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Abstract
Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and develop-
ment, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric 
CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these 
adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering 
FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be 
accomplished by targeting two key stimuli of FGF23 production—dietary phosphate absorption and iron deficiency. Ferric 
citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in 
adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review out-
lines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric 
citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-
controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3–4 (ClinicalTrials.
gov Identifier NCT04741646).

Keywords Pediatrics · Chronic kidney disease · Ferric citrate · Fibroblast growth factor 23

Introduction

Childhood and adolescence are crucial times for healthy 
growth and development. Children with chronic kidney 
disease (CKD) suffer from suboptimal growth, impaired 
neurocognitive development, and multisystemic organ dys-
function, which manifests as multiple CKD-associated co-
morbidities, including CKD-mineral bone disorder (CKD-
MBD) [1, 2], dysregulated iron metabolism [3, 4], anemia 
[3], and cardiovascular disease [5]. The adverse effects of 
these CKD-associated co-morbidities can have long-lasting 
consequences that persist into adulthood, contributing to a 

markedly reduced life expectancy for children with CKD 
[6]. Amelioration of these conditions may improve clinical 
outcomes for pediatric patients with CKD.

Contributing to these interrelated CKD co-morbidities is 
fibroblast growth factor 23 (FGF23), a predominantly bone-
derived phosphaturic hormone. Circulating concentrations 
of FGF23 increase early in the course of adult [7] and pedi-
atric [8] CKD—before other traditional markers of CKD-
MBD such as serum phosphate and parathyroid hormone—
and continue to increase as kidney function declines. In both 
adult and pediatric CKD cohorts, higher FGF23 concen-
trations are independently associated with adverse clinical 
outcomes, including left ventricular hypertrophy [9, 10] and 
CKD progression [11–13]. Multiple factors stimulate FGF23 
production, including dietary phosphate absorption [14, 15] 
and iron deficiency [16]. Targeting the stimuli of FGF23 
production may lower circulating FGF23 concentrations and 
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may reduce the development of FGF23-associated adverse 
clinical outcomes.

Recently, ferric citrate (Auryxia, Akebia Therapeutics, 
Inc., Cambridge, MA) was approved for clinical use as an 
enteral phosphate binder in adult patients with CKD on dial-
ysis, and as an iron replacement product in adult patients 
with non-dialysis-dependent CKD and iron deficiency ane-
mia [17]. By decreasing dietary phosphate absorption and 
improving iron status, ferric citrate may mitigate two stimuli 
for excess FGF23 production in CKD, leading to decreased 
circulating FGF23 concentrations (Fig. 1). In this review, 
we will describe the potentially deleterious effects of FGF23 
in CKD; summarize the published data from clinical tri-
als in adults evaluating ferric citrate in CKD; and present 
the background, hypotheses, and design features of the 
NIDDK-funded Ferric Citrate and Chronic Kidney Disease 
in Children (FIT4KiD) study, a 12-month, double-blind, ran-
domized, placebo-controlled trial to evaluate the effects of 
ferric citrate on changes in FGF23 levels in pediatric patients 
with CKD stages 3–4.

Fibroblast growth factor 23

FGF23 is an essential hormone secreted mainly by osteo-
cytes that physiologically regulates phosphate and 1,25-dihy-
droxyvitamin D (1,25(OH)2D). FGF23 decreases expression 
of the type II sodium-phosphate cotransporters (NaPi-2a and 
NaPi-2c) in renal proximal tubules, reducing renal phos-
phate reabsorption [18, 19]. FGF23 also decreases expres-
sion of renal 1α-hydroxylase, the enzyme that converts 
25(OH)D to active 1,25(OH)2D, and increases expression 
of renal 24-hydroxylase, the enzyme that converts 25(OH)

D and 1,25(OH)2D to inactive metabolites, thus decreasing 
overall renal 1,25(OH)2D production [20–22]. Decreased 
renal phosphate reabsorption and decreased 1,25(OH)2D-
mediated enteral phosphate absorption results in decreased 
serum phosphate concentrations. Therefore, in the setting of 
phosphate loading or hyperphosphatemia, an increase in cir-
culating FGF23 levels directly induces phosphate excretion 
and indirectly reduces dietary phosphate absorption, thus 
maintaining normal circulating phosphate concentrations. In 
the setting of CKD, bone [23] and circulating [7, 8, 24, 25] 
levels of FGF23 increase early and continue to increase as 
kidney function declines [7, 8, 24–26], helping to maintain 
normophosphatemia until late-stage CKD [7, 8].

Adverse effects of increased FGF23 concentrations 
in CKD

Although progressively increasing FGF23 concentrations in 
CKD help to prevent or mitigate hyperphosphatemia, ele-
vated FGF23 levels have also been independently associated 
with a multitude of adverse “off-target” effects. Most nota-
bly, FGF23 has emerged as a potential mediator of cardiac 
hypertrophy, independent of hypertension and vascular cal-
cification [27]. Studies conducted in vitro and in mice have 
demonstrated that FGF23 directly induces cardiac myocyte 
hypertrophy [9] by binding to cardiomyocyte FGF receptor 
4 (FGFR4), inducing the downstream phosphorylation of 
phospholipase Cγ (PLCγ) and the activation of calcineurin-
nuclear factor of activated T-cells (NFAT) signaling path-
ways that affect genes regulating cardiac remodeling [28, 
29]. Consistent with these pre-clinical observations, in both 
the adult Chronic Renal Insufficiency Cohort (CRIC) study 

Fig. 1  Ferric citrate inhibits two 
stimuli of FGF23 production, 
dietary phosphate absorption 
and iron deficiency. Lowering 
circulating FGF23 concentra-
tions may prevent the develop-
ment of various FGF23-associ-
ated, off-target, adverse effects
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[9] and the pediatric Chronic Kidney Disease in Children 
(CKiD) study [10], higher circulating FGF23 concentrations 
were independently associated with left ventricular hyper-
trophy. Furthermore, FGF23 may have additional adverse 
cardiac effects. Pre-clinical studies demonstrate that FGF23 
alters cardiomyocyte intracellular calcium concentrations 
[30, 31] and induces pro-arrhythmogenic activity [31]. 
Potentially consistent with these observations, in the CRIC 
study, higher FGF23 levels were independently associated 
with prevalent and incident atrial fibrillation [32].

Increased circulating FGF23 concentrations in CKD 
may also have extra-cardiac adverse effects. In multiple 
adult (CRIC [12] and the Mild to Moderate Kidney Disease 
(MMKD) study [11]) and pediatric (CKiD [13]) cohorts, 
higher FGF23 levels were independently associated with a 
more rapid rate of CKD progression, even after adjustment 
for traditional CKD progression risk factors. Regarding 
CKD-MBD, FGF23-mediated suppression of 1,25(OH)2D 
production promotes secondary hyperparathyroidism [33]. 
Regarding CKD-associated anemia, murine in vivo studies 
suggest that FGF23 may have inhibitory effects on erythro-
poiesis [34, 35] and, in the CRIC study, higher FGF23 levels 
were independently associated with prevalent and incident 
anemia [36]. FGF23 may also impact the immune system, 
as pre-clinical studies demonstrate that in CKD, increased 
FGF23 levels are associated with impaired neutrophil activa-
tion [37]. In the Hemodialysis (HEMO) study cohort, higher 
FGF23 levels were independently associated with infection-
related hospitalization or death [38]. Possibly due to these 
cardiac and extra-cardiac adverse effects, higher circulating 
concentrations of FGF23 in CKD are independently associ-
ated with increased overall mortality rates [12, 39, 40].

FGF23 production

Given the possible multisystemic adverse effects of increased 
FGF23 concentrations in CKD, it can be hypothesized that 
lowering FGF23 levels in patients with CKD may improve 
clinical outcomes. One potential mechanism to lower FGF23 
levels is to target the stimuli that increase FGF23 production. 
Multiple factors stimulate FGF23 production, central among 
which is dietary phosphate absorption [14, 15]. In studies 
of healthy volunteers, a phosphate-depleted diet decreased 
circulating FGF23 concentrations [14, 15], and a phosphate-
loaded diet increased circulating FGF23 concentrations [15].

Recently, iron deficiency has been identified as a novel 
stimulus of FGF23 production. Several murine studies dem-
onstrate that iron deficiency potently induces Fgf23 mRNA 
expression [41–44]. Iron deficiency also concurrently 
increases intracellular FGF23 post-translational proteolytic 
cleavage, resulting in secretion  of FGF23 protein frag-
ments from the cell [41–44]. However, in CKD, FGF23 pro-
teolytic cleavage may be impaired [45–47], thus uncoupling 

iron deficiency-induced increased FGF23 transcription from 
its post-translational cleavage. Therefore, in the absence of 
CKD, iron deficiency results in increased circulating con-
centrations of FGF23 fragments; however, in the presence 
of CKD, iron deficiency may increase concentrations of full-
length FGF23. Indeed, in a pre-clinical study of mice with 
and without experimental CKD fed an iron-deficient diet, 
whole bone Fgf23 mRNA expression and plasma concen-
trations of total (intact + fragmented) FGF23 increased to a 
similar degree in both the non-CKD and CKD groups, but 
the increase in plasma concentrations of full-length, intact 
FGF23 was much greater in the mice with CKD [44]. The 
median percentage of circulating FGF23 that was intact was 
only 12% in the non-CKD iron-deficient mice, but was 72% 
in the CKD iron-deficient group [44]. Therefore, iron defi-
ciency, which is common in pediatric patients with CKD 
[48, 49], may represent a novel factor contributing to ele-
vated intact FGF23 levels in CKD.

For human samples, there are commercial assays to meas-
ure both C-terminal FGF23 and intact FGF23 [50]. The 
C-terminal assay captures both intact FGF23 and C-terminal 
FGF23 fragments, thus measuring total (intact + fragmented) 
FGF23 concentrations. Conversely, the intact assay captures 
only intact FGF23 (iFGF23). In human CKD cohorts, iron 
deficiency is associated with increased concentrations of 
circulating total FGF23, as measured by the C-terminal 
FGF23 assay [51, 52]. Associations between iron status and 
intact FGF23 levels have not been specifically evaluated in 
large CKD cohorts; however, given that FGF23 cleavage 
is impaired in CKD [45–47], it is hypothesized that iron 
deficiency in CKD would increase intact FGF23 to a greater 
degree than iron deficiency in the absence of CKD would. 
In the FIT4KiD trial, the primary outcome is changes in 
iFGF23, as this is considered to be the biologically active 
FGF23 moiety, but total FGF23 concentrations will also be 
measured as an exploratory analysis.

Randomized controlled trials of ferric citrate 
in adult patients with non‑dialysis‑dependent CKD

As ferric citrate can function as both a phosphate binder 
and a source of iron, it can both decrease enteral phosphate 
absorption and improve iron status in CKD, thus targeting 
two of the mechanisms that increase FGF23 levels. Mul-
tiple randomized, placebo-controlled trials have evaluated 
the effects of ferric citrate on serum phosphate, iron sta-
tus, and FGF23 levels in adult patients with non-dialysis-
dependent CKD. In a study published in 2014, Yokoyama 
et al. conducted a 12-week, randomized trial of ferric citrate 
vs. placebo in 86 Japanese patients with CKD stages 3–5 
[53]. Compared to placebo, ferric citrate decreased serum 
phosphate concentrations, increased transferrin saturation 
and ferritin, and decreased circulating iFGF23 levels. In a 
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similar study published in 2015, Block et al. conducted a 
12-week, randomized trial of ferric citrate vs. placebo in 
141 American patients with CKD stages 3–5 [54]. Com-
pared to placebo, ferric citrate decreased serum phosphate 
concentrations; increased transferrin saturation, ferritin, 
and hemoglobin; and decreased circulating iFGF23 levels. 
Lastly, in a study published in 2017, Fishbane et al. con-
ducted a 16-week, randomized trial of ferric citrate vs. pla-
cebo in 233 American patients with CKD stages 3–5 [55]. 
Compared to placebo, ferric citrate decreased serum phos-
phate concentrations; increased transferrin saturation, fer-
ritin, and hemoglobin; and decreased circulating iFGF23 
levels. More recently, in a study published in 2019, Block 
et al. conducted a 36-week randomized trial of ferric citrate 
vs. standard of care in 199 patients with advanced CKD 
(eGFR < 20 ml/min/1.73  m2) [56]. Compared to standard 
of care, ferric citrate decreased serum phosphate concentra-
tions; increased transferrin saturation, ferritin, and hemo-
globin; and decreased circulating iFGF23 levels. Details of 

these randomized trials are presented in Table 1, demonstrat-
ing the beneficial effects of ferric citrate on phosphate, iron, 
and FGF23 in the setting of CKD. The primary objective of 
the FIT4KiD trial, described below, is to evaluate the effects 
of ferric citrate on changes in circulating iFGF23 concentra-
tions in a cohort of pediatric patients with CKD.

Additionally, the 2019 trial conducted by Block et al. 
evaluated the effects of ferric citrate on a composite clini-
cal endpoint that included death, provision of dialysis, 
or transplantation. Compared to patients randomized to 
standard of care, patients randomized to treatment with 
ferric citrate had a lower incidence of the composite end-
point [56], suggesting possible direct or indirect benefits 
of ferric citrate on clinical outcomes. However, in this 
trial, there was some imbalance in the baseline character-
istics of the ferric citrate and standard of care groups, with 
significantly more diabetics randomized to the standard 
of care group. Also, this pilot study included a standard 
of care control, was open-label, and was conducted at a 

Table 1  Randomized controlled trials of ferric citrate in adult patients with non-dialysis-dependent CKD. FC, ferric citrate; CKD, chronic kid-
ney disease; eGFR, estimated glomerular filtration rate; TSAT, transferrin saturation; FGF23, fibroblast growth factor 23; LS, least squares

Study Study details Study parameters Effects of ferric citrate p-value for 
between-group 
differences

Yokoyama et al. [53] FC (n = 57) vs. placebo (n = 29)
12-week duration
Inclusive of CKD stages 3–5 (mean 

eGFR 9 ml/min/1.73  m2)
Mean age 65 years

Phosphate
TSAT
Ferritin
Hemoglobin
FGF23

Decreased from mean 5.7 to 4.4 mg/dl
Increased from mean 27 to 44%
Increased from mean 69 to 204 ng/ml
Increased from mean 10.3 to 10.7 g/dl
Decreased from median 453 to 209 pg/

ml

 < 0.001
 < 0.001
 < 0.001
0.23
 < 0.001

Block et al. [54] FC (n = 72) vs. placebo (n = 69)
12-week duration
Inclusive of CKD stages 3–5 (mean 

eGFR 24 ml/min/1.73  m2)
Mean age 65 years

Phosphate
TSAT
Ferritin
Hemoglobin
FGF23

Decreased from mean 4.5 to 3.9 mg/dl
Increased from mean 22 to 32%
Increased from mean 116 to 189 ng/ml
Increased from mean 10.5 to 11.0 g/dl
Decreased from median 159 to 105 pg/

ml

 < 0.001
 < 0.001
 < 0.001
 < 0.001
0.02

Fishbane et al. [55] FC (n = 117) vs. placebo (n = 116)
16-week duration
Inclusive of CKD stages 3–5 (mean 

eGFR 29 ml/min/1.73  m2)
Mean age 65 years

Phosphate
TSAT
Ferritin
Hemoglobin
FGF23

Mean relative change vs. placebo 
of − 0.2 mg/dl

Mean relative change vs. placebo 
of + 18%

Mean relative change vs. placebo 
of + 170 ng/ml

Mean relative change vs. placebo 
of + 0.8 g/dl

Decreased from median 134 to 105 pg/
ml

0.02
 < 0.001
 < 0.001
 < 0.001
 < 0.001

Block et al. [56] FC (n = 133) vs. usual care (n = 66)
36-week duration
Inclusive of eGFR < 20 ml/min/1.73  m2 

(mean eGFR 14 ml/min/1.73  m2)
Mean age 62 years

Phosphate
TSAT
Ferritin
Hemoglobin
FGF23

Lower LS mean vs. usual care (4.2 vs. 
4.6 mg/dl)

Increased with FC, unchanged with 
usual care

Increased with FC, unchanged with 
usual care

Increased with FC, decreased with usual 
care

Unchanged with FC, increased with 
usual care

 < 0.001
 < 0.001
 < 0.001
 < 0.001
 < 0.001
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single center. Nevertheless, the encouraging results from 
this pilot study informed the design of a larger (1,000 
patients), multicenter, randomized, double-blind, placebo-
controlled trial evaluating the effects of ferric citrate on 
hard clinical endpoints (death, dialysis initiation, trans-
plantation, hospitalization) in patients with advanced 
CKD (eGFR < 20 ml/min/1.73  m2) — the FRONTIER trial 
(Block et al. Abstract PO2381, ASN Kidney Week 2021).

Ferric citrate use in pediatric patients with CKD

No randomized controlled trials of ferric citrate have been 
conducted in pediatric patients with CKD. However, one 
center published their real-world experience with the off-label 
use of ferric citrate in a small cohort of pediatric patients with 
kidney failure on dialysis [57]. That retrospective analysis 
included 11 patients on dialysis, most of whom were adoles-
cents (median age at ferric citrate initiation 13 years, range 
4 to 17 years). Ferric citrate was either added to patients’ 
phosphate binder regimens or patients were switched from 
their current phosphate binders to ferric citrate. The median 
duration of treatment with ferric citrate was 214 days (range 
39 to 654 days). The authors compared time-averaged val-
ues for serum phosphate and iron-related parameters before 
and after starting ferric citrate therapy. Administration of fer-
ric citrate decreased serum phosphate concentrations from 
a median (interquartile range) of 6.5 (5.5, 7.0) to 5.2 mg/dl 
(5.1, 6.3) (p = 0.014), and decreased age-adjusted phosphate 
standard deviation scores from 2.3 (1.5, 3.6) to 0.9 (0.0, 2.4) 
(p = 0.019). Ferric citrate therapy also increased transferrin 
saturation from 26 (17, 34) to 34% (28, 46) (p = 0.049), and 
increased serum ferritin from 107 (86, 675) to 230 ng/ml (113, 
716) (p = 0.074). This retrospective study suggests that fer-
ric citrate may be efficacious in pediatric patients with CKD, 
warranting further investigation in prospective clinical trials.

Ferric citrate appears to have acceptable tolerability, 
although close monitoring of iron parameters is warranted. 
In the above study, the maximum time-averaged transfer-
rin saturation and serum ferritin observed while on ferric 
citrate was 55% and 1,162 ng/ml, respectively. In studies 
of adult patients with CKD treated with ferric citrate [54, 
55], the most common adverse effects were gastrointestinal 
symptoms, including discolored feces, diarrhea, constipa-
tion, and nausea [58]. However, in these studies, only 5.3% 
of study subjects randomized to ferric citrate discontinued 
the study drug because of gastrointestinal adverse effects 
[58]. Similarly, in the above pediatric retrospective study, 
no patient developed gastrointestinal adverse effects severe 
enough to require dose reduction or discontinuation of ferric 
citrate. The FIT4KiD trial, described below, will assess the 
safety and tolerability of ferric citrate in pediatric patients 
with CKD.

The FIT4KiD trial

The FIT4KiD study is a phase 2, randomized, double-blind, 
placebo-controlled trial, designed to evaluate the effects of 
ferric citrate on iFGF23 in children with CKD stages 3–4. 
Depending on eGFR, the prevalence of elevated FGF23 con-
centrations (as measured by the total FGF23 assay) in chil-
dren with CKD stages 3–4 is ~ 60–100% [8]. FIT4KiD was 
approved and is funded by NIH/NIDDK through a cooperative 
agreement (U01-DK122013) among 12 clinical sites (Table 2). 
The study protocol was approved by a central Institutional 
Review Board (Washington University in St. Louis, IRB 
#202012083, approved 2/26/21) and by the Data and Safety 
Monitoring Board appointed by NIDDK (approved on 6/2/20).

The primary study hypothesis of the FIT4KiD trial is that 
compared to placebo, active treatment with ferric citrate will 
lower serum iFGF23 concentrations, measured over time 
(Table 3). To test this hypothesis, the FIT4KiD trial will 
recruit 160 pediatric participants between the ages of 6 and 
17 years with CKD stages 3–4 (Table 4). After providing 
informed consent, study participants will be randomized 
to treatment with a weight-based dose of ferric citrate or 
treatment with placebo and will be followed for 12 months 
(Fig. 2). Participants weighing less than 31 kg will receive 
3 g/day of ferric citrate; participants weighing greater than 
31 kg but less than 51 kg will receive 5 g/day of ferric citrate; 
and participants weighing 51 kg or more will receive 6 g/day 
of ferric citrate. The total daily dosage will be divided into 
three doses to be taken with meals. Weight-based dosing was 
chosen instead of age-based dosing given that children with 
CKD are frequently small for age. Additionally, since dietary 
phosphate intake correlates with dietary caloric intake, and 
the latter correlates with body weight, weight-based dosing 
will best approximate dietary phosphate intake.

Table 2  Ferric Citrate and Chronic Kidney Disease in Children 
(FIT4KiD) participating sites

Mattel Children’s Hospital at the University of California, Los Ange-
les (Los Angeles, CA)  
(Data Coordinating Center)

Arnold Palmer Hospital for Children (Orlando, FL)
Benioff Children’s Hospital at the University of California, San Fran-

cisco (San Francisco, CA)
British Columbia Children’s Hospital (Vancouver, BC, Canada)
Children’s Healthcare of Atlanta (Atlanta, GA)
Children’s Hospital at Montefiore (Bronx, NY)
Children’s Hospital of Philadelphia (Philadelphia, PA)
Children’s Medical Center (Dallas, TX)
Children’s Mercy Kansas City (Kansas City, MO)
Cincinnati Children’s Hospital (Cincinnati, OH)
St. Christopher’s Hospital for Children (Philadelphia, PA)
Texas Children’s Hospital (Houston, TX)

2551Pediatric Nephrology (2022) 37:2547–2557
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The primary analyses for this trial will evaluate changes 
from baseline in iFGF23 concentrations over 12 months 
between the treatment arm and the placebo arm. The anal-
ysis will use a linear mixed-effects model, with random 

participant effects accounting for repeated measurements, and 
random site effects accounting for clustering of participants 
into study sites. The model will include terms for treatment, 
time, treatment by time interaction (primary term for the 

Table 3  Ferric Citrate and 
Chronic Kidney Disease in 
Children (FIT4KiD) study 
hypotheses. FC, ferric citrate; 
FGF23, fibroblast growth factor 
23

Primary endpoint
Compared to placebo, from baseline, active treatment with FC will lower serum intact FGF23 concentra-

tions
Safety and tolerability endpoint
Compared to placebo, active treatment with FC will be safe and tolerable
Secondary endpoints
Compared to placebo, from baseline, active therapy with FC will be associated with:
-Increased hemoglobin
-Increased serum transferrin saturation
-Increased serum ferritin
-Increased serum 1,25-dihydroxyvitamin D
-Decreased serum parathyroid hormone
Exploratory endpoints
Compared to placebo, from baseline, active therapy with FC will be associated with:
-Smaller decrease in estimated glomerular filtration rate
-Decreased bone FGF23
-Increased osteoid thickness
-Decreased biomarkers of bone turnover
-Decreased phosphaturia
-Increased serum calcium
-Increased serum klotho
-Decreased serum C-terminal (total) FGF23

Table 4  Participant inclusion and exclusion criteria

Inclusion criteria
Ages 6 to 17 years (inclusive)
Estimated glomerular filtration rate of 15–59 ml/min/1.73  m2 by the updated CKiD formula [60]
Serum phosphate within age-appropriate normal ranges
Serum ferritin < 500 ng/ml and transferrin saturation < 50%
For those patients treated with nutritional vitamin D, calcitriol, iron, and/or erythropoiesis-stimulating agents, doses must be stable for at least 

2 weeks prior to screening
Able to swallow tablets
Able to eat at least two meals a day
In the opinion of the investigator, willing and able to follow the study treatment regimen and comply with the site investigator’s recommenda-

tions
Exclusion criteria
Current treatment with phosphate binders
History of allergic reactions, defined as rashes or hives, to ferric citrate or iron preparations
Current intestinal malabsorption, documented in the medical record
Anticipated initiation of dialysis or kidney transplantation within 6 months
Current or planned future systemic immunosuppressive therapy
Prior solid organ transplantation
Receipt of bone marrow transplant within 2 years of screening
Current pregnancy, current lactation, or female subjects who have reached puberty, unless using highly effective contraception
Patients participating in other interventional study (observational study participation is permitted)
Poor adherence to medical treatments in the opinion of the investigator

2552 Pediatric Nephrology (2022) 37:2547–2557
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inference in this study), baseline iFGF23, and stratification 
factors (study site, CKD stage, and urine protein/creatinine 
ratio) as covariates. Time will be modeled as two periods, 
months 1–3 and months 6–12, with the primary test based on 
the difference between treatment arms during the second time 
period [54]. A single interim analysis will be performed at 
50% completion of 3 months of treatment or the first quarter 
of year 3 of the trial. The O’Brien/Fleming rules for interim 
analysis were used, assigning an alpha of 0.0054 to the mid-
point analysis, and 0.0492 to the final analysis [59].

To evaluate the power of the trial, we carried out a simu-
lation study using the analysis approach described above. 
Simulated data sets were created assuming that the mean 
level of natural log-transformed iFGF23 is the same at base-
line in both arms, changes linearly during the first 3 months, 
is stable from 3 to 12 months in the treatment arm, and 
remains constant over time in the placebo group, as previ-
ously reported [54]. We utilized data from the CKiD cohort 
to estimate the design parameters (baseline mean, between 
sites and within and between subjects standard deviations) 
for the simulation. The simulation also assumed that 20% 
of participants would be lost to follow-up by month 12. The 
results of our simulation study showed that a sample size of 
160 participants provides 80% power to detect a treatment 
difference of 26% between treatment vs. placebo.

Given that ferric citrate has been associated with 
improved hemoglobin concentrations [54–56], reductions in 
serum parathyroid hormone [53], and improved kidney out-
comes [56], secondary objectives of this study include deter-
mining the effects of ferric citrate on anemia, indices of bone 
and mineral metabolism, and kidney function (Table 3). 
Serum creatinine will be measured over time, and GFR will 
be estimated using the updated CKiD formula [60].

We will also evaluate the safety and tolerability of fer-
ric citrate, detailed in Table S1, including surveillance for 

gastrointestinal intolerance, iron overload, and hypophos-
phatemia. As described in Table S1 and Figures S1–S10, 
should gastrointestinal adverse effects, elevated transferrin 
saturation or ferritin, and/or hypophosphatemia occur, then 
study drug dosage will be adjusted. Regarding the possibility 
of citrate-induced enhanced intestinal aluminum absorption 
[61], in adult CKD studies, ferric citrate treatment was not 
associated with increased serum aluminum concentrations 
[17]. Nevertheless, as stated in the study protocol, admin-
istration of aluminum-containing compounds should be 
avoided in study participants.

Additionally, 24 UCLA participants will undergo iliac 
crest bone biopsy to determine the effect of ferric citrate 
therapy on the bone mineralization defect that is commonly 
seen in children with CKD [2]. Bone biopsy samples will 
also be assessed by immunohistochemistry for FGF23. A 
study by Pereira et al. demonstrated a correlation between 
bone FGF23 expression by immunohistochemistry and 
parameters of mineralization in pediatric and young adult 
patients with CKD stages 2–5 [23], underscoring the impor-
tance of evaluating bone FGF23 in association with histo-
morphometry. Bone biopsies will be performed only at 
UCLA, and there will be a separate consent form for the 
procedure. Patients will remain eligible for study entry even 
if they decline participation in the bone biopsy sub-study.

Participants will be withdrawn from the study if they 
experience one of the following: confirmed transferrin sat-
uration > 70%, progression to kidney failure, initiation of 
phosphate binders, initiation of immunosuppression, desire 
of the patient or family to discontinue participation in the 
trial, loss to follow-up, or pregnancy. Medication adherence 
will be critical during the conduct of the trial. Therefore, the 
study will use a web-based, electronic medication adherence 
monitoring system called eCAP (Information Mediary Cor-
poration, Ottawa, ON, Canada), which is a smart medication 

Fig. 2  The Ferric Citrate and Chronic Kidney Disease in Children 
(FIT4KiD) trial schema. The FIT4KiD study is a randomized, dou-
ble-blind, placebo-controlled, 12-month trial of 160 pediatric patients 
with CKD stages 3–4. It will test the hypothesis that, compared to 

placebo, ferric citrate will safely lower intact FGF23 levels. The study 
design includes a screening visit, baseline assessments, and post-
randomization scheduled follow-up. Further details are provided in 
Table S1
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bottle cap that records real-time bottle cap removal times 
with an electronic timestamp. Additionally, dose reminders, 
pill counters, school diary of lunch-time administration, and 
self-reported adherence measures will be utilized throughout 
the study.

Possible anticipated limitations of the FIT4KiD trial 
relate to the use of FGF23 as the primary endpoint and 
medication adherence. Although it can be hypothesized that 
lowering FGF23 levels in patients with CKD may improve 
clinical outcomes, to date, there have been no trials directly 
targeting FGF23 to improve clinical outcomes in patients 
with CKD [62]. Therefore, it is still unknown whether or not 
FGF23 reduction would directly translate to improvement 
in hard clinical outcomes in CKD. Additionally, medica-
tion adherence may pose a challenge. In pediatric patients 
with CKD, rates of medication non-adherence are high; 
specifically, medication non-adherence for phosphate bind-
ers has been reported to be ~ 20–30% [63, 64]. In the recent 
COMBINE trial, which investigated the effects of lantha-
num carbonate (a phosphate binder) and/or nicotinamide (an 
inhibitor of intestinal phosphate transport) on phosphate and 
FGF23 levels in adult patients with stage 3b/4 CKD, nei-
ther serum phosphate nor FGF23 significantly changed over 
time; however, study drug discontinuation was high, ranging 
from 25 to 42% across active treatment groups (compared to 
14% in the placebo group), possibly limiting study conclu-
sions [65].

In summary, the FIT4KiD trial will determine the impact 
of ferric citrate on FGF23 in pediatric participants with CKD 
stages 3–4. Given the associations of FGF23 with adverse 
clinical outcomes, interventions that safely lower FGF23 
may improve long-term patient outcomes. Importantly, 
should ferric citrate safely and effectively reduce FGF23 
concentrations, then the study findings may have important 
implications for the optimal management of mineral bone 
disorder in children with CKD.
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