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ABSTRACT OF THE DISSERTATION

The Design of Efficient and Secure Lattice-based (FH)E

by

Mark Douglas Schultz-Wu

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Daniele Micciancio, Chair

Lattice-based cryptography leverages Euclidean lattices (and carefully-applied “noise”) to

construct secure cryptographic primitives. In recent years, these primitives have become quite

practical (and academically popular), yielding a large number of variant schemes that are mild

variants on the same core construction(s).

First, we introduce a relaxed notion of security for a cryptographic primitive that we call

(c,s)-bit security. This parameterizes security with a (standard, computational) security parameter

c, as well as a statistical security parameter s, and seems well-adapted for summarizing the concrete

hardness of problems that contain both computationally-hard and statistically-hard components. We

pair this with the notion of distinguishing advantage of aborting adversaries (Micciancio and Walter,

Eurocrypt 2018), and characterize optimal adversaries in this setting.

xii



Next, we propose a framework for the design of lattice-based encryption, parameterized by

two coding-theoretic objects. We show that one can instantiate many lattice-based cryptosystems

with compact ciphertexts in our framework, and show there are fundamental limits on the ciphertext

size for cryptosystems built within our framework.

Finally, we show that one may harden the approximate FHE scheme of Cheon, Kim, Kim,

and Song (Asiacrypt 2017) against the passive attacks of Li and Micciancio (Eurocrypt 2021),

via applying an appropriate notion of differential privacy. Here, we find that to achieve (c,s)-bit

security, the overhead of our countermeasure scales entirely with s (which may plausibly be set

lower than c). We show that our countermeasure’s overhead is nearly optimal, by arguing that

instantiating it with smaller overhead yields an insecure scheme. Finally, we investigate another

proposed countermeasure that lacked a proof of security, and show simple attacks against it.
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Chapter 1

Preliminaries

For n ∈ N, we will frequently use the notation [n] := {0,1, . . . ,n−1}. For a finite set S, we

write |S| for the cardinality of S. For a continuous subset S⊆ Rn, we write vol(S) for the volume

(Lebesgue measure) of S. Our continuous subsets will always be “nice” (compact and convex),

such that their volume is well-defined. We write f (S) = { f (x) : x ∈ S} for the image of a set S⊆ A

under a function f : A→ B, and X +Y = {x+ y | x ∈ X ,y ∈ Y} for the (Minkowski) sum of two

subsets X ,Y ⊆ A of an abelian group (A,+,0). We will write r ·Bn for the Euclidean ball of radius

r, centered at 0, and r ·B(∞)
n = [−r,r]n for the ℓ∞ ball of radius r. We will write r ·B(p)

n to uniformly

refer to either of these objects (but omit p for the more common Euclidean case).

1.1 Linear Algebra

Throughout, we will write scalars a as lower-case italicized, vectors a as lower-case bolded,

matrices A as upper-case bolded. We write [A,B] for horizontal concatenation of matrices, and

(A,B) = [At ,Bt ]t for vertical concatenation.

1.2 Algebraic Number Theory

For any positive integer N, let ΦN(X) = ∏ j∈Z∗N (X−ω
j

N) be the Nth cyclotomic polynomial,

where ωN = e2π i/N ∈ C is the complex Nth principal root of unity, and Z∗N is the group of invertible

integers modulo N. We recall that ΦN(X) ∈ Z[X ] is a monic polynomial of degree n = ϕ(N) =

|Z∗N | with integer coefficients. We denote by RN = Z[X ]/(ΦN(X)) the ring of integers of the

1



number field Q[X ]/(ΦN(X)), omitting the superscript when it is clear from context. We use

RN
Q = Z[X ]/(Q,ΦN(X)) to denote the ring of elements of RN reduced modulo Q. We write an

element of these rings as a, e.g. as lower-case and curly. Typically1, these will be elements of the

ring RN
Q, rather than RN .

An element a ∈ R[X ]/(ΦN(X)) may be embedded into Cn under the canonical embedding

τ(a) (typically defined over Q[X ]/(ΦN(X)), but naturally extending to R[X ]/(ΦN(X))). The map

τ(a) takes a to the n = ϕ(N) evaluations of a at the n roots of ΦN(X). We may occasionally write

â := τ(a) as shorthand for these values. Notice that these n values come in conjugate pairs and

can be identified as a vector in Cn/2 via a projection π : (z, z̄) 7→ z.

1.3 Probability Theory

For a random variable X and point y, we write X(y) as shorthand for the probability that

y occurs, e.g. the probability mass function of a discrete random variable, or probability density

function of a continuous random variable. For a set S, we write X [S] for ∑y∈S X [y] (if X is discrete)

or
∫

y X [y]dy (if X is continuous). In doing so, we assume our random variables X are sufficiently

“nice”, which may be informally2 summarized as

• either purely discrete, or purely continuous, and

• if purely continuous, sufficiently nice such that a probability density exists.

Throughout, we will often identify a random variable X ←D samples from some distribution D ,

and the distribution itself, e.g. we may write D [S] for the probability that X ∈ S, where X ←D . If

S is a finite set, then X ← S chooses X at random from S with uniform distribution.

We will work with the following distributions. Throughout, let ρ(x) = exp(−x2/2) be the

Gaussian kernel, normalized using the convention common in probability theory3.
1The main exception to this is during “error analysis” in lattice-based cryptography. While we investigate the impact

of errors on the sizes of lattice-based ciphertexts in detail in Chapter 3, this is for (standard) LWE-based encryption, not
(ring) LWE-based encryption. We perform some ring-based error analysis in Chapter 4 (see for example Section 4.4.2),
though this occupies a relatively minor part of the work included in this dissertation.

2Formalizing this is not particularly hard, but also distracts from the cryptographic focus of our work.
3There is a competing normalization exp(−πx2) that is often used in Physics, as it behaves better with respect to
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Definition 1 (Bernoulli Distribution). Let p ∈ [0,1]. The Bernoulli distribution of parameter p (no-

tated Bern(p)) is the discrete distribution on {0,1} with probability mass function PrX←Bern(p)[X =

0] = p, PrX←Bern(p)[X = 1] = 1− p.

We will occasionally refer to the Discrete Gaussian distribution. We refer the interested

reader to [14, 31] (and their references) for more details on this distribution.

Definition 2 (Discrete Gaussian Distribution). Let n ∈ N, and let σ > 0. The (mean-zero) Discrete

Gaussian of parameter σ2 (notated NZn(0,σ2In)) is the discrete probability distribution supported

on Zn with probability mass function proportional to ρ(∥x∥2
2/σ2).

Definition 3 (Discrete Uniform Distribution). Let S be a finite set. The Discrete Uniform distribution

on S (notated Unif(S)) is the discrete probability distribution supported on S with probability mass

function proportional to 1/ |S|.

We will leverage several continuous distributions as well.

Definition 4 (Continuous Gaussian Distribution). Let n ∈ N, and let σ > 0. The (mean-zero) Con-

tinuous Gaussian of parameter σ2 (notated N (0,σ2In)) is the continuous probability distribution

supported on Rn with probability density function proportional to ρ(∥x∥2
2/σ2).

Definition 5 (Continuous Uniform Distribution). Let S ⊆ Rn be a compact, convex set. The

Continuous Uniform distribution on S (notated Unif(S)) is the continuous probability distribution

supported on S with probability density function proportional to 1/vol(S).

We will associate with any random vector x a mean µx := E[x] and Covariance matrix

Σx := Cov(x)i, j := E[(x−µx)i(x−µx) j]. Both quantities behave well with respect to linear trans-

formations.

Lemma 1. Let x←D be a random vector on Rn. Let A ∈ Rm×n, and let y ∈ Rm Then Ax+y is a

random vector with mean Aµx +y, and covariance Σy = AΣxAt .

Fourier transforms. It often occurs in lattice cryptography as well, see for example [31].
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We highlight the class of random vectors with mean 0 and covariance In, which we call

isotropic. Any random variable x←D may be mapped by an affine transformation to an isotropic

random variable, completely analogously4 to how any (potentially multivariate) continuous Gaussian

may be mapped to an i.i.d. collection of univariate standard (meaning mean zero and variance 1)

Gaussians.

1.3.1 Similarity Measures between Distributions

We use several similarity measures between probabilistic distributions. Below, we include

formula for nearly5 all similarity measures we use in the setting of discrete random variables, though

the extension to continuous random variables is standard, see [73, Chapter 7].

Definition 6. Let D0,D1 be distributions on a set Ω. Define

• Statistical Distance: ∆SD(D0,D1) =
1
2 ∑x∈Ω |D0(x)−D1(x)|,

• (Squared) Hellinger Distance: ∆2
H(D0,D1) =

1
2 ∑x∈Ω(

√
D0(x)−

√
D1(x))2

• Kullback-Liebler Divergence: D(D0||D1) := ∑x∈Ω D0(x) ln
(

D0(x)
D1(x)

)
• Renyi Divergence of Order 1/2: ∆R;1/2(D0||D1) = −2ln∑x∈Ω

√
D0(x)D1(x) = −2ln(1−

∆2
H(D0,D1)),

• (Squared) Le Cam Distance: ∆2
LC(D0,D1) =

1
2 ∑x∈Ω

(D0(x)−D1(x))2

D0(x)+D1(x)
.

Everything we call a “distance” above is a true distance (e.g. a metric). We next summarize

several other properties that all of the above divergences satisfy.

Lemma 2. Let δ ∈ {∆SD,∆
2
H,D,∆R;1/2,∆

2
LC} be a divergence of Definition 6. Let D0,D1 be any

distributions on a set Ω. Then

1. δ (D0||D1)≥ 0,

4Note that in the non-Gaussian case, the isotropic random variable x only has uncorrelated coordinates. G
5The exception is the the “Bit Security Divergence”, introduced in Eq. (2.4), as the definition of this similarity

measure was a novel contribution of Chapter 2.
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2. δ (Di||Di) = 0,

3. (D0,D1) 7→ δ (D0||D1) is a jointly convex function, and is therefore additionally convex in

each input separately,

4. Data Processing Inequality: for any randomized transformation A, δ (A(D0)||A(D1)) ≤

δ (D0||D1)

Proof. These all immediately follow from viewing the divergences of Definition 6 as what are

known as f -divergences6. We direct the interested reader to [73, Section 7].

The above similarity measures are generally related as follows.

Lemma 3 ([73, Section 7].). For any two distributions D0,D1 we have

∆
2
H(D0,D1)≤ ∆SD(D0,D1)≤

√
2∆H(D0,D1)

∆H(D0,D1)≤ ∆LC(D0,D1)≤
√

2∆H(D0,D1)

∆
2
SD(D0,D1)≤ 2∆

2
H(D0,D1)≤ D(D0||D1).

In other words, ∆2
H and ∆2

LC are (up to constant factors, e.g. tightly) equivalent, but ∆SD

and (either of ∆2
H or ∆2

LC) are only loosely equivalent. ∆2
H,∆

2
LC,∆SD are all at most 1. ∆R;1/2 is

equivalent to ∆2
H and ∆2

LC, under certain technical conditions which need not always hold7. D is

generally8 not equivalent to other distance measures.

∆R;1/2 is a monotone transformation of ∆2
H, but may as well be bounded by ∆2

H as follows.

Lemma 4. For any two distributions D0,D1 such that ∆R;1/2(D0,D1)< ∞, we have

∆
2
H(D0,D1)≤

1
2

∆R;1/2(D0,D1)≤
∆2
H(D0,D1)

1−∆2
H(D0,D1)

≤ 2∆
2
H(D0,D1),

6 f -divergences may be characterized as the class of decomposable divergences (meaning δ (D0,D1) =

∑x f (D0(x),D1(x)) for some f ) such that data-processing inequality holds, see [42].
7For example, if the supports of D0 and D1 are disjoint, then ∆R;1/2(D0||D1) = ∞. This additionally holds

“asymptotically”. In particular, if Dε
0 := (1− ε,0,ε), and Dε

1 := (0,1− ε,ε), one can compute that ∆R;1/2(D
ε
0 ||Dε

1 ) =

ln(1/ε2) approaches ∞ as ε → 0.
8In very limited settings one may establish equivalence, generally under the name of a “Reverse Pinsker Inequality”.

See [79] for details.
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where the last inequality assumes ∆2
H(D0,D1)≤ 1/2.

Proof. Easily follows from the bounds 1− (1/t) ≤ ln t ≤ t − 1 and relation ∆R;1/2(D0,D1) =

−2ln(1−∆2
H(D0,D1)). See [85] for details.

All f -divergences have what are known as variational representations, or ways of writing

them as the suprema of a certain functional over an explicit class of functions. A general presentation

of this theory requires background in convex geometry that we avoid for simplicity — see [73,

Chapter 7] for details. We will solely use the following variational representations9.

Lemma 5. Let D0,D1 be discrete probability distributions on some set Ω. Then

• ∆SD(D0,D1) = supg:|g|≤1/2ED0[g(x)]−ED1[g(x)],

• ∆2
LC(D0,D1) = supg:Ω→R

(ED0 [g(x)]−ED1 [g(x)])
2

VarD0(g(x))+VarD1 [g(x)]
.

Note that in both cases a maximizer may be explicitly described, namely for ∆SD g(x) is

(half) the indicator function of {x |D0(x)> D1(x)}, while for ∆2
LC, one has g(x) = D0(x)−D1(x)

D0(x)+D1(x)
.

A probability ensemble {Dθ}θ is a family of distributions indexed by an arbitrary parameter

θ . Given a similarity measure δ between distributions, we extend it to distribution ensembles via

δ ({Dθ
0 }θ ,{Dθ

1 }θ ) = supθ δ (Dθ
0 ,D

θ
1 ). We will write D⊗q = (D ,D , . . . ,D) as q independent and

identically distributed (i.i.d.) copies of a distribution D . We abbreviate a list of random variables

(D1, . . . ,Dn) as (Di)i. For such a list, we write D<i to denote the prefix (D1, . . . ,Di−1).

Lemma 6 (Chain Rule for the KL Divergence, Theorem 2.2 of [72]). The KL divergence satisfies If

(D0,D1) and (D ′0,D
′
1) are pairs of (possibly dependent) random variables, then

D((D0,D1)||(D ′0,D ′1))≤ Ex∼D0[D((D1 |D0 = x)||(D ′1 |D ′0 = x))]+D(D0||D ′0)

≤ max
x∈supp(D0)

((D1 |D0 = x)||(D ′1 |D ′0 = x))+D(D0||D ′0).

9Note that the variational representation of ∆2
LC is not directly found in [73]. It can be obtained by writing ∆2

LC in
terms of another distance measure (the χ2 divergence), for which [73] does list a variational representation.
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Note that there exists a variant of the above for other divergences, though this is most easily

described using the theory of Renyi divergences10 that this work will not require. See [73, Eq.

(7.77)].

We introduce the following notation to more compactly bound the divergence between

vectors of random variables.

Definition 7. Let D = (Di)
n
i=1,D

′ = (D ′i )
n
i=1 be two lists of discrete random variables over the

support ∏
n
i=1 Ωi ⊆ Rn, and δ any divergence. We define the vector divergence δ̂ (X ||Y ) to be

the non-negative real vector (v1, . . . ,vn) ∈ Rn
≥0 with coordinates vi = maxδ ([Di |D<i = a]||[D ′i |

D ′<i = a]).

In this notation, chain rule of the KL divergence (for example) can be written as D(X ||Y )≤

∥D̂(X ||Y )∥1.

1.4 Cryptography

1.4.1 The Learning with Errors Problem

Much of lattice cryptography relies on the hardness of the learning with errors problem.

Definition 8 (LWE problem). Let m = nO(1), and let q ∈ [nO(1),2O(n)]. Let χsk be a distribution on

Zq, and χe be a distribution on Rq. The Learning with Errors problem LWEn,q
χsk,χe is to distinguish

the distribution (A,As+ e) from (A,U), where A← Zm×n
q , s← χn

sk, and e← χm
e , and u← Rm

q .

We rely on LWE where e← χe and u←Rm
q are real random variables (modulo q) to simplify

our analysis. We omit the inclusion of m in the notation LWEn,q
χsk,χe , as it has minimal impact on the

hardness of the problem. The primary justification for the hardness of LWEn,q
χsk,χe is that it admits

reductions from worst-case hard lattice problems, initially due to Regev [76].

Theorem 1. For any m = nO(1), any modulus q ≤ 2nO(1)
, let χe be any (discretized) Gaussian

distribution χ of parameter σ ≥ 2
√

n, and χsk be the uniform distribution on Zq. Then solving

10Many of our divergences are closely related to Renyi divergences, namely ∆2
H, ∆2

LC, D, and ∆R;1/2. Still, we find
that it will always suffice to first bound our divergences by the KL divergence, and appeal to the chain rule for this
divergence.
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the decision LWEn,q
χsk,χe problem is at least as hard as quantumly solving GapSVPγ and SIVPγ on

arbitrary n-dimensional lattices, where γ = Õ(nq/σ).

This work will not need definitions of of GapSVPγ and SIVPγ . We call attention to the

approximation factor γ = Õ(nq/σ), which controls the hardness of the problem, and depends on

the “modulus to noise” ratio q/σ . The Gaussian parameter can often be set to a fixed polynomial

σ = 2
√

n, so that larger values of q result in constructions that are both less efficient and less

secure. Of particular interest will be the cases of polynomial q/σ = nO(1), and superpolynomial

q/σ = nω(1) modulus to noise ratio.
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Chapter 2

On Mixing Computational and Statistical
Bit Security

2.1 Chapter Introduction

The level of security provided by a cryptographic construction is customarily measured

in “bits”. The intuition is that breaking an application offering “n bits of security” should have

a cost1 comparable to mounting a key recovery attack on an ideal cryptographic function with

a key space of size 2n. Formalizing this intuition is not entirely trivial, because cryptographic

attacks often exhibit a trade-off between the cost (e.g., the running time TA) of the attack, and its

success probability εA. For (verifiable) search problems, like forging digital signatures, it is well

established2 that bit security can be defined as the quantity log2(TA/εA), minimized over all possible

adversaries A. However, the situation for decision problems (like indistinguishability of ciphertexts,

zero knowledge, pseudorandomness, etc). is far less clear. We recall that in a decision game the

goal of the adversary is to distinguish between two distributions Db for b ∈ {0,1}. So, a naive

approach to measure security could be to mimic the definition for search problems, and replace

the quantity log2(TA/εA) with log2(TA/δA), where δA = 2εA−1 is the advantage (over a random

choice) of guessing the bit b. But it is well known that this naive definition leads to paradoxical

situations, where for example [26] an algorithm G is deemed more secure (i.e., it is attributed a

1Various measures of cost have been considered, and the reader is referred to [8, Appendix B] for a discussion. For
simplicity, in this paper we identify the cost of an attack with its running time.

2This is justified by the fact that one can repeat the attack O(1/ε) times to make the success probability arbitrarily
close to 1.
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higher level of bit security) as a pseudorandom generator than as a one-way function. This is at

odds with cryptographic intuition because pseudorandomness is a stronger security requrement than

one-wayness. (See [61] and references therein for a detailed discussion of this and other problematic

examples).

During the last few years, several papers have investigated the problem of giving meaningful

definitions of bit security [61, 84, 85, 53, 49], or using them to give a tight security analysis of

cryptographic primitives (e.g., see [1, 53]). The first work to propose a satisfactory definition of

bit security for decision games is the one of Micciancio and Walter [61]. A key element of their

definition is to consider attackers that may output either a bit b ∈ {0,1} (indicating a decision

between D0 and D1) or a special “don’t know” symbol ⊥. Interestingly, [61] shows that this simple

extension of traditional adversaries, together with an appropriate definition of advantage (already

used by [51] in a different context,) allows to resolve all the previously mentioned paradoxes, and

argue (by means of examples) that this is the right definition of bit security.3 Since then, a number

of alternative definitions have appeared [84, 85, 53, 49], with various motivations. Watanabe and

Yasunaga [84] proposed an alternative framework to define bit security that directly admits what

they call an “operational interpretation”, and later argued [85] that it is equivalent to the original

MW definition [61]. A seemingly attractive feature of their definition is that it only requires standard

(non-aborting) adversaries with output in {0,1}. A variant of their definition that (similarly to [61])

interpolates between search and decision problems is given in [49]. In a different and orthogonal

direction, Li at al. [53] extend the MW definition to encompass both computational and statistical

security. Informally, statistical security provides a strong measure of the security even against

computationally unbounded adversaries. When achievable, statistical security has the advantage

of being easier to evaluate, and not requiring any computational assumptions. In practice, when

setting parameters and optimizing efficiency, it is common to require lower levels of statistical

bit security s, than computational bit security c. For example, s = 80 is usually considered more

3This is at least for decision problems. The work [61] also proposes a more general definition based on information
theory that interpolates between search and decision problems, but the corresponding notion of bit security for
intermediate cases is largely unexplored. In this paper, we focus on the special case of decision problems which is the
most relevant to cryptography.
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than acceptable, while computational security typically requires c≥ 128 or even higher values to

anticipate possible improvements in the computational complexity of attacks. Li at al. [53] define

(c,s)-security as satisfied by a protocol that provides either c bits of computational security, or s bits

of statistical security against any possible attack. We remark that a protocol can admit both attacks

with running time much less than 2c (as long as their advantage is less than 2−s) and (different)

attacks achieving advantage very close to 1 (as long as their running time is higher than 2c). In other

words, a (c,s)-secure protocol can achieve neither c-bits of computational security nor s-bits of

statistical security. Still, morally, it provides an acceptable level of security whenever s-bit statistical

security and c-bit computational security are considered individually adequate. The advantage of

(c,s)-security is that it allows to seamlessly combine statistical and computational cryptographic

primitives (something very common in practice) and still be able to formally quantify the security

level of an application. However, the notion of (c,s)-security has not been further explored, and,

despite its potential usefulness, it has seen little adoption due to the lack of tools to simplify its

usage.

Our Contributions and Techniques

In this work, we examine the bit security definitions of [61, 84, 53], proving structural results

about optimal adversaries in the statistical setting, clarifying the relation between the MW and WY

bit security definitions, and then applying these results to the recent notion of (c,s)-bit security. Our

main contributions, described in more details in the next subsections, can be summarized as follows:

• We characterize the MW adversaries achieving the optimal bit-security advantage. Specifically,

we show that these adversaries may be assumed to be deterministic (Corollary 1) and have a

special “threshold” structure (Theorem 4).

• We show (Theorem 6) that the WY notion of bit security is equivalent to the original MW bit

security definition. We remark that a proof of this equivalence was already given in [85], but,

as we are going to describe, that proof contains a gap. We clarify the relation between the

two definitions by filling the gap and also giving a simpler proof of the equivalence.
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• Despite the fact that the WY definition only uses traditional (non-aborting) adversaries,

we show (Theorem 7) that the natural “maximum likelihood” distinguisher can offshoot the

correct bit security level by a large margin. So, the advantages of using standard (non-aborting)

adversaries in the characterization of bit security put forward in [84] are unclear.

• We show that common proof techniques widely used in the analysis of cryptographic protocols

can be extended to work with the more general notion of computational-statistical security

from [53]. Specifically, we show that (c,s)-security fully supports the use of hybrid arguments

(Theorem 8) and probability substitution (Theorem 9).

On the technical side, many of our results rely on a new class of adversaries that further

extends the MW (aborting) adversaries, and that may be of independent interest. Specifically, we

make use of adversaries (for decision games) that may output not just 0,1 (represending a high

confidence decision) or ⊥ (represending no confidence), but an arbitrary value σ ∈ [−1,1], with the

sign σ/|σ | ∈ {−1,1} representing the decision, and the magnitude |σ | ∈ [0,1] the confidence level

that can vary continuously from 0 (no confidence) to 1 (perfect confidence). Interestingly, we show

(Theorem 2) that these “fuzzy” adversaries still define precisely the same notion of bit security

as the standard MW “aborting” adversaries. Still, having the output vary continuously allows the

use of analytical techniques, and it is useful to prove the results in this paper. We believe that the

characterization of bit security in terms of these more general fuzzy adversaries may find other

applications, and is of independent interest.

Related Work

As mentioned, our work directly builds on the bit security frameworks of [61, 84], so is

directly related to these works. Our work is also tangentially related to the bit security framework

of [49], though this work mostly focuses on generalizing (a variant of) the framework of [84] to

non-decision games, whereas we focus on decision games. Our work on the optimal adversary

for the MW advantage is additionally related to the notion of (binary) hypothesis testing with an

aborting option, see for example [36], though the measure optimized in that work does not appear
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to be related to the MW advantage. The similarity between our work and binary hypothesis testing

with a rejection option is perhaps more obvious from [47, Section 4], where (in a slightly different

setting) optimality of threshold distinguishers was also highlighted. Finally, our discussion of the

implications of [69] to the WY formulation of bit security is obviously heavily related to [69].

Paper organization

The rest of this paper is organized as follows. In the rest of this section we give a more

detailed, still informal, description of our results and techniques. Section 2.2 defines the notation and

preliminary results used in this paper. In Section 2.3 we formally define fuzzy adversaries, establish

their equivalence (in both the computational and statistical setting) with the aborting adversaries

of [61], and then use them to investigate the structure the MW adversaries achieving the optimal

advantage. In Section 2.4, we explore the WY bit security definition and its equivalence with the

MW bit security. Finally, in Section 2.5, we build our toolbox for the use of (c,s)-security in the

analysis of cryptographic protocols, establishing the validity of hybrid arguments and probability

replacement theorems. Section 2.6 concludes with some final remarks and open problems.

2.1.1 The Micciancio-Walter Advantage

Consider the problem of distinguishing between two distributions X = (D0,D1) over a

set Ω. (Everything applies more generally to the case of more complex decision games where an

adversary interacts with one of two oracles). Micciancio and Walter (following [51]) define the

advantage of an “aborting” adversary A : Ω→{0,1,⊥} as

advMW
X (A) =

(βA− β̄A)
2

βA + β̄A
, (2.1)

where βA = Pr[A(xb) = b] and β̄A = Pr[A(xb) = 1−b] are the probability that A outputs the correct

or incorrect bit, respectively, when b ∈ {0,1} is chosen at random and xb← Db. For traditional

(non-aborting) adversaries with output in {0,1}, we have β + β̄ = 1, and it is well known (and

quite intuitive) that the best advantage is achieved by an adversary A(x) that on input a sample
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x ∈ Ω, outputs the bit b := argmaxb′∈{0,1}Db′(x) for which Db(x) is highest. Moreover, the

resulting optimal advantage equals precisely the square ∆SD(D0,D1)
2 of the statistical distance

between the two distributions. This allows to easily compute the bit security of X whenever the

probability distributions are efficiently computable. This is a common scenario in cryptography,

where, for example D0 may be an ideal probability distribution used in the theoretical analysis of a

cryptographic scheme (e.g., a discrete gaussian distribution in lattice-based cryptography) and D1 is

an approximate (more efficiently samplable) version of D0 used when implementing the algorithm

in practice (e.g. using floating point numbers). In fact, this was precisely the motivation in [59, 61].

However, once the adversary is allowed to output ⊥, it is no longer clear how to determine

an optimal adversarial strategy, even when the probability distributions D0,D1 are efficiently

computable. One of our main goals is to characterize the optimal aborting adversarial strategies,

both to improve our understanding of the MW bit security definition, and offer a simple tool for the

computation of the bit-security distance between specific distributions that may occur in practice.

To this end, we first show that one can equivalently phrase the study of aborting adversaries

in terms of the class of fuzzy adversaries A≈ := {Ã | Ã : Ω→ [−1,1]}. These adversaries output y =

A(x) not only a guess of which distribution they are given (via y/|y| ∈ {±1}), but also a confidence

level |y| ∈ [0,1]. One then measures the advantage of fuzzy adversaries with a “continuous” analogue

of Eq. (2.1) (Definition 15), which we write as advMW,≈
X (Ã). We prove equivalence (Lemma 15) by

giving efficient, advantage-preserving transformations between the two classes of adversaries. This

shows that, when maximized over the set of all possible adversaries, advMW(A) and advMW,≈(A)

are equivalent. Moreover, since the transformations between fuzzy and aborting adversaries used in

our proofs also preserve the adversary’s running time, they also establish the equivalence between

the corresponding notions of computational (and, looking forward, computational-statistical) bit

security.

We then prove a number of useful properties for aborting and fuzzy adversaries. For example,

we show that the MW advantage is a convex function of randomized aborting adversary. As a simple

corollary, we derive that the optimal advantage is always achieved by a deterministic aborting
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adversary (Corollary 1).

Next we dig deeper into the structure of the optimal fuzzy adversary. Here, we show that

one may always improve the advantage of a fuzzy adversary by modifying it to have full (or no)

confidence on any input (Theorem 5), i.e. optimal fuzzy adversaries have outputs in {−1,0,1}.

Since these values corresponds precisely to the outputs of aborting adversaries 1,⊥,0, this provides

an alternative proof that aborting and fuzzy adversaries are equivalent. More interestingly, we use

the lemma to precisely characterize when optimal fuzzy adversaries have full confidence, i.e., output

±1 instead of 0. Specifically, we show that every optimal fuzzy adversary is of the form

AX
τ (x) =


0

∣∣∣ln D0(x)
D1(x)

∣∣∣< τ

sign
(

ln D0(x)
D1(x)

)
otherwise

,

for some threshold τ ∈ [0, ln(3)]. Moreover, the value of the optimal threshold τ is uniquely

determined as a simple function of the adversary’s conditional success probability (Theorem 4).

2.1.2 Watanabe-Yasunaga Bit Security

We next investigate the optimal adversary for Watanabe-Yasunaga Bit Security. On the

technical side, our work here is less novel, as information theorists have recently identified [69]

a natural choice of adversaries with good performance. Before discussing the precise results, we

briefly provide some background. Watanabe-Yasunaga Bit security (as originally defined in [84]) is

specified in terms of an “inner” adversary A that on input a sample x←Db, outputs either 0 or 1.

This adversary is run n times y1 = A(x1), . . . ,yn = A(xn) on independent samples xi←Db all chosen

from the same unknown distribution. The number of samples n is chosen large enough so that the

value of the bit b can be determined with very high probability µ ≈ 1 (say, µ ≥ 0.99) based on the

output values y1, . . . ,yn. So, the total running time is given by n ·TA, and [84] defines the bit security

to be log2(n ·TA), minimized over all inner adversaries A and number of repetitions n such that

µ ≥ 0.99. They also show that this quantity can be equivalently computed as log(TA/R1/2(A0,A1))

where R1/2 is the Renyi divergence of order 1/2, and Ab = A(Db) ∈ {0,1} is the Bernoulli random
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variable defined by the output of the adversary on input a sample from Db.

At this point, it is natural to ask:

• What is the relation between the MW and WY bit security?

• What is the optimal adversary A(x) ∈ {0,1} for the WY definition?

Notice that since the WY adversaries always output either 0 or 1, they are potentially easier to use,

as the attacker does not have to choose whether or not to abort.

Regarding the first question, [84] proved only the inequality MW ≤WY , showing that WY

is a more conservative notion of bit security, and leaving a more precise comparison as an open

problem. In a follow-up paper [85] the same authors established the equivalence between MW and

WY (up to an additive constant), but with a catch. Technically, they prove the equivalence between

MW and WY bit security for the same class of aborting adversaries (with output in {0,1,⊥} used

in [61]. Then, they claim equivalence with the original WY definition by informally stating that

the definition in [84] does not explicitly depend on the size of the co-domain of the adversary A.

However, the justification is incorrect because the Renyi divergence R1/2(A(D0),A(D1)) implicitly

depends on the size of the output of A. Despite this gap in the proof, we show that the main claim

of [85] (about the equivalence of MW and WY bit security) is correct, and in the process we give a

simpler proof of this fact.

So, at this point, the WY notion of bit security can be considered an alternative characteriza-

tion of the MW bit security, rather than a new definition, and the question is whether this alternative

characterization can help in evaluating the bit security of decision problems. One seemingly attrac-

tive feature of the WY is that it uses standard adversaries A(x) with outputs in {0,1}. This is because

for these adversaries there is a particularly natural attack, that on input a sample x, outputs the bit b

for which the probability Db(x) is highest. However, this does not seem to help in evaluating the bit

security using the WY characterization: we show that there exist distinguishing games where this

adversary yields bit security estimates twice as high as the optimal, correct value. Recall that bit

security (roughly) measures the exponent of the running time of the adversary. So, a multiplicative
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factor in bit security estimation is quite large, and the “natural” non-aborting adversarial strategy is

far from optimal in the context of the WY definition.

2.1.3 Computational/Statistical Bit Security

Finally, we investigate the definition of (c,s)-bit security proposed in [53], to extend MW

bit security to encompass both computational and statistical security. Recall that the MW (computa-

tional) bit security of a problem is the highest c such that T (A)/advMW
X (A)≥ 2c for all adversaries

A. Similarly, statistical security can be defined as the smallest s such that 1/advMW
X (A)≥ 2s for all

adversaries A, where this time the running time of A is ignored. Li et al. define a protocol to be

(c,s)-secure if for any adversary A

either
T (A)

advMW
X (A)

≥ 2c or
1

advMW
X (A)

≥ 2s.

As explained in the introduction, a protocol satisfying this definition seems to provide an adequate

level of security whenever computational security and statistical security are considered acceptable

individually. Here we point out that a protocol can offer neither c bits of computational security

nor s bits of statistical security, and still be (c,s)-secure. Consider for example a protocol such that

there exist a very efficient adversary Ac with running time T (Ac) = 1 that achieves MW advantage

2−s, and some other adversary As with very large running time T (As) ≥ 2c that achieves MW

advantage ≈ 1. Then, the protocol is neither computationally nor statistically secure because Ac

breaks computational security (for s < c), and As breaks statistical security. So, (c,s)-security is

strictly weaker than both c-bits computational security, and s-bits of statistical security. In fact,

one should expect this to be the case in any application that makes use of both computational and

statistical security primitives, as an adversary can choose to attack the application by trying to break

either one or the other type of primitives.

While (c,s)-bit security was introduced in [53]4 (and successfully used to analyze a practical

4This work is Chapter 4 of the current document. For ease of readability, we have moved several basic lemmata
regarding (c,s)-bit security (and its definition) initially proved in that work into this chapter.
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protocol), this was done via direct manipulation of the definition. In this paper we establish a

tight connection between the MW advantage advMW
X (A) and a standard distance measure used

in statistics: the (squared) Le Cam distance ∆2
LC(A(D0),A(D1)) between the adversary’s output

probability distributions. Then, we use this connection to prove several useful properties of the

(c,s)-bit security which support two of the most common proof techniques in cryptography:

• The “hybrid argument” (see Theorem 8 for formal statement): consider a sequence of distri-

butions D0, . . . ,Dk. If the game defined by any pair of neighboring distributions (Di−1,Di) is

(c,s)-secure, then the game defined by the extreme distributions (D0,Dk) is also (c′,s′)-secure,

for c′ ≈ c− logk and s′ ≈ s− logk.

• The “distribution replacement” theorem (see Theorem 9 for formal statement): Consider

a decision game (DY
0 ,DY

1 ) parametrized by a distribution Y . If distinguishing between

(Y ,Y ′) is (c,s)-secure, and (DY
0 ,DY

1 ) is (c,s)-secure, then (DY ′
0 ,DY ′

1 ) is also (c′,s′)-

secure, for c′ ≈ c and s′ ≈ s.

Our results improve or extend previous work. For example, [61] had already proved a hybrid

theorem for computational bit security, and hybrid theorems for statistical bit security are essen-

tially a form of (pythagorean) triangle inequality for the associated distance functions between

distributions. The novelty here is to establish the validity of hybrid arguments in the more general

computational-statistical setting, where each pair of neighboring distributions (Di−1,Di) may be

neither computationally nor statistically indistinguishable. Distribution replacement theorems for

bit security were previously proved in [61, 86], but only for the setting where (DY
0 ,DY

1 ) are

computationally close and (Y ,Y ′) are statistically close (either in the max-log5 or Hellinger

distance). Our theorem allows both (DY
0 ,DY

1 ) and (Y ,Y ′) to be close in the much weaker sense

of computational-statistical bit security.

Both types of techniques are cornerstones for the modular analysis of complex cryptographic

protocols that combine several cryptographic primitives. Our results support the uniform use of

5This distance measure is defined via ∆ML(D0,D1) := maxx∈Ω

∣∣∣ln D0(x)
D1(x)

∣∣∣, though does not feature in our work.
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computational-statistical bit-security to analyze both the final application and its building blocks,

including neighboring hybrids (Di−1,Di) and probability replacements (Y ,Y ′). Moreover, they

support the seamless combination of computational and statistical security primitives, while at the

same time offering tight security estimates, which, before our work, could only be done either

informally or using ad-hoc methods. The connection with the Le Cam metric, which underlies our

proofs, is also of independent interest, and may find other applications.

2.2 Preliminaries

We will often use a particular consequence of the Cauchy-Schwarz inequality known as

Bergström’s inequality (also Titu’s lemma, Sedrakyan’s inequality, and Engel’s form).

Lemma 7 (Bergström’s Inequality). For any real numbers a1, . . . ,an, and positive reals b1, . . . ,bn,

we have that
(∑i∈[n] ai)

2

∑i∈[n] bi
≤ ∑

i∈[n]

a2
i

bi
.

Proof. Rearrange the Cauchy-Schwarz inequality to ⟨c,d⟩
2

∥c∥2
2
≤ ∥d∥2

2. Let ci :=
√

bi and di := ai/
√

bi.

The claim then follows.

2.2.1 Cryptographic Games

Cryptographic games are defined by one or more randomized, stateful programs G used

by an adversary A to carry out an attack AG . When running AG , the adversary only has black-box

access to G , which is used as an oracle. There are two main categories of cryptographic games. In a

search game, the final output of AG is determined by G and indicates if the attack was successful.

In this paper we will be concerned with decision games, which are defined by a pair of oracles

G = (G0,G1) with identical interfaces, so that an adversary A may interact with either of them AG0 ,

AG1 . This time it is A that produces an output at the end of the interaction, typically consisting of

a single bit. We write A(Gb) for the final output of A at the end of the execution. The goal of the

adversary is to determine if it is interacting with either G0 or G1.
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In the simplest, prototypical example G0 and G1 are just distributions over a common set

Ω, and the only interaction between A and Gb is to receive a single sample x← Gb. For simplicity,

the reader may consider this simple case in mind, and we will often refer to G0,G1 as distributions,

and denote them by D0,D1. But all of our results hold for more complex games as well.6 When

studying a decision game G = (G0,G1), we write A(G ) as an abbreviation for the pair of output

distributions (A(G0),A(G1)).

Cryptographic protocols can be parametrized by other cryptographic primitives or distribu-

tions used as building blocks. So, for example, we may write PY for a cryptographic program P that

uses a probability distribution Y , and PY ′ for the same program run with a different distribution Y ′.

Similarly, security games (G Y
0 ,G Y

1 ) can be parametrized by Y .

We remark that the running time of an adversary A against a game G does not include the

time required to run G in the interaction A(G ). In other words, we only account for the time taken

by A to write its oracle queries and read the answers. We consider adversaries running in strict (e.g.

polynomial) time, i.e., we assume that the running time of A in a run A(Gb) does not depend on

how Gb answers the oracle queries. In particular, A has the same running time in A(G0) and A(G1).

The running time of an adversary A is denoted by TA or T (A), and may be a function of a security

parameter.

In some settings it is useful to define also a notion of running time for the game G . However,

it should be clear that the (total) running time of G in an execution A(G ) typically depends on the

adversary A.7 The time taken to run G in an execution A(G ) is denoted T A
G . Then, we can define

the running time of a game G relative to the running time of A as follows.

Definition 9. The (relative) running time of G is defined as the maximum

TG = sup
A

T A
G

TA

6Formally, for any fixed adversary A and arbitrary decision game (G0,G1), one may consider the distributions AGb

(for b ∈ {0,1}) on the transcripts of the interaction between A and Gb.
7This is most obvious when G is a game where A may issue an arbitrary number of calls to the game oracles.
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over all possible adversaries A.

For decision games (G0,G1) we always assume that G0 and G1 have the same running time.

Using this definition, the total running time to run A(G ) (including both the time for A and for G )

can be bounded as

TA(G ) = TA +T A
G ≤ TA · (1+TG ) .

2.2.2 Bit Security

Consider an adversary A against a decision game G = (G0,G1), where A(Gb) may output

0,1 or some other values. Throughout the paper we will use the following definitions and notation:

(success probability) βA = Pr[A(Gb) = b]

(failure probability) β̄A = Pr[A(Gb) = 1−b]

(output probability) αA = βA + β̄A

(distinguishing gap) δA = βA− β̄A

where all probabilities are computed over the random choice of b← {0,1}, and the randomness

of Gb and A. Notice that, αA equals the probability that the output of A is in {0,1}. So, for

standard adversaries A : Ω→ {0,1} that always output a bit A(x) ∈ {0,1}, we have αA = 1 and

δA = 2βA−1 = Pr{A(G1) = 1}−Pr{A(G0) = 1}. But we will use the definition of βA, β̄A,αA and

δA also for unrestricted adversaries that may output values outside of {0,1}. It is well-known that,

in the case of probability distributions (D0,D1), the highest possible distinguishing gap equals the

statistical distance

∆SD(D0,D1) = max
A

δA (2.2)

and it is achieved by a very simple adversary

AX
SD(x) =


0 D0(x)> D1(x)

1 D0(x)< D1(x)
(2.3)
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(When D0(x) = D1(x), the output of A can be chosen arbitrarily without affecting the gap δ ). Since

∆SD is the difference between two probabilities, and the maximum over all A is non-negative, we

always have ∆SD(D0,D1) ∈ [0,1].

The MW Bit Security Measure

Micciancio and Walter [61] suggested to use a more general class of adversaries A⊥, which

map an input x ∈ Ω to either 0, 1, or a special “don’t know” symbol ⊥, and demonstrated that

these adversaries, together with an appropriate notion of advantage, allows one to resolve several

theoretical paradoxes related to the definition of a cryptographically meaningful notion of “bit

security”. The reader is referred to [61] for intuition and justification of this definition.

Definition 10 (MW Advantage). For any (possibly randomized) MW distinguisher A : Ω→{0,1,⊥}

and distinguishing game D := (D0,D1) over Ω, the advantage of an adversary A in distinguishing

between D0 and D1 is8

advMW
X (A) =

δ 2
A

αA
=

(βA− β̄A)
2

βA + β̄A

The (squared) MW distance between two distributions is

∆
2
MW(D0,D1) = sup

A
advMW

X (A) ∈ [0,1]. (2.4)

If we restrict our attention to “non-aborting” adversaries A ∈ A0,1, we have αA = 1, and

advMW
X (A) = δ 2

A is the square of the distinguishing gap. This immediately gives the following

inequality.

Lemma 8. For any two distributions D0,D1, we have

∆SD(D0,D1)≤ ∆MW(D0,D1).

It is also easy to see that the MW distance satisfies the data processing inequality.

8This is syntactically different, but perfectly equivalent to the definition given in [61], which defines the advantage
as αA · (2β ∗A−1)2, where β ∗A = βA/αA.
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Lemma 9 (Data-Processing Inequality). Let D0,D1 be distributions on Ω. For any (potentially

randomized) function f : Ω→Ω′, we have that

∆MW( f (D0), f (D1))≤ ∆MW(D0,D1).

Proof. For any aborting adversary A, define A f (x) := A( f (x)). It is straightforward to see that

∆
2
MW( f (D0), f (D1)) = sup

A f
advMW

X (A f )≤ sup
A

advMW
X (A) = ∆

2
MW(D0,D1).

We will use the following construction from [61] to transform an aborting adversary A ∈A⊥

to one with only two possible output values.

Lemma 10 ([61, Lemma 1]). For any pair of distributions X = (D0,D1), aborting adversary

A : Ω→{0,1,⊥}, and value z ∈ {0,1,⊥}, the modified adversary

Az(x) = if (A(x) = z) then AA(X )
SD (z) else ⊥

has advantage

advMW
X (Az) =

(PrA(D0)[z]−PrA(D1)[z])
2

2(PrA(D0)[z]+PrA(D1)[z])
.

The WY Bit Security Measure

In [84], an alternative bit security measure was introduced. The definition is parametrized

by a “high enough” probability threshold µ ≈ 1, but it can be shown that the precise value of µ has

only a marginal impact on the definition. An equivalent quantity (without the parameter µ) is also

defined in terms of the Renyi divergence of order 1/2.

Definition 11. Let (D0,D1) be distributions on Ω, µ ∈ [0,1], and εA,B := Prb,xb[B(A
⊗k(xb) = b],
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where A : Ω→{0,1}, k ∈ N, and Bk : {0,1}k→{0,1}. Define

WY
µ

X (A) = min
k

min
Bk
{log2(k ·TA) | εA,Bk ≥ 1−µ}, WY

µ

X := min
A∈A0,1

WY
µ

X (A). (2.5)

WYX (A) := log2 T (A)+ log2

⌈
1

∆R;1/2(A(D0),A(D1))

⌉
, WYX := min

A∈A0,1
WYX (A). (2.6)

We say that two bit security measures are equivalent if they differ by an additive constant

factor. While not highlighted as a formal statement in [84], they show that all these measures are

essentially equivalent.

Lemma 11 ([84]). For any distinguishing game X := (D0,D1), for any constants µ ≤ µ ′, one has

that ∣∣∣WY
µ

X −WY
µ ′

X

∣∣∣≤ O(1). (2.7)

∣∣WYX −WY
µ

X

∣∣≤ O(1), (2.8)

Proof. The (stronger) bound

∀A ∈A0,1 :
∣∣∣WY

µ

X (A)−WY
µ ′

X (A)
∣∣∣≤ ln(ln(

1
4µ2 ))≤ O(1) (2.9)

follows from simple algebraic manipulations of [84, Lemmas 4 and 6], which bound the minimum

k in Eq. (2.5) via

ln( 1
4µ
)

∆R;1/2(A(D0),A(D1))
≤ k ≤

⌈
ln( 1

4µ2 )

∆R;1/2(A(D0),A(D1))

⌉
. (2.10)

Multiplying by TA and taking logarithms yields nearly matching upper and lower bounds on WY
µ

X ,

which suffice to establish Eq. (2.9). One then gets the claimed result by minimizing Eq. (2.9) over

A.
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Equivalence with the MW bit security is proved in [85], but technically only for aborting

adversaries, which we denote WY⊥X = minA∈A⊥WYX (A).

Lemma 12 ([85, Theorems 1 and 2]). For any distinguishing game X := (D0,D1),

∣∣∣WY⊥X −MWX

∣∣∣≤ O(1).

Note that the measure WY⊥X is not a priori connected to WYX , as minimizing over a larger

set A⊥ may produce smaller values.

Computational/Statistical Bit security

Sometimes, in cryptography, one can achieve a strong notion of security, where no adversary

can break a cryptographic function with high probability, regardless of the computational cost

incurred by the attack. In the MW bit-security framework, the number of bits of statistical security

of a decisional problem X can be defined as follows.

Definition 12. A distinguishing game X = (D0,D1) has s bits of statistical security if for every

adversary A, advMW
X (A)≤ 2−s.

Contrast this with the definition of (computational) bit-security, where the requirement is

that advMW
X (A)≤ T (A) ·2−c. It immediately follows from the definition that any problem achieving

s bits of statistical security, also offers s bits of computational security. So, statistical bit-security

is a strengthening of computational bit-security. In particular, when combining computational

and statistical primitives within a single protocols, one can treat all of them has achieving a given

number c = s of computational security bits. However, this is often undesirable in practice because

one typically wants to use a higher value of c than for s. In order to combine computational

and statistical bit-security analysis in an efficient manner, [53] proposed the following notion of

computational-statistical bit-security.

Definition 13 ([53]). A distinguishing game X is said to have (c,s)-bits of security if for any
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adversary A,

advMW
X (A)≤max(T (A)2−c,2−s),

i.e., either c≤ log2
T (A)

advMW,≈
X (A)

, or s≤ log2
1

advMW,≈
X (A)

.

The notions of computational and statistical security correponds to the following special

cases of (c,s)-security:

• A problem has c bits of computational security iff it is (c,∞)-bit secure

• A problem has s bits of computational security iff if is (∞,s)-bit secure.

One may equivalently view (c,s)-bit security via the lens of (a variant of) (t(ε),ε) security,

a common definition used in the concrete security literature.

Definition 14. Let I ⊆ [0,1]. A cryptographic primitive Π is said to be (t(ε),ε)I-secure in an

indistinguishability game G if, for any ε ∈ I, any adversary of advantage ε has running time at

least t(ε).

Lemma 13 ([53]). Let Π be a cryptographic primitive, and G be an indistinguishability game. Then

the following are equivalent

1. Π has (c,s)-bits of G -security, and

2. Π is (2cε,ε)[2−s,1]-secure in G .

Since any problem offering s bits of statistical security also offers s bits of computational

security, (c,s)-bit security is equivalent to (max(c,s),s)-bit security. In other words, one can always

assume c ≥ s. In particular, computational security can be equivalently formulated as (c,c)-bit

security, rather than (c,∞).

2.3 Structure and Properties of Optimal MW Adversaries

In this section we characterize the MW adversaries achieving optimal advantage, and prove

some useful properties about them. This is done by introducing an alternative, more general, class
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of adversaries (which we call “fuzzy” adversaries,) that still achieves the same optimal advantage

(and bit security) of standard MW adversaries. We use the added flexibility provided by fuzzy

adversaries to investigate optimal adversarial strategies.

The focus in this section is on statistical security, i.e., (∞,s)-bit security. We recall that a

decision game X has s bits of statistical security if for any adversary A∈A⊥, we have advMW
X (A)≤

2−s. So, the study of statistical security reduces to the study of the maximum achievable advantage

∆2
MW(X ) = sup{advMW

X (A) | A ∈A⊥}.

MW adversaries are generalized as follows. Recall that the output of an MW distinguisher

is either a bit b ∈ {0,1}, representing a high confidence decision between the two distributions, or

a special symbol ⊥ expressing no confidence. We generalize this to distinguishers for which the

output confidence level can vary continuously from 0 (no confidence) to 1 (high confidence). For

this type of distinguisher, it is convenient to map the two values b ∈ {0,1} to a sign

b̃ = (−1)b = (1−2b) =±1 (2.11)

so that the output of A can be described by a single number σ ∈ [−1,1], with sign(σ) = σ/|σ |=

b̃ ∈ {±1} representing the decision bit and |σ | ∈ [0,1] the confidence level.9 We also set ⊥̃= 0, so

that any MW distinguisher A with output A(x) = y ∈ {0,1,⊥} can be represented by a fuzzy one Ã

with output Ã(x) = ỹ ∈ {1,−1,0} ⊂ [−1,1]. Notice that this transformation preserves the cost of

the adversary T (Ã) = T (A) as the only difference between the two is the symbol used to encode the

final output. We write Ã⊥ = {Ã | A ∈A⊥} for the set of aborting adversaries with this alternative

output representation.

Definition 15 (Fuzzy Distinguisher). A fuzzy distinguisher is a (possibly randomized) function

A : Ω→ [−1,1]. For any two distributions X = (D0,D1) over Ω, the advantage of A in distinguish-

9When σ = 0, the confidence |σ |= 0 is zero, and the decision sign(σ) is irrelevant. For concreteness, we define
sign(0) = 0.
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ing between D0 and D1 is advMW,≈
X (A) = δ̃ 2

A
α̃A

where

δ̃A = Eb,xb[b̃ ·A(xb)] and α̃A := Eb,xb [|A(xb)|]

are the correlation (between the correct result and the output of A) and expected confidence of A.

The set of all possible fuzzy distinguishers is denoted A≈, so that Ã⊥ ⊂A≈. The following

lemma shows that Definition 15 generalizes the MW notion of advantage to a wider class of

adversaries.

Lemma 14. For any MW adversary A ∈A⊥ and corresponding fuzzy adversary Ã ∈A≈ we have

δ̃Ã = δA, α̃Ã = αA, T (Ã) = T (A) and advMW,≈
X (Ã) = advMW

X (A).

Proof. It is easy to check that δ̃Ã = δA and α̃Ã = αA by evaluating the expectations over the set

0,1,−1 of all possible values. It follows that advMW,≈
X (Ã) = δ̃ 2

Ã/α̃Ã = δ 2
A/αA = advMW

X (A).

Based on the above lemma, we will use the notation advMW
X (A) = δ̃ 2

A/α̃A and MWX (A) =

log2(T (A)/adv
MW
X (A)) for the advantage and bit security of arbitrary fuzzy adversaries A ∈A≈.

The previous definitions for aborting adversaries A ∈A⊥ are just a special case, under the mapping

A 7→ Ã from A⊥ to Ã⊥ ⊂A≈.

2.3.1 Equivalence of Aborting and Fuzzy adversaries

Using fuzzy adversaries, we may define the maximum (statistical) advantage in attacking a

decision game X as

∆
2,≈
MW(X ) = sup{advMW

X (A) | A ∈A≈},

and similarly for bit security

MW≈(X ) = inf{MWX (A) | A ∈A≈}.

Since we are optimizing over a larger class of adversaries than A⊥, it immediately follows from

the definitions that ∆2
MW(X ) ≤ ∆

2,≈
MW(X ) and MW(X ) ≥ MW≈(X ), and in principle these
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inequalities could be strict. But, as we will see, this is not the case, i.e., aborting and fuzzy

adversaries define precisely the same notion of advantage and bit security for decision games. This

is proved using the following transformation.

Lemma 15. Let N : A≈→A⊥ be the transformation

N[A](x;r) =


1−sign(A(x;r))

2 with probability |A(x;r)|

⊥ otherwise.

Then, for any decision game X = (D0,D1) and adversary A ∈A≈, we have

advMW
X (A) = advMW

X (N[A]).

Proof. We have that

δN[A] = Pr
b,xb;r

[N[A](xb;r) = b]− Pr
b,xb;r

[N[A](xb;r) = 1−b]

= Eb,xb

[
|A(xb)| ·Pr

[
1− sign(A(xb))

2
= b
]
−|A(xb)| ·Pr

[
1− sign(A(xb))

2
= 1−b

]]
= Eb,xb[|A(xb)| · (Pr[sign(A(xb)) = 1−2b]−Pr[sign(A(xb)) =−(1−2b)])]

= Eb,xb[|A(xb)| · (Pr[(−1)b · sign(A(x̃b)) = 1]−Pr[(−1)b · sign(A(xb)) =−1])]

= Eb,xb[|A(xb)| ·E[(−1)b · sign(A(xb))]]

= Eb,xb

[
(−1)b ·A(xb)

]
= δA,

and

αN[A] = Pr
b,xb;r

[N[A](xb;r) ̸=⊥] = Eb,xb[|A(xb)|] = αA.

It then follows that advMW
X (A) = δA

2

αA
=

δN[A]
2

αN[A]
= advMW

X (N[A]), i.e. N preserves the advantage.

Clearly, the transformation N also preserves the complexity of the adversary T (N[A]) = T [A],

as the additional operations performed by N[A] have negligible cost. It immediately follows that
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aborting and fuzzy adversaries are equivalent, both for statistical and computational bit security.

Theorem 2. Aborting and Fuzzy MW adversaries are equivalent, i.e., they define the same notions

of advantage and bit security

∆
2,≈
MW(X ) = ∆

2
MW(X )

MW≈(X ) =MW(X ).

Proof. We need to show that ∆2
MW(X )≥ ∆

2,≈
MW(X ) and MW(X )≤MW≈(X ). For any A ∈A≈,

the aborting adversary N[A] ∈A⊥ satisfies

advMW
X (A) = advMW

X (N[A])≤ sup
A′

advMW
X (A′) = ∆

2
MW(D0,D1).

Therefore, ∆
2,≈
MW(X ) = supA adv

MW
X (A) ≤ ∆2

MW(X ). A similar argument works for bit security,

using the fact that T (A) = T (N(A)).

2.3.2 Convexity and Determinism

In general, the adversaries achieving the optimal advantage and bit security could be

randomized. In the case of statistical advantage, it is easy to make fuzzy adversaries deterministic

using the following transformation.

Lemma 16. Let F : A⊥→A≈ be the transformation

F[A](x) = Pr
r
[A(x;r) = 0]−Pr

r
[A(x;r) = 1]

Then, for any decision game X = (D0,D1) and adversary A ∈A⊥ we have

advMW
X (A)≤ advMW

X (F[A]).
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In particular, the optimal advantage ∆2
MW(X ) is achieved by a deterministic fuzzy adversary

A ∈A≈.

Proof. We first show that δF[A] = δA. We have that

δF[A] = Eb,xb[b̃ ·F[A](xb)]

= Eb,xb[(−1)b · (Pr
r
[A(xb;r) = 0]−Pr

r
[A(xb;r) = 1])]

=
1
2

(
Ex1[(−1) · (Pr

r
[A(x1;r) = 0]−Pr

r
[A(x1;r) = 1])]

)
+

1
2

(
Ex0[(+1) · (Pr

r
[A(x0;r) = 0]−Pr

r
[A(x0;r) = 1])]

)
=

Ex1[Prr[A(x1;r) = 1]]+Ex0[Prr[A(x0;r) = 0]]
2

− Ex1[Prr[A(x1;r) = 0]]+Ex0[Prr[A(x0;r) = 1]]
2

= Eb,xb[Pr
r
[A(xb;r) = b]]−Eb,xb[Pr

r
[A(xb;r) = 1−b]]

= βA− β̄A = δA.

We next show that αF[A] ≤ αA. We have that

αF[A] = Eb,xb[|F[A](xb)|]

= Eb,xb

[∣∣∣Pr
r
[A(xb;r) = 0]−Pr

r
[A(xb;r) = 1]

∣∣∣]
≤ Eb,xb

[
Pr
r
[A(xb;r) = 0]+Pr

r
[A(xb;r) = 1]

]
= αA.

It follows that advMW
X (A) = δA

2

αA
≤ δF[A]

2

αF[A]
= advMW

X (F[A]). Finally, if A ∈A≈ is a (possibly random-

ized) adversary achieving the optimal advantage advMW
X (A) = ∆MW(X ), an equivalent determinis-

tic adversary can be be obtained as F(N(A)).

Notice that the result of the transformation F[A] is not in general an efficient algorithm,

because it requires the computation of the probabilities10 Prr[A(x;r) = b] for b= 0,1. So, Lemma 16
10Naturally, one can approximate these probabilities in a relatively efficient manner by repeatedly running A(x;ri) on
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says nothing about (computational) bit security under deterministic attacks. In this subsection and

the next, the focus is on statistical security.

We would like to prove a similar result for aborting adversaries, i.e., show that randomness

is not needed even when using adversaries A ∈ Ã⊥ with output in {0,1,−1}. Note that starting

from a deterministic A ∈A≈ (guaranteed by Lemma 16,) and then computing N[A] does not work,

because the result of N is generally a randomized algorithm.11 Instead, we will prove the existence

of deterministic optimal aborting adversaries using a convexity argument.

For any adversaries A,B ∈A⊥ and θ ∈ [0,1], define the convex combination C = θ ·A+

(1−θ) ·B as the (randomized) adversary that runs A with probability θ and B with probability 1−θ .

Notice that the convex combination is taken over the randomness, not the output of the adversaries,

so that the result is still in A⊥.

Theorem 3. The advantage advMW
X (A) is a convex function of A ∈A⊥, i.e., for any two adversaries

A,B ∈A⊥ and θ ∈ (0,1), the convex combination C = θ ·A+(1−θ) ·B ∈A⊥ satisfies

advMW
X (C)≤ θ ·advMW

X (A)+(1−θ) ·advMW
X (B).

Proof. Using the definition of C, we see that

βC = Pr[C(Db) = b] = θ ·Pr[A(Db) = b]+ (1−θ) ·Pr[B(Db) = b]

= θ ·βA +(1−θ) ·βB

a given input x and many independent random ri. However, this would result in a randomized algorithm.
11In fact, N[A] is deterministic only when A = F(A′) for some deterministic A′ ∈A⊥. In other words, N produces a

deterministic aborting adversary only if we already have a deterministic aborting adversary to start with.
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and similarly for β̄C, αC and δC. Therefore, by Lemma 7,

advMW
X (C) =

δ 2
C

αC
=

(θ ·δA +(1−θ) ·δB)
2

θ ·αA +(1−θ) ·αB

≤ θ ·
δ 2

A
αA

+(1−θ) · δ 2
B

αB

= θ ·advMW
X (A)+(1−θ) ·advMW

X (B).

An immediate consequence of convexity is that optimal aborting adversaries A ∈A⊥ can be

easily derandomized.

Corollary 1. For any decision game X , and (randomized) adversary A(x;r) achieving the op-

timal advantage advMW
X (A) = ∆2

MW(X ), there is a deterministic optimal adversary Ar such that

advMW
X (Ar) = ∆2

MW(X ) and T (Ar) = T (A).

Proof. Any randomized adversary A ∈A⊥ can be written as a convex combination A = ∑r Pr[r] ·Ar

of deterministic adversaries Ar(x) = A(x;r) indexed by the randomness r. It follows by Theorem 3

that

advMW
X (A)≤∑

r
Pr[r] ·advMW

X (Ar)≤max
r

advMW
X (Ar). (2.12)

Choosing the value of r that achieves the maximum gives a deterministic adversary Ar with an

advantage which is at least as good at A. Moreover, if we start from an optimal (randomized)

adversary A, then we also have advMW
X (Ar) ≤ advMW

X (A), and the bounds (2.12) must hold with

equality. This is only possible if advMW
X (A) = advMW

X (Ar) for all r (such that Pr[r] > 0), and the

randomness r can be chosen arbitrarily.

Note that the above corollary does not say that the adversary achieving the best bit security is

deterministic. It is only for adversaries that achieve the highest advantage (regardless of complexity)

that randomness does not help to improve the running time. If achieving the optimal advantage is

computationally hard, then randomness may help reduce the bit security.
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2.3.3 Threshold Adversaries are Optimal

We now show that the optimal fuzzy MW adversary has a very simple structure, that of a

“threshold distinguisher”.

Definition 16. For any two distributions X = (D0,D1) over Ω, and threshold τ ≥ 0, define the

threshold distinguisher AX
τ ∈ Ã⊥ as the algorithm that, on input x, computes ℓ(x)= ln(D0(x)/D1(x))

and outputs 0 if |ℓ(x)|< τ , and sign(ℓ(x)) otherwise.

Note that AX
τ depends on the distributions X = (D0,D1), and that AX

0 = AX
SD is the optimal

distinguisher when advantage is measured by the statistical distance.

Throughout this section, we will frequently interchange between ordering x ∈Ω according

to ℓ(x) and according to BX (x) := D0(x)−D1(x)
D0(x)+D1(x)

. As we show below, this makes no difference.

Lemma 17. Let Ω be a set, and D0,D1 be any two distributions on this set. Let

f (x) :=
x−1
x+1

.

Then for x≥−1, f is non-decreasing, and satisfies

f (expℓ(x)) = BX (x).

The inverse, f−1(x) = 1+x
1−x , is non-decreasing for x≥ 1. Finally, f (−x) =− f−1(x) and f (1/x) =

− f (x), and therefore

{x | |ℓ(x)| ≤ τ}= {x | |BX (x)| ≤ f (exp(τ))}

Proof. Note that expℓ(x) = D0(x)
D1(x)

. We have that

f (expℓ(x)) =
D0(x)
D1(x)

−1
D0(x)
D1(x)

+1
=

D0(x)−D1(x)
D0(x)+D1(x)

= BX (x),
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as claimed. The claimed values of f (−x) and f (1/x) are easily verified. Finally, we have that

{x | |ℓ(x)| ≤ τ}= {x | −τ ≤ ℓ(x)≤ τ}

= {x | exp(−τ)≤ expℓ(x)≤ exp(τ)}

= {x | f (exp(−τ))≤ BX (x)≤ f (exp(τ))}

= {x | − f (exp(τ))≤ BX (x)≤ f (exp(τ))}= {x | |BX (x)| ≤ exp(τ)}.

A priori, A ∈ Ã⊥ may, on input x ∈Ω, output an arbitrary value A(x) ∈ {−1,0,1}. We next

show that one may always improve A by modifying it to output either 0 or (−1)argmaxb(Db(x)), e.g.

either abort, or output the more likely value of b.

Lemma 18. For any A ∈A≈ and X = (D0,D1), the modified adversary

|A|(x;r) = |A(x;r)| · sign(D0(x)−D1(x))

satisfies advMW,≈
X (A)≤ advMW,≈

X (|A|). Moreover, if A ∈ Ã⊥, then |A| ∈ Ã⊥.

Proof. It is straightforward to verify that ||A|(x;r)| ≤ |A(x;r)|. We also have

|δA|=
∣∣∣Eb,xb;r[(−1)b ·A(x;r)]

∣∣∣
=

∣∣∣∣∑
x
Er[A(x;r) · D0(x)−D1(x)

2
]

∣∣∣∣
≤∑

x
Er[|A(x;r)| · |D0(x)−D1(x)|

2
]

= ∑
x
Er[|A|(x;r) · D0(x)−D1(x)

2
]

=
∣∣∣Eb,xb;r[(−1)b · |A|(x;r)]

∣∣∣
= δ|A|.
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It follows that advMW,≈
X (A) = δ 2

A/αA ≤ δ 2
|A|/α|A| = advMW,≈

X (|A|). Finally, it is immediate to verify

that if A(x;r) ∈ {0,1,−1} then |A|(x;r) ∈ {0,1,−1}.

Note that adversaries of the form |A| ∈ Ã⊥ are completely parameterized by the choice of

p ∈ [0,1]|Ω|, where px = Prr[|A(x;r)| ̸= 0] is the probability of not aborting on input x. Optimiz-

ing the Micciancio-Walter advantage over such adversaries may be phrased as a standard linear

programming problem.

Definition 17 (Continuous Knapsack Problem). Let W ≥ 0 be the capacity of a knapsack, and let

n∈N. For i∈ [n], let wi be the weight of the ith material, and vi be the value of the ith material. The

continuous knapsack problem is to choose x ∈ [0,1]n that maximizes ∑i xivi, subject to the constraint

∑
i

xiwi ≤W. (2.13)

For weights and values that are non-negative, an optimal solution to the continuous knapsack

problem will always achieve the weight capacity ∑i xiwi =W .

Lemma 19. For any two distributions X = (D0,D1), and fixed non-aborting probability α ∈ [0,1],

we have that

A∗ = arg max
A∈Ã⊥
αA=α

advMW,≈
X (A)

is a maximizer of the continuous knapsack problem with capacity α , weights wx := D0(x)+D1(x)
2 , and

values vx :=
∣∣∣D0(x)−D1(x)

2

∣∣∣.
Proof. We have that

arg max
A∈Ã⊥
αA=α

advMW,≈
X (A) = arg max

A∈Ã⊥
αA=α

δ 2
A

αA
= arg max

A∈Ã⊥
αA=α

|δA|.

By Lemma 18, we may without loss of generality reduce analyzing adversaries of the form |A|.

Such adversaries may be completely specified by a vector of probabilities p ∈ [0,1]|Ω| to output 0.
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For such adversaries, one can compute that

|δA|= Eb,xb;r[(−1)b ·A(xb;r)] = ∑
x
Er[A(x;b)]

D0(x)−D1(x)
2

= ∑
x

px

∣∣∣∣D0(x)−D1(x)
2

∣∣∣∣ .
We are optimizing over the space of all adversaries with non-abort probability α . This constraint

may be written as

αA = α ⇐⇒ Eb,xb;r[|A(xb;r)|] = α ⇐⇒ ∑
x

px
D0(x)+D1(x)

2
= α.

So, the optimal adversary is exactly the optimizer of an instance of the continuous knapsack

problem.

It is well known that the optimal solution to the continuous knapsack problem has a particu-

larly simple form (which may be computed with a standard greedy algorithm).

Lemma 20. Let (W,v,w) be an instance of the continuous knapsack problem. Let

xi =


1 vi

wi
> τ

ε
vi
wi

= τ

0 vi
wi

< τ

 (2.14)

for some threshold τ ≥ 0 and ε ∈ [0,1] such that ∑i: vi
wi
>τ

wi + ε ∑i: vi
wi
=τ

wi =W. Then x is has at

least as high of value among all solutions of the aforementioned continuous knapsack problem

instance.

One may modify x to obtain another optimal solution x′ on the set {i | vi
wi

= τ} while

preserving the capacity ∑i x′wi =W and value ∑i x′ivi, so x is not unique, though this will not matter

in our work.

Theorem 4. Let X = (D0,D1) be a distinguishing game on a finite set Ω. Then, the optimal

distinguisher A ∈ Ã⊥ is threshold.
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Proof. By Lemma 19, we have that (for fixed α) a maximizer of the Micciancio-Walter advantage

is a maximizer of a particular continuous knapsack instance, namely with capacity α , weights

wx := D0(x)+D1(x)
2 , and values vx :=

∣∣∣D0(x)−D1(x)
2

∣∣∣. By Lemma 20, a maximizer of this instance is

given by x according to Eq. (2.14). Rephrased in terms of Micciancio-Walter adversaries, we have

that the optimal adversary takes the form

|A∗|(x) =


(−1)argmaxb Db(x)

∣∣BX (x)
∣∣> τ

ε
∣∣BX (x)

∣∣= τ

0
∣∣BX (x)

∣∣< τ,

,

for some τ,ε ∈ [0,1], where by outputting ε we mean that Pr[|A∗|(x;r) ̸= 0] = ε for such x. By

Lemma 17, we have that this may be equivalently written as thresholding |lnℓ(x)| with the threshold

τ ′ := ln 1+τ

1−τ
. Finally, |A∗| is still randomized (unless ε ∈ {0,1}). But, |A∗| can be written as a convex

combination of two deterministic threshold adversaries, so by convexity of the Micciancio-Walter

advantage, we have that a deterministic threshold adversary has at least as good advantage.

The above argument shows that for any fixed α , a deterministic threshold adversary is

optimal. Optimizing over α ∈ [0,1], we get optimality of deterministic threshold adversaries in

general.

Finally, we show that an optimal Micciancio-Walter adversary is threshold of bounded

threshold τ .

Theorem 5. Let X = (D0,D1) be a distinguishing game on a finite set Ω. Then

∆
2
MW(D0,D1) = sup

τ≥0
advMW

X (AX
τ ). (2.15)

Moreover, if β ∗A := βA/αA is the conditional success probability of this adversary, then the threshold

τ satisfies

τ = ln(
1+3β ∗A
3−2β ∗A

)≤ ln(3).
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Proof. Eq. (2.15) follows immediately from Theorem 4, so we focus on the rest of the result.

Let T = {|ℓ(x)| | x ∈Ω} be the (finite) set of possible thresholds, of order k ≤ |Ω|. Order

these thresholds τ1 < τ2 < · · ·< τk in increasing order. As shorthand, write Ai := AX
τi

.

Fix i ∈ [k], and consider under what conditions we have that Ai+1 has advantage better than

Ai. Let ε ∈ [0,1], and define Aε := ε ·Ai+1 +(1− ε) ·Ai. Note that Aε is randomized, though by

convexity of the Micciancio-Walter advantage Aε has advantage maximized at ε ∈ {0,1}.

We proceed by ∂εadv
MW
X (Aε), and using this to characterize when advMW

X (Aε ′)> advMW
X (A0).

Note that by convexity of the Micciancio-Walter advantage, this immediately implies that advMW
X (A1)>

advMW
X (A0), e.g. the threshold τi+1 yields better performance than the threshold τi.

Note that

advMW
X (Aε) =

(δA + ε∆)2

αA + ε p
.

where ∆ = ∑x:|ln(ℓ(x))|=τi+1

∣∣∣D0(x∗)−D1(x∗)
2

∣∣∣, and p = ∑x:|lnℓ(x)|=τi+1
D0(x∗)+D1(x∗)

2 . One can check that

for this p,q, we have that
∆

p
=
∣∣∣BX (x∗)

∣∣∣ ,
where x∗ is any point such that |ℓ(x)| = τi+1. By Lemma 17, we may compute that

∣∣BX (x∗)
∣∣ =

1+exp(τi+1)
1−exp(τi+1)

. We can then compute

∂εadv
MW
X (Aε) =

2∆(αA + ε p)(δA + ε∆)− p(δA + ε∆)2

(αA + ε p)2 .

If the numerator is strictly positive at ε = 0, it implies there is sufficiently small ε ′ > 0 such that Aε ′

has advantage better than A0. This occurs when

∆

p
=
∣∣∣BX (x∗)

∣∣∣> 1
2

δA

αA
.
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By Lemma 17, we may equivalently write this as

|ℓ(x)|> ln f−1(
δA

2αA
) = ln

1+ δA
2αA

1− δA
2αA

= ln
2αA +δA

2αA−δA
.

We next note that δA = βA− β̄A, and αA = βA + β̄A. We may moreover write β ∗A = βA/αA as the

conditional success probability. In terms of this quantity, we can write β̄A = αA(1−β ∗A). Combined,

this gives us the condition

|ℓ(x)|> ln
3βA− β̄A

βA +3β̄A
= ln

1+2β ∗A
3−2β ∗A

.

As for optimal A we have β ∗A ∈ [1/2,1], this implies that τi+1 ∈ [0, ln(3)], as claimed.

2.4 Equivalence of MW and WY bit security

In [85], it is claimed that for any decisional game X , the quantities WY(X ) and MW(X )

are equal up to an additive constant, i.e., the MW and WY notions of bit-security are equivalent.

However, [85] only proves the statement for a variant of the WY security definition that uses

aborting adversaries (i.e., the MW adversaries with output in {0,1,⊥} introduced in [61]), rather

than the traditional (non-aborting, inner) adversaries used in [84] to define WY security. To close

this gap, [85] informally states that changing the class of adversaries does not affect the definition

of WY(X ), and justifies the assertion saying that the definition does not explicitly depend on the

size of the codomain of the adversary A. However, this reasoning is incorrect because the quantity

∆R;1/2(A(X )) used in the definition implicitly depends on the size of the codomain of A12. Still,

the main claim in [85] is correct, as shown in the following theorem which gives a direct proof of

the equivalence of WYX and MWX .

The theorem makes use of the following technical lemma to modify an aborting adversary

in such a way that it uses only two of the output symbols in {0,1,⊥}.
12For large codomains, say growing linearly with the sample complexity to reliably distinguish X = (X0,X1),

one may appeal to work in communication-constrained binary hypothesis testing [69] to obtain an explicit separation.
We omit details for brevity, and point to this work for justification that reliably distinguishing X = (X0,X1) and
A(X ) = (A(X0),A(X1)) may require different numbers of samples.
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Lemma 21. For any decision game X , and aborting adversary A ∈A⊥, there exists a modified

adversary A′ ∈ A⊥ with output in {b,⊥} (for some fixed b ∈ {0,1}) and similar running time

T (A)≈ T (A′), such that

advMW
X (A)≤ 2 ·advMW

X (A′).

Proof. Let A′ = Az be the modified adversary from Lemma 10 with z the values in {0,1} that

maximizes the advantage advMW
X (Az). For i ∈ {0,1}, j ∈ {0,1,⊥}, let pi, j = PrA(Di)[ j], so that

βA = (p0,0 + p1,1)/2, β̄A = (p0,1 + p1,0)/2 and, by Lemma 10,

advMW
X (A j) =

(p0, j− p1, j)
2

2(p0, j + p1, j)
.

We can then bound

advMW
X (A) =

(βA− β̄A)
2

βA + β̄A

=
1
2
((p0,0− p1,0)− (p0,1− p1,1))

2

(p0,0 + p1,0)+(p0,1 + p1,1)

≤
(p0,0− p1,0)

2

2(p0,0 + p1,0)
+

(p0,1− p1,1)
2

2(p0,1 + p1,1)

= advMW
X (A0)+advMW

X (A1)

≤ 2advMW
X (Az)

where the first inequality is Lemma 7, and the second one follows by our choice of z.

Theorem 6. For any decision game X , WY(X ) =MW(X )+Θ(1).

Proof. The inequality MWX ≤ WYX was already proved in [84]. Here we prove WYX ≤

MWX +O(1). Let z ∈ {0,1} be the value maximizing the advantage advMW
X (Az) of the modified

adversary defined in Lemma 10. Note that Az has codomain {b,⊥} (rather than {0,1}). But since

∆R;1/2 does not give any special meaning to the output of the adversary, we can view Az as a valid
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adversary for WYX . Then, using Lemma 21, we get

MWX (A) = log2
T (A)

advMW
X (A)

≥ log2
T (A)

2advMW
X (Az)

≥ log2
T (A)

8∆R;1/2(Az(X ))
.

Note that T (Az) = T (A)+O(1), so we get that MWX (A)≥WYX (Az)−3.

The previous theorem shows that one can use WY(X ) as an alternative characterization of

MW(X ). This is potentially interesting, as WY(X ) only makes use of traditional (nonaborting)

adversaries, which are perhaps more intuitive and easier to use. (This was indeed one of the

motivations of [84]). In particular, it is tempting to assume that, since the inner adversary of [84]

always outputs either 0 or 1 (i.e., it never aborts), the optimal advantage is achieved by the maximum

likelihood distinguisher AX
SD. Perhaps counterintuitively, the following theorem shows that this

is not the case, and even if [84] does not make use of aborts, the obvious (inner) distinguishing

strategy AX
SD is not optimal, and can in fact substantially overestimate the number of bits of security

by a factor13 close to 2.

Theorem 7. There exist (efficiently samplable, efficiently computable) distributions X = (D0,D1)

such that

WYX (AX
SD)≥ 2 ·MW(X )−O(1).

Proof. The choice of X below is from [82, Lemma 2], where it was used to show the sub-

optimality of distinguishing a product distribution X ⊗n = (D⊗n
0 ,D⊗n

1 ) by first computing AX
SD

“coordinate-wise” (sometimes called Scheffé’s test). Consider the distributions X =(D0,D1) shown

13This is a doubling of the number of security bits k, so it corresponds to overestimating the cost of the attack by an
exponential factor 2k.
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in following table, where ε ≤ 1/8:

0 1 2

D0 0.5 0.5− ε ε

D1 0.5− ε 0.5+ ε 0

AX
SD 0 1 0

AX
MW ⊥ ⊥ 0

AX
SD(D0) 0.5+ ε 0.5− ε

AX
SD(D1) 0.5− ε 0.5+ ε

The table also shows the optimal AX
SD distinguisher, its output distribution on input D0 and D1, and a

candidate14 MW distinguisher which we will use in our proof. The intuition is clear: if the sample is

2, then it certainly comes from distribution D0, but for the other samples the distinguisher does not

have enough confidence to make the call. This distinguisher succeeds with probability β = ε/2, but

it never fails. So, it achieves advantage (β − β̄ )2/(β + β̄ ) = β = ε/2. Since AMW runs in constant

time, the decisional problem X has at most log2(2/ε) = 1+ log2(1/ε) bits of security.

Let’s now estimate the advantage achieved by ASD as an inner distinguisher. We first evaluate

the Hellinger distance

∆
2
H(A

X
SD(D0),AX

SD(D1)) = 1−
√

1−4ε2 ≤ 4ε
2

where we have used the inequality 1−
√

1− x≤ x, which is valid for all x ∈ [0,1]. Finally, using

Lemma 4, we bound

∆R;1/2(A
X
SD(X ))≤ 4∆

2
H(A

X
SD(X ))≤ 16ε

2.

Since ASD also runs in constant time, the upper bound on bit security it gives is log2(1/(16ε2)) =

2log2(1/ε)−4.

14This is indeed the optimal MW distinguisher when ε ≤ 1/8. When ε ≥ 1/8, then AX
SD becomes optimal.
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In summary, if ε = 2−k (for any k ≥ 3), the bit security is at most k + 1, but the WY

framework with nonaborting distinguisher ASD only provides a very weak bound of 2k−4.

2.5 A Toolbox for Analysis of (c,s)-Bit Security

We will need a variant of Lemma 21 which gives a tight connection between the MW

advantage and the (squared) Le Cam distance of the adversary output probability distributions A(X ).

A similar statement was previously proved in [85] under the condition that ∆R;1/2(A(X ))≤ 1, and

with worse multiplicative constants.

Lemma 22. For any decision game X = (D0,D1) and aborting adversary A ∈ A⊥, there is a

modified adversary A′ ∈A⊥ with similar running time T (A)≈ T (A′), such that

advMW
X (A)≤ ∆

2
LC(A(X ))≤ 3advMW

X (A′).

Proof. The proof proceeds as in Lemma 21, using the same notation, except that this time

advMW
X (Az) is maximized over z ∈ {0,1,⊥}. As in the proof of Lemma 21, we still have

advMW
X (A)≤ advMW

X (A0)+advMW
X (A1).

To prove the new lemma we notice that

∆
2
LC(A(D0),A(D1)) = ∑

j∈{0,1,⊥}

(p0, j− p1, j)
2

2(p0, j + p1, j)
= ∑

j∈{0,1,⊥}
advMW

X (A j)

which is at least advMW
X (A0)+advMW

X (A1) and at most 3advMW
X (Az).

It is easy to bound the advantage of (possibly adaptive) statistical distinguishers.

Lemma 23. Let G be the indistinguishability game instantiated with distribution ensembles

{Xθ}θ ,{Yθ}θ , where θ ∈Θ. Let q ∈ N. Then, for any (potentially computationally unbounded)
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adversary A making at most q queries to its oracle, we have that

advMW
X (A)≤ q

2
max
θ∈Θ

D(Xθ ||Yθ ). (2.16)

Proof. View an (adaptive) adversary as post-processing of samples from an arbitrary distribution on

query-response pairs X
θ̂

:= ((θ̂1,Xθ̂1
), . . . ,(θ̂q,Xθ̂q

)) (and similarly for Y
θ̂

). We then have that

advMW
X (A)≤ ∆

2
LC(Xθ̂

,Y
θ̂
)≤ 1

2
D(X

θ̂
,Y

θ̂
)≤ 1

2
∥D̂(X

θ̂
,Y

θ̂
)∥1 ≤

q
2

max
θ∈Θ

D(Xθ ||Yθ ). (2.17)

Theorem 8. Let D0, . . . ,Dk be a sequence of cryptographic games. If for all i = 1, . . . ,k, Di =

(Di−1,Di) is (ci,si)-bit secure, then X = (D0,Dk) is (c,s)-bit secure for

c = min
i
(ci)−2log2(

√
3k)

s = min
i
(si)−2log2(

√
3k)

Proof. Using Lemma 22 we get the upper bound

√
advMW

X (A)≤ ∆LC(A(D0),A(Dk))

≤∑
i

∆LC(A(Di),A(Di+1))

≤
√

3∑
i

max
zi

√
advMW

D⟩
(Azi)

≤
√

3k
√

max
i
(T (Azi)2−ci,2−si).

So, since T (A)≈ T (Azi) for all i, the advantage advMW
X (A) is at most

3k2 max(T (A)2−mini ci,2−mini si) = max(T (A)2−(mini ci−2log2(
√

3k)),2−(mini si−2log2(
√

3k))).

This proves that X is at least (c,s)-secure.
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This may be seen as an extension of [61, Theorem 7], which is an analogous result for

(c,c)-bit security, though with slightly smaller15 loss of log2(2k2) = 2log2(
√

2k) bits.

We next establish a distribution replacement theorem for (c,s)-bit security for games G Yb

parametrized by a distribution Yb. This was done in [61] under the assumption that (Y0,Y1) is

statistically ((∞,s)-bit) secure, and in [85] under the assumption that (Y0,Y1) is computationally

((c,c)-bit) secure. We extend this to a (c,s)-bit security assumption below.

Theorem 9. Let G ,Y be decision games. If G Y0 is (c,s)-bit secure, and Y is (c′,s′)-bit secure, then

G Y1 is (c′′,s′′)-bit secure, where c′′ = min(c−2,c′−3− log2(1+TG )), and s′′ = min(s−2,s′−3).

In particular, if Y and G Y0 are (c,s)-bit secure and16 TG = O(1), then G Y1 is almost (c,s)-bit

secure, up to a small additive constant term in bit security.

Proof. Let A be any adversary. By Lemma 22 and the triangle inequality (for ∆LC), we have that

√
advMW

G Y1 (A)≤ ∆LC(A(G
Y1
0 ),A(G Y1

1 ))

≤ ∆LC(A(G
Y1
0 ),A(G Y0

0 ))+∆LC(A(G
Y0
0 ),A(G Y0

1 ))+∆LC(A(G
Y0
1 ),A(G Y1

1 )).

We bound each term in the last sum separately. For the middle term, using the upper bound in

Lemma 22 and T (A) = T (Az), we get

∆LC(A(G
Y1
0 ),A(G Y0

0 ))≤
√

3max
z

advMW
G Y0 (A

z)≤
√

3max(TA2−c,2−s)

The other terms are bound constructing distinguishers A0,A1 against the game Y as follows. AY
0

simulates the execution of A in the game G Y
0 and flips the answer, i.e., it outputs 1− a when A

outputs a ∈ {0,1}, and ⊥ otherwise. AY
1 simulates the execution of A in the game G Y

1 , and outputs

15One can recover the exact same loss (log2(2k2) = 2log2(
√

2k)) by giving a variant of Lemma 22 with constant
factor 2 rather than 3. This can be done by comparing advMW

X (A) to ∆2
LC(D

′
0,D

′
1), where D ′b ∈ [0,1]2 is the first two

coordinates of A(Db) ∈ [0,1]3. This is to say that one can exactly generalize [61, Theorem 7] by working with (D ′0,D
′
1)

that are positive measures of total mass ≤ 1 rather than probability measures of total mass = 1. We avoid doing this as
the quantitative improvement is small, at the cost of a large amount of conceptual overhead.

16Recall from Definition 9 that TG is the relative running time of G . So, TG = O(1) is quite common, e.g., when
oracles calls can be answered in linear time.
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the same result as A. Then, we have

∆LC(A(G
Y1
0 ),A(G Y0

0 )) = ∆LC(A0(Y0),A0(Y1))

≤
√

3max
z

advMW
Y (Az

0)

≤
√

3max(T (A)(1+TG )2−c′,2−s′)

and similarly for the last term ∆LC(A(G
Y0
1 ),A(G Y0

1 )) using adversary A1. Combining the three terms

gives the bound in the theorem.

2.6 Conclusion and Open Problems

We developed a number of useful tools to evaluate the bit security of decisional cryptographic

properties, in the statistical and computational setting, or even combinations of the two. These

include a characterization of the structure of the optimal statistical “aborting” adversaries to facilitate

the use of approximate probability distributions (like uniform or discrete gaussians), and general

hybrid arguments and probability replacement theorems to combine subprotocols together and

support modular security analysis. More tools may be added to the toolbox in the future, but we

believe that the results presented in this paper already demonstrate that computational-statistical

bit-security can be quite usable and useful.

All results in this paper we focused on decisional problems, which are the hardest case, but

combining decisional primitives with search ones should be fairly straightforward, as the definion

of bit security for search problems is standard. An interesting direction for future work is to explore

the space between search and decision problems. These include, for example, problems with small

(polynomially sized) search space, like password authenticated key exchange. Two works [61, 49]

offer general definitions that interpolate between search and decision problems, but the significance

of those definition for intermediate problems is unclear. Similarly to what was done in [61] for

search and decision problems, it would be interesting to analyze a representative set of protocols

falling in-between search and decision primitives, possibly in conjunction with standard search
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and decision primitives, to see if the bit-security estimates provides by those definitions match the

cryptographic intuition behind the informal notion of bit-security.

Another interesting direction for further work is to make good use of the definition of

computational-statistical bit-security (proposed in [53] and studied in this work) to formally analyze

concrete protocols of practical interest, and make provable (still tight) claims about their security.
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Chapter 3

Error Correction and Ciphertext Quantiza-
tion in Lattice Cryptography

3.1 Introduction

Lattice-based cryptography has many advantages over traditional number-theoretic en-

cryption, from conjectured security against quantum attacks, to the ability to perform arbitrary

computations over encrypted data, while at the same time enjoying very fast (quasi-linear time)

encryption and decryption operations. This is much better than the cubic running time of the

modular exponentiation typically used in constructions based on number theory. However, there is

one aspect for which lattice-based constructions have always lagged behind number-theoretic ones:

key and ciphertext sizes. In fact, early proposals of encryption schemes based on lattices suffered

from a very poor rate, meaning the ratio of the size of a plaintext to the size of a ciphertext was very

small.

Improving the rate of encryption schemes is an important and well-studied problem, and

a problem with a well-understood solution: hybrid encryption. By using public-key encryption

on a fixed size, randomly chosen symmetric key, and then using this key to encrypt the actual

message using a much more efficient block cipher, the cost of the public-key operation (both

in terms of running time and rate) can be amortized over a large payload. However, by using

hybrid encryption one loses one of the main attractions of lattice-based cryptography: the ability

to compute on encrypted data, as data is now encrypted using a block cipher with no useful
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homomorphic properties. Homomorphically decrypting AES or other “FHE-friendly” block ciphers

[3, 4], addresses this problem, but only partially: it allows one to move data from AES (or another

symmetric encryption scheme) to lattice-based cryptography and then perform homomorphic

computations on it. The reverse step, e.g. converting the FHE ciphertext back to a space-efficient

symmetric ciphertext, is an open problem and would seem to require the symmetric cryptosystem

to be fully homomorphic. This has motivated the study of lattice-based encryption schemes with

better rate, leading to two constructions of lattice-based homomorphic encryption schemes with rate

asymptotically close to 1 [9, 33]. In this paper we present a unified study of high-rate lattice-based

encryption schemes, presenting a general framework that parameterizes LWE-based (Learning With

Error) encryption with two coding-theoretic objects we call lattice codes. The simplest lattice-based

encryption scheme (originally proposed by Regev [76]), combines an LWE sample with simple

scaling and rounding operations. Here, we replace these scalar operations with two arbitrary

lattice codes, one used for error-correction (generalizing scaling), and one used for quantization

(generalizing rounding). We then show that known constructions of rate 1−o(1) encryption [9, 33]

can be described as instances of our general constructions for particular choices of lattice codes, and

prove upper and lower bounds on the rate achievable in this framework. Analysis of these schemes

in our framework highlights inefficiencies in many current constructions, which we fix to attain

asymptotic (rate) improvements.

Organization

The rest of this chapter is organized as follows. In the rest of the introduction we provide

more details on our technical contributions and related work. In Section 3.2 we present background

information on error-correcting codes needed to describe and analyze our construction. In Sec-

tion 3.3 we present our generalized encryption framework. In Section 3.4 we show how previous

constructions can be obtained as special cases of our framework simply by properly choosing a pair

of error correcting codes, and also present a construction combining the desirable properties of [33]

and [9]. In Section 3.5 we present impossibility results that limit the rate achievable using common

subcases of our generalized construction. In Section 3.6, we give concluding thoughts, and present
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some open problems.

3.1.1 Our Contributions

There is a well-known strategy for building (private-key) encryption from LWE, namely

• start with an LWE sample (A,b := As+ e), and

• add an encoding of the message encode(m) to the second component.

Provided one can later recover the message m from the noisy encoding encode(m)+ e, this suffices

to build private-key encryption.

Given the ciphertext (A,b := As+ encode(m)+ e), how might we compress it? The matrix

A is itself uniformly random, and can be easily compressed using standard techniques1. Therefore,

we focus on compressing b. This is pseudorandom under the LWE assumption, so we must appeal

to some form of lossy compression. As the ciphertext already contains a form of error-correction, it

can plausibly correct some additional noise.

We leverage a form of compression commonly known as vector quantization, where one

maps a vector v ∈ Rm to some discrete subset, say Zm, or more generally a lattice. We use this

methodology to quantize b to a nearby lattice point ⌊b⌉L ∈ L, where ⌊·⌉L : Rm→ L is a generalized

form of rounding, for example by solving the closest vector problem. Provided the sum of the

quantization error [b]Q := b−⌊b⌉Q and LWE error e can be corrected by the error-correcting code,

our scheme will decrypt correctly, i.e. we will have successfully compressed an LWE ciphertext.

The above describes how our framework leverages two codes E,Q, for error-correction and

quantization respectively. Concretely, the quantized LWE encryption scheme using E and Q (which

we call LWEn,q
χsk,χe [E,Q]) encrypts by computing

Encs(m) := (A,⌊As+ e+ encodeE(m)⌉Q), (3.1)

1In theory, the same A can be reused with many different si, making the amortized cost of A arbitrarily small. In
practice, A is often replaced with a short seed that is deterministically expanded to A. This is process is not fully
justified theoretically, but it is easily proved secure in the random oracle model.
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where A← Zm×n
q , and e← χm

e for an error distribution χe. This is a mild modification of (standard)

LWE-based encryption (see Definition 27 for details). Despite the simplicity of this approach, our

framework is

• broad,

• modular, and

• necessary to achieve high rate.

We discuss all of these points next.

Breadth:

Our framework includes all forms of error-correction and vector quantization that are

expressible in terms of lattice codes (Definition 18), which are the reduction of a q-ary lattice L

modulo q. Equivalently, they are discrete subgroups Lq := (L mod q) ⊆ Rm/qZm. For any such

subgroup, there are (many) fundamental domains VL such that Lq +VL = Rm/qZm is a partition. A

lattice code can be thought of as the choice of a pair (Lq,VL), along with algorithms to efficiently

decompose Rm/qZm → (Lq,VL). This includes most techniques of decoding a point x ∈ Rm to

⌊x⌉ ∈ L, say by solving the closest vector problem exactly, or approximately via techniques such as

Babai’s Nearest Planes [5].

In Section 3.4, we instantiate our framework with many different non-trivial LWE-based

encryption schemes. In particular, we show that all existing rate 1−o(1) encryption schemes [9, 33]

fit into our framework. Beside the schemes that we explicitly analyze, our framework additionally

includes any scheme that encodes messages into a lattice for error correction (of which there are

many [33, 74, 76, 78]). All known cryptosystems which quantize ciphertexts are expressible in our

framework, although this is a much shorter list (containing solely [9]2, and schemes which quantize

via rounding each coordinate independently, which are common in practice [24, 28]).

Moreover, we demonstrate the ease of working in our framework by “quantizing” several pre-

existing cryptosystems. One such construction combines the desirable properties of [9, 33], namely
2We defer discussion of how one can realize this work in our framework to Section 3.4.3.
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it encodes messages under a “gadget” lattice (similar to [33]), but attains the same (quasi-optimal)

rate as [9].

Modular:

Our framework separates the coding-theoretic analysis from the cryptographic analysis of

encryption schemes. The cryptographic analysis of schemes in our framework is somewhat basic.

We establish in Theorem 11 that LWEn,q
χsk,χe [E,Q] is RND-CPA-secure3 (but potentially incorrect)

for any choice of E,Q via a simple argument.

The coding-theoretic analysis is similarly straightforward. We express the rate of our

cryptosystem in terms of a simple function of the LWE modulus q, dimension m, and volumes detE

and detQ of the fundamental domains of E,Q.

Correctness analysis requires some knowledge about the shape of these fundamental do-

mains, although we find that it is enough to know their packing and covering radii in the ℓ2 and ℓ∞

norms. This analysis frequently highlights inefficiencies in the choice E,Q of codes a cryptosystem

(implicitly) uses. Most commonly, the quantizer Q can be replaced with a sparser quantizer Q′

without (asymptotically) impacting the correctness of the cryptosystem. We make this modification

in several cases, and often find asymptotic improvements. We summarize the results of our analysis

in Table 3.1. Our optimizations tend to improve constructions from rate 1− f (m) to 1− f (m)
log2 m , i.e.

improve on known constructions by a logarithmic factor in the dimension. We discuss the reason

for these small improvements shortly.

Necessary:

Our framework allows us to derive (strong) coding-theoretic bounds on the rate of LWEn,q
χsk,χe [E,Q],

for broad classes of E,Q. Our bounds are on the rate of LWEn,q
χsk,χe[E,Q], namely we show it can be

at most 1− f (n,q,m,σ ,δ ) for explicit functions f (·) of the scheme parameters. Under the assump-

tion that LWEn,q
χsk,χe [E,Q] meets some notion of correctness (described next), we show universal rate

bounds of the above form in the settings of

3This is a stronger notion of security than IND-CPA-security, where one requires ciphertexts be pseudorandom, see
Definition 25.
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Table 3.1. The lattice codes E,Q that parameterize the Quantized Encryption schemes
LWEn,q

χsk,χe[E,Q] we study in Section 3.4. Here, gt
p = (1, p, p2, . . . , pℓ−1) for ℓ = ⌈logp q⌉, ut

m =
(1,1, . . . ,1)t ∈ Rm, and k is a free parameter, typically set to some small polynomial in n. Note
that the various parameters p,q,m,k may be required to satisfy certain divisibility constraints, see
details in Section 3.4. The rates are computed assuming Gaussian parameter σ = Θ(

√
n), secret key

length n = Θ(m), ciphertext dimension m, and decryption failure rate δ = exp(−n). The quality of a
gadget (defined in [32]) directly controls noise growth of scalar multiplications (and any operations
that use scalar multiplication as a sub-routine) in “Gadget-based” FHE constructions, i.e. smaller
quality parameter leads to lower noise growth FHE constructions. Note that gadget encryption is
also closely related to GSW-based encryption, see [58].

Name E Q Rate Quality of E Source
Regev (q/p)Zm Zm 1−O(1) N/A [76]

Quantized Regev (q/p)Zm kZm 1−O
(

1
log2

q
k

)
N/A Cor. 4

GH Λ⊥q (gt
p)⊗Zm/ℓ Zm 1−O(1) O(q/p) [33]

Quantized GH Λ⊥q (gt
p)⊗Zm/ℓ kZm 1−O

(
1

log2
q
k

)
O(q/p) Sec. 3.4

BDGM (q/p)Zm Λq/p(ut
m) 1−O

(
log2(mσ)
m log2 p

)
N/A [9]

Gadget Λq(gt
p)⊗Zm/ℓ Zm 1−O(1) O(p) [58]

Quantized Gadget Λq(gt
p)⊗Zm/ℓ Λq/p(ut

m) 1−O
(

log2(mσ)
m log2 p

)
O(p) Cor. 7

• Trivial Quantization: Arbitrary E, with Q = Zm, and

• Small Quantization: Arbitrary E, with m
√

detQ≤ O(σ) of the same size as the LWE error.

We investigate two correctness notions, namely

• Bounded Noise: decryption failure rate δ = 0, with respect to bounded noise of the same size

(with high probability) as Gaussian noise of parameter σ (in an ℓ2 ball of radius
√

mσ ), and

• Unbounded Noise: decryption failure rate δ > 0, with respect to arbitrary (concentrated)

noise of variance σ2.

For the first correctness notion, we proceed via “packing bounds”, while in the second we proceed

via “anti-concentration bounds”. Throughout, we state the interesting consequences of our bounds

for the case of q polynomially large, see Section 3.5 for full statements.

Our first set of bounds are in the bounded noise model. In this setting, the assumption δ = 0

implies that Eq is a packing of Rm
q , meaning that for S the support of the noise (either solely the
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LWE error, or the sum of the LWE and quantization error), the sets {v+S}v∈Eq are all disjoint, i.e.

one can always (uniquely) decode the noisy encoded points v+S back to v ∈ Eq.

Under the assumption Eq is a packing, we follow a standard volume-based argument (called

the sphere packing or Hamming bound, depending on the context) to obtain an inequality between

our parameters of interest. Instantiating this argument in the setting of trivial quantization Q = Zm

leads to the following bound (Theorem 12).

Bound 1. For any lattice code E, LWEn,q
χsk,χe[E,Zm] has rate at most 1−Ω(1), i.e. rate 1− o(1)

encryption is impossible.

This rules out the a priori appealing possibility of achieving high-rate encryption by solely

optimizing over the error-correcting code E, and motivates investigating further techniques (e.g.

quantization).

To handle non-trivial quantization, we require a heuristic assumption (Heuristic 1) that

the LWE noise and quantization noise are independent, though we can remove this heuristic for a

mild modification of our framework (Section 3.3.2). Our next bound (Theorem 13) then proceeds

in essentially the same way, albeit in the case of small quantization, where the set S is more

complicated.

Bound 2. Under a heuristic assumption, for any lattice codes E,Q, if there exists ε > 0 such that

m
√

detQ = σ1−ε , then LWEn,q
χsk,χe[E,Q] has rate 1−Ω(1), i.e. rate 1−o(1) encryption is impossible.

If instead m
√

detQ≤ O(σ), then rate 1−o
(

1
log2 q

)
encryption is impossible.

Therefore, in the bounded error model, quantization is necessary to achieve rate 1−o(1)

encryption from polynomial modulus. One can further show the aforementioned bounds are tight by

repeating the analysis of Corollary 4 in this noise model, though we omit this analysis for brevity.

Our remaining bounds are in the more general setting of δ -correct encryption (for δ > 0)

with respect to what is known as log-concave noise. We include a brief primer on these random

variables in Section 3.2.5, but for now simply state they include (continuous variants of) all of the
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noise distributions relevant to public-key lattice-based cryptography, and admit anti-concentration

bounds of the form we will require.

The anti-concentration techniques yield bounds with more technical caveats (so weaker

than the bounded noise model), although one of the bounds is “dimension dependent”, which we

leverage to give a stronger bound than any of our results in the bounded noise model.

Recall that to prove correctness of cryptographic constructions, one often upper bounds

the decryption failure rate using concentration inequalities. To prove impossibility results in this

noise model, we lower bound the decryption failure rate using anti-concentration inequalities

(Proposition 7), i.e. upper bounds (rather than lower) on how likely it is for a random variable to be

close to any particular point (such as its mean).

Our first bound is again for the case of no trivial quantization.

Bound 3. For any lattice code E, either

• the rate of LWEn,q
χsk,χe [E,Zm] is 1−Ω(1), i.e. not rate 1−o(1), or

• the normalized covering radius satisfies RE = Ω(m).

While this bound is weaker than its analogue in the bounded noise model, we expect this to

be a proof artifact — it would be quite peculiar if the way to achieve rate 1−o(1) encryption was

to use codes E for error-correction that are very bad quantizers4. Note that this result does suffice to

rule out rate 1−o(1) encryption from a class of a priori interesting codes (Corollary 9), namely

codes E that are nearly optimal for both error-correction and quantization. Such codes are known to

exist via randomized constructions, and are nearly optimal in many (non-cryptographic) settings.

Our next bound (Theorem 15) again extends our prior bound to the case of m
√

detQ≤ O(σ).

Bound 4. Under a heuristic assumption, for any lattice codes E,Q with m
√

detQ≤ O(σ), the rate

of LWEn,q
χsk,χe [E,Q] is at most

1−Ω

(
1

m log2(q/σ)

)
. (3.2)

4For an indication of how bad RE = Ω(m) is, the most trivial lattice RZm = Θ(
√

m) is within a constant factor of
being an optimal quantizer.
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This bound is tight up to the log2(q/σ) factor. Note that this bound explicitly depends on the

dimension m, instead of solely σ ,q. This is significant, due to a simple result (Lemma 30) showing

that the rates of LWEn,q
χsk,χe [E,Q] and LWEn,q

χsk,χe [E⊗Zk,Q⊗Zk] are equal5 for any k. As one can see

from Table 3.1, lattices of this form (for large k = O(m/ log2 m)) are incredibly common in practice.

All constructions we are aware of (except for [9]) can be instantiated in our framework using lattices

of this type. As a result, one gets a refinement of Bound 4 in this exceedingly common setting.

Bound 5. Under a heuristic assumption, for any lattice codes E =E ′⊗Zm/ log2 m,Q=Q′⊗Zm/ log2 m

with m
√

detQ≤ O(σ), the rate of LWEn,q
χsk,χe[E,Q] is at most

1−Ω

(
1

(log2 m) log2(q/σ)

)
.

While this is still theoretically rate 1− o(1), practically (for cryptographically relevant

dimensions) the convergence is slow. This can be readily observed via concrete comparisons

(Figure 3.1), where we find a practical gap between cryptosystems that satisfy the preconditions of

Bound 5 (all of which are rate ≤ 0.9) and those that do not (of rate ≈ 1).

Fortunately, one can get around this (exponentially) stronger bound by appealing to lattices

without this special structure, such as the quantizer Λq/p(ut
m) of [9]. As already summarized in

Table 3.1, we find that the pre-existing scheme of [9] is within an O(log2 m) factor of optimal, i.e.

beats Bound 5 by a significant margin. We then reuse the quantizer Λq/p(ut
m) to quantize messages

encoded with a “gadget” Λq(gt
p)⊗Zm/ℓ (similarly to [33], though with a different “gadget” that

does not require super-polynomial moduli q), while attaining the same (much higher) rate as [9].

We view this construction as simultaneously achieving the best properties of both of [9, 33] at no

cost6.
5There is a mild caveat that various parameters q,n,δ ,σ may (implicitly) depend on m = dimE = dimQ, and these

must be taken to be the same size for both instantiations. This will not impact the conclusions we draw from this bound.
6There may be some poly-logarithmic overhead in encoding and decoding, but in practice this seems small compared

to computing the matrix-vector multiplication as part of LWE-based encryption.
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Figure 3.1. The rate of the various cryptosystems LWEn,q
χsk,χe[E,Q], for the codes E,Q in Table 3.1.

Throughout, we assume that q≤ m2, m = n, δ = exp(−128), σ = 2
√

n, and then optimize p and
k to attain as high rate as possible for m ∈ [210,215], the range of dimensions included in the
Homomorphic Encryption Standard [2].

Optimal Decoding for the Quantizer of [9]:

Independently of the rest of our work, we give an (optimal) O(m log2 q) complexity algorithm

(Corollary 2) to solve the closest vector problem on the lattice Λq(ut
m), via a simple reduction

to a O(m log2 q)-time CVP algorithm for the scaled root lattice qA∗m−1 [56]. We expect this CVP

algorithm to be broadly applicable, due to this quantizer leading to constructions that do not

satisfy the preconditions of Bound 5. While Λq(ut
m) is used for quantization in [9], a formal

decoding algorithm was not given (instead they focused on bounding the ℓ∞ covering radius of

VΛq/p(ut
m)

). From the description in [9], there is an obvious sorting-based algorithm of complexity

Θ(m(log2 m)(log2 q)), i.e. slightly slower than our optimal algorithm. Our algorithm also has

the benefit of having a simple to analyze distribution of quantization errors, namely for many

distributions of random inputs7 it is uniform over an explicit convex body8.

7In particular, this holds for what are known as modulo uniform distributions, see Chapter 4 of [87].
8This is V

Λq/p(uℓm), which by Lemma 25 is the Minkowski sum of a (scaled) permutahedron and an interval.
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Log-Concavity of Distributions Relevant to Lattice-based Cryptography

As mentioned before, we leverage the class of log-concave random variables. Much of

our analysis can be done by simply quoting standard references regarding this topic (for example

[80]). To justify the claim that our lower-bounds apply to all noise distributions one encounters

in public-key (algebraically-unstructured) lattice-based cryptography, we additionally require that

⟨e,e′⟩ is log-concave (for e,e′ independent Gaussians) as well as ⟨e,eK⟩ is log-concave (for e

Gaussian, eK uniform over a convex body K). We establish these results in Section 3.2.5, though for

simplicity of presentation we focus on the case of private-key encryption in the main body of our

paper.

3.1.2 Related Work

Our framework is similar to those of [78], which parametrizes the design of lattice-based

KEMs via two nested9 (lattice-based) error-correcting codes. Despite these similarities, [78] does

not include bounds on constructions built within their framework, and moreover only considers

instantiations with E = E ′⊗Zk ⊆ Q′⊗Zk = Q sharing a common low-dimensional structure with

dimE ′ = dimQ′ = 8, which by Bound 5 leads to constructions of severely limited rate.

The framework that has the most similar methods to ours is the framework for the construc-

tion of lattice-based KEMs of [43]. They parameterize the construction of lattice-based KEMs

via novel primitives they call Key Consensus and Asymmetric Key Consensus (AKC), and prove

inequalities similar to our rate bounds in this setting. In comparison to our work, they require

the assumption of perfect correctness (δ = 0), and solely prove impossibility results in the setting

of single dimension lattices. This leads them to suggest lattices of the form Q = Q′⊗Zk for

dimQ′ = O(1) as “optimal”, which (again by Bound 5) is the opposite of what we find.

There is a relatively large body of work that (essentially) quantizes with Q = cZm a scaled

integer lattice, dating back to Peikert’s work quantizing LWE-based encryption [66], as well as

cryptosystems based on the Learning with Rounding problem [7, 24]. Additionally, the “modulus

9Note that our framework does not require a nesting assumption.
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switching” technique [10, 11] used in the Fully Homomorphic Encryption literature can be viewed

from this perspective.

The work of [37] similarly obtains bounds on (public-key) constructions achievable from

LWE with polynomially-large modulus, although they show the impossibility of non-interactive

key exchange, rather than bounds on the rate of constructions.

Finally, our work is closely related to the currently-known rate 1− o(1) lattice-based

encryption schemes [9, 33], as a large motivation for our work was to find a way to formally

compare the techniques underlying their design.

3.2 Preliminaries

3.2.1 Lattices

A lattice is a discrete subgroup L ⊆ Rn. The rank of a lattice is the dimension of the

R-subspace that it spans. Any rank k lattice can be written as BZk, where B ∈ Rn×k is a basis of its

linear span. A lattice is called full-rank if its rank equals its dimension. Associated with any lattice

L is its dual lattice L∗ = {x ∈ spanR(L) | ∀v ∈ L,⟨x,v⟩ ∈ Z}. The determinant of a lattice L = BZk

is the k-dimensional volume of its fundamental region B[0,1)k. The determinant does not depend

on the choice of the basis B, and can be efficiently computed as det(L) =
√

detBtB, where detBtB

is the matrix determinant of BtB ∈ Rk×k.

We say that L is a q-ary lattice if qZm ⊆ L, i.e., L is periodic modulo q. Notice that q-ary

lattices are always full rank, and the vectors of a q-ary lattice do not necessarily have integer

coordinates. There are two standard q-ary integer lattices associated to any matrix A ∈ Zn×m
q :

Λ
⊥
q (A) = {x ∈ Zm | Ax≡ 0 mod q},

Λq(A) = {y ∈ Zm | ∃x ∈ Zm
q s.t. Atx = y mod q}.

These lattices are scaled duals of each other, meaning Λq(A)∗ = 1
qΛ⊥q (A). For a q-ary lattice,

we define the scaled dual as L⊥ = qL∗, which is such that Λq(A)⊥ = Λ⊥q (A). We say that a
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matrix A ∈ Zn×m
q is primitive if AZm

q = Zn
q, i.e. it is a surjection. For primitive matrices A,

det(Λq(A)) = qm−n and det(Λ⊥q (A)) = qn.

We say that two full-rank lattices L,L′ are nested if L′ ⊆ L. Given nested lattices L′ ⊆ L, the

quotient L/L′ forms a group of size detL′
detL ∈N, and therefore det(L) divides det(L′). Any two lattices

L⊂ Rn and L′ ⊂ Rn′ , can be combined into the direct sum L⊕L′ ⊂ Rn+n′ , and the tensor product

L⊗L′ ⊂ Rn·n′ . The direct sum is simply the Cartesian product of the two lattices L⊕L′ = L×L′,

obtained by concatenating vectors from L and L′. If A and B are bases of L and L′, then the tensor

product L⊗L′ is the lattice with basis A⊗B given by the Kronecker product of A and B, i.e., the

block matrix obtained replacing each entry ai, j of A with the block ai, j ·B. The tensor product

L⊗L′ satisfies det(L⊗L′) = det(L′)n ·det(L)n′ . The k-fold direct sum of a lattice L⊕k =⊕k
i=1L can

be equivalently expressed as the tensor product L⊕k = Zk⊗L.

3.2.2 Convex Bodies

We say a set K ⊆ Rn is convex if, for any x,y ∈ K, and t ∈ [0,1], (1− t)x+ ty ∈ K. We

furthermore say K is symmetric if x ∈ K ⇐⇒ −x ∈ K. Associated with any convex symmetric set

K is a norm ∥x∥K = inf{t > 0 | x/t ∈ K}. For such K, we define the ℓp-packing radius r(p)
K to be

the maximal r such that r ·B(p)
n ⊆ K. Similarly, we define the ℓp-covering radius R(p)

K to be the

minimal R such that K ⊆ R ·B(p)
n . Again, when p is omitted, we mean p = 2. For a pair of convex

symmetric sets K,K′, we write ∥K′∥K := supx∈K′∥x∥K . We will need the following bounds, which

are straightforward to derive.

Lemma 24. Let K,K′ be convex symmetric sets in Rn. Then

1. if K ⊆ K′, then for all x ∈ Rn, ∥x∥K ≥ ∥x∥K′ ,

2. if s > 0, then for all x ∈ Rn, ∥x∥sK = 1
s∥x∥K , and

3. ∥K′∥K ∈
[

R(p)
K′

R(p)
K

,
R(p)

K′

r(p)
K

]
.

We will require the following standard inequality in our work.
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Proposition 1 (Brunn-Minkowski). Let A,B be non-empty compact subsets of Rm. Then m
√

vol(A+B)≥
m
√
vol(A)+ m

√
vol(B).

3.2.3 Lattice Codes

Applications of lattices often require not only a lattice L, but also an efficient algorithm to

map arbitrary vectors x ∈ Rn to a nearby lattice point.

Definition 18. A lattice code (L,⌊·⌉) is a lattice L ⊂ Rn together with a rounding algorithm

⌊·⌉ : spanR(L)→ L such that ⌊0⌉= 0 and ⌊x+v⌉= ⌊x⌉+v for all x ∈ spanR(L) and v ∈ L.

We will be primarily interested in q-ary lattice codes, i.e., lattice codes (L,⌊·⌉) such that L is a

q-ary (but not necessarily integer) lattice. For any q-ary lattice code L⊂Rn, we can take the quotients

of L and Rn modulo the additive subgroup qZn, and define the codebook Lq = L/qZn, and ambient

torus Rn
q = (R/qZ)n ≡ Rn/qZn. Elements of the codebook Lq are called codewords, and can be

represented as vectors L∩ [0,q)n with (not necessarily integer) coordinates in the range [0,q). Given

a Z-basis of the lattice B, one can moreover represent these codewords as integer via the encoding

function encodeL(m) := Bm mod q, and decoding function decodeL(c) := B−1 ⌊c⌉L mod q. The

codebook Lq is a subgroup of the ambient torus Rn
q, and the rounding function ⌊·⌉ : Rn→ L induces a

well-defined map Rn
q→ Lq from the ambient torus to the codebook. Notice that the codebook Lq is a

finite set of size
∣∣Lq
∣∣= qn

det(L) , so codewords can be represented with ⌈log2
∣∣Lq
∣∣⌉≈ n logq− logdet(L)

bits.

For any lattice code (L,⌊·⌉L), we define the fundamental decoding region VL = {x ∈

Rn : ⌊x⌉L = 0}, i.e., the set of all points that decode to 0. When ⌊·⌉ is the CVP rounding function,

VCVPL is called the Voronoi cell of the lattice. The reduction of a point x ∈ Rn modulo a lattice code

(L,⌊·⌉L) is defined as [x]L = x−⌊x⌉L, so that every point in space can be (uniquely) written as the

sum x = ⌊x⌉L +[x]L of a lattice point ⌊x⌉L ∈ L and a rounding error [x]L ∈VL in the fundamental

decoding region. Notice that the rounding error depends not only on the lattice L but also on the

rounding function ⌊·⌉ of the lattice code.
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Throughout, we will assume that VL is a convex symmetric set. When the choice of ⌊·⌉ is

unambiguous, we will refer to the norm ∥·∥L := ∥·∥VL , packing radius r(p)
L := r(p)

VL
, and covering

radius R(p)
L := R(p)

VL
of L. Note that when ⌊·⌉ solves CVP on L, the parameters rL and RL are the

familiar lattice parameters λ1(L)/2 and ρ(L). When discussing bounds on the packing/covering

radii, we will find it useful to work with normalized (to be invariant to scaling L 7→ cL) versions of

these quantities r = (detL)−1/nr and R = (detL)−1/nR.

Some Explicit Lattice Codes

We briefly summarize some explicit lattice codes we will use in our work, namely the lattice

codes (implicitly) used in previous high-rate constructions of LWE-based encryption [9, 33] (we

justify this claim in Section 3.4).

Definition 19 (Primal Gadget Lattice). For p,q∈N, let gp = (1, p, p2, . . . , p⌈logp q⌉−1) be the base-p

“gadget vector”. The primal gadget lattice is the lattice Λq(gt
p).

Proposition 2. Let q = pℓ. Then the fundamental region when decoding with Babai’s nearest planes

V babai
Λ⊥q (gt

p)
= q

2p ·B
(∞)
ℓ , and detΛq(gt

p) = qℓ−1. Moreover, detΛq(gt
p)⊗Zm/ℓ = det((q/p)Zm).

Proof. The fundamental region statement is from [57, Section 4], and the determinant calculation is

straightforward.

Definition 20 (Dual Gadget Lattice). For p,q ∈ N, let gp = (1, p, p2, . . . , p⌈logp q⌉−1) be the base-p

“gadget vector”. The dual gadget lattice is the lattice Λ⊥q (gt
p).

Proposition 3. Let p < q, and let ℓ= ⌈logp q⌉. Then there exists a decoding algorithms for Λ⊥q (gt
p)

that satisfy

• when q = pℓ, r(∞)
K ≥ p/2,

• when q = pℓ−1, r(∞)
K ≥ (p−1)/2,

• when q ∈ N, r(∞)
K ≥ (p−1)

2
q
pℓ .
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Proof. The case of q = pℓ follows from [57]. The case of q = pℓ−1 follows from [33] (we show

that their “nearly square gadget matrix” is the dual gadget lattice in Section 3.4.2). The case

of arbitrary q is implicit in [32] (it follows from standard analysis of a decoding algorithm they

suggest). We provide this standard analysis below.

Let Sq = [b0, . . . ,bℓ−2,q] be the typical basis of Λ⊥q (gt
p), where bi = pei− ei+1, and q =

(q0, . . . ,qℓ−1) are the base-p digits of q. We abuse notation and state that q = pℓ has base-p

decomposition of (0,0, . . . ,0, p). The authors of [32] note that Sq admits a factorization as Sq =

SpℓDq where Dq = [e0, . . . ,eℓ−2,dp,q] for the vector dp,q with coefficients ⟨ei,dp,q⟩ = q mod pi+1

pi+1 .

They then suggest using the decoder

decode(x) = SpℓdecodeDqZℓ(S−1
pℓ x), (3.3)

where one decodes DqZℓ using Babai’s Nearest Planes. This has fundamental region that con-

tains q
pℓ [−1/2,1/2)ℓ, and therefore the decoder of Eq. (3.3) has fundamental region that contains

Spℓ
q
pℓ [−1/2,1/2)ℓ. One can readily compute that this set contains (p−1) q

pℓ [−1/2,1/2)ℓ.

We omit the computation of the determinant, as it is straightforward.

The next lattice belongs to parameterized family of lattices (for ut
m = (1,1, . . . ,1) ∈ Rm)

Λq(ut
m) that we call the Dual of Davenport’s Lattice. Well-known special cases are

• q = 1, where it is simply Zm, and

• q = 2, where it is a scaling of D∗m, the dual of the standard Dm = Λ2(ut
m) root lattice.

The generalization to m > 2 has been implicit in many works, namely constructing explicit

efficient coverings of Rm [23, Chapter 2, Section 1.3][25], constructing efficient decoding algorithms

for certain lattices [29], and constructing rate 1−o(1) fully homomorphic encryption [9].

Definition 21 (Scaled Dual of Davenport’s Lattice). Let m,q ∈ N. The scaled dual of Davenport’s

lattice Λq(ut
m) is the lattice Λq(ut

m) = qZm +Z ·um, where um is the all-ones vector of length m.
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Definition 22 (A∗m−1 Lattice). For any m ∈ N, the A∗m−1 lattice is defined to be the projection of Zm

perpendicular to the vector um.

When m | q, this lattice admits a simple orthogonal decomposition in terms of the root lattice

A∗m−1, which admits an O(m)-arithmetic operation CVP algorithm [56].

Lemma 25. Provided m | q, Λq(ut
m) = qA∗m−1 +Z ·um, where ⟨qA∗m−1,Z ·um⟩= {0}.

Proof. As A∗m−1 is defined to be a projection orthogonal to um, the last condition is immediate.

One can check that qA∗m−1,um are the projections of Λq(ut
m) onto the subspaces perpendicular

to and parallel to um, respectively, so qA∗m−1 +um ⊇ Λq(ut
m). For the other direction, note that

um⊆Λq(ut
m), as Λq(ut

m) = qZn+Z ·um. The equality then immediately follows by [55, Proposition

1.1.6], which implies that the indicies of

• the intersection of Λq(ut
m)∩R ·um within the projection of Λq(ut

m) onto R ·um, and

• the index of Λq(ut
m) within qA∗m−1 +Z ·um,

are equal. As it is clear that the first index is 1, we have that Λq(ut
m) = qA∗m−1 +Z ·um.

This same argument works for m ∤ q, though the indices mentioned in the proof are not all

equal to 1. It is fairly straightforward to verify that they are instead equal to m
gcd(q,m) , so one gets an

O(m2)-arithmetic operation CVP algorithm for Λq(ut
m) in general. This parameter setting does not

appear to be useful for our setting though, as it is unclear how to get any useful information about

the shape of the Voronoi cell of the lattice in general.

Proposition 4. Let m | q. Then R(∞)
Λq(ut

m)
= q

2

(
1− 1

m

)
+ 1

2 , and detΛq(ut
m) = qm−1.

Proof. The orthogonal decomposition implies that VΛq(ut
m)

= VqA∗m−1
+VZ·um . Applying triangle

inequality, we can reduce computing R(∞)
Λq(ut

m)
to computing both R(∞)

qA∗m−1
and R(∞)

Z·um
. The first

is straightforward to compute given the explicit expression (found in [23, Chapter 4, Section
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6.6]) for VA∗m−1
, namely as the convex hull of all coordinate permutations of the explicit vector

v = 1
2m(−m+1,−m+3, . . . ,m−3,m−1). The second is straightforward to compute as 1/2.

Finally, to compute the determinant, note that the lattice may be generated by the m+ 1

vectors [um,qe1, . . . ,qem], and that any single vector qei can easily be written as a linear combination

of the other vectors in this generating set. It follows that [qe1,qe2, . . . ,qem−1,um] is a triangular

basis, and detΛq(ut
m) = qm−1.

Corollary 2. If m | q, one can solve CVP on Λq(ut
m) in O(m log2 q) time.

Proof. Project parallel/perpendicular to un, then use the known O(m)-arithmetic operation CVP

algorithms on qA∗m−1 [56] and Z ·um. There is an additional O(log2 q) overhead as the algorithm of

[56] costs arithmetic operations at unit cost.

3.2.4 Bounds on Lattice Parameters

For any lattice L, the best normalized packing and covering radii are achieved by the CVP

rounding algorithm, giving rL and RL. For any m, let rm = supL rL and Rm = infL RL be the optimal

normalized radii over all lattices L of rank m. It is known that rm = Θ(
√

m), and Rm = Θ(
√

m)

(see Chapters 1 and 2 of [23]). It is additionally known that in each dimension m, there are lattices

L ⊆ Rm that (nearly) simultaneously achieve these bounds, meaning such that RL/rL ≤ 2+o(1),

see [12].

3.2.5 Log-Concave Random Variables

We will require the class of log-concave random variables.

Definition 23. Let X be a random variable with pdf p(x). We say that X is log-concave if p(x) =

exp(−V (x)) for V (x) a convex function.

We briefly summarize (from [80]) the properties this class of random variables satisfies.
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Proposition 5. Let x,x′ ∈ Rn be log-concave and independent. Let A ∈ Rm×n be any linear

transformation. Then x+x′ and Ax are log-concave.

Standard examples of log-concave random variables are Gaussians, and uniform random

variables on convex sets K. We establish log concavity of a few other distributions relevant to

lattice-based cryptography at the end of this sub-section.

Log-concave random variables are known to have strong concentration properties (they are

“sub-exponential”). We use the following concentration bound mostly for simplicity of exposition —

one can obtain tighter bounds by treating the cases of the ∥·∥2 and ∥·∥∞ norms separately, though as

we mention later (Section 3.4) this never impacts our (asymptotic) results.

Proposition 6 (Theorem 11 of [50]). For any L-Lipschitz function g ∈ Rn, if x is an isotropic

log-concave random variable, then Pr[|g(x)−E[g(x)]|> Lt]≤ exp(−Ω(tψ−1
n )).

Here, ψn is KLS constant, which is (under the celebrated KLS conjecture) O(1) as n→ ∞.

The current best bound known is ψn = O(
√

logn) [46]. In the rest of our work we will write

exp(−Ω̃(t)), where this is understood to mean exp(−Ω(t/
√

logn)).

Corollary 3. If x is a log-concave random variable in Rn with covariance matrix Σ, then for

p ∈ {2,∞}

Pr[∥x∥p >
√
Tr(Σ)(t +

√
n)]≤ exp(−Ω̃(t)). (3.4)

Proof. Note that Σ−1/2x is isotropic, so we will apply the previous proposition to this random

variable and g(x) = ∥Σ1/2x∥p. For the ℓ2 norm, the Lipschitz constant is the ℓ2 to ℓ2 operator norm,

i.e. the maximum singular value of Σ1/2, which is at most
√

Tr(Σ). For the ℓ∞ norm, the Lipschitz

constant is the ℓ∞-ℓ2 operator norm, i.e. the maximum ℓ2 norm of a column of Σ1/2. Note that each

element of the main diagonal of Σ is the (squared) ℓ2 norm of a column of Σ, so again we get that√
Tr(Σ) bounds the Lipschitz constant.

We therefore have reduced to bounding E[g(x)] in both cases. For the ℓ2 norm, by Jenson’s

inequality, we have that E[∥x∥2]
2 ≤ E[∥x∥2

2] = Tr(Σ). For the ℓ∞ norm, we apply the bound

E[∥x∥∞]≤ E[∥x∥2]≤
√

Tr(Σ).
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We next introduce our anti-concentration inequality, which (in a general form) holds for

arbitrary polynomials in log-concave random variables. For t ∈ R we apply it to the degree-2

polynomial ∥x∥2
2− t.

Proposition 7 (Theorem 8 of [15]). If x is a log-concave random variable on Rn with covariance

matrix Σ, then for every ε > 0,

Pr[|∥x∥2− t| ≤ ε]≤ O

(
ε√
Tr(Σ)

)
. (3.5)

We end the sub-section by establishing log-concavity of some distributions of cryptographic

interest.

Lemma 26. Let ei ∼N (0,σ2
i In) for i ∈ {0,1}. Then the distribution of ⟨e0,e1⟩ is log-concave if

n≥ 2.

Proof. By [30, Eq. 2.15], one has that ⟨e0,e1⟩= σ0σ1
2 (X ′−X ′′) as distributions, where X ′,X ′′ are

independent χ2
(n) random variables. One can easily verify (by directly examining the pdf) that a χ2

(n)

random variable is log-concave if n≥ 2. By closure of log concavity under independent sums, the

claimed result follows.

Theorem 10. Let n ≥ 8, and let K be a bounded measurable subset of Rn. Let x ∼N (0,σ2In),

and let y∼ K be independent from x. Then ⟨x,y⟩ is log-concave.

Note that by applying orthogonal transformations to both x,y, this implies log concavity in

the more general case of x∼N (0,Σ).

Proof. One can verify that univariate p(x) is log-concave if

∀x : p(x)p′′(x)≤ (p′(x))2. (3.6)
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We will explicitly compute the pdf of ⟨x,y⟩, and show that it satisfies this inequality. Note that by

the law of total probability

µ(A) := Pr[⟨x,y⟩ ∈ A] =
∫
Rn

Pr[⟨x,y⟩ ∈ A | y = z]Pr[y = z]dz

=
∫
Rn

(∫
A

√
2πσ2∥z∥2

2

−1
exp
(
− x2

2σ2∥z∥2
2

)
dx
)
vol(K)−1

χK(z)dz

=
∫

A

(
vol(K)−1

∫
K

√
2πσ2∥z∥2

2

−1
exp
(
− x2

2σ2∥z∥2
2

))
dx,

where in the last step we applied Fubini’s theorem and simplified. If we define f (x,y2) =√
2πσ2y2−1

exp
(
− x2

2σ2y2

)
, it follows that the density is p(x)= vol(K)−1 ∫

K f (x,∥z∥2
2)dz=Ez←K[ f (x,∥z∥2

2)].

To compute the derivatives p′(x), p′′(x), we need to interchange differentiation and in-

tegration a few times, which we do via the (measure-theoretic) Leibniz Integral rule. Before

discussing this, we compute that ∂x f (x,y2) =− x
σ2y2 f (x,y2), ∂ 2

x f (x,y2) =
(

x2

σ4y4 − 1
σ2y2

)
f (x,y2),

∂ 3
x f (x,y2) =−

(
x3

σ6y6 − 3x
σ4y4

)
f (x,y2). Our applications of the Leibniz integral rule will require all

of these functions (as well as f (x,y2) itself) to be integrable for all x. The largest singularity occurs

when x = 0, where ∂ 3
x f = O(y−7). As switching to spherical coordinates introduces a multiplicative

factor yn−1, provided n≥ 8 we can switch to spherical coordinates to get an integrand with no singu-

larity, and show convergence. Note that this step is additionally where we require K to be bounded

and measurable, as otherwise
∫
Rn f (x,∥z∥2

2)dz = ∞ for the same reason that
∫
Rn∥z∥2

2dz = ∞. As the

other preconditions of Leibniz are straightforward to verify, we omit them.

We next note that one can write

Ex[ f (x)]Ex[g(x)] = Ex,y

[
f (x)g(y)+ f (y)g(x)

2

]
, (3.7)

where y is an i.i.d. copy of x. It follows that

(p′(x))2 = Ez,z′

[
x2

σ4∥z∥
−2
2 ∥z

′∥−2
2 f (x,∥z∥2

2) f (x,∥z′∥2
2)

]
, (3.8)
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and

p(x)p′′(x) = Ez,z′

[(
x2

σ4

(
∥z∥−4

2 +∥z′∥−4
2

2

)
− 1

σ2

(
∥z∥−2

2 +∥z′∥−2
2

2

))
f (x,∥z∥2

2) f (x,∥z′∥2
2)

]
.

(3.9)

Therefore establishing the inequality (p′(x))2 ≥ p′′(x)p(x) reduces to showing that some explicit

integral is non-negative. Note that f (x,∥z∥2
2)≥ 0 by inspection. We therefore reduce to showing

that the integrand

x2

σ4∥z∥
−2
2 ∥z

′∥−2
2 −

(
x2

σ4

(
∥z∥−4

2 +∥z′∥−4
2

2

)
− 1

σ2

(
∥z∥−2

2 +∥z′∥−2
2

2

))
≥ 0. (3.10)

This itself follows from the bound x−2y−2 ≥ x−4+y−4

2 , valid for any positive x,y, which in the more

familiar form
(

x−4+y−4

2

)−1
≤ x2y2 is simply the inequality between the Harmonic and Geometric

means, applied to (x4,y4).

3.2.6 Cryptographic Primitives

We will use the standard notion of IND-CPA security, as well as a less standard notion (that

is better suited to lattice-based primitives) known as RND-CPA. Our security analysis in this chapter

will not be a bit-security analysis10, so we will use the (simpler) traditional formulation of the

advantage of an adversary in a decision game below.

Definition 24 (IND-CPA). An encryption scheme (KGen,Enc,Dec) is said to be indistinguishable

under chosen plaintext attack if any efficient (probabilistic polynomial-time) adversary A can only

achieve at most negligible advantage in the following game G , parameterized by a bit b ∈ {0,1}:

1. k← KGen(1n),

2. b′← AOb(·,·), where Ob(m0,m1) = Enck(mb).

10In Chapter 4, we will mix computational and statistical primitives, so there will be a concrete benefit to giving a
(c,s)-bit security analysis. In this chapter, we instead fix one set of cryptographic parameters (Definition 29) across all
instantiations of our framework, and investigate how different coding-theoretic choices will impact the coding-theoretic
performance (the rate) of our scheme.
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The adversary’s advantage is defined to be adv(A) = ∆SD(A(G0),A(G1)).

Definition 25 (RND-CPA). An encryption scheme (KGen,Enc,Dec) is said to be pseudorandom

under chosen plaintext attack if one may efficiently produce a uniformly distributed sample from

C = {Enck(m) | k ∈ supp(KGen(1n)),m ∈M }, and any efficient (probabilistic polynomial-time)

adversary A can only achieve at most negligible advantage in the following game Gb, parameterized

by a bit b ∈ {0,1}:

1. k← KGen(1n),

2. b′← AOb(·), where Ob(m) returns either

• b = 0: an encryption Enck(m) of the message m under the key k, or

• b = 1: a uniform sample from C.

The adversary’s advantage is defined to be adv(A) = ∆SD(A(G0),A(G1)).

Note that the distribution in the b = 1 case is not dependent on k,m. A straightforward

hybrid argument shows that RND-CPA-security implies IND-CPA-security, although the reverse

implication does not hold11. We use the (standard) correctness notion of [40], specialized to the

setting of private-key encryption.

Definition 26 (δ -Correctness). A private-key encryption scheme (KGen,Enc,Dec) is said to be

δ -correct if Esk←KGen(1n)[maxm∈M [Pr[Decsk(c) ̸= m | c← Encsk(m)]]]≤ δ .

3.3 The Encryption Framework

We next present and analyze a secret-key encryption framework. This is done for simplicity

of presentation, as the main complication of the public-key setting is a more complex (but, by our

results of Section 3.2.5, still log-concave) noise distribution.

To prove bounds in some framework, one must first
11Take an IND-CPA-secure cryptosystem, and modify encryption to output Enck(m)||H(k) for a hash function H(·),

modeled as a random oracle. As k is not consistent between queries to O1(·), there is a simple RND-CPA distinguisher,
but the construction is still IND-CPA-secure.

71



KGen(1n)

s← χ
n
sk

return s

Encs(m)

A← Zm×n
q

e← χ
m
e

b = As+ e+ encodeE(m)

return (A,⌊b⌉Q)

Decs(A,c)

return decodeE(c−As)

Figure 3.2. Quantized Encryption LWEn,q
χsk,χe [E,Q], where (E,⌊·⌉E),(Q,⌊·⌉Q) are lattice codes.

• define a sensible rate for the framework, and

• define a ciphertext error distribution for the framework.

We do this for our secret-key framework in this section. We additionally show cryptographic

security of constructions in our framework, although this is relatively straightforward.

Definition 27 (Quantized LWE Encryption). Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm
q . Let χsk

be a distribution on Zq, and let χe be a distribution on Rq. The Quantized LWE Encryption Scheme

LWEn,q
χsk,χe[E,Q] is given by (KGen,Enc,Dec), as defined in Figure 3.2.

Definition 28. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm
q . Let χsk be a distribution on Zq, and

χe be a distribution on Rq. We say the asymptotic rate of LWEn,q
χsk,χe [E,Q] is the quantity

log2 |E/qZm|
log2 |Q/qZm| = 1−

log2
detE
detQ

log2
qm

detQ

. (3.11)

This expression for rate does not include the cost of transmitting A, as there are many ways

to reduce (or amortize) this cost, such as appealing to algebraically structured forms of LWEχsk,χe ,

amortizing the cost of A across many (independent) communication sessions, or transmitting a

short seed s ∈ {0,1}n, which one deterministically expands with an extendable output function. In

settings where these optimizations are not available (say if one wants to incorporate the cost of

transmission of an LWE public key that will be used a single time), one should of course modify the

rate to match the particular setting of interest.
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We next define the ciphertext error distribution of LWEn,q
χsk,χe[E,Q]. This is the distribution

that E must correct for decryption to succeed.

Lemma 27. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm
q . Let χsk be a distribution on Zq, and χe

be a distribution on Rq. Let A← Zm×n
q , e← χm

e , s← χn
sk, and b = As+ encodeE(m)+ e. Then

Decs(Encs(m)) = m ⇐⇒ e− [b]Q ∈VE . (3.12)

Proof. We have that

Decs(Encs(m)) = decodeE(⌊b⌉Q−As)

= decodeE(b− [b]Q−As)

= m+decodeE(e− [b]Q).

In principle the ciphertext error distribution may depend on m. This and other annoyances

(namely that [b]Q and e may be dependent) lead us to introduce the following heuristic description

of the ciphertext error distribution.

Heuristic 1. Let (Q,⌊·⌉) be a lattice code, m be any message, c ∈ VQ, s← χn
sk, A← Zm×n

q , and

e← χm
e . Then the error e− [As+ e+ encodeE(m)] is distributed as e− u, where u← VQ is

independent from e.

We present a modification of our cryptosystem in Section 3.3.2 that has the same rate as

LWEn,q
χsk,χe[E,Q], which (provably) has the above ciphertext error distribution.

We next derive a bound on δ in terms of the scheme parameters. Curiously, we get a better

bound if we first separate-off the (bounded) quantization error and apply a worst-case bound over

this quantity, rather than naively applying Corollary 3.
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Lemma 28. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm
q . Let χsk be a distribution on Zq, and

χe be a distribution on Rq. If Σe is the covariance matrix of e← χm
e , u← VQ, then if for some

p∈ {2,∞}, r(p)
E >

√
Tr(Σe)

(
Õ(ln(1/δ ))+

√
m
)
+R(p)

Q , it follows that LWEn,q
χsk,χe [E,Q] is δ -correct.

Proof. We have that δ = Pr[∥et−ut∥E > 1]≤ Pr[∥et∥E > 1−∥ut∥E ]. By definition we have that

r(p)
E ·B

(p)
m ⊆VE , and therefore for any x, ∥x∥E ≤ 1

r(p)
E

∥x∥p. It follows that δ ≤ Pr[∥et∥p > r(p)
E −R(p)

Q ].

Under the assumed bound on r(p)
E , our claim follows by Corollary 3.

3.3.1 Cryptographic Properties of LWEn,q
χsk,χe[E,Q]

We next establish RND-CPA security under the LWEχsk,χe assumption. Note that we require

no assumptions12 on E,Q.

Theorem 11. LWEn,q
χsk,χe [E,Q] is RND-CPA-secure under the LWEχsk,χe assumption.

Proof. Given an adversary that breaks RND-CPA-security of LWEχsk,χe , we describe how to break

the decisional LWEχsk,χe assumption. Let Ob(·) be an oracle that either returns samples from (when

b = 0) (A,As+ e), or (when b = 1) (A,u)← Zn×m
q ×Rm

q . Construct an encryption oracle that

encrypts m by

• sampling (A,b)← Ob(·), and

• returning (A,⌊b+ encodeE(m)⌉Q).

When b = 0, this is exactly the oracle O0(m) of the RND-CPA game. When b = 1, we will show

that it is a random ciphertext. Note that v := u+ encodeE(m) is the sum of a uniformly random

element u of a group Rm
q along with an independent element of that group. By a standard argument

analogous to the security of the one-time pad, v is itself uniform over Rm
q , and independent of

encodeE(m). Finally, for uniform v, it is straightforward to see (as qZm ⊆ Q) that ⌊v⌉Q is uniform,

finishing the proof.
12Part of this claim is an artifact of us using LWE samples with pseudorandom component b ∈ Rm

q . If we replace this
with Zm

q , one can establish security if either Eq ⊆ Zm
q or Qq ⊆ Zm

q . This is still a relatively minor assumption, as it still
implies security for E,Q sharing no common (nested) structure.

74



We briefly remark that one could also achieve security of our cryptosystem using a “LWR-

type” assumption, namely that (A,⌊As⌉Q) is pseudorandom. This recovers the LWR assumption

when Q is a scaling of Zm.

3.3.2 Quantized LWE Encryption with a Dither

KGen(1n)

s← χ
n
sk

return s

Encs(m)

A← Zm×n
q

e← χ
m
e

b = As+ e+ encodeE(m)

v←VQ

return (A,⌊b−v⌉Q ,v)

Decs(A,c,v)

return decodeE(c+v−As)

Figure 3.3. Dithered Quantized Encryption DithLWEn,q
χsk,χe [E,Q], defined relative to lattice codes

(E,⌊·⌉E),(Q,⌊·⌉Q). Sampling from VQ can be done efficiently via sampling v← [0,q)m, and then
computing [v]Q.

We next describe a variant of quantized LWE for which Heuristic 1 holds. This utilizes

what is known as the subtractive dither in coding theory, see Chapter 4 of [87] for more details.

Security of our construction easily follows under the same conditions (and proof) of Theorem 11.

We omit reproducing this proof for brevity, and instead show that the analogue of Heuristic 1 holds

for DithLWEn,q
χsk,χe[E,Q].

Lemma 29. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm
q . Then the ciphertext error distribution

of DithLWEn,q
χsk,χe [E,Q] satisfies Heuristic 1.

Proof. For any message m, we can compute that

Decs(Encs(m)) = decodeE(⌊b−v⌉Q +v−As)

= decodeE(b−v− [b−v]Q +v−As)

= m+decodeE(e− [b−v]Q).
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Now, as v is uniform over VQ, we have that [b−v]Q is uniform over VQ as well, and independent

of b (and therefore e). It follows that Decs(Encs(m)) = m, unless e−u ̸∈VE , for an independent

uniform random variable u = [b−v]Q.

We next argue that in practice, LWEn,q
χsk,χe [E,Q] and DithLWEn,q

χsk,χe [E,Q] have the same rate.

Recall that we do not explicitly include the random matrix A ∈ Zm×n
q in our computations of

rate. One justification for this was that typically, A itself is not transmitted, and instead a short

seed s ∈ {0,1}n is transmitted, which is then expanded into A := H(s) using an extendable output

function H(·). If this (common) optimization is used, one can simply generate v in this same

manner, so v does not need to be explicitly included in ciphertexts.

3.4 Constructions of Quantized LWE Encryption

We next describe the rate achievable by several instantiations (parameterized by lattice codes

E,Q) of our framework. The following choice of parameters will be used to enable uniform rate

comparisons.

Definition 29. We say the standard choice of parameters are the choice of δ = exp(−n), σ = 2
√

n,

and m = O(n).

3.4.1 Quantizing Regev’s Encryption

We first analyze a quantized variant Regev’s initial cryptosystem [76] in our framework,

namely LWEn,q
χsk,χe [(q/p)Zm,kZm] for k ∈N. Regev’s initial scheme corresponds to the cryptosystem

with no quantization (k = 1). We will later optimize over the choice of k to attain a rate 1−o(1)

cryptosystem from polynomial modulus.

Definition 30 (Regev Encryption). Let p,q,k ∈ N. Regev Encryption is the Quantized LWE

encryption scheme LWEn,q
χsk,χe [(q/p)Zm,kZm].
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Corollary 4. Let p < q, and k ∈ N. Then for any δ > 0, provided q
2p > Ω̃(n3/2

√
n+ k2), one can

parameterize Regev encryption to be δ -correct under the standard choice of parameters and of

asymptotic rate at least

1−O
(

log2(n
2/k)

log2(q/k)

)
. (3.13)

We highlight three main takeaways from this example, namely that

1. for trivial quantization (k = 1), it is asymptotic rate 1−Θ(1), i.e. asymptotic rate 1−Ω(1)

from polynomial modulus,

2. for non-trivial quantization (k = Ω(n2)), it is asymptotic rate 1− o(1) from polynomial

modulus, and

3. no parameterization (with polynomially-large q) can achieve asymptotic rate better than

1−o
(

1
log2 n

)
.

Proof. We get by Lemma 28 that this cryptosystem is δ -correct under the standard choice of

parameters provided
q

2p
> Ω̃

(
n3/2

σ

)
+ k. (3.14)

Choosing q/p at most a constant-factor larger than this, we get a scheme of asymptotic rate

1−O
(

log2(n
2/k)

log2(q/k)

)
(3.15)

We briefly comment on the tightness of our bounds. Prior analysis of ours (not included in

this work) that appealed to Gaussian-specific bounds13 to optimize Eq. (3.14) yielded a different

bound on q/p, namely the bound

q
2p

>
√

2σ(
√

log2 m+
√

lnn)+ k, (3.16)

13To handle the (bounded) uniform component u, we appealed to worst-case bounds on its size.
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i.e. with no implicit constants14, and a bound of q/2p > Ω(n) rather than q/2p > Ω̃(n2). This

yields a scheme of asymptotic rate 1−O
(

log2(n/k)
log2(q/k)

)
. We say this to highlight that the more general

log-concave analysis (compared to the Gaussian analysis, only relevant for private-key encryption)

does result in some loss, but only impacts the three points we highlighted above via requiring a

larger parameter k = Ω(n2).

3.4.2 Quantizing the Cryptosystem of [33]

To demonstrate the breadth of our framework, we next show that it contains the high-rate

cryptosystems of [33]. This work proposed two high-rate cryptosystems, namely

• Section 4.1: an (unquantized) form of what we call Regev encryption, and

• Section 4.2: an (unquantized) form of encryption that uses a lattice generated by a“nearly

square gadget matrix” H for error-correction.

As we have already analyzed the first construction, we focus on the second construction in this

sub-section. [33] constructs the matrix H as the kernel modulo q of an explicit matrix15 F ′⊗ Ik,

where (for q = pℓ−1)

F ′ =



pℓ−1 1 . . . pℓ−2

pℓ−2 pℓ−1 pℓ−3

...
... . . . ...

1 p . . . pℓ−1


. (3.17)

One can verify that F ′ is precisely what one gets when reducing the collection of ℓ+1 vectors given

by [gp,qe1, . . . ,qeℓ] to a basis, i.e. is a basis of the lattice Λq(gt
p). It then follows that the desired

matrix H is a basis for the lattice Λ⊥q (gt
p)⊗Zk for some k, as we claimed in Table 3.1.

Definition 31 (Gentry-Halevi Encryption, [33]). For p,q∈N, the Gentry-Halevi Encryption scheme

is the Quantized LWE encryption scheme LWEn,q
χsk,χe [Λ

⊥
q (gt

p)⊗Zm/⌈logp q⌉,kZm].
14For this reason, we use this tighter (yet standard) analysis to compute the curves in Figure 3.1.
15The matrix we copy down is actually the transpose of the matrix of [33], as we have different conventions for

whether lattices are generated by rows/columns of their basis.
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Corollary 5. Let p < q, and let ℓ = ⌈logp q⌉. Assume that q/pℓ = O(1) with respect to p. Then

provided p > Ω̃(n2)+ k, one can parameterize Gentry-Halevi Encryption to be δ -correct under the

standard choice of parameters, and of asymptotic rate at least

1−O
(

log2(n
2/k)

log2(q/k)

)
. (3.18)

Proof. By Lemma 28, this is δ -correct provided q
pℓ

(p−1)
2 >

√
nσ(Ω̃(n)+

√
m)+ k. Under the

standard choice of parameters (and assuming q
pℓ = O(1), independently of p), we get that it suffices

to take p > Ω̃(n2)+ k. This yields a cryptosystem of rate

1−O
(

log2(p/k)
log2(q/k)

)
= 1−O

(
log2(n

2/k)
log2(q/k)

)
. (3.19)

Note that for large-enough k = Ω(n2) this is asymptotic rate 1− o(1) from polynomial

modulus, while [33] required super-polynomial modulus to attain rate 1−o(1).

3.4.3 Optimizing the Quantized Cryptosystem of [9]

We next consider the only cryptosystem in the literature that uses a quantizer that is not

of the form Zm/k⊗Q′, namely the cryptosystem of [9], which the authors of that work refer to as

“linearly homomorphic encryption with ciphertext shrinking”. We claim this defines exactly the

cryptosystem LWEn,q
χsk,χe [(q/2)Zm,Λq/2(ut

m)]. As this equivalence is not obvious, we briefly recall

their construction.

The construction starts with an (unquantized) Regev ciphertext (A,As+e+(q/2)m). It then

shows (existentially) that one can find a scalar r ∈ Zq such that the pair (w := decode(q/2)Zm(c2 +

r ·ut
m),r) ∈ Zm

2 ×Zq suffice for decryption. We view this pair (w,r) as defining an element of the

lattice Λq/2(ut
m) = (q/2)Zm +Z ·um via the obvious mapping (w,r) 7→ (q/2)w+ r ·um. Note that

this mapping is almost a bijection16. Under this identification, the pair (w,r) is simply equal to

16When working modulo q, it is instead a bijection between Zm
2 ×Zq/2 and our lattice, rather than Zm

2 ×Zq and our
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decodeΛq/2(ut
m)
(c2) (for a decoding algorithm which need not solve CVP on Λq/2(ut

m)). If one then

attempts to decrypt this ciphertext (using the decryption formula of our work), we have that

decode(q/2)Zm(encodeΛq/2(ut
m)
((w,r))−As) = decode(q/2)Zm((q/2)w+ r ·um−As)

= w+decode(q/2)Zm(r ·um−As)

= decode(q/2)Zm(c2 + r ·um)

−decode(q/2)Zm(As− r ·um).

This is precisely the decryption formula that [9] proposed for their cryptosystem, and therefore

their “linearly homomorphic encryption with ciphertext shrinking” is precisely our cryptosystem

LWEn,q
χsk,χe[(q/2)Zm,Λq/2(ut

m)].

We next analyze this construction in our framework, again for a parameterized (by k) family

of quantizers that reduces to the cryptosystem of [9] when k = 1. The family we choose is given

by kΛq/(kp)(ut
m) = (q/p)Zm + kut

m ·Z, i.e. we only sparsify the quantizer in a single dimension

(parallel to ut
m). This yields a much smaller (non-asymptotic) improvement. We include this more

general analysis so we can refer to it during the conclusion.

Our analysis is done where one decodes with respect to the CVP algorithm (Corollary 2) we

have previously derived for this lattice.

Definition 32 (Modified BDGM Encryption). Let p,q,k ∈ N. The Modified BDGM Cryptosystem

is LWEn,q
χsk,χe [(q/p)Zm,kΛq/(kp)(ut

m)].

Corollary 6. For any δ > 0, let k be such that kp | q and m | q/(kp). Then one can parameterize the

Modified BDGM Cryptosystem under the standard parameters to be δ -correct, and of asymptotic

rate at least

1−O

(
log2(

n5/2

k )

m log2 p

)
. (3.20)

lattice. This extra bit in the r component can be removed from [9], i.e. it is not a difference between our schemes. While
saving 1 bit does not matter much, for p ̸= 2 one will save log2 p bits, which can start to matter for p = ω(1).
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Proof. Note that by Proposition 4 we have that R(∞)
kΛq/(kp)(ut

m)
≤ q

2p

(
1− 1

m

)
+ k

2 . By Lemma 28, we

have that this cryptosystem is δ -correct provided

q
2p

>
√

mσ(Õ(ln(1/δ ))+
√

m)+
q

2p

(
1− 1

m

)
+

k
2
, (3.21)

Under standard parameters, this follows provided q/p≥ Ω̃(n5/2)+kn. Choosing q/p that is at most

a constant factor larger than this, we get (as detkΛq/(kp)(ut
m) = k(q/p)m−1) that the asymptotic rate

is at least

1− log2 q/kp
log2(q/kp)pm ≥ 1− 1

1+m log2 p
log2 q/kp

≥ 1−O

(
log2(

n5/2

k )

m log2 p

)
. (3.22)

We comment the loss in Eq. (3.21) (compared to a Gaussian analysis) is smaller for this

scheme — we require q/p = Ω̃(n5/2)+ kn rather than q/p > Ω(n2)+ kn.

3.4.4 Novel Quantized “Gadget” Encryption

We next describe LWEn,q
χsk,χe[Λq(gt

p)⊗Zm/ℓ,Λq/p(ut
m)], which combines the quantizer of [9]

with the (standard) gadget Λq(gt
p)⊗Zm/ℓ. We find this combination has the exact same rate as [9],

while still encoding under an error-correcting code that is a gadget, i.e. we combine the relative

strengths of both known constructions of high-rate encryption [33, 9].

Definition 33. Let p,q,k∈N. The Quantized Gadget Cryptosystem is LWEχsk,χe[Λq(gt
p)⊗Zm/ℓ,kΛq/(kp)(ut

m)].

Corollary 7. For any δ > 0, let k be such that kp | q and m | q/(kp). Let q = pℓ for some ℓ > 0.

Then one can parameterize the Quantized Gadget cryptosystem under the standard parameters to

be δ -correct, and of asymptotic rate at least

1−O

(
log2(

n5/2

k )

m log2 p

)
. (3.23)

Proof. Note that the proof of Corollary 6 only depends on E = (q/p)Zm through VE and detE, and

that by Proposition 2 these quantities are equal for (q/p)Zm and Λq(gt
p)⊗Zm/ℓ.
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3.5 Rate Impossibility Results

We next establish rate upper bounds (i.e. impossibility) results in two separate noise models,

namely that of perfectly correct encryption (with respect to bounded noise), and that of δ -correct

encryption (with respect to log-concave noise).

3.5.1 Bounded Noise Model

Recall that (with high probability), a Gaussian e← χe concentrates tightly within a ball

of radius σ
√

m. We first assume that ∥e∥2 ≤ σ
√

m (say by replacing χm
e with a Gaussian that is

truncated to be contained in this set), and bound the rate of quantized encryption that has δ = 0, i.e.

no decryption failures. This setting is amenable to strong packing arguments.

Theorem 12. Let (E,⌊·⌉) be a lattice code in Rm. Let χe be a distribution such that supp(χm
e ) =

√
mσ ·Bm. Then, if LWEn,q

χsk,χe [E,Zm] is 0-correct, it has asymptotic rate at most 1−Ω

(
log2(

√
mσ)

log2 q

)
,

i.e. asymptotic rate 1−o(1) encryption from polynomial modulus is impossible.

Proof. For LWEn,q
χsk,χe [E,Q] to be perfectly correct, we need that δ = Pre,b[e− [b]Q ̸∈VE ] = 0. As

we have that Q = Zm, we have that [b]Q ∈ [−1/2,1/2)m, and our condition reduces to Pre[e+

[b]Q ̸∈ VE ] = 0, or equivalently Pre[e+ [−1/2,1/2)m ⊆ VE ] = 1, i.e. supp(χm
e ) ⊆ supp(χm

e ) +

[−1/2,1/2)m =
√

mσ ·Bm +[−1/2,1/2)m ⊆VE .

Now, as Eq +VE = Rm
q is a partition, we have that Eq +

√
mσ ·Bm ⊆ Rm

q is a packing,

meaning the sets {e+
√

mσ ·Bm}e∈Eq are disjoint. Taking volumes of both sides, we have that

vol(Eq + supp(χm
e ))

1
= |Eq|vol(

√
mσ ·Bm)≤ qm = vol(Rm

q ), (3.24)

where (1) easily follows from the aforementioned disjointness condition.

Now, we have that
∣∣Eq
∣∣= qm

detE . Rearranging, we get that detE ≥ vol(
√

mσ ·Bm). Stirling’s

approximation gives that vol(
√

mσ ·Bm) ≈ 1√
mπ

(2πe
m

)m/2
(
√

mσ)m. Finally, we have that the
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asymptotic rate is

R = 1−
log2

detE
detZm

log2
qm

detZm

= 1− log2 detE
m log2 q

≤ 1−Ω

(
log2(

√
mσ)

log2 q

)
. (3.25)

Theorem 13. Let (E,⌊·⌉E), and (Q,⌊·⌉Q) be lattice codes in Rm. Let χe be a distribution such that

supp(χm
e ) =

√
mσ ·Bm. Assume that Heuristic 1 holds. Then, if LWEn,q

χsk,χe [E,Q] is 0-correct, it has

asymptotic rate at most

1−
log2(1+

√
2πeσ

m√detQ)

log2
q

m√detQ

. (3.26)

Proof. For LWEn,q
χsk,χe [E,Q] to be perfectly correct, we need that δ = Pre,b[e− [b]Q ̸∈ VE ] = 0.

Equivalently, we need that Pre,b[e− [b]Q ∈VE ] = 1. Under Heuristic 1, we have that the random

variable e− [b]Q has support supp(χm
e )+(−VQ). Note that VQ is centrally symmetric, so−VQ =VQ.

We therefore have that LWEn,q
χsk,χe [E,Q] is 0-correct if and only if

√
mσ ·Bm +VQ ⊆VE .

Now, as Eq+VE =Rm
q is a partition, we have that Eq+(

√
mσ ·Bm+VQ)⊆Rm

q is a packing,

i.e. the sets {e+(
√

mσ ·Bm +VQ)}e∈Eq are disjoint. Taking volumes, we have that

vol(Eq +(
√

mσ ·Bm +VQ)) =
∣∣Eq
∣∣vol(√mσ ·Bm +VQ)≤ qm = vol(Rm

q ). (3.27)

As
∣∣Eq
∣∣ = qm

detE , this inequality is equivalent to m
√

detE ≥ m
√

vol(
√

mσ ·Bm +VQ). Applying the

Brunn-Minkowski inequality (Proposition 1) and Stirling’s Approximation, we get that

m
√

detE ≥
√

2πeσ + m
√

detQ. (3.28)

This immediately implies that the asymptotic rate is

R = 1−
log2

detE
detQ

log2
qm

detQ

= 1−
log2(1+

√
2πeσ

m√detQ)

log2
q

m√detQ

. (3.29)
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Note that the upper bound becomes 1−o
(

1
log2

q
σ

)
if m
√

detQ≈ σ , i.e. rate 1−o(1) encryp-

tion is no longer impossible provided one quantizes even a relatively small amount.

3.5.2 Results for Unbounded Errors

We next return to the setting of χe an arbitrary log-concave distribution, and bounding

δ -correct encryption for δ > 0. Here, we rely on the anti-concentration inequality of Proposition 7,

rather than the prior packing arguments. We first give a bound that is mostly useful in the case of

trivial quantization, i.e. where Q = Zm.

Theorem 14. Let ε > 0. Let (E,⌊·⌉E), (Q,⌊·⌉Q) be any lattice codes in Rm. Let the ciphertext error

distribution has covariance matrix Σ. If LWEn,q
χsk,χe[E,Q] is δ -correct, then the asymptotic rate of

LWEχsk,χe[E,Q] is at most

1−
log2 Ω

(√
Tr(Σ)

RE

)
log2 q/ m

√
detQ

+o(1). (3.30)

Proof. We have that

1−δ ≤ Pr
e
[∥e∥E ≤ 1]≤ Pr

e
[∥e∥2 ≤ RE ]≤ O

(
RE√
Tr(Σ)

)
.

The first inequality is from Lemma 24, and the second from Proposition 7. We then easily get the

bound m
√

detE ≥Ω

(
1−δ

RE

√
Tr(Σ)

)
, and the asymptotic rate is

R = 1− log2
m
√

detE
log2 q/ m

√
detQ

≤ 1−
log2 Ω

(√
Tr(Σ)(1−δ )

RE

)
log2 q/ m

√
detQ

, (3.31)

Finally, we separate off the 1−δ term, and note that − log2(1−δ )/ log2 q is easily o(1) to get the

claimed result.
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The presence of RE in this bound is peculiar, and we cannot remove it by appealing to a

universal upper bound on RE (no such bound exists, even if we restrict VE to be the Voronoi cell of

a lattice). If we assume RE is not too large (either absolutely, or in comparison to rE), we can prove

impossibility of rate 1−o(1) encryption.

Corollary 8. Let ε > 0, and let (E,⌊·⌉E) be a lattice code in Rm. If either

• RE ≤ O(m1−ε), or

• RE/rE ≤ O(m1/2−ε),

and q is polynomially large, then LWEn,q
χsk,χe [E,Zm] is of rate 1−Ω(1), i.e. under these conditions

rate 1−o(1) encryption is impossible.

Proof. We show that the second condition implies the first. This is simple, as the bound rE ≤

O(m1/2) implies that RE ≤ O(rEm1/2−ε)≤ O(m1−ε). Next, note that by Theorem 14, we have that

the asymptotic rate is at most

1−
log2 Ω

(√
mσ

m1−ε

)
log2 q

+o(1) = 1− ε
log2 Ω(m)

log2 q
−

log2
σ√
m

log2 q
+o(1). (3.32)

As q is polynomially large, this suffices for the claimed result.

Corollary 9. There exist lattice codes E with rE ≥Ω(
√

m), i.e. within a constant factor of optimal,

such that LWEn,q
χsk,χe[E,Zm] is of rate 1−Ω(1).

Proof. Choose E with RE
rE
≤ 2+o(1), which are known to exist [12], and then apply Corollary 8.

Therefore, any result establishing rate 1−o(1) encryption from Q = Zm and q = nO(1) must

do more than simply appeal to the packing radius rE = Θ(
√

m) being nearly optimal.

We next extend our bound on LWEn,q
χsk,χe[E,Q] for ciphertext error distribution the sum of a

log-concave random variable and u←VQ uniform, in a similar way to how we got sharper upper

bounds on δ by considering this special case.
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Theorem 15. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm, and assume that LWEn,q
χsk,χe[E,Q] is

δ -correct. Assume that Heuristic 1 holds, i.e. one can write the ciphertext error distribution as the

independent sum of a log-concave random variable (with covariance matrix Σ) and u←VQ. Then

LWEn,q
χsk,χe[E,Q] is of asymptotic rate at most

1−
log2 Ω

(√
Tr(Σ)
RQ

)
m log2

q
m√detQ

+o(1). (3.33)

Proof. Throughout, let p(x) be the density of the log-concave random variable e. By the law of

total probability, we have that

Pr[e−u ∈VE ] =
1

detQ

∫
VQ

∫
VE

p(e−x)dedx

≤ 1
detQ

∫
VE

Pr[∥e−x∥2 ≤ RQ]de

≤ O

(
detE
detQ

RQ√
Tr(Σ)

)
,

where the first inequality is the containment VQ ⊆ RQ ·Bn (as well as Fubini’s theorem), and the

second inequality is Proposition 7. It follows that the asymptotic rate is

1−
log2 Ω

(√
Tr(Σ)
RQ

)
log2 |Q/qZm| −

log2(1−δ )

log2 |Q/qZm| . (3.34)

We finish by applying the same bound to 1−δ as we did in Theorem 14.

Corollary 10. Let (E,⌊·⌉E),(Q,⌊·⌉Q) be lattice codes in Rm, and let ε > 0. Assume the validity

of Heuristic 1. If RQ ≤ O(
√

m) is within a constant factor of optimal, then the asymptotic rate of

LWEn,q
χsk,χe[E,Q] is at most

1−
log2 Ω

(
σ

m√detQ

)
m log2

q
m√detQ

+o(1). (3.35)
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In particular, if m
√

detQ≤ O(σ), this quantity is at most 1−Ω

(
1

m log2
q
σ

)
+o(1).

Proof. This follows directly from plugging the bounds we assume into Theorem 15.

Note that, as our modification of BDGM encryption (Corollary 6) and the Quantized Gadget

cryptosystem (Corollary 7) have rate 1−O
( 1

m

)
, under the standard choice of parameters this bound

is tight up to an O(log2 m) factor for quantizers with m
√

detQ≤ O(σ).

3.5.3 Exponentially Stronger Bounds Against a Common Design Paradigm

We finish by showing that the bound Corollary 10 can be significantly strengthened when

restricting to LWEn,q
χsk,χe [E,Q] where E = Zm/dimE ′ ⊗E ′, Q = Zm/dimE ′ ⊗Q′ are the direct sum

of m/k identical (smaller) codes for k = dimE ′ = dimQ′. In what follows we solely change the

dimension, and keep the other parameters q,δ ,σ ,n fixed.

Lemma 30. Let E = Zm/k⊗E ′, and Q = Zm/k⊗Q′, where E ′,Q′ are k-dimensional lattice codes.

Then the asymptotic rate of LWEn,q
χsk,χe[E,Q] is equal to the asymptotic rate of LWEn,q

χsk,χe [E
′,Q′].

Proof. Note that detE = (detE ′)m/k, and similarly for detQ. We then have that the asymptotic rate

is
log2

qm

detE

log2
qm

detQ

=
log2

qm

(detE ′)m/k

log2
qm

(detQ′)m/k

=
log2

qk

detE ′

log2
qk

detQ′
. (3.36)

Corollary 11. Let (E ′,⌊·⌉E ′),(Q′,⌊·⌉Q′) be lattice codes in Rk, let k | m, and let ε > 0. Assume the

validity of Heuristic 1. If RQ′ ≤ O(
√

k) is within a constant factor of optimal, then the asymptotic

rate of LWEn,q
χsk,χe [Zm/k⊗E ′,Zm/k⊗Q′] is at most

1−
log2 Ω

(
σ

k√detQ

)
k log2

q
k√detQ

+o(1). (3.37)

In particular, if k
√

detQ′ ≤ O(σ), this quantity is at most 1−Ω

(
1

k log2
q
σ

)
+o(1).
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Proof. Use Corollary 10 to bound the rate of LWEn,q
χsk,χe [E

′,Q′]. By Lemma 30, this implies the

same bound for LWEn,q
χsk,χe [Zm/k⊗E ′,Zm/k⊗Q′].

Note that in the literature, k is typically at most O(log2 m), so this bound is exponentially

stronger than Corollary 10 in this common setting.

3.6 Conclusion and Open Problems

Conclusion

We propose a framework that reduces the design of LWE-based encryption to a handful of

coding-theoretic choices. We then prove bounds on any instantiation of this framework, and find

that a preexisting cryptosystem in the literature [9] is within an O(log2 m) factor of optimal rate.

We additionally prove bounds against the common situation of building lattices for error-correction

and quantization by setting L =
⊕m/ log2 m

i=1 L′ for dimL′ = Θ(log2 m). We establish exponentially

stronger bounds against this setting, which we validate via practical rate computations.

Open Problems

We find an O(log2 m) gap between the best-known construction and our bound for any

construction. This gap is surprisingly significant — if there exists a construction meeting our

bound, it implies constant (independent of the amount of data to transmit) overhead lattice-based

encryption, i.e. a lattice-based cryptosystem that is similar to (standard) hybrid encryption. Does

such a cryptosystem exist, or can one establish the impossibility of such a construction? Note

that our cryptosystem LWEn,q
χsk,χe[(q/p)Zm,kΛq/(kp)(ut

m)] gets quite close. If we did not have the

divisibility requirement m | q/(kp), it would suffice to close the gap itself. Can this requirement

be removed? Finally, our work suggests the quantizer Λq/p(ut
m) is much better than kZm, which

is implicitly used to define the LWR assumption. Can one obtain secure and practical LWR-type

constructions using this quantizer?
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Chapter 4

Securing Approximate Homomorphic En-
cryption using Differential Privacy

4.1 Chapter Introduction

Fully homomorphic encryption (FHE) on approximate numbers, proposed by Cheon, Kim,

Kim and Song in [19], has attracted much attention in the past few years as a method to improve the

efficiency of computing on encrypted data in a wide range of applications (like privacy preserving

machine learning) where approximate results are acceptable [21, 18, 17, 22, 16, 38, 65]. The CKKS

scheme [20], just like most other (homomorphic) encryption schemes based on lattices, can be

proved to satisfy the well established security notion of indistinguishability under chosen plaintext

attack (IND-CPA) [35] under widely accepted complexity assumptions, like the average-case

hardness of the Learning With Errors (LWE) problem or the worst-case complexity of computational

problems on (algebraic) point lattices [77, 54, 68, 67].

Recently Li and Micciancio [52] have shown that the traditional formulation of IND-CPA

security is inadequate to capture security of approximate encryption against passive attacks, and

demonstrated that the CKKS scheme is susceptible to a very efficient total key recovery attack,

mounted by a passive adversary. The problem highlighted in [52] is not with the IND-CPA security

definition per se, which remains a good and well accepted definition for exact FHE schemes, but

with the specifics of approximate decryption, which may inadvertently leak information about

the secret key even when used by honest parties. The work [52] also proposes a new, enhanced
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formulation of IND-CPA security (called IND-CPAD, or IND-CPA with decryption oracles), which

properly captures the capabilities of a passive attacker against an approximate FHE scheme, and is

equivalent to the standard notion of IND-CPA security for encryption schemes with exact decryption.

The work [52] also suggested some practical countermeasures to avoid their attack, and all major

open source libraries implementing CKKS (e.g., [81, 39, 64, 48]) included similar countermeasures

shortly after the results in [52] were made public. However, neither [52] nor any of these libraries

present a solution that provably achieves the IND-CPAD security definition proposed in [52], leaving

it as an open problem.

4.1.1 Our Results and Techniques

In this work we show how to achieve IND-CPAD security in a provable way. More specif-

ically, we present a general technique to transform any approximate FHE scheme satisfying the

(weak) IND-CPA security notion into one achieving the strong IND-CPAD security definition pro-

posed in [52]. We then demonstrate how to apply the technique to the specific case of the CKKS

scheme, which is the most prominent example of approximate homomorphic encryption.

Our technique works by combining a given (approximate) FHE scheme with another funda-

mental tool from the cryptographers’ toolbox: differential privacy. The construction is very simple

and intuitive: given an approximate FHE scheme (like CKKS), we modify the decryption function

by post-processing its output (the decrypted message) with a properly chosen differentially private

mechanism. Using differential privacy to limit the key leakage of approximate decryption is a fairly

natural idea, and it is essentially the intuition behind the practical countermeasures proposed in

[52] and implemented by the libraries. But formally analyzing the method and provably achieving

IND-CPAD security raises a number of technical challenges:

• The Hamming metric, commonly used to define and analyze differentially private mechanisms,

is not well suited to the setting of (lattice based) homomorphic encryption.

• Similarly, the Laplace noise commonly used and studied in the standard setting of differential

privacy is not a good match for our target application, as it is both associated with the wrong
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norm (ℓ1, rather than ℓ2 or ℓ∞), and has heavier tails than, e.g., the Gaussian distribution, and

so will give worse bounds on the error introduced by post-processing.

• Formally proving the security of our construction requires a careful definition of what it means

for an FHE scheme to be approximate. Previous works [20, 52] simply defined approximate

FHE as an encryption scheme which does not satisfy the correctness requirement

Dec(Eval( f ,Enc(m1), . . . ,Enc(mk))) = f (m1, . . . ,mk) (4.1)

without imposing any specific limitation on how a scheme may deviate from it.

• Perturbing the output of the decryption function with a differentially private mechanism comes

at the cost of lowering the output quality, making the result of the (already approximate)

decryption function even less accurate, highlighting the necessity of carefully tuning the

amount of noise added.

• The minimal security level considered acceptable by applications in practice typically de-

pends on whether the cryptographic primitive is statistically secure (against computationally

unbounded adversaries) or computationally secure (in which case a higher security margin is

advisable to anticipate possible algorithmic or implementation improvements in the attacks).

Our application of statistical security tools (differential privacy) to encryption seems to require

the instantiation of statistical security with the high security parameters of a computational

encryption scheme.

In order to address the above obstacles, we

• provide a general definition of differential privacy, parameterized by an arbitrary norm, and

then instantiate it with the Euclidean norm for the case of lattice-based encryption;

• employ a differentially private mechanism (for the Euclidean norm) based on Gaussian noise,

which blends well with the probability distributions used in lattice cryptography;
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• give formal definitions of approximate FHE, which provide precise guarantees on the output

quality of the (approximate) decryption function. In fact, we identify two possible definitions,

based on what we call static and dynamic noise estimates, and show that they result in quite

different security properties (more on this below);

• use KL-divergence and other probabilistic tools to carefully calibrate the mechanism noise

to the output quality, showing that Θ(c) bits of noise are required to formally achieve c-bit

IND-CPAD security;

• leverage the finer grained definition of (c,s)-bit-security1 that distinguishes between a com-

putational security parameter c and a statistical one s, which can be set to a lower value than

c.

We first elaborate on our definition of approximate FHE. Previous works [20, 52] did not

include a precise definition of what it means for an encryption scheme (or decryption function) to

be approximate, because the quality of the approximation (and more generally, the definition of the

decryption function itself) does not impact the IND-CPA security of a scheme. This is contrasted

with our work, where bounding the approximation quality of the decryption function plays a critical

role in our analysis. Generally speaking, an approximate FHE scheme provides a guarantee (upper

bound) on how much the output of the decryption function Dec(Eval( f ,Enc(m1), . . . ,Enc(mk)))

may deviate from the output of the computation f (m1, . . . ,mk). We distinguish two types of

approximate FHE:

• Approximate FHE with static noise estimates, where this bound can be publicly computed as

a function of the homomorphic computation f performed on the input ciphertexts. This is, for

example, the type of noise estimates used in the HElib library [39].

• Approximate FHE with dynamic noise estimates, where this bound is computed by the

decryption function Dec using also the input ciphertext and the secret key. An ingenious

1While this is defined in Chapter 2 in this document, the definition of (c,s)-bit security initially occurred in [53],
whose contents make up this chapter.
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method for dynamic noise estimation has been proposed by the PALISADE library [64].

Most of our results, like our general framework based on differential privacy and a provably

IND-CPAD secure variant of the CKKS approximate FHE scheme, are in the setting of static

noise estimates. In this setting, we are able to establish the security of our generic construction

(Theorem 16), and provide precise security guarantees for the modified approximate FHE scheme,

showing that if the original scheme is c-bit IND-CPA secure, then combining it with an appropriate

differentially private mechanism achieves c− log2 6 bits of security against the stronger IND-CPAD

security definition, losing only ≈ 3 bits of security (Theorem 16). The amount of noise required to

achieve this result is quantified by the notion of ρ-KLDP (Kullback-Leibler Differential Privacy),

for a sufficiently small value of ρ . Our analysis is nearly tight for the CKKS scheme, in the sense

that if one uses a substantially smaller amount of noise, we are able to exhibit an attack that breaks

IND-CPAD security (Theorem 18).

When setting the parameters of a cryptosystem (or other computational cryptographic

primitive), it is common to use a very conservative security level to anticipate reductions in both

the hardware and operational cost of mounting an attack. A common level of security considered

adequate for most applications is c = 128 bits of security. When applying a statistical technique (like

differential privacy) to a computational primitive, this seems to require instantiating the statistical

technique with the same (high) level of bit security. We leverage the notion of (c,s)-bit security of

Chapter 2, which is parameterized by both a computational parameter c and statistical parameter

s. (c,s)-security is technically easier to achieve than both c-bit computational security, and s-bit

statistical security, and allows us to decrease the cost of our countermeasure (Theorem 16) by

lowering the required amount of DP noise by (c− s)/2 bits. The standard notion of bit-security

corresponds to setting s = c, which gives no improvement. But for typical parameter settings (e.g.,

c = 128 and s = 64), the refined definition allows to reduce the required amount of noise from ≈ 75

bits to ≈ 45, a substantial saving of ≈ 30 bits. As even more conservative choices, such as s = 80

or s = 100, yield savings of ≈ 24 or ≈ 14 bits of noise, we expect this refined notion of security to

be concretely useful when securing CKKS against the attacks of [52].
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All this is for static noise estimates. Dynamic estimates are interesting because they

can provide stronger (probabilistic) guarantees on the output quality of the decryption function.

Interestingly, we show that the same intuitive idea of combining approximate FHE with differential

privacy, while calibrating the DP noise via dynamic error estimates, does not result in a secure

scheme. In particular, we describe attacks to the IND-CPAD security of CKKS using dynamic

noise estimates (Theorem 19), and complete key recovery attacks for other (artificially constructed)

IND-CPA-secure FHE schemes (Theorem 20).

4.1.2 Chapter Outline

The rest of the chapter is organized as follows. In Section 4.2 we present background

definitions and results from cryptography, fully homomorphic encryption, and probability theory. In

Section 4.3 we present our general framework to secure approximate FHE using differential privacy,

for the setting of static error estimation. In Section 4.4 we apply the framework to the CKKS

scheme, and develop our relaxed notion of bit security. In Section 4.5 we present our (negative)

results for approximate FHE with dynamic error estimation. Section 4.6 concludes with a summary

of our results and open problems.

4.2 Chapter Preliminaries

We recall some notions and known results.

4.2.1 Fully Homomorphic Encryption

We briefly review definitions related to FHE. For simplicity, we focus on public-key setting.

In all our definitions, we denote the (computational) security parameter using c.

Definition 34 (FHE Scheme). A (public-key) homomorphic encryption scheme with plaintext space

M , ciphertext space C , public key space PK , secret-key space S K , and space of evaluatable
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circuits L is a tuple of four probabilistic polynomial-time algorithms

KeyGen : 1N→PK ×S K

Enc : PK ×M → C

Dec : S K ×C →M

Eval : PK ×L ×C → C

Typically the public key naturally splits into two components, one used by Enc and one

used by Eval. This separation is used to minimize the storage requirements of encryption (as the

evaluation key is often quite large), and has no impact on security, so for simplicity we model both

Enc and Eval as taking as input the same public key.

Standard FHE schemes are expected to satisfy the following notion of correctness.

Definition 35 (Perfect Correctness). An FHE scheme Π = (KeyGen,Enc,Dec,Eval) is correct for

some class of circuits L if for all m1, . . . ,mk ∈M , for all C ∈L , for all (pk,sk)← KeyGen(1c),

we have that

Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(mk))) =C(m1, . . . ,mk). (4.2)

One can relax the notion of correctness to statistical correctness, where the above identity

only holds with high probability (over the random coins of Enc and Eval). We will not make a

distinction between these two notions.

The work [20] introduced an “approximate” FHE scheme (CKKS), for which Equation (4.2)

does not hold. The security implications of this relaxation are investigated in [52], as discussed

below. However, neither [20] nor [52] provide a formal definition of an “approximate” FHE scheme,

and instead simply drop the correctness requirement (4.2) without any further restriction. This

is despite the CKKS scheme satisfying an approximate version of the correctness property of

Equation (4.2).

The definition of approximately correct FHE scheme plays a fundamental role in our work.
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Informally, an approximately correct FHE scheme allows for meaningful, but inexact, computation

on encrypted messages. To formalize the relaxed correctness requirements of an approximately

correct FHE scheme, we first define the plaintext error2, which specifies the extent to which a

homomorphic computation fails to be exact.

Definition 36 (Plaintext Error). Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with message

space M ⊆ M̃ , which is a normed space with norm ∥·∥ : M̃ → R≥0. For any ciphertext ct, secret

key sk, and message m, the plaintext error of (ct,m,sk) is defined to be

Error(ct,m,sk) = ∥Decsk(ct)−m∥. (4.3)

Typically, for some circuit C ∈ L , key pair (pk,sk) ← KeyGen(1c), and input values

m1, . . . ,mk ∈M , one is interested in the quantity Error(ct,m,sk) for

m =C(m1, . . . ,mk), and, ct= Evalpk(C,Encpk(m1), . . . ,Encpk(mk)),

i.e. where m and ct correspond to the same computation done on plaintexts and ciphertexts.

In this work we investigate two distinct correctness properties for approximate homomorphic

encryption. The first is implicit in the literature on CKKS. We call this notion “static” to contrast

with a notion we investigate later in Section 4.5.

Definition 37 (Static Approximate Correctness). Let Π be an FHE scheme with message space

M ⊆ M̃ , which is a normed space with norm ∥·∥ : M̃ → R≥0. Let L be a space of circuits,

Lk ⊆L the subset of parity k circuits, and let Estimate :
⊔

k∈NLk×Rk
≥0→ R≥0 be an efficiently

computable function. We call the tuple Π̃ = (Π,Estimate) a statically approximate FHE scheme if

for all k ∈ N, for all C ∈Lk, for all (pk,sk)← KeyGen(1c), if ct1, . . . ,ctk and m1, . . . ,mk are such

that Error(cti,mi,sk)≤ ti, then

Error(Evalpk(C,ct1, . . . ,ctk),C(m1, . . . ,mk),sk)≤ Estimate(C, t1, . . . , tk).
2Note that this is different than the ciphertext error of Chapter 3.
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Note that the type signature
⊔

k∈NLk×Rk
≥0→ R≥0 encodes that Estimate takes as input a

circuit C, and an error bound ti for each of the k input wires to the circuit C ∈Lk. This correctness

notion is “static” in the sense of static typing. In particular, Estimate only depends on

• the computation C to be done, and

• error bounds ti for the inputs to the homomorphic computation.

All of these quantities are publicly computable given an abstract description of a computation,

and (for non-adaptive computations) can even be precomputed (say by an FHE “compiler”).

Generally Estimate(·) either computes a (provable) worst-case bound on the error, or a

(heuristic) average-case bound. Our work assumes worst-case bounds (although we discuss average-

case bounds some in Section 4.6). Approximate FHE schemes often require that all m1, . . . ,mk are

of bounded norm — this can be captured in the above definition by choosing M to be a set of

bounded norm.

Security

We use the following security definition, proposed in [52], which properly captures security

of approximate FHE schemes against passive attacks.
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Algorithm 1. Oracles for the IND-CPAD game.

initialization

(pk,sk)← KeyGen(1c)

global state

S← /0

i← 0

Eb
pk(m0,m1) :=

ct← Encpk(mb)

S[i]← (m0,m1,ct)

i← i+1

return ct

Hb
pk(g,J = ( j1, . . . , jk)) :=

ct← Evalpk(g,S[ j1].ct, . . . ,S[ jk].ct)

gm0← g(S[ j1].m0, . . . ,S[ jk].m0)

gm1← g(S[ j1].m1, . . . ,S[ jk].m1)

S[i]← (gm0,gm1,ct)

i← i+1

return ct

Db
sk(i) :=

if S[i].m0 = S[i].m1

return Decsk(S[i].ct)

else

return ⊥

Definition 38 (IND-CPAD Security, [52]). Let Π = (KeyGen,Enc,Dec,Eval) be a FHE scheme.

We define the IND-CPAD game to be an indistinguishability game parameterized by distribution

ensembles {(Eb
θ
,Hb

θ
,Db

θ
)}θ for b ∈ {0,1}, where these oracles are the (stateful3) oracles given in

Algorithm 1.

We will use the formalism of (c,s)-bit security introduced in Chapter 2. We remind the

reader that we will say that a scheme Π has (c,s)-bits of IND-CPAD security if for any adversary A

either

c≤ log2
T (A)

advMW
X (A)

, or s≤ log2
1

advMW
X (A)

,

where X is the distinguishing game, where the adversary gets access to the oracles defined in

Algorithm 1. We will additionally refer to c-bit security throughout this chapter, by which we mean

3As a standard convention (for this and other games defined in the paper), if at any point in a game the adversary
makes an invalid query (e.g., a circuit g not supported by the scheme, or indices out of range), the oracle simply returns
an error symbol ⊥.
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(c,∞)-bit security, or that any adversary A satisfies c≤ log2
T (A)

advMW
X (A)

.

In [52] it is also shown that for FHE schemes satisfying the standard correctness requirement

(Eq. 4.2), IND-CPAD security is equivalent to the traditional formulation of indistinguishability

under chosen plaintext attack (IND-CPA), defined as follows.

Definition 39 (IND-CPA Security). Let Π = (KeyGen,Enc,Dec,Eval) be a FHE scheme. We define

the IND-CPA game to be an indistinguishability game parameterized by distribution ensembles

{Eb
θ
}θ for b ∈ {0,1} of Algorithm 1.

We will additionally use weaker and stronger variants of IND-CPAD, informally defined as

follows:

• q-IND-CPAD security. This is the same as IND-CPAD security, but restricted to adversaries

that make at most q(c) queries to oracle D.

• KRD security, or security against key recovery attacks. Here we modify the IND-CPAD game

by restricting4 the E oracle to queries of the form E(m,m), and requiring the adversary to

output (at the end of the attack) a secret key sk′, rather than the bit b′. The attack is successful

if sk= sk′, and the advantage of an adversary is measured by the success probability of the

adversary.

KRD security is implied by IND-CPAD security, but it is much weaker, and it is not generally

considered a satisfactory notion of security. Here (as in [52]), KRD security is used exclusively to

show that certain schemes are not secure, making the insecurity results stronger.

4.3 A Differentially Private Approach to IND-CPAD Security

In this section we investigate achieving q-IND-CPAD security for statically approximate,

IND-CPA-secure FHE schemes Π̃. Our approach is to post-process decryptions of Π̃ with an

appropriate notion of differential privacy. The noise added by this differentially private mechanism

4This is without loss of generality, as the only point of general queries E(m,m′) is to get information correlated with
the secret bit b, which is not present in this game.
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will suffice to information-theoretically hide the plaintext error, allowing us to reduce our analysis

to the case of exact FHE, where IND-CPA and q-IND-CPAD security are equivalent.

4.3.1 Our Notion of Differential Privacy

Our notion of differential privacy is a generalization of the notion of Rényi differential

privacy [63] to different norms5. As the tightest bounds in our setting occur in the simplest6 case

when α = 1, we present things solely in terms of this Rényi divergence, i.e. the KL divergence.

Definition 40 (Norm KL Differential Privacy). For t ∈R≥0, let Mt : B→C be a family of randomized

algorithms, where B is a normed space with norm ∥·∥ : B→R≥0. Let ρ ∈R be a privacy bound. We

say that the family Mt is ρ-KL differentially private (ρ-KLDP) if, for all x,x′ ∈ B with ∥x− x′∥ ≤ t,

D(Mt(x)||Mt(x′))≤ ρ. (4.4)

Note that our mechanism M depends on a bound on the distance ∥x− x′∥ ≤ t, which it

uses (internally) to set parameters to meet the desired privacy bound. In the most common case of

Gaussian noise, it will use noise of standard deviation σ = Ω(2s/2t) to achieve (c,s)-bit security

(Theorem 17), e.g. σ = Ω(2c/st) for c-bits of computational security.

As ∥x− x′∥ = ∥x′ − x∥ is itself symmetric, our definition is invariant under replacing

D(D0||D1) with max(D(D0||D1),D(D1||D0)), and is therefore implicitly dependent on this larger

(symmetric) measure, although we do not make this explicit in our work.

5In Differential Privacy, “adjacent” values are typically measured in the Hamming norm, while for our purposes the
ℓ2 and ℓ∞ norms are of primary interest.

6There is an alternative simplification of the Rényi divergence when α = ∞ known as the max-log distance [60]
with desirable properties, for example it is a metric, similarly to the statistical distance. As our bounds degrade linearly
in α as α → ∞, this notion is unsuitable for our situation.
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Algorithm 2. The FHE Scheme M[Π̃]

Enc′pk(m) :=

c← Encpk(m)

return ct= (c, te)

Eval′pk(C,ct′1, . . . ,ct
′
k) :=

c← Evalpk(C,ct1.c, . . . ,ctk.c)

t← Estimate(C,ct1.t, . . . ,ctk.t)

return ct= (c, t)

Dec′sk(ct) :=

return Mct.t(Decsk(ct.c))

Definition 41. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆ M̃ ,

where M̃ is a normed space with norm ∥·∥. Let Estimate be such that Π̃ = (Π,Estimate) is

statically approximate, and let te be an upper bound on plaintext errors of fresh encryptions

Encpk(m) for all m ∈M . Let Mt be a ρ-KLDP mechanism on M̃ . Define the FHE scheme M[Π̃]

that has an identical KeyGen algorithm to Π, with the modified algorithms Enc′pk,Eval
′
pk, and Dec′sk

of Algorithm 2.

In the above definition of the scheme M[Π̃], we use the “tagged ciphertext” notation ct=

(c, t), where c is an ordinary ciphertext and t is an estimated plaintext error upper bound. An initial

estimation te is provided by the encryption algorithm, and the evaluation algorithm updates the

error upper bound using Estimate(·) such that the resulting scheme is a statically approximate FHE

scheme.

Algorithm 3. The decryption oracle for the game G1 of Theorem 16.

D(i) :=

if S[i].m0 = S[i].m1

ti← S[i].ct.t

return Mti(S[i].m0)

else

return ⊥
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Theorem 16. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆ M̃ ,

where M̃ is a normed space with norm ∥·∥. Let Estimate be such that Π̃=(Π,Estimate) is statically

approximate. Let c > 0, let Mt be a ρ-KLDP mechanism on M̃ where ρ ≤ 2−s/(2q), and let q ∈ N.

If Π is (c,s)-bit secure in the IND-CPA game, then M[Π̃] is (c− log2 6− log2 TG2,s− log2 6)-bit

secure in the q-IND-CPAD game, where TG2 is the relative cost of simulation of an explicit game.

We take slight care in our proof, and show that, when analyzing a particular adversary A,

one may replace TG2 = supA
T A
G2

TA
with this fraction (without the sup). Note that generally the class

of A that one is concerned an adversary may employ to attack computational bit security satisfy

TA≪ T A
G2

, so log2
T A
G2

TA
≈ 0. We will make this assumption in our applications of this result later.

We also repeat (parts of) the proofs of Theorems 8 and 9, as it allows us to mildly optimize

constants7.

Proof. We define a sequence of distinguishing games.

• G0, the scheme M[Π̃] in the q-IND-CPAD game,

• G1, the scheme M[Π̃] in the q-IND-CPAD game, with the modified decryption oracle of

Algorithm 3, and

• G2, the scheme M[Π̃] in the IND-CPA game, and

• G3, the scheme Π in the IND-CPA game.

By assumption, Π is (c,s)-bit secure in game G3. Note that M[Π̃] and Π only differ in their

decryption oracle, which is not an oracle present in the IND-CPA game, so M[Π̃] is easily (c,s)-bit

secure in game G2. Next, note that games G2 and G1 only differ in the output of the oracle D (which

again, is not present in game G2, but may be perfectly simulated by an adversary in this game at

7These theorems were phrased entirely in terms of advMW
X (A), to give clean, self-contained statements. This requires

applying bounds ∆LC(A(X0),A(X1))≤ 3advMW
X (Az) that incur a mild overhead (multiplicative factor of 3), which we

avoid in the current section.
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mild8 running-time cost T A
G2

). It follows that if A′ is any adversary against G2, that

advMW
G1

(A′)≤max(TA′2
−c(1+

T A′
G2

TA′
),2−s).

In what follows, let Gb
i denote the output distribution of A (another arbitrary adversary) in

game Gi’s left (b = 0) or right (b = 1) world. We can compute

√
advMW

G0
(A)≤ ∆LC(G0

0,G
1
0)

≤ ∆LC(G0
0,G

0
1)+∆LC(G0

1,G
1
1)+∆LC(G1

1,G
1
0)

≤ ∆LC(G0
0,G

0
1)+∆LC(G1

0,G
1
1)+

√
3advMW

G1
(A′),

where A′ = Az is the adversary of Lemma 10, which has TA′ ≈ TA. Recall that ∆LC(Gb
0,G

b
1) measures

the divergence between

• the output distribution of A during execution in G0 (Gb
0), and

• the output distribution of A during execution in G1 (Gb
1).

One may therefore appeal to Lemma 23 (and the fact that M is a ρ-KLDP mechanism) to get the

bound

∆LC(G0
0,G

1
1)+∆LC(G1

0,G
1
1)≤ 2

√
qρ

2
=
√

2qρ.

We finally have that

√
advMW

G0
(A)≤

√
2qρ +

√
max(TA2−c(1+

T A′
G2

TA′
),2−s)≤

√
3max(TA2−c+2(1+

T A′
G2

TA′
),2−s+2),

e.g. G0 is (c− log2 6− log2(1+TG2),s− log2 6)-bit q-IND-CPAD secure.
8In general, simulation requires performing (in plaintext) the computations {Ci}i that were queried to H, and

computing M q times, e.g. has additive overhead T A
G2

= qTM +∑i TCi .
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4.3.2 Gaussian Mechanism

In this section, we present and analyze a differentially private mechanism Mt which simply

adds Gaussian noise to its input.

Definition 42. Let µ ∈Z, and σ > 0. The discrete Gaussian of parameters µ,σ (written NZ(µ,σ
2))

is the probability distribution supported on Z with p.m.f. p(x) ∝ exp(−(x−µ)2/2σ2).

It is known how to (with high probability) exactly sample from this distribution in constant

time [14]. We explicitly bound the impact of this on the security of our constructions in the full

version of our paper.

Proposition 8 (Prop. 5 of [14]). Let σ ∈ R≥0, and let µ,ν ∈ Z. Then:

D(NZ(µ,σ
2)||NZ(ν ,σ

2)) =
(ν−µ)2

2σ2 . (4.5)

Definition 43. Let ρ > 0, and n ∈ N. Define the (discrete) Gaussian Mechanism Mt : Zn→ Zn be

the mechanism that, on input x ∈ Zn, outputs a sample from NZn(x, t2

2ρ
In).

Lemma 31. For any ρ > 0,n ∈ N, the Gaussian mechanism is ρ-KLDP.

Proof. Let X = NZn(x, t2

2ρ
In) and Y = NZn(y, t2

2ρ
In). By sub-additivity of the KL divergence and

Proposition 8, we have that D(X ||Y )≤ ∥D̂(X ||Y )∥1 =
ρ

t2∥x− y∥2
2 ≤ ρ .

Corollary 12. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext space M ⊆ M̃ ,

where M̃ ⊆ Zn is a normed space with norm ∥·∥. Let Estimate be such that Π̃ = (Π,Estimate) is

a statically approximate FHE scheme. Let Mt be the Gaussian mechanism (with ρ := 2−s/(12q)).

If Π is (c+ log2 6,s+ log2 6)-bit secure in the IND-CPA game, then M[Π̃] is (c,s)-bit secure in the

q-IND-CPAD game.

Proof. Immediate application of Theorem 16, under the heuristic assumption that log2 TG2 ≈ 0.

As the Gaussian mechanism adds noise of standard deviation ct.t/
√

2ρ to each coordinate,

to attain (c,s)-bit security one loses s/2+ log2 6+ log2
√

q+ log2 ct.t bits of precision. As the
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ciphertext already contains log2 ct.t bits of noise, the additional precision lost by M[Π̃] is s/2+

log2
√

q+ log2 6 bits.

Proof. This immediately follows from Lemma 31 with Theorem 16.

This transformation does not explicitly depend on the underlying parameters of the particular

implementation of approximate encryption (for example, the size of the LWE moduli one is working

over, the dimension of the message space, etc.), and instead only implicitly depends on these

quantities via the computation of the static plaintext error bound. We caution that to apply this result

to CKKS one needs to be slightly careful about the underlying norm one is working with, which we

do later in Theorem 17.

4.4 Application to CKKS

Prior work of [52] shows that the approximate FHE scheme of [20] does not satisfy

IND-CPAD-security, even though it satisfies IND-CPA-security. We refer the reader to [52] for

additional details, but at a high level they show that publishing the results of an approximate FHE

computation under CKKS leaks information about the secret key, enabling a full key recovery attack

in the case of trivial computation, and an attack against IND-CPAD-security for more general homo-

morphic computation. In this section, we apply Theorem 16 and Lemma 31 to give a modification of

the CKKS decryption function that allows us to prove IND-CPAD-security of the modified scheme.

We use the results of Section 4.3 to show that post-processing the results of the CKKS

decryption function with the Gaussian mechanism is sufficient to achieve IND-CPAD-security

for the CKKS scheme, for large enough Gaussian noise (Section 4.4.2). We also prove a nearly

matching lower bound on the Gaussian noise necessary to achieve IND-CPAD-security for the CKKS

scheme (Section 4.4.3). We then briefly examine the countermeasures adopted by some open-source

implementations of CKKS, and we suggest concrete parameters (Section 4.4.4).
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4.4.1 The CKKS Approximate FHE Scheme

We present the relevant subroutines of the CKKS FHE scheme. We omit many details of the

CKKS scheme, and refer the reader to [20] for a more complete description. The CKKS scheme

is parameterized by a plaintext dimension n/2 (typically a power-of-two), a ciphertext modulus

Q, and a discrete Gaussian error distribution χσ with standard deviation σ . Complex vectors in

Cn/2 are considered as messages in CKKS, and they are encoded to plaintext polynomials in R by

composing π−1 and τ−1 together with a scaling factor; conversely, plaintexts are decoded using

ϕ := τ ◦π , again with a scaling factor. We define the canonical embedding norm ∥ · ∥can∞ of an

element a ∈ R[X ]/(ΦN(X)) to be ∥a∥can∞ = ∥τ(a)∥∞. We will use this norm to track the plaintext

error of CKKS ciphertexts.

• CKKS.KeyGen(1c): Take w = w(c) and p = p(c,Q). To generate the secret key sk, sample

s←{s ∈ {−1,0,1}n : |s|0 = w} and take sk= (1,s). To generate the public key pk, sample

a← RQ, e← χ , and take pk= (b =−as+ e,a). To generate the evaluation key ek, sample

a′← RpQ, e′← χ , and take ek= (b′,a′) for b′=−a′s+e′+ ps2 mod pQ. Return (sk,pk,ek).

• CKKS.encode(x ∈ Cn/2;∆): Return ⌊∆ ·ϕ−1(x)⌉ ∈ R.

• CKKS.Encpk(m): Let T denote the distribution over {0,±1}n induced by sampling each

coordinate independently, drawing −1 with probability 1/4, 1 with probability 1/4, and 0 with

probability 1/2. Sample r← T , e0,e1← χ , and return r ·pk+(m+ e0,e1) mod Q.

• CKKS.Add(c0,c1 ∈ RQ): Return c0 + c1 mod Q.

• CKKS.Multek(c0,c1 ∈ RQ): For c0 = (b0,a0) and c1 = (b1,a1), let (b2,a2) = (b0b1,a0b1 +

a1b0)+ ⌊p−1 ·a0a1 · ek⌉ mod Q. Return (b2,a2).

• CKKS.decode(a ∈ R;∆): Return ϕ(∆−1 ·a) ∈ Cn/2.

• CKKS.Decsk(c): For c = (b,a) ∈ R2
Q, return b+as mod Q.
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Note that CKKS supports encryption and decryption of floating-point inputs by pre-processing

encryption with CKKS.encode, and post-processing decryption with CKKS.decode. All interme-

diate operations are then done with integer arithmetic. To simplify exposition, we focus on these

intermediate operations, and therefore restrict to the case of integer arithmetic.

We will need the following (standard) expressions for how the error9 transforms during

addition and multiplication.

Lemma 32 (Error Growth [20]). Let b ∈ {0,1}, and let cb := (ĉ0,0, ĉ0,1) = CKKS.Encpk(m̂b)

be CKKS ciphertexts with errors eb. Then the ciphertext cMult = CKKS.Mult(c0,c1) has error

m0e1 +m1e0 + e0e1 + eMult for a term eMult that depends on the parameters of the CKKS instance

(and the ciphertexts c0,c1). The ciphertext cAdd = CKKS.Add(c0,c1) has error e0 + e1.

Certain authors have suggested various heuristics for analyzing eMult. We will find the

following one useful for the analysis of the attack of Section 4.4.3.

Heuristic 2 (Appendix A.5 of [34]). Let w be the hamming weight of sk. Then eMult may be modeled

as a random variable with mean zero and variance O(wn).

The rest of our work will benefit from the following notation.

Definition 44. For σ > 0, let S-CKKSσ be the CKKS encryption scheme, where one modifies

decryption to compute S-CKKSσ .Decsk(ct) = CKKS.Decsk(ct.c)+NZn(0,σ2ct.t2In).

4.4.2 IND-CPAD-Secure CKKS

It is straightforward to apply Corollary 12 to CKKS to obtain q-IND-CPAD security.

Theorem 17. For any q ∈ N, if CKKS is (c+ log2 6,s+ log2 6)-bit IND-CPA-secure, and σ =

8
√

qn2s/2, then S-CKKSσ is (c,s)-bit q-IND-CPAD-secure, i.e. s/2+ Õ(1) additional bits of Gaus-

sian noise suffice to achieve q-IND-CPAD security.
9Note here, we are being somewhat ambiguous about what CKKS errors are. Precisely, they are ciphertext errors,

though for CKKS, these are very closely related to the plaintext errors.
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Proof. This follows immediately from Corollary 12, (using the aforementioned inequality ∥m∥can∞ ≤
√

n∥m∥2, as our analysis of the Gaussian mechanism uses an ℓ2 norm bound).

4.4.3 Lower Bound for Gaussian Mechanism

Together, Lemma 31 and Theorem 16 give an upper bound on the amount of Gaussian

noise required to achieve (c,s)-bits of IND-CPAD-security for an IND-CPA-secure approximate

encryption scheme. In this subsection, we show that this upper bound is essentially tight (at least

for c = s, the setting of computational bit security) for CKKS by demonstrating an attack against

IND-CPAD security for noticeably smaller Gaussian noise, i.e. analyzing S-CKKSσs for sanitization

noise σs≪ 8
√

qn2c/2. In what follows, recall that n = ϕ(N), and w denotes the Hamming weight

of the key sk.
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Algorithm 4. Adversary A(1c,pk,ek)

for i ∈ {0, . . . ,44} do

cti← Epk(m
(0)
i = 0,m(1)

i = B);

end for

for i ∈ {45, . . . ,59} do

cti← Epk(m
(0)
i = 0,m(1)

i =−B);

end for

ct60← Hek(g,{0, . . . ,59}) for g(x0, . . . ,x59) = ∑
29
i=0(xi · x30+i)

m′← Dsk(60)

V0 = 30σ4 +O(wn)+σ2
s Variance of τ(m′)0 if b = 0

V1 = 30σ4 +60B2σ2 +O(wn)+σ2
s Variance of τ(m′)0 if b = 1

if |τ(m′)0|<
√

log(V1/V0)V0V1
V1−V0

then

return 0

else

return 1

end if

At a high level, the adversary A will exploit the message-dependence of the S-CKKS error

growth (Lemma 32) to design an H query such that the expected magnitude of the plaintext error of

ct60 is larger when b = 1 than when b = 0. The adversary A will then query D on this ciphertext,

and choose its bit based on the size of the message m′ it receives.

Our result below will require the following lower bound on the statistical distance between

two Gaussians.

Lemma 33 (Theorem 1.3 [27]). Let σ0,σ1 > 0. Then

∆SD(N (0,σ2
0 ),N (0,σ2

1 ))≥
1

200
min

{
1,
|σ2

0 −σ2
1 |

σ2
0

}
. (4.6)

We will next show that the aforementioned adversary will have noticeable advantage unless
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σs is larger than σ (the standard deviation of the underlying RLWE error) by a factor super-

polynomial in the security parameter.

Lemma 34. Let σs > 0. Then there exists an adversary A against S-CKKSσs in the IND-CPAD such

that advA = Ω

(
1

σ4
s n6

)
.

Proof. We first observe that the ciphertext ct60 = Evalek(g,{0, . . . ,59}) is an approximate encryp-

tion of 0 both when b = 0 and b = 1 in the IND-CPAD experiment. Therefore the decryption query

made by A returns a value rather than ⊥.

If b = 0, then because all ciphertexts cti encrypt messages mi = 0, the message-dependent

terms of the error growth from Lemma 32 are also 0, and so the plaintext error of ct60 is ∑
29
i=0 eMult+

eie30+i, where ei denotes the plaintext error of cti. Recall that if error vectors e and e′ have

entries sampled from a discrete Gaussian with parameter σ , then each of the components of τ(ee′) is

distributed with mean 0 and variance σ4. We can then use the Central Limit Theorem to approximate

the distribution of the sum ∑
29
i=0 eMult+ eie30+i as a Gaussian distribution with mean 0 and variance

30σ4 +O(wn). Note that this approximation can be improved by increasing the number of terms in

the sum to a larger constant. For the sake of concreteness we have designed the adversary such that

there are 30 terms, as this is the value at which the Central Limit Theorem is empirically justified.

If b = 1, then the message-dependent terms of the error growth are significant, and the error

of ct60 is

14

∑
i=0

(eMult+ eie30+i +Bei +Be30+i)+
29

∑
i=15

(eMult+ eie30+i−Bei +Be30+i) .

As in the case where b = 0, we will approximate this distribution as a Gaussian with mean 0.

Though the error terms eie30+i and Bei +Be30+i are not independent, they do have covariance 0, as

do the terms eie30+i and Be30+i−Bei, and so we can approximate the sum of errors as being drawn

from a discrete Gaussian distribution with mean 0 and variance 30σ4 +60B2σ2 +O(wn).

The adversary sees the result of post-processing the error term with the Gaussian mechanism,

run with parameter σs, and then chooses its bit to return based on the absolute value of the first
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component τ(m′)0 under the canonical embedding. When b = 0, this means the adversary sees a

sample drawn from a distribution that is well-approximated by a centered Gaussian with variance

V0 = 30σ4 +O(wn)+σ2
s ct.t

2. When b = 1, however, the adversary sees a sample drawn from

a distribution that is well-approximated by a Gaussian with the same mean, but larger variance

V1 = 30σ4 +60B2σ2 +O(wn)+σ2
s ct.t

2. Let

x =

√
log(V1/V0)V0V1

V1−V0
.

A straightforward calculation shows that for |τ(m′)0|< x, m′ is a more likely outcome when b = 0

than when b = 1, and when |τ(m′)0| ≥ x, m′ is at least as likely when b = 1 as it is when b = 0. Then

we have that the advantage of adversary A is approximately the total variation distance between a

Gaussian with variance V0 and a Gaussian with variance V1. By Lemma 33, we have that

∆(N (0,V0),N (0,V1))≥
1

200
|V0−V1|

V0
∈Θ

(
B2σ2

σ4 +wn+σ2
s ct.t2

)
.

Recall that w is the hamming weight of the secret key sk, and so we have w < n. For security, we

know that
√

n < σ , and so it follows that the advantage of our (non-aborting) adversary A against

the IND-CPAD security of CKKS is the square of the total variation distance, i.e. Θ

(
B4σ4

(σ4+σ2
s ct.t2)2

)
.

Finally, note that for ∥ei∥can∞ < σn holds with high probability, so ct.t ≤ O(Bσn3/2) (where we

pick up a
√

n factor to convert to the ℓ2 norm), and therefore the advantage of our adversary is

Θ

(
B4σ4

σ8+σ4
s σ4B4n6

)
= Ω

(
1

σ4
s n6

)
.

Theorem 18. If S-CKKSσs is (c,c)-bit IND-CPAD-secure, then σs = Ω(2c/4/n3/2), i.e. one must

add at least c/4− Ω̃(1) bits of additional Gaussian noise.

Proof. We have that c ≤ log2 O
(

TA
advMW

G (A)

)
≤ log2 O(σ4

s n6) =⇒ σs ≥ 2c/4/n3/2, and therefore

c/4− log2 Ω(n3/2)≤ log2 σs.
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Table 4.1. Additional size of Gaussian noise (measured in bits) required by the countermeasure of
Theorem 17 to achieve (c,s)-bits (Definition 13) of q-IND-CPAD-security. Here, q is a bound on
the number of decryption queries, and n≤ 215 is a bound on the ring dimension, chosen as it is the
highest dimension parameter in the Homomorphic Encryption Standard [2].

s\q 1 25 210 215

128 71.79 74.29 76.79 79.29
112 63.79 66.29 68.79 71.29
96 55.79 58.29 60.79 63.29
80 47.79 50.29 52.79 55.29
64 39.79 42.29 44.79 47.29
48 31.79 34.29 36.79 39.29
32 23.79 26.29 28.79 31.29

We therefore see that while one can potentially improve on the concrete countermeasure of

Section 4.4.4, the main (exponential) term is within a constant factor of correct.

A Sample Instantiation

We briefly describe a concrete instantiation of our countermeasure that achieves (128,64)-

bits of q-IND-CPAD-security. Throughout, we let the number of supported decryption queries be

q = 210. Note that one can always (later) support more decryption queries, by rekeying when one

runs out. Parameterize CKKS to achieve 131-bits of IND-CPA-security, where 131 > 128+ log2 6.

Let n be the resulting dimension of the chosen CKKS instance. We will assume n≤ 215, as every

choice of parameters from the Homomorphic Encryption Standard [2] satisfies this bound.

Then, by Theorem 17, if σ =
√

6qn2s/2, then S-CKKSσ is (c,s)-bit q-IND-CPAD-secure.

In particular, this loses another s/2+ log2
√

6qn bits of precision compared to decrypting via

returning CKKS.Decsk(ct.c). The particular value of s/2+ log2
√

6qn can be found in Table 4.1 as

the entry labeled (s,q) = (64,210), which is 44.79. Therefore, adding an additional 44.79 bits of

i.i.d. Gaussian noise suffices to achieve (128, 64)-bits of q-IND-CPAD-security.
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4.4.4 Parameters for Concrete Countermeasures

As the attack in [52] was made publicly available, the major open-source implementations

of the CKKS scheme adopted several different countermeasures. We briefly summarize these

countermeasures in this subsection, and we propose concrete parameters for them to achieve the

desired IND-CPAD security.

HElib.

The decryption API implementation was modified to add pseudorandom Gaussian noise to

the raw decryption result. By default, HElib implements S-CKKS1, e.g. the size of the extra noise is

equal to the size of the static error bound of the homomorphic computation. HElib also provides

an optional precision parameter in its decryption API such that the extra noise is chosen to be the

largest within the precision requirement (for example, if the static error bound is not tight). To

achieve (c,s)-bit security against at most q≥ 1 decryption queries, this precision parameter should

be calibrated such that sufficient (as quantified in Theorem 17 and Table 4.1) noise is added during

decryption.

HEAAN, Lattigo.

These libraries require the default decryption API to be used only by the secret key holder,

and they added a specialized decryption API to share the decryption results publicly. In HEAAN, the

new decryption API takes a noise size parameter, which sets the amount of Gaussian noises to be

added to the raw decryption result. In Lattigo, the new decryption API takes a rounding parameter,

which is used to round the raw decryption result to certain precision. For both of them, one must

estimate the plaintext error ct.t separately and set the noise parameter as in Theorem 17 and Table

4.1 to achieve (c,s)-bit security against q decryptions.

PALISADE.

The decryption function in PALISADE also adds Gaussian noise to the raw decryption result,

but the size of the noise is chosen (dynamically) in a way detailed in Section 4.5.
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4.4.5 The Impact of Our Countermeasure

Evaluating the feasibility of our countermeasure for some application depends on both

the required (application) precision, as well as the supported (library) precision. Provided the

difference between these is larger than the sum of the DP noise (as measured in Table 4.1) with the

approximation error, our countermeasure should be able to be instantiated.

32-bit applications.

Concretely, many applications (say in machine learning) require 32 bits of precision. If

a FHE library only supports computations with up to 64 bits of precision, this leaves at most 32

bits available for the sum of the CKKS approximation error and the DP error induced by our

countermeasure. This means that at best, one will be able to choose s≈ 32, which is likely too low

for most applications. Note that if the FHE library supports up to 128-bit precision computations10,

this problem disappears, as there are now ≈ 96 bits available for the sum of the errors, allowing the

conservative choice of s≈ 128.

Low-precision applications.

Some applications may solely require 8 or 16 bits of precision (see for example [44] or

[83] for work on training ML models with low-precision computations). This leaves 48-56 bits of

precision for the sum of the CKKS approximation error and the DP error. One can then choose

s≈ 64 (16-bit required precision) or 80 (8-bit), where precise choices of s would depend on the size

of the CKKS approximation error. We view either of these choices as much more reasonable than

s≈ 32, although in all settings the particular choice of s that is appropriate is application-dependent.

4.5 Dynamic Error Estimation

Yuriy Polyakov [71] has recently suggested a technique to get sharper bounds on the plaintext

error of the CKKS scheme. Briefly, this is done via leveraging a special message encoding which

fixes many of the coordinates of the original CKKS message space to be constantly 0. Provided

10At the time of writing, Lattigo and PALISADE already supported computations of this precision for unrelated
reasons, e.g. this is a reasonable assumption.
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one only evaluates functions which ignore these coordinates, upon decryption these coordinates

will only contain the error incurred during the homomorphic computation, and one can attempt to

generalize the (exact) error measurements within these coordinates to an estimate of the entirety of

the error.

This notion differs from our notion of static approximate correctness in two significant ways,

namely

• it depends on the particular ciphertext one is estimating the error of, e.g. can only be computed

dynamically during the program “run-time”, and

• it can only be computed during decryption, e.g. is not publicly-computable information about

the ciphertext.

We investigate the IND-CPAD security of applying our transformation of Definition 41 to

an approximate encryption scheme that is correct in the “dynamic” sense sketched above. In this

slightly modified setting, we get significantly different results. For an IND-CPA-secure, dynamic

approximately correct FHE scheme Π̃, we find that M[Π̃] is often insecure. Specifically, assuming a

“non-triviality” condition on M that we define in Definition 47, we find that

1. for a “natural” class of IND-CPA-secure Π̃ (including CKKS), M[Π̃] is not q-IND-CPAD

secure when one uses dynamic error estimation, and

2. there exists an IND-CPA-secure Π̃ such that M[Π̃] is not KRD-secure (again, when one uses

dynamic error estimation).

4.5.1 A (Heuristic) Dynamic Estimation Procedure for CKKS

We first provide a detailed description of Yuriy Polyakov’s dynamic error estimation pro-

cedure for CKKS [71], which has been implemented in PALISADE [64]. We define a variant

DE-CKKS of CKKS that is modified to use this dynamic error estimation technique. The message

space of DE-CKKS is the set of real vectors Rn/2, which is a subset of the message space Cn/2 of
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CKKS. We use ℜ(z) and ℑ(z) to denote the real and imaginary parts of a complex number z ∈ C,

respectively. We now describe the modified scheme DE-CKKS.

• DE-CKKS.KeyGen: The parameter and key generation algorithms are identical to CKKS,

except that the conjugation keys are not generated anymore.

• DE-CKKS.encode: The encoding algorithm is the same as in CKKS, except that it takes only

real vectors x ∈ Rn/2.

• DE-CKKS.Enc: The encryption algorithm is identical to CKKS.

• DE-CKKS.Eval: The homomorphic evaluation algorithm is also identical to CKKS, except

that homomorphic conjugation operation is no longer supported.

• DE-CKKS.Dec: The modified decryption algorithm combines the decryption and decoding

algorithms of CKKS, and it works as follows given the secret key sk and a ciphertext ct.

1. Decrypt ct and then decode the vanilla CKKS decryption result: z=CKKS.decode(CKKS.Decsk(ct)).

Note that z ∈ Cn/2 is a complex vector.

2. Let x = ℜ(z), and e = ℑ(z). Estimate the standard deviation σe = stdev(e).

3. Return x+ r, where r←N (0,
√

q+1 ·σeIn) is a Gaussian noise vector.

In practice, since the canonical embedding is a scaled isometry with respect to the ℓ2

norm, we can add the same amount of noise without decoding by first decrypting ct to obtain

the ring element m= CKKS.Decsk(ct), computing the ℓ2 norm of 1
2(m(X)−m(1/X)) to obtain

σ ′e =
√

n ·σe, adding n/2 i.i.d. Gaussians of parameter
√

q+1 ·σ ′e to m′ and then decoding the

resulting noisy ring element.

The PALISADE development team has done some experiments to validate this dynamic

error estimation method, and they claimed that it estimates the error well [71]. With optimizations

described in [45], they assumed that the rescaling error dominates the plaintext error after each

rescaling operation, and that such error can be reduced in size similar to the plaintext error in
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fresh encryptions. Furthermore, they assumed the adversary is non-adaptive, meaning that the

input messages do not depend on any decryption result. Their experiments encrypted two random

real vectors, homomorphically evaluated their component-wise product followed by a rescaling

operation, and then decrypted the resulting ciphertext and compared the estimated error size with

the actual plaintext error. The results showed that the dynamic error estimation is very close to the

actual plaintext error sizes: for example, they differ by at most 2 bits when the lattice dimension is

n = 213.

4.5.2 Dynamic Estimation

We next introduce the notion of a dynamically approximately correct FHE scheme Π̃. Our

notion of dynamic approximate correctness depends on solely the “run-time” values of the FHE

scheme, namely the secret key sk, and the ciphertext ct one wishes to bound. These suffice to

instantiate the dynamic estimation scheme described in Section 4.5.1. We omit the other values

(such as individual plaintext error bounds ti, and the circuit C itself) for simplicity — there clearly

cannot be a security benefit to this omission, as an adversary can easily record or compute these

values.

Definition 45 (Dynamic Approximate Correctness). Let Π be a FHE scheme with message

space M ⊆ M̃ , which is a normed space with norm ∥·∥ : M̃ → R≥0. Let L be a space of

evaluatable functions, and let Estimate : S K ×C → R≥0 be an efficiently computable func-

tion. We call the tuple of algorithms Π̃ = (Π,Estimate) a dynamically approximately correct

FHE scheme if for all m1, . . . ,mk ∈M , for all C ∈ L , for all (pk,sk)← KeyGen(1c), for all

ct← Evalpk(C,Encpk(m1), . . . ,Encpk(mk)), we have that

∥Decsk(ct)−C(m1, . . . ,mk)∥ ≤ Estimatesk(ct). (4.7)

The above notion is a “perfect” notion of dynamic approximate correctness — there is

an obvious statistical notion as well, where the desired inequality solely has to hold with high

probability over all of the various sources of randomness. For simplicity of exposition we will work
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with the perfect notion.

We will view the notion of dynamic approximate correctness as a refinement of the notion

of static approximate correctness. This can be done without loss of generality, as

• every known approximate FHE scheme is statically correct, and

• the minimum of two (correct) estimation functions is correct.

4.5.3 Attack Against IND-CPAD-Security of M[Π̃] for “Natural” Π

We next attack the IND-CPAD security of M[Π̃] for “natural” dynamically correct schemes

Π̃. We briefly summarize the attack, as it is both “obvious”, and establishing it theoretically requires

a few new definitions (as it fails for “unnatural” schemes). If

• dynamic error estimation is able to tightly estimate the plaintext error,

• the growth of plaintext error during certain operations (such as multiplication) is dependent

on the input to the operation, and

• the noise the KLDP mechanism Mt adds is dependent on t in a noticable way, then

an adversary which can distinguish the smaller KLDP noise can immediately break q-IND-CPAD-

security. This is simply because one can use the aforementioned operation to construct two

ciphertexts ct0,ct1 that encrypt the same value, but have drastically different plaintext errors. Then,

as the dynamic error estimation can detect this, the KLDP mechanism will add drastically different

noise in the left and right worlds of the q-IND-CPAD game, immediately breaking security.

The attack is straightforward to implement, which we demonstrate in Section 4.5.4. We

next theoretically establish the validity of the attack, by defining the aforementioned notions of

“naturality”.

Definition 46 (τ-Separated Noise Estimation). Let Π̃ be a dynamically approximately correct FHE

scheme with message space M and space of evaluatable functions L . Let τ ≥ 1, and let C ∈L

be a circuit. For m0,m1 ∈M , let t(m) = Estimatesk(Evalpk(C,Encpk(m))). We say that C has
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τ-separated noise under Π̃ if there exists m0,m1 ∈M such that τt(m0) = t(m1) with non-negligible

probability.

The seemingly strong condition t1 = τt0 can be replaced by requiring that |t0− τt1| is small,

and the mechanism Mt produces larger noise as t increases. For example, the Gaussian mechanism

adds noise of variance σ2 = t2/2ρ , which increases monotonically with t.

Definition 47 (τ-Sensitivity). Let Mt be a ρ-KLDP mechanism on a normed space M , and

let τ : R≥0 → R≥0. We say that Mt is τ-sensitive at m ∈M if for any t ≥ 1, the distributions

Mt(m) ̸≈c Mtτ(m) are computationally distinguishable.

The trivial 0-KLDP mechanism (which ignores its input, and returns a fixed constant) is not

τ-sensitive for any τ . Note that this condition is desirable in practice — if Mt is not τ-sensitive,

there is no real point in getting sharper noise estimates.

Theorem 19. Let Π̃ be an IND-CPA-secure, dynamically approximately correct FHE scheme with

message space M and space of evaluatable functions L . Let τ : R≥0→ R≥0, and assume that M

is a ρ-KLDP mechanism which is τ-sensitive at 0. Furthermore, assume there exist m0,m1 ∈M

and C ∈L such that C(m0) =C(m1) = 0 and C has τ-separated noise estimation under Π̃ with

respect to inputs m0,m1. Then M[Π̃] is not IND-CPAD-secure.

The proof is simply a formalization of our sketched attack above, so we omit it.

While it is not clear how to extend this attack to an attack on KRD security (as was present

in [52]), the attack still leaks information correlated with ∥m∥, e.g. breaks semantic security.

4.5.4 Breaking q-IND-CPAD-Security of PALISADE’s Dynamic Error
Estimation Countermeasure

We implemented the attack in Theorem 19 against the PALISADE’s implementation of

CKKS, which is currently the only known implementation of dynamic noise estimation. Our

attack experiments use the exceedingly simple circuit f (x1,x2) = x2
1− x2, as well as the circuit

g(x0, . . . ,x4k−1) = ∑
2k−1
i=0 (xi · x2k+i) in Algorithm 4. Notice that both f and g evaluate to 0 on input
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Table 4.2. The experimental results of applying the attack in Theorem 19 with various circuits C.
Here, C ∈ { f ,g}, for f (x1,x2) = x2

1−x2 and g(x0, . . . ,x4k−1) = ∑
2k−1
i=0 (xi ·x2k+i). For both C, denote

z0 the decryption result of Evalpk(C,Encpk(0)), and zm the decryption result of Evalpk(C,Encpk(m))
for the input m as defined above with parameters B and k. We set the lattice parameters (n,Q) to
achieve at least 128 bit IND-CPA security, and we choose several different values for the scaling
factor ∆ and the slots number. For each parameter set, we run the attack 100 times and report the
average and standard deviation of ∥z0∥∞ and ∥zm∥∞. As shown in the last two columns, there are
clear distinctions on the estimated noise sizes between ciphertexts evaluated on 0 and m.

C (n, logQ) log∆ B k #slots ∥z0∥∞ ∥zm∥∞

f (213,100) 40

100 - 1 2.19e−8±1.83e−8 2.75e−6±2.19e−6
100 - 1024 1.07e−7±1.42e−8 1.87e−5±2.54e−6
32 - 1 1.97e−8±1.52e−8 1.06e−6±1.06e−6
32 - 1024 1.08e−7±1.54e−8 6.08e−6±8.85e−7

g (214,150) 45

32 15 1 1.08e−8±4.37e−9 2.27e−7±1.95e−7
32 15 1024 1.08e−8±4.14e−9 1.40e−6±2.02e−7
16 50 1 1.07e−8±4.45e−9 2.00e−7±1.90e−7
16 50 1024 1.06e−8±4.67e−9 1.27e−6±1.70e−7

0. On the other hand, we chose several moderate values of B > 0 to set the input m such that

f (m) = 0 and g(m) = 0:

• For f , let m1 = B and m2 = B2.

• For g, let mi = B for all 0≤ i≤ 3k−1, and let mi =−B for all 3k ≤ i≤ 4k−1.

Our attack homomorphically evaluates f (or g) on encryptions of both 0 and m, then it decrypts the

final ciphertexts to get z0 and zm. As expected, in all our experiments we see that ∥z0∥∞ and ∥zm∥∞

can be clearly distinguished. We summarize our experimental results in Table 4.2 with several

parameter sets. We have made the source code of our experimental programs available.11

4.5.5 Attack Against KRD-Security of M[Π̃] for “Artificial” Π

We construct an (artificial) IND-CPA-secure, dynamically approximately correct FHE

scheme Π̃ such that M[Π̃] fails to be KRD-secure.

Theorem 20. There exists an IND-CPA-secure, dynamically approximately correct FHE scheme Π̃

such that for any linear ρ-KLDP mechanism M that is τ-sensitive at 0, M[Π̃] is not KRD-secure.
11https://github.com/ucsd-crypto/DynamicEstimationAttack
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Proof. Let Π be any (exact) FHE scheme with message space MZn
Q, and assume Q ≥ n, where

n is the number of bits in the secret key sk ∈ {0,1} ∈ {0,1}n. Let L be the space of evaluatable

functions. Let M ′ = Zn−1
Q ×{0}, and let L ′ ⊆L be the subset of L that maps M ′ ⊂M to M ′.

Define the modified decryption function

Dec′sk(ct) =


Decsk(ct)+(1,1, . . . ,1) skDecsk(0) mod n = 0

Decsk(ct)+ τ(1,1, . . . ,1) skDecsk(0) mod n = 1
.

This is an (inexact) FHE scheme Π with message space M ′ and space of evaluatable functions L ′.

This scheme is IND-CPA-secure as we have only modified the decryption algorithm (which does

not impact IND-CPA security). This scheme is additionally dynamically approximately correct, as

one can exactly recover the error via examining the last coordinate, and can then (exactly) compute

the norm of the error. Note that as norms are homogeneous, the two possible estimates differ by the

multiplicative factor τ .

We show how an adversary can recover an arbitrary bit of the key. Decryptions of M[Π̃]

are of the form MT∥(1,1,...,1)∥(m′) for T ∈ {1,τ} (depending on the value of skm′[0] mod n). Subtract

off m′ to reduce the problem to determining the value of T from the distribution MT∥(1,1,...,1)∥(0).

As M is τ-sensitive at 0, the distributions M∥(1,1,...,1)∥(0) and Mτ∥(1,1,...,1)∥(0) are computationally

distinguishable. One can use such a distinguisher to recover T from MT∥(1,1,...,1)∥(0). Iterate this

attack to recover the entirety of sk.

4.6 Conclusion and Open Problems

In this work, we have shown that for CKKS with “static” error estimates, to obtain c-bits of

computational IND-CPAD security

• it suffices to add c/2+ Õ(1) bits of noise (Theorem 17), and

• it is necessary to add c/4− Ω̃(1) bits of noise (Theorem 18).
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Our results therefore somewhat tightly characterize the impact on the accuracy of CKKS

instantiated with a natural countermeasure to the Li-Micciancio attack [52] — Θ(c) additional bits

of noise are both necessary and sufficient for security. Still, it is natural to wonder if the right scaling

for our countermeasures is c/4 or c/2.

We show that our countermeasure behaves better with respect to (c,s)-bit security. In partic-

ular, we show that s/2+ Õ(1) bits of additional noise suffice to achieve (c,s)-bits of q-IND-CPAD

security, where s can plausibly be set much less than 128.

We include discussion of the concrete overhead of our countermeasure in Section 4.4.5,

where find that our countermeasure is easily implementable (for general purpose computation)

provided the FHE library supports 128-bit precision computations, while FHE libraries that support

64-bit precision computations may only be able to instantiate our countermeasure for certain

(low-precision) applications, or with aggressive parameterizations.

Both our work and the work of [52] investigate how the correctness of encryption can

impact the underlying security one attains. As correctness analysis typically leverages (unproven)

heuristics for tighter noise estimates, we view formally justifying these heuristics to be important

going forward, as the false heuristics may lead to security issues.

While our results on “dynamic” error estimation are negative, we have not ruled out achieving

some weaker security notion with these techniques (for natural schemes). Our attack of Theorem 19

shows that dynamic error estimation can leak the norm of the input to the computation. Can the

leakage be provably limited to this information?

Finally, our work examines black box modifications one can make to CKKS to attain

q-IND-CPAD-security. It is plausible that a CKKS-specific construction could attain smaller param-

eters, say by randomizing homomorphic operations, choosing larger than typical scaling factors ∆,

or carefully investigating the plaintext error after bootstrapping.
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