
UC Riverside
UC Riverside Previously Published Works

Title
R*-Grove: Balanced Spatial Partitioning for Large-Scale Datasets

Permalink
https://escholarship.org/uc/item/6mb3p435

Authors
Vu, Tin
Eldawy, Ahmed

Publication Date
2020

DOI
10.3389/fdata.2020.00028

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mb3p435
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

ORIGINAL RESEARCH
published: 28 August 2020

doi: 10.3389/fdata.2020.00028

Frontiers in Big Data | www.frontiersin.org 1 August 2020 | Volume 3 | Article 28

Edited by:

Liyue Fan,

University at Albany, United States

Reviewed by:

Keke Chen,

Wright State University, United States

Arnab Bhattacharya,

Indian Institute of Technology

Kanpur, India

Jia Yu,

Arizona State University, United States

*Correspondence:

Ahmed Eldawy

eldawy@ucr.edu

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 25 December 2019

Accepted: 24 July 2020

Published: 28 August 2020

Citation:

Vu T and Eldawy A (2020) R*-Grove:

Balanced Spatial Partitioning for

Large-Scale Datasets.

Front. Big Data 3:28.

doi: 10.3389/fdata.2020.00028

R*-Grove: Balanced Spatial
Partitioning for Large-Scale Datasets
Tin Vu and Ahmed Eldawy*

Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, United States

The rapid growth of big spatial data urged the research community to develop several

big spatial data systems. Regardless of their architecture, one of the fundamental

requirements of all these systems is to spatially partition the data efficiently across

machines. The core challenges of big spatial partitioning are building high spatial quality

partitions while simultaneously taking advantages of distributed processing models by

providing load balanced partitions. Previous works on big spatial partitioning are to reuse

existing index search trees as-is, e.g., the R-tree family, STR, Kd-tree, and Quad-tree,

by building a temporary tree for a sample of the input and use its leaf nodes as

partition boundaries. However, we show in this paper that none of those techniques

has addressed the mentioned challenges completely. This paper proposes a novel

partitioning method, termed R*-Grove, which can partition very large spatial datasets

into high quality partitions with excellent load balance and block utilization. This appealing

property allows R*-Grove to outperform existing techniques in spatial query processing.

R*-Grove can be easily integrated into any big data platforms such as Apache Spark

or Apache Hadoop. Our experiments show that R*-Grove outperforms the existing

partitioning techniques for big spatial data systems. With all the proposed work publicly

available as open source, we envision that R*-Grove will be adopted by the community

to better serve big spatial data research.

Keywords: big spatial data, partitioning, R*-Grove, index optimization, query processing

1. INTRODUCTION

The recent few years witnessed a rapid growth of big spatial data collected by different applications
such as satellite imagery (Eldawy et al., 2015b), social networks (Magdy et al., 2014), smart phones
(Henke et al., 2016), and VGI (Goodchild, 2007). Traditional Spatial DBMS technology could not
scale up to these petabytes of data which led to the birth of many big spatial data management
systems such as SpatialHadoop (Eldawy and Mokbel, 2015), GeoSpark (Yu et al., 2015), Simba (Xie
et al., 2016), LocationSpark (Tang et al., 2016), and Sphinx (Eldawy et al., 2017), to name a few.

Regardless of their architecture, all these systems need an essential preliminary step that
partitions the data across machines before the execution can be parallelized. This is also known
as global indexing (Eldawy and Mokbel, 2016). A common method that was first introduced in
SpatialHadoop (Eldawy andMokbel, 2015), is the sample-based STR partitioner. This method picks
a small sample of the input to determine its distribution, packs this sample using the STR packing
algorithm (Leutenegger et al., 1997), and then uses the boundaries of the leaf nodes to partition the
entire data. Figure 1A shows an example of an STR-based partitioning where each data partition
is depicted by a rectangle. The method was later generalized by replacing the STR bulk loading
algorithm with other spatial indexes such as Quad-tree (Samet, 1984), Kd-Tree, and Hilbert R-trees

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00028
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00028&domain=pdf&date_stamp=2020-08-28
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eldawy@ucr.edu
https://doi.org/10.3389/fdata.2020.00028
https://www.frontiersin.org/articles/10.3389/fdata.2020.00028/full

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

(Kamel and Faloutsos, 1994; Eldawy et al., 2015a). That STR-
based partitioning was very attractive due to its simplicity and
good load balancing which is very important for distributed
applications. Its simplicity urgedmany other researchers to adopt
it in their systems such as GeoSpark (Yu et al., 2015) and
Simba (Xie et al., 2016) for in-memory distributed processing;
Sphinx (Eldawy et al., 2017) for SQL big spatial data processing;
HadoopViz (Eldawy et al., 2016; Ghosh et al., 2019) for scalable
visualization of big spatial data; and in distributed spatial join
(Sabek and Mokbel, 2017).

Despite their wide use, the existing partitioning techniques
all suffer from one or more of the following three limitations.
First, some partitioning techniques (STR, Kd-tree) prioritize
load balance over spatial quality which results in suboptimal
partitions. This is apparent in Figure 1A where the thin and
wide partitions result in low overall quality for the partitions
since square-like partitions are preferred for most spatial queries.
Square-like partitions are preferred in indexing because they
indicate that the index is not biased toward one dimension. Also,
since most queries are shaped like a square or a circle, square-
like partitions would minimize the overlap with the queries
(Beckmann et al., 1990). Second, they could produce partitions
that do not fill the HDFS blocks in which they are stored. Big
data systems are optimized to process full blocks, i.e., 128 MB, to
offset the fixed overhead in processing each block. However, the
index structures used in existing partitioning techniques, e.g., R-
trees, Kd-tree, Quad-tree, produce nodes with number of records
in the range [m,M], where m ≤ M/2. In practice, m can be
as low as 0.2M (Beckmann et al., 1990; Beckmann and Seeger,
2009). While those underutilized index nodes were desirable for
disk indexing as they can accommodate future inserts, they result
in underutilized blocks as depicted in Figure 1A where all blocks
are <80% full. Moreover, this design might also produces poor
load balance among partitions due to the wide range of partition
sizes. Third, all existing partitioning techniques rely on a sample
and try to balance the number of records per partition. This
resembles traditional indexes where the index contains record
IDs. However, in big spatial data partitioning, the entire record is
written in each partition, not just its ID. When records are highly
variant in size, all existing techniques end up with extremely
unbalanced partitions.

This paper proposes a novel spatial partitioning technique
for big data, termed R*-Grove, which completely addresses all
of three aforementioned limitations. First, it produces high
quality partitions by utilizing the R*-tree optimization techniques
(Beckmann et al., 1990) which aim at minimizing the total
area, overlap area, and margins. The key idea of the R*-Grove
partitioning technique is to start with one partition that contains
all sample points and then use the node split algorithm of the
R*-tree to split it into smaller partitions. This results in compact
square-like partitions as shown in Figure 1B. Second, in order to
ensure that we produce full blocks and balanced partitions, R*-
Grove introduces a new constraint that puts a lower bound on
the ratio between the smallest and the largest block, e.g., 95%.
This property is theoretically proven and practically validated by
our experiments. Third, when the input records have variable
sizes, R*-Grove combines a data size histogram with the sample

points to assign a weight for each sample point. These weights
are utilized to guarantee that the size of each partition falls in a
user-defined range.

Given the wide adoption of the previous STR-based
partitioner, we believe the proposed R*-Grove will be widely used
in big spatial data systems. This impacts a wide range of spatial
analytics and processing algorithms including indexing (Vo et al.,
2014; Eldawy et al., 2015a), range queries (Eldawy and Mokbel,
2015; Yu et al., 2015), kNN queries (Eldawy and Mokbel, 2015),
visualization (Eldawy et al., 2016; Ghosh et al., 2019), spatial join
(Jacox and Samet, 2007), and computational geometry (Eldawy
et al., 2013; Li et al., 2019). All the work proposed in this paper
is publicly available as open source and supports both Apache
Spark and Apache Hadoop. We run an extensive experimental
evaluation with up-to 500 GB and 7 billion record datasets
and up-to nine dimensions. The experiments show that R*-
Grove consistently outperforms existing STR-based, Z-curve-
based, Hilbert-Curve-based, and Kd-tree-based techniques in
both partitions quality and query efficiency.

The rest of this paper is organized as follow. Section 2
describes the related works. Section 3 gives a background about
big spatial data partitioning. Section 4 describes the proposed R*-
Grove technique. Section 5 describes the advantages of R*-Grove
in popular case studies of big spatial data systems. Section 6 gives
a comprehensive experimental evaluation of the proposed work.
Finally, section 7 concludes the paper.

2. RELATED WORK

This section discusses the related work in big spatial data
partitioning. In general, distributed indexes for big spatial data
are constructed in two levels, one global index that partitions
the data across machines, and several local indexes that organize
records in each partition. Previous work (Lu et al., 2014; Eldawy
and Mokbel, 2015, 2016) showed that the global index provides
far much improvement than local indexes. Therefore, in this
paper we focus on global indexing and it can be easily combined
with any of the existing local indexes. The work in global
indexing can be broadly categorized into three approaches,
namely, sampling-based methods, space-filling-curve (SFC)-
based methods, and quad-tree-based methods.

The sampling-based method picks a small sample from the
input data to infer its distribution. The sample is loaded into
an in-memory index structure while adjusting the data page
capacity, e.g., leaf node capacity, such that the number of data
pages is roughly equal to the desired number of partitions. The
order of sample objects does not affect the partition quality, since
the sample is uniformly taken from the entire input dataset.
Furthermore, most of algorithms sort the data as part of the
partitioning process so the original order is completely lost. Some
R-tree bulk-loading algorithms (STR Leutenegger et al., 1997
or OMT Lee and Lee, 2003) can also be used to speed up the
tree construction time. Then, the minimum bounding rectangles
(MBRs) of the data pages are used to partition the entire dataset.
This method was originally proposed for spatial join and denoted
the seeded-tree (Lo and Ravishankar, 1994). It was then used for

Frontiers in Big Data | www.frontiersin.org 2 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 1 | Comparison between STR and R*-Grove. (A) STR-based partitioning (Eldawy and Mokbel, 2015). All the thin and wide partitions reduce the query

efficiency. (B) The proposed R*-Grove method with square-like and balanced partitions.

big spatial indexing in many systems including SpatialHadoop
(Eldawy and Mokbel, 2015; Eldawy et al., 2015a), Scala-GiST (Lu
et al., 2014), GeoSpark (Yu et al., 2015), Sphinx (Eldawy et al.,
2017), Simba (Xie et al., 2016), and many other systems. This
technique can be used with existing R-tree indexes but it suffers
from two limitations, load imbalance and low quality of spatial
partitions. Additionally, when there is a big variance in record
sizes, the load imbalance is further amplified due to the use of the
sample. We will further discuss these limitations in section 4.

The SFC-based method builds a spatial index on top of an
existing one-dimensional index by applying any space-filling
curve, e.g., Z-curve or Hilbert curve. MD-HBase (Nishimura
et al., 2013) builds Kd-tree-like and Quad-tree-like indexes on
top of HBase by applying the Z-curve on the input data and

customizing the region split method in HBase to respect the
structure of both indexes. GeoMesa (Fox et al., 2013) uses geo-
hashing which is also based on the Z-curve to build spatio-
temporal indexes on top of Accumulo. Unlike MD-HBase which
only supports point data, GeoMesa can support rectangular of
polygonal geometries by replicating a record to all overlapping
buckets in the geohash. While this method can ensure a
near-perfect load balance, it produces an even bigger spatial
overlap between partitions as compared to the sampling-based
approach described above. This drawback leads to the inefficient
performance of spatial queries.

The quad-tree-based method relies heavily on the Quad-
tree structure to build efficient and scalable Quad-tree index in
Hadoop (Whitman et al., 2014). It starts by splitting the input

Frontiers in Big Data | www.frontiersin.org 3 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

data into equi-sized chunks and building a partial Quad-tree for
each split. Then, it combines the leaf nodes of the partial trees
based on the Quad-tree structure to merge them into the final
tree. While highly efficient, this method cannot generalize to
other spatial indexes and is tightly tied to the Quad-tree structure.
In addition, this Quad-tree-based partitioning tends to produce
much more than the desired number of partitions which also
leads to load imbalance.

Although there are several partitioning techniques for large-
scale spatial data as mentioned above, sampling-based method
is the most ubiquitous option, which is integrated in most
of existing spatial data systems. Sampling-based methods are
preferred as they are simple to implement and provide very good
results. In this paper, we follow the sampling-based approach,
and propose a method which utilizes R*-tree’s advantages
that were never used before for big spatial data partitioning.
The proposed R*-Grove index has three advantages over the
existing work. First, it inherits and improves the R*-tree index
structure to produce high-quality partitions that are tailored
to big spatial data. Second, the improved algorithm produces
balanced partitions by employing a user-defined parameter,
termed balance factor, α, e.g., 95%. In addition, it can produce
spatially disjoint partitions which are necessary for some spatial
analysis algorithms. Third, R*-Grove can couple a sample with
a data size histogram to guarantee the desired load balance even
when the input record sizes are highly variant. While R*-Grove is
not the only framework for big spatial partitioning, it is the first
one that is tailored for large-scale spatial datasets while existing
techniques reuse traditional index structures, such as R-tree, STR,
or Quad-tree, as black boxes.

3. BACKGROUND

3.1. R*-Tree
The R*-tree (Beckmann et al., 1990) belongs to the R-tree family
(Guttman, 1984) and it improves the insertion algorithm to
provide high quality index. In R-tree, the number of children
in each nodes has to be in the range [m,M]. By design, m
can be at most ⌊M/2⌋ to ensure that splitting a node of size
M + 1 is feasible. In this paper, we utilize and enhance two main
functions of the R*-tree index, namely, CHOOSESUBTREE and
SPLITNODE which are both used in the insertion process. For
the CHOOSESUBTREE method, given the MBR of a record and a
tree node, it chooses the best subtree to assign this record to. The
SPLITNODE method takes an overflow node withM + 1 records
and splits it into two nodes.

3.2. Sample-Based Partitioning Workflow
This section gives a background on the sampling-based
partitioning technique (Vo et al., 2014; Eldawy and Mokbel,
2015; Eldawy et al., 2015a), just partitioning hereafter, that this
paper relies on. Figure 2 shows the workflow for the partitioning
algorithm which consists of three phases, namely, sampling,
boundary computation, and partitioning. The sampling phase
(Phase 1) draws a random sample of the input records and
converts each one to a point. Notice that sample points are
picked from the entire file at no particular order so the order of

FIGURE 2 | The sampling-based partitioning process.

points does not affect the next steps. The boundary computation
phase (Phase 2) runs on a single machine and processes the
sample to produce partition boundaries as a set of rectangles.
Given a sample S, the input size D, and the desired partition
size B, this phase adjusts the capacity of each partition to
contain M = ⌈|S| · B/D⌉ sample points which is expected to
produce final partitions with the size of one block each. The final
partitioning phase (Phase 3) scans the entire input in parallel
and assigns each record to these partitions based on the MBR
of the record and the partition boundaries. If each record is
assigned to exactly one partition, the partitions will be spatially
overlapping with no data replication. If each record is assigned to
all overlapping partitions, the partitions will be spatially disjoint
but some records can be replicated and duplicate handling will
be needed in the query processing (Dittrich and Seeger, 2000).
Some algorithms can only work if the partitions are spatially
disjoint such as visualization (Eldawy et al., 2016) and some
computational geometry functions (Li et al., 2019).

The proposed R*-Grove method expands Phase 1 by
optionally building a histogram of storage size that assists in
the partitioning algorithm at Phase 2. In Phase 2, it adapts R*-
tree-based algorithms to produce the partition boundaries with
desired level of load balance. In Phase 3, we propose a new data
structure that improves the performance of that phase and allows
us to produce spatially disjoint partitions if needed.

3.3. Quality Metrics
This paper uses the quality metrics defined in Eldawy et al.
(2015a). Below, we redefine these metrics while accounting for
the case of partitions that span multiple HDFS blocks. A single
partition πi is defined by two parameters, minimum bounding
box mbbi and size in bytes sizei. Given the HDFS block size B,
e.g., 128 MB, we define the number of blocks for a partition πi as
bi = ⌈sizei/B⌉. Given a dataset that is partitioned into a set of l
partitions, P = {πi}, we define the five quality metrics as follows.

DEFINITION 1 (Total Volume - Q1). The total volume is the sum
of the volume of all partitions where the volume of a partition is
the product of its side lengths.

Q1(P) =
∑

πi∈P
bi · volume(mbbi)

We multiply by the number of blocks bi because big spatial data
systems process each block separately. Lowering the total volume
is preferred to minimize the overlap with a query. Given the

Frontiers in Big Data | www.frontiersin.org 4 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

popularity of the two-dimensional case, this is usually used under
the term total area.

DEFINITION 2 (Total Volume Overlap - Q2). This quality metric
measures the sum of the overlap between pairs of partitions.

Q2(P) =
∑

πi ,πj∈P ,i6=j

bi · bj · volume (mbbi ∩mbbj)

+
∑

πi∈P

bi(bi − 1)

2
· volume(mbbi)

where mbbi∩mbbj is the intersection region between the two boxes.
The first term calculates the overlaps between pairs of partitions
and the second term accounts for self-overlap which treats a
partition with multiple blocks as overlapping partitions. Lowering
the volume overlap is preferred to keep the partitions apart.

DEFINITION 3 (Total Margin - Q3). The margin of a block is the
sum of its side lengths. The total margin is the sum of all margins
as given below.

Q3(P) =
∑

πi∈P
bi ·margin(mbbi)

Similar to Q1, multiplying by the number of blocks bi treats each
block as a separate partition. Lowering the total margin is preferred
to produce square-like partitions.

DEFINITION 4 (Block Utilization - Q4). Block utilization
measures how full the HDFS blocks are.

Q4(P) =
∑

πi∈P sizei

B ·
∑

πi∈P bi

The numerator
∑

sizei represents the total size of all partitions
and denominator B

∑

bi is the maximum amount of data that
can be stored in all blocks used by these partitions. In big data
applications, each block is processed in a separate task which has
a setup time of a few seconds. Having full or near-full blocks
minimize the overhead of the setup. The maximum value of block
utilization is 1.0, or 100%.

DEFINITION 5 (Standard Deviation of Sizes).

Q5(P) =

√

∑

πi∈P (sizei − size)2

l

Where size =
∑

sizei/l is the average partition size. Lowering this
value is preferred to balance the load across partitions.

4. R*-GROVE PARTITIONING

This section describes the details of the proposed R*-Grove
partitioning algorithm. R*-Grove employs three techniques that
overcome the limitations of existing works. The first technique

adapts the R*-tree index structure for spatial partitioning by
utilizing the CHOOSESUBTREE and SPLITNODE functions in the
sample-based approach described in section 3. This technique
ensures a high spatial quality of partitions. The second technique
addresses the problem of load balancing by introducing a
new constraint that guarantees a user-defined ratio between
smallest and largest partitions. The third technique combines
the sample points with its storage histogram to balance the
sizes of the partitions rather than the number of records. This
combination allows R*-Grove to precisely produce partitions
with a desired block utilization, which cannot be achieved by any
other partitioning techniques.

4.1. R*-Tree-Based Partitioning
This part describes how R*-Grove utilizes the R*-tree index
structure to produce high quality partitions. It utilizes the
SPLITNODE and CHOOSESUBTREE functions from the R*-tree
algorithm in Phases 2 and 3 as described shortly. A naïve method
(Vu and Eldawy, 2018) is to use the R*-tree as a blackbox in
Phase 2 in Figure 2 and insert all the sample points into an R*-
tree. Then it emits the MBRs of the leaf nodes as the output
partition boundaries. However, this technique was shown to be
inefficient as it processes the sample points one-by-one and does
not integrate the R*-tree index well in the partitioning algorithm.
Therefore, we propose an efficient approach that runs much
faster and produces higher quality partitions. It extends Phases 2
and 3 as follows.

Phase 2 computes partition boundaries by only using the
SPLITNODE algorithm from the R*-tree index which splits a node
with M + 1 records into two nodes with the size of each one in
the range [m,M]. This algorithm starts by choosing the split axis,
e.g., x or y, that minimizes the total margin. Then, all the points
are sorted along the chosen axis and the split point is chosen
as depicted in Algorithm 1. The CHOOSESPLITPOINT algorithm
simply considers all the split points and chooses the one that
minimizes some cost function which is typically the total area of
the two resulting partitions.

We set M = ⌈|S| · B/|D|⌉ as explained in section 3 and
m = 0.3M as recommended in the R*-tree paper. In particular,
this phase starts by creating a single big tree node that has all
the sample points S. Then, it recursively calls the SPLITNODE

algorithm as long as the resulting node has more than M
elements. This top-down approach has a key advantage over
building the tree record-by-record as it allows the algorithm to
look at all the records at the beginning and optimize for all of
them. Furthermore, it avoids the FORCEDREINSERT algorithm
which is known to slow down the R*-tree insertion process.
Notice that this is different than the bulk loading algorithms as
it does not produce a full tree. Rather, it just produces a set
of boundaries that are produced as partitions. Phase 3 treats all
the MBRs as leaf nodes in an R-tree and uses the CHOOSELEAF

method from the R*-tree to assign an input record to a partition.

4.1.1. Run-Time Analysis
The SPLITNODE algorithm can be modeled as a recursive
algorithm where each iteration sorts all the points and runs the
linear-time splitting algorithm to produce two smaller partitions.

Frontiers in Big Data | www.frontiersin.org 5 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

Algorithm 1 A simplified version of the traditional R*-tree
splitting mechanism.
Inputs: P is the all sample records; m is the minimum size of a
node.
Output: the optimal splitting position.

1: function CHOOSESPLITPOINT(P,m)
2: chosenK= −1; minCost= ∞
3: for k in [m, |P| −m] do
4: P1 = P[1..k] ⊲ P1 is the first k records of P
5: P2 = P[k+ 1..|P|] ⊲ P2 is all the remaining records

P − P1
6: Calculate the cost of the partitions P1 and P2
7: if the cost is smaller than minCost then
8: Set chosenK= k and update minCost

9: return chosenK

Algorithm 2 R*-tree-based split while ensuring valid partitions
Inputs: P is the all sample records; [m,M] is the target range of
sizes for final partitions.
Output: the optimal splitting position.

1: function CHOOSEVALIDSPLITPOINT(P,m)
2: for k in [m, |P| −m] do
3: if either k or |P| − k is invalid then ⊲ Lemma 1
4: Skip this iteration and continue

5: Similar to Lines 4-8 in Algorithm 1

6: return chosenK

The run-time can be expressed as T(n) = T(k) + T(n − k) +
O(n log n), where k is the size of one group resulting from the
partitioning, n is the number of records in the input partition. In
particular, T(k) and T(n − k) are the running times to partition
two partitions from splitting process. The term O(n log n) is the
running time for the splitting part which requires sorting all
the points. This recurrence relation has a worst case of n2 log n
if k is always n − 1. In order to guarantee a run-time of
O(n log2 n), we define a parameter ρ ∈ [0, 0.5] which defines the
minimum splitting ratio k/n. Setting this parameter to any non-
zero fraction guarantees an O(n log2 n) run-time. However, the
restriction of k/n also limits the range of possible value of k. For
example, if n = 100 and ρ = 0.3, kmust be a number in the range
[30, 70]. As this parameter gets closer to 0.5, the two partitions
become closer in size and the run-time decreases but the quality
of the index might also deteriorate due to the limited search
space imposed by this parameter. To incorporate this parameter
in the node-splitting algorithm, we call the CHOOSESPLITPOINT

function with the parameters (P,max{m, ρ · |P|}), where |P| is the
number of points in the list P.

4.2. Load Balancing for Partitions With
Equal-Size Records
In this section, we focus on balancing the number of records
in partitions assuming equal-size records. We further extend
this in the next section to support variable-size records. The
method in section 4.1 does a good job in producing high-quality

partitions similar to what the R*-tree provides. However, it does
not address the second limitation, that is, balancing the sizes of
the partitions. Recall that the R-tree index family requires the leaf
nodes to have sizes in the range [m,M], where m ≤ M/2. With
the R*-tree algorithm explained earlier, some partitions might
be 30% full which reduces block utilization and load balance.
We would like to be able to set m to a larger value, say, m =
0.95M. Unfortunately, if we do so, the SPLITNODE algorithm
would just fail because it will face a situation where there is no
valid partitioning.

To illustrate the limitation of the SPLITNODE mechanism,
consider the following simple example. Let us assume we choose
m = 9 and M = 10 while the list P contains 28 points. If we
call the SPLITNODE algorithm on the 28 points, it might produce
two partitions with 14 records each. Since both contain more
than M = 10 points, the splitting method will be called again
on each of them which will produce an incorrect answer since
there is no way to split 14 records into two groups while each
of them contain between 9 and 10 records. A correct splitting
algorithm would produce three partitions with sizes 9, 9, and 10.
Therefore, we need to introduce a new constraint to the splitting
algorithm so that it always produces partitions with sizes in the
range [m,M].

4.2.1. The Final Finding
The SPLITNODE algorithm can be minimally modified to
guarantee final leaf partitions in the range [m,M] by satisfying
the following validity constraint:

⌈Si/M⌉ ≤ ⌊Si/m⌋ , i ∈ {1, 2},

where S1 and S2 are the sizes of the two resulting partitions
of the split. Algorithm 2 depicts the main changes to the
algorithm that introduces a new constraint test in Line 3 that
skips over invalid partitioning. The rest of this section provides
the theoretical proof that this simple constraint guarantees the
algorithm termination with leaf partitions in the range [m,M].
We start with the following definition.

DEFINITION 6. Valid Partition Size: An integer number S is said
to be a valid partition size with respect to a range [m,M] if there
exists a set of integers X = {x1, · · · , xn} such that

∑

xi = S and
xi ∈ [m,M] ∀ i ∈ [1, n]. In words, if we have S records, there is at
least one way to split them such that each split has between m and

M records.

For example, if m = 9 and M = 10, the sizes 14, 31, and 62, are
all invalid while the sizes 9, 27, and 63, are valid. Therefore, to
produce balanced partitions, the SPLITNODE algorithm should
keep the invariant that the partition sizes are always valid
according to the above definition. Going back to the earlier
example, if S = 28, the answer S1 = S2 = 14 will be rejected
because S1 = 14 is invalid. Rather, the result of the first call to
the SplitNode algorithm will result in two partitions with sizes
{10, 18} or {9, 19}. The following lemma shows how to test a size
for validity in constant time.

Frontiers in Big Data | www.frontiersin.org 6 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

LEMMA 1. Validity Test:An integer S is a valid partition size w.r.t
a range [m,M] iff L ≤ U in which L (lower bound) and U (upper
bound) are computed as:

L = ⌈S/M⌉
U = ⌊S/m⌋

PROOF. First, if S is valid then, by definition, there is a
partitioning of S into n partitions such that each partition is in
the range [m,M]. It is easy to show that L ≤ U and we omit this
part for brevity. The second part is to show that if the inequality
L ≤ U holds, then there is at least one valid partitioning. Based
on the definition of L and U, we have:

U = ⌊S/m⌋ ⇒ U ≤ S/m ⇒ S ≥ m · U ⇒ S ≥ m · L
⇒ S−m · L ≥ 0 (1)

L = ⌈S/M⌉ ⇒ L ≥ S/M ⇒ S ≤ M · L ⇒ S−m · L
≤ (M −m) · L (2)

Based on Inequalities 1 and 2, we can make a valid partitioning
as follows:

1. Start with L empty partitions. Assign m records to each
partition. The remaining number of records is S − m · L ≥ 0.
This is satisfied due to Inequality 1.

2. Since each partition now has m records, it can receive up-to
M−m additional records in order to keep its validity. Overall,
L partitions of size m can accommodate up-to (M − m) · L
records to keep a valid partitioning. But the remaining number
of records S −m · L is not larger than the upper limit of what
the partitions can accommodate, (M − m) · L as shown in
Inequality 2. Therefore, this condition is satisfied as well.

In conclusion, it follows that if the condition L ≤ U holds, we
can always find a valid partitioning scheme for S records which
completes the proof.

If we apply this test for the example above, we find that 28 is
valid because L = ⌈28/10⌉ = 3 ≤ U& = ⌊28/9⌋ = 3 while 62 is
invalid because L& = ⌈62/10⌉ = 7 > U& = ⌊62/9⌋ = 6. This
approach works fine as long as the initial sample size S is valid but
how do we guarantee the validity of S? We show that this is easily
guaranteed if the size S is above some threshold S∗ as shown in
the following lemma.

LEMMA 2. Given a range [m,M], any partition of size S ≥ S∗ is
valid where S∗ is defined by the following formula:

S∗ =
⌈

m

M −m

⌉

·m (3)

PROOF. Following Definition 6, we will prove that for any
partition size S ≥ S∗, there exists a way to split it into k groups
such that the size of each group is in the range [m,M].

First, let i =
⌈

m
M−m

⌉

, we have:

S ≥ S∗ =
⌈

m

M −m

⌉

·m = i ·m (4)

⇒ S = i ·m+ X,X ≥ 0. Let X = a ·m+ b , a ≥ 0, 0 ≤ b < m
(5)

⇒ S = i ·m+ (a ·m+ b) = (i+ a) ·m+ b , a ≥ 0, 0 ≤ b < m
(6)

Second, since b < m, we have:

b

M −m
<

m

M −m
≤ i ⇒

b

i
< M −m (7)

From Equations (6) and (7), we can make a valid partitioning for
a partition size S as follows:

1. Start with i + a empty partitions. Assign m records to each
partition. The remaining number of records is b. This step is
based on Equation (6).

2. Equation (7) means that we can split b records over i groups
such that each group receives at most M − m records. Since
we already have i+ a groups each of sizem, addingM −m to
i groups out of them will increase their sizes to M which still
keeps them in the valid range [m,M]. The remaining groups
will still havem records making them valid too.

This completes the proof of Lemma 2.

Based on Lemma 2, a question is raised as how large the
size of sample points S should be to ensure that a good block
utilization is achievable. As we mentioned from beginning, R*-
Grove allows us to configure a parameter α = m/M, that called
balance factor, is computed as the ratio between minimum and
maximum number of records of a leaf node in the tree. α should
be close to 1 to guarantee a good block utilization. Let’s assume
that 0 < r ≤ 1 is the sampling ratio and p is the storage size of
a single point. The maximum number of recordsM is computed
in the section 4.1 as:

M =
⌈

|S| · B
D

⌉

⇒ M =
⌈

|S| · p
D

·
B

p

⌉

⇒ M =
⌈

r · B
p

⌉

(8)

From Equation (8), we can rewrite Lemma 2 as:

|S| ≥ S∗ =
⌈

m

M −m

⌉

·m ⇒ |S| ≥
⌈

α

1− α

⌉

· α ·
⌈

r · B
p

⌉

⇒ |S| · p ≥
⌈

α

1− α

⌉

· α · ⌈r · B⌉ (9)

Therefore, assume that we want to configure the balance factor
as α = 0.95, sample ratio r = 1%, and block size B = 128 MB,
then the term |S|·p in Equation (9) would be computed as 23MB.
In other words, if the storage size of sample points |S| · p ≥ 23
MB, it will be guaranteed to produce a valid partitioning. This is a
reasonable size that can be stored in main memory and processed
in a single machine.

Frontiers in Big Data | www.frontiersin.org 7 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

Algorithm 3 Choose the split point with weights
Inputs: P is the all sample records; w is an array of weights of
corresponding records in P; [m,M] is the target range of sizes for
final partitions.
Output: the optimal splitting position.

1: function CHOOSEWEIGHTEDSPLITPOINT(P,w,m)
2: W =

∑

1≤i≤|P| wi

3: for k in [m, |P| −m] do
4: W1 =

∑

1≤i≤k wi

5: if eitherW1 orW −W1 is invalid then ⊲ Lemma 1
6: Skip this iteration and continue

7: Similar to Lines 4-8 in Algorithm 1

8: return chosenK

4.3. Load Balancing for Datasets With
Variable-Size Records
The above two approaches can be combined to produce high-
quality and balanced partitions in terms of number of records.
However, the partitioning technique needs to write the actual
records in each partition and often these records are of variable
sizes. For example, the sizes of records in the OSM-Objects
dataset (allobjects, 2019) range from 12 bytes to 10 MB per
record. Therefore, balancing the number of records can result in
a huge variance in the partition sizes in terms of number of bytes.

To overcome this limitation, we combine the sample points
with a storage size histogram of the input as follows. The storage
size histogram is used to assign a weight to each sample point
that represents the total size of all records in its vicinity. To find
these weights, Phase 1 computes, in addition to the sample, a
storage size histogram of the input. This histogram is created by
overlaying a uniform grid on the input space and computing the
total size of all records that lie in each grid cell (Chasparis and
Eldawy, 2017; Siddique et al., 2019). This histogram is computed
on the full dataset not the sample, therefore, it catches the actual
size of the input. After that, we count the number of sample points
in each grid cell. Finally, we divide the total weight of each cell
among all sample points in this cell. For example, if a cell has a
weight of 1,000 bytes and contains five sample points, the weight
of each point in this cell becomes 200 bytes.

In Phase 2, the SPLITNODE function is further improved to
balance the total weight of the points in each partition rather
than the number of points. This also requires modifying the
value of M to be M =

⌈
∑

wi/N
⌉

, where wi is the assigned
weight to the sample point pi, and N is the desired number of
partitions. Algorithm 3 shows how the algorithm is modified to
take the weights into account. Line 4 calculates the weight of each
partitioning point which is used to test the validity of this split
point as shown in Line 5.

Unfortunately, if we apply this change, the algorithm is no
longer guaranteed to produce balanced partitions. The reason is
that the proof of Lemma 1 is no longer valid. That proof assumed
that the partition sizes are defined in terms of number of records
which makes all possible partition sizes part of the search space
in the for-loop in Line 2 of Algorithm 2. However, when the size

of each partition is the sum of the weights, the possible sizes are
limited to the weights of the points. For example, let us assume a
partition with five points all of the same weight wi = 200 while
m = 450 and M = 550. The condition in Definition 6 suggests
that the total weight 1, 000 is valid because L = ⌈1, 000/550⌉ =
2 ≤ U = ⌊1000/450⌋ = 2. However, given the weights wi = 200
for i ∈ [1, 5], there is no valid partitioning, i.e., there is no way
to make two partitions each with a total weight in the range
[450, 550].

To overcome this issue, this part further improves the
SPLITNODE algorithm so that it still guarantees a valid
partitioning even for the case described above. The key idea
is to make minimal changes to the weights to ensure that
the algorithm will terminate with a valid partitioning; we call
this process weight correction. For example, the case described
earlier will be resolved by changing the weights of two points
from 200 and 200 to 100 and 300. This will result in the valid
partitioning {200, 200, 100} and {300, 200} which is valid. Keep
in mind that these weights are approximate anyway as they are
based on the sample and histogram so these minimal changes
would not hugely affect the overall quality, yet, they ensure
that the algorithm will terminate correctly. The following part
describes how these weight changes are applied while ensuring
a valid answer.

First of all, we assume that the points are already sorted along
the chosen axis as explained in section 4.1. Further, we assume
that Algorithm 3 failed by not finding any valid partitions, i.e.,
return −1. Now, we make the following definitions to use them
in the weight update function.

DEFINITION 7. Point position: Let pi be point #i in the sort order
and its weight is wi. We define the position of the point i as posi =
∑

j≤i wj.

Based on this definition, we can place all the points on a linear
scale based on their position as shown in Figure 3A.

DEFINITION 8. Valid left range: A range of positions VL =
[vls, vle] is a valid left range if for all positions vl ∈ VL the value vl
is valid w.r.t. [m,M]. All the valid left ranges can be written in the
form [im, iM] where i is a natural number and they might overlap
for large values of i (see Figure 3B).

DEFINITION 9. Valid right range: A range of positions VR =
[vrs, vre] is a valid right range if for all positions vr ∈ VR the value
W − vr is valid w.r.t. [m,M]. Similar to valid left ranges, all valid
right ranges can be written in the form [W − jM,W − jm], where
W =

∑

wi (see Figure 3B).

DEFINITION 10. Valid range: A range of positions V = [vs, ve]
is valid if for all positions v ∈ V, v belongs to at least one valid
left range and at least one valid right range. In other words, the
valid ranges are the intersection of the valid left ranges and valid
right ranges.

Figure 3B illustrates the valid left, valid right, and valid ranges.
If we split a partition around a point with a position in a valid
left range, the first partition will be valid. Similarly for valid

Frontiers in Big Data | www.frontiersin.org 8 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 3 | Load balancing for datasets with variable-size records. (A)

Positions of points, (B) Valid ranges, (C) Weight correction.

right positions the second partition (on the right) will be valid.
Therefore, we would like to split a partition around a point in
one of the valid ranges (intersection of left and right).

LEMMA 3. Empty valid ranges: If Algorithm 3 fails by returning
−1, then none of the point positions in P falls in a valid range.

PROOF. By contradiction, let a point pi has a position posi that
falls in a valid range. In this case, the partitions P1 = {pk : k ≤
i} and P2 = {pl : l > i} are both valid partitions because
the total weight of P1 is equal to the position posi which is
valid because posi falls in a valid left range. Similarly, the total
weight of P2 is valid because posi falls in a valid right range.
In this case, Algorithm 3 should have found this partitioning
as a valid partitioning because it tests all the points which
is a contradiction.

A corollary to Lemma 3 is that when Algorithm 3 fails by
returning−1, then all valid ranges are empty.

As a result, we would like to slightly modify the weights of
some points in the sample points in order to enforce some points
to fall in valid ranges. We call this the weight correction process.
This process is described in the following lemma:

LEMMA 4. Weight correction: Given any empty valid range
[vs, ve], we can modify the weight of only two points such that the
position of one of them will fall in the range.

PROOF. Figure 3C illustrates the proof of this lemma. Given an
empty valid range, we modify the two points with positions that
follow the empty valid range, p1 and p2, where pos1 < pos2.
We would like to move the point p1 to the new position pos′1 =
(vs + ve)/2 which is in the middle of the empty valid range. To
do that, we reduce the weight w1 by 1pos = pos1 − pos′1. The
updated weight w′

1 = w1 − 1pos. To keep the position of p2 and
all the following points intact, we have to also increase the weight
of p2 by 1pos; that is, w′

2 = w2 + 1pos.

We do the weight correction process for all empty valid ranges
to make them non-empty and then we repeat Algorithm 3 to
choose the best one among them.

The only remaining part is how to enumerate all the valid
ranges. The idea is to simply find a valid left range, an overlapping
valid right range, and compute their intersection, all in constant
time. Given a natural number i, the valid left range is in the form
[im, iM]. Assume that this range overlaps a valid right range in
the form [W − jM,W − jm]. Since they overlap, the following
two inequalities should hold:

W − jm ≥ im ⇒ j <
W − im

m

W − jM ≤ iM ⇒ j >
W − iM

M

Therefore, the lower bound of j is j1 =
⌈

W−i·M
M

⌉

and the upper

bound of j is j2 =
⌊

W−i·m
m

⌋

. If j1 ≤ j2, then there is a solution
to these inequalities which we use to generate the bounds of the
valid range [vs, ve]. Notice that if there is more than one valid
solution to j, all of them should be considered to generate all the
valid ranges but we omit this special case for brevity.

4.4. Implementation Considerations
4.4.1. Optimization of Phase 3
TheCHOOSESUBTREE operation in R*-tree chooses the node that
results in the least overlap increase with its siblings (Beckmann
et al., 1990). A straight-forward implementation of this method is
O(n2) as it needs to compute the overlap between each candidate
partition and all other partitions. In the R*-tree index, this cost
is limited due to the limited size of each node. However, this
step can be too slow as the number of partitions in R*-Grove
can be extremely large. To speed up this step, we use a K-d-tree-
like auxiliary search structure as shown in Figure 4. This index
structure is generated during Phase 2 as the partition boundaries
are computed. Each time the NODESPLIT operation completes,
the search structure is updated by adding a corresponding split
in the direction of the chosen split axis. This auxiliary search
structure is stored in memory and replicated to all nodes. It will
be used in Phase 3, when we physically store the input records
to the partitions. Given a spatial record, it will be assigned to
the corresponding partition using a search algorithm which is

Frontiers in Big Data | www.frontiersin.org 9 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 4 | Auxiliary search structure for R*-Grove.

similar to the K-d-tree’s point search algorithm (Bentley, 1975).
Based on this similarity, we can estimate the running time to
choose a partition to be O(log(n)). Notice that this optimization
is not applicable in traditional R*-trees as the partitions might be
overlapping while in R*-Grove we utilize the fact that we only
partition points which guarantees disjoint partitions.

Since the partition MBRs in Phase 2 are computed from
sample objects, there will be objects which do not fall in any
partition in Phase 3. R*-Grove addresses this problem in two
ways. First, if no disjoint partitions are desired, it chooses a
single partition based on the CHOOSELEAF method in original
R*-tree. In short, an object will be assigned to the partition
in which the enlarged area or margin is minimal. Second, if
disjoint partitions are desired, R*-Grove uses the auxiliary data
structure, which covers the entire space, to assign this record to
all overlapping partitions.

4.4.2. Disjoint Indexes
Another advantage of using the auxiliary search structure
described above, is that it allows for building a disjoint index.
This search structure naturally provides disjoint partitions. To
ensure that the partitions cover the entire input space, we assume
that input region is infinite, that is, starts from −∞ and ends at
+∞ in all dimensions. Then, Phase 3 replicates each record to
all overlapping partitions by directly searching in this k-d-tree-
like structure with range search algorithm, which has the O(

√
n)

running time (Lee and Wong, 1977). This advantage was not
possible with the black-box R*-tree implementation as it is not
guaranteed to provide disjoint partitions.

5. CASE STUDIES

This section describes three case studies where the R*-Grove
partitioning technique can improve big spatial data processing.
We consider three fundamental operations, namely, indexing,
range query, and spatial join.

5.1. Indexing
Spatial data indexing is an essential component in most big
spatial data management systems. The state-of-the-art global
indexing techniques rely on reusing existing index structures

with a sample which are shown to be inefficient in terms of quality
and load balancing (Vo et al., 2014; Eldawy et al., 2015a; Yu et al.,
2015).

R*-Grove partitioning can be used for the global indexing
step which partitions records across machines. In big spatial data
indexing, the global index is the most crucial step as it ensures
load balancing and efficient pruning when the index is used.
If only the number of records needs to be balanced or if the
records are roughly equi-sized, then the techniques described in
sections 4.1 and 4.2 can be used. If the records are of a variable
size and the total sizes of partitions need to be balanced, then
the histogram-based step in section 4.3 can be added to ensure a
higher load balance. Notice that the index would hugely benefit
from the balanced partition size as it reduces the total number of
blocks in the output file which improves the performance of all
Spark and MapReduce queries that create one task per file block.

5.2. Range Query
Range query is a popular spatial query, which is also the building
block of many other complex spatial queries. Previous studies
found a strong correlation between the performance of range
queries and the performance of other queries such as spatial
join (Hoel and Samet, 1994; Eldawy et al., 2015a). Therefore,
the performance of range query could be considered as a good
reflection about the quality of a partitioning technique. A good
partitioning technique allows the query processor to make two
optimization techniques. First, it can prune the partitions that
are completely outside the query range. Second, it can directly
write to the output the partitions that are completely contained
in the query range without further processing (Eldawy et al.,
2017). For very small ranges, most partitioning techniques
will behave similarly as it is most likely that the small
query overlaps one partition and no partitions are completely
contained (Eldawy et al., 2015a). However, as the query range
increases, the differences between the partitioning techniques
become apparent. Since most range queries are expected to be
square-like, the R*-Grove partitioning is expected to perform
very well as it minimizes the total margin which produces
square-like partitions. Furthermore, the balanced load across
partitionsminimizes the straggler effect where one partition takes
significantly longer time than all other partitions.

5.3. Spatial Join
Spatial join is another important spatial query that benefits from
the improved R*-Grove partitioning technique. In spatial join,
two big datasets need to be combined to find all the overlapping
pairs of records. To support spatial join on partitioned big spatial
data, each dataset is partitioned independently. Then, a spatial
join runs between the partition boundaries to find all pairs
of overlapping partitions. Finally, these pairs of partitions are
processed in parallel. An existing approach (Zhou et al., 1998)
preserves spatial locality to reduce the processing jobs. However,
it still relies on traditional index like R-Tree, which also inherited
its limitations. The R*-Grove partitioning has two advantages
for the spatial join operation. First, it is expected to reduce
the number of partitions by increasing the load balance which

Frontiers in Big Data | www.frontiersin.org 10 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

TABLE 1 | Datasets for experiments.

Dataset Type Dimensions Size (GB) # Records

(1) OSM-Nodes Point 2 500 7.4 billions

(2) OSM-Roads Line segments 2 20 59 millions

(3) OSM-Parks Polygon 2 7.2 10 millions

(4) OSM-Objects Polygon 2 96 264 millions

(5) NYC-Taxi Point 4,5,7 46 173 millions

(6) Diagonal points Point 3,4,5,9 100 80 millions

reduces the total number of pairs. Second, it produces square-like
partitions which is expected to overlap with fewer partitions of
the other dataset as compared to the very thin and wide partitions
that the STR or other partitioning techniques produce. These
advantages allows R*-Grove to significantly outperform other
partitioning techniques in spatial join query performance. We
will validate these advantages in the section 6.5.2.

6. EXPERIMENTS

In this section, we carry out an extensive experimental study to
validate the advantages of R*-Grove over widely used partitioning
techniques, such as bulk loading STR, Kd-tree, Z-Curve, and
Hilbert curve. We will show how R*-Grove addresses the current
limitations of those techniques, leads to a better performance
in big spatial data processing. In addition, we also show other
capabilities of R*-Grove in the context of big spatial data, for
example, how it works with large or multi-dimensional datasets.
The experimental results in this section provide an evidence to
the spatial community to start using R*-Grove if they would like
to improve the system performance of their spatial applications.

6.1. Experimental Setup
6.1.1. Datasets
Table 1 summarizes the datasets will be used in our experiments.
We use both real world and synthetic datasets for our
experiments: (1) Semi-synthetic OpenStreetMap (OSM-Nodes)
dataset with 7.4 billion points and a total size of 500 GB. This
is a semi-synthetic dataset which represents all the points in
the world. The points in this dataset are generated within a
pre-specified distance from original points from OSM-Nodes
dataset; (2) OSM-Roads with size 20 GB; and (3) OSM Parks
with size 7.2 GB, which contain line segments and polygons for
spatial join experiments. (4) OSM-Objects dataset with size 92
GB, which contains many variable-size records. (5) NYC-Taxi
dataset with size 41.7 GB with up-to seven dimensions. All
of those datasets are available online on UCR-STAR (ucrstar,
2019)—our public repository for spatial data; (6) Synthetic multi-
dimensional diagonal points, with the number of dimensions
are 3, 4, 5, and 9. This synthetic dataset is generated using our
open source Spatial Data Generator (Vu et al., 2019). Dataset
(5) and (6) allow us to show the advantages of R*-Grove in
multi-dimensional datasets.

6.1.2. Parameters and Performance Metrics
In the following experiments, we partition the mentioned
datasets with different datasets size |D| in different techniques
then we measure: (1) partition quality metrics, namely, total
partition area, total partition margin, total partition overlap,
block utilization(maximum is 1.0, i.e. 100%), standard deviation
of partition size in MB (load balance). Notice that unit is
not relevant for area, margin and overlap metric; (2) total
partitioning time (in seconds), (3) for range queries, we measure
the number of processed blocks and query running time, (4) for
spatial join, we measure the number of processed blocks and total
running time. We fix the balance factor α = 0.95 and HDFS
block size at 128 MB.

6.1.3. Machine Specs
All the experiments are executed on a cluster of one head node
and 12 worker nodes, each having 12 cores, 64 GB of RAM, and a
10 TB HDD. They run CentOS 7 and Oracle Java 1.8.0_131. The
cluster is equipped with Apache Spark 2.3.0 and Apache Hadoop
2.9.0. The proposed indexes are available for running in both
Spark and Hadoop. Unless otherwise mentioned, we use Spark
by default. The source code is available at https://bitbucket.org/
tvu032/beast-tv/src/rsgrove/. The implementation for R*-Grove
(RSGrovePartitioner) is located at indexing package.

6.1.4. Baseline Techniques
We compare R*-Grove to K-d Tree, STR, Z-curve, and Hilbert
curve (denoted H-Curve thereafter) which are widely used in
existing big spatial data systems (Eldawy and Mokbel, 2016).
Z-Curve is adopted in some systems under the name Geohash
which behaves in the same way.

6.2. Effectiveness of the Proposed
Improvements in R*-Grove
In this experiment, we compare the three following variants of
R*-Grove: (1) R*-tree-black-box is the application of the method
in section 4.1. Simply, it uses the basic R*-tree algorithm to
compute high-quality partition but it does not guarantee a high
block utilization or load balance. (2) R*-tree-gray-box applies the
improvements in sections 4.1 and 4.2. In addition to the high-
quality partition, this method can also guarantee a high block
utilization in terms of number of records per partition but it does
not performwell if records have highly-variable sizes since it does
not include the size adjustment technique in section 4.3. (3) R*-
Grove applies all the three improvements at sections 4.1, 4.2,
and 4.3. It has the advantage of producing high-quality partitions
and can also guarantee a high block utilization in terms of storage
size even when the record sizes are highly variable.

In Figure 5, we partition the OSM-Objects dataset,
which contains variable-size records to validate our proposed
improvements. Overall, R*-Grove outperforms R*-tree-black-
box and R*-tree-gray-box in all of spatial quality metrics.
Especially, R*-Grove provides excellent load balance between
partitions as shown in Figure 5D, which is the standard deviation
of partition size in OSM-Objects dataset. Given the HDFS
block size is 128 MB, R*-Grove has the standard deviation of
partition size 5 − 6 times smaller than R*-Tree-gray-box and

Frontiers in Big Data | www.frontiersin.org 11 August 2020 | Volume 3 | Article 28

https://bitbucket.org/tvu032/beast-tv/src/rsgrove/
https://bitbucket.org/tvu032/beast-tv/src/rsgrove/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 5 | Partition quality with variable-record-size dataset in R*-Grove and its two variants, R*-tree-black-box and R*-tree-gray-box. (A) Total area, (B) Total

margin, (C) Block utilization, (D) Load balance.

R*-Tree-black-box. Since then, the following experiments will
evaluate the performance of R*-Grove with existing widely-used
spatial partitioning techniques.

6.3. Results Overview
Figure 6 shows an overview of the advantages of R*-Grove over
other partitioning techniques for indexing, range query, and
spatial join. In this experiment, we compare to four popular
baseline techniques, namely, STR, Kd-Tree, Z-Curve, and H-
Curve. We use OSM-Nodes dataset (ucrstar, 2019) for this
experiment. The numbers on the y − axis are normalized to
the largest number for a better representation except for block
utilization which is reported as-is. Except for block utilization,
the lower the value in the chart the better it is. The first two
groups, total area and total margin, show that index quality of
R*-Grove is clearly better than other baselines in both measures.
For block utilization, on average, a partition in R*-Grove occupy
around 90%, while other techniques could only utilize 60 − 70%
storage capacity of an HDFS block. R*-Grove also has a better
load balance when compared to other techniques. The last two
groups indicate that R*-Grove significantly outperforms other
partitioning techniques in terms of range query and spatial join
query performance. We will go into further details in the rest of
this section.

6.4. Partition Quality
This section shows the advantages of R*-Grove for indexing big
spatial data when compared to other partitioning techniques.
We use OSM-Nodes and OSM-Objects dataset with size up
to 200 and 92 GB, respectively. We compare five techniques,
namely, R*-Grove, STR, Kd-Tree, Z-Curve and H-Curve. We
implemented those techniques on Spark with sampling-based
partitioning mechanism. Figures 7A, 8A show that there is no
significant difference of indexing performance between different
techniques. This result is expected since the main difference
between them is in Phase 2 which runs on a single machine on
a sample of a small size (and a histogram in case of R*-Grove).
Typically, Phase 2 takes only a few seconds to finish. These results
suggest that the proposed R*-Grove algorithm requires the same
computational resources as the baseline techniques. Meanwhile,
it provides a better query performance by providing a higher
partition quality as detailed next.

6.4.1. Total Area and Total Margin
Figures 7B, 8B show the total area of indexed datasets when we
vary the OSM-Nodes and OSM-Objects dataset size from 20
to 200 GB and 16 to 92 GB, respectively. R*-Grove is the winner
since it minimizes the total area of all partitions. While H-Curve
performs generally better than Z-Curve, they are both doing
bad since they do not take partition area into account in their

Frontiers in Big Data | www.frontiersin.org 12 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 6 | The advantages of R*-Grove when compared to existing partitioning techniques.

FIGURE 7 | Indexing performance and partition quality of R*-Grove and other partitioning techniques in OSM-Nodes datasets with similar-size records. (A) Partitioning

time, (B) Total area, (C) Total margin, (D) Block utilization, (E) Load balance, (F) Range query performance.

optimization criteria. Specially, Figure 8B strongly validates the
advantages of R*-Grove in non-point datasets. Figures 7C, 8C
report the total margin for the same experiment. R*-Grove is the
clear winner because it inherits the splitting mechanism of R*-
Tree, which is the only one among all those that tries to produce
square-like partitions. As the input size increases, more partitions
are generated which causes the total margin to increase.

6.4.2. Block Utilization
Figures 7D, 8D show the block utilization as the input size
increases. R*-Grove outperforms other partitioning techniques
due to the proposed improvements in sections 4.2 and 4.3
specifically improve block utilization. Using R*-Grove, each

partition almost occupies a full block in HDFS which increases
the overall block utilization. Z-Curve and H-Curve perform
similarly since they produce equi-sized partition by creating split
points along the curve. The high variability of the Kd-tree is due
to the way it partitions the space at each iteration. Since it always
partitions the space along the median, it only works perfectly if
the number of partitions is a power of two; otherwise, it could
be very inefficient. This occasionally results in partitions of high
block utilization but they could be highly variable in size.

6.4.3. Load Balance
Figures 7E, 8E show the standard deviation of partition size
in MB for the OSM-Nodes and OSM-Objects datasets,

Frontiers in Big Data | www.frontiersin.org 13 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 8 | Indexing performance and partition quality of R*-Grove and other partitioning techniques in OSM-Objects dataset with variable-size records. (A)

Partitioning time, (B) Total area, (C) Total margin, (D) Block utilization, (E) Load balance, (F) Average range query cost.

respectively. Note that the HDFS block size is set to 128 MB.
A smaller standard deviation indicates a better load balance. In
Figure 7E, the dataset OSM-Nodes contains records of almost
the same size so R*-Grove performs only slightly better than Z-
Curve, H-Curve, and STR even though these three techniques
try to primarily balance the partition sizes. In Figure 8E, the
OSM-Objects dataset contains highly variable record sizes. In
this case, R*-Grove is way better than all other techniques as it
is the only one that employs the storage histogram to balance
variable size records. In particular, we observe that the standard
deviation of partition size on STR, Kd-Tree, Z-Curve, and H-
Curve is about 50–60% of the HDFS block size. Meanwhile, R*-
Grove maintains a value around 10 MB, which is only 8% of the
block size.

6.4.4. Effect of Sampling Ratio
Since the proposed R*-Grove follows the sampling-based
partitioning mechanism, a valid question is how the sampling
ratio affects partition quality and performance? In this
experiment, we execute several partitioning operations using
R*-Grove in OSM-Objects datasets. All the partitioning
parameters are kept fixed, except the sampling ratio, which is
varying from 0.001 to 3%. For each sampling ratio value, we
execute the partition operation three times, then compute the
average and standard deviation of quality measures and partition
construction time. Partition construction is the process that
compute partition MBRs from the sample. Figure 9 uses the

average values to plot the line and the standard deviation for
the error bars. First, Figure 9A shows that the higher sampling
ratio requires higher time for the partition construction
process. This is expected due to the number of sample records
which the partitioner has to use to compute partition MBRs.
Figures 9B–E show the downward trend of total area, total
margin, total overlap, and standard deviation of partition size.
Figure 9F shows the upward trend of block utilization when
the sampling ratio increases. In addition, the standard deviation
of small sampling ratios is much higher than that for high
sampling ratios. These results indicates that the higher sampling
ratios promise better partition quality. However, an important
observation is that the partition quality measures start stabilizing
for sampling ratios larger than 1%. This behavior was also
validated in a previous work (Eldawy et al., 2015a). In short, this
work shows that a sample ratio of 1% dataset is enough to achieve
virtually a same partition quality as sample ratio 100%. In the
following experiments, we choose 1% as the default sampling
ratio for all partitioning techniques.

6.4.5. Effect of Minimum Split Ratio
In section 4.1, we introduced parameter ρ, namely minimum
splitting ratio, to speed up the running time of SPLITNODE

algorithm used in Phase 2, boundary computation. In this
experiment, we verify how the minimum splitting ratio
impacts the partition quality and performance. We also use
OSM-Objects dataset with R*-Grove partitioning as the

Frontiers in Big Data | www.frontiersin.org 14 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 9 | Indexing performance and partition quality of R*-Grove in OSM-Objects datasets with different sampling ratios. (A) Partition construction time, (B) Total

area, (C) Total margin, (D) Total overlap, (E) Load balance, (F) Block utilization.

FIGURE 10 | Indexing performance and partition quality of R*-Grove in OSM-Objects datasets with different minimum splitting ratios. (A) Partition construction time,

(B) Total area, (C) Total margin, (D) Total overlap, (E) Load balance, (F) Block utilization.

Frontiers in Big Data | www.frontiersin.org 15 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

previous experiment in section 6.4.4. We vary ρ from 0 to 0.45.
Figure 10 shows the overview of the experimental results. First,
Figure 10A shows that the running time of Phase 2, boundary
computation, decreases as ρ increases which is expected due to
the balanced splitting in the recursive algorithm which causes
it to terminate earlier. According to the run-time analysis in
section 4.1, a larger value of ρ reduces the depth of the recursive
formula which results in a lower running time. However, this
minimum splitting ratio also shrinks the search space for optimal
partitioning scheme. Fortunately, the number of records in the
1% sample is usually large enough such that the boundary
computation algorithm could still find a good partitioning
scheme even for high value of ρ. In the following experiments,
we choose ρ = 0.4 as the default value for R*-Grove partitioning.

6.5. Spatial Query Performance
6.5.1. Range Query
Figure 7F shows the performance of range query on the
OSM-Nodes dataset with size 200 GB. For partitioned
OSM-Nodes dataset, we run a number of range queries (from
200 to 1, 200) all with the same range query size which is 0.01%
of the area covered by the entire input. All the queries are sent in
one batch to run in parallel to put the cluster at full utilization. It
is clear that R*-Grove outperforms all other techniques, especially
when we run a large number of queries. This is the result of the
high-quality and load-balanced partitions which minimize the
number of blocks needed to process for each query. Figure 8F
shows the average cost of a range query on the OSM-Objects
dataset in terms of number of blocks that need to be processed,
the lower the better. This value is also computed for a range query
with size 0.01% of space area. This result further confirms that
R*-Grove provide a better query performance for variable-size
records datasets.

6.5.2. Spatial Join
In this experiment, we split OSM-Parks and OSM-Roads
datasets to get multiple datasets as follows: Parks1, Park2
with sizes 3.6 and 7.2 GB; Roads1 and Roads2 with sizes 10
and 20 GB, respectively. This allows us to study the effect of the
input size on the spatial join query while keeping the input data
characteristics the same, i.e., distribution and geometry size. We

compare to STR since it is the best competitor of R*-Grove in
previous experiments. Figure 11 shows the performance of the
spatial join query. In general, R*-Grove significantly outperforms
STR in all query instances.

Figure 11A shows the number of accessed blocks for each
spatial join query over the datasets which are partitioned
by R*-Grove and STR. We can notice that R*-Grove needs
to access 40–60% fewer blocks than STR for two reasons.
First, the better load balance in R*-Grove reduces the overall
number of blocks in each dataset. Second, the higher partition
quality in R*-Grove results in fewer overlapping partitions
between the two datasets. The number of accessed blocks is
an indicator to estimate the actual performance of spatial
join queries. Indeed, this is further verified in Figure 11B,
which shows actual running time for those queries. As we
described, STR does not produce high quality partitions, thus
the compound effect will even make it worst for spatial join
query, which always relates to multiple STR partitioned datasets.
On the other hand, R*-Grove addresses the limitations of
STR so it can significantly improve the performance of spatial
join query.

FIGURE 12 | The scalability of R*-Grove partitioning in Spark and Hadoop.

FIGURE 11 | Spatial join performance in R*-Grove and STR partitioning. (A) Number of processing blocks, (B) Running time in seconds.

Frontiers in Big Data | www.frontiersin.org 16 August 2020 | Volume 3 | Article 28

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

FIGURE 13 | Indexing performance and partition quality of R*-Grove and other partitioning techniques on synthetic multi-dimensional dataset. (A) Partitioning

time, (B) Total volume, (C) Total margin, (D) Block utilization, (E) Load balance, (F) Range query performance.

FIGURE 14 | Indexing performance and partition quality of R*-Grove and other partitioning techniques on multi-dimensional NYC-Taxi dataset. (A) Partitioning time,

(B) Total volume, (C) Total margin, (D) Block utilization, (E) Load balance, (F) Range query performance.

6.6. Performance on Larger Datasets and
Multi-Dimensional Data
6.6.1. Scalability
Figure 12 shows the indexing time for two-dimensional
OSM-Nodes dataset with sizes 100, 200, 300, and 500 GB. We
executed the same indexing jobs in both Spark and Hadoop to
see how the processing model affects the indexing performance.
We observed that Spark outperforms Hadoop in terms of total
indexing time. This experiment also demonstrates that R*-Grove
is ready to work with large volume datasets on both Hadoop and
Spark. We also observe that the gap between Hadoop and Spark
decreases as the input size increases as Spark starts to spill more
data to disk.

6.6.2. Multi-Dimensional Datasets
In this experiment, we study the quality of R*-Grove on multi-
dimensional datasets. Inspired by Beckmann and Seeger (2008),
we use four synthetic datasets with number of dimensions

3, 4, 5, and 9. We measure the running time and the quality

of the five partitioning techniques: R*-Grove, STR, Kd-Tree, Z-
Curve, and H-Curve. Figure 13A shows that R*-Grove is mostly

the fastest technique to index the input dataset due to the best
load balance among partitions. Figure 13B shows that R*-Grove
significantly reduces total area of partitions. Figure 13C shows
the total margin of all the techniques. While the total margin
varies with the number of dimensions since they are different
datasets, the techniques maintain the same order in terms of

Frontiers in Big Data | www.frontiersin.org 17 August 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

quality from best to worst, i.e., R*-Grove, Z-Curve, Kd-tree, STR,
and H-Curve, except the last group, where H-Curve is better than
STR. This experiment indicates that R*-Grove could maintain
its characteristics for multi-dimensional datasets. Figures 13D,E
report the block utilization and standard deviation of partition
size, respectively. R*-Grove is the best technique that keeps
both measures good. Figure 13F depicts the normalized range
query performance of different techniques, which affirms the
advantages of R*-Grove. Notice that this is the only experiment
where Z-Curve performs better than H-Curve. The reason is that
the generated points are generated close to a diagonal line in
the d-dimension. Since the Z-Curve just interleaves the bits of
all dimensions, it will result in sorting these points along the
diagonal line which results in a good partitioning. However, the
way H-Curve rotates the space with each level will cause it to
jump across the diagonal.

Additionally, STR becomes very bad as the number
dimensions increases. This can be explained by the way
STR computes the number of partitions given a sample data
points. The existing STR implementation always creates a tree
with a fixed node degree n and d levels where d is the number
of dimensions. This configuration results in nd leaf nodes or
partitions. It computes the node degree n as the smallest integer
that satisfies nd ≥ P where P is the number of desired partitions.
For example, for an input dataset of 100 GB, d = 9 dimensions,
and a block size of B = 128 MB, the number of desired partitions
P = 100 · 1, 024/128 = 800 partitions and n = 3. This
results in a total of 39 = 19, 683 partitions. Obviously, as d
increases, the gap between the ideal number of partitions P
and the actual number of partitions nd increases which results
in a very poor block utilization as shown in this experiment.
Finally, Figure 13F shows the average cost of a range query
in terms of number of processed blocks, which indicates that
R*-Grove is the winner when we want to speed up spatial query
processing.

To further support our findings, we also execute similar
experiment on NYC-Taxi dataset, which contains up to seven
dimensions as follows: pickup_latitude, pickup_longitude,
dropoff _latitude, dropoff _longitude, pickup_datetime,
trip_time_in_secs, trip_distance. These attribute values are
normalized in order to avoid the dominance of some columns.
We decide to partition this dataset using multiple attributes
which is picked in the aformentioned order with size 4, 5, and
7. Figure 14 shows that R*-Grove balances all the different
quality metrics. Specially, Figure 14F indicates that R*-
Grove is the winner when compared to other techniques
in terms of spatial query performance. We also notice
that H-Curve performs better than Z-Curve with this real
dataset. We conclude that R*-Grove is a better option for
indexing multi-dimensional spatial data since it outperforms

or got an equivalent performance with other indexes in all
metrics.

7. CONCLUSION

This paper proposes R*-Grove, a novel partitioning technique
which can be widely used in many big spatial data processing
systems. We highlighted three limitations in existing partitioning
techniques such as STR, Kd-Tree, Z-Curve, and Hilbert Curve.
These limitations are the low quality of the partitions, the
imbalance among partitions, and the failure to handle variable-
size records. We showed that R*-Grove overcomes these three
limitations to produce high quality partitions. We showed three
case studies in which R*-Grove can be used to facilitate big
spatial indexing, range query, and spatial join. An extensive
experimental evaluation was carried out on big spatial datasets
and showed that R*-Grove is scalable and speeds up all the
operations in the case studies.We believe that R*-Grove promises
to be a good replacement to existing big spatial data partitioning
techniques in many systems. In the future, we will further
study the proposed technique for in-memory and streaming
applications to see how it behaves under these architectures.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available
on the UCR Spatio-temporal Active Repository
(UCR-STAR, https://star.cs.ucr.edu/) or on request
to the corresponding author. In particular, we
used OSM2015/all_nodes, OSM2015/roads,
OSM2015/parks, OSM2015/all_objects, NYCTaxi.
For the diagonal points dataset, we generated them
using the spatial data generator (Vu et al., 2019) with following
parameters: dataset size |D| = 80 million points; number of
dimensions d = 3, 4, 5, 9; the percentage (ratio) of the points that
are exactly on the line perc = 0.05; the size of the buffer around
the line where additional points are scattered buf = 0.1.

AUTHOR CONTRIBUTIONS

AE and TV worked on the theoretical proofs, the design, and
implementation of the algorithms. TV wrote the manuscript
and carried out the experimental evaluation with the guidance
of AE. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by the National Science
Foundation (NSF) under grants IIS-1838222 and CNS-1924694.

REFERENCES

allobjects (2019). Openstreetmap All Objects Dataset. Available online at: http://

star.cs.ucr.edu/#dataset=OSM2015/all_objects

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. (1990). “The

R*-tree: an efficient and robust access method for points and

rectangles,” in SIGMOD (Atlantic City, NJ), 322–331. doi: 10.1145/93597.

98741

Frontiers in Big Data | www.frontiersin.org 18 August 2020 | Volume 3 | Article 28

https://star.cs.ucr.edu/
http://star.cs.ucr.edu/#dataset=OSM2015/all_objects
http://star.cs.ucr.edu/#dataset=OSM2015/all_objects
https://doi.org/10.1145/93597.98741
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Vu and Eldawy R*-Grove - Big Spatial Data Partitioning

Beckmann, N., and Seeger, B. (2008). A benchmark for multidimensional index

Structures.

Beckmann, N., and Seeger, B. (2009). “A revised R*-tree in comparison

with related index structures,” in SIGMOD (Providence, RI), 799–812.

doi: 10.1145/1559845.1559929

Bentley, J. L. (1975). Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 509–517. doi: 10.1145/361002.361007

Chasparis, H., and Eldawy, A. (2017). “Experimental evaluation of selectivity

estimation on big spatial data,” in Proceedings of the Fourth International ACM

Workshop on Managing and Mining Enriched Geo-Spatial Data (Chicago, IL),

8:1–8:6.

Dittrich, J., and Seeger, B. (2000). “Data redundancy and duplicate detection in

spatial join processing,” in Proceedings of the 16th International Conference on

Data Engineering (San Diego, CA), 535–546. doi: 10.1109/ICDE.2000.839452

Eldawy, A., et al. (2017). “Sphinx: empowering impala for efficient execution

of SQL queries on big spatial data,” in SSTD (Arlington, VA), 65–83.

doi: 10.1007/978-3-319-64367-0_4

Eldawy, A., Alarabi, L., and Mokbel, M. F. (2015a). Spatial partitioning techniques

in spatial hadoop. PVLDB 8, 1602–1605. doi: 10.14778/2824032.2824057

Eldawy, A., Li, Y., Mokbel, M. F., and Janardan, R. (2013). “Cg_hadoop:

computational geometry in mapreduce,” in SIGSPATIAL (Orlando, FL),

284–293. doi: 10.1145/2525314.2525349

Eldawy, A., andMokbel, M. F. (2015). “Spatialhadoop: a mapreduce framework for

spatial data,” in ICDE (Seoul), 1352–1363. doi: 10.1109/ICDE.2015.7113382

Eldawy, A., and Mokbel, M. F. (2016). The era of big spatial data: a survey. Found.

Trends Databases 6, 163–273. doi: 10.1561/9781680832259

Eldawy, A., Mokbel, M. F., Al-Harthi, S., Alzaidy, A., Tarek, K., and

Ghani, S. (2015b). “SHAHED: A mapreduce-based system for querying

and visualizing spatio-temporal satellite data,” in ICDE (Seoul), 1585–1596.

doi: 10.1109/ICDE.2015.7113427

Eldawy, A., Mokbel, M. F., and Jonathan, C. (2016). “Hadoopviz: A mapreduce

framework for extensible visualization of big spatial data,” in ICDE (Helsinki),

601–612. doi: 10.1109/ICDE.2016.7498274

Fox, A. D., Eichelberger, C. N., Hughes, J. N., and Lyon, S. (2013). “Spatio-temporal

indexing in non-relational distributed databases,” in Big Data (Santa Clara, CA),

291–299. doi: 10.1109/BigData.2013.6691586

Ghosh, S., Eldawy, A., and Jais, S. (2019). “Aid: An adaptive image

data index for interactive multilevel visualization,” in ICDE (Macau).

doi: 10.1109/ICDE.2019.00150

Goodchild, M. F. (2007). Citizens as voluntary sensors: Spatial data infrastructure

in the world of web 2.0. IJSDIR 2, 24–32.

Guttman, Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., A. (1984). “R-

trees: A dynamic index structure for spatial searching,” in SIGMOD (Boston,

MA), 47–57. doi: 10.1145/602259.602266

Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., et al. (2016).

The Age of Analytics: Competing in a Data-Driven World. Technical Report,

McKinsey Global Institute.

Hoel, E. G., and Samet, H. (1994). “Performance of data-parallel spatial

operations,” in VLDB’94, Proceedings of 20th International Conference on Very

Large Data Bases (Santiago de Chile), 156–167.

Jacox, E. H., and Samet, H. (2007). Spatial join techniques. ACM Trans. Database

Syst. 32:7. doi: 10.1145/1206049.1206056

Kamel, I., and Faloutsos, C. (1994). “Hilbert R-tree: an improved r-tree using

fractals,” in VLDB (Santiago de Chile), 500–509.

Lee, D.-T., and Wong, C. (1977). Worst-case analysis for region and partial region

searches in multidimensional binary search trees and balanced quad trees. Acta

Inform. 9, 23–29. doi: 10.1007/BF00263763

Lee, T., and Lee, S. (2003). “Omt: Overlap minimizing top-down bulk loading

algorithm for R-tree,” in CAISE Short Paper Proceedings, Vol. 74, 69–72.

Leutenegger, S. T., Lopez, M. A., and Edgington, J. (1997). “STR: A simple

and efficient algorithm for r-tree packing,” in ICDE (Birmingham), 497–506.

doi: 10.1109/ICDE.1997.582015

Li, Y., Eldawy, A., Xue, J., Knorozova, N., Mokbel, M. F., and Janardan, R.

(2019). Scalable computational geometry in MapReduce. VLDB J. 28, 523–548.

doi: 10.1007/s00778-018-0534-5

Lo, M., and Ravishankar, C. V. (1994). “Spatial joins using seeded trees,” in

SIGMOD (Minneapolis, MN), 209–220. doi: 10.1145/191839.191881

Lu, P., Chen, G., Ooi, B., Vo, H., and Wu, S. (2014). ScalaGiST: scalable

generalized search trees for MapReduce systems. PVLDB, 7, 1797–1808.

doi: 10.14778/2733085.2733087

Magdy, A., Alarabi, L., Al-Harthi, S., Musleh, M., Ghanem, T.

M., Ghani, S., et al. (2014). “Taghreed: a system for querying,

analyzing, and visualizing geotagged microblogs,” in SIGSPATIAL

(Dallas, TX; Fort Worth, TX), 163–172. doi: 10.1145/2666310.

2666397

Nishimura, S., Das, S., Agrawal, D., and El Abbadi, A. (2013). MD-

hbase: design and implementation of an elastic data infrastructure for

cloud-scale location services. Distrib. Parallel Databases 31, 289–319.

doi: 10.1007/s10619-012-7109-z

Sabek, I., and Mokbel, M. F. (2017). “On spatial joins in mapreduce,” in

SIGSPATIAL (Redondo Beach, CA), 21:1–21:10. doi: 10.1145/3139958.3139967

Samet, H. (1984). The quadtree and related hierarchical data

structures. ACM Comput. Surveys 16, 187–260. doi: 10.1145/356924.

356930

Siddique, A. B., Eldawy, A., and Hristidis, V. (2019). Comparing synopsis

techniques for approximate spatial data analysis. Proc. VLDB Endow. 12,

1583–1596. doi: 10.14778/3342263.3342635

Tang, M., Yu, Y., Malluhi, Q. M., Ouzzani, M., and Aref, W. G. (2016).

LocationSpark: a distributed in-memory data management system

for big spatial data. PVLDB 9, 1565–1568. doi: 10.14778/3007263.

3007310

UCRSTAR (2019). The UCR Spatio-Temporal Active Repository (UCR-STAR).

Available online at: https://star.cs.ucr.edu/

Vo, H., Aji, A., andWang, F. (2014). “SATO: a spatial data partitioning framework

for scalable query processing,” in SIGSPATIAL (Dallas, TX; Fort Worth, TX),

545–548. doi: 10.1145/2666310.2666365

Vu, T., and Eldawy, A. (2018). “R-Grove: growing a family of R-trees in the big-

data forest,” in SIGSPATIAL (Seattle, WA), 532–535. doi: 10.1145/3274895.

3274984

Vu, T., Migliorini, S., Eldawy, A., and Belussi, A. (2019). “Spatial data generators,”

in 1st ACM SIGSPATIAL InternationalWorkshop on Spatial Gems (SpatialGems

2019), 7.

Whitman, R. T., Park, M. B., Ambrose, S. M., and Hoel, E. G. (2014). “Spatial

indexing and analytics on Hadoop,” in SIGSPATIAL (Dallas, TX; Fort Worth,

TX), 73–82. doi: 10.1145/2666310.2666387

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). “Simba: Efficient

in-memory spatial analytics,” in SIGMOD (San Francisco, CA), 1071–1085.

doi: 10.1145/2882903.2915237

Yu, J., Wu, J., and Sarwat, M. (2015). “Geospark: a cluster computing framework

for processing large-scale spatial data,” in SIGSPATIAL (Bellevue, WA), 70:1–4.

doi: 10.1145/2820783.2820860

Zhou, X., Abel, D. J., and Truffet, D. (1998). Data partitioning for parallel spatial

join processing. GeoInformatica 2, 175–204. doi: 10.1023/A:1009755931056

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Vu and Eldawy. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org 19 August 2020 | Volume 3 | Article 28

https://doi.org/10.1145/1559845.1559929
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/ICDE.2000.839452
https://doi.org/10.1007/978-3-319-64367-0_4
https://doi.org/10.14778/2824032.2824057
https://doi.org/10.1145/2525314.2525349
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1561/9781680832259
https://doi.org/10.1109/ICDE.2015.7113427
https://doi.org/10.1109/ICDE.2016.7498274
https://doi.org/10.1109/BigData.2013.6691586
https://doi.org/10.1109/ICDE.2019.00150
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/1206049.1206056
https://doi.org/10.1007/BF00263763
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1007/s00778-018-0534-5
https://doi.org/10.1145/191839.191881
https://doi.org/10.14778/2733085.2733087
https://doi.org/10.1145/2666310.2666397
https://doi.org/10.1007/s10619-012-7109-z
https://doi.org/10.1145/3139958.3139967
https://doi.org/10.1145/356924.356930
https://doi.org/10.14778/3342263.3342635
https://doi.org/10.14778/3007263.3007310
https://star.cs.ucr.edu/
https://doi.org/10.1145/2666310.2666365
https://doi.org/10.1145/3274895.3274984
https://doi.org/10.1145/2666310.2666387
https://doi.org/10.1145/2882903.2915237
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1023/A:1009755931056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	R*-Grove: Balanced Spatial Partitioning for Large-Scale Datasets
	1. Introduction
	2. Related Work
	3. Background
	3.1. R*-Tree
	3.2. Sample-Based Partitioning Workflow
	3.3. Quality Metrics

	4. R*-Grove Partitioning
	4.1. R*-Tree-Based Partitioning
	4.1.1. Run-Time Analysis

	4.2. Load Balancing for Partitions With Equal-Size Records
	4.2.1. The Final Finding

	4.3. Load Balancing for Datasets With Variable-Size Records
	4.4. Implementation Considerations
	4.4.1. Optimization of Phase 3
	4.4.2. Disjoint Indexes

	5. Case Studies
	5.1. Indexing
	5.2. Range Query
	5.3. Spatial Join

	6. Experiments
	6.1. Experimental Setup
	6.1.1. Datasets
	6.1.2. Parameters and Performance Metrics
	6.1.3. Machine Specs
	6.1.4. Baseline Techniques

	6.2. Effectiveness of the Proposed Improvements in R*-Grove
	6.3. Results Overview
	6.4. Partition Quality
	6.4.1. Total Area and Total Margin
	6.4.2. Block Utilization
	6.4.3. Load Balance
	6.4.4. Effect of Sampling Ratio
	6.4.5. Effect of Minimum Split Ratio

	6.5. Spatial Query Performance
	6.5.1. Range Query
	6.5.2. Spatial Join

	6.6. Performance on Larger Datasets and Multi-Dimensional Data
	6.6.1. Scalability
	6.6.2. Multi-Dimensional Datasets

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

