorporate QED with a massless photon [113–115].

This combined electroweak theory has been experimentally confirmed in

many stages: first with the discovery of neutral currents involving neutrinos with

the Gargamelle bubble chamber at CERN in 1973 [144], the first evidence for the

𝑍 boson (the only neutral boson that couples to neutrinos); then with the di-

123



rect discovery of the𝑊 and 𝑍 bosons at the Super Proton Synchrotron (SPS) in

1983 [145–148], as well as precision measurements of electroweak parameters

such as the 𝑊 and 𝑍 masses with the Large Electron-Positron Collider (LEP)

in the 1990s; and finally with the discovery of the Higgs boson at the LHC in

2012 [60, 149], a particle predicted by the ABEGHHK mechanism, and the ongo-

ing measurements of its properties.

4.2.2 Before electroweak symmetry breaking

Electroweak interactions are associated with the SU(2)𝐿 × U(1)𝑌 gauge

symmetry, which is “spontaneously broken” to U(1)EM through the ABEGHHK

mechanism during electroweak symmetry breaking (EWSB).5 We label the three

gauge bosons of SU(2)𝐿 as𝑊1,𝑊2,𝑊3 andofU(1)𝑌 as 𝐵, with coupling constants

𝑔 and 𝑔′, respectively.

The fermions in the SM can be categorized by their representations, or

charges, under the three gauge symmetries before EWSB, as in Table 4.2. The

bold numbers indicate the dimension of the representation under the respective

symmetry group, while the regular numbers are the charges under the U(1)𝑌
group — referred to as their hypercharge, 𝑌.

The weak interactions specifically are associated with the SU(2)𝐿 gauge

5As discussed in Chapter 3.4, technically, the gauge symmetry cannot be broken — what
breaks is the associated global symmetry.
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Table 4.2. The representations and charges of fermionic and scalar fields in the
SM under the U(1)𝑌 , SU(2)𝐿, and SU(3)𝐶 gauge symmetries. The right-handed
neutrino is included here for completeness but has not been experimentally con-
firmed.

U(1)𝑌 SU(2)𝐿 SU(3)𝐶
𝑄𝐿 +1/6 2 3

𝐿𝐿 −1/2 2 1

𝑢𝑅 +2/3 1 3

𝑑𝑅 −1/3 1 3

𝑒𝑅 −1 1 1

𝜈𝑅? 0 1 1

𝐻 +1/2 2 1

symmetry, and their key characteristic is that they violate parity: they only cou-

ple to left-handed fermions and right-handed antifermions (hence, the subscript

𝐿). Specifically, the left-handed quarks (𝑢𝐿 and 𝑑𝐿) and leptons (𝜈𝐿 and 𝑒𝐿) reside

in SU(2)𝐿 doublets:

𝑄𝐿 =
©«
𝑢𝐿

𝑑𝐿

ª®¬ , 𝐿𝐿 =
©«
𝜈𝐿

𝑒𝐿

ª®¬ , (4.2.1)

while right-handed fermions live in the trivial representation. The 𝐿 and 𝑅 sub-

scripts indicate left- and right-chiral Weyl spinors, respectively. Note that there

are actually three generations of fermions, which we index as 𝑢 𝑖 for 𝑖 = 1, 2, 3;

however, before EWSB, there is no distinction between them as they are all mass-

less. Often, we will omit this index when the properties across generations are
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identical.

The SM also contains a scalar, SU(2)-doublet “Higgs” field 𝐻, which is

listed in Table 4.2 as well. Its dynamics are governed by the Lagrangian:

ℒHiggs = (𝐷𝜇𝐻)†(𝐷𝜇𝐻) − 𝜆(𝐻†𝐻 − 𝑣2

2 )2, (4.2.2)

where 𝑣 is a constant and

𝐷𝜇𝐻 =

[
𝜕𝜇 − 𝑖 𝑔𝑊𝜇 − 𝑖

2 𝑔
′𝐵𝜇

]
𝐻 (4.2.3)

is the covariant derivative of 𝐻. The potential resembles the sombrero potential

from Figure 3.7, but with a 2D rather than 1D complex field.

The Higgs field is able to couple to the fermions without violating gauge

symmetry through Yukawa interactions. The most general possible Yukawa

terms are 3 × 3 matrices across the three generations.

ℒYukawa = −𝑦𝑑𝑖𝑗�̄� 𝑖
𝐿𝐻𝑑

𝑗
𝑅 − 𝑦𝑢𝑖𝑗�̄� 𝑖

𝐿�̃�𝑢
𝑗
𝑅 − 𝑦𝑒𝑖𝑗 �̄�𝑖𝐿𝐻𝑒 𝑗𝑅 − 𝑦𝜈𝑖 𝑗 �̄�𝑖𝐿�̃�𝜈

𝑗
𝑅 + h.c., (4.2.4)

where �̃� = 𝑖𝜎2𝐻† is the charge-conjugated Higgs field, 𝑖 and 𝑗 index the three

generations of fermions, 𝑦𝑑𝑖𝑗 are the Yukawa coupling constant matrices, and h.c.

denotes the Hermitian conjugate of all the preceding terms.

The Higgs field contracts with the fermionic left-handed SU(2)-doublets
to produce an SU(2)-singlet, while the quark fields contract with each other to
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form SU(3)-singlets. One can also check that through our clever choice of 𝐻 vs.

�̃�, the total hypercharge of each term is 0. Thus, each Yukawa term is indepen-

dently gauge invariant.

The overall electroweak Lagrangian is:

ℒEW = −1
4𝑊

𝑎
𝜇𝜈𝑊

𝑎𝜇𝜈 − 1
4𝐵𝜇𝜈𝐵

𝜇𝜈

+ �̄�𝐿𝑖 /𝐷𝑄𝐿 + �̄�𝐿𝑖 /𝐷𝐿𝐿 + �̄�𝑅 𝑖 /𝐷𝑢𝑅 + �̄�𝑅 𝑖 /𝐷𝑑𝑅 + 𝑒𝑅 𝑖 /𝐷𝑒𝑅
+ ℒHiggs + ℒYukawa, (4.2.5)

Note that without EWSB, not only are all the gauge bosons of the theory mass-

less, but so are the fermions: the usual fermionic mass terms of the form 𝑚𝑢𝐿𝑢𝑅

violate the SU(2)𝐿 gauge symmetry. As we will see, the ABEGHHK mechanism

is what generates masses for all the fermions, through the Higgs Yukawa cou-

plings, as well as the three weak gauge bosons.

4.2.3 Electroweak symmetry breaking

EWSB occurs when the Higgs field spontaneously breaks the global

SU(2)𝐿 × U(1)𝑌 symmetry by moving to a ground state of the potential. With-
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out loss of generality, we can choose this ground state to be:

〈𝐻〉 = 1√
2
©«
0

𝑣

ª®¬ , (4.2.6)

where 〈𝐻〉 is the vacuum expectation value (VEV) of the Higgs field. As before,

we can parametrize the fluctuations around this ground state as:

𝐻 = 𝑒 𝑖𝜉
𝐴(𝑥)𝑇𝐴 1√

2
©«

0

𝑣 + ℎ(𝑥)
ª®¬ , (4.2.7)

where ℎ is a real scalar field, 𝑇𝐴 are three generators of the broken SU(2)𝐿×U(1)𝑌
symmetry, and 𝜉𝐴 are the corresponding Goldstone bosons.

The ABEGHHK mechanism for gauge theories effectively involves the

original gauge bosons absorbing these Goldstone bosons, thereby acquiring

mass (see Chapter 3.4). This can be equivalently thought of as simply a con-

venient choice of gauge in which 𝜉𝐴(𝑥) = 0. In the end, after some algebra, the

gauge + Higgs sector of the electroweak Lagrangian after EWSB looks like:

ℒGH = −1
4𝑊

𝑎
𝜇𝜈𝑊

𝑎𝜇𝜈 − 1
4𝐵𝜇𝜈𝐵

𝜇𝜈 + 1
2𝜕𝜇ℎ𝜕

𝜇ℎ − 𝜆ℎ2
(
𝑣 + ℎ

2

)2

︸          ︷︷          ︸
≡𝑉(ℎ)

+ 1
8(𝑣 + ℎ)

2
[
𝑔2(𝑊1

𝜇 )2 + 𝑔2(𝑊2
𝜇 )2 + (𝑔𝑊3

𝜇 − 𝑔′𝐵𝜇)2
]
, (4.2.8)

where 𝑉(ℎ) is the new Higgs potential.
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We now have mass terms for three gauge, as well as the Higgs, bosons.

As always, we are free to define the gauge boson fields as we wish, and it turns

out the most convenient choice is:

𝑊±
𝜇 =

1√
2
(𝑊1

𝜇 ∓ 𝑖𝑊2
𝜇 ),

𝑍𝜇 =
1√

𝑔2 + 𝑔′2
(𝑔𝑊3

𝜇 − 𝑔′𝐵𝜇),

𝐴𝜇 =
1√

𝑔2 + 𝑔′2
(𝑔′𝑊3

𝜇 + 𝑔𝐵𝜇).

(4.2.9)

It is conventional to define the Weinberg or weak mixing angle 𝜃𝑊 :

cos𝜃𝑊 =
𝑔√

𝑔2 + 𝑔′2
, sin𝜃𝑊 =

𝑔′√
𝑔2 + 𝑔′2

, (4.2.10)

to simplify the forms of 𝑍 and 𝐴 above:

𝑍𝜇 =𝑊3
𝜇 cos𝜃𝑊 − 𝐵𝜇 sin𝜃𝑊 ,

𝐴𝜇 =𝑊3
𝜇 sin𝜃𝑊 + 𝐵𝜇 cos𝜃𝑊 .

(4.2.11)

Experimentally, we have determined the free parameters of this theory to be:

𝑣 ≈ 250GeV, 𝜆 ≈ 0.35, 𝑔 ≈ 0.64, 𝑔′ ≈ 0.34 ⇒ sin2 𝜃𝑊 ≈ 0.223,

(4.2.12)

at an energy scale of the 𝑍 boson mass.
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The Lagrangian can hence be written as:

ℒGH = −1
4𝑊

+
𝜇𝜈𝑊

−𝜇𝜈 − 1
4𝑍𝜇𝜈𝑍𝜇𝜈 − 1

4𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝑚2

𝑊𝑊
+
𝜇𝑊

−𝜇 + 1
2𝑚

2
𝑍𝑍𝜇𝑍𝜇

+ 2𝑚2
𝑊

𝑣
ℎ𝑊+

𝜇𝑊
−𝜇 + 𝑚2

𝑍

𝑣
ℎ𝑍𝜇𝑍𝜇 + 𝑚2

𝑊

𝑣2 ℎ
2𝑊+

𝜇𝑊
−𝜇 + 𝑚2

𝑍

4𝑣2 ℎ
2𝑍𝜇𝑍𝜇

+ 1
2𝜕𝜇ℎ𝜕

𝜇ℎ − 𝑚2
ℎℎ

2 − 𝜆𝑣ℎ3 − 1
4𝜆ℎ

4, (4.2.13)

where

𝑚𝑊 =
1
2𝑣𝑔 ≈ 80GeV, 𝑚𝑍 =

1
2𝑣

√
𝑔2 + 𝑔′2 ≈ 91GeV, 𝑚ℎ =

√
2𝜆𝑣 ≈ 125GeV.

(4.2.14)

Note that in addition to the gauge-boson self-interactions, the Higgs field

also has a trilinear (𝜆𝑣ℎ3) and quartic (1/4𝜆ℎ4) self-interaction terms. While some

manner of EWSB has been confirmed experimentally through the discovery of

the Higgs boson, its full nature, and the full form of the Higgs potential, can

only be determined through measurements of these terms. The trilinear self-

coupling, in particular, can be accessed at the LHC through pair production of

the Higgs boson, as we will discuss in Section 4.3. Higgs pair production also

allows exclusive access to the quartic ℎℎ𝑉𝑉 couplings, where𝑉 is a weak gauge

boson.
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The photon and re-emergence of Dirac spinors

𝐴𝜇 corresponds to the one unbroken symmetry of the original SU(2)𝐿 ×
U(1)𝑌 group. In terms of the original generators — three 𝑇𝐴s for SU(2)𝐿 and one

𝑌 for U(1)𝑌 — 𝐴𝜇 corresponds to linear combination 𝑄 = 𝑇3 + 𝑌. This is the

massless photon field, with the gauge group U(1)EM.

The eigenvalue of 𝑄 for each fermion corresponds to their electric charge

under this group. For the SU(2)𝐿-singlet fields, 𝑇3 has no value and hence𝑄 = 𝑌,

while for the doublets, 𝑇3 has eigenvalues ±1/2 for the upper and lower compo-

nents, respectively: e.g. for 𝑢𝐿, 𝑄 = 1/2+ 1/6 = 2/3 and for 𝑒𝐿, 𝑄 = −1/2− 1/2 = 1. In

the end, we see that the left- and right-chiral fermion field pairs have the same

charge under this remaining unbroken symmetry, so they can again form Dirac

spinors:

𝜓𝑢 = ©«
𝑢𝐿

𝑢𝑅

ª®¬ , 𝜓𝑑 =
©«
𝑑𝐿

𝑑𝑅

ª®¬ , 𝜓𝑒 =
©«
𝑒𝐿

𝑒𝑅

ª®¬ , 𝜓𝜈 =
©«
𝜈𝐿

𝜈𝑅

ª®¬ , (4.2.15)

times three for each generation.

Each Weyl spinor pair interacts identically with the photon and gluons

but the𝑊 and 𝑍 bosons continue to couple only to the left-handed components.
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For example the𝑊+–fermion coupling is:

ℒ𝑊+ 𝑓 = − 𝑔√
2
𝑊+

𝜇 (�̄�𝐿�̄�𝜇𝑑𝐿 + �̄�𝐿�̄�
𝜇𝑒𝐿)︸                 ︷︷                 ︸

≡𝐽+𝜇

, (4.2.16)

where 𝐽+𝜇 is called the weak charged current. In terms of Dirac spinors, this can

be written using the projection operator (Eq. B.4.13):

ℒ𝑊+ 𝑓 = − 𝑔√
8
𝑊+

𝜇

(
�̄�𝑢𝛾

𝜇(1 − 𝛾5)𝜓𝑑 + �̄�𝜈𝛾
𝜇(1 − 𝛾5)𝜓𝑒

)
. (4.2.17)

Recall that �̄�𝛾𝜇𝜓 is a Lorentz vector, while �̄�𝛾𝜇𝛾5𝜓 is a pseudo- or axial-vector,

so theweak current is effectively an axial vector subtracted from a vector. Indeed,

historically, the weak interaction was referred to as “V-A” theory.

A hierarchy problem

Generally, if we encounter a new energy scale in nature, we are either

able to connect it in some way to an existing scale or a (broken) symmetry of

the theory. For example, the mass of the proton ∼ 1GeV is based on the QCD

confinement scale ΛQCD ∼ 200MeV, which in turn is related to the Planck scale

ΛPlanck ∼ 1019 GeV through dimensional transmutation. The mass of the pion

on the other hand, ≈ 140MeV, is a consequence of chiral symmetry breaking in

QCD. Physicists such asDirac andGell-Mann have in fact proposed these criteria

as a principle of “naturalness” for physical theories [150, 151].
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There are many examples of mysterious energy scales appearing experi-

mentally, which were either later rationalized or in fact even used to correctly

predict new physics, such as the prediction of the charm quark mass based on

the small mass difference between the 𝐾0
𝐿 and 𝐾0

𝑆 mesons. The electroweak en-

ergy scale of ≈ 100GeV is one such example which has yet to be explained.

A common way of expressing the problem is based on the Higgs mass: if

we believe the SM to be an EFT valid up to some energy scaleΛ, and if we have a

priori no other energy scale to which to tie the Higgsmass, thenwe expect higher

order corrections to its bare mass to be of order Λ. For example, if there is no

new physics up to the Planck scale, then we are left with a bare mass and cor-

rection both of order 1019 GeV. The fact that the actual mass is 125GeV implies

a cancellation between the two, or finetuning, at a 125/1019 ≈ 10−15% level. This is

considered highly “unnatural” and is called a hierarchy problem, perhaps hinting

at new physics.

One possibility is that Λ is in fact on the order of the Higgs mass, and we

are simply yet to find the new degrees of freedom at this O(100GeV) scale. Or,

if we accept a higher level of finetuning, e.g. at the 10% or 1% levels, Λ can be

pushed up further to 1–10TeV. Effectively, we can invert the hierarchy problem

into setting a bound on new physics!

Another solution is the existence an underlying (approximate) symme-

try of nature “protecting” the Higgs mass from higher order corrections, similar

to the chiral symmetry for the pion mass. The most promising candidate is su-
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persymmetry, postulating an additional global symmetry between bosons and

fermions [152]. Both these solutions possibly hint at an extended scalar sector,

with either another Higgs doublet or new scalar singlets, for example, through

theminimal supersymmetric extension of the SM (MSSM) [153] or based on two-

real-scalar-singletmodels [154]. This is onemotivation behind the search for new

Higgs bosons described in this dissertation. A more detailed, pedagogical dis-

cussion of naturalness can be found in e.g. Nathaniel Craig’s IAS lectures [155].

4.2.4 Fermion masses and flavor

After EWSB, we have

𝐻 =
1√
2
©«

0

𝑣 + ℎ
ª®¬ , �̃� =

1√
2
©«
𝑣 + ℎ

0
ª®¬ , (4.2.18)

which yields the following Yukawa Lagrangian:

ℒYukawa = − 1√
2
(𝑣 + ℎ)

[
𝑦𝑑𝑖𝑗 �̄�

𝑖
𝐿𝑑

𝑗
𝑅 + 𝑦𝑢𝑖𝑗 �̄� 𝑖𝐿𝑢 𝑗𝑅 + 𝑦𝑒𝑖𝑗𝑒 𝑖𝐿𝑒 𝑗𝑅 + 𝑦𝜈𝑖 𝑗 �̄�𝑖𝐿𝜈 𝑗𝑅

]
+ h.c.. (4.2.19)

Again, we are free to redefine fields and can choose a basis for all the fermion

fields in which the Yukawa matrices are diagonal:

𝑢 𝑖𝐿 → (𝑉𝑢)𝑖𝑗𝑢 𝑗𝐿 , 𝑑𝑖𝐿 → (𝑉𝑑)𝑖𝑗𝑑 𝑗𝐿 , 𝑢 𝑖𝑅 → (𝑈𝑢)𝑖𝑗𝑢 𝑗𝑅 , 𝑑𝑖𝑅 → (𝑈𝑑)𝑖𝑗𝑑 𝑗𝑅 , (4.2.20)
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such that

𝑉†𝑢𝑌𝑢𝑈𝑢 = diag(𝑚𝑢 , 𝑚𝑐 , 𝑚𝑡), 𝑉†𝑑𝑌𝑑𝑈𝑑 = diag(𝑚𝑑 , 𝑚𝑠 , 𝑚𝑏), (4.2.21)

and same for the leptons (though again with the caveat that the right-handed

neutrino, 𝜈𝑅, has not been experimentally confirmed).

This is themass eigenstate basis, where each generation and type of fermion

has terms of the form:

ℒYukawa = − 𝑣√
2
𝑦𝑢 �̄�𝐿𝑢𝑅 − ℎ√

2
𝑦𝑢𝑢𝐿𝑢𝑅 + h.c. + . . . , (4.2.22)

i.e., a mass term𝑚𝑋 = 𝑣𝑦𝑋√
2
and a Yukawa interaction termwith the Higgs field of

strength 𝑦𝑋 . The same Yukawa constant determines both themass of the particle

and its coupling to the Higgs field; indeed, in Appendix B.4.5, we show how this

is used to determine the Higgs to fermion decay rates!

Like 𝑣 and 𝜆, the Yukawa couplings are all free parameters of the SM

which can only be determined experimentally.

The CKM and PMNS matrices

Observe that the transformation we needed to diagonalize the Yukawa

matrices in Eq. 4.2.20 violates the SU(2)𝐿 symmetry, by transforming the up and

135



down components of 𝑄𝐿 and 𝐿𝐿 independently. This is actually okay because

the SU(2)𝐿 symmetry was already broken through EWSB; however, crucially,

this means the weak eigenstates (also called the flavor eigenstates), which the W

bosons couple together, are not the same as the mass eigenstates!

Explicitly, any term which couples the up or down components of the

SU(2)-doublet only with their respective right-handed components, such as the

kinetic terms 𝜕𝜇𝑢𝐿𝜕𝜇𝑢𝐿 or the electromagnetic interaction 𝐴𝜇�̄�𝑢𝛾𝜇𝜓𝐿, is invari-

ant under the transformation in Eq. 4.2.20. It is only the weak charged currents

(Eq. 4.2.16) in the SM which mix the two. Including the three generations, the

positive current is:

𝐽+𝜇 =
∑
𝑖

�̄� 𝑖𝐿�̄�
𝜇𝑑𝑖𝐿 +

∑
𝑖

�̄�𝑖𝐿�̄�
𝜇𝑒 𝑖𝐿 (4.2.23)

in the flavor eigenstate basis (the negative current is simply the h.c.). But if we

attempt to transform to the mass basis via Eq. 4.2.20:

𝐽+𝜇 =
∑
𝑖

�̄� 𝑖𝐿�̄�
𝜇 [(𝑉𝑢)†𝑉𝑑]𝑖 𝑗︸        ︷︷        ︸

≡𝑉CKM

𝑑 𝑗𝐿 +
∑
𝑖

�̄�𝑖𝐿�̄�
𝜇 [(𝑉𝜈)†𝑉 𝑒]𝑖 𝑗︸       ︷︷       ︸

≡𝑉PMNS

𝑒 𝑖𝐿 , (4.2.24)

we are left with these two matrices, called the Cabibbo-Kobayashi-Maskawa

(CKM) [126] and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [156] matrices mix-

ing the quark and lepton flavors, respectively. The upshot is that the𝑊 bosons

can not only mix the components of (the former) SU(2)𝐿 doublets, but also dif-

ferent mass eigenstates! The 𝑍 and photon currents do not have this property,
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which is why we say there are no flavor-changing neutral currents (FCNCs) in the

SM, at least at tree level.

The magnitude of this mixing by the𝑊s is determined by the CKM and

PMNS matrices. They are 3 × 3 unitary matrices that, after accounting for the

various constraints imposed by the fermionmasses, unitarity, etc., have 4 free pa-

rameters each. They are most often parametrized as three real Euler angles and

one complex phase, which again have to be determined experimentally. Impor-

tantly, this complex phase means the weak interaction violates 𝐶𝑃-symmetry as

well!

To see why, we can go back to the Yukawa interactions, this time with the

hermitian conjugates included:

ℒYukawa ∼ 𝑦𝑑𝑖𝑗 �̄�
𝑖
𝐿𝑑

𝑗
𝑅 + 𝑦𝑑∗𝑖 𝑗 �̄�𝑖𝑅𝑑 𝑗𝐿 + . . . (4.2.25)

One can check that the two field terms �̄�𝑖𝐿𝑑
𝑗
𝑅 and �̄�𝑖𝑅𝑑

𝑗
𝐿 are 𝐶𝑃-conjugates of each

other, which means invariance under 𝐶𝑃 requires 𝑦𝑑𝑖𝑗 = 𝑦𝑑∗𝑖 𝑗 , i.e. the Yukawa ma-

trix to be real. The complex phases in the CKM and PMNS matrices therefore

lead to 𝐶𝑃-violation in the SM. Interestingly, for fewer than three generations,

the two matrices cannot be imaginary. Kobayashi and Maskawa discovered this

in 1973, after the observation of𝐶𝑃-violation in 1964, andpredicted a third gener-

ation of quarks to explain 𝐶𝑃-violation in the SM, for which they were awarded

the Nobel prize in 2008.
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Flavor is perhaps the least understood area of the SM: Why are their ex-

actly three generations each of quarks and leptons? Why their particular hierar-

chy of masses? Is it a coincidence that nature chose the exact minimum number

of generations needed to allow for 𝐶𝑃-violation? All of these mysteries point to

the strong possibility of new physics in the flavor sector.

4.3 The Higgs sector

The Higgs boson, being the only scalar in the SM and uncharged under

the U(1)EM and SU(3)𝐶 symmetries, may appear to be the simplest particle in

the theory. However, these same properties also mean that the Higgs sector is

not as strongly constrained by gauge invariance, renormalizability, etc. as the

gauge and fermionic sectors. Indeed, the Higgs sector contains the majority of

the free parameters of the SM: the Yukawa couplings (12 masses of the fermions

+ 8 more parameters from the CKM and PMNS matrices), the Higgs VEV, and

the Higgs mass (or, equivalently, 𝜆 in the Higgs potential). Without it, the SM

would only have three free parameters: the three forces’ coupling constants!

This is why a significant motivation for the next decades of the LHC, as

well as future “Higgs factory” colliders, is to precisely characterize theHiggs sec-

tor. In this section, we first describe how this is possible at the LHC and discuss

recent experimental constraints. We then motivate measurements of Higgs pair

production, both in the SM and through BSMdecays of heavy resonances, which
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are the focus of this dissertation and a key target of the current and upcoming

LHC physics program.

4.3.1 Higgs boson production and measurements at

the LHC

Higgs bosons are produced at the LHC through a variety of parton-parton

interactions, as shown in Figure 4.17. Because of their highmass, they have a life-

time of roughly O(10−22)s and decay immediately into two vector bosons or two

fermions at tree-level, with further decays possible through loops. The decay

probability depends on the strength of the respective interactions, which we see

from Section 4.2 are proportional to the mass or the mass squared for fermions

and vector bosons, respectively, though with the probability lowered for decays

that are not kinematically accessible (i.e., when the total mass of the decay prod-

ucts is greater than the Higgs’).

This is illustrated in Figure 4.18, which shows the branching fractions

(BFs) of the Higgs boson as a function of its mass. Generally, we see the higher

the mass of the decay product, the higher the BF; however, as the Higgs mass

decreases, first the tt and later the𝑊 and 𝑍 boson decays become kinematically

inaccessible, leading to decreasing decay probabilities.

The Higgs boson was initially observed by the CMS and ATLAS experi-
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Figure 4.17. Single Higgs boson production modes and decay channels at the
LHC, reproduced from Ref. [23].

ments in 2012 through a combination of several decay channels. Since then, the

two experiments have beenmaking steadyprogress in the precisemeasurements

of the various Higgs properties. For example, Figure 4.19 shows the overall con-

straints on the Higgs to fermion and vector boson couplings and the Higgs mass

by the CMS experiment. Constraints are based on the 𝜅-framework [157], where

𝜅𝑋 scales the Higgs-𝑋 coupling strength with 𝜅𝑋 = 1 corresponding to the SM

prediction. Changes to the coupling strength due to new physics are thus gener-

ically captured by deviations from 𝜅𝑋 = 1.

4.3.2 Higgs pair production in the SM

Two couplings of the Higgs boson which have not been well-constrained

are the trilinear Higgs self-coupling (HHH), with coupling modifier 𝜅𝜆, and the

Higgs quartic coupling to vector bosons (HHVV), with modifier 𝜅2V. As dis-

cussed in Section 4.2.3 and illustrated in Figure 4.20, measuring the Higgs self-

coupling in particular is necessary to fully characterize the Higgs potential, de-
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Figure 4.18. Higgs branching fractions predicted in the SM as a function of 𝑚H
(reproduced from Refs. [24, 25]).

viations to which could hint at BSM explanations to mysteries such as baryon

asymmetry [158]. As we describe below, both couplings can be probed exclu-

sively through Higgs pair production (HH), which is why it is a key physics

target for the upcoming high-luminosity era of the LHC.

HH production in the SM occurs dominantly through gluon fusion

(ggF), with a small production cross section 𝜎ggF = 31.05+2.2%
−5.0% ± 3%(PDF +

𝛼𝑠)+4%
−18%(𝑚t) fb [159, 160] at a center of mass energy of 13 TeV and 𝑚H = 125GeV,

and subdominantly through vector boson fusion (VBF), with a smaller produc-

tion cross section 𝜎VBF = 1.726+0.03%
−0.04% ± 2.1%(PDF + 𝛼𝑠) fb [25]. At leading order,

the ggF production mode has contributions from diagrams that involve the tri-
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linear HHH Higgs self-coupling and the emission of two Higgs bosons through

a top quark loop, while the VBF production mode has contributions from three

diagrams involving the trilinear HHH, HVV, and quartic HHVV couplings (Fig-

ures 4.21 and 4.22). It also features the distinct final state signature of two, typi-

cally forward, jets in addition to the two Higgs bosons.

The production cross section and kinematic properties of the HH system

are altered if values of theHiggs self-coupling, the top Yukawa coupling, and/or

the quartic HHVV coupling are modified due to beyond the SM (BSM) effects.

Notably, at the energy scale of the LHC, the leading contribution to the VBF pro-

duction amplitude is the scattering of longitudinal vector bosons, which scales

as ∼ 𝑚2
HH(𝜅2V − 𝜅2

V) [161], where, as above, 𝜅𝜆, 𝜅2V, and 𝜅V are defined to be

multiplicative modifiers of the HHH, HHVV, and HVV couplings from their
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Figure 4.20. Cartoon of the Higgs potential in the SM and potential deviations
due to BSM physics.
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Figure 4.21. Leading-order diagrams for nonresonant HH production via gluon
gluon fusion.

SM values, respectively.

In the SM, with 𝜅2V = 𝜅V = 1, VBF production is suppressed since the

left-most (HVV)2 and right-most HHVV VBF diagrams in Figure 4.22 cancel;

however, BSM deviations to HHVV can spoil the cancelation, significantly en-

hancing this mode. This departure from the SM could be more visible at high

energies, as illustrated in Figure 4.23, which shows the increase and shift towards

higher 𝑚HH of the differential VBF HH production cross section for enhanced

and reduced 𝜅2V values. Thus, measuring high-𝑚HH nonresonant VBF HH pro-
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duction, with both Higgs bosons highly Lorentz-boosted, is a powerful probe of

the HHVV coupling.

This is evidenced by the current 𝜅2V constraint in CMS being dominated

by the search for boosted HH in the bb̄bb̄ channel, with an observed (expected)

95% confidence level (CL) constraint of [0.6, 1.4] ([0.7, 1.4]), excluding 𝜅2V = 0

for the first time [162]. This is followed byCMS searches in the resolved bb̄bb̄ [28]

and bb̄𝜏𝜏 [29] channels, with constraints of [−0.1, 2.2] ([−0.4, 2.5]) and [−0.4, 2.6]
([−0.6, 2.8]), respectively. Similarly, the strongest 𝜅2V constraint from the ATLAS

experiment is from the boosted bb̄bb̄ search [163], with an observed (expected)

95% CL constraint of [0.55, 1.49] ([0.3, 1.7]).

The success of searches in the boosted bb̄bb̄ channel motivates further ex-

ploration of high-𝑚HH HHproduction. This dissertation presents the first search

in the all-hadronic bb̄VV channel, where one Higgs boson decays to bb̄ while

the other to WW or ZZ, where W → qq̄ and Z → qq̄. The branching fractions

for the bb̄ and all-hadronic VV decays are 0.58 and 0.11 respectively, for a total

144



300 400 500 600 700 800
mHH [GeV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

d
/d

m
H

H
 [f

b/
G

eV
]  (13 TeV)CMSSimulation Preliminary

SM
2V = 0
V = = 0
2V = = 0
2V = 2

Figure 4.23. Differential cross section at 13TeV center of mass for VBF HH pro-
duction as a function of the invariant mass of the HH system (𝑚HH) for different
diagrams and couplings.

branching fraction ℬ(HH → bb̄(VV → 4q)) = 2 · 0.58 · 0.11 = 0.13, which is the

second largest behind bb̄bb̄. The analysis primarily aims to constrain 𝜅2V and

also sets an exclusion limit on the inclusive HH production cross-section. It is

not expected to be sensitive to 𝜅𝜆 because of the focus on the high-𝑚HH regime.

Another benefit of the high-𝑚HH regime is the significantly reducedQCD

multĳet background, which otherwise makes such all-hadronic searches ex-

tremely challenging. Because of the twoHiggs bosons’ high Lorentz-boosts, this

regime also features the unique experimental signature of the bb̄ and VV → 4q

decays each being reconstructed as single wide-radius jets. Such merged H →
bb̄ jets have been identified to great effect in CMS using deep neural networks

(DNNs) [162, 164], but attaining similar signal versus background discrimina-
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tion forH → VV jets remains an open challenge. To this end, we introduce a new

attention-based DNN, referred to as the global particle transformer (GloParT) to

not only enable this search but open new possibilities for searches in boosted-VV

channels as well (Chapter 13).

4.3.3 Experimental status of HHmeasurements with

CMS

Figure 4.24. HH decays and their respective branching fractions (reproduced
from Ref. [27]).

The decays and branching fractions (BFs) of the Higgs boson pairs are

shown in Figure 4.24. Three of these final states have emerged as experimen-

tal “golden channels” — the channels expected to yield the highest signal-to-
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background-events ratio for SM HH production:

• bb̄bb̄: This channel has the highest BF (34%) and, despite the large QCD

multĳet background due to the all-hadronic final state, it benefits from

unique signatures of heavy-flavor b-jets, such as the presence of secondary

vertices and displaced tracks due to the long lifetimes of b-hadrons. Both

the resolved [28] and boosted [162] Run 2 CMS analyses (Figure 4.25) have

been highly effective, with the latter benefitting from the high BF of this de-

cay mode, the exponential reduction of the QCD multĳet background in

the boosted regime, and significant recent advances in bb̄-jet classification

and reconstruction (as will be discussed in Chapter 13).

• bb̄𝜏𝜏: This has an intermediate BF of 7% but relatively lower background

of primarily Drell-Yan (Z/𝛾∗), top quark pair production (tt), and QCD

multĳet events (Figure 4.26, reproduced from Ref. [29]). It benefits from

similar deep learning techniques for b-jet tagging, and targets all-hadronic

(𝜏ℎ𝜏ℎ) and semi-leptonic (𝜏ℎ𝜏𝑒 or 𝜏ℎ𝜏𝜇) 𝜏-lepton decays using a variety of

traditional and ML techniques.

• bb̄𝛾𝛾: Despite the small BF (0.3%) of this channel, the H → 𝛾𝛾 decay

provides a clean experimental signature with a sharply peaking resonance

over a small background of QCD multĳet + 𝛾 events (Figure 4.27, from

Ref. [30]).

More recently, the bb̄WWchannel has been explored in the douple-lepton
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(ℓℓ𝜈𝜈) and single-lepton (ℓ𝜈qq) WW final states [31], which have a large com-

bined BF of 13.4%. The former features a clean experimental signature of two

opposite-sign leptons but a small BF of 2.6%, while the latter has the higher BF

of 10.8% but larger top quark background as well (Figure 4.28). Because of this,

the two channels have similar sensitivities to the HH cross section.

60 80 100 120 140 160 180 200 220
 [GeV]reg m

2
j

0.0
0.5
1.0
1.5
2.0

D
at

a 
/ p

re
d.

0

2

4

6

8

10

12

14

16

18

20

E
ve

nt
s 

/ 1
0 

G
eV

Data QCD, ggF H, VBF H VH

 = 3.5)µHH ( +jetstt Htt

V+jets, VV Total unc.

CMS
ggF cat. 1

 (13 TeV)-1138 fb

1−10

1

10

210

310

410

E
ve

nt
s 

/ b
in

Data QCD

 = 0)2VκHH ( +jetstt

Bkgd. unc.

CMS
VBF cat.

 (13 TeV)-1138 fb

LP MP HP

800-1200
1200-1600

>1600
800-1200

1200-1600

>1600
>800

 [GeV]HHm

0.0
0.5
1.0
1.5
2.0

D
at

a 
/ p

re
d.

Figure 4.25. Distribution of events in the high-𝑚HH ggF category of the Run 2
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(left), and of the Run 2 boosted analysis’ [162] most sensitive ggF category, as
a function of the second-highest tagged bb̄-jet’s mass (middle), and VBF cate-
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The limits set on the HH cross section by each channel, and their com-

binations, are shown in Figure 4.29, and as a function of 𝜅𝜆 and 𝜅2V in Fig-

ure 4.30. The three “golden channels” each offer roughly similar sensitivities

to the cross section and 𝜅𝜆 limits; however, the constraint on 𝜅2V is dominated

by the boosted bb̄bb̄ channel, because of the enhancement of boosted HH pro-

duction at BSM 𝜅2V deviations, as discussed in Section 4.3.2. Its observed (ex-
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Figure 4.26. Combination of bins of all postfit distributions of the Run 2 CMS
HH → bb̄𝜏𝜏 analysis [29], ordered according to the expected signal-to-square-
root-background ratio, separately for the 𝜏ℎ𝜏𝑒 (left), the 𝜏ℎ𝜏𝜇 (center), and 𝜏ℎ𝜏ℎ
(right) channels.

Figure 4.27. Invariant two-photon mass distribution of the Run 2 CMS HH →
bb̄𝛾𝛾 analysis [30], combined for all signal categories, weighted by S/(S+B),
where S (B) is the number of signal (background) events extracted from the
signal-plus-background fit.

pected) 95% confidence level (CL) constraint is [0.6, 1.4] ([0.7, 1.4]). This is fol-

lowed by the resolved bb̄bb̄ [28] and bb̄𝜏𝜏 [29] channels, with constraints of

[−0.1, 2.2] ([−0.4, 2.5]) and [−0.4, 2.6] ([−0.6, 2.8]), respectively. Similarly, the

strongest 𝜅2V constraint from the ATLAS experiment is from the recent boosted
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Figure 4.28. Distribution of events in the resolved 1b, resolved≥ 2b, and boosted
signal categories of the Run 2CMS semi-leptonicHH → bb̄WWanalysis [31] as a
function of their DNN discriminant in the single-lepton (left) and double-lepton
(right) final states.

bb̄bb̄ search [163], with an observed (expected) 95% CL constraint of [0.55, 1.49]
([0.3, 1.7]).

In this dissertation, we present the first search for nonresonant HH pro-

duction in the all-hadronic bb̄VV channel, where one Higgs decays to two bottom

quarks, while the other to two vector bosons (VV) both decaying hadronically

to the four quark (4q) final state. Both the W and Z bosons are considered for

the latter decay and collectively referred to as V bosons. The branching fractions

for the bb̄ and VV decays are 0.58 and 0.25 respectively, for a total branching

fraction ℬ(HH → bb̄VV) = 2 · 0.58 · 0.25 = 0.29, which is the second-highest,

behind only bb̄bb̄. The all-hadronic final state in particular has a branching frac-

tion of 0.13. The analysis targets the boosted regime, which, as discussed above,

has the two-fold advantage of 1) increasing sensitivity to 𝜅2V deviations and 2)

exponentially reducing the dominant QCD multĳet background.

150



1 10 100

Theory
σ HH) / →(pp σ95% CL limit on 

Obs. (Exp.): 95 (54)

γγ-W+W

Obs. (Exp.): 33 (41)
ZZ, 4lbb

Obs. (Exp.): 31 (26)

-τ+τγγ

Obs. (Exp.): 22 (20)

Multilepton

Obs. (Exp.): 16 (18)

-W+Wbb

Obs. (Exp.): 8.4 (5.6)

γγbb

Obs. (Exp.): 3.4 (5.3)

-τ+τbb

Obs. (Exp.): 7.5 (4.3)
bbbb

Obs. (Exp.): 3.5 (2.5)
Combined

Observed          68% expected   
Median expected 95% expected   
                                              

CMS Preliminary
 = 12Vκ = Vκ = tκ = λκ

 (13 TeV)-1138 fb

Figure 4.29. The expected and observed limits on the ratio of experimentally
estimated production cross section and the expectation from the SM in searches
using different final states and their combination, reproduced fromRef. [32]. The
search modes are ordered, from upper to lower, by their expected sensitivities
from the least to the most sensitive. The overall combination of all searches is
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Figure 4.30. The expected and observed limits on the ratio of experimentally es-
timated production cross section and the theory expectation for different values
of 𝜅𝜆 (left) and 𝜅2V (right), reproduced from Ref. [32].

Figure 4.31. X → HY production in the symmetric (left) and asymmetric (right)
cases.

4.3.4 BSM X → HY production

Many theoretical models predict a richer scalar sector than that in the

SM to address aesthetic and observational inconsistencies with the SM, such as

the Higgs mass hierarchy problem and the baryon asymmetry discussed above.

These include two-Higgs doublet models (2HDM) [165] that add an additional

scalar doublet to the SM, such as the minimal supersymmetric extension of the
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SM (MSSM) [153], which predicts two neutral CP-even scalars (H, h), one neu-

tral CP-odd scalar (A), and two charged scalars (H±), where one of the neutral

CP-even scalars may be the discovered SM Higgs H125. The next-to-minimal su-

persymmetric extension of the SM (NMSSM) [166] adds to this a complex scalar

singlet, predicting two more CP-even (hs) and CP-odd (as) neutral scalars. Fi-

nally, the two-real-singlet-model (TRSM) predicts two additional CP-even scalar

fields. Depending on the kinematics, all these models allow for cascade de-

cays of a heavier scalar to symmetric and asymmetric lighter scalars, such as

H → H125H125 and H → hH125, respectively, as shown in Figure 4.31.

We search for this broad class of signals, looking for generic decays of the

form X → HY, where X is the heavier and Y the lighter scalar resonance, with

H decaying to bb̄ and Y to VV → 4q. Many models, such as the TRSM, predict

branching ratios for the lighter scalar similar to or the same as the SM Higgs. In

this case, the VV decay modes are dominant for 𝑚Y > 140GeV (Figure 4.18) and,

hence, theH → bb̄ andY → VVwill be the dominant final states for the X → HY

signal. Thus, the bb̄VV channel represents the highest BF in these models.

There are several published and ongoing CMS searches for X → HY pro-

duction in a variety of regimes and final states with the Run 2 dataset, such as

the boosted [167] bb̄bb̄ final state, the symmetric-only bb̄WW semi-leptonic final

state [31], the resolved bb̄𝛾𝛾 [168], and the resolved bb̄𝜏𝜏 [169] final state. This

dissertation presents the first search in the bb̄VV all-hadronic state, and the first

in the bb̄VV state for the asymmetric case, representing a significant increase in
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the covered phase space for X → HY searches.

The search comprises two distinct topologies depending on the ratio of

the X and Y masses: a highly-boosted fully-merged Y → VV topology for 𝑚X �
𝑚Y, with both VV bosons’ decay products highly collimated into a single wide-

radius jet; and a relatively less-boosted semi-merged topology, where the VV

bosons are well separated and each V → qq decay is reconstructed as its own

wide-radius jet. These two phases are illustrated in Figure 4.32, showing the

fraction of Y → VV jets containing three or four generator-level quarks as a

function of the X andY bosonmasses, with the transition occurring around𝑚X ≈
10𝑚Y. This dissertation focuses on a search for the fully-merged topology only,

i.e. for 𝑚X ≳ 10𝑚Y, and is complementary to an ongoing CMS search in the

semi-merged topology. Thus, in terms of the analysis strategy and techniques,

this search is similar to the boosted nonresonant HH search in that they both

target highly-boosted Higgs boson decays with single wide-radius jets for both

H or Y bosons.
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Chapter 5

The CERN Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton collider located at

CERN on the border of Switzerland and France (Figure 5.1). It is the largest

and highest energy particle accelerator in the world, with a circumference of

27.6 km and a center-of-mass (COM) energy of 13.6 TeV, reproducing energies in

the universe 10−11 seconds after the Big Bang.

The tunnelwas initially built for the large electron-positron collider (LEP),

which operated from 1989 to 2000. Being point particles and not interactingwith

the strong force, electrons andpositrons produce “clean” collisions (i.e., with low

background) and can be simulated with relative ease; thus, LEP allowed high

precision measurements of the electroweak sector of the standard model (SM),

as discussed in Chapter 4. The drawback, however, is that due to the power loss

from synchotron radiation, which scales as∝ (mass of the accelerated particle)−4,

their lowmass limits theCOMenergy that can be attainedwith electron-positron
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Figure 5.1. Outline of the LHC overlaid on a satellite image of Switzerland and
France.

colliders.

Protons, on the other hand, are composite particles and produce “noisy”,

high-multiplicity collisions, but are 2000× more massive and, hence, can be ac-

celerated to much higher energies. This is why, from early on, the LEP tunnel

had also been proposed as a site for a future hadron-hadron collider, which could

achieve an order-of-magnitude greater energy than the previous energy-frontier

machine, the Fermilab Tevatron. The LHCwas eventually approved in 1994 and
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was built in collaboration with over 100 countries at CERN between 1998 and

2008. It is primarily a proton-proton collider, designed with the goal of acceler-

ating each proton to 7TeV, for a COMenergy of 14TeV, to explore the TeV energy

scale for the first time. It also, less frequently, collides heavy ions to study QCD

and the quark-gluon plasma inside nuclei.

The collisions occur at four interaction points around the ring and are ob-

served by a total of nine detectors: two large general-purpose detectors, CMS

and ATLAS, two more specialized detectors, ALICE and LHCb, for heavy-ion-

and b-physics, respectively, and five smaller scale experiments, TOTEM, LHCf,

MoEDAL, FASER, and SHiP. In this section, we describe the LHC accelerator in

Section 5.1 and the overall number of collisions, quantified as “integrated lumi-

nosity”, it has delivered and expects to deliver in Section 5.2.

5.1 The accelerator

The overall LHC accelerator complex is shown in Figure 5.2. Protons

are first extracted from a hydrogen gas bottle through a duoplasmatron ion

source [170] as a low energy beam of around 100 keV. They are then acceler-

ated through a series of “injectors” (Figure 5.3): first through a linear accelerator

(LINAC) up to 50MeV; then a proton synchotron booster (PSB) up to 1.4GeV;

the proton synchotron (PS) up to 26GeV; and finally through the super proton

synchotron (SPS) up to 450GeV, after which the protons are transferred to the
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LHC ring.

Figure 5.2. Diagram of the LHC accelerator complex adapted from Ref. [33],
depicting the initial proton source (in red), LINAC, proton synchotron booster,
PS, SPS, LHC, and the fourmain experiments: CMS, ATLAS, ALICE, and LHCb.

Unlike particle-antiparticle colliders, like the Tevatron, which can acceler-

ate both beams in the same ringwith the samemagnet system, the proton-proton

collisions at the LHC require opposite magnetic fields for the beams before their

collision. The benefit, of course, is the ease of producing protons compared to

antiprotons, allowing for far higher luminosities. Due to the small 3.7m inter-

nal diameter of the existing LEP tunnel, it was not possible to install two sepa-

rate rings for the two counter-rotating beams; instead, a twin-bore magnet de-

sign [171] was chosen to accommodate both in the same ring (Figure 5.4) with

two separate vacuum chambers and superconducting coils.
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Figure 5.3. Schematic of the LHC injectors, reproduced from Ref. [34].

A total of 1,232 such superconducting NbTi dipole magnets are installed

around the ring to maintain the circular trajectory of the protons, as well as 392

quadrupole and higher multipole-order magnets to focus the beams. The maxi-

mum beam momentum 𝑝 is limited by the bending radius (𝜌) and the bending

field strength (𝐵) of the dipole magnets, as [34]:

𝑝[GeV/𝑐] = 𝐵[T]𝜌[m]/3.336. (5.1.1)

For the LHC tunnel, 𝜌 is 2.8km; hence, to achieve 7 TeV protons, the dipole mag-

nets were designed to achieve a field strength of 8.33 T (requiring liquid helium

cooling to a temperature of 1.9K to maintain superconductivity). However, due

to imperfections in some magnets, the LHC initially operated at 3.5–4 TeV per
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beam in Run 1 (2010–2012), then 6.5 TeV in Run 2 (2015–2018), and currently

6.8 TeV in Run 3 (2022–2026).

Figure 5.4. Diagram of the cross-section of the twin-bore LHC dipole magnets
(left) and an image of an actual LHC dipole magnet (right), reproduced from
Ref. [35].

The LHC layout comprises eight arcs and eight ∼ 500m long straight sec-

tions. The two beams are diverted and collided in four of the straight sections,

called “interaction points” (IPs), where the detectors are located (Figure 5.5). The

other four straight sections are used for utilities, such as the beam dump and col-

limation systems.

The protons are accelerated and collided in “bunches” of 1011 protons

each, with a separation of 25 ns between bunches. The greater the number of

protons per bunch and frequency of bunches, the greater the total luminosity

of the collider. Each bunch is accelerated and phase-focused longitudinally by
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Figure 5.5. Schematic of the LHC layout showing the two proton beams in green
and blue and its division into eight octants, reproduced from Ref. [34].

a series of 16 superconducting radiofrequency (RF) cavities into separate “RF

buckets”. The RF-frequency of the cavities is 400MHz, corresponding to a the-

oretical minimum spacing in time of 2.5 ns between RF buckets / bunches. The

LHC opts for the 10-bucket spacing of 25 ns to avoid “parasitic” collisions be-

tween bunches [34]. With this spacing, the maximum number of bunches in the
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ring is 2808.

5.2 Luminosity and timeline

As discussed in Chapter 3, the number of scattering events we expect is

the product of the scattering cross section and the luminosity (𝐿) of the particle

beams (Eq. 3.2.16). Cross sections are typically given in units of barn (b), where

1 b = 10−28 m2, and thus the luminosity often in inverse barns (b−1). For a circular

collider, the instantaneous luminosity is given by [34]:

𝐿 =
𝑁1𝑁2𝑛𝑏 𝑓rev

𝐴
, (5.2.1)

where 𝑁1 and 𝑁2 are the number of protons in each bunch, 𝑛𝑏 is the number

of bunches, 𝑓rev is the revolution frequency of the beams, and 𝐴 is the effective

beam overlap area at the interaction point. This is why the LHC design aims

to maximize the number of protons per bunch, the number of bunches, and the

frequency of bunches, while focusing and aligning the beams as much as possi-

ble at the interaction point. The instantaneous luminosity of pp collisions at the

LHC has increased steadily from a peak of 2.1 × 1032 cm−2s−1 in 2010 to around

2.5×1034 cm−2s−1 in 2022–24 [36]. Higher luminosity also leads to a higher rate of

simultaneous pp collisions during a single bunch crossing, called pileup, which

results in background noise to the detectors. As shown in Figure 5.6, the average

rate of pileup in CMS has ranged from 10 in 2011 to around 57 in 2024.
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The total luminosity delivered by the LHC is the integral of the above

over time, called the integrated luminosity, and is shown in Figure 5.7 along with

the projection up to 2041.1 So far, the LHC has delivered around 60 fb−1 of in-

tegrated luminosity at 7 or 8TeV COM to the CMS and ATLAS experiments in

Run 1, 138 fb−1 at 13TeV in Run 2, and is currently aiming for around 300 fb−1 at

13.6TeV in Run 3. After this, (tentatively) between 2026 and 2030, the LHC will

undergo a significant upgrade aiming to deliver an order of magnitude more lu-

minosity in Runs 4–6, between 5–7 × 1034 cm−2s−1 instantaneously, integrated

to around 3000 fb−1! This is called the High-Luminosity LHC (HL-LHC) up-

grade [172] (see Figure 5.8), and is expected to allow access to rare processes

such as Higgs boson pair production; however, it also entails major accelerator,

detector, and computational challenges to effectively deliver and exploit the in-

creased luminosity.

1Note that this projection has not been updated to reflect the decision made in September
2024 to extend Run 3 up to 2026 and delay the start of Run 4 to 2030.
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2011–2024, reproduced from Ref. [36].
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Figure 5.7. Integrated luminosity delivered by the LHC so far and the projection
up to 2041, reproduced from Ref. [37].
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Chapter 6

The CMS detector

6.1 Overview

The experimental apparatus used in this dissertation is the Compact

Muon Solenoid (CMS) detector (Figure 6.1), one of the two general-purpose de-

tectors at the LHC. It is uniquely characterized by its strong, superconducting

3.8 T solenoid magnet, around which are arranged several subdetectors to mea-

sure the properties of particles produced in collisions at the LHC. Inside the

solenoid, it contains an all-silicon tracker, to measure the momenta of charged

particles and identify the collision vertex, and lead-tungstate crystal electromag-

netic and brass and scintillator hadronic calorimeters to measure the energy of

particles interacting through the electromagnetic and strong forces, respectively.

Finally, outside the solenoid are gas-ionization detectors, interleaved with steel

flux-return yoke plates, to track muons.
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Figure 6.1. A cutaway view of the CMS detector showing the various subdetec-
tors and the solenoid magnet, reproduced from Ref. [39].

The CMS detector design was strongly motivated by the potential for dis-

covery of the Higgs boson as well as new physics at the TeV energy scale. Specif-

ically, the original design requirements were [46]:

• Strong muon identification and momentum resolution, as well as good

charge determination below 𝑝 < 1TeV;

• High charged-particle momentum resolution and reconstruction effi-

ciency;
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• Efficient triggering and good offline reconstruction of 𝜏-leptons and 𝑏-jets;

• Strong and hermetic electromagnetic energy resolution for photons and

electrons;

• Good missing transverse energy (MET) and jet mass resolutions.

In addition to the above, the detector also had to be robust against the high ra-

diation environment and pileup at the LHC, as well as have a powerful online

event selection system, called the trigger, to reduce the high raw 40MHz data

rate to something manageable for offline storage and analysis.

To satisfy the latter, events of interest in CMS are selected using a two-

tiered trigger system. The first level (L1) uses custom hardware processors and

information from the calorimeters andmuondetectors to select events at a rate of

around 100 kHz within a fixed latency of 4𝜇s [173]. The second level, known as

the high-level trigger (HLT), consists of a farm of processors running a version of

the full event reconstruction software optimized for fast processing and reduces

the event rate to around 1 kHz before data storage [174]. Both online and offline,

the raw detector signals are processed and reconstructed first locally as hits in

the individual subdetectors, then as tracks and calorimeter clusters, and finally

as physics objects such as electrons, muons, jets, and missing energy using the

particle-flow (PF) algorithm [48].

As we describe below, the CMS detector was able and continues to meet

these ambitious requirements. The CMS collaboration not only discovered the
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Higgs boson in 2012 [149], but also has since performed a wide range of mea-

surements of the Higgs sector and the SM as well as searches for diverse new

physics, such as those described in this dissertation.

Looking ahead, however, the upcoming high-luminosity era of the LHC

(Chapter 5.2) will bring forth considerable new challenges to the detector, with

significantly higher radiation levels, occupancies, andpileup. To overcome them,

nearly all CMS subdetectors will undergo a major upgrade after Run 3, known

as the Phase-2 upgrade [43]. The L1 trigger latency will be increased from 4 to

12.5𝜇s and the rate from 100 to 750 kHz, with an HLT rate of up to 10 kHz, to

cope with the increased data rates (as well as incorporate tracking information

at L1 for the first time) [175].

Alongwith this, the Phase-2 upgrade includes the addition of new timing

layers and the high granularity endcap calorimeter (HGCAL), which is notable

not only for its ambitious design, but also the computational challenges it poses

in detector simulation and reconstruction. These challenges are a major motiva-

tion for the work described in Part IV, exploring machine learning innovations

to accelerate these simulations in CMS.

In this chapter, we first introduce general concepts behind particle detec-

tors in Section 6.2, before describing the individual CMS detector components

in Section 6.3. The detector reconstruction and performance, as well as the PF al-

gorithm is then discussed in Section 6.4. We conclude with the Phase-2 upgrade

of CMS in Section 6.5, including the HGCAL in Section 6.5.4.
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Coordinate system

The CMS detector uses a coordinate system illustrated in Figure 6.2, with

the origin set at the interaction point within the detector. The 𝑥-axis is oriented

toward the center of the LHC ring, the 𝑦-axis is perpendicular to the plane of

the LHC ring, and the 𝑧-axis is parallel to the beamline. The azimuthal angle 𝜙

is measured in the 𝑥-𝑦 plane, relative to the 𝑥-axis and the polar angle 𝜃 in the

𝑥-𝑧 plane, relative to the 𝑧-axis. Typically, 𝜃 is converted to the pseudorapidity

𝜂 = − ln [tan (𝜃/2)], which has a more useful scale for describing high energy

collisions, and the angular separation between two particles is quantified using

the variable Δ𝑅 =
√(Δ𝜙)2 + (Δ𝜂)2. Finally, the transverse component of vectors,

such as the transverse momentum 𝑝T, are defined as projections onto the 𝑥-𝑦

plane.

6.2 Detecting particles

6.2.1 Particle interactions with matter

In Part I, we discussed the interpretation of fundamental particles as ir-

reps of the Poincaré group and quantum excitations of fields. In experimental

physics, we have yet another interpretation: “a particle is an object that interacts

with your detector such that you can follow its track” (W. Riegler [176]).
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Figure 6.2. The conventional CMS coordinate system.

Which is to say, in order to detect particles, they must interact with the

detector material and transfer energy in a way that we can measure. Out of the

myriad particles produced in LHC proton-proton collisions, the are only eight

particles stable enough to reach the CMS detector and be detected are listed in

Table 6.1. Neutrinos are also stable, but are too weakly interacting to measure

with the CMS detector, which means it is vital to measure the energy of all the

other particles hermetically; the presence of neutrinos can then be inferred by

energy conservation, or “missing energy” carried by neutrinos.

Charged particles

Out of these eight, the charged particles can interact electromagnetically

with matter through:
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Table 6.1. Particles which can reach and be detected by the CMS detector. Life-
times are given in the rest frame for unstable particles.

Particle Mass (MeV/𝑐2) Charge (𝑒) Lifetime (s)
Photons 0 0 Stable
Electrons / positrons 0.511 ±1 Stable
Protons 938 +1 Stable
Neutrons 940 0 880
(Anti-)Muons 106 ±1 2.2 × 10−6

Charged pions 140 ±1 2.6 × 10−8

Neutral kaons 498 0 9 × 10−11—5 × 10−8

Charged kaons 494 ±1 1.2 × 10−8

• Ionization and excitation of atoms: inelastic scattering with atomic elec-

trons and elastic scattering from nuclei, respectively. The average energy

loss per distance 〈𝑑𝐸/𝑑𝑥〉 of a particle due to ionization is given by the fa-

mous Bethe-Bloch formula [177].

• Bremsstrahlung: photon radiation because of (de-)acceleration in the elec-

tric field of nuclei;

• Cherenkov effect: photon radiation due to the particle moving faster than

the speed of light in the medium;

• and transition radiation: photon radiation due to the crossing a boundary

between two different dielectrics.

Generally, for “heavy” charged particles (of mass � electron mass), electromag-

netic interactions are dominated by ionization and excitation, while for electrons

and positrons, Bremsstrahlung is dominant at higher energies.
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The presence and angle of Cherenkov radiation depends on the particle

momenta, a factwhich is often exploited for “particle identification” (PID) by dis-

tinguishing particles of different masses at given momenta. For example, LHCb

uses ring-imaging Cherenkov (RICH) detectors to distinguish hadrons, which

is critical for 𝑏-physics [178]. CMS, on the other hand, did not prioritize PID

and cannot accurately distinguish between the different hadrons beyond their

charge.

Photons

Photons primarily interact through:

• The photoelectric effect: absorption by an atom causing the ejection of an

electron, dominant at low energies, � 1MeV;

• Compton scattering: incoherent scattering off an atomic electron, domi-

nant at intermediate energies, ∼ 1MeV;

• and pair production: converting into electron-positron pairs in the

Coulomb field of nuclei, dominant at high energies, � 1MeV.

The combination of these effects means that as high energy electrons and pho-

tons propagate through the detector material, they produce a cascade of sec-

ondary particles, called an electromagnetic shower, which are analyzed to infer

the presence and overall energy of the originating particle.
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It is often convenient to characterize detector materials by their radiation

length (𝑋0), which is the mean distance into the material over which high-energy

electrons lose 1/𝑒 of their energy due to Bremsstrahlung, and 7/9 of the mean free

path of photons before pair production.

Hadrons

Finally, high energy hadrons can also interact with atomic nuclei through

the strong force, losing energy through further particle emissions which create

their own hadronic shower. As a large fraction of these emitted particles are neu-

tral pions, which decay immediately into photons, hadronic showers are also

often accompanied by electromagnetic sub-showers. We can characterize ma-

terials for hadron detection similarly by their nuclear interaction length (𝜆), the

mean free path between nuclear interactions.

6.2.2 Types of detectors

Tracking detectors

The earliest particle detectors were gaseous ionization chambers. Charged

particles passing through these detectors ionize the gas along their trajectory,

creating visible tracks, which can be captured, for example, by using an electric
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field to push the ions towards photographic film. The most notable examples

are cloud chambers, which were prominent in the first half of the 20th century,

and led to the discovery of the positron, muon, and kaon via cosmic rays. The

Nobel Prize was awarded to Charles Wilson in 1927 and Carl Anderson in 1936

for the invention and development of the cloud chamber, respectively.

Tracking detectors have since continuously evolved, such as through the

use of liquid media in bubble chambers and charged wires to produce electric

fields and read out ionization signals electronically in wire chambers, both of

which again led to Nobel Prizes for their inventors, Donald Glaser and Georges

Charpak, respectively. The Gargamelle bubble chamber at CERN notably led to

the discovery of weak neutral currents [144] (see Chapter 4.2.1).

More recently, a significant advancement in tracking detectors has been

achieved through the use of semiconductors such as silicon. A 𝑝-𝑛 semicon-

ductor diode [179, 180] effectively forms an ionization chamber as well, where

charged particles passing through will create electron-hole pairs whose charge

can be collected and recorded. Semiconductor detectors can have lower ioniza-

tion energies, higher granularity, better position and time resolution, and strong

radiation tolerance, while also being able to leverage innovations and state-of-

the-art fabrication techniques from the semiconductor industry.

Thus, there has been a gradual shift towards their use, particularly in col-

lider physics. Here, tracking detectors are crucial for (1) vertexing — measuring

particle tracks precisely to determine the point of collision, or the “vertex”—and
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(2) measuring the curvature of charged-particle trajectories in amagnetic field to

determine their momenta. Silicon trackers, for example, were employed for ver-

texing in all LEP experiments and the CDF and DØexperiments at the Tevatron.

The CMS detector is notably the first to use silicon for its entire tracking volume.

Semiconductor trackers are, however, more expensive per unit area.

Hence, gaseous and liquid detectors remain prevalent in particle physics, par-

ticularly where large volumes are required, such as in neutrino experiments and

the CMS muon system.

Calorimeters

Calorimeters are detectors designed primarily to measure the energy of

particles. They can be either homogeneous, where the entire volume of the detec-

tor can both absorb and measure the energy of the shower; or, sampling, where

separate “passive” layers which absorb energy and initiate the shower are inter-

leaved with “active” layers to measure the energy. Sampling calorimeters are

less precise than homogeneous calorimeters, but are more cost-effective, espe-

cially when large volumes are required. CMS employs both types of calorime-

ters, and primarily uses scintillation — photon emission due to atomic (de-

)excitation from charged particles — to capture and measure energy.

Generally in collider physics trackers are designed to have short radiation

lengths, to minimize particle energy loss, and calorimeters as long a radiation
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length as possible, to capture the entire energy of electromagnetic or hadronic

showers. In addition to their radiation and nuclear interaction lengths, calorime-

ter materials are characterized as well by their Molière radius (𝑅𝑀), which is the

radius of a cylinder containing, on average, 90% of an incident electron or pho-

ton’s electromagnetic shower energy. It is approximately related to 𝑋0 as:

𝑅𝑀 = 0.0265𝑋0(𝑍 + 1.2), (6.2.1)

where 𝑍 is the atomic number of the material.

General-purpose detectors

Designing a general-purpose detector, such as CMS, requires a careful op-

timization of several factors, including high efficiency and resolution for asmany

of the particles in Table 6.1, radiation hardness, cost effectiveness, and more. A

typical compromise in particle physics has been a “layered” detector design, as

shown in Figure 6.3, with a thin (in radiation and nuclear interaction lengths) in-

nermost tracker for precise vertexing and momentum measurements, followed

by thick calorimeters to measure particle energies, and finally dedicated detec-

tors to identify and measure high energy muons that are able to penetrate the

previous layers. The CMS detector follows this general philosophy, as shown in

Figure 6.4.
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Figure 6.3. Layers in a typical general-purpose detector in particle physics and
an illustration of the interactions of different particles.

6.3 CMS detector components

6.3.1 The magnet

The defining characteristic of the CMS detector is its strong 3.8T solenoid

magnet, with a 11.4Tm bending power (Figure 6.5). Its large 6m diameter and

13m length accommodate not only the tracker for momentum measurements,
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Figure 6.4. Illustration of the different detector layers in the CMS barrel region
and the expected hits and energy deposits from various particles, reproduced
from Ref. [40].

but also the calorimeters in order to reduce the material in front of them. The

strength of the magnet was chosen to allow precision measurements of charged-

particle momenta and to achieve a target 𝑝T resolution of 10% for 1 TeV muons.

As shown in Figures 6.1 and 6.4 in red, the solenoid is additionally sur-

rounded bymassive layers of steel “return yoke”, weighing 12,000 tonnes in total,

for several complementary reasons: (1) it confines the magnetic field, improv-

ing the efficiency and safety of the detector, by providing a low-reluctance path

for the magnetic field lines to return to the solenoid; (2) it is interleaved with
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Figure 6.5. The CMS solenoid, as it was being lowered into the CMS cavern in
2007, reproduced from Ref. [41].

the CMS muon system and provides a residual magnetic field for muon track-

ing; (3) it absorbs the remaining particles not been completely contained by the

calorimeters; and, finally, (4) it provides structural support to the detector. The

resulting magnetic field throughout CMS is shown in Figure 6.6, where we can

see a uniform 3.8T field within the solenoid and an ≈ 2T field in the return yoke.
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Figure 6.6. Measurement using cosmic rays (left) and illustration (right) of the
CMS magnetic field, reproduced from Ref. [42].

6.3.2 Tracker

The CMS tracker is designed to achieve the key detector requirements of

strong charged-particle momentum resolution and efficient online and offline 𝜏

and 𝑏-jet reconstruction. It must additionally operate at a high efficiency at the

expected average pileup rate of 20-60 collisions per bunch crossing in Runs 1–3 of

the LHC. To do so, as illustrated in Figure 6.7, it comprises relatively small and

granular silicon pixel layers close to the interaction point for precise vertexing,

followed by larger silicon strip layers. The tracker has an overall diameter of 2.5m

and length of 5.8m, and is composed of a separate co-axial “barrel” region and

two “endcap” regions perpendicular to the beamline, to provide pseudorapidity

coverage of
��𝜂�� ≲ 2.4.
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Figure 6.7. Schematic of one quarter of the Phase-1 CMS tracker in the 𝑟-𝑧 plane,
reproduced fromRef. [43]. In green are the pixel detector layers, in red the single-
sided strip modules, and in blue the double-sided strip modules.

Silicon has several advantages for tracking detectors: it can be made radi-

ation hard to be placed close to the interaction point [181]; it has a low ionization

energy of 3.6 eV; it can be made thin — the maximum radiation and nuclear in-

teraction lengths over the entire CMS tracker are around 2 and 0.6 respectively

(Figure 6.8); it is naturally abundant and widely used in the semiconductor in-

dustry; and it can be easily patterned to small dimensions for high granularity.

This is why, as discussed in Section 6.3, silicon has gained popularity in particle

physics, with CMS being the first to use it for the entire tracker.

The pixel tracker includes three barrel layers at radii of 4.4, 7.3, and

10.2 cm and two pairs of endcap disks at 𝑧 = ±34.5 and ±46.5 cm. It contains

a total of 1440 modules and 66 million pixels, of size (or “pitch”) 100 × 150𝜇m2,

and thickness 285𝜇m. The planar position of the sensor provides a third posi-

tion coordinate as well. The pixel tracker yields an overall hit position resolution

of 10–20𝜇m in the transverse direction — 𝑟𝜙 in the barrel — and 20–40𝜇m in
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Figure 6.8. Total thickness 𝑡 of the tracker material traversed by a particle pro-
duced at the nominal interaction point, as a function of pseudorapidity 𝜂, ex-
pressed in units of radiation length 𝑋0 (left) and nuclear interaction length 𝜆𝐼
(right), reproduced from Ref. [182].

the longitudinal direction — 𝑧 in the barrel. The pixel orientation is optimized

most for 𝑟𝜙 resolution, as that is the plane in which charged particles bend from

the CMS magnetic field.

Silicon strip modules are longer than pixels, providing high granularity

only in one axis, but are more cost-effective; hence, they are used in the outer

layers of the CMS tracker, which require a much larger area of coverage: 198m2

of active coverage versus 1.1m2 for the pixels. The strip tracker has 10 barrel

layers and three small andnine large endcapdisks, with a total of 15,148modules

and 9.3 million strips. It contains two types of strip modules: standard “single-

sided” modules as well as “double-sided“ modules mounted back-to-back at a

stereo angle to effectively allow pixel-like 2D measurements as well, albeit at a

185



lower granularity.

The strip modules in the barrel are aligned parallel to the beamline with

a pitch ranging from 80–183𝜇m, while those in the endcaps are mounted in the

radial direction with a pitch of 81–205𝜇m. Overall, the strips in the inner barrel

and disk layers provide an 𝑟𝜙 resolution of 13–38𝜇m, while the outer layers

provide 18–47𝜇m.

6.3.3 ECAL

The CMS electromagnetic calorimeter (ECAL) (Figure 6.9) was designed

to precisely measure energies of electrons and photons. It was particularly opti-

mized for sensitivity to the Higgs-to-two-photon decay channel, which proved

crucial to the discovery of the Higgs boson [149].

The ECAL is a homogeneous calorimeter made out of 75,848 lead-

tungstate (PbWO4) crystals (Figure 6.10), which are a type of highly transparent

scintillators. PbWO4 was chosen for its high density (8.28 g/cm3), short radiation

length (𝑋0 = 0.89 cm), and small Molière radius (𝑅𝑀 = 2.2 cm), which allows for

a compact calorimeter with fine granularity. Additionally, its fast scintillation

response (≈ 10ns) allows distinguishing between “out-of-time” (OOT) pileup—

particles produced from adjacent bunch crossings — and particles from the pri-

mary interaction [183]. The scintillation light is detected by photodiodes glued

to the back of each crystal.
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Figure 6.9. Layout of the CMS ECAL, reproduced from Ref. [44], with one of the
36 barrel regions highlighted in yellow, the preshower in pink, and the endcap
regions in green.

Like the tracker, it has a barrel region, covering
��𝜂�� < 1.48, and two end-

cap regions for 1.48 <
��𝜂�� < 3.00. They have thicknesses of 25.8𝑋0 and 24.7𝑋0,

respectively, and a total nuclear interaction length of around 1. This is sufficient

to contain >98% of the energy of ≤ 1TeV electrons and photons, and causes

around two thirds of charged hadrons to shower in the ECAL as well.

Additionally, the ECAL includes a “Preshower” sampling calorimeter in

the endcap regions, which comprises two layers of 3𝑋0 of lead to initiate elec-
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Figure 6.10. PbWO4 crystals and photodiodes used in the CMS ECAL.

tromagnetic showers, interleaved with active silicon strip detectors for measure-

ments. The purpose of the Preshower is primarily to distinguish between sin-

gle photons and neutral pion decays into two, close-by, photons in the forward

regions, whose energy deposits in the ECAL would otherwise overlap signifi-

cantly.

6.3.4 HCAL

The CMS hadronic calorimeter (HCAL) sits roughly 30 cm outside the

ECAL and is designed to measure the energies of neutral and charged hadrons.

It is composed of four major sections: the HCAL barrel (HB), the HCAL endcap

(HE), the HCAL outer (HO), and the HCAL forward (HF) (Figure 6.11). Due to

their much greater volume compared to the ECAL, the HB, HE, and HO are all

chosen to be sampling calorimeters, with alternating layers of absorber material

and plastic scintillator. The HF extends the pseudorapidity coverage of CMS up

to
��𝜂�� = 5.2 and is a steel and quartz-fiber Cherenkov calorimeter.
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The HB has 14 total layers of brass absorbers and scintillators, with ad-

ditional steel front and back plates, covering
��𝜂�� < 1.4 [46]. Due to its radial

constraints, with the ECAL and magnet on either side, it has a thickness at 𝜂 = 0

of only 5.8𝜆, with the ECAL adding another ≈ 1𝜆.

Figure 6.11. Layout of the CMS detector in the 𝑟-𝑧 plane with the four HCAL
sections labeled, reproduced from Ref. [45].

To capture the remaining “tails” of hadronic showers in the barrel region,

the HO is placed outside the solenoid. It uses the same scintillators and elec-

tronics as the HB, but uses the magnet and return yoke materials themselves

as absorbers, adding up to 3𝜆 more of material. Figure 6.12 demonstrates that

the HO is crucial for capturing the entire energy of hadronic showers: without

it, we see an excess of events with the measured energy of hadrons lower than
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their incident energy, implying a loss of energy with the HB alone.

Figure 6.12. Simulation of the distribution of measured / incident energy for
pions with incident energies of 200GeV at 𝜂 = 0, reproduced from Ref. [46].
Without the HO, there is an excess of events with the measured energy lower
than the incident, while with the HO the distribution is a Gaussian centered at
1, implying recovery of the total pion shower energy.

The HE covers the pseudorapidity range 1.3 <
��𝜂�� < 3.0 and has 18 lay-

ers of brass and scintillators, for a total length of 10𝜆 including the ECAL. The

granularity of both the HB and HE for
��𝜂�� < 1.6 is 0.087 × 0.087 in 𝜂-𝜙, while for��𝜂�� > 1.6 in the HE it increases to 0.17 × 0.17.

The HF is placed 11.2m from the interaction point to cover the very for-

ward range 3.0 <
��𝜂�� < 5.2. Its primary design constraints are the extremely hos-

tile radiation levels in the high-rapidity region, and hence uses steel absorbers

and quartz fibers that are radiation hard [184]. It contains 1.65m of absorber

material in each endcap, andmeasures energy through Cherenkov light emitted
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by charged particles moving through the longitudinal quartz fibers. It is hence

more sensitive to the electromagnetic component of showers.

The HF is important in measuring the energy of an event hermetically

and, thereby, the missing energy as well. Moreover, it is crucial in identify-

ing highly forward jets like those produced through VBF-production of Higgs

bosons, an important production-mode measured in this dissertation (see Chap-

ters 4.3 and 14).

6.3.5 Muon system

As implied by its name, detecting muons with high efficiency and preci-

sionwas a key consideration in the design ofCMS. This is because of their unique

signature compared to the other particles in Table 6.1, the possibility of Higgs

discovery in the 𝐻 → 𝑍𝑍∗ → 4𝜇 channel, and the relatively low isolated-muon

background at the LHC. Indeed, the 4𝜇 channel was crucial to the discovery of

the Higgs boson [149].

Muons are detected through a combination of the silicon tracker inside

the solenoid, and dedicated gas ionization chambers for tracking muons out-

side the solenoid, covering a total pseudorapidity range of
��𝜂�� < 2.4. The muon

system, being the outermost subdetector, needs to cover the largest amount of

area — around 25,000m2 of detector layers — and hence uses gaseous detectors

to minimize cost while maintaining reliability and robustness. Three types of
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gas detectors are used: drift tubes (DTs) in the barrel region, cathode strip cham-

bers (CSCs) in the endcap regions, and resistive plate chambers (RPCs) in both,

all housed between the steel flux return yoke layers, as shown in Figure 6.13.

Figure 6.13. Layout of the CMS detector in the 𝑟-𝑧 plane, with the muon system
highlighted and the steel return yoke in dark grey, reproduced from Ref. [47].
The drift tube stations (DTs) are labeled MB (“Muon Barrel”) and the cathode
strip chambers (CSCs) are labeled ME (“Muon Endcap”). Resistive plate cham-
bers (RPCs) are mounted in both the barrel and endcaps of CMS, where they are
labeled RB and RE, respectively.

Because of the lower radiation and background levels expected in the bar-

rel region, standard DT chambers are used, which are known to have excellent
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spatial and timing resolution while remaining relatively inexpensive. There are

fourmuon barrel (MB) radial layers, or “stations”. The innermost three each con-

tain eight chambers measuring the position in the 𝑟-𝜙 plane and four measuring

the 𝑧 coordinate. The outermost contains only the 𝑟-𝜙 chambers.

Each chamber comprises several layers of long aluminum drift cells, which

have a transverse area of 42× 13mm2 and are filled with a mixture of argon (Ar)

and carbon dioxide (CO2) gas. They contain a single anode wire in the center,

and the drift time of the electrons to the wire is used to calculate the muon posi-

tion. The average single-cell spatial resolution has been measured to be 170𝜇m,

with a combined per-chamber resolution of 100𝜇m in 𝑟-𝜙 [46]. DT chambers also

provide a time resolution on the order of nanoseconds, allowing local, indepen-

dent triggering on muon 𝑝T.

The endcaps are subject to much higher radiation and hence use themore

radiation-hard CSCs, which offer fast response times and fine segmentation as

well but are more expensive. They can also tolerate the non-uniformity of the

magnetic field in the endcap regions (see Figure 6.6). There are four muon end-

cap (ME) stations on each side, which are divided into “rings” in the 𝑟-direction,

and labeled as ME1/2 for the second ring in the first station and so on.

The endcap muon system contains a total of 468 CSCs: 216 in ME1, 108

in ME2 and ME3 each, and 36 in ME4. A single CSC is composed of six layers of

multi-wire proportional chambers, each containing several anode wires spaced

between 2.5–3.2mm apart and 80 cathode strips to read out position in the 𝑟-
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𝜙 plane [185]. The CSCs overall provide a spatial resolution in 𝑟-𝜙 of 75𝜇m in

ME1/1 and ME1/2 and 150𝜇m elsewhere, with a time resolution of <5ns [46].

This means CSCs, like the DTs, independently allow local triggering on muon

𝑝T with good efficiency and background rejection.

Finally, RPCs are included as well in both the barrel and endcap regions

to provide complementary triggering capabilities. RPCs are double-gap cham-

bers operated in avalanche mode, which means they primarily offer fast timing

information, with around 1.5ns resolution, but relatively poor spatial resolu-

tion [186]. There are four RPC barrel (RB) and three RPC endcap (RE) stations,

complementing the DTs and CSCs with faster timing information and allowing

the muon 𝑝T trigger threshold to be lowered.

6.4 Detector reconstruction and perfor-

mance

6.4.1 Tracker

Tracks are reconstructed from the hits in the tracker using an iterative al-

gorithm called the Combinatorial Track Finder (CTF) [182], based on the Kalman

filter [187]. CTF starts by finding the “easiest” tracks (e.g. of high 𝑝T and pro-
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duced near the interaction region), removes their hits from the search, and then

repeats the process until all tracks have been found. Due to the high compu-

tational cost of track reconstruction, this cannot be performed at the L1 trigger

and, hence, track information is not used for the L1 trigger decision currently in

CMS.

Offline, CMS is able to reconstruct isolated muons of 𝑝T > 0.9GeV with

100% efficiency within the tracker acceptance of
��𝜂�� < 2.4, with a 𝑝T resolution

of up to 2.8% for 𝑝T ∼ 100GeV [182]. The pixel tracker can also achieve a ver-

tex position resolution of 10–12𝜇m in all three spatial dimensions. 𝐵-hadrons

produced in the 𝑝𝑝 collisions generally travel on the order of a few millimeters

before decaying and, hence, the precise vertexing of the CMS tracker allows for

efficient 𝑏-tagging [188] and even boosted 𝑏𝑏-tagging [164], as is crucial for the

analysis described in this dissertation.

6.4.2 ECAL

Signals in the ECAL crystals are reconstructed by fitting the signal

pulse with template pulse shapes to distinguish OOT pileup, both offline and

online [183]. The individual hits are then clustered to identify electromag-

netic showers initiated by the same incident particle, and are further clustered

into “superclusters” to account for photon conversions and bremsstrahlung

losses [189]. Clusters are tested for compatibility with reconstructed tracks from
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both single electrons and pair-produced electrons by photons, and the combined

information is used to identify electrons and photons. Cluster energies are cal-

ibrated based on differences in neutral pion to two-photon decays in data and

simulation [48].

With the PF algorithm, electrons (isolated photons) are identified by the

ECAL clusters, the presence (absence) of a corresponding track in the tracker,

and a low relative energy deposit in the HCAL along the particle trajectory.

The online triggers use a similar but simplified algorithm with tighter require-

ments on electron and photon identification. Offline, multivariate regression

algorithms are used to correct the raw measured energy for inefficiencies due to

energy loss before or in the ECAL.

Overall, the ECAL has been measured in data collected by CMS to have

a reconstruction efficiency of >95% for 10 < 𝐸T < 500GeV, with an uncertainty

on the electron and photon energy scale of 0.1% in the barrel and 0.3%, in the

endcaps [189]. Electron energy resolution was measured to be between 2–5% in

𝑍 → 𝑒+𝑒− decays.

6.4.3 HCAL

The energy of hits in the HCAL is estimated, and OOT PU rejected, by fit-

ting pulse templates to the photodetector signals, both online and offline [190].

Corrections are applied as well based onmeasured reduction of the light output
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of the scintillators due to radiation damage and decrease in the photodetector

efficiencies [191]. As the HCAL is a sampling calorimeter, the measured energy

must be scaled to estimate the total energy of the hadronic shower. This scale fac-

tor is nonlinearwith the energy of the incident particle, and is estimated through

a variety of techniques using simulations and data for the different HCAL com-

ponents and regions [191]. The overall energy scale is measured to a precision

of <2% in the HB and HE, and <3% for the HO and HF.

A similar clustering algorithm to the ECAL’s is used in all HCAL subde-

tectors, with the exception of the HF where a hit in a cell is directly considered

a “cluster’. As hadrons deposit energy in the ECAL as well, cluster energies in

both calorimeters are calibrated together for hadrons, using a sample of neutral

kaons [48]. As for electrons and photons in the ECAL, the PF algorithm is used to

identify hadrons based on a higher relative energy deposit in the HCAL versus

ECAL, and, for the case of charged hadrons, a matching track in the tracker.

Figure 6.14 shows the response — the relative mean difference between

the measured and true energy of a particle — and resolution for single neutral

hadron energies in the barrel as a function of the true energy, before and after cal-

ibration. We see that the energy resolution is significantlyworse than for charged

particles and photons — >10% for all energies — due to the modest resolution

of the HCAL compared to the tracker and ECAL. However, neutral hadrons on

average comprise only 10% of event and jet energies (the rest coming from 65%

charged hadrons and 25% photons), which means the overall contribution is at
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the percent level.
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Figure 6.14. Response and resolution of single neutral hadron energies in the
barrel as a function of the true energy, before and after calibration, reproduced
from Ref. [48].

6.4.4 Muon system

Themuon system is triggered using the independent and complementary

timing information from the DTs and CSCs in the barrel and endcap, respec-
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tively, and the RPCs in both. Hits are first reconstructed locally based on the

timing information from the RPCs and the position and timing information from

the DTs and CSCs. Hits along the muon chambers are then combined to form

standalone-muon tracks using a Kalman filter technique [187]. Additional tracker

muon tracks and global muon tracks are formed by propagating tracker tracks to

loosely matched DT or CSC hits, and matching the standalone-muon tracks to

tracker tracks, respectively [47]. The combined track information is used by the

global PF algorithm to optimize muon identification and determine their mo-

menta [48].

Overall, the muon reconstruction and identification efficiency has been

measured to be >96% [47]. For lower 𝑝T muons (𝑝T < 200GeV), the momentum

measurement is dominated by the inner tracker performance, with a resolution

of approximately 1% in the barrel and 3% in the endcaps. For higher 𝑝T muons,

the combined tracker and muon system information is important, with a mea-

sured resolution of <6% at 𝑝T ∼ 1TeV.

6.4.5 Object reconstruction and particle flow

The PF algorithm [48] is used to reconstruct and identify each individ-

ual particle in an event, with an optimized combination of information from

the different subdetectors. The energy of photons is obtained from the ECAL

measurement. The energy of electrons is determined from a combination of
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the electron momentum at the primary interaction vertex as determined by the

tracker, the energy of the corresponding ECAL cluster, and the energy sum of all

bremsstrahlung photons spatially compatible with originating from the electron

track. The energy of muons is obtained from the curvature of the correspond-

ing track. The energy of charged hadrons is determined from a combination of

theirmomentummeasured in the tracker and thematching ECAL andHCAL en-

ergy deposits, corrected for the response function of the calorimeters to hadronic

showers. Finally, the energy of neutral hadrons is obtained from the correspond-

ing corrected ECAL and HCAL energies. The primary vertex (PV) is taken to be

the vertex corresponding to the hardest scattering in the event, evaluated using

tracking information alone, as described in Ref. [192].

For each event, hadronic jets are clustered from these reconstructed par-

ticles using the infrared and collinear safe anti-𝑘T algorithm [193, 194] with a

distance parameter of 0.4 (AK4 jets) or 0.8 (AK8 jets). Jet momentum is deter-

mined as the vectorial sum of all particle momenta in the jet, and is found from

simulation to be, on average, within 5 to 10% of the true momentum over the

whole 𝑝T spectrum and detector acceptance. For the analysis described in this

dissertation, the charged-hadron subtraction [195] and pileup per particle iden-

tification [196, 197] algorithms are used to mitigate the effect of pileup on AK4

and AK8 jets, respectively, and further corrections are applied to their energy

and mass scales and resolutions to correct for detector mismodeling.

Electrons falling within the tracker acceptance are reconstructed using
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momentum derived from the tracker, the energy from the corresponding ECAL

cluster, and the collective energy of all bremsstrahlung photons spatially aligned

with the electron track [198]. Muons falling within the muon chamber accep-

tance
��𝜂�� < 2.4 are reconstructed as tracks in the central tracker which align with

tracks or hits in the muon chambers [47]. For the analysis described in this dis-

sertation, electron candidates are required to fall within the tracker acceptance

of
��𝜂�� < 2.5 and have 𝑝T > 20GeV, while muon candidates are required to be

within the muon chamber acceptance of
��𝜂�� < 2.4 and have 𝑝T > 10GeV. Both

leptons are then required to pass additional identification criteria [47, 198] to im-

prove purity and be isolated [48] to suppress those originating from bottom or

charm hadron decays.

6.5 The Phase-2 Upgrade

6.5.1 Tracker

In theHL-LHC, the trackerwill have to enduremuch higher radiation lev-

els and help mitigate the larger 140–200 expected pileup interactions. The entire

CMS tracker will thus be replaced during the long shutdown 3 (LS3) between

2026 and 2029 with the “Phase-2” tracker [43], comprised of an Inner Tracker of

silicon pixels and an Outer Tracker of silicon strip and “macro-pixel” modules.

Overall, the upgrade will improve its radiation hardness, granularity, as well as
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increase its forward acceptance.

A key additional novelty is the inclusion of dedicated “𝑝T modules” [199]

in the Outer Tracker to efficiently and quickly detect high 𝑝T (≳ 2GeV) tracks.

This will allow, for the first time, L1 trigger decisions to be based on tracker

information. This is crucial to mitigate the increased pileup, and may perhaps

even improve the trigger efficiency for objects such as 𝑏-jets and 𝜏-leptons [200].

6.5.2 Timing layers

The Phase-2 upgrade of CMS will include a novel, thin layer of timing

detectors between the tracker and calorimeters to provide a target resolution of

30–60 ps for charged particles. This precise timing informationwill be crucial for

reducing OOT pileup particles not compatible with the time of the primary ver-

tex, with an estimated effective pileup reduction from 200 to between 33–70 [201].

It may additionally aid particle identification (PID), and hence jet tagging, using

time-of-flight measurements to calculate particle velocities andmasses for given

momenta [202].

The timing layers are based on minimum ionizing particle (MIP) tim-

ing detectors (MTDs). MIPs are high-energy particles which deposit a small

fraction of their energy as they traverse and ionize the sensors. MTD sensors

are designed for rapid signal collection and response to these interactions to

achieve the target timing resolution. Two separate barrel and endcap timing
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layers (BTL and ETL, respectively) will be installed, using different sensor tech-

nologies based on the different geometries and radiation levels.

The BTLwill bemade out of 300,000 scintillatingCerium-dopedLutetium

(LYSO) crystals, known for their fast response time and high light yield, read out

by silicon photomultipliers (SiPMs), also known for speed and good photon de-

tection efficiency (PDE). This combination has been measured to provide the de-

sired time resolution of 30ps in charged pion test beams [203]. Both the crystals

and SiPMs are sufficiently radiation-hard for the barrel; however, SiPM PDE is

expected to degrade over time due to increased dark current noise, reducing the

timing resolution to about 50-60ps by the end of the HL-LHC [203].

The more extreme levels of radiation in the endcap preclude the use of

SiPMs. Instead, the ETLwill use amore radiation-hard silicon sensor known as a

low gain avalanche detector (LGAD). LGADs incorporate an extra gain layer into

the typical 𝑝-𝑛 junction diode in order to rapidly amplify the signal by a factor

of 10–30. They have beenmeasured to allow single-hit resolution for MIPs at the

level of 30–50ps, even after the full expected radiation dose of the HL-LHC [201].

6.5.3 Barrel calorimeters

In the barrel, the PbWO4 crystals and photodiodes of the ECAL are ex-

pected to performwell andwill be retained, although the operating temperature

will be lowered from 18 to 9C to counter increased noise in the photodiodes [44].
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The electronics will be upgraded to be faster and more radiation tolerant, with a

target time resolution of 30ps for energy deposits greater than 50GeV tomitigate

pileup. The radiation damage to the HCAL barrel active material is expected to

have a negligible impact on the physics performance and, hence, the HB scintil-

lators and fibers will also be retained [204]. However, its back-end electronics

will be similarly upgraded to sustain the higher 750kHz L1-trigger rate.

6.5.4 HGCAL

Both the ECAL and HCAL calorimeter endcaps (CEs) will be replaced

entirely by the new High-Granularity Calorimeter (HGCAL) [205] due to the

extreme forward radiation levels expected. The HGCAL has been designed to

not only withstand the increased radiation, but also to provide: (1) high lateral

granularity, for better shower separation and narrow jet identification; (2) fine

longitudinal granularity, for better shower shape and energy resolution; as well

as (3) precision timing for pileup rejection. The latter means HGCAL will be a

5D calorimeter, able to measure the position, energy, and timing of hits.

The HGCAL will be a large sampling calorimeter with a total of 47 ab-

sorber and sensor layers, illustrated in Figure 6.15. The electromagnetic section

(CE-E) will comprise 26 sensitive layers of≈0.5–1 cm 2 silicon sensors interleaved

with copper, copper-tungsten, and lead absorber plates, with a total thickness of

27.7𝑋0 and 1.7𝜆. The hadronic section (CE-H) will contain 21 layers of sensors,
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with silicon in the high-radiation regions and≈4–30 cm 2 plastic scintillating tiles

read-out by SiPMs in the low-radiation regions (Figure 6.16), and stainless steel

and lead absorbers, for a total thickness of 7𝜆. The entire HGCAL will be oper-

ated at −30C to keep electronic noise sufficiently low.

Silicon is again chosen for the benefits described in Section 6.3.2, aswell as

its fast response time, which is expected to provide time resolution of 20− 60ps

depending on the energy of the hit. This has been shown to significantly aid in

pileup rejection [206]. Cheaper plastic scintillators are used where the radiation

levels are lower and, additionally, a hexagonal geometry is chosen to cover the

more than 600m2 of silicon area required in the most cost-effective manner, as

shown in Figure 6.16.

Overall, the high-granularity, high-density, and fast timing calorimetry

of the HGCAL is expected to significantly improve electron, photon, and jet ef-

ficiency and resolution, mitigate pileup, and allow more powerful trigger algo-

rithms in HL-LHC [205]. However, the increased complexity and occupancy,

and unorthodox geometry, will pose significant challenges not only in its design

and construction, but also computationally with respect to its simulation and re-

construction. This is a strong motivation for the exploration of new computing

techniques for fast and efficient CMS simulations, as we will discuss in Part IV.
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6.5.5 Muon system

Aswith the barrel calorimeters, the gas detectors themselves in the muon

system are expected to continue performing well at the HL-LHC with no signifi-

cant degradation in the overall muon reconstruction performance [47]. The elec-

tronics, however, will be upgraded to be more radiation hard and sustain the

higher trigger rate.

The higher radiation and pileup does pose considerable challenges to re-

liable muon triggering in the very forward regions, however. In fact, trigger

inefficiencies were already anticipated in Run 3 of the LHC, which led to the in-

stallation of a new gas electron multiplier (GEM) station in the endcap regions

of the muon system in the 2019–2022 long shutdown before Run 3, and recently

another GEM station at the beginning of 2024 [207]. GEMs are popular gas detec-

tors with high rate capability and radiation tolerance, and provide crucial addi-

tional hit information to improve the trigger efficiency andmuon reconstruction

in the forward 1.5 <
��𝜂�� < 2.4 regions.

During LS3, two more RPC stations for 1.8 <
��𝜂�� < 2.4 and one final GEM

will be added in the endcap regions for HL-LHC. The RPCs will provide further

forward timing information as well to complement the CSCs and recover single-

muon trigger efficiencies [208].
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Figure 6.15. Layout of the CMS HGCAL, reproduced from Ref. [49].
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Figure 6.16. (Left) layers of the individual HGCAL modules and (right) their
layout in the all-silicon and mixed layers, reproduced from Ref. [49].
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Part III

AI/ML and Statistics Background
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Chapter 7

Machine Learning for HEP

7.1 Introduction

Machine learning (ML) and deep learning (DL) are revolutionizing data

analysis, computing, and even real-time triggers in high-energy physics (HEP).

Significant contributions of this dissertation include ML advancements for

Higgs boson searches and beyond and fast detector simulations for the HL-LHC.

In this chapter, to motivate them, we introduce some core concepts of ML, espe-

cially as they relate to HEP applications.

ML refers to a general class of algorithms that “learn” from data to solve

problems. This is in contrast to traditional, hand-engineered bespoke algorithms

designed by domain experts to address specific tasks. A relevant example in

HEP is selecting a high-purity, in terms of signal versus background, region of
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data: a traditional approach would be to manually define a set of selections on

individual kinematic features based on physical reasoning; for example, when

measuring Higgs boson production, we select for events exhibiting resonances

around the Higgs mass.

However, as we enter the regime of extremely large quantities of high-

dimensional data and measurements of ever more complex processes (such as

theHH searches described in this dissertation), it soon becomes intractable, or at

least suboptimal, tomanually define selections over theO(10–100) event features

that can help distinguish signal from background. This is where we turn to ML

algorithms, such as boosted decision trees (BDTs) [209], which can automatically

compute optimal, non-linear selections in this high-dimensional feature space.

More recently, the advent of artificial neural networks (ANNs) and deep

learning (DL), along with increased data availability and computing power, has

led to orders of magnitude increases in the dimensionality of data that can be

exploited and the complexity and expressivity of themodels built. A relevant ex-

ample of their significant impact in HEP is in jet identification: jets are extremely

high-dimensional objects, composed of hundreds of particles, tracks, and ver-

tices each with several distinguishing features. Traditionally, this information

had to be aggregated into hand-engineered, high-level features, such as the jet

mass, number of prongs, and vertex displacements.

DL, on the other hand, allows us to leverage the full set of low particle-

and vertex-level features. This leads to powerful classifiers that significantly out-
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perform traditional methods and improve the sensitivity of our jet-based mea-

surements. This is exemplified by the new HVV jet identification algorithm we

introduce in Chapter 13 and apply to searches for HH production in Chapter 14.

As we argue in Section 7.3, DL also has the potential to alleviate the compu-

tational challenges we foresee in the HL-LHC era, particularly with respect to

detector simulations, which are the focus of Part IV.

ANNs have proven to be extremely flexible building blocks out of which

to construct diverse and sophisticated models for a variety of tasks in HEP, from

classification and regression to simulation and anomaly detection, andmore. In-

deed, the development of DL algorithms in HEP is a rapidly growing subfield

in its own right, and its various applications are visualized as a “nomological

net” in Figure 7.1; a comprehensive “living” review is available in Ref. [210]. As

we discuss below, however, with more complex data and models also comes

the need for more sophisticated methods to validate, calibrate, and trust them;

this is the subject of Chapters 11 and 13.3, on evaluating generative models and

calibrating HVV jet taggers, respectively.

In this chapter, we first provide a brief introduction toML andDL, empha-

sizing key aspects relevant to HEP. These include the importance of: 1) general-

ization and calibration of models trained on simulations (Section 7.1.2); and 2)

the importance of building thoughtful, physics-informed models and represen-

tations for our data (Section 7.1.4). In the same spirit, we then discuss equivariant

neural networks in Section 7.2, which are designed to respect the symmetries of
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physical data, such as Lorentz transformations in HEP. Finally, we detail two

types of unsupervised learning algorithms, autoencoders and generative mod-

els, that are relevant to the work in this dissertation in Section 7.3.
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Figure 7.1. A “nomological net” of ML applications in HEP, reproduced from
Ref. [50].
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7.1.1 Basics of ML

Supervised and unsupervised learning

ML algorithms can be broadly categorized as supervised and unsupervised

learning. The former involves learning a mapping between some input data ®𝑥
and a specific output ®𝑦; for example, classifying jets as originating from a Higgs

boson or QCD background. Other examples include regression tasks where the

target output is a continuous variable, such as predicting the mass of a jet or the

energy of a particle. Algorithms used for supervised learning include support

vector machines (SVMs) [211], (boosted) decision trees (BDTs) [209, 212], and

neural networks. Such algorithms necessitate a labeled training dataset of input-

output pairs (®𝑥𝑖 , ®𝑦𝑖).

Tasks for which we do not have straightforward labeled data are consid-

ered unsupervised learning problems, inwhich themodelmust learn the proper-

ties and structure of the data ®𝑥without explicit target outputs. Examples include

clustering algorithms, which aim to group similar data points together, and gen-

erative and anomaly detectionmodels, both ofwhich aim to learn the underlying

distribution of the data in somemanner for the purposes of generating new data

or identifying outliers, respectively. The latter two will be discussed in more de-

tail in Section 7.3.

Note that these two categories are not mutually exclusive but rather
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two ends of a spectrum, with the middle ground including paradigms such as

weakly-supervised [213] and self-supervised learning [214].

Linear models

Perhaps the simplest example of an ML task is linear regression, which

entails fitting a linear model:

𝑓 (𝑥|𝑤) = ®𝑤 · ®𝑥 (7.1.1)

to a set of data points (®𝑥𝑖 , 𝑦𝑖), where ®𝑤 are the model weights which need to be

learned. To do so, we define a loss function 𝐿 that quantifies the difference be-

tween the model’s prediction and our desired output, such as the mean squared

error:

𝐿 =
1
𝑁

𝑁∑
𝑖=1

( 𝑓 (𝑥𝑖 |𝑤) − 𝑦𝑖)2. (7.1.2)

The learning objective of our model is hence to minimize 𝐿 with respect to the

weights ®𝑤.

For linear regression, the minimum can in fact be found analytically to

be:

®𝑤 = ( ®𝑋𝑇 ®𝑋)−1 ®𝑋𝑇 ®𝑦, (7.1.3)
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where ®𝑋 is the matrix of input data and ®𝑦 the vector of target outputs. However,

formore complexmodels (or even in linear regressionwhen thematrix inversion

is too expensive), numerical optimization techniques are required. The most

common is gradient descent.

Gradient descent

Gradient descent is an optimization algorithm that iteratively adjusts the

weights of a model in the direction of steepest descent, i.e., the gradient:

®𝑤𝑡+1 = ®𝑤𝑡 − 𝜂∇𝑤𝐿, (7.1.4)

where ®𝑤𝑡 are the weights at iteration 𝑡, and 𝜂 is the step size or learning rate (LR).

This process is visualized for two learnable parameters in Figure 7.2.

Figure 7.2. Illustration of gradient descent in a 2D parameter space of (𝜃0, 𝜃1).
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Gradient descent is the backbone of all deep learning optimization algo-

rithms; though this basic idea is typically modified to improve convergence and

efficiency. The most common variants are stochastic and mini-batch gradient de-

scent, which compute the gradient on a subset of the data at each iteration. This

has the dual benefit of computational efficiency and the introduction of stochas-

ticity into the optimization process, which can help the model escape local min-

ima of the loss function.

Other powerful ideas include adaptive learning rates, which adjust the LR

during training based on the history of the gradients and/or number of itera-

tions; and momentum, which retains some fraction of the previous gradients to

smooth out oscillations in the optimization process. Popular optimizers which

incorporate these techniques include RMSprop [215] and Adam [216], both of

which are prominently used for the work in this dissertation.

7.1.2 The importance of generalization and calibra-

tion

It is crucial in ML that the model not only learns the training data but

can also generalize to new, unseen data. This is what signifies that the model has

effectively learned the underlying patterns and relationships, rather thanmerely

memorizing, or overfitting to, the training samples.
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A standard procedure to evaluate generalization is to split the available

dataset into three subsets: training, validation, and testing. The former is the

only dataset used to update the learnable parameters of the model themselves,

and is typically the largest subset. The validation set is used to tune hyperparame-

ters of the model — those parameters such as model size and learning rates that

cannot be “learned” through gradient descent — as well as assess the model’s

performance on unseen data during training: if the performance on the valida-

tion set is significantly worse than on the training set, the model is likely overfit-

ting. Finally, in case a bias is introduced by tuning the hyperparameters on the

validation set, it is good practice to evaluate the model on the testing set at the

end, which is never used to make decisions on the model.

The bias-variance tradeoff

Selecting the right model and hyperparameters involves making a bias-

variance tradeoff. This is a fundamental concept in ML that describes the balance

between two sources of error in a predictivemodel. Bias is the error due to overly

simplistic assumptions in the learning algorithm — for example, using a linear

model to capture non-linear relationships; while variance is the error due to a

model which is too complex capturing noise in the training data.

A model with high bias may have systematic inaccuracies, or underfit the

data, while a model with high variance may overfit and fail to generalize. Model
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selection involves using the performances on the training and validation datasets

to find an optimal balance between these two errors. Common techniques to im-

prove bias include improving the model design and increasing its complexity,

while to address variance, there are several established regularization methods

to reduce overfitting, such as early stopping [217], dropout [218], and batch nor-

malization [219].

Model calibration

A related and unique aspect of ML in HEP is the reliance on theory and

detector simulations to generate large quantities of labeled data for model train-

ing. The aim though, of course, is to deploy on andmodel correctly the real data

collected by the experiments. It is hence crucial to verify how well the models

generalize accurately to the latter, rather than overfitting to mismodeling in the

former.

This process is sometimes referred to as calibration, where the perfor-

mance of the ML model is compared between simulation and data to derive

possible corrections to the model’s predictions and quantify the systematic

uncertainties associated with them. As models become more complex and

high-dimensional, calibration becomes increasingly challenging (and often over-

looked)! To this end, significant contributions of this dissertation are the devel-

opment of novel methods to efficiently and sensitively validate the performance
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ofML-based simulations (Chapter 11), and improving the calibration of HVV jet

identification algorithms (Chapter 13).

7.1.3 Artificial neural networks and deep learning

ANNs are ML models loosely inspired by the structure of the human

brain. They were originally proposed in the 1940s, and improved over the 20th

century through the perceptron [220] and backpropagation [221] algorithms, but

had limited success in practical applications compared to algorithms like SVMs

and decision trees.

Only in the 2010s was it recognized that their flexibility in both archi-

tecture and training makes them ideal for exploiting the recent exponential in-

crease in data and computing power, propelling ANNs to the forefront of ML

and sparking the so-called DL revolution. Through the development of large

and innovative, so-called deep neural networks (DNNs), they have led to signif-

icant breakthroughs in the fields of computer vision, natural language process-

ing, and indeedHEP. Specific types of models, or “architectures”, include convo-

lutional neural networks (CNNs) for image data, graph neural networks (GNNs)

for graph data, and transformers for sets and sequences, all of which we discuss

below.
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Artificial neurons and multilayer perceptrons

The building blocks of ANNs are single “artificial neurons”, or percep-

trons [220]. They are similar to the linear models discussed above, but with an

additional non-linear function 𝜎 — known as the activation function, applied to

the output (Figure 7.3, left):

𝑓 (𝑥|𝑤, 𝑏) = 𝜎( ®𝑤 · ®𝑥 + 𝑏), (7.1.5)

where 𝑏 is a constant, learned bias term. Common choices for the activation

include the sigmoid, hyperbolic tangent, and piecewise linear functions.

By combining multiple perceptrons in amultilayer perceptron (MLP) archi-

tecture, i.e., an ANN, we can build a powerful and flexible model capable of

learning complex, non-linear relationships in the data (Figure 7.3, right). In fact,

the famous universal approximation theorem [222] states that, in theory, neural net-

works can approximate any continuous function to arbitrary accuracy given a

sufficiently large number of neurons and layers (although in practice it is not so

straightforward).

Another key characteristic of ANNs is their ability to learn hierarchical

representations of the data, with each layer, in principle, learning progressively

more abstract features from the previous layer’s output. Intelligently designed

“deep” networks with many layers can hence learn powerful, nonlinear, high-
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Figure 7.3. (Left) a single perceptron and (right) a neural network built using
multiple layers of perceptrons (MLPs).

level representations of the high-dimensional input data, which can then be used

to perform the desired task (assuming enough data and computing power to

train them effectively). This is why this subfield ofML is also sometimes referred

to as representation learning. As we discuss in Section 7.1.4, it is thus crucial to

use representations and design architectures well-suited to the data and task

at hand; naively adopting a specific architecture or input representation from

another domain may not lead to the most optimal feature learning.

Backpropagation

Part of the effectiveness and popularity of DNNs is due to the backprop-

agation algorithm [221], which allows for efficient training of arbitrarily deep

networks. Backpropagation is, essentially, the repeated application of the chain

rule of calculus to iteratively propagate gradients of the loss function backwards
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through the network. For a simple two-layer network, for example:

𝑓 (𝑥|𝑤, 𝑏) = 𝜎(2)( ®𝑤(2) · (𝜎(1)( ®𝑤(1) · ®𝑥 + ®𝑏(1)) + ®𝑏(2)), (7.1.6)

where the superscript denotes the layer of the network, the gradient of the loss

function 𝐿 with respect to ®𝑤(1) is:

𝜕𝐿
𝜕𝑤(1) =

𝜕𝐿
𝜕 𝑓

𝜕 𝑓

𝜕𝜎(2)
𝜕𝜎(2)

𝜕 ®𝑤(2)︸            ︷︷            ︸
𝜕𝐿/𝜕𝑤(2)

𝜕 ®𝑤(2)

𝜕𝜎(1)
𝜕𝜎(1)

𝜕 ®𝑤(1)︸        ︷︷        ︸
𝜕𝑤(1)/𝜕𝑤(2)

. (7.1.7)

This tells us that 𝜕𝐿/𝜕𝑤(1) can be computed using the gradient with respect to 𝑤(2)

—which needs to be calculated anyway— and, more generally, by walking back-

wards through the network operations and taking the product of the derivatives

at each step. This simple but powerful idea scales well to large and diverse net-

work architectures, and is why huge DNNs can be trained effectively with rela-

tive ease.

Convolutional neural networks

We now walk through some popular ANN architectures, starting with

CNNs. CNNs are a type of NN designed to process grid-like data and, particu-

larly, images. They contributed the first major breakthrough in DL by achiev-

ing impressive performances in computer vision tasks, with models such as

AlexNet [223] in 2012 and ResNet [224] in 2016.
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Asingle CNNconvolutional layer convolves a set of discrete “kernels” (es-

sentially, learnable matrices) through the input image or data (Figure 7.4), each

of which detect useful features such as edges or textures. A CNN comprises

multiple convolutional layers, interspersed with operations such as pooling or

compression to reduce the spatial dimensions of the data, and then typically

MLPs at the end as in Figure 7.4 to produce the final output.

Figure 7.4. Schematic of a convolutional neural network, reproduced from
Ref. [51].

Graph neural networks

GNNs are designed for graph-structured data, such as social networks or

molecular structures. They are also useful for operating on point clouds: sets of

unordered data points in some space, which we argue in Section 7.1.4 are the

perfect data structures for representing particles in an event or hits in a detector.
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This is whyGNNs have been extremely successful in HEP, generally outperform-

ing standard MLP or CNN approaches.

The idea behind GNNs is to learn representations per-node or per-edge,

based on information aggregated from their neighbors. Some generic methods

to do so include local graph convolutions — similar to CNNs, but with graph-

based kernels; and message-passing neural networks (MPNNs), which deliver

and aggregate learned messages between nodes. An example of an MPNN is

shown in Figure 7.5, and is the basis for a novel GNN generative model intro-

duced in Chapter 10.

Initial Features
…

{ fe

fn

× T

Final Features
…

{

Figure 7.5. Schematic of a message passing graph neural network.
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Attention and transformers

The final architecture we discuss is the transformer, introduced in

2017 [225], which is the powerhouse behind the recent revolution in natural lan-

guage processing (NLP) and AI chatbots such as GPT-3 [226] and its successors.

Transformers are built around the idea of attention, which encourages the model

to learn to attend to different parts of an input set or sequence in each layer.

Explicitly, each element, or node’s, features in the input set are first em-

bedded via MLPs into key (𝐾) and value (𝑉) pairs, while each node in the output

set is embedded into a query (𝑄). The attention mechanism is then defined as:

𝐴(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉, (7.1.8)

where 𝑑𝑘 is the dimension of the keys and queries, and softmax
(
𝑄𝐾𝑇/√𝑑𝑘 ) are the

“attention scores” between each pair of input and output nodes. This output 𝐴

is finally used to update the features of the output nodes. Figure 7.6 shows a

schematic of the special case of self-attention, in which the input set is also the

output set; i.e., each node’s features are updated based on the features of all

other nodes.

Transformers can be thought of as a type of fully-connected GNN, with

attention a (particularly efficient) form of message-passing. They have proven

extremely successful and durable in NLP and other sequence-based tasks, and
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are also gaining prominence in computer vision and HEP. We introduce two

novel transformer-based models for jet simulations and tagging in Chapters 10

and 13, respectively.
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Query

Key Value Key Value

× × ×

Score

Softmax

Score

Softmax

Score

Softmax

x1 x2 xN

+ ++

x1

× × ×

Figure 7.6. Schematic of set self-attention.

7.1.4 The importance of being physics-informed

The success of specific DNN models largely depends on the in-built in-

ductive biases — assumptions or design choices — towards certain types of data.

This is why it is important in HEP to build physics-informed models and repre-

sentations that respect the symmetries and biases of our data. In this section, we

227



outline the relevant properties of HEP data, such as jets and calorimeter show-

ers, and the inductive biases of CNNs, GNNs, and transformers, arguing that

the latter two are stronger fits.

The power of CNNs, in addition to their ease of computation, comes from

their biases towards natural images, namely: translation invariance — the same

features are learned regardless of input translations — and locality — the con-

volution operation is inherently local in space, suited to the structure of natural

images. This led to CNNs leading the DL revolution in the 2010s and achieving

results on par with or surpassing human performance in computer vision.

Consequently, this also led to early work in HEP applying CNNs to jets

and calorimeter showers. Jets can, in principle, be represented as images by pro-

jecting the particle constituents onto a discretized angular 𝜂-𝜙 plane, and taking

the intensity of each “pixel” in this grid to be amonotonically increasing function

of the corresponding particle 𝑝T [227] (Figure 7.7, left). Showers can similarly be

represented as 3D images of the energy deposited in the calorimeter cells (Fig-

ure 7.7, right).

At the time of the work of this dissertation, such image-based models

were leading the field in tasks such as jet classification [228] and shower gener-

ation [229]. However, we argue that, despite these early successes, CNNs and

images are not ideal for the physics and structure of our data, due to HEP data’s

following characteristics:
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1. Sparsity: particles in a jet and hits in the detector tend to be extremely

sparse relative to the total angular momentum phase space and total num-

ber of cells, respectively. Indeed, we see in Figure 7.7 that the resulting

“images” tend to be extremely sparse, with typically fewer than 10% of

pixels nonempty [230].

2. High granularity: LHC detectors are highly granular, which means the dis-

cretization process often lowers the spatial resolution (as with the ATLAS

FastCaloGAN [229]), unless the pixels are chosen to exactly match the de-

tector cells; however, this is often computationally intractable due to the

large number of cells, and the property we describe next.

3. Irregular geometry: jets and showers are not naturally square grid-like ob-

jects, and must be made to conform to this structure for use with CNNs.

This is again often intractable or, at best, suboptimal.

4. Global structure: jets and particle showers each originate from a single or

small set of sources, which leads to global correlations between the final-

state particles and hits, independent of the spatial distance between them,

that are vital to understanding the underlying physics.

Properties 1–3 strongly suggest that HEP data is not conducive to image-based

representations. This is exemplified by the upcoming CMS HGCAL (Chap-

ter 6.5.4): its high granularity, sparsity, hexagonal geometry, and non-uniform

cell sizes all make HGCAL showers extremely challenging to represent as an im-

age. Finally, Property 4 implies that local operations such as convolutions are

ill-suited to the global structure of our data.
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Figure 7.7. Examples of a jet (left) and calorimeter shower (right) represented as
2D and 3D images, respectively.

In contrast, GNNs and transformers are naturally: sparse—only the parti-

cles or hits need be represented, rather than a dense grid of mostly empty pixels;

and flexible to the underlying geometry and granularity. Moreover, they are per-

mutation invariant— learned features are independent of the order of the inputs,

which means there is no need to impose an artificial ordering on particles or hits

(as opposed to with an MLP, for example).

Finally, in the case of GNNs, the graph topology (i.e. the connections be-

tween nodes) can be tuned or even learned to reflect the physical nature of the

data. For example, for local data, such as 3D point clouds of natural objects, con-

nections can be defined based on the Euclidean distance between points, while

in the case of jets or particle showers in a calorimeter, we can choose a fully-

connected topology to reflect their global correlations (as we emphasize in Chap-

ter 10). The attentionmechanism in transformers is by definition fully connected,

and hence well-suited as well.
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This is why we advocate for point-cloud representations and GNN and

transformer models as natural choices for HEP data. Indeed, major contribu-

tions of this dissertation are the development of the first point-cloud based gen-

erativemodels for jet simulations (Chapter 10), which achieve breakthrough per-

formance for an ML simulator in terms of accuracy and efficiency, and the first

transformer-based jet tagging algorithm (Chapter 13) for HVV jet-tagging, pow-

ering a significant boost in the sensitivity of the HH search. Finally, in Chap-

ter 16, we push the inductive biases ofMLmodels further by incorporating equiv-

ariance to Lorentz-symmetries, as we introduce next.

7.2 Equivariant neural networks

ANNs and DL have shown remarkable success in a wide range of com-

puter vision and NLP tasks, motivating applications to the physical sciences.

However, as highlighted in the previous section, the power of DLmodels is often

derived from architectures tuned to the inductive biases of their domains.

A unique feature of physical data is its inherent physical symmetries

(see Chapter 2), such as with respect to E(3) and Lorentz-transformations for

molecules and high-energy collisions, respectively. It is hence desirable to de-

velop NN architectures that themselves are intrinsically equivariant to the asso-

ciated transformations, which can thereby be more data efficient, more easily

interpretable, and perhaps ultimately more successful [231].
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Wehave already encountered some forms of equivariance: to translations

in CNNs and to permutations in GNNs. More recently, there has been work on

building equivariance to a broader set of transformations, such as the symme-

tries mentioned above, which will be the focus of this section.

7.2.1 Equivariance

Let us first introduce precisely what we mean by “equivariance”, adapt-

ing a definition from Refs. [232–235].

Definition 7.2.1. A feature map 𝑓 : X → Y is considered equivariant to a group

of transformations 𝐺 if ∀𝑔 ∈ 𝐺 and some representation 𝜋 there exists a repre-

sentation 𝜋′ satisfying

𝜋′(𝑔) 𝑓 (𝑥) = 𝑓 (𝜋(𝑔)𝑥), (7.2.1)

i.e. the group operation commutes with the map 𝑓 (and 𝑓 therefore is an inter-

twiner). In this context, 𝑓 generally represents a NN layer. Another way to think

about this is that each transformation by a group element 𝑔 on the input must

correspond to a transformation by the same group element in the feature space

(but with potentially different representations 𝜋 and 𝜋′).

Definition 7.2.2. Invariance is the particular case where 𝜋′ is the trivial repre-

sentation (𝜋′(𝑔) = 1), wherein transformations on 𝑥 do not affect features at all.
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While for many tasks, such as classification, invariance of the outputs is

sufficient, Refs. [233, 234] argue that equivariance ismore desirable at least in the

intermediate layers, as it allows the network to learn useful information about

the transformation 𝑔 itself.

So far, we have discussed CNNs and GNNs / transformers, which are

equivariant to the T(𝑁) group (translations in 𝑁 dimensions) and invariant to

the S𝑁 group (permutations of 𝑁 objects), respectively. Next, we discuss the

extension to broader symmetry groups.

7.2.2 Steerable CNNs for E(2)-equivariance

We first describe the generalization of the translational invariance of

CNNs to equivariance to not only translations, but rotations and reflections in

2D as well; i.e, the E(2) group. We make use of a general procedure, based on

Refs. [232, 233], for extending 2D translational invariance (T(2)) to equivariance

to a group 𝐺 = T(2)⋊𝐻, where ⋊ is the semi-direct product and 𝐻 is a subgroup

of 𝐺, meaning we can induce representations of 𝐺, Ind𝐺𝐻 , from 𝐻.1 For 𝐺 = E(2),
in particular, 𝐻 = O(2), the group of distance-preserving transformations in 2D;

i.e., rotations and reflections.

The key idea in developing a 𝐺-equivariant layer is to first find the set of

1See e.g. Chapter IV, p297 of Ref. [79] for induced representations of E(2).
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maps 𝐹 3 𝑓 which satisfy Eq. 7.2.1 for an element ℎ ∈ 𝐻:

𝜌out(ℎ) 𝑓 = 𝑓 𝜌in(ℎ) (7.2.2)

where 𝜌out and 𝜌in are reps of 𝐻. After this, Eq. 7.2.1 can be automatically satis-

fied using

𝜋′(𝑔) 𝑓 = Ind𝐺𝐻(𝑔) 𝑓 = 𝜌out(ℎ) 𝑓 (𝜌in(ℎ−1)(𝑥 − 𝑡)) (7.2.3)

where 𝑔 = 𝑡ℎ for some 2D translation 𝑡 ∈ T(2).

Since Eq. 7.2.2 is linear in 𝑓 , we want a complete linear basis of functions

that satisfy it. We can obtain this by restricting the convolutional filters of a

standard CNN to circular harmonics [234]:2

𝑊𝑚(𝑟, 𝜙;𝑅, 𝛽) = 𝑅(𝑟)𝑒 𝑖(𝑚𝜙+𝛽), (7.2.4)

where the radial component 𝑅 and the filter phase 𝛽 are learnable parameters.

We can see that 𝑚 ∈ Z, these filters form a complete basis and satisfy Eq. 7.2.2

under convolutions (∗) with an image 𝐹(𝑟, 𝜙) rotated by 𝜃:

𝑊𝑚 ∗ 𝐹(𝑟, 𝜙 + 𝜃) = 𝑒 𝑖𝑚𝜃𝑊𝑚 ∗ 𝐹(𝑟, 𝜙). (7.2.5)

Herewe took 𝜌in to be the fundamental SO(2) rep acting on the image and 𝜌out to

2See Refs. [235, 236] for a more rigorous derivation.
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be any one of the infinite complex reps. After discretizing these filters Ref. [234]

demonstrates significant improvement in classification of rotated images com-

pared to SOTA CNNs. Such networks are generally referred to as “Steerable

CNNs”, and, in practice, are implemented using a finite set of 𝑁 such circu-

lar harmonic filters, with 𝑚 ∈ {0, 2𝜋
𝑁 , ...,

2𝜋(𝑁−1)
𝑁 } (and possibly their reflections),

which are then pooled in a rotationally-invariant manner, as illustrated in Fig-

ure 7.8.

Figure 7.8. Schematic of a steerable CNN, reproduced from Ref. [52].
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7.2.3 Tensor-field networks for E(3)-equivariance

Steerable CNNs have been extended to E(3)-equivariance — translations,

rotations, and reflections in 3D — as well [236]. However, we will discuss a

slightly different approach, applied to point-cloud data. This approach uses

“Fourier decompositions” of the input, feature, and output spaces into irre-

ducible representations (irreps) of the symmetry group, and is referred to as a

“tensor-field network” [231]. In addition to their aforementioned applications to

HEP, point clouds are also extremely useful representations of physical objects

such as molecules and crystals, both of which are inherently E(3) invariant.

In the approach of Ref. [231], the input and intermediate network layers

𝑓 take the set of coordinates ®𝑟𝑎 and features ®𝑥𝑎 for each point 𝑎 in the point

cloud and map them to the same set of coordinates with new learned features

®𝑦𝑎 ( 𝑓 (®𝑟𝑎 , ®𝑥𝑎) = (®𝑟𝑎 , ®𝑦𝑎)), with an equivariant 𝑓 again having to satisfy Eq. 7.2.1.

If necessary, the features are aggregated at the end across all points to produce

the output. Translation equivariance is achieved directly by requiring 𝑓 to only

consider distances ®𝑟𝑖 − ®𝑟 𝑗 between points 𝑖 and 𝑗 (a global translation will not

affect these).

For rotation equivariance, first the feature vectors ®𝑥𝑎 are decomposed ac-

cording to how they transform under irreps of SO(3)—scalars, vectors or higher

order tensors (the coordinates ®𝑟𝑎 already transform as vectors in R3 under the
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fundamental rep):

R3 ⊕ X =
⊕
𝑙

𝑅𝑚𝑙
𝑙 (7.2.6)

where the sum is performed over irreps 𝑅𝑙 (with dimension 2𝑙+1) and𝑚𝑙 are the

multiplicities. Thus, each point’s features and coordinates have the correspond-

ing decomposition:

®𝑟𝑎 ⊕ ®𝑥𝑎 =
⊕
𝑙

𝑚𝑙⊕
𝑐=1

𝑉 𝑙
𝑎𝑐 (7.2.7)

where the𝑉 𝑙
𝑎𝑐 are tensors which transform under the 𝑙 irrep. Similar to steerable

CNNs, each of these tensors are individually acted upon by generalized convo-

lutional filters with the form 𝑅(𝑟)𝑌 𝑙 𝑓 (𝑟), where 𝑅 is a learned radial function, 𝑌 𝑙

are the spherical harmonic tensors, and the set 𝑙 𝑓 corresponds to the set of de-

sired irreps in feature space. The spherical harmonics are directly analogous to

using circular harmonics for E(2) (except they have dimension 2𝑙 + 1) and by the

same argument they satisfy Eq. 7.2.1. This convolution effectively produces a

tensor product representation of SO(3) 𝑅𝑙 ⊗ 𝑅𝑙 𝑓 , which is then decomposed via

Clebsch-Gordan (CG) decomposition into irreps again.

A useful pedagogical example is of a network taking as input a collec-

tion of point masses and outputting the inertia tensor. The input features are

the masses of each point, which are scalars under SO(3), and the inertia tensor

transforms as the 0⊕ 2 representation, so we define this network to be of the type
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0 → 0 ⊕ 2.

Some interesting and successful applications include classifying

molecules [237], predicting protein complex structures [238], and predict-

ing the phonon density of states (DoS) in crystals [53]. A schematic of the

architecture used for the latter is shown in Figure 7.9. Different crystals are

represented geometrically as point clouds in R3, with individual atoms labeled

via feature vectors ®𝑥𝑎 using mass weighted one-hot encoding. After a series of

convolution layers the features are summed over all points to predict 51 scalars

comprising the phonon DoS.

Figure 7.9. Schematic of the E(3)-equivariant neural network architecture used
for predicting phonon density of states, reproduced from Ref. [53].
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7.2.4 Lorentz-group-equivariant networks

Recently there has been some success in creating Lorentz-group-

equivariant networks, which are desirable for DL applications to high energy

data. The Lorentz group O(3, 1) comprises the set of linear transformations

between inertial frames with coincident origins. Henceforth, we restrict our-

selves to the special orthochronous Lorentz group SO+(3, 1), which consists of

all Lorentz transformations that preserve the orientation and direction of time.

Equivariance to such transformations is a fundamental symmetry of the data

collected out of high-energy particle collisions.

To our knowledge, there has been no generalization of steerable CNNs

to the Lorentz group; however, Refs. [54, 239–241] propose an alternative, com-

pletely Fourier-based approach, again acting on point clouds, that shares some

similarities with the E(3)-equivariant network discussed above.

The general method is to:

1. Decompose the input space into irreps of the group.

2. Apply an equivariant mapping (satisfying Eq. 7.2.1) to the feature space.

3. Take tensor products of the irreps and CG-decompose them again into ir-

reps.

4. Repeat steps 2–3 until the output layer.

The crucial difference between this and the previous networks is that the
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Figure 7.10. Schematic of a Lorentz group-equivariant network layer, repro-
duced from Ref. [54].

mapping is no longer via convolutional filters; instead, it is chosen to be a sim-

ple linear aggregation across the nodes of the point clouds. Recall from Def-

inition 7.2.1 that equivariant maps 𝑓 must be intertwiners between input and

output representations, which, according to Schur’s Lemma, imposes strong re-

strictions on both the form of a linear 𝑓 and its output 𝑓 (𝑥). Namely: the outputs

and inputs must have the same irrep decomposition (though the multiplicities

are allowed to vary, akin to increasing/decreasing the “channels” in an image)

and 𝑓 must be a direct sum of learned matrices acting individually on each ir-

rep. The transformation between 𝑓 in and 𝑓 pre in Figure 7.10 illustrates such a

mapping.

To inject non-linearities into the network, Ref. [54] proposes to take tensor

products between each pair of irreps after the mapping, and then perform a

240



CG decomposition.3 Another freedom available to us is acting with arbitrary

learned functions on any scalar irreps that result from the decomposition, since

they are, by definition, Lorentz-invariants.

One successful application of this network has been to jet tagging:

Ref. [54] successfully applied this “Lorentz-group network” (LGN) to top-quark

identification, demonstrating a high (92.9%) accuracy, though they were unable

to match the then-SOTA (93.8% using the ParticleNet GNN [230]).

Finally, we note that overall this is, in fact, a very general approach: appli-

cable to any symmetry group. This includes the aforementioned E(2) and E(3)
groups as well as potentially more exotic groups such as 𝐸8 or 𝐺2 which also

arise in physics. The only group-dependent operations in such a network are

the decompositions into irreps which can readily be calculated for any group

(as opposed to steerable CNNs where one needs to derive group equivariant

kernels/convolutional filters).

Summary

We reviewed three approaches to creating neural networks that are equiv-

ariant to physical symmetry groups: by extending the translation-equivariant

convolutions in CNNs to more general symmetries with appropriately defined

learnable filters as in Refs. [232, 243, 244], by operating in the Fourier space of the

3See Ref. [242] for a detailed analysis of CG decomposition for the Lorentz group.
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group [54], and a combination thereof [231]. Such networks are highly relevant

to the physical sciences, where datasets often possess intrinsic symmetries, and,

as demonstrated in some example tasks, they are promising alternatives and im-

provements to standard non-equivariant DL approaches. In particular, Lorentz-

equivariant networks have shown promise in jet classification, a key task in HEP.

In Chapter 16, we will discuss the extension of these ideas to the first Lorentz-

equivariant autoencoder for jets, with applications to data compression, anomaly

detection, and potentially fast simulations as well.

7.3 Autoencoders and generative models

7.3.1 Autoencoders and anomaly detection

In this final section, we discuss two paradigms of unsupervised learning

relevant to this dissertation: autoencoders (AEs) and generative models. AEs

are NN architectures composed of an encoder network, which maps the input

into a typically lower dimensional latent space — called a “bottleneck” — and a

decoder, which attempts to reconstruct the original input from the latent features

(Figure 7.11). The bottleneck encourages AEs to learn a compressed representa-

tion of data that captures salient properties [245], which can be valuable in HEP

for compressing the significant volumes of data collected at the LHC [246].
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Figure 7.11. Diagram of an image autoencoder, reproduced from Ref. [55].

The learned representation can also be exploited for later downstream

tasks, such as anomaly detection, where an autoencoder is trained to reconstruct

data considered “background” to our signal, with the expectation that it will

reconstruct the signal worse than the background. Thus, examining the recon-

struction loss of a trained autoencodermay allow the identification of anomalous

data. This can be an advantage in searches for new physics, since instead of hav-

ing to specify a particular signal hypothesis, a broader search can be performed

for data incompatiblewith the background. This approach has been successfully

demonstrated in Refs. [247–255]. Two recent exciting examples from CMS in-

clude a model-agnostic search for di-jet resonances with Run 2 data [256], which

prominently uses AEs for multiple search strategies, and a newAE-based online

Level-1 trigger paths implemented in Run 3 [257, 258].

Furthermore, there are many possible variations to the general autoen-
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coder framework for alternative tasks [259, 260], such as variational autoen-

coders (VAEs) [261], whichwe discuss in the next section. While there have been

some recent efforts at GNN-based autoencoder models [67, 262], in this disserta-

tion, we present the first Lorentz-equivariant autoencoder for jets in Chapter 16.

We focus on data compression and anomaly detection but note that our model

can be extended to further applications, such as fast simulations in HEP.

7.3.2 Generative models

Generative models are a class of statistical models that aim to capture the

probability distribution of the data 𝑝(𝑥) in order to generate new samples. This is

a challenging problem, but one that has seen significant progress in recent years

with DL, particularly in computer vision and NLP. We will briefly walk through

four popular approaches, illustrated in Figure 7.12, which can be broadly cate-

gorized as likelihood-based or implicit models.

Likelihood-based models

Likelihood-based models attempt to directly learn the probability distri-

bution of the data through some form of (approximate) likelihood maximiza-

tion.4 Flow-based models, for example, learn a series of invertible transforma-

4See the next chapter for an introduction to likelihoods.
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Figure 7.12. Summary of popular generative models, reproduced from Ref. [56].

tions to map a simple base distribution that is easy to sample from, such as a

Gaussian, to the complex target data distribution. The most popular of these at

the time of writing are “normalizing flows”, which require each transformation

to have a tractable Jacobian determinant with which to correctly normalize the

result.

Normalizing flows have a number of advantages, such as their simple and

intuitive training objective — maximizing the likelihood of each data point —

and a tractable likelihood evaluation. These have led to successful applications

to density estimation and generation tasks in both computer vision [263, 264] and
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HEP [265]. However, the constraint of invertible transformations with tractable

Jacobians turns out to be extremely restrictive on the model design and expres-

sivity in practice [266, 267], generally resulting in worse performance on high-

dimensional data compared to the models we discuss below. Recently, over

the last year, a related (in spirit) class of models without the normalization con-

straint, called “flow-matching”models, have emergedwith extremely promising

and, in some cases, state-of-the-art (SOTA) results on images [268, 269].

Another example of a likelihood-based model is the variational autoen-

coder (VAE) [261], which is structurally similar to an AE in that it has an en-

coder mapping an input data point into a latent representation, and a decoder

mapped that back to the original. They key novelty, however, is that the latent

space is encouraged through the loss function to follow a well-defined simple

distribution to sample from — again, typically, a Gaussian. Explicitly, the VAE

loss function is a combination of the reconstruction loss of a standard AE and

the Kullback-Leibler divergence between the learned latent distribution and the

assumed prior. Together, this can be shown to approximate the evidence lower

bound (ELBO) of the true likelihood [261], which is why VAEs are thought of as

likelihood-based.

VAEs were one of the early success stories in generative modeling, with

a relatively simple implementation, training, and learning objective. However,

they again are restrictive, this time due to the strong assumption imposed on

the latent space, which actually competes with the reconstruction objective, and
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which, if incorrect, limits the performance. Indeed, our early studies in HEP

showed that the learned latent space of VAEs is manifestly non-Gaussian for

jets, leading to suboptimal performance with a Gaussian latent prior [270]. This

is why VAEs also generally yield poorer performance than generative adversarial

networks (GANs) [271], which we discuss next.

GANs

GANs are a type of implicit generative model. This means they learn to

generate samples without directly learning the likelihood of the data. Instead,

their loss function is effectively provided by a second neural network, called the

discriminator or critic, which tries to distinguish between real and generated

samples. The two generator and discriminator networks, with the former aim-

ing to fool the latter, are trained iteratively and adversarially, forming a feedback

loop and progressively improving each other. This continues until, ideally, the

duo converge to a pointwhere the generator produces samples indistinguishable

from the real by the discriminator.

GANs have an interesting game-theoretic interpretation as a minimax

game, where theNash equilibrium, or global optimum, is achieved throughmin-

imizing the Jensen-Shannon divergence between the real and generated data dis-

tributions [271]. Several variations of GANs have also been proposed, including

theWasserstein-GAN [272], which instead aims tominimize theWasserstein dis-
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tance between the two distributions.

Due to the adversarial nature of the training, GANs are notoriously diffi-

cult to train [272–275]. However, their formulation poses no restrictions on the

form of the generator while providing a powerful loss function and feedback

mechanism. When trained successfully, this leads to expressive, flexible, and

extremely successful generative models in a wide variety of domains. Indeed,

at the time of the work of this dissertation, GANs were the SOTA in computer

vision [276–278] and had shown promising signs in HEP as well [229, 279–283].

However, as we highlight below, there had been no successful application of

GANs, or indeed any generative model, to point cloud data and GNNs or trans-

formers in HEP.

Score-based diffusion models

Finally, we briefly note the recent development in the past two years of a

new class of generative models, called diffusion or score-based models [284, 285].

These models iteratively “denoise” initial Gaussian noise into something resem-

bling samples from the true data distribution; conceptually, this is related to

diffusion in physical systems. The breakthrough with these models came from

recognizing that, with the right learning objective, this denoising process is in

fact equivalent to following the gradient of the log-likelihood function, AKA the

score.
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Diffusion models allow a likelihood-driven training objective, like flow-

based models, but without the restrictive constraints (as the score does not need

to be normalized!), thereby offering the flexibility of aGANalongwith a farmore

stable training procedure. This, combined with several innovations in training

and inference techniques, has led to diffusion models surpassing GANs in com-

puter vision [286], and showing promising signs over the last year in HEP as

well (in part enabled by the work in this dissertation, as we discuss in Chap-

ter 12). However, so far, diffusion models remain computationally expensive,

with inference naively requiring up to hundreds of denoising steps, which lim-

its their application to fast simulations. Nevertheless, they are an exciting area

for exploration in future work.

7.3.3 Previous work

Note: the following discussion represents the state of the field at the time of our

first publications in 2021, to provide context. Since then, the field has evolved signifi-

cantly, partly due to the work presented in this dissertation, as we discuss in Chapter 12.

Generative modeling in HEP

Past work in generative modeling in HEP exclusively used image-based

representations for HEP data. The benefit of images is the ability to employ
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CNN-based generative models, which have been highly successful on computer

vision tasks. References [229, 279–283], for example, build upon CNN-based

GANs, and Ref. [287] uses an autoregressive model, to output jet- and detector-

data-images.

However, as highlighted in Section 7.1.4, the high sparsity of the images

can lead to training difficulties in GANs, while the irregular geometry of the

data poses a challenge for CNNs which require uniform matrices. While these

challenges can be mitigated to an extent with techniques such as batch normal-

ization [219] and using larger/more regular pixels [281], the approach we de-

velop avoids both issues by generating particle-cloud-representations of the data,

which are inherently sparse data structures and completely flexible to the under-

lying geometry.

Point cloud generative modeling

Prior to this work, point cloud generative approaches had not yet been

developed in HEP; however, there had been some work in computer vision, pri-

marily for 3D objects like those from the ShapeNet dataset [288]. As shown in

Figure 7.13, ShapeNet comprises point clouds derived by sampling everyday

objects in position space, and are thus naively analogous to the particle cloud

representations in momentum space we employ for jets. However, as we note

next, there are important differences in the inductive biases of the two datasets.
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Figure 7.13. Sample point clouds from the ShapeNet dataset, reproduced from
Ref. [57].

Firstly, jets have physically meaningful low- and high-level features such

as particle momentum, total mass of the jet, the number of sub-jets, and 𝑛-

particle energy correlations. These physical observables are how we charac-

terize jets, and hence are important to reproduce correctly for physics analysis

applications. Secondly, unlike the conditional distributions of points given a

particular ShapeNet object, which are identical and independent, particle distri-

butions within jets are highly correlated, as the particles each originate from a

single source. The independence of their constituents alsomeans that ShapeNet-

sampled point clouds can be chosen to be of a fixed cardinality, whereas this is

not possible for jets, which inherently contain varying numbers of particles due

to the stochastic nature of particle production. Indeed, the cardinality is corre-

lated with other jets features such as the jet mass and type.
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Baseline models from computer vision

Still, particle clouds and point clouds have similarities insomuch as they

represent sets of elements in some physical space, hence we first test existing

point cloud GANs as baseline comparisons on JETNET. There are several pub-

lished generative models in this area; however, the majority exploit inductive bi-

ases specific to their respective datasets, such as ShapeNet-based [289–292] and

molecular [293–295] point clouds, which are not appropriate for jets. A more

detailed discussion, including some experimental results, can be found in Ap-

pendix C.1.1.

There do exist some more general-purpose GAN models, namely r-

GAN [296], GraphCNN-GAN [297], and TreeGAN [298], andwe test these on JET-

NET. r-GAN uses a fully-connected (FC) network, GraphCNN-GAN uses graph

convolutions based on dynamic 𝑘-nn graphs in intermediate feature spaces, and

TreeGAN iteratively up-samples the graphs with information passing from an-

cestor to descendant nodes. In terms of discriminators, past work has used ei-

ther an FC or a PointNet [299]-style network. Ref. [300] is the first work to study

point cloud discriminator design in detail and finds amongst a number of Point-

Net and graph convolutional models that PointNet-Mix, which uses both max-

and average-pooled features, is the most performant.

In Chapter 10, we apply the three aforementioned generators and FC

and PointNet-Mix discriminators to our dataset, but find jet structure is not ad-
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equately reproduced. GraphCNN’s local convolutions make learning global

structure difficult, and while the TreeGAN and FC generator + PointNet dis-

criminator combinations are improvements, they are not able to learn multi-

particle correlations, particularly for the complex top quark jets, nor deal with

the variable-sized light quark jets to the extent necessary for physics applications.

We thus aim to overcome limitations of existing GANs by designing novel gen-

erator and discriminator networks that can learn such correlations and handle

variable-sized particle clouds.
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Chapter 8

Data Analysis and Statistical Inter-
pretation

There are two possible outcomes: if the result confirms the hypothesis, then you’ve made

a discovery. If the result is contrary to the hypothesis, then you’ve made a discovery. —

Enrico Fermi

8.1 Introduction or: What is an analysis?

Once our data is collected by the CMS detector and reconstructed offline,

it is analyzed to search andmeasure processes of interest. Typically, the raw data

is entirely dominated by irrelevant background processes which we want to fil-

ter out in favor of the signal. The first step towards this is through appropriate

online triggers, followed by offline selections to isolate the signal. The advent of
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machine learning, and later deep learning (DL), allows formore sophisticated se-

lections, using increasingly lower-level information such as individual particles

in jets, tracks and clusters, and even detector hits, as we introduced in Chapter 7.

Optimizing the event selection for all but a handful of data-driven

searches requires simulations of the signal and background processes. Addi-

tionally, once the selections and phase space in which to perform the measure-

ment have been finalized, the expected signal and background yields have to be

carefully estimated, which often again necessitates simulations, as well as data-

driven methods via unbiased control regions. Given the importance of simula-

tions, it is critical to ensure sufficient quality and quantity of simulations in the

HL-LHC era; Part IV will discuss efforts towards using DL.

Once we have our observations, and signal and background estimates,

the final critical step is to interpret the results in a robust statistical framework.

At the LHC, this is typically done using a frequentist, likelihood-based approach.

In this chapter, this approach is introduced by way of simple experimental ex-

amples.

The chapter is organized as follows. Section 8.2.1 introduces the concepts

of the likelihood functions and test statistics, with Section 8.2.2 discussing the

framework for hypothesis testing, including 𝑝-values, significances, and the sta-

tistical definition of a “discovery”. Sections 8.2.3 and 8.2.4 then describe fre-

quentist confidence intervals and upper limits, and the important concepts of

expected significances and limits, respectively. Finally, asymptotic approxima-
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tions to simplify these computations are discussed Section 8.3.

The chapter is based primarily on the highly useful Refs. [58, 301].

The code for all the plots and results in this chapter is available at

rkansal47.github.io/stats-for-hep; it makes extensive use of the NumPy [302],

SciPy [303], and matplotlib [304] Python libraries.

8.2 Frequentist statistics at the LHC

8.2.1 The likelihood function and test statistics

The data model

Let us take the simplest possible case of a (one bin) counting experiment,

where in our “signal region” we expect 𝑠 signal events and 𝑏 background events.

The probability to observe 𝑛 events in our signal region is distributed as a Poisson

with mean 𝑠 + 𝑏:

𝑃(𝑛; 𝑠, 𝑏) = Pois(𝑛; 𝑠 + 𝑏) = (𝑠 + 𝑏)𝑛𝑒−(𝑠+𝑏)
𝑛! (8.2.1)

Since we have only one observation but two free parameters, this experi-

ment is underconstrained. So, let’s also add a “control region” where we expect
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no signal and 𝑏 background events. The probability of observing 𝑚 events in

our control region is therefore:

Pois(𝑚; 𝑏) = 𝑏𝑚𝑒−𝑏
𝑚! (8.2.2)

Combining the two, the joint probability distribution for 𝑛 and 𝑚 is:

𝑃(𝑛, 𝑚; 𝑠, 𝑏) = Pois(𝑛; 𝑠 + 𝑏) · Pois(𝑚; 𝑏) = (𝑠 + 𝑏)𝑛𝑒−(𝑠+𝑏)
𝑛! · 𝑏

𝑚𝑒−𝑏
𝑚! (8.2.3)

This is also called the model for the data and is plotted for sample 𝑠, 𝑏 values in

Figure 8.1.

Figure 8.1. Sample 2D Poisson distributions.
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The likelihood function

In the frequentist philosophy, however, all our parameters 𝑛, 𝑚 etc. are

simply fixed values of nature and, hence, don’t have a probability distribution.

Instead, we work with the likelihood function, which is a function only of our pa-

rameters of interest (POIs), 𝑠 in our example, and “nuisance parameters” (𝑏),

given fixed values for 𝑛 and 𝑚:

𝐿(𝑠, 𝑏) = 𝑃(𝑛, 𝑚; 𝑠, 𝑏) = (𝑠 + 𝑏)𝑛𝑒−(𝑠+𝑏)
𝑛! · 𝑏

𝑚𝑒−𝑏
𝑚! . (8.2.4)

Importantly, this is not a probability distribution on 𝑠 and 𝑏! To derive that, we

would have to use Bayes’ rule to go from 𝑃(𝑛, 𝑚; 𝑠, 𝑏) → 𝑃(𝑠, 𝑏; 𝑛, 𝑚); however,

such probability distributions don’t make sense in our frequentist world view,

so we’re stuck with this likelihood formulation. Often, it’s more convenient to

consider the negative log-likelihood:

− ln 𝐿 = ln 𝑛! + ln𝑚! + 𝑠 + 2𝑏 − 𝑛 ln(𝑠 + 𝑏) − 𝑚 ln 𝑏 (8.2.5)

The profile likelihood ratio

Fundamentally, the goal of any experiment is to test the compatibility of

the observed data (𝑛, 𝑚 here) with a certain hypothesis 𝐻. We do this by map-

ping the data to a “test statistic” 𝑡, which is just a number, and comparing it

258



against its distribution under 𝐻, 𝑃(𝑡|𝐻). Our problem, thus, boils down to 1)

choosing the most effective 𝑡 for testing 𝐻, and 2) obtaining 𝑃(𝑡|𝐻).

In the case of testing a particular signal strength, we use the “profile like-

lihood ratio”:

𝜆(𝑠) = 𝐿(𝑠, ˆ̂𝑏(𝑠))
𝐿(𝑠, 𝑏) , (8.2.6)

where 𝑠, 𝑏 are the maximum-likelihood estimates (MLEs) for 𝑠 and 𝑏, given the

observations 𝑛, 𝑚, and ˆ̂𝑏(𝑠) is the MLE for 𝑏 given 𝑛, 𝑚, and 𝑠. The MLE for a

parameter is simply the value of it for which the likelihood is maximized, and

will be discussed in the next section. The numerator of 𝜆(𝑠) can be thought of

as a way to “marginalize” over the nuisance parameters by simply values that

maximize the likelihood for any given 𝑠, while the denominator is effectively a

normalization factor, such that 𝜆(𝑠) ≤ 1.

Again, it’s often more convenient to use the (negative) logarithm:

𝑡𝑠 = −2 ln𝜆(𝑠) (8.2.7)

Note that Max[𝜆(𝑠)] = 1 ⇒ Min[𝑡𝑠] = 0. 𝜆(𝑠) and 𝑡𝑠 are plotted for sample

𝑛, 𝑚 values with 𝑛 − 𝑚 = 10 in Figure 8.2. The maximum (minimum) of the

profile likelihood ratio (𝑡𝑠) is at 𝑠 = 𝑛 − 𝑚 = 10, as we expect; however, as the

ratio between 𝑛 and 𝑚 decreases — i.e., the experiment becomes more noisy —

the distributions broaden, representing the reduction in sensitivity, or the higher
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uncertainty on the true value of 𝑠.

Figure 8.2. The profile likelihood ratio 𝜆(𝑠) (left) and the 𝑡𝑠 test statistic (right)
for our one-bin Poisson model.

Note that the likelihood ratio and 𝑡𝑠 are also broadened due to the nui-

sance parameter; i.e., because we are missing information about 𝑏. This can be

demonstrated by plotting them with 𝑏 = 𝑚, emulating perfect information of

𝑏 (Figure 8.3), and indeed, we see the functions are narrower than in Figure 8.2.

More generally, increasing (decreasing) the uncertainties on the nuisance param-

eters will broaden (narrow) the test statistic distribution. This is which is why

experimentally we want to constrain them through auxiliary measurements as

much as possible.
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Figure 8.3. The profile likelihood ratio 𝜆(𝑠) (left) and the 𝑡𝑠 test statistic (right)
with 𝑏 = 𝑚, demonstrating the effect of decreasing uncertainties on our nuisance
parameters.

Maximum-likelihood estimates

MLEs for 𝑠 and 𝑏 can be found for this example by setting the derivative

of the negative log-likelihood to 0 (more generally, this would require numerical

minimization):

𝜕(− ln 𝐿)
𝜕𝑠

= 1 − 𝑛
𝑠 + 𝑏 = 0 (8.2.8)

𝜕(− ln 𝐿)
𝜕𝑏

= 2 − 𝑛
𝑠 + 𝑏 − 𝑚

𝑏
= 0 (8.2.9)

Solving simultaneously yields, as you might expect:

𝑏 = 𝑚, 𝑠 = 𝑛 − 𝑚, (8.2.10)
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Or just for ˆ̂𝑏(𝑠) from Eq. 8.2.8:

2𝑏2 + (2𝑠 − 𝑛 − 𝑚)𝑏 − 𝑚𝑠 = 0 (8.2.11)

Plugging this back in, we can get 𝜆(𝑠) and 𝑡𝑠 for any given 𝑠.

Alternative test statistic

So far, our construction allows for 𝑠 < 0; however, physically the number

of signal events can’t be negative. Rather than incorporating this constraint in

the model, it’s more convenient to impose this in the test statistic, by defining:

�̃�(𝑠) =


𝐿(𝑠, ˆ̂𝑏(𝑠))
𝐿(𝑠,𝑏) , 𝑠 ≥ 0.
𝐿(𝑠, ˆ̂𝑏(𝑠))
𝐿(0̂, ˆ̂𝑏(0))

, 𝑠 < 0.
, (8.2.12)

and

𝑡𝑠 = −2 ln �̃�(𝑠) (8.2.13)

The difference between the nominal and alternative test statistics is high-

lighted in Figure 8.4. For 𝑛 < 𝑚, the �̃�(𝑠) = 1 and 𝑡𝑠 = 0 values are at 𝑠 = 0,

since physically that is what fits best with our data (even though the math says

otherwise).
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Figure 8.4. Comparing the nominal vs alternative test statistic.

Next, we want to translate this to a probability distribution of 𝑡𝑠 under a

particular signal hypothesis (𝐻𝑠) (i.e., an assumed value of 𝑠): 𝑝(𝑡𝑠 |𝐻𝑠), or just

𝑝(𝑡𝑠 |𝑠) for simplicity.

8.2.2 Hypothesis testing

The goal of any experiment is to test whether our data support or exclude

a particular hypothesis 𝐻, and quantify the (dis)agreement. For example, to

what degree did our search for the Higgs boson agree or disagree with the stan-

dard model hypothesis?

We have already discussed the process of mapping data to a scalar test

statistic 𝑡 that we can use to test 𝐻. However, we need to know the probability

distribution of 𝑡 under 𝐻 to quantify the (in)consistency of the observed data

with 𝐻 and decide whether or not to exclude 𝐻.
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We must also recognize that there’s always a chance that we will exclude

𝐻 even if it’s true (called a Type I error, or a false positive), or not exclude𝐻when

it’s false (Type II error, or false negative). The probability of each is referred to

as 𝛼 and 𝛽, respectively. This is summarized handily in Table 8.1.

Table 8.1. Table of error types, reproduced from Ref. [65].

Table of error types
Null hypothesis (𝐻0) is

True False

Decision

about null

hypothesis (𝐻0)

Fail to reject
Correct inference

(true negative)

(probability = 1 − 𝛼)

Type II error

(false negative)

(probability = 𝛽)

Reject
Type I error

(false positive)

(probability = 𝛼)

Correct inference

(true positive)

(probability = 1 − 𝛽)

Before the test, we should decide on a probability ofmaking a Type I error,

𝛼, that we are comfortable with, called a “significance level”. Typical values

are 5% and 1%, although if we’re claiming something crazy like a new particle,

we better be very sure this isn’t a false positive; hence, we set a much lower

significance level for these tests of 3 × 10−7. (The significance of this value will

be explained in Section 8.2.2 below.)
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Deriving 𝑝(𝑡𝑠 |𝑠)

We can approximate 𝑝(𝑡𝑠 |𝑠) by generating several pseudo- or “toy”

datasets assuming 𝑠 expected signal events. In this case, this means sampling

possible values for 𝑛, 𝑚 from our probability model. We will continue with our

simple counting experiment (Section 8.2.1), for which such toy datasets are gen-

erated and then used to create histograms for 𝑝(𝑡𝑠 |𝑠) in Figure 8.5. Note that one

complication in generating these toys is that the 𝑛, 𝑚 distributions from which

we want to sample (Eq. 8.2.3) also depend on the nuisance parameter 𝑏. How-

ever, we see from the figure that this does notmatter asmuch aswemight expect.

Figure 8.5. Estimating 𝑝(𝑡𝑠 |𝑠) through toys.

We make two important observations:

1. 𝑝(𝑡𝑠 |𝑠) does not depend on nuisance parameters as long as we have suffi-

ciently large statistics (in this case, when 𝑏 is sufficiently large). This is a

key reason for basing our test statistic on the profile likelihood.
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2. In fact, 𝑝(𝑡𝑠 |𝑠) doesn’t even depend on the POI 𝑠! (Again, as long as 𝑠 is

large.)

Reference [301] shows that, asymptotically, this distribution follows a 𝜒2

distribution with degrees of freedom equal to the number of POIs, as illustrated

in Figure 8.6.1 We can see that the asymptotic form looks accurate even for 𝑠, 𝑏 as

low as ∼ 5. Note that for cases where we can’t use the asymptotic form, Ref. [58]

recommends using 𝑏 = ˆ̂𝑏(𝑠) when generating toys, so that we (approximately)

maximize the agreement with the hypothesis.

Figure 8.6. Asymptotic form of 𝑝(𝑡𝑠 |𝑠).

𝑝-values and significance

Now that we know the distribution of the test statistic 𝑝(𝑡𝑠 |𝐻𝑠) ≡ 𝑝(𝑡𝑠 |𝑠),
we can finally test 𝐻𝑠 with our experiment. We just need to calculate the “ob-

1One can find the derivation in the reference therein; essentially, like with most things in
physics, this follows from Taylor expanding around the minimum...
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served” test statistic 𝑡obs
𝑠 from our observations, and compare it to the 𝑝(𝑡𝑠 |𝑠).

Example 8.2.1. Let’s say we’re testing the hypothesis of 𝑠 = 10 signal events in

our model and we observe 𝑛 = 20, 𝑚 = 5 events. We can map this observation

to our test statistic 𝑡obs
𝑠 (𝑠 = 10, 𝑛obs = 20, 𝑚obs = 5) = 1.07, and see where this

falls in our 𝑝(𝑡𝑠 |𝑠) distribution (Figure 8.7).

Figure 8.7. Testing 𝐻𝑠 in Example 8.2.1.

Ultimately, we care about, given 𝑝(𝑡𝑠 |𝑠), the probability of obtaining 𝑡obs
𝑠

or a value more inconsistent with 𝐻𝑠 ; i.e., the green shaded region above. This is

referred to as the 𝑝-value of the observation:

𝑝𝑠 =
∫ ∞

𝑡obs

𝑝(𝑡𝑠 |𝑠)d𝑡𝑠 = 1 − 𝐹(𝑡obs|𝑠), (8.2.14)
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which is 0.30 for this example, where

𝐹(𝑡𝑠 |𝑠) =
∫ 𝑡𝑠

−∞
𝑝(𝑡′𝑠 |𝑠)d𝑡′𝑠 (8.2.15)

is the cumulative distribution function (CDF) of 𝑡𝑠 . We reject the hypothesis if

this 𝑝-value is less than our chosen significance level 𝛼; the idea being that if 𝐻𝑠

were true and we repeated this measurement many times, then the probability

of a false-positive (𝑝-value ≤ 𝛼) is exactly 𝛼, as we intended.

The 𝑝-value is typically converted into a significance (𝑍), which is the cor-

responding number of standard deviations away from the mean in a Gaussian

distribution:

𝑍 = Φ−1(1 − 𝑝), (8.2.16)

where Φ is the CDF of the standard Gaussian. This is more easily illustrated in

Figure 8.8, where 𝜑 is the standard Gaussian distribution:

The significance in Example 8.2.1 is, therefore, Φ−1(1 − 0.30) = 0.53. We

sometimes say that our measurement is (in)consistent or (in)compatible with 𝐻

at the 0.53𝜎 level, or within 1𝜎, etc.
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Figure 8.8. Relationship between significance 𝑍 and the 𝑝-value, reproduced
from Ref. [58].

Signal discovery

So far, we have been testing the signal hypothesis, but usually when

searching for a particle, we instead test the “background-only” hypothesis 𝐻0

and decide whether or not to reject it. This means we want 𝑡obs
0 and 𝑝(𝑡0|0) (Fig-

ure 8.9).2

We could say for this experiment, therefore, that we exclude the

background-only hypothesis at the “3 sigma” level. However, for an actual

search for a new particle at the LHC, this is insufficient to claim a discovery,

as the probability of a false positive at 3𝜎, 1/1000, is too high. The standard is

instead set at 5𝜎 for discovering new signals, corresponding to the 3 × 10−7 sig-

nificance level quoted earlier, as we really don’t want to be making a mistake if

2Ref. [301] refers to the special case of the test statistic 𝑡𝑠 for 𝑠 = 0 as 𝑞0.
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Figure 8.9. Testing the background-only hypothesis in Example 8.2.1.

we’re claiming to have discovered a new particle! 3𝜎, 4𝜎, and 5𝜎 are commonly

referred to as “evidence”, “observation”, and “discovery”, respectively, of the

signals we’re searching for.

In summary, the framework for hypothesis testing comprises:

1. Defining a test statistic 𝑡 to map data ®𝑥 (in our example, ®𝑥 = (𝑛, 𝑚)) to a

single number.

2. Deriving the distribution of 𝑡 under the hypothesis being tested 𝑝(𝑡|𝐻) by
sampling from “toy” datasets assuming 𝐻.

3. Quantifying the compatibility of the observed data ®𝑥obs with 𝐻 with the

𝑝-value or significance 𝑍 of 𝑡obs relative to 𝑝(𝑡|𝐻).

This 𝑝-value / significance is what we then use to decide whether or not
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to exclude 𝐻. A particularly important special case of this, as discussed above,

is testing the background-only hypothesis when trying to discover a signal.

8.2.3 Confidence intervals and limits

Confidence intervals using the Neyman construction

Next, we discuss going beyond hypothesis testing to setting intervals and

limits for parameters of interest. The machinery from Section 8.2.2 can be ex-

tended straightforwardly to extracting “confidence intervals” for our parameters

of interest (POIs): a range of values of the POIs that are allowed, based on the

experiment, at a certain “confidence level” (CL), e.g. 68% or 95%. Very similar

to the idea of the significance level, the CL is defined such that if we were to

repeat the experiment many times, a 95%-confidence-interval must contain, or

cover, the true value of the parameter 95% of the time.

This can be ensured for any given CL by solving Eq. 8.2.14 for a 𝑝-value

of 1 − CL:

𝑝 = 1 − CL =
∫ ∞

𝑡obs
𝑠

𝑝(𝑡𝑠 |𝑠±)d𝑡𝑠 , (8.2.17)

where 𝑠− and 𝑠+ are the lower and upper limits on 𝑠, respectively.

This can be solved by scanning 𝑠 and finding the values of 𝑠 for which the
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RHS= 1−CL, as demonstrated in Figure 8.10 for the experiment in Example 8.2.1

(𝑛obs = 20, 𝑚obs = 5). This procedure of inverting the hypothesis test by scanning

along the values of the POIs is called the “Neyman construction”.

Figure 8.10. Demonstration of the Neyman construction for a 95% confidence
interval for the experiment in Example 8.2.1 (𝑛obs = 20, 𝑚obs = 5). Left: Scanning
𝑝(𝑡𝑠 |𝑠) using 10,000 toys each for different values of 𝑠. Right: Converting this to a
contour plot of the 𝑝-values for different 𝑡𝑠 ’s as a function of 𝑠, with the observed
𝑡obs
𝑠 in red. The points at which 𝑡obs

𝑠 intersects with the 𝑝-value = 0.05 contour
are marked in black and signify the limits of the 95% confidence interval for 𝑠 -
in this case, [6.0, 25.8].

One subtlety to remember is that, in principle, we should also be scanning

over the nuisance parameters (𝑏) when estimating the 𝑝-values. However, this

would be very computationally expensive so in practice, we continue to use 𝑏 =
ˆ̂𝑏(𝑠), to always (approximately) maximize the agreement with the hypothesis.

Ref. [58] calls this trick “profile construction”.
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Upper limits

Typically if a search does not have enough sensitivity to directly observe

a new signal, we instead quote an upper limit on the signal strength. This is

similar in practice to the Neyman construction for confidence intervals, solving

Eq. 8.2.17 only for the upper boundary. However, an important difference is

that when setting upper limits, we have to modify the test statistic so that a best-

fit signal strength greater than the expected signal (𝑠 > 𝑠) does not lower the

compatibility with 𝐻𝑠 :

�̃�(𝑠) =

𝑡(𝑠), 𝑠 < 𝑠.

0, 𝑠 ≥ 𝑠.
=


−2 ln �̃�(𝑠), 𝑠 < 𝑠.

0, 𝑠 ≥ 𝑠.
=


−2 ln 𝐿(𝑠, ˆ̂𝑏(𝑠))

𝐿(0, ˆ̂𝑏(0))
, 𝑠 < 0.

−2 ln 𝐿(𝑠, ˆ̂𝑏(𝑠))
𝐿(𝑠,𝑏) , 0 ≤ 𝑠 < 𝑠.

0, 𝑠 ≥ 𝑠.

(8.2.18)

The upper limit test statistic �̃�(𝑠) is set to 0 for 𝑠 > 𝑠 so that this situation

does not contribute to the 𝑝-value integral in Eq. 8.2.14. Figure 8.11 demonstrates

this, and the difference between 𝑡𝑠 and �̃�𝑠 , for different sample observations.

Note that (as one may expect from Figure 8.11) the distribution 𝑝(�̃�𝑠 |𝑠) no
longer behaves like a standard 𝜒2 but, instead, as a “half-𝜒2”. This is essentially

a 𝜒2 plus a delta function at 0 (since, under the signal hypothesis, on average

there will be an over-fluctuation half the time, for which �̃�𝑠 = 0), as shown in

Figure 8.12.
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Figure 8.11. Comparing 𝑡𝑠 and �̃�𝑠 .

We can now revisit Example 8.2.1 to set an upper limit on 𝑠 rather than

a confidence interval (Figure 8.13). 𝑝(�̃�𝑠 |𝑠) is shifted to the left with respect to

𝑝(𝑡𝑠 |𝑠); hence, the upper limit of 24 is slightly lower than the upper bound of the

95% confidence interval we derived using 𝑡𝑠 .

Figure 8.12. Comparing 𝑝(𝑡𝑠 |𝑠) and 𝑝(�̃�𝑠 |𝑠). 𝑝(�̃�𝑠 |𝑠) asymptotically follows a half-
𝜒2 distribution (green).
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Figure 8.13. Extending the Neyman construction to an upper limit on 𝑠. Left:
Scanning the upper limit test statistic distribution 𝑝(�̃�𝑠 |𝑠) using 10,000 toys each
for different values of 𝑠. Right: Converting this to a contour plot of the 𝑝-values
for different �̃�𝑠 ’s as a function of 𝑠, with the observed 𝑞obs

𝑠 in red. The point
at which 𝑞obs

𝑠 intersects with the 𝑝-value = 0.05 contour is marked in black and
signifies the upper limit at 95% CL.

The CL𝑠 criterion

We now introduce two conventions related to hypothesis testing and

searches in particle physics. Firstly (the simple one), the POI 𝑠 is usually re-

parametrized as 𝑠 → 𝜇 · 𝑠, where 𝜇 is now considered the POI, referred to as

the “signal strength”, and 𝑠 is a fixed value representing the number of signal

events we expect to see for the nominal signal strength 𝜇 of 1. For the example

in Figure 8.13, if we expect 𝑠 = 10 signal events, then we would quote the upper

limit as 24/𝑠 = 2.4 on 𝜇 at 95% CL.

The second, important, convention is that we use a slightly different crite-

rion for confidence intervals, called “CL𝑠”. This ismotivated by situationswhere
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we have little sensitivity to the signal we’re searching for, as in the below exam-

ple.

Example 8.2.2. Let’s say we expect 𝑠 = 10 and observe 𝑛 = 70, 𝑚 = 100. Really,

what this should indicate is that our search is not at all sensitive, since our search

region is completely dominated by background and, hence, we should not draw

strong conclusions about the signal strength. However, if we follow the above

procedure for calculating the upper limit, we get 𝜇 ≤ 0.001 at 95% CL.

This is an extremely aggressive limit on 𝜇, where we’re excluding the

nominal 𝜇 = 1 signal at a high confidence level. Given the complete lack of

sensitivity to the signal, this is not a sensible result. The CL𝑠 method solves this

problem by considering both the 𝑝-value of the signal + background hypothesis

𝐻𝑠 (referred to as 𝑝𝑠+𝑏 or just 𝑝𝜇 for short), and the 𝑝-value of the background-

only hypothesis 𝐻0 (𝑝𝑏), to define a new criterion:

𝑝′𝜇 =
𝑝𝜇

1 − 𝑝𝑏 (8.2.19)

In cases where the signal region is completely background-dominated,

the compatibilitywith the background-only hypothesis should be high, so 𝑝𝑏 ∼ 1

and, hence, 𝑝′𝜇 will be increased. On the other hand, for more sensitive regions,

compatibility should be lower ⇒ 𝑝𝑏 ∼ 0 and 𝑝′𝜇 ∼ 𝑝𝜇.
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To be explicit, here

𝑝𝑏 =
∫ 𝑡obs

−∞
𝑝(𝑡𝑠 |0)d𝑡𝑠 , (8.2.20)

where we should note that:

1. We’re looking at the distribution of 𝑡𝑠 — not 𝑡0 — under the background-

only hypothesis, since the underlying test is of 𝐻𝑠 , not 𝐻0; and

2. We’re integrating up to 𝑡obs, unlike for 𝑝𝑠 , because lower 𝑡 means greater

compatibility with the background-only hypothesis.

The effect of the CL𝑠 criterion is demonstrated in Figure 8.14 for Exam-

ples 8.2.1 and 8.2.2. In the former, the background-only distribution is shifted

to the right of the 𝑠 + 𝑏 distribution. This indicates that the experiment is sen-

sitive to 𝜇 and, indeed, we find 𝑝′𝜇 ∼ 𝑝𝜇. In Example 8.2.2, however, the search

is not sensitive and, hence, the background-only and 𝑠 + 𝑏 distributions almost

completely overlap, meaning 𝑝𝑏 ∼ 1 and 𝑝′𝜇 >> 𝑝𝜇.3

Finally, if we repeat the Neyman construction using the CL𝑠 criterion 𝑝′𝜇

instead of 𝑝𝜇 for Example 8.2.2, we can find an upper limit of 𝜇 ≤ 1.2 at 95%

CL, which is indeed a looser, more conservative, upper limit. The upper limit

for Example 8.2.1 remains unchanged at 𝜇 ≤ 2.4, as we would expect.

3Note that, unlike 𝑝(𝑡𝑠 |𝑠), 𝑝(𝑡𝑠 |0) doesn’t follow a simple 𝜒2; asymptotically, it is closer to a
noncentral 𝜒2, as will be discussed in Section 8.3.2.
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Figure 8.14. Demonstration of CL𝑠 criterion for Examples 8.2.1 (left) and 8.2.2
(right).

8.2.4 Expected significances and limits

Expected significance

The focus so far has been only on evaluating the results of experiments.

However, it is equally important to characterize the expected sensitivity of the

experiment before running it (or before looking at the data).

Example 8.2.3. Concretely, we continue with the simple one-bin counting exper-

iment (Section 8.2.1). Let’s say we expect 𝑏 = 10 background events and — at

the nominal signal strength 𝜇 = 1 — 𝑠 = 10 signal events. How do we tell if

this experiment is at all useful for discovering this signal, i.e., does it have any

sensitivity to the signal?
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One way is to calculate the significance with which we expect to exclude

the background-only hypothesis if the signal were, in fact, to exist. Practically,

this means we are testing 𝐻0 and, hence, need 𝑝(𝑡0|𝜇 = 0) as before. However,

now we also need the distribution of the test statistic 𝑡0 under the background +

signal hypothesis 𝑝(𝑡0|𝜇 = 1). Then, by calculating the significance for each sam-

pled 𝑡0 under 𝐻𝜇=1, we can estimate the distribution of expected significances.

This is illustrated for Example 8.2.3 in Figure 8.15.

Figure 8.15. Left: Distributions of 𝑡0 under the background-only and back-
ground + signal hypotheses using 30,000 toys each. The median of the latter
is marked in red. Right: Distribution of the significances (with respect to the
background-only hypothesis) of each sampled 𝑡0 under the signal hypothesis.

Importantly, we usually quote the median of this distribution as the ex-

pected significance, since the median is “invariant” to monotonic transforma-

tions (i.e., the median 𝑝-value will always correspond to the median 𝑍 as well,

whereas the mean 𝑝-value will not correspond to the mean 𝑍). Similarly, we

279



quote the 16%/84% and 2%/98% quantiles as the ±1𝜎 and ±2𝜎, respectively, ex-

pected significances. These quantiles correspond to the cumulative probabilities

for a standard Gaussian (Figure 8.16). For Example 8.2.3, we thus find the me-

dian expected significance to be 1.83.

Figure 8.16. Gaussian quantiles, reproduced from Ref. [59].

Note that instead of converting each sampled 𝑡 under 𝐻𝜇=1 into a signif-

icance and finding the median of that distribution, as in Figure 8.15 (right), we

can take advantage of the invariance of the median and directly use the signifi-

cance of the median 𝑡 under 𝐻𝜇=1 (Figure 8.15, left). We will do this below for

the expected limit.
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Expected limits

The other figure of merit we care about in searches is the upper exclusion

limit set on the signal strength. To derive the expected limit, we do the opposite

of the above and ask, if the signal were not to exist, what value of 𝜇 would we

expect to exclude at the 95% CL.4

This means we need:

1. The distribution 𝑝(�̃�𝜇|𝜇) to solve for 𝜇+ in Eq. 8.2.17 and be able to do the

upper limit calculation (as in Section 8.2.3);

2. 𝑝(�̃�𝜇|0) to get the median (and other quantiles’) expected �̃�obs
𝜇 for different

signal strengths under the background-only hypothesis; and, furthermore,

3. To scan over the different signal strengths to find the 𝜇 that results in a

median 𝑝-value of 0.05 —or, rather, 𝑝′𝜇-value (Eq. 8.2.19), since we’re using

the CL𝑠 method for upper limits (Section 8.2.3).

First, let’s look at the first two steps for just the 𝜇 = 1 signal strength in

Example 8.2.3. These steps are similar to, and essentially an inversion of, the

procedure for the expected significance: we’re now finding the 𝑝′𝜇=1-value with

respect to the signal + background hypothesis, for themedian �̃�𝜇 sampled under

the background-only hypothesis. This is demonstrated in Figure 8.17.

The key difference with respect to calculating the expected significance is

495% is the standard CL for upper limits in HEP.
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Figure 8.17. Calculating the median expected 𝑝′𝜇=1-value with respect to
the signal + background hypothesis, for test statistics �̃�𝜇 sampled under the
background-only hypothesis. 𝑝(�̃�𝜇|1) and 𝑝(�̃�𝜇|0) are estimated using 30,000 toys
each. Then, the median 𝑝(�̃�𝜇|0) (red) is used to calculate the 𝑝′𝜇-value following
the CL𝑠 criterion.

step 3, in which this procedure has to be repeated for a range of signal strengths

to find the value that gives a median (and ±1𝜎,±2𝜎 quantile-) 𝑝′𝜇 of 0.05. This is

thus the minimum value of 𝜇 that we expect to be able to exclude at 95% CL, as

shown in Figure 8.18.

Thus, we have our expected limits. The right plot of Figure 8.18 is collo-

quially known as a “Brazil-band plot”, and is the standard way of representing

limits. For example, Figure 8.19 is the corresponding plot by ATLAS for the

Higgs discovery (scanning over the Higgs mass).
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Figure 8.18. Left: The expectedmedian and±1𝜎,±2𝜎 quantiles of 𝑝′𝜇 for different
𝜇’s. The intersection of these with 𝑝′𝜇 = 0.05 (gray) corresponds to the expected
exclusion limits. Right: The median and ±1𝜎,±2𝜎 expected limits at 95% CL𝑠
on 𝜇.

8.3 Asymptotic formulae

8.3.1 Asymptotic form of the MLE

So far, we have discussed how to extract meaningful statistical results

from HEP experiments by making extensive use of pseudodata / toy experi-

ments to estimate the sampling distributions of profile-likelihood-ratio-based

test statistics. While this worked nicely for our simple counting experiment,

generating a sufficiently large number of toys can quickly become computation-

ally intractable for the more complex searches (and statistical combinations of

searches) that are increasingly prevalent at the LHC, containing at times up to
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Figure 8.19. Expected and observed 95% CL𝑠 upper limits for the SM Higgs by
ATLAS in 2012, for different hypothetical Higgs masses [60].

thousands of bins and nuisance parameters. This and the following section dis-

cuss a way to approximate these sampling distributions without the need for

pseudodata. This was introduced in the famous “CCGV” paper [301] in 2011

and has since become the de-facto procedure at the LHC.

As hinted at previously, such as in Figures 8.6 and 8.12, the distributions

𝑝(𝑡𝜇|𝜇′) and 𝑝(�̃�𝜇|𝜇′) (where, in general, 𝜇′ ≠ 𝜇) have similar forms regardless

of the nuisance parameters (or sometimes even the POIs). This is not a coinci-

dence: we will now derive their “asymptotic” — i.e., in the large sample limit

— forms, starting first with the asymptotic form of the maximum likelihood es-

timator (MLE).

It is important to remember that theMLE �̂� of 𝜇 is a random variable with

its own probability distribution. We can estimate it as always by sampling toys,

shown in Figure 8.20 for our counting experiment (Eq. 8.2.3). One can observe

that 𝑝(�̂�) follows a Gaussian distribution as the number of events 𝑁 increases,
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and indeed this becomes clear if we try to fit one to the histograms (Figure 8.21).

We will now show this to be true generally, deriving the analytic distribution in

Sections 8.3.1—8.3.1, and discussing the results and the important concept of the

Asimov dataset for numerical estimation in Sections 8.3.1 and 8.3.1, respectively.

Figure 8.20. Distribution of the MLE of 𝜇 for different 𝑠 and 𝑏 produced using
30,000 toy experiments each. (Note the x-axis range is becoming narrower from
the left-most to the right-most plot.)

Figure 8.21. Gaussian fits to distributions of �̂� for different 𝑠 and 𝑏 from Fig-
ure 8.20.
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Statistics background

We first provide a lightning review of some necessary statistics concepts

and results.

Definition 8.3.1. Let the negative log-likelihood (NLL) − ln 𝐿(𝜇) ≡ −𝑙(𝜇). The

derivative of the NLL −𝑙′(𝜇) is called the score 𝑠(𝜇). It has a number of useful

properties: 5

1. Its expectation value at 𝜇′ E𝜇=𝜇′[𝑠(𝜇′)] = 0.

2. Its variance Var[𝑠(𝜇)] = −E[𝑙′′(𝜇)].

Note that the expectation value here means an average over observations which

are distributed according to a particular 𝜇, which here we’re calling the “true”

𝜇: 𝜇′.

Definition 8.3.2. −E[𝑙′′(𝜇)] ≡ ℐ (𝜇) is called the Fisher information. It quanti-

fies the information our data contains about 𝜇 and importantly, as we’ll see, it

(approximately) represents the inverse of the variance of �̂�. More generally, for

multiple parameters,

ℐ𝑖 𝑗(𝜇) = −E[ 𝜕2𝑙
𝜕𝜇𝑖𝜕𝜇𝑗

] (8.3.1)

is the Fisher information matrix. It is also commonly called the covariance ma-

trix.
5See derivations in e.g. Ref. [305].
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Theorem 8.3.1. Putting this together, by the central limit theorem [306], this

means 𝑝(𝑠(𝜇′)) follows a normal distribution with mean 0 and variance ℐ (𝜇′),
up to terms of order O( 1√

𝑁
):

𝑠(𝜇′)
√
𝑁>>1−−−−−→ N(0,√ℐ (𝜇′)), (8.3.2)

where 𝑁 represents the data sample size.

The Fisher information

For our simple counting experiment, the Fisher information matrix

ℐ (𝜇, 𝑏) can be found by taking second derivatives of the NLL (Eq. 8.2.5). The

ℐ𝜇𝜇 term, for example, is:

ℐ𝜇𝜇(𝜇, 𝑏) = −E[𝜕𝜇𝜕𝜇𝑙(𝜇, 𝑏)] = E
[
𝑛 ·

𝑠2

(𝜇𝑠 + 𝑏)2
]
= E[𝑛] ·

𝑠2

(𝜇𝑠 + 𝑏)2 =
(𝜇′𝑠 + 𝑏′)𝑠2

(𝜇𝑠 + 𝑏)2 .

(8.3.3)

In the last step we use the fact that E[𝑛] under true 𝜇 = 𝜇′, 𝑏 = 𝑏′, is

𝜇′𝑠 + 𝑏′. For the remainder of this section, ℐ (𝜇, 𝑏) will always be evaluated at

the true values of the parameters,6 so this can be simplified to ℐ𝜇𝜇(𝜇′, 𝑏′) = 𝑠2

𝜇′𝑠+𝑏′ .

This is plotted in Figure 8.22, where we can the Fisher information captures the

fact that as 𝑏 increases, we lose sensitivity to — or information about — 𝜇.

6The reason for this is discussed shortly in Section 8.3.1.
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Figure 8.22. The Fisher information ℐ𝜇𝜇(𝜇, 𝑏) for different 𝜇 and 𝑠, as a function
of the expected background 𝑏.

For completeness (and since we’ll need it below), the full Fisher informa-

tion matrix for our problem, repeating the steps in Eq. 8.3.3, is:

ℐ (𝜇′, 𝑏′) = ©«
ℐ𝜇𝜇 ℐ𝜇𝑏
ℐ𝑏𝜇 ℐ𝑏𝑏

ª®¬ (𝜇′, 𝑏′) = ©«
𝑠2

𝜇′𝑠+𝑏′
𝑠

𝜇′𝑠+𝑏′
𝑠

𝜇′𝑠+𝑏′
1

𝜇′𝑠+𝑏′ + 1
𝑏′

ª®¬ (8.3.4)

Derivation

We now have enough background to derive the asymptotic form of the

MLE.We do this for the 1D case by Taylor-expanding the score of �̂�, 𝑙′(�̂�) - which
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we know to be = 0 - around 𝜇′:

𝑙′(�̂�) = 𝑙′(𝜇′) + 𝑙′′(𝜇′)(�̂� − 𝜇′) + O((�̂� − 𝜇′)2) = 0 (8.3.5)

⇒ �̂� − 𝜇′ ' −
𝑙′(𝜇′)
𝑙′′(𝜇′)

√
𝑁>>1−−−−−→

1

ℐ (𝜇′)𝑁(0,√ℐ (𝜇′)) = 𝑁

(
0, 1√ℐ (𝜇′)

)
, (8.3.6)

where we plugged in the distribution of 𝑙′(𝜇′) from Eq. 8.3.2, claimed

𝑙′′(𝜇′) asymptotically equals its expectation value E[𝑙′′(𝜇′)] = ℐ (𝜇′) by the law

of large numbers [307], and are ignoring the O((�̂� − 𝜇′)2) term.7

For multiple parameters, ℐ is a matrix so the variance generalized to the

matrix inverse:

�̂� − 𝜇′ ' 𝑁(0,
√
ℐ−1
𝜇𝜇 (𝜇′, 𝑏′)), (8.3.7)

Result

Thus, we see that �̂� asymptotically follows a normal distribution around

the true 𝜇 value, 𝜇′, with a variance 𝜎2
�̂� = ℐ−1

𝜇𝜇 (𝜇′, 𝑏′), up to O(1/√𝑁) terms. Intu-

itively, from the definition of the Fisher information ℐ, we can interpret this as

saying that the more information we have about 𝜇 from the data, the lower the

variance should be on �̂�.

7For a more rigorous derivation, see e.g. Ref. [308].
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Continuing with our counting experiment from Section 8.2.1, inverting ℐ
from Eq. 8.3.4 gives us

𝜎�̂� =
√
ℐ−1
𝜇𝜇 (𝜇′, 𝑏′) =

√
𝜇′𝑠 + 2𝑏′

𝑠
. (8.3.8)

Note that, aswemight expect, this scales as∼ √
𝑏, which is the uncertainty

of our Poisson nuisance parameter 𝑏—showingmathematicallywhywewant to

keep uncertainties on nuisance parameters as low as possible. This is compared

to the toy-based distributions from Section 8.3.1 in Figure 8.23 this time varying

the true signal strength 𝜇′ as well, where we can observe that this matches very

well for large 𝑠, 𝑏, while for small values there are some discrete differences.

We can also check the total per-bin errors between the asymptotic form

and the toy-based distributions directly, as shown in Figure 8.24 (for 𝜇′ = 1 only).

Indeed, this confirms that the error scales as ∼ 1√
𝑠
and ∼ 1√

𝑏
, as claimed above.

Numerical estimation and the Asimov dataset

In this section, because of the simplicity of our data model, we were able

to derive the Fisher information ℐ and, hence, the asymptotic form of �̂� analyt-

ically. In general, this is not possible and we typically have to minimize 𝑙, find

its second derivatives, and solve Eq. 8.3.3 etc. numerically instead.
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Figure 8.23. Asymptotic (dotted lines) and toy-based (solid lines) distributions,
using 30,000 toys each, of theMLE of𝜇 for different 𝑠, 𝑏, and true signal strengths
𝜇′.

However, when calculating the Fisher information, how do we deal with

the expectation value over the observed data (𝑛, 𝑚 in our case)? Naively, this

would require averaging over a bunch of generated toy 𝑛, 𝑚 values again, which

defeats the purpose of using the asymptotic form of �̂�!

Instead, we can switch the order of operations in Eq. 8.3.3,8 rewriting it

8We are able to do this because, as we saw above, the score is linear in 𝑛 for Poisson likeli-
hoods.
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Figure 8.24. Error between the sampled toy distributions, using 50,000 toys each,
and the asymptotic distributions of theMLE of 𝜇 for different 𝑠 and 𝑏 (blue), with
1/√𝑁 fits in red.

as:

ℐ𝑖 𝑗(𝜇, 𝑏) = −E[𝜕𝑖𝜕 𝑗 𝑙(𝜇, 𝑏; 𝑛, 𝑚)] = −𝜕𝑖𝜕 𝑗E[𝑙(𝜇, 𝑏; 𝑛, 𝑚)] = −𝜕𝑖𝜕 𝑗 𝑙(𝜇, 𝑏;E[𝑛],E[𝑚]).
(8.3.9)

Importantly, this says we can find ℐ by simply evaluating the likelihood

for a dataset of observations equal to their expectation values under 𝜇′ instead

of averaging over the distribution of observations and then getting its second

derivatives.

Definition 8.3.3. Such a dataset is called the Asimov dataset, and

𝐿(𝜇;E[𝑛],E[𝑚]) ≡ 𝐿𝐴 is referred to as the “Asimov likelihood”.9

9The Asimov dataset is named after Isaac Asimov, the popular science fiction author, whose
book Franchise is about a supercomputer choosing a single person as the sole voter in the U.S.
elections, because they can represent the entire population.
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8.3.2 Asymptotic form of the profile likelihood ratio

We can now proceed to derive the asymptotic form of the sampling distri-

bution 𝑝(𝑡𝜇|𝜇′) of the profile likelihood ratio test statistic 𝑡𝜇, under a “true” sig-

nal strength of 𝜇′. This asymptotic form is extremely useful for simplifying the

computation of (expected) significances, limits, and intervals; indeed, standard

procedure at the LHC is to use it in lieu of toy-based, empirical distributions for

𝑝(𝑡𝜇|𝜇′).

Asymptotic form of the profile likelihood ratio

We start with deriving the asymptotic form of the profile likelihood ratio

test statistic 𝑡𝜇 (Eq. 8.2.7) by following a similar procedure to Section 8.3.1— and
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using the results therein — of Taylor expanding around its minimum at �̂�:10

𝑡𝜇 = −2 ln𝜆(𝜇) (8.3.10)

= −2𝑙(𝜇, ˆ̂𝑏(𝜇)) + 2𝑙(�̂�, 𝑏) (8.3.11)

' −2𝑙(�̂�, ˆ̂𝑏(�̂�)) + 2𝑙(�̂�, 𝑏)︸                      ︷︷                      ︸
ˆ̂𝑏(�̂�)=𝑏 so this is 0

− 2𝑙′(�̂�, ˆ̂𝑏(�̂�))(𝜇 − �̂�)︸                 ︷︷                 ︸
𝑙′(�̂�,𝑏)=0

−2𝑙′′(�̂�, ˆ̂𝑏(�̂�)) · (𝜇 − �̂�)2
2 (8.3.12)

= −𝑙′′(�̂�, 𝑏) · (𝜇 − �̂�)2 (8.3.13)

= −E[𝑙′′(�̂�, 𝑏)]︸        ︷︷        ︸
By law of large numbers

·(𝜇 − �̂�)2 (8.3.14)

= −E[𝑙′′(𝜇′, 𝑏′)]︸          ︷︷          ︸
Since bias of MLEs ∼ 0

·(𝜇 − �̂�)2 (8.3.15)

= ℐ𝜇𝜇(𝜇′, 𝑏′)︸      ︷︷      ︸
From definition of Fisher information

·(𝜇 − �̂�)2 (8.3.16)

⇒ 𝑡𝜇 ' (𝜇 − �̂�)2
𝜎2
�̂�︸            ︷︷            ︸

Using 𝜎�̂�'
√
ℐ−1
𝜇𝜇 (𝜇′,𝑏′)

+O((𝜇 − �̂�)3) + O( 1√
𝑁
). (8.3.17)

Here, just like in Eq. 8.3.6, we use the law of large numbers in Line 8.3.14

and take 𝑙′′(�̂�, 𝑏) to asymptotically equal its expectation value under the true

parameter values 𝜇′, 𝑏′: 𝑙′′(�̂�, 𝑏)
√
𝑁>>1−−−−−→ E[𝑙′′(�̂�, 𝑏)]. We then in Line 8.3.15 also

use the fact that MLEs are generally unbiased estimators of the true parameter

10Note: this is not a rigorous derivation; it’s just a way to motivate the final result, which is
taken from Ref. [301]. (If you know of a better way, let me know!)
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values in the large sample limit to say E[𝑙′′(�̂�, 𝑏)]
√
𝑁>>1−−−−−→ E[𝑙′′(𝜇′, 𝑏′)]. Finally, in

the last step, we use the asymptotic form of the MLE (Eq. 8.3.7).

Asymptotic form of 𝑝(𝑡𝜇|𝜇′)

Now thatwe have an expression for 𝑡𝜇, we can consider its sampling distri-

bution. With a simple change of variables, the form of 𝑝(𝑡𝜇|𝜇′) should hopefully

be evident: recognizing that 𝜇 and 𝜎2
�̂� are simply constants, while �̂� we know

is distributed as a Gaussian centered around 𝜇′ with variance 𝜎2
�̂�, let’s define

𝛾 ≡ 𝜇−�̂�
𝜎�̂�

, so that

𝑡𝜇 ' (𝜇 − �̂�)2
𝜎2
�̂�

= 𝛾2, (8.3.18)

𝛾 ∼ N
(
𝜇 − 𝜇′

𝜎�̂�
, 1
)
. (8.3.19)

For the special case of 𝜇 = 𝜇′, we can see that 𝑡𝜇 is simply the square of a

standard normal random variable, which is the definition of the well-known 𝜒2
𝑘

distribution with 𝑘 = 1 degrees of freedom (DoF):

𝑝(𝑡𝜇|𝜇) ∼ 𝜒2
1 . (8.3.20)

In the general case where 𝜇 may not = 𝜇′, 𝑡𝜇 is the square of random

295



variable with unit variance but non-zero mean. This is distributed as the similar,

but perhaps less well-known, non-central chi-squared 𝜒′2
𝑘 (Λ), again with 1 DoF,

and with a “non-centrality parameter”

Λ = �̄�2 =

(
𝜇 − 𝜇′

𝜎�̂�

)2
, (8.3.21)

𝑝(𝑡𝜇|𝜇′) ∼ 𝜒′2
1 (Λ). (8.3.22)

The “central” vs. non-central chi-squared distributions are visualized in

Figure 8.25 for 𝑘 = 1. We can see that 𝜒′2
𝑘 (Λ) simply shifts towards the right as Λ

increases (at Λ = 0 it is a regular central 𝜒2). As Λ → ∞, 𝜒′2
𝑘 (Λ) becomes more

and more like a normal distribution with mean Λ.11

Figure 8.25. Central 𝜒2
𝑘 and non-central 𝜒′2

𝑘 (Λ) distributions forΛ between 1−30
(left) and 30 − 300 (right).

11More information can be found in e.g. Ref. [309].
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By extending the derivation in Eq. 8.3.17 to multiple POIs, one can find

the simple generalization to multiple POIs ®𝜇:

𝑝(𝑡𝜇|𝜇′) ∼ 𝜒′2
𝑘 (Λ), (8.3.23)

where the DoF 𝑘 are equal the number of POIs dim ®𝜇, and

Λ = (®𝜇 − ®𝜇′)𝑇 · ℐ̃−1(®𝜇′) · (®𝜇 − ®𝜇′), (8.3.24)

where ℐ̃−1 is ℐ−1 restricted only to the components corresponding to the POIs.

Estimating 𝜎2
�̂�

The critical remaining step to understanding the asymptotic distribution

of 𝑡𝜇 is estimating 𝜎2
�̂� to find the non-centrality parameter Λ in Eq. 8.3.21. We

now discuss two methods to do this.

Method 1: Inverting the Fisher information / covariance matrix

The first method is simply using 𝜎�̂� '
√
ℐ−1
𝜇𝜇 (𝜇′, 𝑏′) as in Section 8.3.1.12

This is shown in Figure 8.26 for our counting experiment, using the analytic form

for 𝜎�̂� from Eq. 8.3.8. We can see that this asymptotic approximation agrees

well with the true distribution for some range of parameters, but can deviate

12More generally, we’d need ℐ̃−1 for Eq. 8.3.24.
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significantly for others, as highlighted especially in the right plot.

Figure 8.26. Comparing the distribution 𝑝(𝑡𝜇|𝜇′) (solid) with non-central 𝜒′2
1 (Λ)

distributions (dotted) for a range of 𝑠, 𝑏, 𝜇, 𝜇′ values, with 𝜎2
�̂� estimated using the

inverse of the Fisher information matrix.

Interlude on Asimov dataset

While we are able to find the analytic form for
√
ℐ−1
𝜇𝜇 (𝜇′, 𝑏′) easily for our

simple counting experiment, in general it has to be calculated numerically. As in-

troduced in Section 8.3.1, to handle the expectation value under 𝜇′, 𝑏′ in Eq. 8.3.1,

we canmake use of theAsimovdataset, where the observations 𝑛𝐴,𝑚𝐴 are taken

to be their expectation values under 𝜇′, 𝑏′, simplifying the calculation of ℐ to

Eq. 8.3.9.

Explicitly, for our counting experiment (Eq. 8.2.3), the Asimov observa-
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tions are simply

𝑛𝐴 = E[𝑛] = 𝜇′𝑠 + 𝑏′, (8.3.25)

𝑚𝐴 = E[𝑚] = 𝑏′. (8.3.26)

We’ll now consider a second powerful use of the Asimov dataset to estimate 𝜎2
�̂�.

Method 2: The “Asimov sigma” estimate

Putting together Eqs. 8.2.10 and 8.3.26, we can derive a nice property of

the Asimov dataset: the MLEs �̂�, 𝑏 equal the true values 𝜇′, 𝑏′:

𝑏 = 𝑚𝐴 = 𝑏′ (8.3.27)

�̂� =
𝑛𝐴 − 𝑚𝐴

𝑠
=

𝜇′𝑠 + 𝑏′ − 𝑏′
𝑠

= 𝜇′. (8.3.28)

Thus, 𝑡𝜇 evaluated for the Asimov dataset is exactly the non-centrality parameter

Λ that we are after!

𝑡𝜇,𝐴 '
(
𝜇 − �̂�

𝜎�̂�

)2
=

(
𝜇 − 𝜇′

𝜎�̂�

)2
= Λ. (8.3.29)

While, not strictly necessary to obtain the asymptotic form for 𝑝(𝑡𝜇|𝜇′), we can

also invert this to estimate 𝜎�̂�, as

𝜎𝐴 ' (𝜇 − 𝜇′)2
𝑡𝜇,𝐴

, (8.3.30)
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where 𝜎𝐴 is known as the “Asimov sigma”.

The asymptotic distributions using Λ = 𝑡𝜇,𝐴 are plotted in Figure 8.27.

We see that this estimate matches the sampling distributions very well, even for

cases where the covariance-matrix-estimate failed! Indeed, this is why estimat-

ing 𝜎�̂� ' 𝜎𝐴 is the standard in LHC analyses, and that is themethodwe’ll employ

going forward.

Reference [301] conjectures that this is because the Fisher-information-

approach is restricted only to estimating the second-order term of Eq. 8.3.17,

while with 𝑡𝜇,𝐴 we’re matching the shape of the likelihood at the minimum

which may be able capture some of the higher order terms as well.

Figure 8.27. Comparing the sampling distribution 𝑝(𝑡𝜇|𝜇′) with non-central
𝜒′2

1 (Λ) distributions for a range of 𝑠, 𝑏, 𝜇, 𝜇′ values, with the Asimov sigma es-
timation for 𝜎2

�̂�.

Despite the pervasive use of the asymptotic formula at the LHC, it’s im-

portant to remember that it’s an approximation, only valid for large statistics. Fig-
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ure 8.28 shows it breaking down for 𝑠, 𝑏 ≲ 10 below.

Figure 8.28. Comparing the sampling distribution 𝑝(𝑡𝜇|𝜇′) with non-central
𝜒′2

1 (Λ) distributions for different 𝑠, 𝑏 ≤ 10, showing the break-down of the 𝜎𝐴
approximation for 𝜎2

�̂� at low statistics.

The PDF and CDF

The probability distribution function (PDF) for a 𝜒′2
𝑘 (Λ) distribution can

be found in e.g. Ref. [309] for 𝑘 = 1:

𝑝(𝑡𝜇|𝜇′) ' 𝜒′2
1 (Λ) = 1

2
√
𝑡𝜇

(
𝜑(√𝑡𝜇 − √

Λ) + 𝜑(√𝑡𝜇 + √
Λ)) , (8.3.31)
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where 𝜑 is the PDF of a standard normal distribution. For 𝜇 = 𝜇′ ⇒ Λ = 0, this

simplifies to:

𝑝(𝑡𝜇|𝜇) ' 𝜒2 =
1√
𝑡𝜇
𝜑(√𝑡𝜇). (8.3.32)

The cumulative distribution function (CDF) for 𝑘 = 1 is:

𝐹(𝑡𝜇|𝜇′) ' Φ(√𝑡𝜇 − √
Λ) +Φ(√𝑡𝜇 + √

Λ) − 1, (8.3.33)

where Φ is the CDF of the standard normal distribution. For 𝜇 = 𝜇′ ⇒ Λ = 0,

again this simplifies to:

𝐹(𝑡𝜇|𝜇) ' 2Φ(√𝑡𝜇) − 1. (8.3.34)

From Eq. 8.2.14, we know the 𝑝-value 𝑝𝜇 of the observed 𝑡obs
𝜇 under a signal

hypothesis of 𝐻𝜇 is

𝑝𝜇 = 1 − 𝐹(𝑡obs
𝜇 |𝜇) = 2(1 −Φ(

√
𝑡obs
𝜇 )), (8.3.35)

with an associated significance

𝑍 = Φ−1(1 − 𝑝𝜇) = Φ−1(2Φ(
√
𝑡obs
𝜇 − 1) (8.3.36)
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Application to hypothesis testing

Let’s see how well this approximation agrees with the toy-based 𝑝-value

we found in Example 8.2.1. For the same counting experiment example, where

we expect 𝑠 = 10 and observe 𝑛obs = 20, 𝑚obs = 5, we found the 𝑝-value for test-

ing the 𝜇 = 1 hypothesis 𝑝𝜇=1 = 0.3 (and the associated significance 𝑍 = 0.52).

Calculating 𝑡obs
𝜇 for this example and plugging it into the asymptotic approxima-

tion from Eq. 8.3.35 gives:13

𝑡obs
𝜇 = 1.08 (8.3.37)

⇒ 𝑝𝜇=1 = 2(1 −Φ(√1.08)) = 0.3 (8.3.38)

⇒ 𝑍 = 0.52. (8.3.39)

We see that it agrees exactly!

The agreement more generally, with varying 𝑠, 𝜇, 𝑛obs, 𝑚obs, is plotted in

Figure 8.29. We observe generally strong agreement, except for low 𝑛, 𝑚 where,

as expected, the asymptotic approximation breaks down.

13Note that we’re using 𝑡𝜇 here, not the alternative test statistic 𝑡𝜇; however, in this case since
�̂� > 0, they are equivalent.
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Figure 8.29. Comparing the significances, as a function of the signal strength 𝜇
of the hypothesis being tested, for simple counting experiments (Eq. 8.2.3) with
different 𝑠, 𝑛obs, 𝑚obs’s, derived using 30, 000 toys each (solid) to estimate the
𝑝(𝑡𝜇|𝜇) distribution vs. the asymptotic approximation (dashed).

Summary

We have been able to find the asymptotic form for the profile-likelihood-

ratio test statistic 𝑡𝜇 ' (𝜇−�̂�)2
𝜎2
�̂�

, which is distributed as a non-central chi-squared

(𝜒′2
𝑘 (Λ)) distribution. We discussed two methods for finding the non-centrality

parameterΛ, out of which the Asimov sigma 𝜎𝐴 estimation generally performed

better. Finally, the asymptotic formulae were applied to simple examples of

hypothesis testing to check the agreement with toy-based significances. These

asymptotic formulae can be extended to the alternative test statistics for positive

signals 𝑡𝜇 and upper-limit-setting �̃�𝜇, as in Ref. [301], to simplify the calculation

of both observed and expected significances, limits, and intervals.

With that, we conclude the overview of the statistical interpretation of

LHC results. We will see practical applications of these concepts to searches in

the high energy Higgs sector in Part V.
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Part IV

Accelerating Simulations with AI
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Chapter 9

Introduction and the JETNET Dataset

What I cannot create, I do not understand. - Richard Feynman

Simulations are critical components of the scientific process in high-

energy physics. They are employed from the beginning of the experimental de-

sign, to evaluate the expected performance of a detector, all the way up to the

data analysis, to determine our sensitivity to a given signal process.

For the CMS experiment, the simulation pipeline broadly involves:

1. Event generation: simulating the hard collision process, parton shower-

ing, hadronization, and underlying event interactions (see Chapter 4.1),

outputting generator-level or “gen-level” particles.

2. Detector simulation: simulating the response of the detector to the parti-

cles produced in the collision and outputting the raw detector signals, or

“hits” in the detector, most commonly with the GEANT4 software [310].
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3. Reconstruction: converting the raw detector signals into tracks and

ECAL/HCAL clusters, which can then be reconstructed further into phys-

ical “objects” like jets, leptons, and missing transverse energy (see Chap-

ter 6.4).

The first two steps are inherently stochastic processes due to the random-

ness of quantum mechanical decays and interactions between particles and ma-

terials. This means that the complete analytic form for the probability densities

of collision and detector outputs is intractable. Instead, traditionally, the event

generation relies on Monte Carlo (MC) methods to sample from probability dis-

tributions of decays and interactions, while the detector simulation propagates

the resulting particles through the detector and magnetic field, simulating the

random interactions and energy deposits at each step.

These methods have proven extremely effective at modeling collisions

and the detector response for decades in HEP, but are computationally expen-

sive: the full simulation of a single collision in CMS takes O(10 s) [311]. To max-

imize the physics potential of the upcoming era of high luminosity, the CMS

experiment will need to reconstruct 300 billion real collision events, and simu-

late and reconstruct 2–3× more, a monumental task to which current methods

cannot scale. Indeed, we are expected to fall 3–10× short of the necessary CPU

resources to do this in HL-LHC [312].

There are two important avenues of R&D which must be explored to ad-

dress this. First, performing simulation and reconstruction on GPUs: even port-
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ing a conservative fraction can improve computing capacity by 20-26%. Second,

wide adoption of a fast simulation and reconstruction alternative (FastSim): 50%

of CMS analyses switching to this would mean a 10× speed-up in simulations,

which are in total expected to require 40% of CPU resources [312]. However,

they each carry risks: of simulations not translating well to GPUs due to their se-

quential nature, and of inadequate FastSim performance leading to insufficient

adoption by analyzers.

ML advancements in generative modeling can simultaneously improve

the quality of fast simulations and naturally enable GPU-acceleration, address-

ing both risks. In this Part, we introduce such advancements using novel physics-

informed deep learning (DL) generative models, and efficient and sensitive tech-

niques for their validation.

We first introduce below the problem of simulating high energy jets and

introduce the JETNET benchmark dataset used for all studies in the chapter. As

highlighted in Chapter 7, a key contribution of this work is use of particle-cloud

representations of jets, which we argued are more natural for HEP data than the

more common (at the time) image- and vector-based algorithms.

To that end, we introduce two novel and highly performantML-based ap-

proaches designed to leverage point clouds in HEP, using (1) message-passing

graph neural networks (GNNs) (Chapter 10.1) and (2) attention-based trans-

former networks (Chapter 10.2). We will then discuss the critical problem of

validating such ML-based fast simulation techniques and propose two new, sen-
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sitive methods to do so (Section 11). We will finally conclude with the outlook

for these techniques in Chapter 12, discussing as well how this work has sparked

a new, vibrant subfield of ML research in HEP.

9.1 Simulating jets

We test the performance of our generative models on the simulation

of high energy jets, from parton-level inputs through parton showering and

hadronization up to emulating the detector response. As discussed in Chap-

ter 4.1, high-energy proton-proton collisions at the LHC produce elementary

particles like quarks and gluons, which cannot be isolated due to the QCD prop-

erty of color confinement. These particles continuously radiate or into sets of

particles, a process referred to as parton showering. Eventually, they cool to

an energy at which they undergo the process of hadronization, where the fun-

damental particles combine to form color-neutral hadrons, such as pions and

protons. The final set of collimated hadrons produced after such a process is

referred to as a jet.

The task of simulating a single jet can be algorithmically defined as in-

putting an initial particle, which produces the jet, and outputting the final set

of particles a.k.a. the jet constituents. Typically in HEP the parton shower and

hadronization are steps that are simulated sequentially using MC event gener-

ators such as PYTHIA [313] or HERWIG [314]. Simulating either process exactly is
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q/g

 t→Wb→qqb h→bb

 W/Z→qqb

q/g

 t→Wb→qqb h→bb

 W/Z→qqb

q/g

 t→Wb→qqb h→bb

 W/Z→qqbg q t Wq qqq→ →

jet axis

ηrel, ϕrel

Figure 9.1. The three jet classes we simulate. Gluon (g) and light quark (q) jets
have simple topologies, with q jets generally containing fewer particles. Top
quark (t) jets have a complex three-pronged structure. Shown also are the rela-
tive angular coordinates 𝜂rel and 𝜙rel, measured from the jet axis.

not possible because of the nonperturbative nature of QCD at low energies, and

instead these event generators fit simplified physics-inspired stochastic models,

such as the Lund string model for hadronization [142], to existing data using

MC methods. The present work can be seen as an extension of this idea, using

a simpler, ML-based model, also fitted to data, for generating the jet in one shot.

Effectively, we are trading the interpretability of MC methods for the speed of

GPU-accelerated ML generators.

9.2 JETNET

We introduce the JETNET dataset as a benchmark dataset for studies of fast

simulation techniques in high-energy physics. It is derived from Ref. [315],1 and

comprises simulated particle jets with transverse momenta 𝑝jet
T ≈ 1TeV, origi-

nating from gluons, light quarks, top quarks, and W and Z bosons produced in

1This dataset was released under the CC-BY 4.0 license.
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13TeV proton-proton collisions through a simplified detector (Figure 9.1).

As disucssed in Chapter 7, each jets is represented as a point cloud, or

particle cloud, of particles, with each particle represented as a node in the cloud

with the three kinematic (𝑝rel
T , 𝜂rel, 𝜙rel) features. 𝑝T, 𝜂, 𝜙 are the transverse mo-

mentum, pseudorapidity, and azimuthal angle, respectively, commonly used in

collider physics and defined in Chapter 6. 𝑝rel
T is the transverse momentum of

the particle relative to the jet 𝑝T, and 𝜂rel and 𝜙rel are the particle’s angular coor-

dinates relative to the jet axis.

Details of the simulations are as follows. The parton-level events are first

produced at leading-order using MADGRAPH5_aMC@NLO 2.3.1 [316] with the

NNPDF2.3LO1 parton distribution functions [317]. To focus on a relatively nar-

row kinematic range, the transverse momenta of the partons and undecayed

gauge bosons are generated in a windowwith energy spread given by Δ𝑝T/𝑝T =

0.01, centered at 1TeV. These parton-level events are then decayed and showered

in PYTHIA 8.212 [313] with the Monash 2013 tune [318], including the contribu-

tion from the underlying event. For each original particle type, 200,000 events

are generated. Jets are clustered using the anti-𝑘T algorithm [193], with a dis-

tance parameter of 𝑅 = 0.8 using the FASTJET 3.1.3 and FASTJET CONTRIB 1.027

packages [319, 320]. Even though the parton-level 𝑝T distribution is narrow, the

jet 𝑝T spectrum is significantly broadened by kinematic recoil from the parton

shower and energy migration in and out of the jet cone. We apply a restric-

tion on the measured jet 𝑝T to remove extreme events outside of a window of
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0.8TeV < 𝑝T < 1.6TeV for the 𝑝T = 1TeV bin. This generation is a significantly

simplified version of the official simulation and reconstruction steps used for

real detectors at the LHC, to remain experiment-independent as well as allow

public access to the dataset.
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Chapter 10

Generative models for fast particle-
cloud simulations

10.1 Message passing GANs

In this chapter we describe two novel generative models for fast simula-

tions of particle clouds in HEP. We first introduce the message-passing genera-

tive adversarial network (MPGAN) trained on high-energy JETNET jets. To our

knowledge, it was the first generative model in HEP to effectively simulate point

cloud data, and represented a breakthrough in the performance of ML-based

fast simulations, leveraging sparse and efficient representations naturally suited

to our data. It builds on top of the success of graph neural networks (GNNs) in

learning frompoint clouds in computer vision, but is designed to take advantage

of additional key inductive biases inHEP data, such as the non-local correlations

between particles in a jet and their varying cardinalities.
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The landscape of point cloud generative models in HEP and computer

vision at the time of MPGAN’s publication was detailed in Chapter 7.3.3. In this

section, we first discuss evaluation metrics used to compare MPGAN to existing

models (Section 10.1.1) before describing the model architecture (Section 10.1.2).

We then discuss experimental results, first on MNIST handwritten digits as a

testbench in Section 10.1.3, and finally on the JETNET dataset in Section 10.1.4.

10.1.1 Evaluation

Evaluating generative models is a difficult task; however, there has been

extensivework in this area in both the physics and computer-vision communities.

Weprovide here a brief overviewof themetrics used for comparingMPGANand

the baseline models discussed above, leaving amore detailed discussion, as well

as an introduction to the novel metrics we develop for this task, to Chapter 11.

Physics-inspired metrics

An accurate jet simulation algorithm should reproduce both low-level

and high-level features (such as those described in Chapter 7.3.3); hence, a stan-

dard method of validating generative models, which we too employ, is to com-

pare the distributions of such features between the real and generated sam-

ples [279–283, 321].
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For application in HEP, a generative model needs to produce jets with

physical features indistinguishable from real. Therefore, we propose the vali-

dation criteria that differences between real and generated sample features may

not exceed those between sets of randomly chosen real samples. To verify this,

we use bootstrapping to compare between random samples of only real jets as a

baseline.

A practically useful set of features to validate against are the so-called

“energy-flow polynomials” (EFPs) [322], which are a type of multi-particle cor-

relation functions. Importantly, the set of all EFPs forms a linear basis for all

experimentally useful — i.e., all infrared- and colinear- (IRC-) safe — jet-level

features / observables. Therefore, we claim that if we observe all EFP distribu-

tions to be reproduced with high fidelity and to match the above criteria, we can

conclude with strong confidence that our model is outputting accurate particle

clouds.

Computer-vision-inspired metrics

A popular metric for evaluating images which has been shown to be sen-

sitive to output quality and mode-collapse — though it has its limitations [323]

— is the Fréchet Inception Distance [324] (FID). FID is defined as the Fréchet

distance between Gaussian distributions fitted to the activations of a fully-

connected layer of the Inception-v3 image classifier in response to real and gen-
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erated samples. We develop a particle-cloud-analogue of this metric, which

we call Fréchet ParticleNet Distance (FPND), using the state-of-the-art (SOTA)

ParticleNet graph convolutional jet classifier [230] in lieu of the Inception net-

work. We note that FPND and comparing distributions as above are conceptu-

ally equivalent, except here instead of physically meaningful and easily inter-

pretable features, we are comparing those found to be statistically optimum for

distinguishing jets.

Two common metrics for evaluating point cloud generators are coverage

(COV) and minimum matching distance (MMD) [296]. Both involve finding the

closest point cloud in a sample 𝑋 to each cloud in another sample 𝑌, based on a

metric such as the Chamfer distance or the earth mover’s distance. Coverage is

defined as the fraction of samples in 𝑋 which were matched to one in𝑌, measur-

ing thus the diversity of the samples in 𝑌 relative to 𝑋, and MMD is the average

distance between matched samples, measuring the quality of samples. We use

both, and due to drawbacks of the Chamfer distance pointed out in Ref. [296],

for our distance metric choose only the analogue of the earth mover’s distance

for particle clouds a.k.a. the energy mover’s distance (EMD) [325]. We discuss

the effectiveness and complementarity of all four metrics in evaluating clouds in

Section 10.1.4.
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10.1.2 Architecture

Wedescribe now the architecture of theMPGANmodel (Figure 10.1), not-

ing particle-cloud-motivated aspects compared to its r-GAN and GraphCNN-

GAN predecessors (see Chapter 7.3.3).
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Message passing

Jets originate from the decay and hadronization of a single source-

particle; hence, they end up with important high-level jet features and a rich

global structure, known as the jet substructure [326], stemming from the input

particle. Indeed, any high-level feature useful for analyzing jets, such as jet mass

or multi-particle correlations, is necessarily global [322]. Because of this, while

past work in learning on point clouds [230, 327, 328], including GraphCNN-

GAN, has used a locally connected graph structure and convolutions for mes-

sage passing, we choose a fully connected graph, equally weighting messages

from all particles in the clouds. Rather than subtracting particle features formes-

sages between particles, useful in graph convolutions to capture local differences

within a neighborhood, the respective features are concatenated to preserve the

global structure (the difference between particle features is also only physically

meaningful if they are in the 4-vector representation of the Lorentz group). Dur-

ing the update step in the message passing we find it empirically beneficial to

incorporate a residual connection to previous particle features.

The operation can be described as follows. For an 𝑁-particle cloud 𝐽𝑡 =

{𝑝𝑡1, · · · , 𝑝𝑡𝑁} after 𝑡 iterations of message passing, with 𝑡 = 0 corresponding

to the original input cloud, each particle 𝑝𝑡𝑖 is represented by features ®ℎ𝑡𝑖 . One
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iteration of message passing is then defined as

®𝑚𝑡+1
𝑖 𝑗 = 𝑓 𝑡+1

𝑒 ( ®ℎ𝑡𝑖 ⊕ ®ℎ𝑡𝑗), (10.1.1)

®ℎ𝑡+1
𝑖 = 𝑓 𝑡+1

𝑛 ( ®ℎ𝑡𝑖 ⊕
∑
𝑗∈𝐽

®𝑚𝑡+1
𝑖 𝑗 ) , (10.1.2)

where ®𝑚𝑡+1
𝑖 𝑗 is the message vector sent from particle 𝑗 to particle 𝑖, ®ℎ𝑡+1

𝑖 are the

updated features of particle 𝑖, and 𝑓 𝑡+1
𝑒 and 𝑓 𝑡+1

𝑛 are arbitrary functions which,

in our case, are implemented as multilayer perceptrons (MLPs) with 3 FC layers.

Generator

We test two initializations of a particle cloud for the MPGAN generator:

(1) directly initializing the cloud with 𝑁 particles, each with 𝐿 randomly sam-

pled features, which we refer to as the MP generator, and (2) inputting a single

𝑍-dimensional latent noise vector and transforming it via an FC layer into an

𝑁 × 𝐿-dimensional matrix, which we refer to as the MP-Latent-FC (MP-LFC)

generator. MP-LFC uses a latent space which can intuitively be understood as

representing the initial source particle’s features along with parameters to cap-

ture the stochasticity of the jet production process. Due to the complex nature

of this process, however, we posit that this global, flattened latent space cannot

capture the full phase space of individual particle features. Hence, we introduce

the MP generator, which samples noise directly per particle, and find that it out-

performs MP-LFC (Table 10.2).
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Discriminator

We find the MP generator, in conjunction with a PointNet discriminator,

to be a significant improvement on everymetric compared to FC andGraphCNN

generators. However, the jet-level features are not yet reproduced to a high

enough accuracy (Section 10.1.4). While PointNet is able to capture global struc-

tural information, it can miss the complex interparticle correlations in real par-

ticle clouds. We find we can overcome this limitation by incorporating message

passing in the discriminator as well as in the generator. Concretely, our MP dis-

criminator receives the real or generated cloud and appliesMP layers to produce

intermediate features for each particle, which are then aggregated via a feature-

wise average-pooling operation and passed through an FC layer to output the

final scalar feature. We choose 2 MP layers for both networks.

Variable-sized clouds

In order to handle clouds with varying numbers of particles, as typical

of jets, we introduce an additional binary “masking” particle feature classifying

the particle as genuine or zero-padded. Particles in the zero-padded class are

ignored entirely in the message passing and pooling operations. The MP gener-

ator adds mask features to the initial particle cloud, using an additional input

of the size of the jet 𝑁 , sampled from the real distribution per jet type, before

the message passing layers, based on sorting in particle feature space. Ablation
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studies with alternative (as well as without) masking strategies are discussed in

Appendix C.1.3.

10.1.3 Experiments on MNIST handwritten digits

Before applyingMPGAN to the JETNET dataset, we test it initially onpoint-

cloud versions of the MNIST handwritten digits dataset [329]. Practically, these

were highly useful during the development of the model, while exploring archi-

tectures, hyperparameters, and training strategies, as they provided a simpler

test-bench as well as an easy way to visually evaluate the model.

We consider two MNIST datasets. First, a sparse graph representation

of the MNIST dataset, where from each image we select the 100 highest inten-

sity pixels as the nodes of a fully connected graph, with their feature vectors

consisting of the 𝑥, 𝑦 coordinates and intensities. This is directly analogous to

selecting the coordinates and momenta of the highest momentum particles in a

jet or highest energy hits in a detector. The second dataset, known as theMNIST

superpixels dataset [328], was created by converting each MNIST image into 75

superpixels, corresponding to the nodes of a graph. The centers and intensities

of the superpixels comprise the hidden features of the nodes.

We train MPGAN separately for each digit, analogous to independent

trainings for different jet classes. The best parameters per-digit are chosen us-

ing a variation of FID adopted for point clouds, using the hidden features of
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the MoNet classifier [328]. The comparison between the real and MPGAN-

generated samples for both datasets can be seen in Figure 10.2. We observe that

the model is able to reproduce the real samples with high fidelity and little evi-

dence of mode dropping.

Sparse MNIST Real Samples  Generated Samples  Generated SamplesSuperpixels Real Samples

Figure 10.2. Samples from our sparse MNIST dataset (far left) compared to sam-
ples from MPGAN (center left). Samples from the MNIST superpixels dataset
(center right) compared to samples from MPGAN (far right).

10.1.4 Experiments on jets

Wenow present results on the JETNET dataset. We first discuss the evalua-

tionmetrics, then the results of theMPGANmodel compared to several baseline

point-cloud generative models, as well as extensive discussion on both the archi-
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tecture and evaluation metric choices.

Evaluation

Weuse four techniques discussed in Section 10.1.1 for evaluating and com-

paring models. Distributions of physical particle and jet features are compared

visually and quantitatively using the Wasserstein-1 (𝑊1) distance between them.

For ease of evaluation, we report (1) the average scores of the three particle fea-

tures (𝑊P
1 ) 𝜂rel, 𝜙rel, and 𝑝rel

T , (2) the jet mass (𝑊M
1 ), and (3) the average of a

subset of the EFPs1 (𝑊EFP
1 ), which together provide a holistic picture of the low-

and high-level aspects of a jet. The𝑊1 distances are calculated for each feature

between random samples of 10,000 real and generated jets, and averaged over

5 batches. Baseline 𝑊1 distances are calculated between two sets of randomly

sampled real jets with 10,000 samples each, and are listed for each feature in

Table 10.1. The real samples are split 70/30 for training/evaluation. We train

ParticleNet for classification on our dataset to develop the FPND metric. FPND

is calculated between 50,000 random real and generated samples, based on the

activations of the first FC layer in our trained model2. Coverage and MMD are

calculated between 100 real and 100 generated samples, and averaged over 10

such batches. Implementations for all metrics are provided in the JETNET pack-

age [330].
1We choose 5 EFPs corresponding to the set of loopless multigraphs with 4 vertices and 4

edges.
2ParticleNet training details are given in Appendix C.1.2. The trained model is provided in

the JETNET library [330].
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Table 10.1. 𝑊1 distances between real jet mass (𝑊M
1 ), averaged particle features

(𝑊P
1 ), and averaged jet EFPs (𝑊EFP

1 ) distributions calculated as a baseline, for
three classes of jets.

Jet class 𝑊M
1 (×10−3) 𝑊P

1 (×10−3) 𝑊EFP
1 (×10−5)

Gluon 0.7 ± 0.2 0.44 ± 0.09 0.62 ± 0.07
Light quark 0.5 ± 0.1 0.5 ± 0.1 0.46 ± 0.04
Top quark 0.51 ± 0.07 0.55 ± 0.07 1.1 ± 0.1

Results

On each of JETNET’s three classes, we test r-GAN’s FC, GraphCNN, and

TreeGAN generators with rGAN’s FC and the PointNet-Mix discriminators, and

compare them to MPGAN’s MP generator and discriminator models, including

bothMP andMP-LFCgenerator variations. Training and implementation details

for each can be found in Appendix C.1.2, and all code in Ref. [331]. We use a

maximum of 30 particles per jet, choosing the 30 highest-𝑝T particles in jets with

more than 30.

We choose model parameters which, during training, yield the lowest

𝑊M
1 score. This is because (1)𝑊1 scores between physical features are more rel-

evant for physics applications than the other three metrics, and (2) qualitatively

we find it be a better discriminator of model quality than particle features or

EFP scores. Table 10.2 lists the scores for each model and class, and Figure 10.3

shows plots of selected feature distributions of real and generated jets, for the

best performing FC, GraphCNN, TreeGAN, and MP generators. We also pro-
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Figure 10.3. Comparison of real and generated distributions for a subset of jet
and particle features. We use the best performing model for each of the FC,
GraphCNN, TreeGAN, and MP generators, as per Table 10.2. Top: gluon jet
features, Middle: light quark jets, Bottom: top quark jets.

325



vide discretized images in the angular-coordinates-plane, a.k.a “jet images”, in

Figures 10.4—10.6; however, we note that it is in general not easy to visually

evaluate the quality of individual particle clouds, hence we focus onmetrics and

visualizations aggregated over batches of clouds. Overall we find that MPGAN

is a significant improvement over the best FC, GraphCNN, and TreeGAN mod-

els, particularly for top and light quark jets. This is evident both visually and

quantitatively in every metric, especially jet𝑊1s and FPND, with the exception

of𝑊P
1 where only the FC generator and PointNet discriminator (FC + PointNet)

combination is more performant.

We additionally perform a latency measurement and find, using an

NVIDIA A100 GPU, that MPGAN generation requires 35.7𝜇s per jet. In com-

parison, the traditional generation process for JETNET is measured on an 8-CPU

machine as requiring 46ms per jet, meaning MPGAN provides a three-orders-

of-magnitude speed-up. Furthermore, as noted in Section 9.2, the generation of

JETNET is significantly simpler than full simulation and reconstruction used at

the LHC, which has been measured to require 12.3s [311] and 4s [332] respec-

tively per top quark jet. Hence in practical applications we anticipate MPGAN’s

improvement to potentially rise to five-orders-of-magnitude.
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Table 10.2. Six evaluation scores on different generator and discriminator com-
binations. Lower is better for all metrics except COV.

Jet class Generator Discriminator 𝑊M
1

(×10−3)
𝑊P

1
(×10−3)

𝑊EFP
1

(×10−5) FPND COV ↑ MMD

Gluon

FC FC 18.3 ± 0.2 9.6 ± 0.4 8.5 ± 0.5 176 0.24 0.045
GraphCNN FC 2.6 ± 0.2 9.6 ± 0.3 12 ± 8 61 0.39 0.046
TreeGAN FC 41.9 ± 0.3 69.3 ± 0.3 14.2 ± 0.8 355 0.19 0.130
FC PointNet 1.3 ± 0.4 1.3 ± 0.2 1.5 ± 0.9 5.0 0.49 0.039
GraphCNN PointNet 1.9 ± 0.2 16 ± 6 200 ± 1000 7k 0.46 0.040
TreeGAN PointNet 1.7 ± 0.1 4.0 ± 0.4 4 ± 1 84 0.37 0.042
MP MP 0.7 ± 0.2 0.9 ± 0.3 0.7 ± 0.2 0.12 0.56 0.037
MP-LFC MP 0.69 ± 0.07 1.8 ± 0.2 0.9 ± 0.6 0.20 0.54 0.037
FC MP 4.3 ± 0.3 21.1 ± 0.2 9 ± 1 368 0.11 0.085
GraphCNN MP 2.5 ± 0.1 9.8 ± 0.2 13 ± 8 61 0.38 0.048
TreeGAN MP 2.4 ± 0.2 12 ± 7 18 ± 9 69 0.34 0.048
MP FC 1.2 ± 0.2 3.7 ± 0.5 1.6 ± 0.8 39 0.44 0.040
MP PointNet 1.3 ± 0.4 1.2 ± 0.4 4 ± 2 18 0.53 0.036

Light
quark

FC FC 6.0 ± 0.2 16.3 ± 0.9 3.9 ± 0.6 395 0.18 0.053
GraphCNN FC 3.5 ± 0.2 15.1 ± 0.4 10 ± 50 100 0.25 0.038
TreeGAN FC 31.5 ± 0.3 22.3 ± 0.4 9.3 ± 0.4 176 0.06 0.055
FC PointNet 3.1 ± 0.2 4.5 ± 0.4 2.3 ± 0.6 17 0.37 0.028
GraphCNN PointNet 4 ± 1 5.2 ± 0.5 50k ±100k 316 0.37 0.031
TreeGAN PointNet 10.1 ± 0.1 5.7 ± 0.5 4.1 ± 0.3 11 0.47 0.031
MP MP 0.6 ± 0.2 4.9 ± 0.5 0.7 ± 0.4 0.35 0.50 0.026
MP-LFC MP 0.7 ± 0.2 2.6 ± 0.4 0.9 ± 0.9 0.08 0.52 0.024
FC MP 6.3 ± 0.2 16.5 ± 0.2 4.0 ± 0.8 212 0.11 0.070
GraphCNN MP 3.5 ± 0.4 15.0 ± 0.3 10 ± 10 99 0.26 0.038
TreeGAN MP 4.8 ± 0.2 33 ± 6 10 ± 2 148 0.22 0.041
MP FC 1.3 ± 0.1 4.5 ± 0.4 2.2 ± 0.6 41 0.37 0.030
MP PointNet 6.5 ± 0.3 23.2 ± 0.6 6 ± 1 850 0.18 0.034

Top
quark

FC FC 4.8 ± 0.3 14.5 ± 0.6 23 ± 3 160 0.28 0.103
GraphCNN FC 7.0 ± 0.3 8.0 ± 0.5 1k ±6k 15 0.48 0.081
TreeGAN FC 17.0 ± 0.2 19.6 ± 0.6 33 ± 2 77 0.39 0.083
FC PointNet 2.7 ± 0.1 1.6 ± 0.4 7.7 ± 0.5 3.9 0.56 0.075
GraphCNN PointNet 11.3 ± 0.9 30 ± 10 37 ± 2 30k 0.39 0.085
TreeGAN PointNet 5.19 ± 0.08 9.1 ± 0.3 16 ± 2 17 0.53 0.079
MP MP 0.6 ± 0.2 2.3 ± 0.3 2 ± 1 0.37 0.57 0.071
MP-LFC MP 0.9 ± 0.3 2.2 ± 0.7 2 ± 1 0.93 0.56 0.073
FC MP 6.9 ± 0.1 39.1 ± 0.3 15 ± 1 81 0.26 0.120
GraphCNN MP 6.7 ± 0.1 8.2 ± 0.5 40 ± 10 15 0.49 0.081
TreeGAN MP 13.4 ± 0.4 45 ± 7 50 ± 30 66 0.29 0.101
MP FC 12.9 ± 0.3 26.3 ± 0.4 46 ± 3 58 0.27 0.103
MP PointNet 0.76 ± 0.08 1.6 ± 0.4 4 ± 1 3.7 0.59 0.072
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Figure 10.4. Random samples of discretized images in the 𝜂rel −𝜙rel plane, with
pixel intensities equal to particle 𝑝rel

T , of real and generated gluon jets (left), and
an average over 10,000 such sample images (right).
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Figure 10.5. Random samples of discretized images in the 𝜂rel −𝜙rel plane, with
pixel intensities equal to particle 𝑝rel

T , of real and generated light quark jets (left),
and an average over 10,000 such sample images (right).
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Figure 10.6. Random samples of discretized images in the 𝜂rel −𝜙rel plane, with
pixel intensities equal to particle 𝑝rel

T , of real and generated top quark jets (left),
and an average over 10,000 such sample images (right).
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Real baseline comparison

We find that MPGAN’s jet-level𝑊1 scores all fall within error of the base-

lines in Table 10.1, while those of alternative generators are several standarddevi-

ations away. This is particularly an issue with complex top quark particle clouds,

where we can see in Figure 10.3 none of the existing generators are able to learn

the bimodal jet feature distributions, and smaller light quark clouds, where we

see distortion of jet features due to difficulty reproducing the zero-padded par-

ticle features. No model is able to achieve particle-level scores close to the base-

line, and only those of the FC + PointNet combination and MPGAN are of the

same order of magnitude. We conclude that MPGAN reproduces the physical

observable distributions to the highest degree of accuracy, but note, however,

that it requires further improvement in particle feature reconstruction before it

is ready for practical application in HEP.

Architecture discussion

To disentangle the effectiveness of the MP generator and discriminator,

we train each individually with alternative counterparts (Table 10.2). With the

same PointNet discriminator, the GraphCNN and TreeGAN generators perform

worse than the simple FC generator for every metric on all three datasets. The

physics-motivatedMP generator on the other hand outperforms all on the gluon

and top quark datasets, and significantly so on the jet-level 𝑊1 scores and the
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FPND. We note, however, that the MP generator is not a significant improve-

ment over the other generators with an FC discriminator. Holding the generator

fixed, the PointNet discriminator performs significantly better over the FC for

all metrics. With the FC, GraphCNN, and TreeGAN generators, PointNet is also

an improvement over the MP discriminator. With an MP generator, the MP dis-

crimimator is more performant on jet-level𝑊1 and FPND scores but, on the top

quark dataset, degrades𝑊P
1 relative to PointNet.

We learn from these three things: (1) a generator or discriminator archi-

tecture is only as effective as its counterpart—even though the MPGAN com-

bination is the best overall, when paired with a network which is not able to

learn complex substructure, or which breaks the permutation symmetry, nei-

ther the generator or discriminator is performant, (2) for high-fidelity jet fea-

ture reconstruction, both networks must be able to learn complex multi-particle

correlations—however, this can come at the cost of low-level feature accuracy,

and (3) MPGAN’s masking strategy is highly effective as both MP networks are

improvements all around on light quark jets.

Particle cloud evaluation metrics

Wenowdiscuss themerits of each evaluationmetrics and provide sugges-

tions for their use in future work. Figure 10.7 shows correlation plots between

chosen pairs of our evaluationmetrics. As expected, we findW1-M andW1-EFP
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Figure 10.7. Correlation plots between pairs of evaluation metrics, evaluated on
400 separate batches of 50,000 MPGAN generated top quark jets.

to be highly correlated, as they both measure learning of global jet features. For

rigorous validation we suggest measuring both but for time-sensitive use-cases,

such as quick evaluations during model training, W1-M should be sufficient.

W1-M, FPND, and W1-P are all measuring different aspects of the generation

and are relatively uncorrelated. We expect FPND overall to be the best and most

discriminatory metric for evaluation, as it compares features found by a SOTA

classifier to be statistically optimum for characterizing jets, while the W1 scores

are valuable for their interpretability. Out of these, W1-M/W1-EFP are the most

important from a physics-standpoint, as we generally characterize collisions by

the high-level features of the output jets, rather than the individual particle fea-

tures.
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MMD and coverage are both valuable for specifically evaluating the qual-

ity and diversity of samples respectively, however we see from Figure 10.7 that

they saturate after a certain point, after which FPND and 𝑊1 scores are neces-

sary for stronger discrimination. We also note that in Table 10.2, models with

low𝑊1 scores relative to the baseline have the best coverage andMMD scores as

well. This indicates that the𝑊1 metrics are sensitive to bothmode collapse (mea-

sured by coverage), which is expected as in terms of feature distributions mode

collapse manifests as differing supports, to which the 𝑊1 distance is sensitive,

as well as to individual sample quality (measured by MMD), which supports

our claim that recovering jet feature distributions implies accurate learning of

individual cloud structure. Together this suggests that low𝑊1 scores are able to

validate sample quality and against mode collapse, and justifies our criteria that

a practical ML simulation alternative have𝑊1 scores close to the baselines in Ta-

ble 10.2. In conclusion, for thorough validation of generated particle clouds, we

recommend considering all three W-1 scores in conjunction with FPND, while

MMD and coverage, being focused tests of these aspects of generation, may be

useful for understanding failure modes during model development.

10.1.5 Summary

In this section, we applied existing state-of-the-art point cloud generative

models to JETNET, and proposed several physics- and computer-vision-inspired

metrics to rigorously evaluate generated clouds. We found that existing models
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are not performant on a number of metrics, and failed to reproduce high-level

jet features—arguably the most significant aspect for HEP. We then introduced

the novel message-passing generative adversarial network (MPGAN)model, de-

signed to capture complex global structure and handle variable-sized clouds,

which significantly improved performance in this area, as well as other metrics.

Despite the high performance, the major limitation of MPGAN is the

quadratic scaling of the message passing operation, which makes it difficult to

scale to larger clouds than 30-particle ones used in Section 10.1.4. In the next

section, we discuss the iGAPT model to overcome this limitation.

10.2 Generative adversarial particle trans-

formers

In the previous section, we introduced the MPGAN model, which repre-

sented a significant advance in ML-based fast simulations for HEP, being able

to capture the complex global structure of jets and handle variable-sized par-

ticle clouds using fully-connected graph neural networks. However, this fully-

connected nature means its memory and time complexity scale quadratically

with the number of particles per jet, leading to difficulty in simulating larger

particle clouds.
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In this section, we first introduce in Section 10.2.1 the generative adversar-

ial particle transformer (GAPT) model, which takes advantage of the computa-

tionally efficient “attention”-mechanism that has led to significant advances in

natural language processing. This provides a significant speed-up overMPGAN,

but is still limited by the quadratic scaling of the attention mechanism. We then

present the induced GAPT (iGAPT) model in Section 10.2.2, featuring “induced

particle attention blocks” (IPABs) that incorporate physics-informed inductive

biases of jets, to offer both linear-time complexity and improved output fidelity.

We discuss architecture choices and timing comparisons, but defer a deeper eval-

uation of the performance of these models and MPGAN to Chapter 11, which

details our new methodology for quantitatively validating and comparing fast

simulations.

10.2.1 GAPT

Similar to MPGAN, GAPT is a GAN for particle cloud data, but employ-

ing self-attention instead of message passing in the two generator and discrimi-

nator networks. It is based on the generative adversarial set transformer (GAST)

architecture [333], which makes use of set transformer [334] blocks to aggre-

gate information across all points and update their features. It maintains the

key inductive biases whichmakesMPGAN successful—permutation symmetry-

respecting operations, and fully connected interaction between nodes during

generation to learn high-level global features, but with a significant improve-
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ment in speed due to the higher computational efficiency of the attention mech-

anism compared to the message passing operations used in MPGAN.

The generator and discriminator networks are composed of permutation-

invariant multihead self-attention blocks (SABs) as defined in Ref. [334] and il-

lustrated in Figure 7.6. We use four and two SAB blocks in the generator and

discriminator respectively. Each SAB block uses 8 attention heads, and a 128-

dimensional embedding space for each of the query, key, and value vectors. It

also contains a one-layer feed-forward neural network (FFN) after each atten-

tion step, which maintains the 128-dimensional embedding for node features,

and applies a leaky ReLU activation, with negative slope coefficient 0.2. Resid-

ual connections to the pre-SAB node features are used after both the attention

step and FFN. After the final SAB block, a tanh activation is applied to the gener-

ator, whereas in the discriminator, the results are first pooled using a pooling by

multihead attention (PMA) block [334], followed by a final fully connected layer

and sigmoid activation.

For training, we use the mean squared error loss function, as in the LS-

GAN [335], and the RMSProp optimizer with a two timescale update rule [324],

using a learning rate of 3 · 10−4 and 10−4 for the discriminator and generator re-

spectively. Dropout, with probability 0.5, is used to regularize the discriminator.

We train for 2000 epochs and select the model with the lowest Fréchet physics

distance.
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10.2.2 iGAPT

Figure 10.8. Diagram of the iGAPT generator and discriminator networks.

The iGAPT model builds on the GAPT architecture, but introduces a

novel physics-informed attention mechanism that allows for linear-time com-

plexity in the number of particles per jet. As illustrated in Figure 10.8, it is

a GAN with the generator and discriminator networks composed of “induced

particle attention blocks” (IPABs). On top of maintaining permutation invari-

ance and operating on point-cloud representations, as in MPGAN and GAPT,

the key inductive bias we experiment with in iGAPT is maintaining a global

vector through the generation and discrimination processes, ®𝑧, which implicitly

represents global jet features. IPABs and different ways of incorporating ®𝑧 into

the attention process are described below.

The generation process starts with sampling random Gaussian noise and

a particle multiplicity 𝑁 from the true distribution, which is transformed via a
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learned linear embedding layer. The noise has two components: a set of 𝑁max

vectors representing initial particle features, and a single vector representing ini-

tial jet features. 𝑁max is the maximum number of particles per jet we want to

simulate, and the number of initial particle and jet features is a hyperparame-

ter we tune. The jet noise is added to the embedded 𝑁 to produce ®𝑧, which is

then transformed along with the particle noise via multiple IPABs to output a

generated jet.

The discrimination process starts with a generated or real jet, and the

sampled or true jet multiplicity 𝑁 . This is again transformed via a learned em-

bedding layer to produce the ®𝑧 conditioning vector for the discriminator, which

alongwith the input jet are processed through IPABs producing an intermediate

jet representation. The constituents of this jet are aggregated in a permutation-

invariant manner using a pooling by multihead attention (PMA) layer, as intro-

duced in [334], the output of which is finally fed into a linear layer to classify the

jet as real or fake.

Attention blocks require fixed multiplicity; however, jets naturally have a

variable number of particle constituents. To handle this, we zero-pad all jets to

𝑁max particles and use masked attention in every block to ignore these.
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Attention Blocks

The SAB blocks used by GAPT offer the benefit of global, fully connected

interactions between particles; however, this also results in quadratic scaling

with the particle multiplicity, which is undesirable. To counter this, Ref. [334]

also proposed “induced” SABs (ISABs), where the input set is first attended to

by 𝑀 learned inducing vectors via a MAB, outputting an intermediate, com-

pressed representation. This representation is then attended to by the original

set to produce the new output. This retains the global interactions between par-

ticles while achieving O(𝑁𝑀) scaling—linear in the particle multiplicity. ISABs

have been used in generative adversarial set transformers (GAST) [333], yield-

ing high quality results on computer vision datasets. GAST incorporates similar

global set features ®𝑧 by concatenating them to each particle before every ISAB

operation.

Figure 10.9. Illustration of an induced particle attention block (IPAB).

In iGAPT, we experiment with an alternative version of conditioning,
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which we call “induced particle attention”. Here, ®𝑧 is directly used as the induc-

ing vector in an ISAB, and is continuously updated through the intermediate,

induced attention outputs. Explicitly, as illustrated in Figure 10.9, the 𝑖th IPAB

receives as input the jet ®𝑥 𝑖 and global features ®𝑧 𝑖 from the previous block, after

which ®𝑥 𝑖 is first attended to by ®𝑧 𝑖 to output updated features ®𝑧 𝑖+1, and then con-

versely ®𝑧 𝑖+1 is attended to by ®𝑥 𝑖 to output the updated jet ®𝑥 𝑖+1. This is interpreted

as a way to update and learn the global jet features, such as mass and 𝑝T, along

with the individual particle features, and allow both to interact in each attention

layer. An additional and significant advantage is that this induced attention op-

eration involves only one inducing vector — ®𝑧, hence 𝑀 = 1 and we achieve

O(𝑁) computational complexity.

Training and Hyperparameters

Along with GAPT, we test both the GAST and iGAPT models on the JET-

NET dataset, to compare the performance of ISABs and IPABs. The iGAPT and

GAST models were trained for a maximum of 6000 epochs on a single NVIDIA

RTX1080 GPU using the RMSProp optimizer. The training time and batch size

for 30- and 150-particle gluon jets is shown in Table 10.3. We use a two-time up-

date rule [324], with learning rates of 0.5 × 10−4 and 1.5 × 10−4 for the generator

and discriminator, respectively. The discriminator is regularized with dropout

with a probability of 0.5 and layer normalization. We use a LeakyReLU activa-

tion after every linear layer, except the final generator (tanh) and discriminator
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(sigmoid) outputs. After hyperparameter tuning, we settle on on 3 and 6 ISAB

layers for the generator and discriminator respectively, and 4 and 8 IPAB layers

for the iGAPT model. We use 16 and 128 initial particle and jet features, respec-

tively, in iGAPT. GAST uses 20 inducing vectors for its ISABs.

10.2.3 Experiments

Results

We test and compare the GAPT, GAST, iGAPT, and MPGAN models on

30-particle gluon, light quark, and top quark jets, and on 150-particle gluon jets.

Out of all our trainings, we select the GAPT, GAST, and iGAPT models with the

lowest Fréchet physics distance score, as will be introduced in Section 11, due to

its high sensitivity to common types of mismodeling. Comparisons of real and

iGAPT- and MPGAN-generated feature distributions are shown in Figure 10.10

and Appendix C.2.1 for 30 and 150 particles, respectively, demonstrating high

fidelity results from both models. We defer a detailed evaluation of the perfor-

mance to Section 11.
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Figure 10.10. Low-level particle feature distributions (far left and center left) and
high-level jet feature distributions (center right and far right) for the real data
(red), MPGAN-generated data (blue), and iGAPT-generated data (green), for 30-
particle gluon (top row), light quark (middle), and top quark jets (bottom). A
sample 𝑑 = 4 energy flow polynomial [322] is plotted in the rightmost column.
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Timing

A key benefit of iGAPT is its improved time complexity over MPGAN.

This is demonstrated in Table 10.3, which shows the training and generation

times for each model for 30 particle jets using the largest batch size possible on

an NVIDIA 1080 GPU, with iGAPT outperforming MPGAN by a factor of 3.5.

MPGAN is computationally challenging to extend to 150 particles, hence tim-

ing information is not provided; in contrast, iGAPT’s training and generation

times scale well with the number of particles. Finally, we note that the “true”

generation time per jet is approximately 50ms (see Section 10.1.4), thus iGAPT

represents more than a factor of 100 speed up.

Table 10.3. Timing measurements for MPGAN and iGAPT, measured on an
NVIDIA 1080 GPU.

Jet type Model Training time Generation time Batch size
(s/epoch) (µs / jet)

Gluon, 𝑛 = 30 MPGAN 193 142 512
iGAPT 31 40 4096

Gluon, 𝑛 = 150 iGAPT 267 315 512
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10.2.4 Summary

We introduced the attention-based generative adversarial particle trans-

former (GAPT) and induced GAPT (iGAPT) models for fast simulation of parti-

cle clouds, and demonstrated their performance visually on the JETNET dataset.

The iGAPT model, in particular with its induced particle attention blocks

(IPABs), offers a significant improvement in time complexity overMPGAN, with

promising potential to scale up to the cardinality necessary for (HL-)LHC simu-

lations.

As seen from Figure 10.10, while visually we can observe roughly that

the iGAPT and MPGAN models perform similarly and match the real distribu-

tions, this is not sufficient to draw robust and objective conclusions about the

models. In the next chapter, we tackle the problem of quantitatively evaluating

and comparing such fast simulators in HEP.
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Chapter 11

Validating and comparing fast simu-
lations

In this Part, we have discussed the development of fast DL simulators to

tackle the critical problem of producing efficient and high-quality simulations in

the HL-LHC. In particular, we have introduced the MPGAN, GAPT, and iGAPT

models, the first to effectively simulate point clouds in HEP, which have demon-

strated promising results in both speed and quality. However, for an experi-

mental collaboration to apply one of these techniques in real data analyses, we

require methods to objectively compare the performance of different simulation

techniques and extensively validate the produced simulations. This calls for the

study and adoption of standard quantitative evaluation metrics for generative

modeling in HEP.

This chapter presents the first, to our knowledge, systematic investigation

of generative evaluation metrics’ sensitivity to expected failure modes of genera-
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tive models, and their relevance to validation and feasibility for broad adoption

in HEP. We study the performance of several proposed metrics from HEP and

computer vision and, inspired by both domains, we develop two novel metrics

we call the Fréchet and kernel physics distances (FPD and KPD, respectively).

We find them to collectively have excellent sensitivity to all tested data mismod-

eling, as well as to satisfy practical requirements for evaluation and comparison

of generative models in HEP.

We conclude our experiments by recommending the adoption of FPD and

KPD, along with quantifying differences in individual feature distributions us-

ing the Wasserstein 1-distance, and demonstrate their use in evaluating the MP-

GAN and GAPT-based models. Implementations for the new metrics are pro-

vided in the JETNET library [336].

This section is structured as follows. In Section 11.1 we define our criteria

for evaluationmetrics inHEP and review existingmetrics. We present results on

the performance of thesemetrics on Gaussian-distributed synthetic toy data and

simulated high energy jets in Sections 11.2 and 11.3 respectively. Based on these

experiments, we provide our recommendations and concretely illustrate their

application by evaluating and comparing the aforementioned models discussed

in Section 11.4. Finally, we conclude in Section 11.5.
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11.1 Evaluation metrics for generative mod-

els

In evaluating generative models, we aim to quantify the difference be-

tween the real and generated data distributions 𝑝real(®𝑥) and 𝑝gen(®𝑥) respectively,
where data samples ®𝑥 ∈ R𝑑 are typically high dimensional. Lacking tractable

analytic distributions in general, this can be viewed as a form of two-sample

goodness-of-fit (GOF) testing of the hypothesis 𝑝real(®𝑥) = 𝑝gen(®𝑥) using real and

generated samples, { ®𝑥real} and { ®𝑥gen}, drawn from their respective distributions.

As illustrated in Ref. [337], in general, there is no “best” GOF test with power

against all alternative hypotheses. Instead, we aim for a set of tests that collec-

tively have power against the relevant alternatives we expect, and are practically

most appropriate. Below, we first outline the criteria we require of our evalua-

tion metrics, then review and discuss the suitability of possible metrics, and end

with a discussion on the features to use in comparing such high-dimensional

distributions, thereby motivating FPD and KPD.

Criteria for evaluation metrics in HEP

Typical failuremodes inML generativemodels such as normalizing flows

and autoregressivemodels include a lack of sharpness and smearing of low-level

features, while generative adversarial networks (GANs) often suffer from “mode
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collapse”, where they fail to capture the entire real distribution, only generat-

ing samples similar to a particular subset. Therefore, with regard to the per-

formance of generative models, we require first and foremost that the tests be

sensitive to both the quality and the diversity of the generated samples. It is

critical that these tests are multivariate as well, particularly when measuring

the performance of conditional models, which learn conditional distributions

given input features such as those of the incoming particle into a calorimeter

or originating parton of a jet, and which will be necessary for applications to

LHC simulations [338]. Multivariate tests are required in order to capture the

correlations between different features, including those on which such a model

is conditioned. Finally, it is desirable for the test’s results to be interpretable to

ensure trust in the simulations.

To facilitate a fair, objective comparison between generative models, we

also require the tests to be reproducible—i.e., repeating the test on a fixed set of

samples should produce the same result—and standardizable across different

datasets, such that the same test can be used for multiple classes and data struc-

tures (e.g., both images and point clouds for calorimeter showers or jets). It is

also desirable for the test to be reasonably efficient in terms of speed and com-

putational resources, to minimize the burden on researchers evaluating their

models.
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Evaluation metrics

Having outlined criteria for our metrics, we now discuss possible metrics

and their merits and limitations. The traditional method for evaluating simula-

tions in HEP is to compare physical feature distributions using one-dimensional

(1D) binned projections. This allows valuable, interpretable insight into the

physics performance of these simulators. However, it is intractable to extend

this binned approach to multiple distributions simultaneously, as it falls victim

to the curse of dimensionality—the number of bins and samples required to re-

tain a reasonable granularity in our estimation of the multidimensional distri-

bution grows exponentially with the number of dimensions. Therefore, while

valuable, this method is restricted to evaluating single features, losing sensitiv-

ity to correlations and conditional distributions.

Integral probability metrics and 𝑓 -divergences

To extend to multivariate distributions, we first review measures of dif-

ferences between probability distributions. The two prevalent, almost mutu-

ally exclusive,1 classes of discrepancy measures are integral probability metrics

1The total variation distance is the only nontrivial discrepancy measure that is both an IPM
and an 𝑓 -divergence [339, Appendix A]; however, to our knowledge, a consistent finite-sample
estimator for it does not exist (see, for example, Ref. [339, Section 5]).
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(IPMs) [340] and 𝑓 -divergences. An IPM 𝐷ℱ , defined as

𝐷ℱ (𝑝real, 𝑝gen) = sup
𝑓 ∈ℱ

|E®𝑥∼𝑝real 𝑓 (®𝑥) − E®𝑦∼𝑝gen 𝑓 ( ®𝑦)| , (11.1.1)

measures the difference in two distributions, 𝑝real and 𝑝gen in Eq. (11.1.1), by us-

ing a “witness” function 𝑓 , out of a class of measurable, real-valued functionsℱ ,

which maximizes the absolute difference in its expected value over the two dis-

tributions. The choice of ℱ defines different types of IPMs. The famous Wasser-

stein 1-distance (𝑊1) [341, 342], for example, is an IPM for whichℱ in Eq. (11.1.1)

is the set of all 𝐾-Lipschitz functions (where 𝐾 is any positive constant). Maxi-

mum mean discrepancy (MMD) [343] is another popular example, where ℱ is

the unit ball in a reproducing kernel Hilbert space (RKHS).

𝑓 -divergences, on the other hand, are defined as

𝐷 𝑓 (𝑝gen, 𝑝real) =
∫

𝑝real(®𝑥) 𝑓
( 𝑝real(®𝑥)
𝑝gen(®𝑥)

)
𝑑 ®𝑥. (11.1.2)

They calculate the average of the pointwise differences between the two distri-

butions, 𝑝real and 𝑝gen in Eq. (11.1.1), transformed by a “generating function” 𝑓 ,

weighted by 𝑝real. Like IPMs, different 𝑓 -divergences are defined by the choice of

generating function. Famous examples include the Kullback-Leibler (KL) [344]

and Jenson-Shannon (JS) [345, 346] divergences, which are widely used in in-

formation theory to capture the expected information loss when modeling 𝑝real

by 𝑝gen (or vice versa), as well as the Pearson 𝜒2 [347] divergence and related
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metrics [348–350], which are ubiquitous in HEP as GOF tests.

Overall, 𝑓 -divergences can be powerful measures of discrepancies, with

convenient information-theoretic interpretations and the advantage of coordi-

nate invariance. However, unlike IPMs, they do not generally take into account

the metric space of distributions, because of which we argue that IPMs are more

useful for evaluating generative models and their respective learned distribu-

tions. An illustrative example of this is provided in Appendix D.1. IPMs can

thereby be powerful metrics with which to compare different models, with mea-

sures such as𝑊1 and MMD able to metrize the weak convergence of probability

measures [342, 351].

Additionally, on the practical side, finite-sample estimation of 𝑓 -

divergences such as the KL and the Pearson 𝜒2 divergences is intractable in

high dimensions, generally requiring partitioning in feature space, which suf-

fers from the curse of dimensionality as described above. References [339, 352]

demonstrate more rigorously the efficacy of finite-sample estimation of IPMs, in

comparison to the difficulty of estimating 𝑓 -divergences.

IPMs as evaluation metrics

Having argued in their favor, we discuss specific IPMs and related mea-

sures, and their viability as evaluation metrics. The most famous is the Wasser-

stein distance [341, 342], as defined above. It is closely related to the problem of

optimal transport [342]: finding theminimum“cost” to transport themass of one
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distribution to another, when the cost associatedwith the transport between two

points is the Euclidean distance between them. This metric is sensitive to both

the quality and diversity of generated distributions; however, its finite-sample

estimator is the optimum of a linear program—an optimization problem with

linear constraints and objective [353], which, while tractable in 1D, is biasedwith

very poor convergence in high dimensions [354]. We demonstrate these charac-

teristics empirically in Sections 11.2 and 11.3.

A related pseudometric2 is the Fréchet, or 𝑊2, distance between Gaus-

sian distributions fitted to the features of interest, which we generically call the

Fréchet Gaussian distance (FGD). A form of this known as the Fréchet INCEPTION

distance (FID) [324], using the activations of the INCEPTION v3 convolutional neu-

ral network model [355] on samples of real and generated images as its features,

is currently the standard metric for evaluation in computer vision. The FID has

been shown to be sensitive to both quality andmode collapse in generative mod-

els and is extremely efficient to compute; however, it has the drawback of as-

suming Gaussian distributions for its features. While finite-sample estimates of

the FGD are biased [356], Ref. [357] introduces an effectively unbiased estimator

FGD∞, obtained by extrapolating from multiple finite-sample estimates to the

infinite-sample value.

The final IPM we discuss is the MMD [358], for which ℱ is the unit ball

in an RKHS for a chosen kernel 𝑘(𝑥, 𝑦). Intuitively, it is the distance between

2This is a pseudometric because distinct distributions can have a distance of 0 if they have
the same means and covariances.
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the mean embeddings of the two distributions in the RKHS, and it has been

demonstrated to be a powerful two-sample test [343, 359]. However, generally,

high sensitivity requires tuning the kernel based on the two sets of samples. For

example, the traditional choice is a radial basis function kernel, where kernel

bandwidth is typically chosen based on the statistics of the two samples [343].

While such a kernel has the advantage of being characteristic—i.e., it produces

an injective embedding [360]—to maintain a standard and reproducible metric,

we experiment instead with fixed polynomial kernels of different orders. These

kernels allow access to high order moments of the distributions and have been

proposed in computer vision as an alternative to FID, termed kernel INCEPTION

distance (KID) [356]. MMD has unbiased estimators [343], which have shown to

converge quickly even in high dimensions [356].

Manifold estimation

Another form of evaluation metrics recently popularized in computer vi-

sion involves estimating the underlying manifold of the real and generated sam-

ples. While computationally challenging, such metrics can be intuitive and al-

low us to disentangle the aspects of quality and diversity of the generated sam-

ples, which can be valuable in diagnosing individual failure modes of genera-

tive models. The most popular metrics are “precision” and “recall” as defined

in Ref. [361]. For these, manifolds are first estimated as the union of spheres cen-

tered on each sample with radii equal to the distance to the 𝑘th-nearest neighbor.

Precision is defined as the number of generated points which lie within the real
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manifold, and recall as the number of real points within the generated manifold.

Alternatives, named diversity and coverage, are proposed in Ref. [362] with a

similar approach, but which use only the real manifold, and take into account

the density of the spheres rather than just their union. We study the efficacy of

both pairs of metrics for our problem in Sections 11.2 and 11.3.

Classifier-based metrics

Finally, an alternative class of GOF tests proposed in Refs. [359, 363, 364],

and most relevantly in Ref. [365] and the fast calorimeter simulation chal-

lenge [366] to evaluate simulated calorimeter showers, are based on binary clas-

sifiers trained between real and generated data. These tests have been posited

to have sensitivity to both quality and diversity; however, they have significant

practical and conceptual drawbacks in terms of understanding and comparing

generative models.

First, deep neural networks (DNNs) are widely considered uninter-

pretable black boxes [367], hence it is difficult to discern which features of the

generated data the network is identifying as discrepant or compatible. Second,

the performance of DNNs is highly dependent on both the architecture and

dataset, and it is unclear how to specify a standard architecture sensitive to all

possible discrepancies for all datasets. Furthermore, training of DNNs is typi-

cally stochastic, minimizing a complex loss function with several potential local

minima, and slow; hence it is sensitive to initial states and hyperparameters ir-
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relevant to the problem, difficult to reproduce, and not efficient.

In terms of GOF testing, evaluating the performance of an individual gen-

erative model requires a more careful understanding of the null distribution

of the test statistic than is proposed in Refs. [365, 366], such as by using a per-

mutation test as suggested in Refs. [359, 363] or retraining the model numer-

ous times between samples from the true distribution as proposed recently in

Refs. [368, 369] with applications to HEP searches. However, even if such a test

was performed for each model, which would itself be practically burdensome,

it would remain difficult to fairly compare models, as, since different classifiers

are trained for eachmodel, this means comparing values of entirely different test

statistics.3 Despite these drawbacks, we perform the classifier-based test from

Refs. [365, 366] in Section 11.3 and find that, perhaps surprisingly, it is insensi-

tive to a large class of failures typical of ML generative models.

Feature selection

We end by discussing which features to select for evaluation. Generally,

for data such as calorimeter showers and jets, individual samples ®𝑥 ∈ R𝑑 are

extremely high dimensional, with showers and jets containing up toO(1000)s of
hits and particles respectively, each with its own set of features. Apart from the

practical challenges of comparing distributions in this 𝑑-dimensional case, often

3In the case of Refs. [368, 369] the test statistic remains the same, but estimating the null
distribution is evenmore practically challenging, as it involvesmultiple trainings of the classifier.
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this full set of low-level features is not the most relevant for our downstream use

case.

This is an issue in computer vision as well, where images are similarly

high dimensional, and comparing directly the low-level, high-dimensional fea-

ture space of pixels is not practical or meaningful. Instead, the current solution

is to derive salient, high-level features from the penultimate layer of a pretrained

SOTA classifier.

This approach is necessary for images, for which it is difficult to define

such meaningful numerical features by hand. We also tried a similar approach

in Section 10.1 using the Fréchet ParticleNet distance (FPND), using the Parti-

cleNet jet classifier to derive its features. However, one key insight and study

of this work is that this may be unnecessary for HEP applications, as we have

already developed a variety of meaningful, hand-engineered features such as

jet observables [322, 326, 370] and shower-shape variables [371, 372]. Such vari-

ables may lead to a more efficient, more easily standardized, and interpretable

test. We experiment with both types of features in Section 11.3.
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11.2 Experiments on gaussian-distributed

data

As a first test and filtering of the many metrics discussed, we evalu-

ate each metric’s performance on simple 2D (mixture of) Gaussian-distributed

datasets. Below, we describe the specific metrics tested, the distributions we

evaluate, and experimental results.

Metrics

We test several metrics discussed in Section 11.1, with implementation de-

tails provided below. Values are measured for different numbers of test samples,

using the mean of five measurements each and their standard deviation as the

error, for all metrics but FGD∞ and MMD. The sample size was increased until

the metric was observed to have converged, or, as in the case of the Wasserstein

distance and diversity and coverage, until it proved too computationally expen-

sive. Timing measurements for each metric can be found in Appendix D.2.

1. Wasserstein distance is estimated by solving the linear program described

in, for example, Ref. [373], using the Python optimal transport library [374].

2. FGD∞ is calculated by measuring FGD for 10 batch sizes, between a min-

imum batch size of 20,000 and varying maximum batch size. A linear fit
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is performed of the FGD as a function of the reciprocal of the batch size,

and FGD∞ is defined to be the 𝑦 intercept—it, thus, corresponds to the

infinite batch size limit. The error is taken to be the standard error of the

intercept. This closely follows the recommendation of Ref. [357], except

empirically we find it necessary to increase the minimum batch size from

5,000 to 20,000 and to use the average of 20measurements at each batch size

in the linear fit, in order to obtain FGD∞ intervals with >68% coverage of

the true value.4

3. MMD is calculated using the unbiased quadratic time estimator defined

in Ref. [343]. We test 3rd (as in KID) and 4th order polynomial kernels. We

find MMD measurements to be extremely sensitive to outlier sets of sam-

ples, hence we use the median of 10 measurements each per sample size as

our estimates, and half the difference between the 16th and 84th percentile

as the error. We find empirically that this interval has 74% coverage of the

true value when testing on the true distribution.

4. Precision and recall [361] and

5. Diversity and coverage [362] are both calculated using the recommen-

dations of their respective authors, apart from the maximum batch size,

which we vary.
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Figure 11.1. Samples of (mixtures of) Gaussian distributions used for testing
evaluation metrics.

Distributions

We use a 2D Gaussian with 0 means and covariance matrix Σ =
( 1.00 0.25

0.25 1.00
)

as the true distribution. We test the sensitivity of the above metrics to the follow-

ing distortions, shown in Figure 11.1:

1. a large shift in 𝑥 (1 standard deviation 𝜎);

2. a small shift in 𝑥 (0.1 𝜎);

3. removing the covariance between the parameters—this tests the sensitivity

of each metric to correlations;

4. multiplying the (co)variances by 10—tests sensitivity to quality;

4The tests of coverage are performed on the jet distributions described in Section 11.3, with
the true FGD estimated as the FGD between batch sizes of 150,000, similar to Ref. [357].
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5. dividing (co)variances by 10—tests sensitivity to diversity; and, finally,

6 & 7. two mixtures of two Gaussian distributions with the same combined

means, variances, and covariances as the truth—this tests sensitivity to the

shape of the distribution.

Results
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Figure 11.2. Scores of eachmetric on samples from the true distribution for vary-
ing sample sizes.
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Bias

Wefirst discuss the performance of eachmetric in distinguishing between

two sets of samples from the truth distribution in Figure 11.2, effectively estimat-

ing the null distributions of each test statistic. A fourth-order polynomial kernel

for MMD is shown as it proved most sensitive. We see that indeed FGD∞ and

MMD are effectively unbiased, while the values of others depend on the sample

size. This is a significant drawback; even if the same number of samples is spec-

ified for each metric to mitigate the effect of the bias, as discussed in Ref. [357],

in general there is no guarantee that the level of bias for a given sample size is the

same across different distributions. One possible solution is to use a sufficiently

large number of samples to ensure convergence within a certain percentage of

the true value. However, from a practical standpoint, the Wasserstein distance

quickly becomes computationally intractable beyond O(1000) samples, before

which, as we see in Figure 11.2, it does not converge even for a two-dimensional

distribution. Similarly, diversity and coverage require a large number of samples

for convergence, which is impractical given their O(𝑛2) scaling, while precision

and recall suffer from the same scaling but converge faster.

Sensitivity

Table 11.1 lists the means and errors of each metric per dataset for the

largest sample size tested for each. A similar plot to Figure 11.2 for each alterna-

tive distribution can be found in Appendix D.2. A significance is also calculated
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for each score by assuming a Gaussian null (truth) distribution,5 and the most

significant scores per alternative distribution are highlighted in bold. We can

infer several properties of each metric from these measurements.

Focusing first on the holistic metrics (Wasserstein, FGD∞, andMMD), we

find that each converges to ≈0 on the truth distribution, indicating their estima-

tors are consistent. We can evaluate the sensitivity to each alternative distribu-

tion by considering the difference in scores versus the truth scores. With the

notable exception of FGD∞ on the mixtures of two Gaussian distributions, we

observe that all threemetrics find the alternatives discrepant from the truth score

with a significance of >2 (equivalent to a 𝑝-value of <0.05 of the test statistic on

the alternative distributions).

As expected, despite the clear difference in the shapes of the mixtures

compared to the truth, since FGD∞ has access to up to only the second-order

moments of the distributions, it is not sensitive to such shape distortions. We

also note that a fourth-order polynomial kernel, as opposed to the third-order

kernel proposed for KID, is required for MMD to be sensitive to the mixtures of

Gaussian distributions, as shown in Appendix D.2. FGD∞ is, however, generally

the most sensitive to other alternative distributions.

Finally, we note that precision and recall are clearly sensitive to the two

5We note that this is not necessarily the case, particularly for theWasserstein distance, which
has a biased estimator. However, this is not a significant limitation, because, as can be seen in
Table 11.1, there is rarely a significant overlap between the null and alternative distributions
which would require an understanding of the shape of the former.
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distributions designed to reduce quality and diversity respectively, while not

sensitive to others. This indicates that they are valuable for diagnosing these in-

dividual failure modes but not for a rigorous evaluation or comparison. Diver-

sity and coverage are also sensitive to these distributions, but their relationship

to quality and diversity is less clear. For example, the coverage is lower with

the covariances multiplied by 10, when, in fact, the diversity should remain un-

changed. We, therefore, conclude that precision and recall are the more mean-

ingful metrics to disentangle quality and diversity, and use those going forward.

11.3 Experiments on jet data

We next test the performance of the Wasserstein distance, FGD∞, MMD,

precision, and recall on high momentum gluon jets from the JETNET dataset. As

discussed in Section 11.1, we test all metrics on two sets of features per jet: (i)

physically meaningful high-level features and (ii) features derived from a pre-

trained classifier. We choose a set of 36 energy flow polynomials (EFPs) [322]

(all EFPs of degree less than five) for the former, as they form a complete basis

for all infrared- and collinear-safe observables. The classifier features are derived

from the activations of the penultimate layer of the SOTA ParticleNet [230] clas-

sifier, as described in Section 10.1. Finally, we test the binary classifier metric as

in Refs. [365, 366] using both ParticleNet directly on the low-level jet features and

a two-layer fully connected network (FCN) on the high-level EFPs. We note that
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Refs. [365, 366] do not provide a recipe for measuring the null distribution, in-

stead relying on direct comparisons between area under the curve (AUC) values,

which is a limitation of this classifier-based metric. We first describe the dataset

and tested distortions, and then the experimental results.

Dataset
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Figure 11.3. The probability, in arbitrary units (A.U.), of the relative jet mass
for truth and distorted gluon jet distributions. On the left are distribution-level
distortions, and on the right particle-level.

As our true distribution we use simulated gluon jets of ≈1TeV transverse

momentum (𝑝T) from the JETNET dataset (Section 9.2) using the associated JET-

NET library (Section 15). We again consider the three particle features: relative

angular coordinates 𝜂rel = 𝜂particle − 𝜂jet and 𝜙rel = 𝜙particle − 𝜙jet (mod 2𝜋), and
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the relative transverse momentum 𝑝rel
T = 𝑝particle

T /𝑝jet
T . To obtain alternative dis-

tributions we distort the dataset in several ways typical of the mismodeling we

observe in ML generative models: lower feature resolution, systematic shifts in

the features, and inability to capture the full distribution.

We perform both distribution-level distortions, by reweighting the sam-

ples in jet mass to produce a mass distribution that is (i) smeared, (ii) smeared

and shifted higher, and (iii) missing the tail of the distribution, as well as direct

particle-level distortions, by (iv) smearing all three 𝜙rel, 𝜂rel, and 𝑝rel
T features,

smearing the (v) 𝑝rel
T and (vi) 𝜂rel individually, and (vii) shifting the 𝑝rel

T higher.

The effects of the distortions on the relative jet mass are shown in Figure 11.3,

with further plots of different variables available in Appendix D.3.

Results

Table 11.2 shows the central values, significances, and errors for eachmet-

ric, as defined in Section 11.2, with the most significant scores per alternative

distribution highlighted in bold. The first row shows the Wasserstein distance

between only the 1D jetmass distributions (𝑊M
1 ) as introduced in Section 10.1, as

a test of the power and limitations of considering only 1Dmarginal distributions.

We see that, in fact,𝑊M
1 identifiesmost distortions as significantly discrepant but

is not as sensitive to subtle changes such as particle 𝑝rel
T smearing. Additionally,

even with up to 50,000 samples, it is unable to converge to the true value. Never-
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theless, it proves to be a valuable metric that can be used for focused evaluation

of specific physical features, complementing aggregate metrics.

The next five rows show values for metrics which use EFPs as their fea-

tures. We find that, perhaps surprisingly, FGD∞ is themost sensitive to all distor-

tions, with significances orders of magnitude higher than the rest. The Wasser-

stein distance is not sensitive to many distortions for the sample sizes tested,

while the MMD is successful, but not as sensitive as FGD∞. It is also clear that

precision and recall have difficulty discerning the quality and diversity of distri-

butions in high-dimensional feature spaces, which is perhaps expected consid-

ering the difficulty of manifold estimation in such a space.

An extremely similar conclusion is reachedwhen considering themetrics

using ParticleNet activations, with FGD∞ again the highest performing. Broadly,

ParticleNet activations allow the metric to distinguish particle-level distortions

slightly better, and vice versa for distribution-level distortions, although overall

the sensitivities are quite similar. We posit that including a subset of lower-level

particle features in addition to EFPs could improve sensitivity to particle-level

distortions, a study of which we leave to future work.

Finally, the last two rows provide the AUC values for a ParticleNet clas-

sifier trained on the particle low-level features (LLF), and an FCN trained on

high-level features (HLF). We find that while both appear to be able to distin-

guish well the samples with particle-level distortions, they have no sensitivity to

the distribution level distortions.
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In conclusion, we find from these experiments that FGD∞ is in fact the

most sensitive metric to all distortions tested. Despite the Gaussian assumption,

it is clear that access to the first-order moments of the distribution is sufficient

for it to have high discriminating power against the relevant alternative distribu-

tions we expect from generative models.

Applying FGD∞ to hand-engineered physical features or ParticleNet acti-

vations leads to similar performance, with the former having a slight edge. In ad-

dition, FGD∞ using physical features—Fréchet physics distance (FPD) for short—

has a number of practical benefits. For instance, it can be consistently applied

to any data structure (e.g. point clouds or images) and easily adapted to dif-

ferent datasets as long as the same physical features can be derived from the

data samples (Ref. [279] and Section 10.1 derive similar jet observables from im-

ages and point clouds, respectively). These are both difficult to do with features

derived from a pretrained classifier, where different classifier architectures may

need to be considered for different data structures and potentially even different

datasets. FPD is also more easily interpreted, as evaluators have more control

and understanding of the set of features they provide as input.

Hence, we propose FPD as a novel efficient, interpretable, and highly sen-

sitive metric for evaluating generative models in HEP. However, MMD on hand-

engineered features—kernel physics distance (KPD) for short—and 𝑊1 scores

between individual feature distributions also provide valuable information and,

as demonstrated in Section 11.2, can cover alternative distributions for which

369



FPD lacks discriminating power.

11.4 Demonstration on particle cloud

GANs

Wenowprovide a practical demonstration of the efficacy of our proposed

metrics in evaluating the high-performing generative model discussed previ-

ously in this chapter: MPGAN, GAPT, GAST, and iGAPT. The visual compar-

ison between the iGAPT and MPGAN models has been shown in Figure 10.10,

demonstrating the high performance, but also the difficulty in distinguishing vi-

sually between the two models and the real jets. This makes these models an

effective test bench for our proposed metrics.
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Figure 11.4. Correlations between FPD and FPND, KPD, and𝑊M
1 on 400 sepa-

rate batches of 50,000 GAPT-generated jets.
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Figure 11.4 first shows correlation plots between FPD and FPND, KPD,

and𝑊M
1 on 400 separate batches of 50,000 GAPT-generated jets. We observe an

overall positive relationship between the metrics, as one might expect. FPD and

KPD have the strongest correlation, likely because they are accessing similar in-

formation about the same set of input features. However, for low values, the

correlation is weak between all metrics, indicating that these metrics are com-

plementary in understanding different aspects of the model’s performance. As

noted in Section 11.3, the correlation between FPD and FPND may improve if

the former were to use a subset of lower-level particle features as well.

Next, FPD, KPD,𝑊M
1 scores, as well as the𝑊1 distance between the par-

ticle 𝑝rel
T distributions, from the best-performing MPGAN, GAPT, GAST, and

iGAPT models are shown in Table 11.3, respectively. Focusing on just the 30-

particle gluon jets first, we observe that it is extremely difficult to either distin-

guish between the performance of the models or draw a conclusion for their via-

bility as alternative simulators based only on visual inspection of the histograms

or even the𝑊M
1 score. However, FPD provides crucial information in this regard

clearly indicating that iGAPT is outperforming the other models, validating our

physics-informed approach to its architecture. However, we see that the FPD

scores are discrepant from the truth, indicating room for improvement.

Overall, we see from this experiment the value in employing a broad set

of sensitive, interpretable metrics. Firstly, evaluators can identify specific points

of failures in their models. In the case of iGAPT, we note that while its𝑊M
1 , FPD
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and KPD scores are generally strong, it is consistently worse than MPGAN on

𝑊
𝑝rel

T
1𝑝 , indicating difficulty in learning the particle-level features— likely because

of the increased emphasis on high-level, jet, features in the IPAB architecture.

Secondly, evaluators are also able to define clear, quantitative criteria for model

selection for their downstream tasks: for example, if comparing different simu-

lator options, they can simply choose the model with the lowest FPD score, or if

validating a faster alternative to traditional, accurate simulations, theymaywish

to require all scores to be compatible (e.g., significances of < 2) with the latter,

or even with LHC data itself, before adopting the model.

11.5 Summary

We discussed several potential evaluation metrics for generative models

in HEP, using the framework of two-sample GOF testing between real and sim-

ulated data. Inspired by the validation of simulations in both physics and ma-

chine learning, we introduce twonewmetrics, the Fréchet and kernel physics dis-

tances, which employ hand-engineered physical features, to compare and eval-

uate alternative simulators. Practically, these metrics are efficient, reproducible,

and easily standardized, and, being multivariate, can be naturally extended to

conditional generation.

We performed a variety of experiments using the proposed metrics on

toy Gaussian-distributed and high energy jet data. We illustrated as well the
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power of these metrics to discern between state-of-the-art ML models for simu-

lating jets: MPGAN and iGAPT. We find that FPD is extremely sensitive to ex-

pected distortions from ML generative models, and collectively, FPD, KPD and

theWasserstein 1-distance (𝑊1) between individual feature distributions, should

successfully cover all relevant alternative generated distributions. Hence, we rec-

ommend the adoption of these metrics in HEP for evaluating generative models.

Future work may explore the specific set of physical features for jets, calorimeter

showers, and beyond, to use for FPD and KPD.
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Table 11.2. Values, significances, and errors of metrics, as defined in Sec-
tions 11.2 and 11.3, for each jet distribution, for the largest sample size tested.
EFP and PN refer to metrics using EFPs and ParticleNet activations as their in-
put features, respectively. The most significant scores per distribution are in
bold.

Metric Truth Smeared Shifted Removing tail
Particle Particle Particle Particle
features 𝜂rel 𝑝rel

T 𝑝rel
T

smeared smeared smeared shifted

𝑊𝑀
1 × 103 0.28 ± 0.05 2.1 ± 0.2 6.0 ± 0.3 0.6 ± 0.2 1.7 ± 0.2 0.9 ± 0.3 0.5 ± 0.2 5.8 ± 0.2

Significance 37 ± 3 114 ± 6 7 ± 2 28 ± 3 12 ± 4 4 ± 1 111 ± 3

Wasserstein EFP 0.02 ± 0.01 0.09 ± 0.05 0.10 ± 0.02 0.016 ± 0.007 0.19 ± 0.08 0.03 ± 0.01 0.03 ± 0.02 0.06 ± 0.02
Significance 6 ± 4 7 ± 1 0.06 ± 0.02 14 ± 6 0.8 ± 0.4 0.9 ± 0.6 4 ± 1

FGD∞ EFP ×103 0.08 ± 0.03 20 ± 1 26.6 ± 0.9 2.4 ± 0.1 21 ± 2 3.6 ± 0.3 2.3 ± 0.2 29.1 ± 0.4
Significance 580 ± 30 760 ± 20 66 ± 4 610 ± 40 103 ± 8 64 ± 4 830 ± 10

MMD EFP ×103 −0.006 ± 0.005 0.17 ± 0.06 0.9 ± 0.1 0.03 ± 0.02 0.35 ± 0.09 0.08 ± 0.05 0.01 ± 0.02 1.8 ± 0.1
Significance 30 ± 10 170 ± 20 6 ± 4 70 ± 10 10 ± 10 3 ± 5 360 ± 20
Precision EFP 0.9 ± 0.1 0.94 ± 0.04 0.978 ± 0.005 0.88 ± 0.08 0.7 ± 0.1 0.94 ± 0.06 0.7 ± 0.1 0.79 ± 0.09
Significance 0 0 0.109 ± 0.009 1.9 ± 0.3 0 2.0 ± 0.3 0.9 ± 0.1
Recall EFP 0.9 ± 0.1 0.88 ± 0.07 0.97 ± 0.01 0.92 ± 0.06 0.83 ± 0.05 0.92 ± 0.07 0.8 ± 0.1 0.8 ± 0.1
Significance 0.16 ± 0.01 0 0 0.58 ± 0.04 0 0.8 ± 0.1 1.1 ± 0.2

Wasserstein PN 1.65 ± 0.06 1.7 ± 0.1 2.4 ± 0.4 1.71 ± 0.08 4.5 ± 0.1 1.79 ± 0.05 4.0 ± 0.4 7.6 ± 0.2
Significance 0.84 ± 0.05 12 ± 2 0.97 ± 0.05 45 ± 1 2.26 ± 0.06 37 ± 3 95 ± 3

FGD∞ PN ×103 0.6 ± 0.4 37 ± 2 202 ± 4 4.3 ± 0.4 1220 ± 10 20 ± 1 1230 ± 10 3630 ± 10
Significance 98 ± 4 540 ± 0 9.8 ± 0.9 3320 ± 20 51 ± 3 3340 ± 30 9870 ± 30

MMD PN ×103 −2 ± 2 4 ± 8 80 ± 10 −1 ± 4 500 ± 100 3 ± 2 560 ± 60 1100 ± 40
Significance 3 ± 6 40 ± 10 0 ± 3 280 ± 70 3 ± 2 310 ± 30 610 ± 20
Precision PN 0.68 ± 0.07 0.64 ± 0.04 0.71 ± 0.06 0.73 ± 0.03 0.09 ± 0.04 0.75 ± 0.08 0.08 ± 0.04 0.39 ± 0.08
Significance 0.57 ± 0.04 0 0 8 ± 4 0 8 ± 5 4.0 ± 0.8
Recall PN 0.70 ± 0.05 0.61 ± 0.04 0.61 ± 0.08 0.73 ± 0.06 0.014 ± 0.009 0.7 ± 0.1 0.01 ± 0.01 0.57 ± 0.09
Significance 1.8 ± 0.1 1.8 ± 0.2 0 14 ± 9 0 10 ± 10 2.6 ± 0.4

Classifier LLF AUC 0.50 0.52 0.54 0.50 0.97 0.81 0.93 0.99
Classifier HLF AUC 0.50 0.53 0.55 0.50 0.84 0.64 0.74 0.92
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Table 11.3. Evaluation metrics for different jet types and models. The best-
performing model on each metric and jet type is highlighted in bold.

Model 𝑊
𝑝rel

T
1𝑝 (10−3) 𝑊M

1 (10−3) FPD (10−3) KPD (10−6)

Gluon (30)

Truth 0.14 ± 0.06 0.46 ± 0.08 0.14 ± 0.04 1.8 ± 11.9
MPGAN 0.27 ± 0.02 0.7 ± 0.3 0.41 ± 0.09 0 ± 8
GAPT 0.25 ± 0.07 1.0 ± 0.2 0.46 ± 0.06 5 ± 3
GAST 0.8 ± 0.1 0.7 ± 0.2 0.40 ± 0.05 7.0 ± 10.3
iGAPT 0.76 ± 0.07 0.7 ± 0.1 0.29 ± 0.04 3 ± 5

Light quark (30)

Truth 0.21 ± 0.05 0.5 ± 0.2 0.09 ± 0.03 −3 ± 3
MPGAN 0.41 ± 0.07 0.5 ± 0.1 1.9 ± 0.2 1.7 ± 15.1
GAPT 2.74 ± 0.09 2.54 ± 0.05 4.03 ± 0.06 96 ± 9
GAST 1.2 ± 0.1 1.8 ± 0.2 0.65 ± 0.07 27.0 ± 11.7
iGAPT 1.89 ± 0.04 1.2 ± 0.3 0.51 ± 0.07 12 ± 7

Top quark (30)

Truth 0.20 ± 0.05 0.7 ± 0.2 0.07 ± 0.03 −16 ± 2
MPGAN 0.44 ± 0.08 0.5 ± 0.1 2.8 ± 0.2 14.7 ± 12.9
GAPT 0.34 ± 0.02 1.9 ± 0.2 0.43 ± 0.03 25.4 ± 28.8
GAST 1.16 ± 0.08 1.5 ± 0.2 0.30 ± 0.05 −2.4 ± 17.2
iGAPT 0.54 ± 0.04 0.9 ± 0.3 0.25 ± 0.03 −0.6 ± 14.1

Gluon (150)

Truth 0.09 ± 0.03 0.7 ± 0.2 0.10 ± 0.03 0.5 ± 10.5
GAPT 0.77 ± 0.03 1.1 ± 0.3 22.0 ± 0.1 62.5 ± 11.1
GAST 0.68 ± 0.05 3.7 ± 0.3 3.60 ± 0.06 47.7 ± 13.8
iGAPT 0.66 ± 0.03 4.4 ± 0.7 2.99 ± 0.06 158.1 ± 37.9
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Chapter 12

Conclusion and impact

In this Part, we argued for the necessity of a new generation of fast and

accurate simulators in HEP to meet the computational demands of Run 3 and

HL-LHC. To this end, we introduced two state-of-the-art (SOTA) ML-based gen-

erative models, MPGAN and iGAPT, which leverage the success of generative

adversarial networks (GANs) in computer vision, but incorporate critical phys-

ical inductive biases of our data to achieve breakthrough performance in simu-

lating high-energy jets. Specifically, they use permutation invariant graph- and

attention-based architectures, respectively, to operate on point cloud representa-

tions of jets and model the interactions of their particle constituents and global

correlations. In the case of iGAPT,we further introduce the novel “induced parti-

cle attention blocks” which offer linear time complexity and high computational

efficiency by building physics insight into the attention mechanism. Both mod-

els are able to model well physical observables of jets and, crucially, generate

jets at 3 − 5 orders of magnitude faster than traditional simulators.
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We also discussed the critical challenge of validating such models, to en-

sure trust in their applications in HEP. Several methods were reviewed and sys-

tematically evaluated, and the novel Fréchet and kernel physics distances (FPD

and KPD) were introduced as efficient, interpretable, and highly sensitive met-

rics for evaluating generative models in HEP. Their performance, along with

Wasserstein (𝑊1) distances between individual features and the neural-network-

based Fréchet ParticleNet distance (FPND), was demonstrated on toy distribu-

tions as well as on evaluating the MPGAN and iGAPT models. We propose

FPD, KPD, and 𝑊1 distances as effective metrics for evaluating fast simulators,

and recommend their adoption by CMS and other collaborations in validating

the next generation of simulators.

This work has proven impactful in the HEP community, leading to sev-

eral follow-up studies on point-cloud generative modeling in HEP using the

JETNET dataset and our proposed evaluation metrics, benchmarked against MP-

GAN and iGAPT [375–385]. JETNET and our metrics have been used to develop

and benchmark a variety of novel architectures such as diffusion and condi-

tional flow-matching models [379, 384–386], foundation models [387], equivari-

ant models [68] and even quantum GNNs [388] on myriad applications includ-

ing calorimeter and future detector simulations [389, 390], anomaly detection,

and jet classification. Ongoing work explores the adoption of our metrics in the

CMS release validation pipeline and our models for CMS fast simulation.
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Part V

Searches for High Energy Higgs

Boson Pairs
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Chapter 13

Boosted Higgs identification

In Part V, we describe searches for the nonresonant SM and resonant BSM

Higgs boson pair production, in the bb̄(VV → 4q) decay channel. As discussed

in Chapter 4.3, classifying the merged H → bb̄ and H/Y → VV jets is a key com-

ponent of these analyses. Traditionally, jet-tagging involved hand-engineering

high-level features, such as the jet mass, substructure variables, and secondary

vertices, to manually define selections for such jets. The advent of deep learning

techniques, which are able to make effective use of low-level particle and vertex

data, however, has revolutionized this process.

This is epitomized by the ParticleNet tagger [230], described in Sec-

tion 13.1, which uses a graph neural network (GNN) architecture to model in-

dividual jet constituents and their interactions, and has demonstrated strong

performance on H → bb̄ tagging (among other final states). However, a sim-

ilarly high performing classifier has not yet been developed for four-pronged
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VV → 4q jets. In this chapter, we showcase the development of a new attention-

based ParticleTransformer model [391] to identify such boosted H → VV → 4q

jets, which has proven to be a critical component of not only this analysis, but

many ongoing boosted Higgs searches in CMS. We additionally present a novel

calibration method for the H/Y → VV tagger, which improves the systematic

uncertainties on signal efficiency scale factors from 50% using a previous proxy-

based method [392] down to 16%, representing a significant improvement in

analysis sensitivity.

13.1 ParticleNet for bb̄-jet tagging andmass

regression

A ParticleNet model [393] has been trained to classify between back-

ground quark and gluon (QCD) jets and signal jets from a boosted spin-0 res-

onance (X) of mass varying between 15 and 250 GeV and decaying into a pair of

quarks, which are categorized into heavy and light flavors: X → bb̄, X → cc̄, and

X → qq̄. The mass of the resonance is varied to ensure the tagger cannot use it

as a discriminating variable, thereby achieving mass decorrelation. The model

inputs are single AK8 jets with up to 100 PF candidates and 7 secondary vertices,

eachwith 42 and 15 features, respectively, while the outputs are the probabilities

of the jet to have originated from each of the individual training processes.
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We focus on discriminating between X → bb̄ jets and QCD by using the

𝑇Xbb discriminant, defined as:

𝑇Xbb =
𝑃Xbb

𝑃QCD + 𝑃Xbb
, (13.1.1)

where 𝑃XYZ is the probability of class XYZ as outputted by ParticleNet. This

discriminator has shown to be highly performant for H → bb̄ vs QCD tagging,

for example, in the CMS boosted HH → bb̄bb̄ analysis [162].

A similar model is also used to regress the mass of wide-radius jets. It is

trained on the same set of samples but trained to learn the “true” jet mass, de-

fined as the X mass in the case of signal jets and the generator-level jet mass in

the case of QCD jets. A comparison of the traditional soft-drop algorithm [394]

(𝑚SD) formass reconstruction and the ParticleNet regressedmass (𝑚reg) is shown

in Figure 13.1 for the bb̄ and VV-candidate jets in the 2018 dataset for data, sim-

ulated background events, and a subset of the nonresonant and resonant signal

samples. We observe two significant benefits of the regressedmass: 1) the signal

mass resolution is significantly improved, especially for the 4-pronged VV jets;

and 2) the regressed mass can recover jets that are too aggressively groomed

by the soft-drop algorithm, as indicated by the peak at 0GeV in 𝑚SD and lack

thereof in 𝑚reg.
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Figure 13.1. Soft drop (left) and regressed (right) mass distributions for the bb̄
and VV-candidate AK8 jets for 2018 data and simulated samples following a
loose pre-selection for boosted jets.

13.2 GloParT for H/Y → VV classification

To target the H/Y → VV → 4q jets, as well as several additional signa-

tures, we introduce a new transformer-based model, based on the ParTe [391]
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architecture, called “Global Particle Transformer” (GloParT). It is trained to clas-

sify between backgroundQCD jets and awide variety of fully hadronic and semi-

leptonic Higgs and top quark processes. The full set of training classes is illus-

trated in Figure 13.2. As for the ParticleNet tagger, to achievemass-decorrelation,

the masses of Higgs- and top-quark-like resonances are varied in the training

samples; specifically, Higgs-like topologies are simulated using spin-0 particles

(G) decaying to HH and top-quark-like topologies with G decaying to tt, where

the H and t masses are varied between 15 and 250GeV. For H → VV decays,

the W and Z boson masses are also varied, either linearly with the H mass—for

SMHiggs boson searches such as the nonresonant HH search, or independently,

motivated by BSM scenarios such as the resonant X → HY search.

The final states for each process are grouped by the number of quarks

and leptons per jet, and then further separated by heavy flavors. Notably, fully

hadronicH → VV jets are separated into 4- and 3-pronged jets (qqqq andqqq), to

account for boosted jetswhichmay not capture all four VVdaughter quarks. The

inputs to the model are AK8 jets with up to 128 PF candidates and 7 secondary

vertices, with features listed in Table 13.1, and the outputs are the probabilities

of the jet to have originated from each of the aforementioned processes and final

states.

In the resonant analysis (and to evaluate the performance of the tagger for

nonresonant signals), we focus on discriminating between the hadronic H →
VV final states and top quark and QCD multĳet backgrounds using the 𝑇HVV
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discriminator defined as

𝑇HVV =
𝑃HVV4q + 𝑃HVV3q

𝑃QCD + 𝑃Top + 𝑃HVV4q + 𝑃HVV3q
, (13.2.1)

where 𝑃HVV4q, 𝑃HVV3q, 𝑃QCD, and 𝑃Top are the sum of the predicted probabilities

of their respective sub-categories. The performance of this discriminant on VV-

candidate jets passing loose a preselection for boosted jets is shown in Figure 13.3.

In the nonresonant analysis, the raw 𝑃HVV4q, 𝑃HVV3q, 𝑃QCD, and 𝑃Top are used as

inputs to the BDT.

Process
Final state/
prongness

heavy flavour # of classes
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0c/1c/2c

3

qqq 3
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Figure 13.2. Full set of training jet classes for GloParT.
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Table 13.1. The complete set of input features intoGloParT. Three types of inputs
are considered: charged PF candidates, neutral PF candidates, and secondary
vertices (SVs).

Variable Definition
charged PF candidates

log 𝑝T logarithm of the particle’s 𝑝T
log𝐸 logarithm of the particle’s energy
Δ𝜂(jet) difference in pseudorapidity between the particle and the jet axis
Δ𝜙(jet) difference in azimuthal angle between the particle and the jet axis
|𝜂| absolute value of the particle’s pseudorapidity
𝑞 electric charge of the particle
isMuon if the particle is identified as a muon
isElectron if the particle is identified as an electron
isChargedHadron if the particle is identified as a charged hadron
pvAssociationQuality flag related to the association of the track to the primary vertices
lostInnerHits quality flag of the track related to missing hits on the pixel layers
𝜒2/𝑑𝑜 𝑓 𝜒2 value of the trajectory fit normalized to the number of degrees of freedom
qualityMask quality flag of the track
𝑑𝑧 longitudinal impact parameter of the track
𝑑𝑧/𝜎𝑑𝑧 significance of the longitudinal impact parameter
𝑑𝑥𝑦 transverse impact parameter of the track
𝑑𝑥𝑦/𝜎𝑑𝑥𝑦 significance of the transverse impact parameter
𝜂rel pseudorapidity of the track relative to the jet axis
𝑝T,rel ratio track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum
𝑝par,rel ratio track momentum parallel to the jet axis divided by the magnitude of the track momentum
𝑑3D signed 3D impact parameter of the track
𝑑3D/𝜎3D signed 3D impact parameter significance of the track
trackDistance distance between the track and the jet axis at their point of closest approach

Neutral PF candidates
log 𝑝T logarithm of the particle’s 𝑝T
log𝐸 logarithm of the particle’s energy
Δ𝜂(jet) difference in pseudorapidity between the particle and the jet axis
Δ𝜙(jet) difference in azimuthal angle between the particle and the jet axis
|𝜂| absolute value of the particle’s pseudorapidity
isPhoton if the particle is identified as a photon
isNeutralHadron if the particle is identified as a neutral hadron

For SVs within the jet cone
log 𝑝T logarithm of the SV 𝑝T
𝑚SV mass of the SV
Δ𝜂(jet) difference in pseudorapidity between the SV and the jet axis
Δ𝜙(jet) difference in azimuthal angle between the SV and the jet axis
|𝜂| absolute value of the SV’s pseudorapidity
𝑁tracks number of tracks associated with the SV
𝜒2/𝑑𝑜 𝑓 𝜒2 value of the SV fit normalized to the number of degrees of freedom
𝑑2D signed 2D impact parameter (i.e., in the transverse plane) of the SV
𝑑2D/𝜎2D signed 2D impact parameter significance of the SV
𝑑3D signed 3D impact parameter of the SV
𝑑3D/𝜎3D signed 3D impact parameter significance of the SV
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Figure 13.3. Receiver operating characteristic (ROC) curve for the 𝑇HVV discrim-
inator on VV-candidate jets passing the AK8 online and offline selections for a
subset of nonresonant and resonant signals versus QCD and tt backgrounds.

13.3 Calibrating H/Y → VV taggers

Unlike boosted H → bb̄ calibration, where we can use g → bb̄ jets as a

proxy to measure data versus MC disagreement, it is difficult to define a control

region dominated by a standard model candle for the 4-pronged H → VV → 4q

jets. We instead use a method that measures data versus MC differences in the

per-prong, or per-subjet, radiation pattern based on densities of their primary

Lund jet planes [61]. The primary Lund plane of a jet represents each succes-

sive hardest splitting in the 2D (ln(1/Δ), ln(𝑘T/GeV)) plane, where Δ and 𝑘T are
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the angular separation and relative transverse momentum between the emitted

and emitting particle, respectively. As highlighted in Figure 13.4, the primary

Lundplane captures key physics and substructure information about the jet. The

data versus MC ratio of the densities of primary Lund planes are measured in

Ref. [62] per-subjet in merged two-pronged jets originating fromW bosons, clus-

tered with the 𝑘T algorithm [395, 396] to two exclusive jets, binned in subjet 𝑝T,

reproduced in Figure 13.4.

Figure 13.4. Regions of the primary Lund plane (left) and data versus MC
Lund plane ratios in W → qq̄ jets, binned in subjet 𝑝T (right), reproduced from
Refs. [61] and [62], respectively.

A data-to-MC per-event relative weight for the signal is derived by calcu-

lating the primary Lund planes for each subjet in theH → VV jet, then taking the

product across the subjets of each splitting’s data-to-MC correction factor (from

Figure 13.4) as a function of its 𝑘T, Δ, and subjet 𝑝T. The signal efficiency scale
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factor for a BDT selection in the nonresonant analysis, and the 𝑇HVV selection in

the resonant analysis, is thus defined as the ratio of the efficiencies before and

after applying the Lund plane weights. Statistical uncertainties and systematic

uncertainties related to theMCmodeling and extrapolation up to high 𝑝T subjets

on the data-to-MC Lund plane ratios are each propagated as sources of system-

atic uncertainties on the scale factor, as well as an additional factor representing

the uncertainty on the quark-subjet matching, as described in detail in Ref. [62].

The measured SFs and uncertainties for different signals and analysis regions

are shown in Chapter 14.5.

The scale factor measurement is validated for the GloParT on boosted

top quark jets. We define a semi-leptonic boosted tt control region, tagging a

leptonically-decaying top quark (t → bW → b𝜇𝜈), and then probing an opposite-

side high 𝑝T AK8 jet representing the hadronically-decaying quark. The event

selection follows that of the control region in Ref. [62], comprising online muon

triggers, and offline selections for a b-tagged AK4 jet, a leptonically-decaying W

boson— based on the presence of a muon andmissing transverse energy— and

a high 𝑝T AK8 jet with mass close to that of the top quark. Jets from the tt MC

samples are categorized using generator-level particles as either: “top matched”

— all three daughter quarks lying within the jet; “W matched” — only the W

daughter quarks inside the jet; or “unmatched” — neither of these two cases.

Only the top-matched jets are reweighted with the Lund plane ratios.

We consider the 𝑇HVV discriminant from Eq. 13.2.1, excluding 𝑃Top in the
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denominator to ensure top quark events are retained in the high tagger score bins.

Plots of the𝑇HVV distribution from the 2018 datasets before and after Lund plane

reweighting of the top-matched jets are shown in Figure 13.5. The combined

uncertainties per bin are also shown in the distributions and data/MC ratios.

We observe an overall improvement in data/MC agreement in the highest 𝑇HVV

bins (𝑇HVV > 0.6), with the 𝜒2-test value betweenMC and data yields improving

from 16.6 to 10.9. The data and MC yields are all consistent within 1𝜎 in these

bins.
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Chapter 14

High energy HH searches in the all-
hadronic bbVV channel

Figure 14.1. The boosted HH → bb̄(VV → 4q) (left) and
X → (H → bb̄)(Y → VV → 4q) (right) processes.

14.1 Introduction

We now present two searches for the simultaneous production of two

highly energetic Higgs bosons using the CMS detector at the LHC and the AI
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developments described in the previous chapter. The first search targets nonres-

onant Higgs pair (HH) production as predicted by the standard model (SM) to

measure critical SM parameters; while the second looks for resonant Higgs (H)

and Higgs-like (Y) production resulting from new beyond-SM (BSM) particles

(X) in the high energy Higgs sector, to explain mysteries such as the hierarchy

problem and matter-antimatter asymmetry.

In the SM,HHproduction is expected to be an extremely rare process: out

of the 1,000,000,000,000,000 collisions observed byCMS inRun 2 of the LHC, only

6000 of them are expected to produce twoHiggs bosons. On top of that, the each

Higgs decays into a variety of different particles, or “final states”, splintering

the signal further into myriad different experimental signatures, or “channels”

(shown in Figure 4.24).

However, as detailed in Chapter 4.3, its measurement can uniquely probe

the Higgs trilinear self- (𝑐𝜆) and quartic two-vector-boson- (𝑐2𝑉 ) couplings, the

former being critical to understanding theHiggs potential and the nature of elec-

troweak symmetry breaking. Indeed, this is why it is considered one of the flag-

ship measurements of the CMS and ATLAS experiments’ HL-LHC programs.

Due to the rarity of HH production, the current measurements of these cou-

plings are some of our least precise, with 𝑐𝜆 constrained to [−1.39, 7.02] and 𝑐2𝑉

to [0.62, 1.42] times their SMprediction at 95% confidence level (CL) byCMS [32].

This calls for new, innovative techniques to cover the vast phase space of HH de-

cays.
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This chapter presents one such idea, measuring for the first time the all-

hadronic HH → bb̄VV channel: where one Higgs decays into a pair of bottom

quarks (bb̄), and the other into a pair of vector bosons (VV), which then decay

into four quarks (4q) (Figure 14.1, left). While not a traditional “golden channel”

(Chapter 4.3.3), due to its complicated and noisy experimental signature, by 1)

targeting the extremely high energy HH regime, where both Higgs bosons are

produced highly Lorentz-boosted; and 2) exploiting and developing advanced

ML techniques for identifying such boosted Higgs bosons (Chapter 13), we are

able to achieve competitive sensitivity to boosted HH production and the 𝑐2𝑉

coupling.

By measuring HH production and couplings, especially in the boosted

regime, the nonresonant search is also indirectly sensitive to new physics in the

very high energy Higgs sector, which could manifest as deviations from SM pre-

dictions. To complement this, this chapter also presents a resonant search for

direct evidence of such new physics, in the form of new particles in the Higgs

sector: specifically, a heavy scalar X which can decay into a Higgs and Higgs-

like boson Y, in the same final state (Figure 14.1, right). As described in Chap-

ter 4.3.4, such additions to the Higgs sector are motivated by a variety of BSM

models, such as composite Higgs models, supersymmetry, and extra dimen-

sions, to solve the matter-antimatter asymmetry and hierarchy problems. The

bb̄VV channel is particularly important for this search because for heavy Y bo-

son masses, assuming SM Higgs-like couplings, the Y → VV decay modes are

completely dominant (Figure 4.18). Hence, the bb̄VV channel is expected to have
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the highest branching fraction. The resonant search exploits the same techniques

and developments as the nonresonant, but searches more broadly for excesses,

or “bumps”, in the resonant di-Higgs mass spectrum corresponding to the mass

of the new particle X.

This chapter is organized as follows. Section 14.2 outlines the analysis

strategy for both searches, based on the ML techniques described in Chapter 13

for identifying boosted Higgs jets, before detailing the online and offline event

selection for both the nonresonant and resonant searches in Section 14.3. The

background estimation strategy and systematic uncertainties are then described

in Sections 14.4 and 14.5, respectively, followed by the Run 2 results of the non-

resonant and expected results of the resonant searches in Section 14.6. Finally,

we conclude in Section 14.7 with a summary and outlook for boosted HH analy-

ses in Run 3 and the HL-LHC.

14.2 Overview of analysis strategy

Looking for all-hadronic decays is challenging because of the large QCD

multĳet background. By searching for boosted HH/Y production, where the fi-

nal state particles for each Higgs boson produce a single merged wide-radius

jet, this background is exponentially reduced. Furthermore, in this regime,

deep learning techniques can be extremely effective in identifying these unique

mergedwide-radius signal jets using low-level reconstructed particle and vertex
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data; indeed, key components of this search are the development and applica-

tion of such techniques for identifying boosted Higgs jets.

For both the nonresonant and resonant searches, triggers and a loose of-

fline preselection for boosted jets are first applied, selecting for two high 𝑝T wide-

radius jets with at least one loosely bb̄-tagged. The key discriminating features

between our signals and the predominantly QCD background are the masses of

the two jets (plus the dĳet mass in the resonant search) and bb̄ and VV tagging

scores. As described in Chapter 13, we use ParticleNet-based mass regression

to improve the mass resolution of the two jets, and the established ParticleNet

and new Particle Transformer mass-decorrelated taggers for bb̄ and VV tagging,

respectively.

Following the event selection, which uses a combination of these features,

QCD remains the dominant background in the signal regions. The shape and

normalization of this background are predicted from data in control regions,

defined by inverting tagger selections, multiplied by transfer factors assumed to

be smoothly parametrized functions. Smaller contributions from top quark and

vector boson backgrounds are predicted from MC simulations.

For the nonresonant analysis, an event-level boosted decision tree (BDT)

is trained to further discriminate between the HH signals and the QCD multĳet

and top backgrounds. As the boosted regime is particularly sensitive to high 𝜅2V

deviations, the BDT optimized simultaneously for both the SM ggFHH signal as

well as the BSMVBF signal with 𝜅2V = 0, and includes information about smaller-
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radius forward jets which are unique to the VBF mode. The shape of the bb̄ jet

mass exhibits a resonance peak for the HH signal (with better resolution than

the VV jet mass) and thus it is chosen as the observable used in the final step of

the signal extraction procedure. The control region for the QCD background is

defined by inverting the bb̄ tagger cut.

In the resonant case, the two tagger scores, along with a selection around

theHiggsmasswindowon the bb̄-tagged jet, are used to define the signal region.

The signal is then extracted from the 2D distribution of the dĳet mass and WW-

tagged jet mass, with the QCD background predicted from a control regionwith

both tagger scores inverted. As the analysis is currently blinded in the signal

region, secondary validation pass and fail regions are defined with the same

selections above, except in the sidebands of the Higgs mass. These are used to

estimate the background in the signal region and derive expected sensitivities

and upper limits.

14.3 Event Selection

The primary physics objects considered in this analysis are large-radius,

AK8 jets representing the two Higgs bosons. AK4 jets are also used in the on-

line triggers and to identify nonresonant VBF HH production. As we do not

expect any isolated leptons in our signal, events containing any isolated elec-

trons and muons are vetoed. The online trigger selections are described in Sec-
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tion 14.3.1, and the offline selections for the nonresonant and resonant searches

in Sections 14.3.2 and 14.3.3, respectively.

14.3.1 Triggers

No dedicated online trigger algorithms were available in Run 2 for

boostedHiggs classification. Instead, a combination of high level triggers (HLTs)

is considered, which require high hadronic activity and/or AK8 jets with high

transverse momentum, as well as jet mass and/or b-tagging requirements. The

efficiencies of these triggers as a function of AK8 jet 𝑝T, soft-drop mass [394],

and bb̄-tagging score are measured in data in an unbiased semi-leptonic tt re-

gion, defined using single muon triggers and offline selections on the muon and

an AK8 jet. This measurement is shown in Figure 14.2 for the 2018 dataset. The

triggers are generally fully efficient for jet 𝑝T > 500GeV, while for 𝑝T < 400GeV

the efficiency is ≲ 10%. This is a significant limitation of the analysis and gen-

erally of boosted Higgs searches in Run 2, which is addressed in Run 3 by the

introduction of dedicated triggers for boosted Higgs searches [397].

14.3.2 Nonresonant offline selection

In the nonresonant analysis, both the H → bb̄ and H → VV decays are

targeted through an offline selection for two highly boostedAK8 jets with amini-
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Figure 14.2. Trigger efficiencies for the 2018 dataset measured in bins of the AK8
jet 𝑝T, soft drop mass (MassSD) and 𝑇Xbb score.

mum 𝑝T of 300GeV and
��𝜂�� < 2.4. ParticleNet is used to isolate the signalH → bb̄

jets against background QCD jets, using the 𝑇Xbb discriminant derived from its

outputs (Eq. 13.1.1), while our new GloParT model is leveraged to identify the

H → VV → 4q jet. Both networks have been decorrelated from the mass of the

jets by enforcing a uniform distribution in jet mass and 𝑝T in the training sam-
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ples [164], to aid with their calibration. Additionally, as the jet mass resolution

is crucial to the sensitivity of the search, we optimize the mass reconstruction

for all AK8 jets using the ParticleNet-based regression algorithm, the output of

whichwe refer to as𝑚reg. The jet with the higher (lower)𝑇Xbb score is considered

the bb̄- (VV-) candidate jet.

The VBF process produces two, likely forward, jets with large invariant

masses and pseudorapidity separations. To identify this mode, we select up to

two AK4 jets per event, required to have 𝑝T > 25GeV,
��𝜂�� < 4.7, and a Δ𝑅 sepa-

ration of 1.2 and 0.8, respectively, from the bb̄- and VV-candidate AK8 jets. The

pseudorapidity separation between and invariant mass of the two highest 𝑝T

jets passing these requirements are used as input variables in a boosted decision

tree (BDT) to discriminate against QCD and other backgrounds. Other input

variables include outputs from the GloParT tagger and the two selected AK8

jet kinematics. The variables are optimized to provide the highest BDT perfor-

mance while remaining decorrelated from the bb̄-candidate jet’s mass.

The BDT is optimized simultaneously for both the SM ggF and BSM VBF

𝜅2V = 0 signals, and separate “ggF” and “VBF” signal regions are defined us-

ing the BDT probabilities for the respective processes, referred to as BDTggF and

BDTVBF. Concretely, the VBF region is defined by selections on the 𝑇Xbb and

BDTVBF discriminants, corresponding to VBF signal (background) efficiencies of

40% (≈ 0.1%) and 20% (≈ 0.003%), respectively, chosen to optimize the expected

exclusion limit on the VBF signal. The ggF region is defined by a veto on events
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passing the VBF selections plus selections on the 𝑇Xbb and BDTggF discriminants,

corresponding to ggF signal (background) efficiencies of 60% (≈ 0.3%) and 7%

(≈ 0.01%), respectively, similarly chosen to optimize the limit on the ggF signal.

These selections are henceforth referred to as the ggF and VBF 𝑇Xbb and BDT

working points (WPs). The 𝑇Xbb discriminant’s signal efficiencies are calibrated

using boosted gluon splitting to bottom quark (g → bb̄) jets in data and simula-

tions [164], with 𝑝T-dependent scale factors and uncertainties applied to the HH

signals. The uncertainty on the BDT signal efficiency is dominated by that of the

GloParT tagger and is calibrated based on a new technique using the ratio of the

primary Lund jet plane [61] densities of each individual quark-subjet, described

below in Section 13.3.

The search is performed by constructing a likelihood in the pass region as

a function of the H → bb̄-candidate jet’s regressed mass (𝑚bb
reg). The QCD mul-

tĳet background contribution in the pass region is estimated through data in a

“fail” region, defined using the same baseline selections on the two AK8 jets, but

with the 𝑇Xbb selection inverted, as described in Section 14.4 below. A summary

of all offline selections is provided in Table 14.1, and the signal and fail region

selections in terms of the 𝑇bb
Xbb and BDT scores are illustrated in Figure 14.3.
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Table 14.1. Offline selection criteria for the signal and fail nonresonant analysis
regions.

VBF Region ggF Region Fail Region

No electrons or muons

≥ 2 AK8 jets
𝑝T > 300GeV (all jets)

|𝜂| < 2.4 (all jets)
50 < 𝑚reg < 250GeV (all jets)
𝑇Xbb > 0.8 (at least one jet)

Jet assignment:
H → bb̄: highest 𝑇Xbb score

H → VV: out of remaining jets, highest GloParT score

Not passing VBF selections
𝑇bb

Xbb ≥ VBF 𝑇Xbb WP 𝑇bb
Xbb ≥ ggF 𝑇Xbb WP 𝑇bb

Xbb < ggF 𝑇Xbb WP
BDTVBF ≥ VBF BDT WP BDTggF ≥ ggF BDT WP
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BDTVBF ≥ VBF WP

ggF

Fail

VBF

 ≥ 0.8Tbb̄
Xbb BDTggF ≥ ggF WP

 ≥ ggF WPTbb̄
Xbb

 ≥ VBF WPTbb̄
Xbb

Figure 14.3. Illustration of the signal and fail nonresonant analysis region selec-
tions in terms of the 𝑇bb

Xbb and BDT scores.

14.3.3 Resonant offline selection

The resonant analysis similarly selects for two wide-radius jets represent-

ing the two H → bb̄ and Y → VV processes. Specifically, we select for two

boostedAK8 jets with 𝑝T ≥ 350GeV, with at least one of 𝑝T ≥ 400GeV, and pseu-

dorapidity |𝜂| ≤ 2.4. Out of all AK8 jets in the event passing these requirements,

the one with the highest 𝑇Xbb discriminant score is considered our H → bb̄ can-

didate jet, and is required to pass the high purity WP and have a jet mass close

to the SM Higgs mass: 110 ≤ mass < 145GeV. As in the nonresonant case, the

jet mass resolution is crucial to the sensitivity of the search and hence we use the
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ParticleNet-based regression algorithm to reconstruct the jet mass, 𝑚reg, here as

well.

The mass-decorrelated GloParT tagger is again used to identify the Y →
VV → 4q jet, using the discriminant 𝑇HVV targeting the VV → 4q final state

derived from its outputs (Eq. 13.2.1). The AK8 jet passing the above 𝑝T and 𝜂

kinematic selections with the highest 𝑇HVV score is considered the Y → VV can-

didate jet,1 and is required to have a 𝑇HVV score > 0.6, corresponding to a ≈ 60%

(≈ 1%) signal (background) efficiency. The signal efficiency is calibrated based

the Lund jet plane as described in Chapter 13.3. All the 𝑝T and tagger selections

were jointly optimized for the lowest expected exclusion limits for a range of

𝑚X, 𝑚Y points.

The search is performed in events passing these selections, referred to as

the signal or “pass” region, in the 2D plane of the VV-candidate jet regressed

mass (𝑚VV
reg) and the invariant mass of the bb̄- and VV-candidate jets (𝑚jj), repre-

senting the potential Y and X bosonmasses, respectively. An orthogonal control,

or “fail”, region is defined by inverting the two tagger selections for both jets to

estimate the QCD background in the pass region, as detailed in Section 14.4. Fi-

nally, separate “validation” pass and fail regions using the H → bb̄ candidate

jet’s mass sidebands are used to validate the background estimation technique

before unblinding the analysis. A summary of the offline selections is provided

1In the rare (< 0.1% of signal events) case where the same jet has the highest 𝑇Xbb and 𝑇HVV
score, that jet is considered the H → bb̄ candidate, and the second-highest 𝑇HVV scoring jet is
the Y → VV candidate.
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in Table 14.2.

Table 14.2. Offline selection criteria for analysis regions for the fully-merged Y
topology.

Signal Region Validation Region

≥ 2 AK8 jets
𝑝T > 350GeV (all jets)

|𝜂| < 2.4 (all jets)
𝑝T > 400GeV (jet leading in 𝑝T)

Jet assignment:
H → bb̄: highest 𝑇Xbb score

Y → VV: out of remaining jets, highest 𝑇HVV score

110 ≤ 𝑚bb
reg < 145GeV 92.5 ≤ 𝑚bb

reg < 110GeV or 145 ≤ 𝑚bb
reg < 162.5GeV

Pass Fail Pass Fail

𝑇Xbb ≥ HP WP 𝑇Xbb < HP WP 𝑇Xbb ≥ HP WP 𝑇Xbb < HP WP
𝑇HVV ≥ 0.6 𝑇HVV < 0.6 𝑇HVV ≥ 0.6 𝑇HVV < 0.6

14.4 Background estimation

The QCD multĳet background is the primary background of both

searches. It is estimated with a data-driven approach, using the shape of the

data minus other MC backgrounds, whose uncertainties are incorporated into
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the fit, in a control regionmultiplied by a polynomial transfer factor to the signal

regions, whose order is determined by an 𝐹-test. This is described inmore detail

below. The parameters of the transfer factor are estimated with a simultaneous

fit in the signal and fail regions. Other minor backgrounds include top quark

and vector boson plus jets, which are estimated from MC simulation.

Correction factors are applied to the W and Z boson samples to match

the generator-level 𝑝T distributions with those predicted by the highest avail-

able order in the perturbative expansion. The W+jets and Z+jets MC samples

are corrected to approximately NNLO in QCD and then further reweighted to

incorporate the reduction of the cross section at high 𝑝T due to higher-order elec-

troweak effects (EWK).

The QCD event yields in the signal, or “pass”, and fail regions are related

by a smoothly parametrized transfer factor 𝑅P/F:

𝑛(QCD)pass
𝑏 = 𝑅P/F(𝑚) 𝑛(QCD)fail

𝑏 , (14.4.1)

where 𝑛(QCD)𝑏 is the QCD yield in bin 𝑏, and 𝑛(QCD)fail
𝑏 is estimated to

be the data in the fail region minus non-QCD backgrounds. In the nonresonant

case, separate transfer factors are used for each signal region 𝑅 (∈ {ggF, VBF}),

each of which is parametrized by the coefficients 𝑎𝑅𝑘 of the set of 𝑛𝑅+1 Bernstein
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basis polynomials 𝑏𝑘,𝑛𝑅 of order 𝑛𝑅 in 𝑚bb
reg:

𝑅Region R
𝑃/𝐹 nonresonant(𝑚bb

reg) =
𝑛𝑅
𝑚bb

reg∑
𝑘=0

𝑎𝑅𝑘 𝑏𝑘,𝑛𝑅
𝑚bb

reg

(𝑚bb
reg), (14.4.2)

while in the resonant case it is generalised to two dimensions, as a function of

𝑚jj and 𝑚VV
reg :

𝑅𝑃/𝐹 resonant(𝑚jj, 𝑚VV
reg) =

𝑛𝑚jj∑
𝑘=0

𝑛𝑚VV
reg∑

𝑙=0
𝑎𝑘,𝑙

[
𝑏𝑘,𝑛𝑚jj (𝑚jj) 𝑏𝑙 ,𝑛𝑚VV

reg
(𝑚VV

reg)
]
. (14.4.3)

The optimal orders of the polynomials are determined to be 𝑛ggF
𝑚bb

reg
= 0,

𝑛VBF
𝑚bb

reg
= 1, 𝑛𝑚jj = 2, and 𝑛𝑚VV

reg
= 1 by a Fisher F-test. This iteratively tests each poly-

nomial order, starting from the lowest considered, against higher order polyno-

mials to see if the latter provide significantly better fits. The lowest order tested

is 0 for all but the nonresonant VBF region, for which we require the transfer fac-

tor to be at least linear to account for observed shift in the simulated QCD 𝑚bb
reg

shape (due to the higher 𝑚HH phase space of this region).

14.5 Systematic uncertainties

We consider several sources of theoretical and experimental systematic

uncertainties on the signal and background modelling in the signal regions,
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which are summarized in Table 14.3. Overall, the dominant source of uncer-

tainty on the HH signal strength is the statistical uncertainty in the QCD multi-

jet background estimation, driven by the limited signal region sample size. This

uncertainty has an impact on the best-fit signal strength of 50% (38%) relative to

the overall uncertainty in the nonresonant (resonant) analyses.

The uncertainties on the signal efficiency ofH → bb̄ andH → VVare also

significant. The H → bb̄ efficiency scale factors and uncertainties are measured

for data versus simulation in a control region dominated by g → bb̄ jets [164] and

represent a 10% (15%) relative impact. TheH/Y → VVefficiency scale factor and

uncertaintymeasurements are described in Chapter 13.3 and vary depending on

the production mode and different coupling strengths of the nonresonant HH

signal, and the X and Y masses of the X → HY signal. Measured scale factors

and uncertainties are shown in Table 14.4 and Table 14.5, respectively. Overall,

the H/Y → VV signal efficiencies represent around a 23% (50%) relative impact

in the nonresonant (resonant) analyses.

Other significant sources of experimental uncertainty include the scale

and resolution of the regressed jet mass and reconstructed jet energy [398] in

data versus simulations. Jet mass corrections and uncertainties are measured in

a control region enriched in tt events, using AK8 jets originating from hadronic

W boson decays [399], and with a 7% (15%) impact, while jet energy correc-

tions and uncertainties constitute 2%. Finally, there are large statistical uncer-

tainties related to the MC simulations of the subdominant top quark and vector
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boson backgrounds, reaching 30% in some bins of the signal regions; these have

roughly a 10% impact.

On the theoretical side, there is a large uncertainty related to the nonreso-

nant HH production cross sections, which has a relative impact of up to 24% on

best-fit signal strength. Uncertainties related to the parton showering performed

using PYTHIA 8 [400] are propagated to the MC kinematic distributions and have

a 15% (5%) impact, while QCD renormalization and factorization scale uncer-

tainties are estimated by considering the envelope of distributions obtained by

varying the scales by a factor of 2 and constitute a 5% impact.

Subdominant sources considered include uncertainties related to par-

ton distribution functions (PDFs), H branching fractions, luminosity [401–403],

pileup interactions, and trigger efficiencies, which have sub-percent-level im-

pacts.

14.6 Results

14.6.1 Nonresonant HH search

A binned maximum likelihood-fit is performed simultaneously in the

ggF, VBF, and fail regions, and the post-fit distributions are shown in Figure 14.4,

with QCD in the signal regions predicted using the data-driven estimate de-
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Table 14.3. Summary of the effect of different systematic uncertainties on the
signal or background yields.

Source Processes affected Uncertainty (combined %)
ggF HH production cross section ggF HH +5%/−19%
VBF HH production cross section VBF HH 2.1%

H → bb̄ branching fraction HH and X → HY 1.25%
H → VV branching fraction HH 1.53%

H → bb̄ tagging signal efficiency HH and X → HY 7–10%
H → VV tagging signal efficiency HH and X → HY 16–50%

QCD multĳet background uncertainty QCD multĳet 10%
Parton showering All MC 1–9%

Jet energy scale and resolution All MC 1–3%
Jet mass scale and resolution All MC 1–4%
MC statistical uncertainty All MC 1–30%

QCD renormalization and factorization scale All MC 7–10%
PDF All MC 1–4%

Luminosity All MC 1%
Pileup All MC 1%

Trigger efficiency All MC <1%

Table 14.4. Signal efficiency scale factors (SFs) and uncertainties for the BDT se-
lection using the Lund jet plane for different nonresonant HH signals and analy-
sis regions. Both the total combined uncertainty and the componentsmentioned
in the text are shown.

Signal Region Process SF ± unc. Uncertainty components (fractional)
Ratio MC modeling Ratio statistical Ratio 𝑝T extrapolation Subjet matching

ggF

SM ggF HH 1.05 ± 0.24 0.16 0.05 0.00 0.16
SM VBF HH 1.17 ± 0.45 0.35 0.05 0.00 0.16

VBF HH (𝜅2V = 0) 1.09 ± 0.18 0.02 0.04 0.01 0.15
VBF HH (𝜅2V = 2) 1.10 ± 0.18 0.02 0.05 0.01 0.15

VBF

SM ggF HH 0.95 ± 0.28 0.26 0.08 0.01 0.12
SM VBF HH 1.08 ± 0.46 0.38 0.05 0.01 0.19

VBF HH (𝜅2V = 0) 0.93 ± 0.27 0.16 0.06 0.02 0.23
VBF HH (𝜅2V = 2) 0.94 ± 0.27 0.16 0.05 0.02 0.23

scribed in Section 14.4. Upper limits on the HH production cross section and

constraints on the 𝜅2V coupling at a 95% CL are derived based on the asymp-

totic formulae for the profile likelihood ratio test statistic and the CLs criterion,

as described in Chapter 8 and are shown in Figures 14.5 and 14.6, respectively.

The upper limits on the SM HH production cross section and for 𝜅2V = 0 are
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Table 14.5. Signal efficiency scale factors (SFs) and uncertainties using the Lund
jet plane for a subset of BSM resonant signals, for our𝑇HVV discriminantworking
point. Both the total combined uncertainty and the components mentioned in
the text are shown.

Process SF ± Unc. Uncertainty components (fractional)
Ratio MC modeling Ratio statistical Ratio 𝑝T extrapolation Subjet matching

X[1000] → HY[125] 0.74 ± 0.12 0.11 0.07 0.00 0.09
X[1400] → HY[125] 0.74 ± 0.08 0.00 0.03 0.03 0.10
X[1400] → HY[150] 0.76 ± 0.08 0.04 0.04 0.02 0.08
X[1800] → HY[125] 0.73 ± 0.11 0.05 0.03 0.09 0.10
X[1800] → HY[150] 0.74 ± 0.11 0.09 0.04 0.08 0.08
X[1800] → HY[190] 0.73 ± 0.12 0.12 0.03 0.09 0.08
X[2200] → HY[125] 0.79 ± 0.17 0.07 0.03 0.17 0.11
X[2200] → HY[150] 0.73 ± 0.18 0.16 0.03 0.16 0.09
X[2200] → HY[190] 0.71 ± 0.21 0.23 0.05 0.17 0.07
X[2200] → HY[250] 0.73 ± 0.19 0.21 0.03 0.16 0.05
X[3000] → HY[125] 0.75 ± 0.28 0.17 0.03 0.30 0.14
X[3000] → HY[150] 0.77 ± 0.26 0.10 0.04 0.31 0.09
X[3000] → HY[190] 0.73 ± 0.31 0.29 0.03 0.31 0.07
X[3000] → HY[250] 0.71 ± 0.35 0.38 0.04 0.31 0.04

observed (expected) to be 142 (69) and 1.1 (0.9) relative to the theoretical pre-

dictions, respectively. The coupling modifier 𝜅2V is observed (expected) to be

constrained within [−0.04, 2.05] ([0.05, 1.98]) at 95% CL, which represents the

second-strongest constraint by CMS to date, behind only the boosted bb̄bb̄ anal-

ysis.

14.6.2 Resonant X → HY search

Similarly, a binned maximum likelihood fit is performed to the observed

𝑚X, 𝑚Y distributions for a wide range of potential X and Y mass points simul-

taneously in the fail and pass regions for the resonant analysis. The data and

post-fit estimates for the backgrounds are shown in Figure 14.7, with the data

411



mbb
Reg (GeV)

0

10

20

30

40

50

60

Ev
en

ts

138 fb 1 (13 TeV)CMSPreliminary

B-only Post-Fit ggF Region

Diboson
HWW
Hbb
Single-t
W+Jets
Z+Jets
tt

QCD
ggF HHbbVV × 100
VBF HHbbVV × 2000
VBF HHbbVV ( 2V = 0)
VBF HHbbVV ( 2V = 2)
Total Background Uncertainty
Data

50 75 100 125 150 175 200 225 250
mbb

Reg (GeV)

0.0

0.5

1.0

1.5

2.0

D
at

a/
M

C mbb
Reg (GeV)

0

2

4

6

8

10

Ev
en

ts

138 fb 1 (13 TeV)CMSPreliminary

B-only Post-Fit VBF Region

Diboson
HWW
Hbb
Single-t
W+Jets
Z+Jets
tt

QCD
ggF HHbbVV × 100
VBF HHbbVV × 2000
VBF HHbbVV ( 2V = 0)
VBF HHbbVV ( 2V = 2)
Total Background Uncertainty
Data

50 75 100 125 150 175 200 225 250
mbb

Reg (GeV)

0

2

4

D
at

a/
M

C

Figure 14.4. Post-background-only-fit distributions of the bb̄-candidate jet re-
gressed mass (𝑚bb

reg) in the ggF (left) and VBF (right) signal regions. The data is
not shown in the Higgs mass window.
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Figure 14.5. Observed and expected exclusion limits at 95% CL for the
HH → bb̄VV signal SM cross section (top) and cross section at 𝜅2V = 0 (bot-
tom).
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not shown in the pass region as the analysis is currently blinded. Upper limits

on the X → HY production cross section, assuming a 100% branching fraction

for the Y → VV decay, are shown in Figures 14.9.

14.7 Summary and Outlook

In this chapter, we described two sensitive and complementary searches

for SM nonresonant double Higgs boson production (HH) and the BSM non-

resonant massive scalar resonances X and Y (X → HY), into the bb̄ and VV all-

hadronic final states, at high𝑚HH, and high𝑚X and𝑚Y, respectively. The former
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aims to constrain the 𝜅2V quartic coupling modifier, while the latter is motivated

by the high branching fraction predicted for the Y → VVdecay and the potential

for new physics in the X → HY sector.

In both cases we search for boosted HH/Y with fully merged jets; i.e.,

where all H and Y daughter quarks are contained within a single wide-radius

AK8 jet. The established ParticleNet mass-decorrelated tagger is used to select

for H → bb̄ jets and we develop a new high performing Particle Transformer

tagger for H/Y → VV jets.

We extract the SM HH signal from the H → bb̄ regressed mass and the

resonant X → HY signal from the Y → WWregressedmass and dĳet Xmass, us-

ing control regions with tagger scores inverted to obtain a data-driven estimate

of the shape and normalization of the QCD multĳet background via a paramet-

ric transfer function. Other minor backgrounds including top quark and vector

boson plus jets are estimated using MC simulations. We observe (expect) an up-

per limit at 95% CL of 142× (69×) the SM for nonresonant HH → bb̄(VV → 4q)
production and a constraint on 𝜅2V of [−0.04, 2.05] ([0.05, 1.98]), which is the

second-highest constraint set by the CMS experiment. We expect exclusion lim-

its as low as 0.3fb for resonant X → (H → bb̄)(Y → VV → 4q) production for

various 𝑚X and 𝑚Y mass points.

As discussed in Section 14.3.1, a significant limitation of both the Run

2 boosted HH → bb̄VV and bb̄bb̄ analyses were the lack of dedicated trig-

gers for boosted Higgs jets, leading to very low trigger efficiencies for AK8 jet
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𝑝T < 400GeV. This has been improved in Run 3 with dedicated triggers boosted

H → bb̄ triggers using ParticleNet [397], which have the potential to significantly

improve our constraints on the HH cross section and 𝜅2V. Additionally, as the

boosted regime is currently statistically limited, with the statistical uncertainty

on the background estimate dominating the uncertainties on the signal strength,

such boosted HH analyses stand to gain significantly from the increased lumi-

nosity of Run 3 and HL-LHC as well. Thus, the future is very bright for high

energy searches of Higgs pair production!
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Figure 14.7. Post-background-only-fit distributions in the fully-merged category
of the VV-candidate jet regressed mass (𝑚VV

reg) in the validation fail (bottom left),
and validation pass (bottom right) regions, as well as distributions in the pass
region after applying the post-fit transfer factor from the validation regions (top
right), and the fail region (top left). The data is not shown in the pass region.
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Figure 14.8. Post-background-only-fit distributions in the fully-merged category
of the dĳet mass (𝑚jj) in the validation fail (bottom left), and validation pass
(bottom right) regions, as well as distributions in the pass region after applying
the post-fit transfer factor from the validation regions (top right), and the fail
region (top left). The data is not shown in the pass region.
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resonant X → (H → bb̄)(Y → VV → 4q) signals for different 𝑚X and 𝑚Y.
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Part VI

AI for Jets
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Chapter 15

Introduction and the JETNET Pack-
age

In the final Part of the dissertation, we discuss some more developments

in machine learning and high energy physics, focusing primarily on jets. We

first present the JETNET Python package in Chapter 15. In the same spirit as the

eponymous dataset introduced in Chapter 9, it aims to increase the accessibility

and reproducibility in our field by providing a standardized interface for access-

ing HEP datasets and benchmarking ML algorithms, as well as general utilities

for ML and HEP. Since its introduction in 2021, it has become widely adopted

by the community, with over 50,000 downloads, and has been used extensively

for many exciting developments in the field, as described below. By providing a

common framework for jet datasets and evaluationmetrics, it has also facilitated

easy benchmarking and comparisons between different algorithms, particularly

in the area of ML-based fast simulations, as discussed in Part IV.
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We then conclude this Part, and the dissertation, by presenting the first

Lorentz-group-equivariant autoencoder (LGAE) in Chapter 16. As detailed in

Chapter 7.2, equivariant neural networks are extremely useful in the physical sci-

ences, where data from sources such asmolecules and high energy collisions nat-

urally possess intrinsic physical symmetries, such as rotations, translations, and

Lorentz-boosts. Incorporating such inductive biases of our data can lead to more

data-efficient, interpretable, and performant AI algorithms. Indeed, we find that

the LGAE outperforms baseline, non-Lorentz-equivariant, models on tasks of

compression and anomaly detection for jets, provides amore interpretable latent

space, and achieves high performance with a small fraction of the data needed

to train CNNs.

15.1 JETNET

It is essential in scientific research to maintain standardized benchmark

datasets following the findable, accessible, interoperable, and reproducible

(FAIR) data principles [404], practices for using the data, and methods for eval-

uating and comparing different algorithms. This can often be difficult in high

energy physics (HEP) because of the broad set of formats in which data is re-

leased and the expert knowledge required to parse the relevant information. The

JETNET Python package aims to facilitate this by providing a standard interface

and format for HEP datasets, integrated with PyTorch [405], to improve accessi-
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JetNet

Figure 15.1. The JETNET logo.

bility for both HEP experts and new or interdisciplinary researchers looking to

do ML. Furthermore, by providing standard formats and implementations for

evaluation metrics, results are more easily reproducible, and models are more

easily assessed and benchmarked. JETNET is complementary to existing efforts

for improving HEP dataset accessibility, notably the EnergyFlow library [406],

with a unique focus to ML applications and integration with PyTorch.

JETNET currently provides easy-to-access and standardized interfaces for

the JETNET dataset (Chapter 9.2), top quark tagging [407, 408], and quark-gluon

tagging [409] reference datasets, all hosted onZenodo [410]. It also provides stan-

dard implementations of the generative evaluation metrics discussed in Chap-

ter 11, including Fréchet physics distance (FPD), kernel physics distance (KPD),

1-Wasserstein distance (W1), Fréchet ParticleNet distance (FPND), coverage, and

minimummatching distance (MMD). Finally, JETNET implements aswell custom

loss functions like a differentiable version of the energy mover’s distance [325]
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and more general jet utilities.

JETNET has had a considerable impact in the field, demonstrated by the

surge in ML and HEP research it has facilitated, including in the areas of gen-

erative adversarial networks [411], transformers [376, 380, 412], diffusion mod-

els [378, 379], and equivariant networks [68, 377], all accessing datasets, metrics,

and more through the package. In particular, it has been the basis for virtu-

ally all research in the last two years on ML-based fast jet simulations [376, 378–

380, 411, 412], allowing objective comparisons and benchmarking of different

algorithms; indeed, a planned direction for future work is a JETNET community

challenge collating all of these results. We would also like to note that from the

educational perspective, we have found JETNET to be a valuable tool to involve

new students quickly in ML research; both through its use in easily initiating

ML projects, as well as through contributions to the software itself.

In the future, we hope to expand the package to additional dataset load-

ers, including detector-level data, and different machine learning backends such

as JAX [413]. Improvements to the performance, such as optional lazy loading of

large datasets, are also planned, as well as community challenges to benchmark

algorithms as discussed above.
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Chapter 16

Lorentz-group equivariant autoen-
coders

16.1 Introduction

In this chapter, we present the first Lorentz-group-equivariant autoen-

coder (LGAE) for jets. As described in Chapter 7.3, autoencoders are networks

that learn to encode input data into, and decode data from, a low dimensional la-

tent space, and thus have interesting applications in data compression [414, 415]

and anomaly detection [67, 248, 250, 262, 416–419]. Both tasks are particularly

relevant for HEP: the former to cope with the storage and processing of the ever-

increasing data collected at the LHC; and the latter for model-agnostic searches

for new physics.

Incorporating Lorentz equivariance into an autoencoder has the potential
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to not only increase performance in both respects, but also provide a more inter-

pretable latent space and reduce training data requirements. As discussed in

Chapter 7.2, Lorentz symmetry has been successfully exploited recently in HEP

for jet classification [54, 420–422], with competitive and even SOTA results. In

the same spirit, we aim to extend these developments to an autoencoder and ex-

plore its performance and interpretability. To do so, we employ the Fourier space

approach discussed above, which uses the set of irreducible representations (ir-

reps) of the Lorentz-group as the basis for constructing equivariant maps. We

also train alternative architectures, including GNNs and convolutional neural

networks (CNNs), with different inherent symmetries and find the LGAE out-

performs them on reconstruction and anomaly detection tasks.

The principal results of this work demonstrate (1) that the advantage of

incorporating Lorentz equivariance extends beyond whole jet classification to

applications with particle-level outputs and (2) the interpretability of Lorentz-

equivariant models. The key challenges overcome in this work include: (1)

training an equivariant autoencoder via particle-to-particle and permutation-

invariant set-to-set losses (Section 16.3); (2) defining a jet-level compression

scheme for the latent space (Section 16.2); and (3) optimizing the architecture

for different tasks, such as reconstruction (Section 16.3.3) and anomaly detection

(Section 16.3.4).

This paper is structured as follows. We present the LGAE architecture

in Section 16.2, and discuss experimental results on the reconstruction and
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anomaly detection of high energy jets in Section 16.3. We also demonstrate the

interpretability of themodel, by analyzing its latent space, and its data efficiency

relative to baseline models. Finally, we conclude in Section 16.4.

16.2 LGAE architecture

Aggregation

Input features

Encoder

LMP LMP LMP

Decoder

Reconstructed features

Latent space features

LMP LMP LMP

Node embeddings

Figure 16.1. Individual Lorentz group equivariant message passing (LMP) lay-
ers are shown on the left, and the LGAE architecture is built out of LMPs on the
right. Here, MixRep denotes the node-level operator that upsamples features in
each (𝑚, 𝑛) representation space to 𝜏(𝑚,𝑛) channels; it appears as𝑊 in Eq. (16.2.4).

The LGAE is built out of Lorentz group-equivariant message passing

(LMP) layers, which are identical to individual layers in the LGN [54]. We

reinterpret them in the framework of message-passing neural networks [423],
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to highlight the connection to GNNs, and define them in Section 16.2.1. We

then describe the encoder and decoder networks in Sections 16.2.2 and 16.2.3,

respectively. The LMP layers and LGAE architecture are depicted in Figure 16.1.

We provide the LGAE code, written in Python using the PYTORCH ML frame-

work [424] in Ref. [425].

16.2.1 LMP layers

LMP layers take as inputs fully-connected graphs with nodes represent-

ing particles and the Minkowski distance between respective node 4-vectors as

edge features. Each node ℱ𝑖 is defined by its features, all transforming under a

corresponding irrep of the Lorentz group in the canonical basis [242], including

at least one 4-vector (transforming under the (1/2, 1/2) representation) represent-
ing its 4-momentum. As in Ref [54], we denote the number of features in each

node transforming under the (𝑚, 𝑛) irrep as 𝜏(𝑚,𝑛), referred to as the multiplicity

of the (𝑚, 𝑛) representation.

The (𝑡 + 1)-th MP layer operation consists of message-passing between

each pair of nodes, with a message 𝑚(𝑡)
𝑖 𝑗 to node 𝑖 from node 𝑗 (where 𝑗 ≠ 𝑖) and

a self-interaction term 𝑚𝑖𝑖 defined as

𝑚(𝑡)
𝑖 𝑗 = 𝑓

((
𝑝(𝑡)𝑖 𝑗

)2
)
𝑝(𝑡)𝑖 𝑗 ⊗ ℱ (𝑡)

𝑗 (16.2.1)

𝑚(𝑡)
𝑖𝑖 = ℱ (𝑡)

𝑖 ⊗ ℱ (𝑡)
𝑖 (16.2.2)
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where ℱ (𝑡)
𝑖 are the node features of node 𝑖 before the (𝑡 + 1)-th layer, 𝑝𝑖 𝑗 = 𝑝𝑖 − 𝑝 𝑗

is the difference between node four-vectors, 𝑝2
𝑖 𝑗 is the squared Minkowski norm

of 𝑝𝑖 𝑗 , and 𝑓 is a learnable, differentiable function acting on Lorentz scalars. A

Clebsch–Gordan (CG) decomposition, which reduces the features to direct sums

of irreps of SO+(3, 1), is performed on both terms before concatenating them to

produce the message 𝑚𝑖 for node 𝑖:

𝑚(𝑡)
𝑖 = CG

[
𝑚(𝑡)
𝑖𝑖

]
⊕ CG


∑
𝑗≠𝑖

𝑚(𝑡)
𝑖 𝑗

 , (16.2.3)

where the summation over the destination node 𝑗 ensures permutation symme-

try because it treats all other nodes equally.

Finally, this aggregated message is used to update each node’s features,

such that

ℱ (𝑡+1)
𝑖 =𝑊 (𝑡+1)

(
ℱ (𝑡)
𝑖 ⊕ 𝑚(𝑡)

𝑖

)
(16.2.4)

for all 𝑖 ∈ {1, . . . , 𝑁particle}, where𝑊 (𝑡+1) is a learnable node-wise operatorwhich

acts as separate fully-connected linear layers𝑊 (𝑡+1)
(𝑚,𝑛) on the set of components liv-

ing within each separate (𝑚, 𝑛) representation space, outputting a chosen 𝜏(𝑡+1)
(𝑚,𝑛)

number of components per representation. In practice, we then truncate the ir-

reps to a maximum dimension to make computations more tractable.
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16.2.2 Encoder

The encoder takes as input an 𝑁-particle cloud, where each particle is

each associated with a 4-momentum vector and an arbitrary number of scalars

representing physical features such asmass, charge, and spin. Each isotypic com-

ponent is initially transformed to a chosen multiplicity of
(
𝜏(0)(𝑚,𝑛)

)
E
via a node-

wise operator 𝑊 (0) identical conceptually to 𝑊 (𝑡+1) in Eq. (16.2.4). The resul-

tant graph is then processed through 𝑁E
MP LMP layers, specified by a sequence

of multiplicities
{(
𝜏(𝑡)(𝑚,𝑛)

)
E

}𝑁E
MP

𝑡=1
, where

(
𝜏(𝑡)(𝑚,𝑛)

)
E
is the multiplicity of the (𝑚, 𝑛)

representation at the 𝑡-th layer. Weights are shared across the nodes in a layer

to ensure permutation equivariance. After the final MP layer, node features are

aggregated to the latent space by a component-wise minimum (min), maximum

(max), or mean. The min and max operations are performed on the respective

Lorentz invariants. We also find, empirically, interesting performance by sim-

ply concatenating isotypic components across each particle and linearly “mix-

ing” them via a learned matrix as in Eq. (16.2.4). Crucially, unlike in Eq. (16.2.4),

where this operation only happens per particle, the concatenation across the par-

ticles imposes an ordering and, hence, breaks the permutation symmetry.
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16.2.3 Decoder

The decoder recovers the 𝑁-particle cloud by acting on the latent space

with 𝑁 independent, learned linear operators, which again mix components

living in the same representations. This cloud passes through 𝑁D
MP LMP lay-

ers, specified by a sequence of multiplicities
{(
𝜏(𝑡)(𝑚,𝑛)

)
D

}𝑁D
MP

𝑡=1
, where

(
𝜏(𝑡)(𝑚,𝑛)

)
D

is

the multiplicity of the (𝑚, 𝑛) representation at the 𝑡-th LMP layer. After the

LMP layers, node features are mixed back to the input representation space(
𝐷(0,0))⊕𝜏(0)(0,0) ⊕ 𝐷(1/2,1/2) by applying a linear mixing layer and then truncating

other isotypic components.

16.3 Experiments

We experiment with and evaluate the performance of the LGAE and

baseline models on reconstruction and anomaly detection for simulated high-

momentum jets from the JETNET dataset. In this section, we describe the dataset

inmore detail in Section 16.3.1, the differentmodelswe consider in Section 16.3.2,

the reconstruction and anomaly detection results in Sections 16.3.3 and 16.3.4

respectively, an interpretation of the LGAE latent space in Section 16.3.5, and fi-

nally experiments of the data efficiency of the different models in Section 16.3.6.
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16.3.1 Dataset

We use 30-particle high 𝑝T jets from the JETNET dataset as described in

Chapter 9.2, obtained using the JETNET library from Chapter 15. The model is

trained on jets produced from gluons and light quarks, which are collectively

referred to as quantum chromodynamics (QCD) jets.

As before, we represent the jets as a point cloud of particles, termed a

“particle cloud”, with the respective 3-momenta, in absolute coordinates, as par-

ticle features. In the processing step, each 3-momentum is converted to a 4-

momentum: 𝑝𝜇 = (|p| , p), where we consider the mass of each particle to be

negligible. We use a 60%/20%/20% training/testing/validation splitting for the

total 177,000 jets. For evaluating performance in anomaly detection, we consider

jets from JETNET produced by top quarks,𝑊 bosons, and 𝑍 bosons as our anoma-

lous signals.

We note that the detector and reconstruction effects in JETNET, and indeed

in real data collected at the LHC, break the Lorentz symmetry; hence, Lorentz

equivariance is generally an approximate rather than an exact symmetry of HEP

data. We assume henceforth that the magnitude of the symmetry breaking is

small enough that imposing exact Lorentz equivariance in the LGAE is still ad-

vantageous — and the high performance of the LGAE and classification models

such as LorentzNet support this assumption. Nevertheless, important studies in

future work may include quantifying this symmetry breaking and considering
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approximate symmetries in NNs.

16.3.2 Models

LGAE model results are presented using both the min-max (LGAE-Min-

Max) and “mix” (LGAE-Mix) aggregation schemes for the latent space, which

consists of varying numbers of complex Lorentz vectors— corresponding to dif-

ferent compression rates. We compare the LGAE to baseline GNN and CNN

autoencoder models, referred to as “GNNAE” and “CNNAE” respectively.

The GNNAE model is composed of fully-connected MPNNs adapted

from MPGAN (Section 10.1). We experiment with two types of encodings: (1)

particle-level (GNNAE-PL), as in the PGAE [67] model, which compresses the

features per node in the graph but retains the graph structure in the latent space,

and (2) jet-level (GNNAE-JL), which averages the features across each node to

form the latent space, as in the LGAE. Particle-level encodings produce better

performance overall for the GNNAE, but the jet-level provides a more fair com-

parison with the LGAE, which uses jet-level encoding to achieve a high level of

compression of the features.

For theCNNAE,which is adapted fromRef. [248], the relative coordinates

of each input jets’ particle constituents are first discretized into a 40×40 grid. The

particles are then represented as pixels in an image, with intensities correspond-

ing to 𝑝rel
T . Multiple particles per jet may correspond to the same pixel, in which
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Table 16.1. Summary of the relevant symmetries respected by each model
tested.

Model Aggregation Name Lorentz symmetry Permutation symmetry Translation symmetry

LGAE Min-Max LGAE-Min-Max ✓(equivariance) ✓(invariance) ✓(equivariance)
Mix LGAE-Mix ✓(equivariance) 7 ✓(equivariance)

GNNAE Jet-level GNNAE-JL 7 ✓(invariance) ✓(equivariance)
Particle-level GNNAE-PL 7 ✓(equivariance) ✓(equivariance)

CNNAE CNNAE 7 7 ✓(equivariance)

case their 𝑝rel
T ’s are summed. The CNNAE has neither Lorentz nor permutation

symmetry, however, it does have in-built translation equivariance in 𝜂−𝜙 space.

Hyperparameter and training details for all models can be found in E.1

and E.2, respectively, and a summary of the relevant symmetries respected by

each model is provided in Table 16.1. The LGAEmodels are verified to be equiv-

ariant to Lorentz boosts and rotations up to numerical error, with details pro-

vided in E.3.

16.3.3 Reconstruction

Weevaluate the performance of the LGAE,GNNAE, andCNNAEmodels,

with the different aggregation schemes discussed, on the reconstruction of the

particle and jet features of QCD jets. We consider relative transversemomentum

𝑝rel
T = 𝑝particle

T /𝑝jet
T and relative angular coordinates 𝜂rel = 𝜂particle −𝜂jet and 𝜙rel =

𝜙particle − 𝜙jet (mod 2𝜋) as each particle’s features, and total jet mass, 𝑝T and

𝜂 as jet features. We define the compression rate as the ratio between the total

dimension of the latent space and the number of features in the input space:
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Figure 16.2. Jet image reconstructions by LGAE-Min-Max (𝜏(1/2,1/2) = 4, 56.67%
compression), LGAE-Mix (𝜏(1/2,1/2) = 9, 61.67% compression), GNNAE-JL
(dim(𝐿) = 55, 61.11% compression), GNNAE-PL (dim(𝐿) = 2 × 30, 66.67% com-
pression), and CNNAE (dim(𝐿) = 55, 61.11% compression).

30 particles × 3 features per particle = 90.

Figure 16.2 shows random samples of jets, represented as discrete im-

ages in the angular-coordinate plane, reconstructed by the models with simi-
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lar levels of compression in comparison to the true jets. Figure 16.3 shows his-

tograms of the reconstructed features compared to the true distributions. The

differences between the two distributions are quantified in Table 16.2 by calcu-

lating the median and interquartile ranges (IQR) of the relative errors between

the reconstructed and true features. To calculate the relative errors of particle

features for the permutation invariant LGAE and GNNAE models, particles are

matched between the input and output clouds using the Jonker–Volgenant algo-

rithm [303, 426] based on the L2 distance between particle features. Due to the

discretization of the inputs to the CNNAE, reconstructing individual particle

features is not possible; instead, only jet features are shown.1

We can observe visually in Figure 16.2 that out of the two permuta-

tion invariant models, while neither is able to reconstruct the jet substructure

perfectly, the LGAE-Min-Max outperforms the GNNAE-JL. Perhaps surpris-

ingly, the permutation-symmetry-breaking mix aggregation scheme improves

the LGAE in this regard. Both visually in Figure 16.3 and quantitatively from

Tables 16.2 and 16.3, we conclude that the LGAE-Mix has the best performance

overall, significantly outperforming the GNNAE and CNNAE models at similar

compression rates. The LGAE-Min-Max model outperforms the GNNAE-JL in

reconstructing all features and the GNNAE-PL in all but the IQR of the particle

angular coordinates.

1These are calculated by summing each pixel’s momentum “4-vector” — using the center of
the pixel as angular coordinates and intensity as the 𝑝rel

T .
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Figure 16.3. Top: particle momenta (𝑝rel
T , 𝜂rel, 𝜙rel) reconstruction by LGAE-

Min-Max (𝜏(1/2,1/2) = 4, resulting in 56.67% compression) and and LGAE-Mix
(𝜏(1/2,1/2) = 9, resulting in 61.67% compression), and GNNAE-JL (dim(𝐿) = 55,
resulting in 61.11% compression) and GNNAE-PL (dim(𝐿) = 2× 30, resulting in
66.67% compression). The reconstructions by the CNNAE are not included due
to the discrete values of 𝜂rel and 𝜙rel, as discussed in the text. Bottom: jet feature
(𝑀, 𝑝T, 𝜂) reconstruction by the four models. For the jet feature reconstruction
by the GNNAEs, the particle features in relative coordinates were transformed
back to absolute coordinates before plotting. The jet 𝜙 is not shown because it
follows a uniform distribution in (−𝜋,𝜋] and is reconstructed well.
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Table 16.2. Median and IQR of relative errors in particle feature reconstruction
of selected LGAE and GNNAE models. In each column, the best-performing
latent space per model is italicized, and the best model overall is highlighted in
bold.

Model Aggregation Latent space Particle 𝑝rel
T Particle 𝜂rel Particle 𝜙rel

Median IQR Median IQR Median IQR

LGAE
Min-max 𝜏(1/2,1/2) = 4 (56.67%) 0.006 0.562 0.002 1.8 0.003 1.8

𝜏(1/2,1/2) = 7 (96.67%) 0.002 0.640 −0.627 1.7 < 10−3 1.7

Mix 𝜏(1/2,1/2) = 9 (61.67%) < 10−3 0.011 < 10−3 0.452 < 10−3 0.451
𝜏(1/2,1/2) = 13 (88.33%) < 10−3 0.001 < 10−3 0.022 < 10−3 0.022

GNNAE
Jet-level dim(𝐿) = 45 (50.00%) −0.983 3.8 0.363 3.1 0.146 2.1

dim(𝐿) = 90 (100.00%) −0.627 3.5 4.4 14.7 0.146 2.6

Particle-level dim(𝐿) = 2 × 30 (66.67%) −0.053 0.906 0.009 0.191 0.013 0.139
dim(𝐿) = 3 × 30 (100.00%) −0.040 0.892 −0.037 0.177 0.005 0.243

Table 16.3. Median and IQR of relative errors in jet feature reconstruction by
selected LGAE and GNNAE models, along with the CNNAE model. In each
column, the best performing latent space per model is italicised, and the best
model overall is highlighted in bold.

Model Aggregation Latent space Jet mass Jet 𝑝T Jet 𝜂 Jet 𝜙
Median IQR Median IQR Median IQR Median IQR

LGAE
Min-max 𝜏(1/2,1/2) = 4 (56.67%) 0.096 0.134 0.097 0.109 < 10−3 0.004 < 10−3 0.002

𝜏(1/2,1/2) = 7 (96.67%) −0.139 0.287 −0.221 0.609 < 10−3 0.021 < 10−3 0.007

Mix 𝜏(1/2,1/2) = 9 (61.67%) < 10−3 0.003 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

𝜏(1/2,1/2) = 13 (88.33%) < 10−3 0.003 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

GNNAE
Jet-level dim(𝐿) = 45 (50.00%) 0.326 0.667 0.030 0.088 0.005 0.040 0.001 0.021

dim(𝐿) = 90 (100.00%) 3.7 2.6 0.030 0.089 0.292 0.433 0.006 0.021

Particle-level dim(𝐿) = 2 × 30 (66.67%) 0.277 0.299 0.037 0.110 0.002 0.010 −0.001 0.005
dim(𝐿) = 3 × 30 (100.00%) 0.339 0.244 0.050 0.094 −0.001 0.011 < 10−3 0.005

CNNAE Linear layer dim(𝐿) = 55 (61.67%) −0.030 0.042 −0.021 0.017 < 10−3 0.017 < 10−3 0.003
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16.3.4 Anomaly detection
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Figure 16.4. Anomaly detection ROC curves for the top quark signal (upper left),
𝑊 boson signal (upper right), 𝑍 boson signal (lower left), and the combined
signal (lower right) by the selected LGAE-Min-Max (𝜏(1/2,1/2) = 7), LGAE-Mix
(𝜏(1/2,1/2) = 2), GNNAE-JL (dim(𝐿) = 30), GNNAE-PL (dim(𝐿) = 2 × 30), and
CNNAE (dim(𝐿) = 55) models.

We test the performance of allmodels as unsupervised anomaly detection

algorithms by pre-training them solely on QCD and then using the reconstruc-

tion error for the QCD and new signal jets as the discriminating variable. We
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consider top quark, W boson, and Z boson jets as potential signals and QCD as

the “background”. We test the Chamfer distance, energy mover’s distance [325]

— the earth mover’s distance applied to particle clouds, and MSE between input

and output jets as reconstruction errors, and find the Chamfer distancemost per-

formant for all graph-based models. For the CNNAE, we use the MSE between

the input and reconstructed image as the anomaly score.

Receiver operating characteristic (ROC) curves showing the signal effi-

ciencies (𝜀𝑠) versus background efficiencies (𝜀𝑏) for individual and combined

signals are shown in Figure 16.4,2 and 𝜀𝑠 values at particular background effi-

ciencies are given in Table 16.4. We see that in general the permutation equivari-

ant LGAE and GNNAEmodels outperform the CNNAE, strengthening the case

for considering equivariance in neural networks. Furthermore, LGAE models

have significantly higher signal efficiencies than GNNAEs and CNNAEs for all

signals when rejecting > 90% of the background (which is the minimum level

we typically require in HEP), and LGAE-Mix consistently performs better than

LGAE-Min-Max.
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Table 16.4. Anomaly detectionmetrics by a selected LGAE andGNNAEmodels,
alongwith the CNNAEmodel. In each column, the best performing latent space
per model is italicized, and the best model overall is highlighted in bold.

Model Aggregation Latent space AUC 𝜀𝑠 at given 𝜀𝑏
𝜀𝑠(10−1) 𝜀𝑠(10−2) 𝜀𝑠(10−3)

LGAE

Min-Max
𝜏(1/2,1/2) = 2 (30.00%) 0.7253 0.5706 0.1130 0.0011
𝜏(1/2,1/2) = 4 (56.67%) 0.7627 0.5832 0.1305 0.0007
𝜏(1/2,1/2) = 7 (96.67%) 0.7673 0.5932 0.0820 0.0009

Mix
𝜏(1/2,1/2) = 2 (15.00%) 0.8023 0.6178 0.1662 0.0250
𝜏(1/2,1/2) = 4 (28.33%) 0.8023 0.6257 0.1592 0.0229
𝜏(1/2,1/2) = 7 (48.33%) 0.7967 0.6290 0.1562 0.0225

GNNAE
JL

dim(𝐿) = 10 (11.11%) 0.5891 0.1576 0.0161 0.0014
dim(𝐿) = 40 (44.44%) 0.6636 0.2293 0.0262 0.0013
dim(𝐿) = 80 (88.89%) 0.7006 0.2240 0.0239 0.0010

PL dim(𝐿) = 2 × 30 (66.67%) 0.8195 0.4435 0.0564 0.0042
dim(𝐿) = 3 × 30 (100.00%) 0.8095 0.4306 0.0762 0.0044

CNNAE linear layer dim(𝐿) = 55 (61.67%) 0.7700 0.2473 0.0469 0.0053
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Figure 16.5. The correlations between the total momentum of the imaginary
components in the 𝜏(1/2,1/2) = 2 LGAE-Mix model and the target jet momenta.
The Pearson correlation coefficient 𝑟 is listed above.
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Figure 16.6. Top: distributions of the invariant mass squared of the latent 4-
vectors and jet momenta of the LGAE-Mix with 𝜏(1/2,1/2) = 2 latent 4-vectors.
Bottom: distributions of the invariant mass squared of two latent 4-vectors and
jet momenta of the LGAE-Min-Max with 𝜏(1/2,1/2) = 2 latent 4-vectors.

16.3.5 Latent space interpretation

The outputs of the LGAE encoder are irreducible representations of the

Lorentz groups; they consist of a pre-specified number of Lorentz scalars, vec-

tors, and potentially higher-order representations. This implies a significantly

more interpretable latent representation of the jets than traditional autoencoders,

2Discontinuities in the top quark and combined signal LGAE-Min-Max ROCs indicate that
at background efficiencies of ⪅ 5 × 10−3, there are no signal events remaining in the validation
dataset.
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as the information distributed across the latent space is now disentangled be-

tween the different irreps of the Lorentz group. For example, scalar quantities

like the jet masswill necessarily be encoded in the scalars of the latent space, and

jet and particle 4-momenta in the vectors.

We demonstrate the latter empirically on the LGAE-Mix model

(𝜏(1/2,1/2) = 2) by looking at correlations between jet 4-momenta and the compo-

nents of different combinations of latent vector components. Figure 16.5 shows

that, in fact, the jet momenta is encoded in the imaginary component of the sum

of the latent vectors.

We can also attempt to understand the anomaly detection performance by

looking at the encodings of the training data compared to the anomalous signal.

Figure 16.6 shows the individual and total invariant mass of the latent vectors

of sample LGAE models for QCD and top quark, W boson, and Z boson inputs.

We observe that despite the overall similar kinematic properties of the different

jet classes, the distributions for the QCD background are significantly different

from the signals, indicating that the LGAE learns and encodes the difference in

jet substructure — despite substructure observables such as jet mass not being

direct inputs to the network — explaining the high performance in anomaly de-

tection.

Finally, while in this section we showcased simple “brute-force” tech-

niques for interpretability by looking directly at the distributions and correla-

tions of latent features, we hypothesize that such an equivariant latent space
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would also lend itself effectively to the vast array of existing explainable AI algo-

rithms [427, 428], which generically evaluate the contribution of different input

and intermediate neuron features to network outputs. We leave a detailed study

of this to future work.

16.3.6 Data efficiency
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Figure 16.7. Median magnitude of relative errors of jet mass reconstruction by
LGAE and CNNAE models at trained on different fractions of the training data.

In principle, equivariant neural networks should require less training

data for high performance, since critical biases of the data, which would oth-

erwise have to be learned by non-equivariant networks, are already built in. We

test this claim bymeasuring the performances of the best-performing LGAE and

CNNAE architectures from Section 16.3.3 trained on varying fractions of the
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training data.

The median magnitude of the relative errors between the reconstructed

and true jet masses of the different models and fractions is shown in Figure 16.7.

Each model is trained five times per training fraction, with different random

seeds, and evaluated on the same-sized validation dataset; the median of the

five models is plotted. We observe that, in agreement with our hypothesis, the

LGAEmodels bothmaintain their high performance all thewaydown to training

on 1% of the data, while the CNNAE’s performance steadily degrades down to

2% and then experiences a further sharp drop.

16.4 Conclusion

We develop the Lorentz group autoencoder (LGAE), an autoencoder

model equivariant to Lorentz transformations. We argue that incorporating this

key inductive bias of high energy physics (HEP) data can have a significant im-

pact on the performance, efficiency, and interpretability of machine learning

models in HEP. We apply the LGAE to tasks of compression and reconstruc-

tion of input quantum chromodynamics (QCD) jets, and of identifying anoma-

lous top quark, W boson, and Z boson jets. We report excellent performance

in comparison to baseline graph and convolutional neural network autoencoder

models, with the LGAE outperforming them on several key metrics. We also

demonstrate the LGAE’s interpretability, by analyzing the latent spaces of LGAE
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models for both tasks, and data efficiency relative to baselinemodels. The LGAE

opens many promising avenues in terms of both performance and model inter-

pretability, with the exploration of new datasets, the magnitude of Lorentz and

permutation symmetry breaking due to detector effects, higher-order Lorentz

group representations, and challenges with real-life compression and anomaly

detection applications all exciting possibilities for future work.
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Appendix A

Supplementary Material for Chap-
ter 2

A.1 Symmetries in physics

A.1.1 Derivation of the Poincaré algebra

Perhaps the simplest way to derive these is via the infinite-dimensional

representation of the generators as differential operators acting on functions of

spacetime 𝜓(𝑥𝜇):

𝑃𝜇 = −𝑖𝜕𝜇,
𝑀𝜇𝜈 = 𝑖(𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇).

(A.1.1)

448



These should be familiar as the momentum and angular momentum operators

from classical and quantum mechanics, generalized to include boosts and the

time dimension. Thus, for example,

[𝑀0𝑖 , 𝑃𝑗]𝜓(𝑥𝜇) = (−𝑖2)[𝑥0𝜕𝑖 − 𝑥𝑖𝜕0, 𝜕𝑗]𝜓
= [(𝑥0𝜕𝑖𝜕𝑗 − 𝑥𝑖𝜕0𝜕𝑗) − (𝜕𝑗(𝑥0𝜕𝑖) − 𝜕𝑗(𝑥𝑖𝜕0))]𝜓
= [(𝑥0𝜕𝑖𝜕𝑗 − 𝑥𝑖𝜕0𝜕𝑗) − (𝑥0𝜕𝑖𝜕𝑗 − 𝜂𝑖 𝑗𝜕0 − 𝑥𝑖𝜕0𝜕𝑗)]𝜓
= 𝜂𝑖 𝑗𝜕0𝜓

= 𝑖𝜂𝑖 𝑗𝑃0𝜓.

(A.1.2)

The rest of the commutation relations in Eqs. 2.3.10 and 2.3.12 can be derived

similarly.
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Appendix B

Supplementary Material for Chap-
ter 3

B.1 Classical field theory

B.1.1 Lagrangian mechanics

Lagrangian mechanics is a formulation of classical mechanics based on

the energies of a system, as opposed to the force-based Newtonian approach.

We define the Lagrangian of a particle as the difference between its kinetic (𝑇)

and potential energies (𝑉):

𝐿( ¤𝑥, 𝑥) = 𝑇( ¤𝑥) −𝑉(𝑥), (B.1.1)
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where 𝑥 and ¤𝑥 are the particle’s position and velocity, respectively. To determine

the dynamics of the system, we assign a value based on 𝐿 to each possible path

the particle can take between two points 𝑡𝑖 and 𝑡 𝑓 , called the action 𝑆:

𝑆[𝑥(𝑡)] =
∫ 𝑡 𝑓

𝑡𝑖
𝐿( ¤𝑥(𝑡), 𝑥(𝑡))𝑑𝑡. (B.1.2)

The equations of motion (EOMs) are then derived from the principle of stationary

action, which states that the true path is an extremum of 𝑆. This condition yields

the Euler-Lagrange (E-L) equations:

𝑑
𝑑𝑡

(
𝜕𝐿
𝜕 ¤𝑥

)
− 𝜕𝐿

𝜕𝑥
= 0. (B.1.3)

Example B.1.1. We can confirm that this is equivalent to Newtonian mechanics

by considering the simple Lagrangian:

𝐿 =
1
2𝑚

¤𝑥2 −𝑉(𝑥). (B.1.4)

Plugging this into Eq. B.1.3 gives us:

𝑚 ¥𝑥 + 𝑑𝑉
𝑑𝑥

= 0 ⇒ 𝑚 ¥𝑥 = −𝑑𝑉
𝑑𝑥

= 𝐹, (B.1.5)

which is exactly Newton’s second law. Classically, Lagrangian mechanics has

certain benefits over Newtonian mechanics, such as being based on scalars (en-

ergies) instead of vectors (forces), and ease of coordinate transformations. For

us, as we will see, its main advantage is its natural generalization to fields rather
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than particles.

Path integral formulation of QM

Note that the principle of stationary action is based on the classical be-

havior of particles, in that they follow a single true path. However, in QM, (un-

observed) particles are thought to traverse a superposition of all possible paths

between two observed positions. This can be expressed with Feynman’s path in-

tegral formula, where the probability of observing a particle at position 𝑞 𝑓 and

time 𝑇 given it was at 𝑞𝑖 at 𝑡 = 0 is based on its wavefunction

𝜓(𝑞 𝑓 , 𝑇) =
∫ 𝑞 𝑓

𝑞𝑖
D𝑞(𝑡)𝑒 𝑖𝑆[𝑞(𝑡)]/ℏ, (B.1.6)

where
∫ 𝑞 𝑓
𝑞𝑖

D𝑞(𝑡) is an integral over all possible paths 𝑞(𝑡) between 𝑞𝑖 and 𝑞 𝑓 ,

interfering through their complex phases 𝑒 𝑖𝑆[𝑞(𝑡)]/ℏ that are based on the action

𝑆[𝑞(𝑡)] of the path divided by the reduced Planck constant ℏ. In the classical limit

ℏ/𝑆 → 0,1 by the stationary phase approximation, only the path that extremizes

the action contributes, as we expect.

The path integral formulation was a critical development in QFT. The

fact that the Lagrangian shows up naturally in this formulation is the reason

why we “consider it the most fundamental specification of a QFT” (Peskin and

1If we take 𝑆 ∼ energy · 𝑇 = ℏ𝑐
𝜆 · 𝑇, then the classical limit ℏ

𝑆 = 𝜆
𝑐𝑇 → 0 physically is the case

where the de Broglie wavelength of the particle 𝜆 is negligible compared to the relevant length
scales.
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Schroeder [81] Chapter 9).

B.1.2 Solutions to the Klein-Gordon equation

Using the Fourier transform, we see the solutions to the Klein-Gordon

equation are plane waves:

𝜙(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3 �̃�(®𝑝, 𝑡)𝑒
𝑖®𝑝· ®𝑥 , (B.1.7)

with �̃�(®𝑝, 𝑡) satisfying the simple-harmonic oscillator (SHO) equation

(𝜕2
𝑡 − | ®𝑝|2 − 𝑚2)�̃�(®𝑝, 𝑡) = 0 ⇒ �̃�(®𝑝, 𝑡) ∝ 𝑒−𝑖𝜔𝑝 𝑡 , (B.1.8)

with frequency 𝜔𝑝 =
���√| ®𝑝|2 + 𝑚2

���. Thus,
𝜙(®𝑥, 𝑡) =

∫
𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑎(®𝑝)𝑒 𝑖𝑝·𝑥 + 𝑎∗(®𝑝)𝑒−𝑖𝑝·𝑥), (B.1.9)

where 𝑝 · 𝑥 is the 4D spacetime inner product with 𝑝𝜇 = (𝜔𝑝 , ®𝑝), and the 1/√2𝜔𝑝

factor is conventional. The coefficients 𝑎 and 𝑎∗ are complex conjugates to ensure

a real sum. As we will see, in quantum field theory, the form of the fields is quite

similar but with 𝑎 and 𝑎∗ quantum operators.
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B.1.3 Hamiltonian mechanics

In QM, the Hamiltonian formalism is most natural. In QFT, as well, it will

prove useful for the canonical quantization of the fields in the next section. The

Hamiltonian density is the Legendre transform of the Lagrangian:

ℋ = 𝜋𝑎 ¤𝜙𝑎 − ℒ , (B.1.10)

where ¤𝜙 is the time derivative and

𝜋𝑎 =
𝜕ℒ
𝜕 ¤𝜙𝑎

(B.1.11)

are the conjugate momenta to the fields 𝜙𝑎 . The Hamiltonian generally has the in-

terpretation of the energy of a system, or the energy operator in QM. The EOMs

are Hamilton’s equations:

¤𝜙𝑎 = 𝜕ℋ
𝜕𝜋𝑎

,

¤𝜋𝑎 = − 𝜕ℋ
𝜕𝜙𝑎

.
(B.1.12)
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Poisson brackets

The time evolution of a general quantity 𝑓 (𝜙,𝜋) can be expressed as:

𝑑𝑓 (𝜙,𝜋)
𝑑𝑡

=
𝜕 𝑓
𝜕𝜙

¤𝜙 + 𝜕 𝑓
𝜕𝜋

¤𝜋 =
𝜕 𝑓
𝜕𝜙

𝜕ℋ
𝜕𝜋

− 𝜕 𝑓
𝜕𝜋

𝜕ℋ
𝜕𝜙

≡ { 𝑓 ,ℋ}, (B.1.13)

where the last step defines the Poisson bracket {· , ·}. In terms of Poisson brackets,

Hamilton’s equations can be written as:

¤𝜙𝑎 = {𝜙𝑎 ,ℋ} = 𝜕ℋ
𝜕𝜋𝑎

,

¤𝜋𝑎 = {𝜋𝑎 ,ℋ} = − 𝜕ℋ
𝜕𝜙𝑎

.
(B.1.14)

Importantly, the canonical fields of the Hamiltonian, 𝜙 and 𝜋, obey the canonical

Poisson bracket relations:

{𝜙(®𝑥), 𝜙( ®𝑦)} = 0,

{𝜋(®𝑥),𝜋( ®𝑦)} = 0,

{𝜙(®𝑥),𝜋( ®𝑦)} = 𝛿3(®𝑥 − ®𝑦).
(B.1.15)

Example B.1.2. Revisiting the simple (non-field-theoretic) Lagrangian from Ex-

ample B.1.1, we can derive the conjugate momentum to 𝑥 to be:

𝑝 =
𝜕𝐿
𝜕 ¤𝑥 = 𝑚 ¤𝑥, (B.1.16)
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and hence,

𝐻 = 𝑝 ¤𝑥 − 𝐿 =
1
2𝑚

¤𝑥2 +𝑉(𝑥) = 𝑝2

2𝑚 +𝑉(𝑥), (B.1.17)

which is the classical energy of a free particle. Note, as in the last step, we express

the Hamiltonian as a function of the conjugate momenta 𝑝 rather than the time

derivative of the coordinate ¤𝑥. Finally, the EOMs are:

¤𝑥 =
𝜕𝐻
𝜕𝑝

=
𝑝
𝑚
,

¤𝑝 = −𝜕𝐻
𝜕𝑥

= −𝑑𝑉
𝑑𝑥
.

(B.1.18)

The former is simply the definition of velocity, while the latter again reproduces

Newton’s second law. Finally, we can explitly confirm the canonical Poisson

bracket relations for the canonical coordinates 𝑥 and 𝑝:

{𝑥, 𝑥} = {𝑝, 𝑝} = 0,

{𝑥, 𝑝} =
𝜕𝑥
𝜕𝑥

𝜕𝑝
𝜕𝑝

− 𝜕𝑥
𝜕𝑝

𝜕𝑝
𝜕𝑥

= 1.
(B.1.19)

Free scalar field Hamiltonian

For the free scalar Lagrangian in Eq. 3.1.4, we find

𝜋 = ¤𝜙 = −𝑖
∫

𝑑3𝑝

(2𝜋)3
√

𝜔𝑝

2 (𝑎(®𝑝)𝑒 𝑖𝑝·𝑥 − 𝑎∗(®𝑝)𝑒−𝑖𝑝·𝑥), (B.1.20)
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where we plugged in the plane-wave solutions for 𝜙 from Eq. B.1.9, and

ℋ = 𝜋 ¤𝜙 − ℒ =
1
2𝜋

2 + 1
2(∇𝜙)

2 + 1
2𝑚

2𝜙2. (B.1.21)

This is, in fact, the same as the expression for energy we derived via Noether’s

theorem in Eq. 3.1.14. Note that, unlike the Lagrangian, the Hamiltonian is not

Lorentz-invariant. Thismakes sense under the interpretation of theHamiltonian

as the energy, which is not a Lorentz scalar. Its Lorentz-invariance, as well as its

natural connection to the path integral formulation (Section B.1.1), is the reason

the Lagrangian viewpoint is preferred in QFT.

B.2 Quantization

In this section, we briefly sketch canonical quantization, a process of turning

a classical field theory into a QFT. It is based on the Hamiltonian formalism, in

close analogy to the quantization of classicalmechanics→QM. The resultmakes

manifest the connection between quantum fields and their associated particles.

An alternative quantization approach not discussed here is based on the

path integral formulation (see SectionB.1.1). Aswithmost alternativemathemat-

ical prescriptions of the same physics, it provides useful insight into the theory

and can simplify certain calculations. Further detail can be found, for example,

in Peskin and Schroeder [81] Chapter 9.
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B.2.1 Canonical quantization

The process of quantizing a classical system in QM can be summarized as

(1) promoting the canonical coordinates to quantum operators, and (2) imposing

the canonical Poisson bracket relations as quantum commutator relations:

𝑥 → �̂� , 𝑝 → �̂� ,

{𝑥, 𝑝} = 1 → [�̂� , �̂�] = 𝑖ℏ.
(B.2.1)

Canonical quantization of a field theory is done analogously, with fields becom-

ing operator-valued and obeying their own canonical commutation relations

based on Eq. B.1.15.

For our free scalar field theory (Eq. 3.1.4), this means promoting the inte-

gration constants in the classical solution (Eq. B.1.9 and B.1.20) to operators:

𝜙(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(�̂�®𝑝 𝑒 𝑖𝑝·𝑥 + �̂�†®𝑝 𝑒−𝑖𝑝·𝑥),

𝜋(®𝑥, 𝑡) = −𝑖
∫

𝑑3𝑝

(2𝜋)3
√

𝜔𝑝

2 (�̂�®𝑝 𝑒 𝑖𝑝·𝑥 − �̂�†®𝑝 𝑒−𝑖𝑝·𝑥),
(B.2.2)

where again 𝑝 · 𝑥 = 𝑝𝜇𝑥𝜇 is the 4D spacetime inner product and 𝑝𝜇 = (𝜔𝑝 =√��®𝑝��2 + 𝑚2, ®𝑝). Recall that the integration constants 𝑎(®𝑝) and 𝑎∗(®𝑝) arose from

a SHO equation for each momentum ®𝑝 (Eq. B.1.8); thus, quantized, we expect

them to correspond to the raising (�̂�†) and lowering (�̂�) operators of a quantum

harmonic oscillator (QHO), again one for each momentum mode ®𝑝.
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We can check this by deriving their commutation relations. Indeed, im-

posing the canonical commutation relationships:

[𝜙(®𝑥, 𝑡), 𝜙( ®𝑦, 𝑡)] = [𝜋(®𝑥, 𝑡),𝜋( ®𝑦, 𝑡)] = 0, [𝜙(®𝑥, 𝑡),𝜋( ®𝑦, 𝑡)] = 𝑖𝛿3(®𝑥 − ®𝑦), (B.2.3)

reproduces (continuous versions of) the raising and lowering operator commu-

tation relationships for a QHO:

[�̂�®𝑝 , �̂�®𝑞] = [�̂�†®𝑝 , �̂�†®𝑞] = 0, [�̂�®𝑝 , �̂�†®𝑞] = (2𝜋)3𝛿3(®𝑝 − ®𝑞). (B.2.4)

Next, we look at the commutators with the Hamiltonian and the resulting

Hilbert space.

B.2.2 The Hamiltonian and the vacuum catastrophe

The quantized Hamiltonian, from Eq. B.1.21, can be found to be:

𝐻 =
∫

𝑑3𝑥

(
1
2𝜋

2 + 1
2(∇𝜙)

2 + 1
2𝑚

2𝜙2
)

=
∫

𝑑3𝑝

(2𝜋)3𝜔𝑝[�̂�†®𝑝 �̂�®𝑝 +
1
2(2𝜋)

3𝛿3(0)].
(B.2.5)

This looks a lot like the Hamiltonian for a QHO, 𝐻 = 𝜔(𝑎†𝑎 + 1/2), for each

momenta, but with an unwieldy delta function. This latter term is called the

zero-point energy and represents the energy of the vacuum state. It is infinite,
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and, indeed, is one of the many infinities that have to be dealt with in QFT.

In this case, since it is a constant energy term, it does not affect the dy-

namics of the system and can simply be ignored / subtracted for our purposes.2

However, the vacuum energy density does affect Einstein’s equations of general

relativity, and the disagreement between the large zero-point energy we expect

from QFT and the small observed value is known as the cosmological constant

problem (or, more dramatically, the vacuum catastrophe) [429, 430].

An infinity of harmonic oscillators

Subtracting away the zero-point energy gives us

𝐻 =
∫

𝑑3𝑝

(2𝜋)3𝜔𝑝 �̂�†®𝑝 �̂�®𝑝 , (B.2.6)

whose commutators with the raising and lowering operators are:

[𝐻, �̂�†®𝑝 ] = 𝜔®𝑝 �̂�†®𝑝 , [𝐻, �̂�®𝑝 ] = −𝜔®𝑝 �̂�®𝑝 , (B.2.7)

just as for a QHO. This tells us that given an eigenstate of𝐻, |𝐸〉, with eigenvalue

𝐸, �̂�†®𝑝 |𝐸〉 and �̂�®𝑝 |𝐸〉 are also eigenstates with eigenvalues 𝐸 + 𝜔®𝑝 and 𝐸 − 𝜔®𝑝 ,

2Equivalently, we can consider the normal-orderedHamiltonian (see, e.g., TongQFT [74] Chap-
ter 2.3). An alternative way of resolving the infinity is to introduce an ultra-violet cut-off scale Λ
in the integral over momenta.
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respectively:

𝐻�̂�†®𝑝 |𝐸〉 = (�̂�†®𝑝 𝐻 + 𝜔®𝑝 �̂�†®𝑝 ) |𝐸〉 = (𝐸 + 𝜔®𝑝 )�̂�†®𝑝 |𝐸〉 ,
𝐻�̂�®𝑝 |𝐸〉 = (�̂�®𝑝 𝐻 − 𝜔®𝑝 �̂�®𝑝 ) |𝐸〉 = (𝐸 − 𝜔®𝑝 )�̂�®𝑝 |𝐸〉 .

(B.2.8)

B.2.3 Particles

To understand these states further, we can also quantize the total momen-

tum of the field density we found from Noether’s theorem (Eq. 3.1.14):3

®𝑃 =
∫

𝑑3𝑥 𝜋®∇𝜙 =
∫

𝑑3𝑝

(2𝜋)3 ®𝑝 �̂�
†
®𝑝 �̂�®𝑝 . (B.2.9)

Acting with ®𝑃 on | ®𝑝〉 gives us:

®𝑃 | ®𝑝〉 =
∫

𝑑3𝑘
(2𝜋)3

®𝑘 �̂�†®𝑘 �̂�®𝑘 �̂�
†
®𝑝 |0〉

=
∫

𝑑3𝑘
(2𝜋)3

®𝑘 �̂�†®𝑘
(
�̂�†®𝑝 �̂�®𝑘 − (2𝜋)3𝛿3(®𝑘 − ®𝑝)) |0〉

= ®𝑝 | ®𝑝〉 .

(B.2.10)

Thus the states | ®𝑝〉 are eigenstates of ®𝑃 as well, with eigenvalues ®𝑝. Putting this

together, we have a Hilbert space spanned by the states | ®𝑝〉, which each have mo-

mentum ®𝑝 and energy 𝜔®𝑝 =
���√®𝑝2 + 𝑚2

���, i.e. the relativistic energy-momentum

relation for a free particle.

3Technically, we show here the normal-ordered momentum.
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Thus, we see | ®𝑝〉 exactly corresponds to the momentum eigenstate for a

single particle of mass𝑚 andmomentum ®𝑝! One can similarly quantize the total

angular momentum of the field ®𝐽 and show that ®𝐽 | ®𝑝 = 0〉 = 0, i.e. the particle

has spin 0.

This is one of the miracles of QFT: what from quantizing a free, relativis-

tic field looked bizarrely like an infinite series of QHOs, actually gives the intu-

itive physical result of discrete particle states. The Fock space hence is the space

spanned by different numbers of discrete particles per each continuous momen-

tum mode ®𝑝. The number of particles 𝑛 in a particular state of the Fock space

is given by the number operator 𝑁 , essentially the Hamiltonian density divided

by 𝜔®𝑝 :

𝑁 =
∫

𝑑3𝑝

(2𝜋)3 �̂�
†
®𝑝 �̂�®𝑝 ⇒ 𝑁 | ®𝑝1, . . . , ®𝑝𝑛〉 = 𝑛 | ®𝑝1, . . . , ®𝑝𝑛〉 . (B.2.11)

Note that the number operator𝑁 commuteswith theHamiltonian𝐻, [𝑁, 𝐻] = 0,

which means particle number is conserved; however, this will not be the case for

interacting theories in the next section.

Normalization of states and wavepackets

Note that we cannot simply choose the normalization of momentum

eigenstates as 〈®𝑞| ®𝑝〉 = 𝛿3(®𝑞 − ®𝑝), as in nonrelativistic QM, because the delta

function alone is not Lorentz-invariant. Instead, we choose the normalization
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in Eq. 3.1.21, which is a Lorentz scalar.

Like in QM, however, these momentum eigenstates are not normalized to

1: 〈®𝑝| ®𝑝〉 = 2𝐸®𝑝 𝛿3(0), so they are not exactly physical one-particle states. Physical

particles must exist in the form of a wavepacket:

|𝜑〉 =
∫

𝑑3𝑝 𝜑(®𝑝) | ®𝑝〉 , (B.2.12)

with some spread inmomenta 𝜑(®𝑝). However, as long as this variation is smaller

than the resolution of our detector (as wewill assume), for all practical purposes

and calculations we can continue to treat particles as momentum eigenstates.

This assumption is further motivated in Peskin and Schroeder [81] Chapter 4.5.

B.2.4 The complex scalar field and antiparticles

The complex scalar field Lagrangian from Eq. 3.1.15 has the EOMs:

(𝜕𝜇𝜕𝜇 + 𝑚2)𝜓 = 0,

(𝜕𝜇𝜕𝜇 + 𝑚2)𝜓∗ = 0,
(B.2.13)

with solutions:

𝜓(𝑥) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑏(®𝑝)𝑒 𝑖𝑝·𝑥 + 𝑐∗(®𝑝)𝑒−𝑖𝑝·𝑥). (B.2.14)
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Note that because the field is complex, the coefficients 𝑏 and 𝑐∗ need not be com-

plex conjugates of each other as for a real field. This field can be quantized anal-

ogously to above:

𝜓(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑏®𝑝 𝑒 𝑖𝑝·𝑥 + 𝑐†®𝑝 𝑒−𝑖𝑝·𝑥),

𝜓†(®𝑥, 𝑡) =
∫

𝑑3𝑝

(2𝜋)3
1√
2𝜔𝑝

(𝑏†®𝑝 𝑒−𝑖𝑝·𝑥 + 𝑐®𝑝 𝑒 𝑖𝑝·𝑥),
(B.2.15)

where we now have two sets of creation and annihilation operators, {𝑏†, 𝑏} and

{𝑐†, 𝑐}. One can check each pair individually satisfies the canonical commuta-

tion relations from Eq. B.2.4, and mutually commutes with each other.

Thus, they are interpreted as corresponding to two different particles,

with the same mass 𝑚 and spin 0, but, as we saw, with opposite charges under

the U(1) internal symmetry. Such pairs are considered particles and antiparti-

cles.

Finally, let us revisit and quantize the conserved charge associated with

the U(1) symmetry (Eq. 3.1.16):

𝑄 =
∫

𝑑3𝑥 𝑖(𝜓∗𝜕0𝜓 − 𝜓𝜕0𝜓∗) →
∫

𝑑3𝑝

(2𝜋)3
(
𝑏†®𝑝 𝑏®𝑝 − 𝑐†®𝑝 𝑐®𝑝

)
= 𝑁𝑏 − 𝑁𝑐 . (B.2.16)

This is saying the difference in the number of particles and antiparticles is con-

served, which for a single charged particle-antiparticle pair, is equivalent to

charge conservation. This will be more significant for interacting theories, in
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which 𝑁𝑏 and 𝑁𝑐 are not individually conserved but as long as the interactions

retain the U(1) symmetry, 𝑄 is.

Negative energy states?

Note that the full, time-dependent formula for the field 𝜓(®𝑥, 𝑡) contains
both the 𝑒−𝑖𝑝·𝑥 ∝ 𝑒−𝑖𝐸𝑡 and 𝑒 𝑖𝑝·𝑥 ∝ 𝑒 𝑖𝐸𝑡 terms. As single-particle plane-wave

solutions to the nonrelativistic Schrödinger equation, thesewould correspond to

positive and negative energy states, the latter of which does not make physical

sense.4 Our solution is to refer to these states instead as positive- and negative-

frequencymodes, which, as we saw, are always associated to operators that create

and destroy positive-energy (anti)particles, respectively.

B.3 Interactions

B.3.1 The interaction picture and Dyson’s formula

For treating interactions that are small perturbations to the free theory,

it is most useful to employ the interaction picture of QM, a hybrid of the

Schrödinger and Heisenberg pictures. Recall that in the Schrödinger picture,
4This is related to the problem Dirac faced in developing his relativistic quantum theory of

the electron, except we are dealing with bosons instead of fermions, so we cannot rely on the
fermionic Dirac sea “solution”.
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operators are fixed while states evolve with time, and vice versa in the Heisen-

berg picture. In the interaction picture, we split the Hamiltonian into the free

(𝐻0) and interaction terms (𝐻int), defining operators to evolve with the former

and states with the latter.

The upshot of this in QFT is that the S-matrix element can be written ac-

cording to Dyson’s formula:

〈 𝑓 |𝑆| 𝑖〉 = 〈 𝑓 |𝑇 exp
(
−𝑖

∫ ∞

−∞
𝐻𝐼(𝑡)𝑑𝑡

)
| 𝑖〉 , (B.3.1)

where𝑇 is the same time-ordering operator from Section 3.1.4 and𝐻𝐼 is the time-

evolved interaction Hamiltonian in the interaction picture:

𝐻𝐼(𝑡) = 𝑒 𝑖𝐻0𝑡𝐻int𝑒−𝑖𝐻0𝑡 . (B.3.2)

Assuming a small 𝐻int, Dyson’s formula can be Taylor expanded as:

〈 𝑓 |𝑆| 𝑖〉 = 〈 𝑓 |1| 𝑖〉 + (−𝑖)
∫ ∞

−∞
〈 𝑓 |𝐻𝐼(𝑡)| 𝑖〉 𝑑𝑡

+ (−𝑖)2
2

∫ ∫ ∞

−∞
〈 𝑓 |𝑇𝐻𝐼(𝑡1)𝐻𝐼(𝑡2)| 𝑖〉 𝑑𝑡1𝑑𝑡2 + . . . . (B.3.3)

The first term in the expansion is the free field term, which we ignore.5 The 𝑛th

term after that is of order 𝑔𝑛 , where 𝑔 is the coupling constant of the interaction

5Often we simply define the “interesting” part as 〈 𝑓 |𝑆 − 1| 𝑖〉 ≡ 𝑖𝑇 and focus on calculating
𝑇.
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term. Thus, this offers a prescription for calculating the S-matrix element up to

any fixed order in the interaction strength.

Note that | 𝑖〉 and | 𝑓 〉 are particle momentum eigenstates of the free theory.

We can justify this intuitively by thinking of them as the states long before and

after the interaction, when the interaction term is negligible. Formally, there is

in fact a complicated formula relating the free and interacting eigenstates; how-

ever, the proportionality factors cancel rather beautifully in the S-matrix element,

allowing us to focus on only “connected” and “amputated” Feynman diagrams

between the free eigenstates, defined in the next section. This is illustrated (liter-

ally) for the vacuum states in Peskin and Schroeder [81] Chapter 4, and justified

more generally by the LSZ reduction formula.

B.3.2 First-order examples and the matrix element

ℳ

Let us look at the 𝑛 = 1 and 𝑛 = 2 S-matrix element terms from Eq. B.3.3

for our scalar Yukawa theory (Eq. 3.2.3):

〈 𝑓 |𝑆| 𝑖〉(1) = −𝑖
∫ ∞

−∞
〈 𝑓 |𝐻𝐼(𝑡)| 𝑖〉 𝑑𝑡 = −𝑖 𝑔

∫
𝑑4𝑥 〈 𝑓 |𝜙(𝑥)𝜓†(𝑥)𝜓(𝑥)| 𝑖〉 ,

〈 𝑓 |𝑆| 𝑖〉(2) = (−𝑖 𝑔)2
2

∫
𝑑4𝑥

∫
𝑑4𝑦 〈 𝑓 |𝑇𝜙(𝑥)𝜓†(𝑥)𝜓(𝑥)𝜙(𝑦)𝜓†(𝑦)𝜓(𝑦)| 𝑖〉 .

(B.3.4)
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For given initial and final 𝑁-particle momentum states, these can be calculated

manually by plugging in the field expansions (Eq. B.2.2 and B.2.15).

For example, the first-order term 〈 𝑓 |𝑆| 𝑖〉(1) is non-zero only for processes

like:

• Meson decay 𝜙 → 𝜓†𝜓: | 𝑖〉 = √
2𝐸®𝑝 𝑎†®𝑝 |0〉, | 𝑓 〉 = √

4𝐸®𝑞1𝐸®𝑞2𝑏
†
®𝑞1
𝑐†®𝑞2

|0〉; and

• Nucleon-antinucleon annihilation 𝜓†𝜓 → 𝜙: | 𝑖〉 =
√

4𝐸®𝑞1𝐸®𝑞2𝑏
†
®𝑞1
𝑐†®𝑞2

|0〉,
| 𝑓 〉 = √

2𝐸®𝑝 𝑎†®𝑝 |0〉.

The amplitude for these can be calculated to be:

〈 𝑓 |𝑆| 𝑖〉(1) = −𝑖 𝑔(2𝜋)4𝛿(4)(𝑝 − 𝑞1 − 𝑞2), (B.3.5)

with the simple matrix element ℳ = −𝑔. Generally, however, calculating ℳ
each time using the field expansions can be quite cumbersome. This is especially

true at higher orders, which require Wick’s theorem [431] to treat time-ordered

fields. We can avoid this by using Feynman diagrams, and their associated rules,

which allowus to simply read off amatrix element from a drawing of the process.

B.3.3 Feynman diagrams

The conventions for Feynman diagrams in this dissertation are as follows:
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1. Time and momentum always flow from left to right. Thus, the left-most

particles represent the initial, and the right-most the final states. Momen-

tum arrows are shown in Figure 3.1 explicitly but need not be.

2. Mesons are plotted as dotted and nucleons as solid lines.

3. Nucleon lines have arrows representing particle-flow. For external (i.e., ini-

tial or final state) nucleons they point in the direction of momentum for

particles and opposite for antiparticles. Again, in general, particles need

not be explicitly labeled as in in Figure 3.1 since the linestyles and particle-

flow arrows suffice.

As discussed above, only connected and amputated diagrams contribute to

the S-matrix element, and we will focus on these. Connected means that every

part of the diagrams is connected to at least one external line, and amputated

means that there are no loops on external lines. Examples of disconnected and

un-amputated diagrams are shown in Figure B.1. Interestingly, disconnected

and un-amputated diagrams contribute to the vacuum and one-particle states,

respectively, differing in the interacting versus free theory.

Example: nucleon scattering

Nucleon-nucleon scattering is the process: 𝜓𝜓 → 𝜓𝜓. The lowest order

at which this can occur is of O(𝑔2), as it requires at least two interaction vertices.

The possible second-order diagrams are shown in Figure B.2. We interpret them
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Figure B.1. Examples of a disconnected (left) and an un-amputated (right) Feyn-
man diagram.

as nucleons interacting via the exchange of a meson. As the nucleons are identi-

cal, we require two diagrams, for the two permutations of the two final states.

𝑘

𝑞𝑖1

𝑞𝑖2

𝑞 𝑓 1

𝑞 𝑓 2

𝑘

𝑞𝑖1

𝑞𝑖2

𝑞 𝑓 2

𝑞 𝑓 1

Figure B.2. The two lowest order nucleon scattering diagrams.

Using the first two Feynman rules, we find

𝑖ℳ = (−𝑖 𝑔)2 ·
1

𝑘2 − 𝑚2 + 𝑖𝜀 (B.3.6)

for both diagrams. What remains is to enforce momentum conservation at each

vertex. For the left-most diagram, we see 𝑘 = 𝑞 𝑓 1 − 𝑞𝑖1 = 𝑞 𝑓 2 − 𝑞𝑖2, while for the
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right-most 𝑘 = 𝑞 𝑓 2 − 𝑞𝑖1 = 𝑞 𝑓 1 − 𝑞𝑖2. Thus, the total matrix element is

𝑖ℳ = 𝑖(ℳleft +ℳright) = (−𝑖 𝑔)2
[ 1

(𝑞 𝑓 1 − 𝑞𝑖1)2 − 𝑚2 +
1

(𝑞 𝑓 2 − 𝑞𝑖1)2 − 𝑚2

]
, (B.3.7)

where we have left out the 𝑖𝜀 term as there is no integral to perform.

Generally, we have to be careful with the relative signs of the matrix ele-

ments of different diagrams, corresponding to either constructive or destructive

interference. (In fact, Peskin and Schroeder list “Figure out the overall sign of the

diagram” as a Feynman rule.) In this case, we can reason physically that since

nucleons are bosons, the amplitude will be symmetric under interchange of the

two final states, and hence the two diagrams should be summed.

Mandelstam variables

To build some intuition for Mandelstam variables, let us sit in the cen-

ter of mass (COM) frame, and define our coordinate frame such that incoming

particles collide along the 𝑧-axis and scatter in the 𝑦-𝑧 plane:

𝑝𝑖1 = (𝐸, 0, 0, 𝑝) 𝑝𝑖2 = (𝐸, 0, 0,−𝑝)
𝑝 𝑓 1 = (𝐸, 0, 𝑝 sin𝜃, 𝑝 cos𝜃) 𝑝 𝑓 2 = (𝐸, 0,−𝑝 sin𝜃,−𝑝 cos𝜃).

(B.3.8)
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Then,

𝑠 = 4𝐸2, 𝑡 = −2𝑝2(1 − cos𝜃), 𝑢 = −2𝑝2(1 + cos𝜃). (B.3.9)

Thus, 𝑠 is the total energy in theCOMframe squared—hence, we usually refer to

theCOMenergy as
√
𝑠—while 𝑡 and 𝑢 are ameasure of howmuchmomentum is

exchanged between the scattered particles. For example, if 𝜃 = 0, both particles

continue in the same direction and 𝑡 = 0, while if 𝜃 = 𝜋, they completely reverse

direction and the momentum transfer along the collision axis is maximized at√|𝑡| = 2𝑝.

B.4 Spinor field theory

...anything that comes back to itself with a minus sign after a 2𝜋 rotation is always

going to be a little strange. — David Tong [76]

So far, we have focused on scalar fields, which live in the trivial repre-

sentation of the Lorentz group and correspond to spin-0 bosons. In this section,

we discuss the field theory for spin-1
2 particles, or fermions, which constitute all

matter in the universe.
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B.4.1 The Dirac equation

Like the Klein-Gordon equation, the Dirac equation was also an attempt

at a relativistic version of the Schrödinger equation. Before the development of

QFT, the quantized KG equation was thought to produce negative probabilities

due to its second derivative in time.6 Dirac thus sought a relativistic first-order

differential equation in space and time.

Legend has it he was staring into a fire in Cambridge when he came up

with an equation of the form

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0, (B.4.1)

where 𝛾𝜇 are constants that will be defined in a moment, and 𝜓 is a complex

field. It is difficult to make this equation Lorentz covariant; indeed, it is impos-

sible if 𝜓 is a scalar and each 𝛾𝜇 is simply a number.7 Dirac’s brilliant insight,

however, was that it can be covariant if 𝛾𝜇 are 4 × 4 complex matrices and 𝜓 a

four component field.

The key is that 𝛾𝜇𝜕𝜇 is essentially the “square-root” of the d’Alembertian

6We now understand that the KG equation describes perfectly good scalar quantum fields,
where the field-theoretic analog of the probability density is in fact the conserved charge of
Eq. B.2.16, which is allowed to be negative.

7Or even two- or three-dimensional.
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□ from the KG-equation:

𝛾𝜇𝜕𝜇𝛾
𝜈𝜕𝜈 = □ = 𝜕𝜇𝜕

𝜇, (B.4.2)

if (and only if) 𝛾𝜇 and 𝛾𝜈 satisfy the Clifford algebra:

{𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈 , (B.4.3)

where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the anticommutator. Dirac found this is possible

with 4 × 4 matrices such as

𝛾0 = ©«
0 1

1 0
ª®¬ , 𝛾𝑖 = ©«

0 𝜎𝑖

−𝜎𝑖 0
ª®¬ , (B.4.4)

where 𝜎𝑖 are the Pauli matrices (Chapter 2.2). These are called the gamma, or

Dirac, matrices, and plugging them into Eq. B.4.1 yields theDirac equation, which

can be written even more compactly by defining /𝜕 ≡ 𝛾𝜇𝜕𝜇:

(𝑖 /𝜕 − 𝑚)𝜓 = 0. (B.4.5)

This equation is considered one of the most significant breakthroughs in

theoretical physics, “on par with the works of Newton, Maxwell, and Einstein

before him” [432]. The insights that followed, as we will outline in this section,

provided a theoretical basis for fermion spin, implied the existence of antiparti-
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cles, and overall were foundational to the development of the SM.8

B.4.2 Spinors

Before discussing solutions and quantization of the Dirac equation, let us

examine what kind of object 𝜓 is. A related property of the Clifford algebra is

that

Σ𝜇𝜈 ≡ 𝑖
4[𝛾

𝜇, 𝛾𝜈] (B.4.6)

satisfies the Lorentz algebra (Eq. 2.3.12). This means Σ𝜇𝜈 are generators of

Lorentz transformations

𝑆[Λ] = 𝑒
1
2𝜔

𝜇𝜈Σ𝜇𝜈 , (B.4.7)

where Λ is a Lorentz transformation with parameters 𝜔𝜇𝜈, and 𝑆[Λ] is a partic-

ular 4D representation.

It can be shown9 that the Dirac equation is only Lorentz covariant if the

components of 𝜓, 𝜓𝛼, transform under this exact representation:

𝜓𝛼 → 𝜓′
𝛼 = 𝑆[Λ]𝛽𝛼𝜓𝛽 . (B.4.8)

8These insights were so unexpected that Dirac thought “his equation was more intelligent
than its author” [433].

9See e.g. Ref. [82] Lecture 14.
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It is important to note here that 𝑆[Λ] is acting on the𝜓 components— also called

the spinor indices – and not on the spacetime coordinates 𝑥𝜇, which transform

under the vector representation (Eq. 2.3.2). Explicitly, including the spacetime

coordinates, 𝜓(𝑥) transforms as:

𝜓𝛼(𝑥) → 𝜓′
𝛼(𝑥′) = 𝑆[Λ]𝛽𝛼𝜓𝛽(Λ−1𝑥), (B.4.9)

where both 𝑆[Λ] and Λ share the same transformation parameters 𝜔𝜇𝜈 and thus

correspond to the same Lorentz transformation.10

Dirac and Weyl spinors

What is this representation? Let’s look at the rotation and boost genera-

tors individually:

Σ0𝑖 =
𝑖
2
©«
−𝜎𝑖 0

0 𝜎𝑖
ª®¬ , Σ𝑖 𝑗 =

1
2𝜖𝑖 𝑗𝑘

©«
𝜎𝑘 0

0 𝜎𝑘
ª®¬ . (B.4.10)

Comparing thiswith Eqs. 2.3.8 and 2.3.9, we see that the top left and bottom right

blocks are exactly the left- and right-handedWeyl spinor irreps of the generators.

The handedness of a spinor is called its chirality, and its physical significancewill

be discussed in a moment. Thus, we identify 𝑆[Λ] with the (1/2, 0) ⊕ (0, 1/2), or
Dirac spinor, representation.

10𝑥′ = Λ−1𝑥 as this is an active transformation, in which the field is shifted.
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This also means that, in this basis of the gammamatrices (called theWeyl,

or chiral, basis), the Dirac spinor 𝜓 can be decomposed into two Weyl spinors:

𝜓 = ©«
𝜓𝐿

𝜓𝑅

ª®¬ , (B.4.11)

which transform under their respective representations. The two components

can be isolated if we consider a fifth gamma matrix:

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 = ©«
−1 0

0 1

ª®¬ . (B.4.12)

𝛾5 is similar to our main four matrices in that {𝛾5, 𝛾𝜇} = 0 and (𝛾5)2 = 1. Impor-

tantly, we see from its form in the Chiral basis that projection operators 𝑃𝐿 and

𝑃𝑅 can be defined as:

𝑃𝐿 =
1 − 𝛾5

2 , 𝑃𝑅 =
1 + 𝛾5

2 , (B.4.13)

which satisfy the projection property 𝑃2
𝐿/𝑅 = 𝑃𝐿/𝑅 and project out the left- and

right-handed components of a Dirac spinor:

𝑃𝐿
©«
𝜓𝐿

𝜓𝑅

ª®¬ = ©«
𝜓𝐿

0
ª®¬ , 𝑃𝑅

©«
𝜓𝐿

𝜓𝑅

ª®¬ = ©«
0

𝜓𝑅

ª®¬ . (B.4.14)

Note that while the specific form depends on the basis, the definitions in

Eq. B.4.13 are basis-independent and can be considered to define chirality.
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Chirality

The two Weyl spinor representations are related by a complex conjuga-

tion, meaning 𝜓∗
𝐿 is a right-handed Weyl spinor, and vice versa. For a complex

scalar field, we interpreted the conjugate as the antiparticle. The same interpre-

tation applies here; hence, if a left-handed spinor describes a particle, its antipar-

ticle is described by its conjugate, right-handed spinor.

The Dirac equation can be rewritten in the Weyl basis as two coupled

equations of theWeyl spinors. Let us define 𝜎𝜇 = (1, ®𝜎) and �̄�𝜇 = (1,−®𝜎), so that

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = ©«
−𝑚 𝑖𝜎𝜇𝜕𝜇

𝑖�̄�𝜇𝜕𝜇 −𝑚
ª®¬ ©«

𝜓𝐿

𝜓𝑅

ª®¬ = 0. (B.4.15)

Hence, we see the mass term couples the left- and right-handed components.

This is why all massive fermions must exist in pairs of particles and antiparticles.

An important special case, however, is for a neutral Majorana fermion, where 𝜓

equals its charge conjugate 𝜓𝑐 (to be defined below). Such a particle is its own

antiparticle and can have a left-handed- or right-handed-only mass term. As

discussed in Chapter 2.3, the only Majorana candidate in the SM is the right-

handed neutrino.

For 𝑚 = 0, the Dirac equation decouples and leaves us with the Weyl
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equations describing massless fermions:

𝑖𝜎𝜇𝜕𝜇𝜓𝑅 = 0, 𝑖�̄�𝜇𝜕𝜇𝜓𝐿 = 0. (B.4.16)

In Fourier space, these are:

𝜎𝜇𝑝𝜇𝜓𝑅 = (𝐸 − ®𝜎 · ®𝑝)𝜓𝑅 = 0 ⇒ ®𝜎 · ®𝑝��®𝑝�� 𝜓𝑅 = +𝜓𝑅 ,

�̄�𝜇𝑝𝜇𝜓𝐿 = (𝐸 + ®𝜎 · ®𝑝)𝜓𝐿 = 0 ⇒ ®𝜎 · ®𝑝��®𝑝�� 𝜓𝐿 = −𝜓𝐿 ,
(B.4.17)

where we used 𝐸 =
��®𝑝�� for massless particles. You may recall ®𝜎·®𝑝

| ®𝑝| is the helicity

operator, projecting the particle spin along its momentum. Thus, in themassless

limit, we see that the left- and right-handed Weyl spinors are the +1 and −1

helicity eigenstates, respectively.

This is not the case for massive particles, as helicity is no longer Lorentz

invariant: one can always boost into a frame where the momentum is inverted

while the spin remains the same, changing the sign of the helicity. Chirality

is thus a more abstract concept for massive particles, related only to how they

transform under Lorentz transformations.

Theories not symmetric under exchange of left- and right-handed compo-

nents are called chiral, and symmetric theories vector. QED and QCD are both

vector theories, but weak interactions are, surprisingly, chiral. This necessarily

means it violates parity and charge conjugation symmetries (𝑃 and 𝐶), which
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we will discuss soon in Section B.4.6.

B.4.3 The Dirac Lagrangian

Recall that to quantize the scalar theory, we first needed the Lagrangian

and the classical solutions of the K-G equation, to then obtain Hamiltonian and

canonical fields and Poisson brackets before finally promoting them to quantum

commutatation relations. We will proceed in similar (though condensed) fash-

ion for the spinor theory, and first derive the Lagrangian corresponding to the

Dirac equation.

Since we are no longer dealing with trivial representation of the Lorentz

group, we have to be more careful with the types of terms we put into the La-

grangian; it must be composed of good Lorentz-invariant objects. A first guess

at a Lorentz scalar formed of spinors may be 𝜓†𝜓. This is indeed a scalar, but it

is not Lorentz invariant: 𝜓 and 𝜓† transform as 𝜓 → 𝑆[Λ]𝜓, 𝜓† → 𝜓†𝑆[Λ]† and,

hence

𝜓†𝜓 → 𝜓†𝑆[Λ]†𝑆[Λ]𝜓. (B.4.18)

However, recall from Chapter 2.3 that (finite-dimensional) representations of

Lorentz transformations are not unitary. (We can see this as well from the

fact that the generators of 𝑆[Λ] in Eq. B.4.10 are not anti-Hermitian.) Thus,

𝑆[Λ]†𝑆[Λ] ≠ 1 in general and 𝜓†𝜓 is not a Lorentz scalar.
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Instead, with a bit of matrix algebra11, one can show that

𝛾0𝑆[Λ]𝛾0 = (𝑆[Λ]−1)†, (B.4.19)

and hence

𝜓†𝛾0𝜓 → 𝜓†𝑆[Λ]†𝛾0𝑆[Λ]𝜓 = 𝜓†𝛾0𝑆[Λ]−1𝑆[Λ]𝜓 = 𝜓†𝛾0𝜓 (B.4.20)

is a Lorentz scalar. Thus, we define �̄� ≡ 𝜓†𝛾0 as the “natural” conjugate to 𝜓,

and end up with a nice Lorentz scalar �̄�𝜓 for our Lagrangian.

Similarly, one can show that �̄�𝛾𝜇𝜓 transforms as a Lorentz 4-vector and,

hence, contracting it with 𝜕𝜇 as �̄�𝛾𝜇𝜕𝜇𝜓 yields another scalar. These two terms,

which are analogous to the mass and derivative terms a free complex scalar field

(Eq. 3.1.15), are enough to build the Dirac Lagrangian:

ℒ = 𝑖�̄�𝛾𝜇𝜕𝜇𝜓 − 𝑚�̄�𝜓 = �̄�(𝑖 /𝜕 − 𝑚)𝜓. (B.4.21)

One can check that the EL equations reproduce the Dirac equation for 𝜓 and �̄�.

The U(1) conserved current

As with the complex scalar field, observe that the Dirac Lagrangian is

invariant under global U(1) symmetry 𝜓 → 𝑒 𝑖𝛼𝜓. Using Noether’s theorem, we
11See e.g. Schwartz [86] Chapter 10.3
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can derive the conserved current and charge associated with this symmetry:

𝑗𝜇 = �̄�𝛾𝜇𝜓, 𝑄 =
∫

𝑑3𝑥 𝑗0 =
∫

𝑑3𝑥 𝜓†𝜓. (B.4.22)

As for the complex scalar field, these represent the electromagnetic 4-current

and charge, respectively — a connection we will explore further in Section 3.3.1.

B.4.4 Quantizing the Dirac field

Solutions to the Dirac equation

Before quantizing, we first need the classical solutions to the Dirac equa-

tion. Multiplying both sides of it by −(𝑖𝛾𝜇𝜕𝜇 + 𝑚) gives us:

−(𝑖𝛾𝜇𝜕𝜇 + 𝑚)(𝑖𝛾𝜈𝜕𝜈 − 𝑚)𝜓 = (□ − 𝑚2)𝜓 = 0, (B.4.23)

which means each component of 𝜓 individually satisfies the KG-equation. Thus,

we can assume similar plane wave solutions:

𝜓(𝑥) =
∫

𝑑3𝑝

(2𝜋)3 𝑢(𝑝)𝑒
−𝑖𝑝·𝑥 + 𝑣(𝑝)𝑒 𝑖𝑝·𝑥 , (B.4.24)

where 𝑢(𝑝) and 𝑣(𝑝) are now spinors, and again we have positive and negative

frequency solutions that correspond to particles and antiparticles, respectively,

after quantization.
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One can check using Fourier space, as we did for theWeyl equations, that

𝑢(𝑝) = ©«
√
𝑝 · 𝜎 𝜉

√
𝑝 · �̄� 𝜉

ª®¬ , 𝑣(𝑝) = ©«
√
𝑝 · 𝜎 𝜂

−√𝑝 · �̄� 𝜂
ª®¬ (B.4.25)

are general solutions to the Dirac equation, where 𝜉 and 𝜂 are the familiar two-

component spinors from QM for spin-1/2 particles (although technically they do

not have this interpretation before quantization). As is conventional, we will use

a basis of 𝜎𝑧 eigenstates 𝜉1 = 𝜂1 = (1, 0)𝑇 and 𝜉2 = 𝜂2 = (0, 1)𝑇 , corresponding to

spin-up and spin-down, respectively.

For example, in the rest frame 𝑝𝜇 = (𝑚, 0, 0, 0), we have:

𝑢(𝑝)1 =
√
𝑚

©«

1

0

1

0

ª®®®®®®®®¬
, 𝑢(𝑝)2 =

√
𝑚

©«

0

1

0

1

ª®®®®®®®®¬
, 𝑣(𝑝)1 =

√
𝑚

©«

1

0

−1

0

ª®®®®®®®®¬
, 𝑣(𝑝)2 =

√
𝑚

©«

0

1

0

−1

ª®®®®®®®®¬
.

(B.4.26)

More generally, we can always orient a particle’s 3-momentum along the 𝑧-axis,
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in which case:

𝑢(𝑝)1 =

©«

√
𝐸 − 𝑝𝑧

0√
𝐸 + 𝑝𝑧

0

ª®®®®®®®®¬
, 𝑢(𝑝)2 =

©«

0√
𝐸 − 𝑝𝑧

0√
𝐸 + 𝑝𝑧

ª®®®®®®®®¬
𝑣(𝑝)1 =

©«

√
𝐸 + 𝑝𝑧

0

−√𝐸 − 𝑝𝑧
0

ª®®®®®®®®¬
, 𝑣(𝑝)2 =

©«

0√
𝐸 + 𝑝𝑧

0

−√𝐸 − 𝑝𝑧

ª®®®®®®®®¬
.

(B.4.27)

Quantization

Now that we have a sensible Lagrangian and the classical solutions to the

Dirac equation, the remaining steps to quantization follow closely that for our

complex scalar field in Section B.2.4, but with two notable differences. The first

is that we now must sum over the two spin components of 𝑢𝑠(𝑝) and 𝑣𝑠(𝑝), in
addition to integrating over the momentum:

𝜓(𝑥) =
∑
𝑠=1,2

∫
𝑑3𝑝

(2𝜋)3
[
𝑏𝑠®𝑝 𝑢𝑠(𝑝)𝑒−𝑖𝑝·𝑥 + 𝑐𝑠†®𝑝 𝑣𝑠(𝑝)𝑒 𝑖𝑝·𝑥

]
,

�̄�(𝑥) =
∑
𝑠=1,2

∫
𝑑3𝑝

(2𝜋)3
[
𝑏𝑠†®𝑝 �̄�𝑠(𝑝)𝑒 𝑖𝑝·𝑥 + 𝑐𝑠®𝑝 �̄�𝑠(𝑝)𝑒−𝑖𝑝·𝑥

]
.

(B.4.28)

As before, we have positive and negative frequency solutions, with the 𝑏/𝑏† and
𝑐/𝑐† operators associated with particles of the same mass and opposite charge.

For spinors, we find that the 𝑏𝑠† |0〉 and 𝑐𝑠† |0〉 also have opposite spins,
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i.e. for the 𝑧-axis angular momentum operator 𝐽𝑧 (which can be derived through

Noether’s theorem as we did for the momentum operator in Section 3.1.2):

𝐽𝑧 𝑏𝑠† |0〉 = ±1
2𝑏

𝑠† |0〉 , 𝐽𝑧 𝑐𝑠† |0〉 = ∓1
2 𝑐

𝑠† |0〉 . (B.4.29)

By convention, we take 𝑏𝑠† and 𝑏𝑠 to be the creation and annihilation operators

for the electron, and 𝑐𝑠† and 𝑐𝑠 for its antiparticle, the positron. Thus, �̄�𝑠(𝑥) |0〉
corresponds to an electron at 𝑥 with spin state 𝑠, and 𝜓𝑠(𝑥) |0〉 to a positron at 𝑥

with the opposite spin state to 𝑠.

Through his equation, Dirac was the first to predict the existence of anti-

matter in 1930 [434] (although he initially thought the electron’s antiparticle was

the proton). This prediction was soon confirmed by the discovery of a particle

with the same mass as the electron but opposite charge by Carl Anderson in a

bubble chamber in 1932 [435]. Both were awarded the Nobel prize.

The spin-statistics connection

The second, extremely important difference from scalar quantization is

that, because spinors are spin-1
2 particles, they must obey anticommutation rela-

tions:

{𝜓𝛼(𝑥),𝜓𝛽(𝑦)} = {�̄�𝛼(𝑥), �̄�𝛽(𝑦)} = 0,

{𝜓𝛼(𝑥), �̄�𝛽(𝑦)} = 𝛿𝛼𝛽𝛿
3(®𝑥 − ®𝑦),

(B.4.30)
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which also means the creation and annihilation operators satisfy:

{𝑏𝑠®𝑝 , 𝑏𝑟†®𝑞 } = {𝑐𝑠®𝑝 , 𝑐𝑟†®𝑞 } = (2𝜋)3𝛿3(®𝑝 − ®𝑞)𝛿𝑠𝑟 . (B.4.31)

Thus, unlike bosons, exchanging two particles yields a minus sign: 𝑏𝑟†®𝑝1
𝑏𝑠†®𝑝1

|0〉 =

−𝑏𝑠†®𝑝2
𝑏𝑟†®𝑝1

|0〉, confirming that spinors obey Fermi-Dirac statistics and obey the

Paul-Exclusion principle.

Were we to try and impose our earlier commutation relations for spinors

(or indeed, any half-integer-spin field), we would run into several issues. These

include the time-ordered product in the 𝑆-matrix not being Lorentz invariant,

and antiparticles contributing arbitrarily negative energies, making the theory

unstable. They are all related to the deep connection between spin and statistics:

the requirement of Lorentz invariance, stability, and causality in a QFT necessi-

tates that half-integer-spin particles obey Fermi-Dirac, and integer-spin particles

Bose-Einstein statistics.12

B.4.5 Interactions and Feynman rules

Having quantized the free Dirac field, we now discuss interactions, again

focusing on small (and renormalizable) perturbations to the free theory. We start

by presenting the propagators for the Dirac field and then extending our scalar

12For more detailed discussion, see e.g. Peskin and Schroeder [81] Chapter 3.5 and
Schwartz [86] Chapter 12.
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Yukawa theory from Section 3.2 to spinor “nucleons”.

Propagators

We define the propagator for the Dirac field the same as for scalar fields

in Section 3.1.4:

𝐷𝛼𝛽(𝑥 − 𝑦) = 〈0| 𝜓(𝑥)𝛼�̄�(𝑦)𝛽 |0〉 =
∫

𝑑3𝑝

(2𝜋)3
1

2𝐸𝑝

∑
𝑠

𝑢𝑠𝛼(𝑝)�̄�𝑠𝛽(𝑝)𝑒−𝑖𝑝·(𝑥−𝑦),

(B.4.32)

where 𝛼 and 𝛽 index the spinor components. Again, we have an extra sum over

the spin states. With some more matrix algebra one can show that these kinds

of sums simplify nicely to

∑
𝑠

𝑢𝑠𝛼(𝑝)�̄�𝑠𝛽(𝑝) = (/𝑝 + 𝑚)𝛼𝛽 ,
∑
𝑠

𝑣𝑠𝛼(𝑝)�̄�𝑠𝛽(𝑝) = (/𝑝 − 𝑚)𝛼𝛽 , (B.4.33)

so that we end up with, in momentum space, the Feynman propagator:

Δ𝐹(𝑝) ≡ 〈0| 𝑇𝜓(𝑥)�̄�(𝑦) |0〉 = 𝑖(/𝑝 + 𝑚)
𝑝2 − 𝑚2 + 𝑖𝜖 . (B.4.34)

Note that we have now suppressed the spinor indices; Δ𝐹 is still a 4× 4 matrix in

spinor space. Note as well the relative minus sign in the time-ordering operator
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for fermions, due to exchanging the fields:

〈0| 𝑇𝜓(𝑥)�̄�(𝑦) |0〉 =

〈0| 𝜓(𝑥)�̄�(𝑦) |0〉 𝑥0 > 𝑦0,

− 〈0| �̄�(𝑦)𝜓(𝑥) |0〉 𝑥0 < 𝑦0.
(B.4.35)

External lines

For scalars, external line terms such as 𝜙 |𝑝〉 simply contributed a factor

of 1 to the matrix element, where |𝑝〉 is again a one-particle meson state with

momentum 𝑝:

𝜙 |𝑝〉 ∼
∫

𝑑3𝑝′

(2𝜋)3
1√
2𝐸𝑝′

𝑎®𝑝′𝑒−𝑖𝑝
′·𝑥√2𝐸𝑝 𝑎†®𝑝 |0〉 = 𝑒−𝑖𝑝·𝑥 |0〉 . (B.4.36)

(The 𝑒−𝑖𝑝·𝑥 factor contributes only to the momentum conservation delta function

in the 𝑆-matrix element.) For spinors, we instead end up with a spinor factor.

For example, for an incoming fermion with momentum 𝑞 and spin 𝑠:

𝜓 |𝑞, 𝑠〉 ∼
∫

𝑑3𝑞′

(2𝜋)3
1√
2𝐸𝑞′

′∑
𝑠

𝑏𝑠
′
®𝑞′𝑢

𝑠′(𝑞′)𝑒−𝑖𝑞′·𝑥√2𝐸𝑞 𝑏𝑠†®𝑞 |0〉 = 𝑢𝑠(𝑞)𝑒−𝑖𝑞·𝑥 |0〉 .

(B.4.37)

We can see looking at the form of the quantized fields (Eq. B.4.28), and which

terms will contribute something non-zero, that incoming (outgoing) external
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fermions will be associated with a 𝑢 (�̄�) and antifermions with a �̄� (𝑣) factor.13

Yukawa theory reloaded

We now revisit Yukawa theory, the simplest possible theory of interac-

tions for spinors. The Lagrangian is the same as in Eq. 3.2.3, but now with 𝜓 a

spinor:

ℒ =
1
2𝜕

𝜇𝜙𝜕𝜇𝜙 + 𝑖�̄�/𝜕𝜓 − 1
2𝑚

2𝜙2 −𝑀�̄�𝜓 − 𝑔𝜙�̄�𝜓. (B.4.38)

Note that through dimensional analysis, since [𝑀�̄�𝜓] = [�̄�/𝜕𝜓] !
= 4 we can de-

duce that [𝜓] = 3
2 . This means that (1) the Yukawa interaction is marginal, with

[𝜙�̄�𝜓] = 4 and [𝑔] = 0, and (2) importantly, there are no other renormaliz-

able, Lorentz-invariant interactionswe canwrite down for spinorswith the fields

at our disposal (modulo some 𝛾5’s thrown in, as we’ll discuss in Section B.4.6).

Terms like 𝜓𝜙2, /𝜕𝜓𝜙, or �̄�𝜓𝜙2 are all either not Lorentz-scalars or of dimension

≥ 5. In this sense, because their possible interactions are so heavily constrained

by their 3
2 -dimensionality, spinors in QFT are quite simple! There is only one

other spinor interaction in the SM, which we will see in Section 3.3, with gauge

bosons.

We again refer to 𝜙 and 𝜓 as the “meson” and “nucleon” fields, which is

13The “∼” becomes an “=” for aWick contraction, 𝜙 |𝑝〉, which is what we deal with with time-
ordered operator products.
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slightly more accurate now since nucleons are in reality fermions. The twomain

features missing from this theory are that the relevant mesons, the pions, are

pseudoscalars (to be discussed in the next section) and are a strong isospin triplet

(to be described briefly in Chapter. 4.1).

Definition B.4.1. The Feynman rules in momentum space for spinor Yukawa

theory are:

1. Vertices: = −𝑖 𝑔

2. Internal lines (propagators)

Mesons:
𝑝

=
𝑖

𝑝2 − 𝑚2 + 𝑖𝜀 Nucleons:
𝑞

=
𝑖(/𝑞 + 𝑚)

𝑞2 −𝑀2 + 𝑖𝜀

3. External lines (on-shell particles)

Incoming mesons: = 1

Outgoing mesons: = 1

Incoming nucleons:
𝑞, 𝑠

= 𝑢𝑠(𝑞)
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Outgoing nucleons:
𝑞, 𝑠

= �̄�𝑠(𝑞)

Incoming antinucleons:
𝑞, 𝑠

= �̄�𝑠(𝑞)

Outgoing antinucleons:
𝑞, 𝑠

= 𝑣𝑠(𝑞)

4. Impose momentum conservation at each vertex.

5. Integrate over the momentum 𝑘 flowing through each loop.

6. Figure out the sign based on statistics.

Meson decay and the Higgs decay width

𝜙

�̄�𝑠1(𝑞1)

𝑣𝑠2(𝑞2)

Figure B.3. Tree-level Feynman diagram for meson decay via a Yukawa interac-
tion.

Thematrix element formeson decay into a fermion-antifermion pair with

spin and momentum 𝑠1, 𝑞1 and 𝑠2, 𝑞2, respectively, to first-order can be read off
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from the Feynman diagram in Figure B.3:

𝑖ℳ = −𝑖 𝑔�̄�𝑠1(𝑞1)𝑣𝑠2(𝑞2) (B.4.39)

We can calculate the decay rate as in Section 3.2.4, except now we have to

sum over the spins of the fermions:

𝑑Γ =
2∑

𝑠1 ,𝑠2

1
2𝑚 |ℳ|2 𝑑ΠLIPS =

𝑔2

2𝑚

2∑
𝑠1 ,𝑠2

���̄�𝑠1(𝑞1)𝑣𝑠2(𝑞2)
��2 𝑑ΠLIPS. (B.4.40)

In the COM frame, we can choose 𝑞1 = (𝑚2 , 0, 0, 𝑞) and 𝑞2 = (𝑚2 , 0, 0,−𝑞), with

𝑞2 = 𝑚2

4 −𝑀2 by energy conservation. Using the forms of �̄�𝑠 and 𝑣𝑠 we found in

Eq. B.4.27, we see that the sum over spin states simplifies nicely:

2∑
𝑠1 ,𝑠2

���̄�𝑠1(𝑞1)𝑣𝑠2(𝑞2)
��2 = 8𝑞2 = 2(𝑚2 − 4𝑀2). (B.4.41)

Since this is independent of the final state kinematics, the integral of 𝑑ΠLIPS is

the same as for the scalar meson decay, and we obtain an the overall decay rate

of:

Γ =
𝑔2𝑚
16𝜋

(
1 − 4𝑀2

𝑚2

)3/2
. (B.4.42)

As we hinted at in Section 3.2.4, this is in fact the decay width of the

Higgs boson to fermions at tree level, if we plug in the Higgs Yukawa coupling
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constant 𝑔 𝑓 =
√

2𝑚 𝑓/𝑣. Here 𝑚 𝑓 is the fermion mass and 𝑣 is the Higgs vac-

uum expectation value, 246GeV. For example, for the 𝐻 → 𝜇+𝜇− decay, with

𝑀 = 𝑚𝜇 = 105.7MeV and 𝑚 = 𝑚𝐻 = 125GeV, we get Γ ≈ 900 eV, exactly in line

with the predicted value [436]!

One can similarly update our nucleon scattering amplitudes from Sec-

tion 3.2.3, which simply gain some inner products between the incoming and

outgoing spin states (see e.g. Tong QFT [74] Chapter 5.7). Notably, however, the

𝑡-channel and 𝑢-channel diagrams (Figure B.2) now have a relative minus sign,

in accordance with Fermi-Dirac statistics.

B.4.6 CPT Symmetries

In this section, we discuss three important discrete symmetries in QFT. As

discussed in Chapter 2.3, the full Lorentz group includes the parity 𝑃 and time

reversal 𝑇 operators. In the 4-vector representation, they have the simple forms

𝑃 = diag(1,−1,−1,−1) and 𝑇 = diag(−1, 1, 1, 1), meaning

𝑃 : (𝑡 , ®𝑥) → (𝑡 ,−®𝑥), 𝑇 : (𝑡 , ®𝑥) → (−𝑡 , ®𝑥). (B.4.43)

However, their forms in other representations, such as spinors, are not as

straightforward.

Observe also that all our complex Lagrangians so far have been invariant
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under some form of complex conjugation 𝜓 ↔ 𝜓∗. This represents another dis-

crete symmetry, and since we know from Eq. 3.1.17 that complex conjugation

inverts “charge”, we call this charge conjugation, or 𝐶, symmetry.

All local, relativistic QFTs are necessarily invariant under the combined

𝐶𝑃𝑇 symmetry; this is known as the CPT theorem [437, 438].14 Whether a the-

ory is individually 𝐶, 𝑃, or 𝑇 invariant, however, must be determined by experi-

ment,15 as we give examples of below. If it is, we must impose the symmetries in

our mathematical formulation by carefully defining the actions of the relevant

operators; i.e., we have to consider how 𝜓 must transform under 𝑃 to maintain

𝑃-invariance of the Lagrangian, etc.

Such symmetries are crucial handles for understanding QFTs, particu-

larly in the case of the weak and strong interactions for which we have other-

wise little classical intuition. By studying them, we often glean important in-

sights into the theory, such as why certain processes are forbidden: for example,

we now understand that the pion cannot decay into three photons because this

would violate the 𝐶-invariance of QED.

14One way to convince yourself of this is to check that all possible Lorentz scalar terms in the
Lagrangian are invariant under 𝐶𝑃𝑇, as shown in Peskin and Shroeder [81] Chapter 3.6.

15And also somewhat by the requirement of anomaly cancellation; see e.g. Tong SM [76]
Chapter 4.
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𝑃- and 𝐶𝑃-violation

Historically, it was thought that parity individually is a universal symme-

try of nature. Indeed, this was verified experimentally for electromagnetism and

the strong interaction, but, surprisingly, in 1956 an experiment measuring the

isotropy of the beta decay of cobalt-60 to nickel-60 by Chien-Shiung Wu showed

that the weak interaction in fact violates parity- (and 𝐶-) invariance [439]. The

two theorists, Yang Chen-Ning and Lee Tsung-Dao, who proposed this experi-

ment won the Nobel prize the year after but, controversially, Wu did not.

It was then proposed by Lev Landau [440] and others that perhaps the

combined 𝐶𝑃-symmetry is the true symmetry of nature. As we define below,

the 𝐶𝑃 operation transforms a particle into its antiparticle, hence, 𝐶𝑃-invariance

can be thought of as saying the laws of physics are the same for particles and an-

tiparticles. This indeed appeared to be the case until 1964, when the Fitch-Cronin

experiment discovered small, indirect 𝐶𝑃-violation by the weak interaction by

measuring decays of neutral kaons [441], for which another Nobel prize was

awarded to James Cronin and Val Fitch. Since then, several experiments have

observed both direct and indirect 𝐶𝑃-violation, and quantifying the magnitude

of 𝐶𝑃-violation in different sectors of the SM remains an active area of research

in HEP (see Ref. [442] Chapters 13-14 for a nice comprehensive review).

Interestingly, 𝐶𝑃-violation is only possible through the weak interaction

if there exist ≥ 3 generations of fermions, whereas it is expected for the strong
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interaction but not observed (the so-called “strong 𝐶𝑃 problem” [102, 103].16

Furthermore, the experimentally determined magnitude of 𝐶𝑃-violation in the

weak interaction is about 1000× smaller than what is allowed [103, 442]. These

mysterious “coincidences” — Why did nature “choose” exactly the minimum

number of generations needed for 𝐶𝑃-violation? Why is there no strong 𝐶𝑃-

violation? etc. — suggest deeper underlying physics, such as “axions” [443].

Scalar fields

We see from our complex scalar Lagrangian in Eq. 3.1.15 that it can only

be invariant under 𝐶, 𝑃, or 𝑇 if they transform the field 𝜙 by at most a complex

phase: 𝜙 → 𝑒 𝑖𝛼𝜙. A further physical requirement, however, is that applying any

of the operators twice should return the original field, which thus constrains the

possible transformations to:

𝐶: 𝜙(𝑡 , ®𝑥) → ±𝜙∗(𝑡 , ®𝑥),
𝑃: 𝜙(𝑡 , ®𝑥) → ±𝜙(𝑡 ,−®𝑥),
𝑇: 𝜙(𝑡 , ®𝑥) → ±𝜙(−𝑡 , ®𝑥).

(B.4.44)

The time-reversal operation is a bit subtle, as it must be anti-unitary. We will not

discuss it much further, although its implications can be fun to think about.

16The difference is a consequence of an ABJ anomaly for the SU(2) gauge group (see e.g. Tong
SM [76] Chapter 5.1).
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Nomenclature Whether a field transforms with a + or − sign under 𝑃 is called

its intrinsic parity, and similarly under 𝐶 its intrinsic 𝐶-parity. We also refer to

them as “even” or “odd” under the transformation, respectively. In particular,

an odd-parity scalar, i.e. one which transforms with a minus sign under parity,

is called a pseudoscalar. The Higgs field, for example, is a scalar, while the pion

is a pseudoscalar (as was determined based on nuclear interactions).

Vector fields

Thoughwe introduce vector fields in detail in the next section, their trans-

formation properties are analogous to scalars and simple enough to describe

here:

𝐶: 𝐴𝜇(𝑡 , ®𝑥) → ±𝐴†𝜇(𝑡 , ®𝑥),
𝑃: 𝐴𝜇(𝑡 , ®𝑥) → ±𝜂𝜇𝜈𝐴𝜈(𝑡 ,−®𝑥),
𝑇: 𝐴𝜇(𝑡 , ®𝑥) → ∓𝜂𝜇𝜈𝐴𝜈(−𝑡 , ®𝑥),

(B.4.45)

where 𝜂𝜇𝜈 is the Minkowski metric (i.e. 𝑃 and 𝑇 flip the sign of the first and the

last three components of 𝐴𝜇, respectively).

We use similar “odd” and “even” nomenclature for vectors, with an odd-

parity vector called a pseudovector. Recall for example that the electric and

magnetic 3-vector fields are vectors and pseudovectors, respectively. Notably,

the photon is odd under 𝐶 while the neutral pion; this explains why the pion
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can decay into two photons (since the two photons have a combined parity of

(−1)(−1) = +1), but not to three, even though either would be allowed kinemati-

cally.

Spinors: parity

Spinors live in a more complicated representation of the Lorentz group,

so it takes more work to derive their transformations. On the other hand, this

also means their properties and the physical consequences are more interesting.

If 𝑃 is a true symmetry of the theory, after a parity transformation𝜓′(𝑥′) =
𝑃𝜓(𝑥)𝑃† must satisfy the parity-transformed Dirac equation:

(𝑖𝛾𝜇𝜕′𝜇 − 𝑚)𝜓′(𝑥′) = 0, (B.4.46)

where 𝑥𝜇 → 𝑥′𝜇 = (𝑥0,−®𝑥) and 𝜕′𝜇 ≡ 𝜕/𝜕𝑥′𝜇 under parity. One can see, by

multiplying the original Dirac equation by 𝛾0, that this is satisfied if 𝜓′(𝑥′) =

±𝛾0𝜓(𝑥):

𝛾0(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓(𝑥) = (𝑖𝛾𝜇𝜕′𝜇 − 𝑚)𝛾0𝜓(𝑥) = (𝑖𝛾𝜇𝜕′𝜇 − 𝑚)𝜓′(𝑥′) = 0. (B.4.47)

Again, the sign in the transformation indicates the intrinsic parity of the field.

Looking at the form of 𝛾0 and 𝜓 in the Weyl basis (Eqs. B.4.4 and B.4.11),

we see that the parity transformation swaps around left- and right-handed
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spinors:

𝑃𝜓𝐿(𝑥)𝑃† = ±𝜓𝑅(𝑥′), 𝑃𝜓𝑅(𝑥)𝑃† = ±𝜓𝐿(𝑥′). (B.4.48)

Chirality being inverted makes sense given its (loose) connection to helicity,

which is flipped under parity. Similarly, remembering from Section B.4.4 that

particle and anti-particle solutions to the Dirac equation have the form 𝑢(𝑝) ∝
(𝜉, 𝜉)𝑇 and 𝑣(𝑝) ∝ (𝜂,−𝜂)𝑇 , respectively, we see that fermions and antifermions

have even and odd parity, respectively. The weak interaction breaks parity sym-

metry by interacting only with left-chiral fermions and right-chiral antifermions.

We can also check that the Lorentz scalars and vectors we constructed,

�̄�𝜓 and �̄�𝛾𝜇𝜓, are indeed invariant under parity, e.g.:

𝑃: �̄�𝜓 → �̄�′𝜓′ = 𝜓†𝛾0𝛾0𝛾0𝜓 = 𝜓†𝛾0𝜓 = �̄�𝜓. (B.4.49)

However, we can also construct pseudoscalars and pseudovectors by throwing in a

𝛾5 matrix: �̄�𝛾5𝜓 and �̄�𝛾5𝛾𝜇𝜓. One can confirm this by grinding it out as above,

or by simply looking at their form in the Weyl basis, e.g.:

�̄�𝛾5𝜓 =
(
𝜓†
𝐿 𝜓†

𝑅

) ©«
0 1

1 0
ª®¬ ©«

−1 0

0 1

ª®¬ ©«
𝜓𝐿

𝜓𝑅

ª®¬ = 𝜓†
𝐿𝜓𝑅 − 𝜓†

𝑅𝜓𝐿. (B.4.50)

We thus see that this will pick up an overall minus sign under 𝜓𝐿 ↔ 𝜓𝑅.
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Spinors: charge conjugation and 𝐶𝑃

Under charge conjugation, 𝜓 → 𝜓𝑐 = 𝐶𝜓∗, where 𝐶 is a matrix that can

mix up the spinor components. We can follow similar reasoning as for parity to

show that 𝜓𝑐 satisfies the Dirac equation only if:

𝐶−1𝛾𝜇𝐶 = −(𝛾𝜇)∗ (B.4.51)

In the Weyl basis, this means 𝐶 = ±𝑖𝛾2 and thus

𝐶:𝜓 → 𝜓𝑐 = ±𝑖𝛾2𝜓∗, (B.4.52)

where as always the sign in the transformation indicates the intrinsic 𝐶-parity

of the field. Looking at the individual components:

𝐶:𝜓𝐿 → ±𝑖𝜎2𝜓∗
𝑅 , 𝐶:𝜓𝑅 → ∓𝑖𝜎2𝜓∗

𝐿. (B.4.53)

𝛾2 and complex conjugation both flip chirality, so combined we see that charge

conjugation retains it, transforming left-(right-)chiral fermions into left-(right-

)chiral antifermions. Thus, the weak interaction violates 𝐶-symmetry as well by

coupling only to opposite-chirality fermions and antifermions.

Combining parity and charge conjugation gives us, in the Weyl basis:

𝐶𝑃: 𝜓 → ±𝑖𝛾2𝛾0𝜓∗, (B.4.54)
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or, in terms of the Weyl spinors:

𝐶𝑃: 𝜓𝐿 → ±𝑖𝜎2𝜓∗
𝐿 , 𝐶𝑃:𝜓𝑅 → ∓𝑖𝜎2𝜓∗

𝑅 . (B.4.55)

The combination thus transforms fermions into their opposite-chirality an-

tifermions, and vice versa. Often, this transformation is considered to define

the relation between particles and antiparticles, and is a better symmetry of the

weak interaction (and, hence, the sm) than 𝐶 or 𝑃 individually. However, as

discussed above, it is violated as well, to a lesser extent, through the mixing of

the three generations of fermions.

Spinors: time reversal and CPT

The time reversal operation is more subtle, as it is anti-unitary. We will

forego a detailed discussion of these subtleties (see e.g. Schwartz [86] Chapter

11.6), and note that the time reversal operator 𝑇 is defined to transform a Dirac

spinor in the Weyl basis as:

𝑇: 𝜓(𝑡 , ®𝑥) → ±𝑖𝛾1𝛾3𝜓(−𝑡 , ®𝑥). (B.4.56)

It flips both the spin andmomenta of the fermions, and is violated as well by the

weak interaction (as it must be to ensure 𝐶𝑃𝑇-invariance, given 𝐶𝑃-violation).

Finally, we can combine all these operations to obtain the 𝐶𝑃𝑇-
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transformation of the Dirac spinor:

𝐶𝑃𝑇: 𝜓(𝑥) → ± − 𝑖𝛾2𝛾0𝛾1𝛾3𝜓∗(−𝑥) = −𝛾5𝜓∗(−𝑥). (B.4.57)

This transforms a particle into an antiparticle reversed in space and time.

One interesting way of testing 𝐶𝑃𝑇-invariance is to measure the rates of a

process’ 𝐶𝑃- and 𝑇-conjugates, and confirm that they are equal. All experimen-

tal tests to this date have confirmed 𝐶𝑃𝑇-invariance [442].

B.5 Gauge theories

B.5.1 Why gauge invariance?

Gauge invariance is needed in order to embed massless spin-1 particles

with only two physical DoFs (i.e., two polarizations), like the photon or gluons,

into a spin-1 Lorentz tensor with 3 DoFs.17 It also ensures the renormalizability

of spin-1 fields (a Nobel-prize-winning result of ‘t Hooft in 1971 [444, 445]). The

spin-1 tensor itself is simply an abstract mathematical convenience, which is re-

dundant up to gauge transformations; only terms that are gauge invariant can

be physical.

17And similarly, for a massless spin-2 particle, i.e., the graviton.
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Why the charade of inventing fields with extra DoFs and then imposing

an abstract symmetry to remove them? The purely pragmatic answer is that it

has proven themost expedient and preciseway to calculate physical observables.

In this sense, it is not so dissimilar to using complex numbers to describe oscil-

lating physical phenomena or renormalizing by imposing a cut-off and taking

the limit as it goes to infinity. They are all simply mathematical conveniences

without necessarily any deeper physical meaning.

A less abstact alternative proposed in the 1960s, for example, was S-matrix

theory which aimed to do away with all this QFT mumbo-jumbo and focus di-

rectly on the physical observables; however, to quote Weinberg, “it got nowhere

with real calculations” [446]. On the other hand, despite its abstruseness, in the

end with QFT we simply draw some pretty pictures and can quickly read off

extremely sophisticated results (with some heavy caveats).

A more poetic view is that, on top of their practicality, gauge symmetries

offer a beautiful and elegant description of the fundamental forces of nature. It is

rather amazing that we need only to require a quantum U(1) gauge theory, with

the usual physical properties of Lorentz invariance, causality, renormalizability

etc., and QED naturally falls out! To quote O’Raifeartaigh, “gauge symmetry

introduces all the physical radiation fields in a natural way and determines the

form of their interactions, up to a few coupling constants. It is remarkable that

this variety of physical fields, which play such different roles at the phenomeno-

logical level, are all manifestations of the same simple principle and even more
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remarkable that the way in which they interact with matter is prescribed in ad-

vance.” [447].

This universality can be extended further with the geometric view of

gauge theories, which has a strong connection to general relativity (GR). Namely,

invariance under gauge transformations in the SM is analogous to invariance un-

der local diffeomorphisms (an external local symmetry) in GR, and gauge fields

are themselves connections on their respective gauge groups’ fiber bundles, sim-

ilar to the Levi-Civita connection between tangent bundles on a manifold.18 In-

deed, this is why the “covariant derivative” below is named so.

Finally, there is the possibility that gauge invariance is simply one of those

mysteries of the SM, like flavor and charge quantization, which point to some

deeper underlying physics we are yet to uncover. For example, in string theory,

gauge invariance can arise naturally in an EFT of massless spin-1 particles [448].

Ultimately, these considerations are not particularly relevant to the experimental

physics, but after all this is a dissertation for a doctorate of philosophy...

18See e.g. Frederic Schuller’s lectures [78] for a great introduction to the geometric view of
physics.
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Appendix C

Supplementary Material for Chap-
ter 10

C.1 Message Passing GANs

C.1.1 Point Cloud Generative Models

ShapeNet Point Clouds

A number of successful generative models exploit a key inductive bias of

ShapeNet-based clouds: that the individual distributions of sampled points con-

ditioned on a particular object are identical and independent (the i.i.d assump-

tion). This assumption allows for hierarchical generative frameworks, such as

Point-Cloud-GAN (PCGAN) [289], which uses two networks: one to generate
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Figure C.1. Comparison of real and PCGAN-generated distributions for a subset
of jet and particle features. Top: gluon jet features, Middle: light quark jets,
Bottom: top quark jets.
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a latent object-level representation, and a second to sample independent points

given such a representation. The PointFlow [290] and Discrete PointFlow [291]

models use a similar idea of sampling independently points conditioned on a

learned latent representation of the shape, but with a variational autoencoder

(VAE) framework and using normalizing flows for transforming the sampled

points.

This hierarchical-sampling approach is appealing for ShapeNet clouds,

however, as discussed in Chapter 7.3.3 the key i.i.d. assumption is not applicable

to jets with their highly correlated particle constituents. In fact, in contrast to

ShapeNet objects which have a structure independent of the particular sampled

cloud, jets are entirely defined by the distribution of their constituents.

Another model, ShapeGF [292], uses an approach of again sampling

points independently from a prior distribution, but transforming them to ar-

eas of high density via gradient ascent, maximizing a learned log-density con-

centrated on an object’s surface. This approach suffers as well from the i.i.d.

assumption in the context of jets, and additionally, unlike for ShapeNet point

clouds, there is no such high-density region in momentum-space where parti-

cles tend to be concentrated, so learning and maximizing a log-density is not

straightforward.

To support our overall claim of the inviability of the i.i.d. assumption for

particle clouds, we train a PCGANmodel on JETNET and show the produced fea-

ture distributions in Figure C.1. We can see that, as expected, while this network
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is partially reproducing the particle feature distributions, it is entirely unable to

learn the jet-level structure in particle clouds.

Molecular Point Clouds

3D molecules are another common point-cloud-style data structure, and

there have been developments in generative models in this area as well. Kohler

et al. [293] introduce physics-motivated normalizing flows equivariant to rota-

tions around the center of mass, i.e. the SO(N) symmetries, for generating point

clouds. This is appealing as normalizing flows give access to the explicit like-

lihood of generated samples, and having an architecture equivariant to physi-

cal symmetries such as 3D rotations can improve the generalizability and inter-

pretability of the model. Since jets are relativistic, however, we require an ar-

chitecture equivariant to the non-compact SO(3, 1) Lorentz group, to which this

model has not been generalized yet. Simm et al. [294] present a reinforcement-

learning-based approach for generating 3D molecules, using an agent to itera-

tively add atoms to a molecule and defining the reward function as the energy

difference between the new molecule and the old with the new atom at the ori-

gin. This reward function is not directly applicable to jets. where particle dis-

tributions are based on the QCD dynamics rather than on minimizing the to-

tal energy. Finally, Gebauer et al. [295] introduce G-SchNet, an autoregressive

model for producing molecules represented as point clouds, iteratively adding

one atom at a time based on the existing molecule. Their iterative procedure
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however was proposed for point clouds of at most nine atoms, and does not

scale well in terms of time to larger clouds.

Overall, all the models discussed heavily incorporate inductive biases

which are specific to their respective datasets and don’t apply to JetNet. How-

ever, they are extremely interesting approaches nonetheless, and adapting them

with jet-motivated biases should certainly be explored in future work. Indeed, a

significant contribution of our work is publishing a dataset which can facilitate

and hopes to motivate such development.

C.1.2 Training and Implementation Details

PyTorch code and trained parameters for models in Table 10.2 are pro-

vided in the MPGAN repository [331]. Models were trained and hyperparam-

eters optimized on clusters of NVIDIA GeForce RTX 2080 Ti, Tesla V100, and

A100 GPUs.

MPGAN

We use the least squares loss function [335] and the RMSProp optimizer

with a two time-scale update rule [324] with a learning rate (LR) for the dis-

criminator three times greater than that of the generator. The absolute rate dif-

fered per jet type. We use LeakyReLU activations (with negative slope coefficient
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0.2) after all MLP layers except for the final generator and discriminator outputs

where tanh and sigmoid activations respectively are applied. We attempted dis-

criminator regularization to alleviatemode collapse via dropout [218], batch nor-

malization [219], a gradient penalty [449], spectral normalization [450], adaptive

competitive gradient descent [451] and data augmentation of real and generated

graphs before the discriminator [452–454]. Apart from dropout (with fraction

0.5), none of these demonstrated significant improvement with respect to mode

dropping or cloud quality.

We use a generator LR of 10−3 and train for 2000 epochs for gluon jets,

2 × 10−3 and 2000 epochs for top quark jets, and 0.5 × 10−3 and 2500 epochs for

light quark jets. We use a batch size of 256 for all jets.

rGAN, GraphCNNGAN, TreeGAN, and PointNet-Mix

For rGAN and GraphCNNGAN we train two variants: (1) using the

original architecture hyperparameters in Refs. [296, 297] for the 2048-node

point clouds, and (2) using hyperparameters scaled down to 30-node clouds—

specifically: a 32 dimensional latent space, followed by layers of 64, 128, and

90 nodes for r-GAN, or followed by two graph convolutional layers with node

features sizes of 32 and 24 respectively for GraphCNN-GAN. The scaled-down

variant performed better for both models, and its scores are the ones reported in

Table 10.2. For TreeGAN, starting from single vertex—in analogy with a jet orig-
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inating from a single particle—we use five layers of up-sampling and ancestor-

descendantmessage passing, with a scale-factor of two in each and node features

per layer of 96, 64, 64, 64, and 64 respectively. LRs, batch sizes, loss functions,

gradient penalties, optimizers, ratios of critic to generator updates, activations,

and number of epochs are the same as in the original paper and code. We use

the architecture defined in [300] for the PointNet-Mix discriminator.

FPND

Apart from the number of input particle features (three in our case,

excluding the mask feature), we use the original ParticleNet architecture in

Ref. [230]. We find training with the Adam optimizer, LR 10−4, for 30 epochs

outperformed the original recommendations on our dataset. Activations after

the first fully connected layer, pre-ReLU, are used for the FPND measurement.

PCGAN

We use the original PCGAN implementation for the sampling networks

and training, with a 256-dimensional latent object representation. For the latent

code GAN we use a 3 layer fully connected network for both the generator, with

an input size of 128 and intermediate layer sizes of 256 and 512, and discrimina-

tor, with intermediate layer sizes of 512 and 256, trained using the Wasserstein-

GAN [455] loss with a gradient penalty.
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Figure C.2. Particle 𝑝rel
T and relative jet mass distributions of real jets and those

generated by MPGAN without our masking strategy. Left: gluon, right: light
quark jets. We see that while for gluon jets the generator learns distributions
correctly, it struggles to learn the discontinuous spike, due to the zero-padded
particles, in the light quark 𝑝rel

T distribution. This also leads to a distorted mass
distribution.

C.1.3 Masking Strategies

In the JETNET dataset used for training MPGAN, jets with fewer than 30

particles are zero-padded to fill the 30-particle point cloud. Such zero-padded

particles pose a problem for the generator, which is not able to learn this sharp

discontinuity in the jet constituents (Figure C.2).

To counter this issue, we experiment with five masking strategies, out of

which the one described in Section 10.1.2 was most successful. The four alter-

natives, which all involve the generator learning the mask without any external

input, are shown in Figure C.3.

Strategy 1 treats the mask homogeneously as an extra feature to learn. A

variation of this weights the nodes in the discriminator the mask. In strategy 2,

a mask is calculated for each generated particle as a function of its 𝑝rel
T , based
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on an empirical minimum cutoff in the dataset. In particular, both a Heaviside-

step-function and a continuous mask function as in the figure are tested. The

standard MP discriminator, as described in Section 10.1.2, is used. Strategy 3

sees the generator applying an FC layer per particle in the initial cloud to learn

their respective masks, with both the MP discriminator, as well as a variant with

the number of unmasked nodes in the clouds added as an extra feature to the

FC layer. In strategies 1 and 3 we test both binary and continuousmasks. Finally,

in strategy 4, we train an auxiliary network to choose a number of particles to

mask (as opposed to sampling from the real distribution), which is then passed

into the standard MP generator.

We find that all such strategies are unable to produce accurate light

quark jets, and in fact trainings for each diverge in the fashion depicted in Fig-

ure C.4, even using each discriminator regularization method mentioned in Ap-

pendix C.1.2). We conclude that learning the number of particles to produce is

a significant challenge for a generator network, but is a relatively simple feature

with which to discriminate between real and fake jets. To equalize this we use

the strategy in Section 10.1.2 where the number of particles to produce is sam-

pled directly from the real distribution, removing the burden of learning this

distribution from the generator network.
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C.2 Generative Adversarial Particle Trans-

formers

C.2.1 Results on 150-particle jets

The distributions of real and generated particle and jet features for 150-

particle gluon jets by MPGAN and iGAPT are shown in Figure C.5.
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Figure C.5. Low-level particle feature distributions (far left and center left) and
high-level jet feature distributions (center right and far right) for the real data
(red),MPGAN-generateddata (blue), and iGAPT-generateddata (green), for 150-
particle gluon jets. A sample 𝑑 = 4 energy flow polynomial [322] is chosen in
the rightmost column.
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Appendix D

Supplementary Material for Chap-
ter 11

D.1 Further Discussion on IPMs vs. 𝑓 -

Divergences

A crucial advantage of IPMs in evaluating generative models is that they

consider the metric space of the distributions. We illustrate this with the help of

Figure D.1, inspired heavily by Refs. [63, 64], which shows an example real (in

red) and two generated (in blue) jet mass distributions. Clearly, in the context

of simulation, the second generated distribution contains a peak closer to the

real peak and, hence, is a better model. However, because 𝑓 -divergences such

as the KL or 𝜒2 look only at the pointwise difference between distributions, they

find both generated distributions to be as discrepant with the real. IPMs like the
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Wasserstein metric or MMD, on the other hand, generally identify the second

distribution as being closer to the real.

100 200 300 400 500

Generated Jet Mass 1 (GeV)

100 200 300 400 500

Generated Jet Mass 2 (GeV)Real Jet Mass (GeV)

100 200 300 400 500

Figure D.1. Example real and generated jet mass distributions used to illustrate
the benefit of IPMs in Appendix D.1, based on Refs. [63, 64].

D.2 Further Discussion on Gaussian

Dataset Experiments

Figure D.2 plots the time taken per measurement of each metric used in

Section 11.2 for different sample sizes, measured on an 8-core Intel Core i9 pro-

cessor. The quadratic scaling of theWasserstein and diversity and coverage met-

rics, in combination with their low rate of convergence, means their use for eval-

uation is practically difficult. MMD and precision and recall exhibit the same

scaling; however, are observed to converge within roughly 3000 samples. FGD∞

scales linearly and remains fast to compute even at the highest batch size tested.
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Figure D.2. Time taken per each metric on Gaussian-distributed datasets as de-
scribed in Section 11.2.
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Figure D.3. Scores of each metric on Gaussian-distributed datasets as described
in Section 11.2.
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Figure D.4. Scores of each metric on Gaussian-distributed datasets as described
in Section 11.2.
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Figures D.3 and D.4 show measurements of each metric on each distri-

bution discussed in Section 11.2, as well as FGD and MMD with a third-order

polynomial kernel for varying samples sizes. We can see from these plots that

indeed, as discussed in Refs. [356, 357], FGD is biased, but the solution from

Ref. [357] of extrapolating to infinite-sample size (FGD∞) largely solves this is-

sue. We also note that, perhaps surprisingly, a third-order polynomial kernel,

as used for the KID [356] in computer vision, is not sufficient to discern the mix-

tures of Gaussian distributions from the singleGaussian. Hence, we recommend

a fourth-order kernel for the kernel physics distance.

D.3 Alternative Jet Distributions

Distributions of particle- and jet-level features from the true and dis-

torted jets as described in Section 11.3 are shown in Figure D.5.
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FigureD.5. The probability, in arbitrary units (A.U.), of the particle 𝑝rel
T , a sample

𝑑 = 3 EFP, and a sample 𝑑 = 4 EFP for truth and distorted gluon jet distributions.
On the left are distribution-level distortions, and on the right particle-level.
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Appendix E

Supplementary Material for Chap-
ter 16

E.1 Model details

E.1.1 LGAE

For both the encoder and decoder, we choose 𝑁E
MP = 𝑁D

MP = 4 LMP layers.

The multiplicity per node in each LMP layer has been optimized to be{(
𝜏(𝑡)(𝑚,𝑛)

)E
}4

𝑡=1
= (3, 3, 4, 4) (E.1.1)
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for the encoder and {(
𝜏(𝑡)(𝑚,𝑛)

)D
}4

𝑡=1
= (4, 4, 3, 3) (E.1.2)

for the decoder, the components in the vector on the right-hand side are the mul-

tiplicity in each of the four LMP layers per network, and themultiplicity per layer

is the same for all representations. After each CG decomposition, we truncate

irreps of dimensions higher than (1/2, 1/2) for tractable computations, i.e., after

each LMP operation we are left with only scalar and vector representations per

node. Empirically, we did not find such a truncation to affect the performance of

themodel. This means that the LMP layers in the LGAE are similar in practice to

those of LorentzNet, which uses only scalar and vector representations through-

out, but are more general as higher dimensional representations are involved in

the intermediate steps before truncation.

The differentiable mapping 𝑓 (𝑑𝑖 𝑗) in Eq. 16.2.1 is chosen to be the

Lorentzian bell function as in Ref. [54]. For all models, the latent space contains

only 𝜏(0,0) = 1 complex Lorentz scalar, as we found increasing the number of

scalars beyond one did not improve the performance in either reconstruction or

anomaly detection. Empirically, the reconstruction performance increased with

more latent vectors, as one might expect, while anomaly detection performance

generally worsened from adding more than two latent vectors.

525



E.1.2 GNNAE

The GNNAE is constructed from fully-connected MPNNs. The update

rule in the (𝑡+1)-th MPNN layer is based onMPGAN’s (Section 10.1), and given

by

𝑚(𝑡)
𝑖 =

𝑛∑
𝑗=1

𝑓 (𝑡)𝑒

(
𝑥(𝑡)𝑖 ⊕ 𝑥(𝑡)𝑗 ⊕ 𝑑

(
𝑥(𝑡)𝑖 , 𝑥

(𝑡)
𝑗

))
, (E.1.3)

𝑥(𝑡+1)
𝑖 = 𝑓 (𝑡)𝑛

(
𝑥(𝑡)𝑖 ⊕ 𝑚(𝑡)

𝑖

)
, (E.1.4)

where 𝑥(𝑡)𝑖 is the node embedding of node 𝑖 at 𝑡-th iteration, 𝑑 is any distance

function (Euclidean norm in our case), 𝑚(𝑡)
𝑖 is the message for updating node

embedding in node 𝑖, 𝑓 (𝑡+1)
𝑒 and 𝑓 (𝑡+1)

𝑛 are any learnable mapping at the current

MP layer. A diagram for an MPNN layer is shown in Figure E.1. The overall

architecture is similar to that in Figure 16.1, with the LMP replaced by theMPNN.

The code for the GNNAE model can be found in the Ref. [456].

For both the encoder and decoder, there are 3 MPNN layers. The learn-

526



NodeNet

EdgeNet

Node embeddings

Figure E.1. An MPNN layer in the GNNAE. Here, EdgeNet and NodeNet are
feed-forward neural networks.

able functions in each layer are optimized to be

𝑓 (1)𝑛 = (LeakyReLU0.2 ◦ Linear30→15)
◦ (LeakyReLU0.2 ◦ Linear60→30)

𝑓 (1)𝑒 = (LeakyReLU0.2 ◦ Linear40→30),
◦ (LeakyReLU0.2 ◦ Linear50→40)
◦ (LeakyReLU0.2 ◦ Linear61→50),

(E.1.5)
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𝑓 (2)𝑛 = (LeakyReLU0.2 ◦ Linear15→8)
◦ (LeakyReLU0.2 ◦ Linear45→15)

𝑓 (2)𝑒 = (LeakyReLU0.2 ◦ Linear31→30),
◦ (LeakyReLU0.2 ◦ Linear30→30)
◦ (LeakyReLU0.2 ◦ Linear30→30),

(E.1.6)

𝑓 (3)𝑛 = (LeakyReLU0.2 ◦ Linear8→𝛿)
◦ (LeakyReLU0.2 ◦ Linear38→8)

𝑓 (3)𝑒 = (LeakyReLU0.2 ◦ Linear20→30),
◦ (LeakyReLU0.2 ◦ Linear16→20)
◦ (LeakyReLU0.2 ◦ Linear17→16),

(E.1.7)

where LeakyReLU0.2(𝑥) = max(0.2𝑥, 𝑥) is the LeakyReLU function.

Depending on the aggregation layer, the value of 𝛿 in 𝑓 (3)𝑛 and the final

aggregation layer is different. For GNNAE-JL encoders, 𝛿 = 𝑁 × dim(𝐿), where

𝐿 is the latent space, and 𝑁 is the number of nodes in the graph. Then, mean

aggregation is done across the graph. For GNNAE-PL encoders, 𝛿 = 𝑑, where 𝑑

is the node dimension in the latent space. In the GNNAE-JL decoder, the input

layer is a linear layer that recovers the particle cloud structure similar to that in

the LGAE.
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E.1.3 CNNAE

The encoder is composed of two convolutional layers with kernel size

(3, 3), stride size (2, 2), “same” padding, and 128 output channels, each followed

by a ReLU activation function. The aggregation layer into the latent space is

a fully-connected linear layer. The decoder is composed of transposed convo-

lution layers (also known as deconvolutional layers) with the same settings as

the encoder. A softmax function is applied at the end so that the sum of all

pixel values in an image is 1, as a property of the jet image representation. A 55-

dimensional latent space is chosen so that the compression rate is 55/90 ≈ 60%

for even comparisons with the LGAE and GNNAE models.

E.2 Training details

We use the Chamfer loss function [457–459] for the LGAE-Min-Max

and GNNAE-JL models, and MSE for LGAE-Mix and GNNAE-PL. We tested

the Hungarian loss [303, 460] and differentiable energy mover’s distance

(EMD) [325], calculated using the JETNET library [461], as well but found the

Chamfer and MSE losses more performant.

The graph-based models are optimized using the Adam optimizer [462]

implemented in PYTORCH [424] with a learning rate 𝛾 = 10−3, coefficients
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(𝛽1, 𝛽2) = (0.9, 0.999), and weight decay 𝜆 = 0. The CNNAE is optimized us-

ing the same optimizer implemented in TensorFlow [463]. They are all trained

on single NVIDIA RTX 2080 Ti GPUs each for a maximum of 20000 epochs us-

ing early stopping with the patience of 200 epochs. The total training time for

LGAE models is typically 35 hours, and at most 100 hours, while GNNAE-PL

and GNNAE-JL train for 50 and 120 hours on average, respectively. By contrast,

the CNNAE model, due to its simplicity, can typically converge within 3 hours.

E.3 Equivariance tests

We test the covariance of the LGAE models to Lorentz transformations

and find they are indeed equivariant up to numerical errors. Reference [54]

points out that equivariance to boosts in particular is sensitive to numerical pre-

cision, so we use double precision (64-bit) throughout the model. In addition,

we scale down the data by a factor of 1,000 (i.e. working in the units of PeV) for

better numerical precision at high boosts.

For a given transformation Λ ∈ SO+(3, 1) we compare Λ · LGAE(𝑝) and
LGAE(Λ · 𝑝) are compared, where 𝑝 is the particle-level 4-momentum. The rela-

tive deviation is defined as

𝛿𝑝(Λ) =
����mean(LGAE(Λ · 𝑝)) − mean(Λ · LGAE(𝑝))

mean(Λ · LGAE(𝑝))
���� (E.3.1)
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Figure E.2 shows themean relative deviation, averaged over each particle in each

jet, over 3000 jets from our test dataset from boosts along and rotations around

the 𝑧-axis. We find the relative deviation from boosts to bewithinO (
10−3) in the

interval 𝛾 ∈ [0, cosh(10)] (equivalent to 𝛽 ∈ [0, 1 − 4 × 10−9]) and from rotations

to be < 1012.
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Figure E.2. The relative deviations, as defined in Eq. E.3.1, of the output 4-
momenta 𝑝𝜇 to boosts along the 𝑧-axis (left) and rotations around the 𝑧-axis
(right).
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