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ORIGINAL ARTICLE
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Abstract

Rationale: Interstitial lung abnormalities (ILAs) are associated
with the highest genetic risk locus for idiopathic pulmonary fibrosis
(IPF); however, the extent towhich there areuniqueassociations among
individuals with ILAs or additional overlap with IPF is not known.

Objectives: To perform a genome-wide association study (GWAS)
of ILAs.

Methods: ILAs and a subpleural-predominant subtype were
assessed on chest computed tomography (CT) scans in the AGES
(Age Gene/Environment Susceptibility), COPDGene (Genetic
Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]),
Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally
to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic
Study of Atherosclerosis), and SPIROMICS (Subpopulations and
Intermediate Outcome Measures in COPD Study) studies. We
performed a GWAS of ILAs in each cohort and combined the results
using a meta-analysis. We assessed for overlapping associations in
independent GWASs of IPF.

Measurements andMainResults:Genome-wide genotyping data
were available for 1,699 individuals with ILAs and 10,274 control
subjects. TheMUC5B (mucin 5B) promoter variant rs35705950 was
significantly associated with both ILAs (P= 2.63 10227) and
subpleural ILAs (P= 1.63 10229). We discovered novel genome-
wide associations near IPO11 (rs6886640, P= 3.83 1028) and
FCF1P3 (rs73199442, P= 4.83 1028) with ILAs, and near HTRE1
(rs7744971, P= 4.23 1028) with subpleural-predominant ILAs.
These novel associations were not associated with IPF. Among 12
previously reported IPFGWAS loci, five (DPP9,DSP, FAM13A, IVD,
andMUC5B) were significantly associated (P, 0.05/12) with ILAs.

Conclusions: In a GWAS of ILAs in six studies, we confirmed the
association with aMUC5B promoter variant and found strong
evidence for an effect of previously described IPF loci; however, novel
ILA associations were not associated with IPF. These findings
highlight common genetically driven biologic pathways between
ILAs and IPF, and also suggest distinct ones.

Keywords: genetics; genome-wide association study; interstitial
lung abnormalities; idiopathic pulmonary fibrosis; SNP

Idiopathic pulmonary fibrosis (IPF), the
most common and severe form of
interstitial lung disease (ILD) (1), is a
disorder of lung scarring that is reported

to affect one in 200 adults over the age
of 65 (2), and results in a high rate of
mortality (3, 4). A strong genetic basis for
PF has been demonstrated in studies of

familial aggregation (5), as well as in
genome-wide linkage and association
studies that have provided replicable
evidence for associations between
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common genetic variants and IPF
(6–11). Most consistently, IPF has
been associated with increased copies of
a common variant (rs35705950) in the
promoter of the MUC5B (mucin 5B)
gene (6, 8–11), a finding that may
explain up to 30% of the risk of the
disease (6).

Due to the severity of physiologic
decrements and the high rate of mortality at
the time of diagnosis, investigators have
recently made efforts to identify IPF and
other forms of PF in their earliest stages
(12–14). These efforts include chest
computed tomography (CT) image
characterization of research participants
who have not received a diagnosis but have
classified imaging features that are
suggestive not only of IPF specifically
(15–17) but also of the broader set of ILDs
(termed interstitial lung abnormalities

[ILAs]) (13). Evidence supporting a
correlation between some research
participants with ILAs who have not
received a diagnosis and patients with IPF
include a shared association with increased
copies of the MUC5B promoter variant (12,
18). However, the extent to which research
participants with ILAs who have not
received a diagnosis and patients with IPF
share common or unique genetic etiologies
remains unclear.

We hypothesized that comparisons
between research participants with and
without ILAs would identify findings of
genetic association shared with those
identified in patients with IPF and, based
on the diversity of ILA phenotypes (18)
and ILDs in general (19), unique
associations. To test this hypothesis, we
genotyped common genome-wide single-
nucleotide variants and imputed
additional genotypes from reference
panels, and then tested for association
with visually assessed ILAs and the
subpleural-predominant ILA subtype in
populations of research participants from
six unique cohorts. Based on the results,
we performed further comparisons to
examine the overlap of top genetic
associations in research participants with
ILAs (and subpleural-predominant ILAs)
with genetic associations previously
reported in patients with IPF (8). Some
of the results of this study have been
previously reported in the form of an
abstract (20).

Methods

Study Population
The protocols for participant enrollment
and phenotyping in the FHS (Framingham
Heart Study) and the AGES (Age
Gene/Environment Susceptibility)-
Reykjavik, COPDGene (Genetic
Epidemiology of COPD), ECLIPSE
(Evaluation of COPD Longitudinally to
Identify Predictive Surrogate End-points),
MESA (Multi-Ethnic Study of
Atherosclerosis)-Lung Study, and
SPIROMICS (Subpopulations and
Intermediate Outcome Measures in COPD
Study) studies have been described
previously (12–14, 21–23). Approval from
the appropriate ethical/regulatory bodies
was obtained for each cohort, and informed
consent was obtained from all individuals.
More detailed cohort information,

including cohort-specific methods, can be
found in the online supplement.

ILA Characterization
ILA was characterized in all of the
cohorts by visual assessments of chest CT
scans. In FHS, AGES, COPDGene, and
ECLIPSE, CT scans were evaluated for ILAs
via a sequential reading method by up
to three readers (radiologists and
pulmonologists) who were blind to all
participant-specific information, as
previously described (24). ILAs in these
cohorts were defined as nondependent
changes affecting .5% of any lung zone.
The abnormalities included ground-glass
or reticular abnormalities, diffuse
centrilobular nodularity, multiple
nonemphysematous cysts, traction
bronchiectasis, and honeycombing. Chest
CT scans with either focal or unilateral
ground-glass attenuation, focal or
unilateral reticulation, or patchy ground-
glass abnormalities were indeterminate
for ILAs (12, 13). In MESA, ILAs were
assessed by a radiologist using the above
criteria, as previously described (25). In
SPIROMICS, ILAs were classified as
present or absent according to the
presence or absence of bilateral,
nondependent, peripheral (but not
necessarily subpleural) ground-glass
and/or reticular opacities and/or
honeycombing (see the online supplement
for further details).

Based on prior data on the genetics of
ILAs (18), and to provide consistency of
subtyping across cohorts, an additional ILA
subset was created that excluded ILAs
limited to participants with centrilobular
nodules alone (13) and included all
participants with ILAs with predominantly
subpleural imaging findings (subpleural
predominant).

Genotyping and Imputation
Details regarding genotyping in each cohort
can be found in the online supplement. The
genotypes of individuals from European-
ancestry studies were imputed via the
Michigan Imputation Server using
minimac3 with the Haplotype Reference
Consortium (HRC v1.1) reference panel
(26). Individuals of African American
ancestry in COPDGene and MESA were
imputed using the 1000 Genomes Project
(Phase 3, version 5) (27). The MUC5B
promoter polymorphism (rs35705950) was
poorly imputed (imputation R2, 0.5) in

At a Glance Commentary

Scientific Knowledge on the
Subject: Individuals with interstitial
lung abnormalities (ILAs) exhibit a
clinical syndrome similar to that
observed in patients with idiopathic
pulmonary fibrosis (IPF), including
physiologic decrements, radiologic
progression, accelerated lung function
decline, and an increased risk of death.
ILAs are associated with the most
common and highest genetic risk locus
in IPF, the MUC5B (mucin 5B)
promoter polymorphism rs35705950.
However, the extent to which there is
additional overlap in the genetic risk
of ILAs and IPF is not known.

What This Study Adds to the Field:
In a genome-wide association study of
ILAs, we confirmed findings at the
MUC5B locus and identified three
novel loci for ILAs and subpleural-
predominant ILAs. These novel loci
were not associated with IPF.
Additionally, among 12 distinct,
previously identified IPF GWAS loci,
we identified 11 directionally
consistent associations with ILAs, of
which 7 were at least nominally
significant and 5 (near DPP9, DSP,
FAM13A, IVD, and MUC5B) were
significantly associated after
adjustment for multiple testing.
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the AGES study, so instead we used direct
genotyping data, which were available for
3,209 individuals.

Genome-Wide Association Study and
Meta-analysis
Given the case–control imbalance, we
performed Firth bias-corrected logistic
regression (28, 29) in each ancestry subset of
each study, adjusting for age, sex, pack-years
of smoking, and ancestry-based principal
components as appropriate for each study.
In the FHS, to allow application of the Firth
bias-corrected logistic regression, we selected
a subset of unrelated participants for
analysis, preferentially choosing ILA cases.
Summary statistics from individual studies,
including chromosome and position (hg19),
effect allele and other allele oriented to
the1 strand, effect allele frequency, and
imputation quality were uploaded to a
secure site at the Brigham and Women’s
Hospital/Channing Division of Network
Medicine.

The summary statistics from each study
were assessed using EasyQC (30) version
10.1. Quality control assessments included
allele frequency comparisons with either a
Haplotype Reference Consortium or 1000
Genomes reference panel, SE versus sample
size checking, and quantile-quantile plot
visualization. Variants with an imputation
quality metric of ,0.5, a minor allele count
of,10 (using the effective sample size or the
number of cases adjusted for imputation
quality when appropriate), were set to
missing. Variant names were all normalized
to hg19 chromosome and position. Only the
highest-frequency alternate allele was
retained for multiallelic variants.

After completing the summary
statistical quality control process, we
performed an inverse-variance–weighted,
fixed-effects meta-analysis in METAL
(version 2011-03-25) (31, 32) for both the
ILA and subpleural-predominant ILA
analyses. In a set of secondary analyses, we
performed a meta-analysis restricted to ILA
and subpleural ILA results from European-
ancestry subpopulations, and a smoking-
stratified (ever-smokers compared with
never-smokers) meta-analysis of our
genome-wide significant variants. Only
variants that were present in at least half of
the cohort subpopulations in each meta-
analysis were further evaluated. Genome-
wide significance for all associations was
considered to be P, 53 1028. To identify
distinct results at each locus in the

European-ancestry subpopulations, we used
genome-wide complex trait analysis–
conditional and joint analysis (33, 34) on all
results with P, 53 1026, using the default
distance of 10 Mb. COPDGene non-
Hispanic whites (the largest representative
population) were the reference population
for the genome-wide complex trait
analysis–conditional and joint analysis.

Overlap of ILA Genetic Loci with IPF,
High-Attenuation Areas, Smoking
Behaviors, and Connective Tissue
Disease
We evaluated the overlap of top ILA-
associated genetic variants with IPF in two
ways: 1) lookup of IPF genome-wide
association study (GWAS) loci from the
National Human Genome Research
Institute–European Bioinformatics Institute
(NHGRI-EBI) GWAS Catalog (35)
(downloaded June 4, 2018) in our ILA
GWAS results; 2) lookup of our top ILA-
associated variants (P, 5e27 with either
ILAs or subpleural ILAs in a European-
ancestry subpopulation) with IPF in a
recent European-ancestry IPF GWAS and
meta-analysis (see online supplement) (11).
In the lookup of prior IPF GWAS variants
in our results, we restricted the lookup to 12
distinct IPF GWAS loci (reported results
are for the variant that demonstrated the
greatest statistical significance at each
locus). Significance for association of IPF
GWAS variants with ILAs or subpleural-
predominant ILAs was set to P, 0.05/12.
Additional analyses using logistic
regression conditioning on the MUC5B
promoter polymorphism (rs35705950)
were done to assess for independence of the
multiple SNPs previously identified at the
11p15 locus. To evaluate the overlap
between ILAs and high-attenuation areas
(HAAs), which have been associated with
early or subclinical ILD and future ILAs
(14, 25), we performed a lookup of the
previously reported genome-wide
significant variants associated with HAAs
(36). To evaluate the overlap between ILAs
and smoking behaviors, we performed a
lookup of the previously reported genome-
wide significant variants associated with
smoking behaviors (37). To assess a
potential overlap of the genetic
susceptibility to ILAs (and subpleural-
predominant ILAs) with connective tissue
disease (CTD)–associated ILD and
sarcoidosis, we searched the NHGRI-EBI
GWAS Catalog (35) for genome-wide

significant SNPs in European-ancestry
association studies related to rheumatoid
arthritis, sarcoidosis, systemic lupus
erythematosus, inflammatory myopathies,
and systemic sclerosis. We assessed the
P value for association of the genome-wide
significant rheumatologic disease SNPs
with ILAs and subpleural-predominant
ILAs. We used Bonferroni P values as
a significance threshold to correct for
multiple testing (number of genome-
wide significant SNPs) within each
unique trait.

Expression Quantitative Trait Loci
Lookups of Top GWAS Variants
We assessed whether our significant ILA
genetic risk variants were expression
quantitative trait loci (eQTLs) in the lung and
blood using multiple available datasets,
including GTEx lung and blood eQTLs (38,
39), Westra and colleagues’ blood eQTLs
(40), Hao and colleagues’ lung eQTLs (41),
Jansen and colleagues’ Netherlands Study of
Depression and Anxiety/Netherlands Twin
Register conditional blood eQTLs (42), and
eQTL Consortium blood eQTL meta-
analysis data (43). Only cis-eQTLs were
assessed, and significant associations were
determined using the adjusted P values
reported in each available eQTL dataset.

Results

We performed a GWAS and meta-analysis
of 1,699 participants with ILAs and 10,274
control subjects in six cohorts, and the
subjects in each study were stratified into
subpopulations according to European,
African, and Hispanic ancestry. We
performed a secondary GWAS and meta-
analysis using the subset of 1,287 subpleural-
predominant ILA cases (Figure 1). The
baseline characteristics of each cohort and
subpopulation, stratified by ILA status, are
included in Table 1 (for the characteristics of
participants with ILAs limited to the
subpleural-predominant subtype, see Table
E1 in the online supplement). Similar to
what was found in prior studies, participants
with ILAs tended to be older (15) and
generally had greater exposure to tobacco
smoke than those without ILAs.

Genome-Wide Association
We identified three genome-wide significant
variants associated with ILAs, including one
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at 11p15, at the known MUC5B promoter
polymorphism, rs35705950 (odds ratio
[OR], 1.97; 95% confidence interval [CI],
1.74–2.22; P= 2.63 10227), as well as two
novel loci: rs6886640 at 5q12, near
IPO11 (OR, 1.28; 95% CI, 1.18–1.41;
P= 3.83 1028), and rs73199442 at 3q13,
near the long noncoding RNA FCF1P3
(OR, 1.68; 95% CI, 1.39–2.02;
P= 4.83 1028) (Table 2 and Figures 2, E1,
and E2). In the subpleural-predominant
ILA analysis, in addition to the association
with the MUC5B variant rs35705950 (OR,
2.22; 95% CI, 1.93–2.55; P= 1.63 10229),
we identified a novel genetic association at
the 6q15 locus with rs7744971, near HTR1E
(OR, 1.32; 95% CI, 95% CI 1.19–1.45;
P= 4.23 1028) (Table 2 and Figure 2). The
ILA risk variant at 3q13.1 (rs73199442) was
missing in the African- and Hispanic-
ancestry subpopulations (due to low minor
allele frequency), but it showed a consistent
direction of effect in all European-ancestry

subpopulations (see forest plots in
Figure 2). Similar results were noted in
meta-analyses of ILAs and subpleural-
predominant ILAs limited to individuals of
European ancestry; however, the 5q12 locus
was not significantly associated with ILAs,
and the 6q15 locus had genome-wide
significance in association with both ILAs
and subpleural-predominant ILAs (Tables
E2 and E3). For each variant that
demonstrated genome-wide significance,
we tested for genotype-by-smoking (ever-
smokers compared with never-smokers)
interactions. There was no evidence of a
significant interaction between smoking
status and any of the four genome-wide
significant variants (Table E4 and Figure
E3). To assess whether these novel ILA risk
loci overlapped with IPF, we attempted to
replicate our genome-wide significant
associations with ILA and subpleural ILA
associations in a European-ancestry GWAS
and meta-analysis of 2,668 patients with

IPF and 8,591 control subjects (11) (see
the online supplement). Aside from the
known overlap at rs35705950 (IPF P
value = 1.23 102203), none of our top ILA
loci were significantly associated with IPF
(Table 2).

Assessment of Replication for Prior
IPF, HAAs, Smoking Behaviors, and
CTD Genetic Loci
We examined the overlap of ILA and
subpleural-predominant ILA genetic
associations with 12 previously reported,
distinct IPF GWAS loci from the
NHGRI-EBI GWAS Catalog. There was
a substantial enrichment of the 12 IPF
GWAS loci in our ILA association
results. Five SNPs near DPP9, DSP,
FAM13A, IVD, and MUC5B were
significantly associated (P, 4.23 1023)
with ILAs, and two additional SNPs at
MAPT and LRRC34 were nominally
significant (P, 0.05, but did not meet the

Excluded those Indeterminate for ILA 

2,633 with ILA
characterization 

Framingham Heart
Study 

2,907 with ILA
characterization 

MESA

1,000 with ILA (ILD)
characterization 

SPIROMICS

1,670 with ILA
characterization 

ECLIPSE

9,652 with ILA
characterization

COPDGene

5,308 with ILA
characterization

AGES-Reykjavik

Indeterminates not
characterized in

SPIROMICS 

177 with ILA
1,370 without ILA

306 with ILA
2,124 without ILA

157 with ILA
528 without ILA

689 with ILA
5,557 without ILA

377 with ILA
3,209 without ILA

Participants with
genome-wide

association data
were subset to

allow for Firth bias
correction

Participants with
genome-wide

association data,
Asians excluded

due to small
sample size

Participants with
genome-wide

association data,
African Americans
excluded due to

small sample size

Participants with
genome-wide

association data
available

Participants with
genome-wide

association data
available

Participants with
genome-wide

association data
available

711 with ILA

5,488 without ILA

279 with ILA

1,785 without ILA

138 with ILA

530 without ILA

236 with ILA

1,527 without ILA

184 with ILA

450 without ILA

151 with ILA

494 without ILA

1,699 with ILA (cases)

10,274 without ILA (controls)

Figure 1. Flowchart depicting the participants included and excluded from the genome-wide association analysis by cohort and interstitial lung
abnormality (ILA) status. AGES=Age Gene/Environment Susceptibility; COPD=chronic obstructive pulmonary disease; COPDGene=Genetic
Epidemiology of COPD; ECLIPSE=Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points; ILD= interstitial lung disease;
MESA=Multi-Ethnic Study of Atherosclerosis; SPIROMICS=Subpopulations and Intermediate Outcome Measures in COPD Study.
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threshold for significance after adjustment
for multiple testing) in association with
ILAs (Tables 3 and E5). All but one of the
12 IPF GWAS SNPs had a consistent
direction of risk effect in IPF and ILAs.
Despite the smaller sample size in the
subpleural-predominant ILA association
analysis, IPF genetic risk loci were
generally more strongly associated (larger
ORs and smaller P values) with the risk
of subpleural ILAs than with the risk of
ILAs.

We assessed the top 21 loci reported in
a GWAS of several HAA phenotypes (36) in
our ILA and subpleural GWAS results, and
found no overlap of genetic loci between
HAAs and ILAs; however, the direction of
effect between the risk of HAAs and risk of
ILAs and subpleural ILAs was generally
consistent (Table E6).

To evaluate the overlap in genetic
susceptibility to ILAs and smoking
behaviors, we performed a lookup of our
four genome-wide significant ILA variants
in a recent GWAS of four smoking
behaviors: smoking initiation, age of
smoking initiation, smoking cessation, and
cigarettes per day (37) The P value was
.0.05 for association of the top four ILA
SNPs with any smoking behavior (Table
E7). We also assessed the genome-wide
significant loci reported in the smoking
GWAS (37). After correction for multiple
testing, there was no significant overlap of
smoking behavior SNPs with ILAs or
subpleural-predominant ILAs (Table E8).

In a search for CTD–associated ILD
and sarcoidosis-associated SNPs in the
NHGRI-EBI GWAS Catalog, we found 357
SNPs associated with 17 traits reported in
39 publications. No SNPs were associated
with ILAs. Only one CTD SNP
(rs13389408, intronic to STAT4 on
chromosome 2) met the threshold for
Bonferroni significance in association with
subpleural ILAs (OR, 1.3; 95% CI, 1.1–1.5;

P= 9.73 1024). The SNP rs13389408 was
discovered in a meta-analysis of “systemic
seropositive rheumatic diseases” (including
systemic sclerosis, systemic lupus
erythematosus, and idiopathic
inflammatory myopathies) (44).

Logistic Regression Conditioning on
MUC5B at 11p15
Our conditional analysis did not identify
any conditionally distinct signals at 3q13,
5q12, or 6p15. However, a previous GWAS
of IPF reported variant associations in
TOLLIP (rs5743894, rs5743890, and
rs111521887) that—despite proximity to
MUC5B in the 11p15 region—were
reported to be independent of the
rs35705950 association with IPF due to
minimal linkage disequilibrium (R2, 0.2)
(9). In the COPDGene study non-Hispanic
white and African American participants,
we performed a meta-analysis of the
association of previously reported TOLLIP
SNPs with ILAs and subpleural ILAs, and
conditioned each TOLLIP SNP association
on the MUC5B rs35705950 genotype.
When each TOLLIP SNP association was
adjusted for the rs35705950 genotype, the
TOLLIP SNPs’ effect sizes and strengths of
association were diminished (Table E9).
These data suggest that the TOLLIP SNP
associations with ILAs and subpleural-
predominant ILAs in COPDGene are not
independent of MUC5B rs35705950.

eQTL Assessments for Identified Loci
We sought to determine whether our four
genome-wide significant ILA- and
subpleural ILA–associated variants have
been reported as lung or blood eQTLs. The
ILA risk variants at 5q12 (rs6886640) and
3q13 (rs73199442) were not reported as
lung or blood eQTLs in any of the
examined data. The MUC5B promoter
polymorphism (rs35705950) T allele was
associated with increased expression of

MUC5B in the lung (q value = 3.993 1029)
in the GTEx lung eQTL data, but not in
Hao and colleagues’ lung eQTL data (41).
Furthermore, the rs35705950 T allele was
associated with decreased expression of
CD151 in blood in the eQTL Consortium
cis-eQTL data (43). The subpleural ILA
6q15 variant rs7744971 risk allele (G) was
significantly associated with decreased
blood expression of AKIRIN2, SLC35A1,
C6orf164, and RP1-102H19.6, and increased
blood expression of ZNF292 in the eQTL
Consortium cis-eQTL data (43). In the
Netherlands Study of Depression and
Anxiety/Netherlands Twin Register
Conditional eQTL Catalog (42) the
rs7744971 G allele was also associated with
decreased AKIRIN2 expression as well as
with decreased C6orf162 expression in
blood.

Discussion

Our study, which presents the first GWAS of
visually assessed ILAs, included 1,699
participants with ILAs and 10,274 control
subjects, and has several notable findings.
First, we provide the most comprehensive
data to date demonstrating the links
between genetic association findings in
patients with IPF and research participants
with ILAs. For example, these findings
provide at least nominal, and directionally
consistent, evidence for an association
between ILAs and most of the common
genetic variants that have previously been
demonstrated to be associated with IPF
(7–11). In addition, our results provide
genome-wide significant evidence for
association with two new genetic risk loci
for ILAs overall (3q13 and 5q12) and one
loci for subpleural-predominant ILAs
specifically (6q15). These new loci do not
show evidence of association with IPF,
and although these data could represent

Table 2. Genome-Wide Significant Variants Associated with Interstitial Lung Abnormalities and Subpleural-Predominant Interstitial
Lung Abnormalities, and Replication in an Idiopathic Pulmonary Fibrosis Cohort

Chromosome/
Location Position rsID

Risk
Allele

Risk Allele
Frequency

Nearest
Gene

ILA vs. No ILA Subpleural ILA vs. No ILA Replication in IPF Cohort

Odds Ratio*
(95% CI) P Value

Odds Ratio
(95% CI) P Value

Odds Ratio
(95% CI) P Value

3q13 106571023 rs73199442 T 0.06 FCF1P3 1.68 (1.39–2.02) 531028 1.61 (1.31–1.99) 73 1026 0.98 (0.85–1.12) 0.73
5q12 62172476 rs6886640 G 0.62 IPO11 1.28 (1.18–1.41) 431028 1.27 (1.14–1.40) 83 1026 1.06 (0.99–1.14) 0.11
6q15 87737841 rs7744971 G 0.28 HTR1E 1.26 (1.16–1.37) 131027 1.32 (1.19–1.45) 43 1028 1.01 (0.94–1.09) 0.75
11p15 1241221 rs35705950 T 0.11 MUC5B 1.97 (1.74–2.22) 3310227 2.22 (1.93–2.55) 2310229 4.84 (4.37–5.36) 13102203

Definition of abbreviations: CI = confidence interval; ILA = interstitial lung abnormality; IPF = idiopathic pulmonary fibrosis.
*Odds ratios are per copy of the risk allele.
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false-positive associations, they may also
be consistent with some cases of ILA
representing early stages of diverse forms of
ILD, associated with genetic risk factors
distinct from IPF.

Multiple lines of evidence now
demonstrate a shared genetic risk between
some research participants with ILAs who
have not received a diagnosis and patients
with clinically diagnosed IPF. Similar to
what was found in all prior GWASs of IPF

that included the gain-of-function MUC5B
promoter variant (8–11), our study
demonstrates that the MUC5B promoter
variant rs35705950 has the most significant
association with ILAs. In addition, among
12 loci that previously showed genome-
wide evidence for association with IPF
(7–11) in at least one study, we present
evidence for directionally consistent
associations in 11, and 5 of these were
significant after adjustment for multiple

testing (P, 0.05/12). More specifically,
this study provides support for the fact
that common genetic variants in seven
genomic regions are associated with early
and/or mild stages of PF in addition to
their known association with more
advanced stages of disease. In support
of the latter statement is the fact that
most of these genetic association findings
were stronger when the ILA phenotype
was limited to those with subpleural
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Figure 2. Locus zoom and forest plots for the genome-wide significant loci associated with interstitial lung abnormalities (ILAs) and subpleural-
predominant ILAs. (A) Comparison of participants with and without ILAs. A1 is a locus zoom plot demonstrating the genome-wide significant
association at rs35705950 (nearest gene MUC5B); A2 is a forest plot demonstrating the results in each individual cohort and the overall meta-
analysis, with the x-axis on the log odds scale. (B) Comparison of participants with and without ILAs. B1 is a locus zoom plot demonstrating the genome-
wide significant association at rs6886640 (nearest gene IPO11); B2 is a forest plot demonstrating the results in each individual cohort and the overall
meta-analysis, with the x-axis on the log odds scale. (C) Comparison of participants with and without ILAs. C1 is a locus zoom plot demonstrating
the genome-wide significant association at rs73199442 (nearest gene FCF1P3); C2 is a forest plot demonstrating the results in each individual cohort
and the overall meta-analysis, with the x-axis on the log odds scale. (D) Comparison of participants with subpleural-predominant ILAs and those
without ILAs. D1 is a locus zoom plot demonstrating the genome-wide significant association at rs7744971 (nearest gene HTR1E); D2 is a forest
plot demonstrating the results in each individual cohort and the overall meta-analysis, with the x-axis on the log odds scale. AGES=Age
Gene/Environment Susceptibility; COPD=chronic obstructive pulmonary disease; COPDGene=Genetic Epidemiology of COPD; ECLIPSE=Evaluation
of COPD Longitudinally to Identify Predictive Surrogate End-points; MESA=Multi-Ethnic Study of Atherosclerosis; SPIROMICS=Subpopulations and
Intermediate Outcome Measures in COPD Study.

ORIGINAL ARTICLE

Hobbs, Putman, Araki, et al.: ILA GWAS 1409



reticular involvement (an imaging
phenotype we have previously
demonstrated to be associated with
subpleural fibrosis) (16).

Our study adds to the growing body of
evidence that demonstrates that increasing
copies of the gain-of-function minor allele
of the MUC5B promoter variant
(rs35705950) increase the risk of IPF (6,
8–11), ILA (12, 18), and other forms of PF
(44), perhaps as the result of an increased
expression MUC5B in the distal airspaces
(6, 45–47). Additionally, our conditional
logistic regression analyses are consistent
with prior analyses (8) that demonstrated
that there do not appear to be additional
distinct 11p15 genetic variants associated
with either ILA or IPF, after accounting for
the effects of the MUC5B promoter
genotype (rs35705950). Recent studies in
mice demonstrated that Muc5b
overexpression led to impaired mucociliary
clearance and the persistence of PF in

response to bleomycin challenge, which
could be mitigated by targeted mucolytic
agents (48). Future studies will be needed
to determine whether intervention in
individuals with early stages of MUC5B-
associated interstitial changes (12, 18) could
help to prevent progression to more
advanced forms of PF.

Although our study demonstrates that
genetic risk factors are shared by patients
with IPF and some research participants
with ILAs, it also identifies genetic loci in
some research participants with ILAs that
are distinct. These results may be consistent
with the fact that ILAs identify diverse
imaging features associated with ILDs in
general (24), and it is possible that genetic
associations that reflect more diverse
pathobiologic and clinical processes than
are found in patients with IPF contribute to
some of the interstitial imaging findings in
these unique diseases (49). For example,
given the fact that many of these cohorts

include large populations of smokers, some
of these findings could be consistent with a
genetic risk of developing smoking-related
interstitial fibrosis (50). Although our
results do not provide statistically
significant evidence of a genotype-by-
smoking interaction, the power for these
analyses was limited, so this interaction
should be evaluated in future studies.
In addition, there is some evidence
to suggest that the genetic risk of
developing ILD in some CTDs may be
distinct from the processes that lead to IPF
(51–53). Until our findings can be tested in
sufficiently large cohorts of these other
important populations of individuals
with ILD, they should be viewed as
preliminary.

The association between the minor
allele (G) of the SNP rs7744971 on
chromosome 6q14 and subpleural ILAs
deserves some mention, as the G allele of
this SNP was previously demonstrated to be
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an eQTL that is expected to result in
decreased expression of the gene AKIRIN2
(42). Basic research has indicated that
Akirin-2, which is known to be expressed in
the lung (54), is a critical factor in the
innate immune system, which helps to
regulate inflammatory gene transcription
(55) and B-cell activation (56). Although
Akirin-2 is required for embryonic
development (57), selective knockdown of
akirin2 in myeloid cells in mice was shown
to result in impaired inflammatory cytokine
production in macrophages in response to
Toll-like receptor stimulation (57). It is
believed that some of the effect of Akirin-2
is mediated through its important function
as a bridge between some transcription
factors (e.g., NF-kB [57] and Twist [58],
which have also been implicated in the
development of pulmonary inflammation
[59] and fibrosis [60]) and gene
transcription. Future work to confirm the
role of this variant in expression of
AKIRIN2, and to test the role of Akirin-2
deficiency in some forms of ILD mediated
by pulmonary inflammation may be
warranted.

In addition to the lack of statistically
significant replication for the novel loci
presented here, our study has some other
limitations. First, even though our study
included nearly all available cohorts in
which ILA characterization and genetic
testing have been performed, larger sample
sizes may still be required to more
adequately characterize the genetic risk
of ILA. Second, we cannot exclude the
possibility that the generalizability of our

findings may be limited by the omission
of some participants from these analyses.
Third, although we were able to
demonstrate genetic associations with ILA
and subpleural-predominant ILA, the
sample size may have limited our ability to
detect associations with additional specific
radiologic features and patterns. In addition,
we cannot rule out the possibility that
intercohort differences in the methods used
for ILA characterization or subclassification
could have introduced phenotypic
heterogeneity, thus influencing our power to
detect genetic associations. Efforts to
develop standards for ILA characterization
across different research populations could
help to minimize this concern. Finally,
although our findings demonstrate that
the genetic risk of ILA in research
participants overlaps with the genetic risk
of IPF, it is important to note that we do
not know the extent to which the genetic
risk of IPF is shared with the risk of
other forms of PF (e.g., ILD in the
setting of rheumatoid arthritis) (45) or
could result in a milder or less progressive
form of PF.

In conclusion, our study demonstrates
that although the MUC5B promoter variant
is the dominant variant that is common
between ILAs and IPF, there are nominally
significant associations between ILAs and
the majority of genetic loci that were
previously associated with IPF. In addition,
our findings provide evidence of novel
genetic loci associated with ILAs, but not
with IPF. These findings provide further
evidence that the DPP9, DSP, FAM13A,

IVD, and MUC5B loci may be important
in the risk of both early and later stages
of PF. Our findings also suggest that ILA
characterization may help to identify the
genetic risk of developing imaging
abnormalities that may represent an
early stage of other diverse forms of
ILD. n
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Table 3. Association of 12 Previously Identified Idiopathic Pulmonary Fibrosis Genome-Wide Association Loci with Interstitial Lung
Abnormalities and Subpleural Interstitial Lung Abnormalities

Chromosome/
Location rsID

IPF Risk
Allele Nearest Gene Studies

IPF Odds Ratio
(95% CI)

ILA vs. No ILA Subpleural ILA vs. No ILA Direction of Effect
Consistent with
Prior ReportsOdds Ratio (95% CI) P Value Odds Ratio (95% CI) P Value

4q22 rs2609255 G FAM13A (8) 1.29 (1.18–1.42) 1.18 (1.07–1.29) 531024 1.22 (1.09–1.35) 331024 Yes
6p24 rs2076295 G DSP (8, 11) 1.44 (1.35–1.54) 1.14 (1.05–1.2) 0.001 1.18 (1.08–1.29) 331024 Yes
11p15 rs35705950 T MUC5B (8) 2.43 (2.13–2.77) 1.97 (1.74–2.22) 33 10227 2.22 (1.93–2.55) 2310229 Yes
15q15 rs2034650 A IVD (8) 1.30 (1.19–1.41) 1.08 (0.99–1.17) 0.07 1.15 (1.05–1.26) 0.003 Yes
19p13 rs12610495 G DPP9 (8) 1.29 (1.18–1.41) 1.14 (1.03–1.26) 0.01 1.23 (1.10–1.37) 231024 Yes

3q26 rs6793295 C LRRC34 (8) 1.30 (1.19–1.42) 1.06 (0.97–1.15) 0.20 1.12 (1.01–1.24) 0.03 Yes
17q21 rs1981997 G MAPT (8) 1.41 (1.28–1.56) 1.16 (1.03–1.30) 0.01 1.19 (1.05–1.36) 0.009 Yes

5p15 rs2736100 A TERT (7, 8) 2.11 (1.61–2.78) 1.03 (0.95–1.12) 0.44 1.06 (0.96–1.16) 0.23 Yes
10q24 rs11191865 A OBFC1 (8) 1.25 (1.15–1.35) 1.03 (0.95–1.12) 0.46 1.03 (0.94–1.13) 0.56 Yes
13q34 rs1278769 G ATP11A (8) 1.27 (1.14–1.39) 1.04 (0.95–1.15) 0.37 1.04 (0.94–1.16) 0.45 Yes
15q25 rs62025270 A AKAP13 (11) 1.27 (1.18–1.37) 1.09 (0.99–1.20) 0.08 1.07 (0.96–1.20) 0.23 Yes

7q22 rs4727443 C LOC100128334/
LOC105375423

(8) 1.30 (1.19–1.41) 0.95 (0.87–1.03) 0.19 0.93 (0.84–1.02) 0.12 No

Definition of abbreviations: CI = confidence interval; ILA= interstitial lung abnormality; IPF= idiopathic pulmonary fibrosis.
For each locus, only the SNP is reported.
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