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" CURRENT DISTRIBUTION AND MASS TRANSFER IN
ROTATING ELECTRODE SYSTEMS

Kemal Mustafa Nigancioglu
Inorganic Materialé Research Division,
Lawrence Berkeley Laboratory, and

Department of Chemical Engineering;
University of California, Berkeley

ABSTRACT

-Effective‘design and application of electrqchemical syétems réquiré
an adequate understanding of the principles of current distribution
in the presence of mass transfer and complex eleétréde conditioﬁs;‘
Recent advances in the theoretical methods are reviewed here
and some specific applications presented for the disk- and spherical-
electrode systems.

The steady-state current distribution on a disk and a sphere
is compared below the limiting current. Numerical results are given
for the secondary distribution and for Tafel kinetics. At high
rotation speeds, the current distribution for the sphere depends only
on the specified current level and becomes uniform when this level
ié-set below 68 percent of the limiting current at high rotation speeds.
The results disclose a number of complementary aspects of the spherical
electrode alongside the disk electrode in electfoanalytical applications.

Mass transfer to a rotéting disk electrode is calculated at large
times after a concentration step or a flux step at the surface. Radial
dependence of concéntration is ignored. Further application of results

to treat more complex boundary conditions 1s discussed.
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A mathematical model is given to treat the transient behavior
of a disk in the absence of conceﬁtration‘gradiehts. The galvanostatic
and potentiostatic cases are investigated separately. The analyses réduce
to well-defined Soundary value problems, which yield solutions in terms
of newly defined eigenfunctions. The results allow the determination
of time constants characteristic of decay due to an electrode reaction
and due.té a redistribution of charge within the double layer during
the transient process.. An experimental method-is proposed to measure
the double—léyer capacity ﬁtilizing these results.

An asymptotic treatment isvgiven‘for‘the short-time response of
a disk electrode. Numerical results are obtained by expressing the
potential in terms of an integral equétion at the éurface. A similar
formulation 1is used also to calculate the steady-state current.

distribution for large exchange-current densities.



| I. INTRODUCTION

The quality of design and éfficiency of operation of industrial
scale electrochemical systems depend on a knowledge of the principles
of current distribution and electrode processes as well as the
availability of accurate expérimehtal data. The performance of an
électroqhemical cell is determined by the ohmic drop in the solution,
the capacitiﬁe and faradaic impedances of the electrode-solution interface,
and‘the rate at which reactants and products afe replenished or depleted
near the eléct:ode. Information about the nature of these processes is
usually obtained in the laboratory through studies @frtransport properties
of electrolytic sdlutions,,electrode kinetics, and double-layer effects.
Meaningful interpretation of experimental data égain.requires an
understanding of fﬁndamental definitims and prinpiples.

The necessity to colleét fast, acourate, and réﬁroducible experimental
data has lead researchers to develop systems which are well defiﬁed
from the standpoint of hydrodynamics, current disﬁribution, and
mass transfer and provide varying degrees of vefsatility-in application.
Some of these systems are reviewed by Newmanl and Ibl.2 Among the
most commonly used are probably the so célled rotating electrode systéms,
which include the rotating disk and cylinder systems in particular.
The rotating spherical eleétrode has been introduced most recently8
and promises a numbef of possible uses in electroanalytical‘applications

alongside the disk and the cylinder.



Figure 1-1. Rotating disk electrode.
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o Figure 1-2. Rotatingb spherical electrode
‘ (from reference 8).



.l.l. Historical Perspective

The disk, cylinder, and sphere géometries have been quite pbpular
in the past in fundamental studies of heat conduction and fluid mechanics.
The incentive to employ these geometiies as eléctroanalytiCal tools
gained momentum only a few decades ago after L'evich3 treated the’conVective
diffusion problem at a rotating disk electrode. Levich showed that the
disk surfaée is uniformly aeecessible to mass transfer under the limiting
current conditioﬁé. Rotating.cylinders have been employed shortly |
thereafter for mass-transfer research as reviewed by Eisénberg et al.

The disk electrode, howewer, has Been more cumﬁonly émployéd in numeroﬁs
appl;cations evidently due to its simple design (see figure 1) and
operation. Riddiford5 giveé a-detailed accoﬁnt of the evolution of the
disk electrode and its uses in eiectrochemistry. The rotating sphere
(figure 2) has been proposed lately by Chin8 as an alternative to the
disk in high-rate deposition and dissolution studies.

After the verificationvand acceptance of Levich's results, uniform.
accessibility of the disk surface has been taken for granted also in
applications below the 1imi£ing current. Newman6‘treated in the iast
decvade mass transfer in thin diffusion layers, coupled with a non-
uniform electric field in the solution and comﬁlex kinetics at the
electrode. His results for the disk7 showed that the current distribution
at the surface can in fact be highly nonuniform even at current levels
close to the limiting current.

As the methods of analysis §f ;urrent.distfibution problems
reached tﬁeir present levels of sophisticafion, the need for equally

complex models for faradaic and nonfaradaic electrode phenomena became



unavoidable in order to be able to simulate situationS'aé close to the
actual physical processes as possible. The electrochemical literature
. provides ‘an abundance of models and data'for the kinetics of electrode

reactions,gg’loo'

which prer to be sufficient for study of steady-state
processes. Additional comﬁlications due to double-layer charging ha?e
to be taken into account if transient prﬁcesses are of interest.
Faradaic and nonfaradaic phenomena have been treated in the past.as

two indepéndent proéesses until Deléhay42 showed that this independence
cannot be assumed a_priori and has to be tested for each individual
case. Improved methods to treat electrode conditibné have subsequently

been fc:n:mulat:ed.43-46 A comprehensive review on this subject has been

published by Parsons.101

1.2. Scope and Structure of Yhesis

Dﬁe to the intricate coupling of faradaic reactions and double-
layer charging at the surface and mass transfer in the presence of a
nonuniform electric field in the solution, the design of many electrolytic
systems and interpretation of data obtained by their use turn out to
be more complicated'than are usualiy anticipated. To cite a few examples,
if the current distribution is.nonunifo?m, the plécement of the reférence .
electrode becomes important; the measured values'ofvohﬁic‘drop and
exchange-current density have to be corrected fof the exact location
of the reférence brobe in the solution. If, on the other hand, the
current»distributibn is uniform, a uniform potehtial distribution near'
the surface is not necessarily guaranteed at the same time. This may
have importaht consequences in the desigﬁ and operation of electfochemicai

'systems'under controlled potential. Furthermore, the transient behavior



of an electrode is.determined by the relaxation of a conceﬁtration.
gradient in the solution, capacitive discharge of the o&erpotentiél_dué
to a faradaic reactioﬁ, or a redistfibution of qhérgebwithin the

double layer. This thesis attempts to investigate #he roles of.some

of these effects in determining the overall behavior of elect?ochemical
systems.

Specific problems are worked out for the rotating disk and sphere
electrodes undér laminar flow considerations. The formef system is
already a basic set-up in many electrochemical 1abofatories, and the
latter is a newly-proposed tool which has been'éubject to a relatively
limited study so far. These geometries have been chosen for study
also due to their nonuniform current distribution below thg limiting
current, a ﬁajor complicating factor in the design and operation of
electrochemical systems. The basic principles gbverniﬁg the application
of rotating cylinders aré adequately covered by Eisenberg gE_gi.a Ring
and sectioned electrodes are also not considered.

The emphasis is on mathematical techniques as well as the physical
significance of results. The discussion carries the purpose of |
aliding the experimenter in the proper design and operation of electro-
analytical tools in the laboratory and meaningful interpretation of data
employing nonelementary numerical methods if necessary.

Chapter 2 gives a rigorous treatment of tranéport and current
distribution in electrochemical systems. Equations are developed
to express the hydrodynamics, potential and currénf distribution, and
convective diffusion for the rotating disk and sphere geometries.

Basic assumptions inherent in the analyses of these equations are listed.



The conditiqns which prevail at an electrode surface during steady-
staté or transient applications are discussgd'in chapter 3; so that thé
expressions of chapter 2 can bebanalyzed for certain specific cases to
obtain numerical results., Thgrmodynamic arguments.ére used to express
faradaic and nonfaradaic processes ahd relatevreaction rates and double-

- layer charging effects to ﬁeasurable quantities such as the over-
: pdtential, current density, and double—laye: capacity.

Chapfers 4 and 5 present steady—state'aéplications of these
equations tp the rotating-disk and -spherical electrodes below the
limiting current. The results are compared for the two geometries t§
determine some guidelines for various applications of each in
electrochemistry. | |

The transient convective-diffusion eéuation is analyzed in
chapte¥ 6 for the disk electrode by ignoring radial convection. The
effects of mass transfer and doubie—layer charging on the transienf
behavior are investigated.

“Chapters 7 through 9 treat the_tranéient response of a disk
elect;ode in the absencg of mass transfer. Galvanostatic, potentiostatic
and alternating current situations are discussed. A singular-perturbation>‘
analysis is given to determine the short-tiﬁe-response. An experimental

method is proposed to measure differential capacities of solid electrodes

by utilizing these results.



II. FUNDAMENTAL PRINCIPLES OF TRANSPORT IN
ELECTROCHEMICAL SYSTEMS

Even though electrochemistry is an old branch of ﬁhe physical
sciences, the fundamental treatment of mass transfe; and current dis-
tribution in electrochemical cells has been a product of the last few
decades. Leﬁich's3 work brought a new perspéctive to the treatment dfv
- convective diffusion problems in electrochemical systems. Since then,
significant advances have been made in the improvement and application .

of the theory. These have been discussed extensively by Levich9 and

1,10-12

Newman in a number of monographs and review articles. Some of

the essentials immediately relevant to the thesis are developed here for

application in the later chapters.

2,1, Basic Equations

A generalized treatment of transport in concentrated systems as well

10,13

‘as dilute solutions has become possible lately. The present dis-

9-11

cussion adheres to the simpler dilute solution theory,” — which still

finds frequent use since many applications employ dilute solutions or
small amounts of reactants in excess supporting electrolyte. The flux

gi of a solute species is determined by migratioh in an electric field,

diffusion due to a concentration gradient, and convection with the fluid
flow,

N, = -z,u FciV¢ - Dchi + vc (2-1)

-1 171 1

where u, and D, are the mobility and the diffusion coefficient of species

i i
i, respectively. A differential material balance for the species i
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gives the conservation law,
dey ' , : .
- =-V- g : 2-2
at v E1+R1 ’ ' : ‘( )

where R1 represents production due to a reaction in the bulk and is
normally zero in electrochemical systems. The elgctfoneutrality

assumption, which can be expressed as
Y oz =0, ; (2-3)
i

is a good approximation for the bulk of the electrolyte. Furthermore,

~ the ﬁotion of charged species Creates a current density, given by -

i=F Zzi_tgi . (2-4)
i a ,

The current density can be written in terms of the electric field and

diffusion by combining equations 1, 3, and 4:

1=V - FE ziDchi . (2-5)
i

In the presence of flow withih the electrolyte, the hydrodynamics

can be determined from the Navier-Stokes equation,

p(dv/3t + v+ Vv) = -Vp + uVPv + pg (2-6)

and the équation of continuity for an iﬁcompressible fluid,

Vev=0 . - ' (2-7)
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These equations form the basis for the analysis of electrochemical
systems., Some basic examples are given below, ahd more are developed

in the following chapters.

2.2. Electrostatics
When there are no concentration gradients in the solution, equation
5 becomes
i=-«kVd K | (2-8)
where.

K = F2 }:zizuivci C(2-9)
i

is the conductivity of the solution. Equation 8 is equivalent to Ohm's
law. Substitution back into equation 4 and combining with equation 2

yields Laplace's equation for the potential:

ve=0 . - | (2-10)

This is the fundamental equatioﬁ‘of electrostatics‘in the absence of con-
_centr#tion gradients and has been analyzed for a large number of electrode
geometries as revieﬁed by Newman12 and others.32’33v

Let us consider a disk electrode of radius r; embedded in a large
insulating plane. The potential far from the disk can be taken ﬁo be
zero: |

®+0 as ro+z°- >w (2-11)

where r and z are the radial and axial cylindrical coordinates, respec-

tively. On the insulating plane, the current is zero, and hence from
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equation 1, we obtain
9¢/dz=0atz=0,r>r . (2-12)

The potential is also well behaved along the axis of the disk. The
solution to Laplace's equation satisfying the above conditioﬁs can be

expressed conveniently in terms of the rotational elliptic coordinat:es,1

o/y = E B P, (MM, (&) , (2-13)
=~ .

2 Zn'is a Legendre

functior of order 2n, and Vis a 'scaling factor, 'such as the electrode

where P n ig the Legendre polynomial of order 2n, M

potential, iﬁtroduced-to render the coefficients B dimensionless.
n

The rotational elliptic coordinates are rgléted to the cylindrical

coordinates by14

z=rfn, r=rNa+eHa-n . (218

The potential is related to the current density according to equation 8

in the absence of concentration‘gtadients:

90 K 8@,
9z - r, ) £=0
- (2-15)
K ' '
R ;;ﬁ-v E BnPZn(n) MZn(O) .

-n=0
" The coefficient Bn can be calculated by applying the orthogonality

property of the Legendre polynomials:

. . b of . .
B = - —o I i(n) P, (M) ndn . - (2-16)
0
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The current distribution omn the disk is detérmined bj mass transfer
and surface conditions as well as the ohmic drop in ﬁhe solution. A
method of treating all these effects in a unified manner is‘discussgd
in the next chaptér.

As long as the éoncentration is uniform throughout the system,
and therevare no kinetic an& double-layer effeéts to account for,
tﬁe potential in the solution adjacent to the electrode surface ®°-is
uniform and equal to the electrode potential. Equatiqh 13 satisfies

this condition for n = Oland thus‘reduces to14 '

P/P =1 - (2 tan 1€ . (2-17)

This is the primaryvpotential distribﬁ;ion for the disk electrode.
The superscript p has been introdﬁced to distinguish this solution
from the general solution, equation i3,

The primary current distribution at the disk surface can now be

evaluated from equation 8:

= —o . ' (2-18)

n dz .
z=0 T r2 _ r2
o)
The total current is, therefore,
. r .
I = 2‘"] 1 rdr = 4Kr ¢ , (2-19) .
n , oo .

0
and the resistance is

R = d>§/1 = 1/4kr_ . ) (2~20)
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Figure 1 shows the cﬁrrent and ﬁoténtial linés for the primary
dist:ibution. |

Nanis and kessghmn&s havé shown how to solve Laplace's equation
for the*disk in cyiindrical coordinateé by use of Hankel tfansforms.

It is also possible to express the relationship betweenvthé current

dengity and the potential as an integral equation. For the disk,

this is12

r in(r') K(m) r'dr'

o2 = & — (220
0 ' \lzz + (r+r )2
where
' .
me g, (2-22)
zo+ (r+1r) ' ’
16

and (m) is the complete elliptic integral of the first kind,

: m/2
: o :
K(m) = f o (2-23)
: J 1 - msinza
0 - _
The analysis is similar for the spherical electrode. In spherical

coordinates, the boundary conditions are

=0 as y > m',. '
' , (2-24)
9%/06 = 0 at 6 =0, 686 =7/2 |

and the potential distribution is given by

oV = }E% Bann(cose)(ro/f)2n+1 , (2-25)
n=



~14-

Figurev

2-1.

MU . 37125

Equipotential and current flow lines corresponding to

" the primary-distribution'near a disk electrode (from

reference 14).
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where
1 4o (Y., | |
Bn'- 7 —TJ‘ i(cosb) P2n (cosB) d(cosH) i (2-26)
: 0 - .

The primary distributions for the potential and the current are,

respectively,
'¢/¢g =r /r 0 (2-27)
and
1 = ke L - (2-28)
n o' "o
The total current to a hemisphere is giveﬁ by
I=2m k&P (2-29)
, o o ,

The :esistance_therefbre is

R =1/2Tr k. (2-30)

Results for various other boundary conditions for the sphere are given
by Carslaw and Jaeger.17 Comparison of equations 27 and 18 shows that
the primary current distribution on a sphere is uniform, whereas it

is highly nonuniform on a disk, becoming infinite at the edge.

2.3. Hydrod&namics

The analyses of the Navier-Stokes equation 6 and the continuity
eqﬁation 7 are classical prpblems'in fluid mechanics fof the disk18
And the sphere19 geometries. 'The'basic'equations have to be expressed

in cylindrical coordinates for.the disk and in spherical coordinates

for the'sphére. These lengthy formulas are tabulated by Bird, Stewart,
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and Lightfoot20 and will not be repeated here. When the end effects

are ighored, the boundary conditions for the disk are written as -
v =0, v =0, Ve =rl atz=0 |,

r 2 (2-31)

v. =0, vg = 0 as z >,

r

where Vo vé, énd vz are the r, 0, and z componentsvof the velocity,
respectiﬁely, and Q is the angular rotation speed. -The dynamic preésure v
P ( =p-Pgz) also has to be specified at one_point. As suggested by
VOn'Kﬁrﬁﬁn,ls a separation of variables can.Be effected in the following

12
manner :
vg = r®G(2), v, = rOF(Z), v, = AR HE) , (2-32)
where G, F, and H are the dimensionless velocity components, and

= N - | (2-33)

is the dimensionless axial distance fvom the disk. The dimensionless

dynamic pressure is

P = p/ug . ' (2-34)

Substitution into equations 6 and 7 gives a set of coupled, nonlinear,

ordinary differential equations,

]
2F+H =0 ,
.
F -c¢?+uF =" ,
1 ’ ’ (2-35)
2FG + HG = G" ,
' 1

HH + P = H"
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with the boundary conditioms,

H=Fe«0,G=1 at =0 |, -
. (2-36)
F=G=0 as § >,

The first three of equations 35 can be solved first for the velocity
components, and the préssure can then be obtained by integratingvthe last

equation:

B (] ) ‘ N )
P=P(0) +H + %-Hz = P(0) - 2F - %—HZ _— (2-37)

These equations have been solved using different numerical techniques
21 . 22 : 12 o, -
by Cochran, Rogers and Lance, and Newman, Newman's results are
reproduced in figure 2.
In studies of mass transfer and current distribution in electro-
'chemical‘Systems, one is normally interested in the velocity profiles
very near the surface of the electrode (see section 5). For small values

of £, the axial component of the dimensionless velocity can be expressed

agl2:21,22

H= —0.51023§_2 + O(C3) . (2-38)

Similar approximations can be obtained for the other velocity components

by solving equation 35 for F and G:

F = 0.51023% + 0(z2)
o (2-39)
G=1+0()

For the rotating sphere, only the treatment of the boundary-layer
approximations to equafidﬁs 6 and 7 has been possible. Howarth19 has
expregssed the velocity components as perturbation'expansions in the

6 - coordinate:
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Figuxe 2-2. Velocity profiles for a rotating disk
. (from reference 12). :
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s :
r @ (6F + 0°F, +. . .) ,

Vg = |
v¢ -,rOQ (6G1 + 6 G3 + .. ‘)-’, (2-40)
92 '
Vr M(Hl + e H2 + . ol 0) ’
where Fn’ Gn, and Hn are the functions of the stretched variable
z2=ARN (-x) . (2-61) -
The boundary conditions are
v_= v' =0, v, = r Qsinb ét r=r . o
r 0 LA ° (2-42)

Ve'= Ve = 0 as r > .

Substitution.of these equations into the boundary-layer equations for
the sphere23-and equéting terms of equal ordef in GIgive a hierarchy of
coupled, nonlinear, ordinary differential>e§uations for Fn’ Gn’ and Hn
with the corresponding boundafy conditions. Howarth-19 attempted én
apéroximate solution by applying the von Karman momentum_in;egral
method. Bank823 an& Manohar24 have reported more accurate numerical
calculations. Using their results, Newman25 exprgssed the dimensionless

shear stress B(6) on the sphere as

B(6) = Bv1/2/£°n3/2

(2-43)

= 0.510236 —'0.180881993 - 0.040408 sin39 ’

where B is the velocity derivative Bve/ar evaluated at the surface.

Equation 43 is plotfed in figure 3.
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Figure‘2‘3- Dimensionless velocity derivative on the surface
of a rotating sphere (from reference 25).
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The boundary—layer approximation.for the sphere isrknown to break
down at a region near the equator19 where‘thé boﬁndary layers'briginatingv
at the poles meet and erupt in the fo;m of.a swifling radial jet.26
Stewartéonz7 has shoﬁn that the size of this region has the'magnitude
0(1/Re); and thUS‘i£ can be'reﬁdered small by'increasing the Reynolds

number.

2.4; Mass Transfer
Substitution of the flux equation 1 into‘the conservation equation 2
(Ri = 0) and using the equation of continuity 7 for incompressible

fluids yield

Bci/at + !fVci = ziFV'(uiciVQ) + V-(Dchi) . ' (2-44)

If an excess amount of supporting electrolyte is used, the migration
term can be neglected. Moreover, if the diffusion coefficient can be
assumed to be independent of concentration, equation 44 reduces to the

well-known convective diffusion equation,
B¢, /3t + y-Ve, = D,Ve, (2-45)

which finds many apélications in both electrolytic-and nonelecfrolytic'
mass transfer. | |

Another case, which allowé a sihiiar simplifigation of equation 44
1s the binary system. The copcentration pf,;he electrolyte can be

defined in terms of the ionic_congentrations as

c=c /v, =c N, (2-46)
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where v, and V_ are the number of cations and anions produced by
dissociation of one molecule of electrolyte. For the ionic species,

equation 40 reads

3/t + y*Ve = z u FV+(cV0) + Ve,

: 2 (2-47)
. 8¢/t + v*Vc = z_u _FV*(cVd) + D Ve .
Subtraction'giVes
. (z_,_p+ - z_u_) FU+(cV9) + (D+ . D) Ve 0. R (2-48)
Elimination of the potential between equation 48 and either one of
equations 47 leads again to the convective diffusion equation,
9c/3t + veVe = DV2 (2-49)
where
zuD -2zub v : ‘
o T 250
++ == .

is the diffusion coefficient of the binary electrolyte.
For a'thin diffusion layer near a disk or a spheriéal electrode,

the steady-state form of the convective diffusion equation reduces to

3c, dc, 3ci B
x oty By TPz (2=5D)

where x is measured along the electrode from its upstream end (center
of the disk and poles of the sphere), and y is measured -perpendicularly
from the electrode surface into the solution as indicated for a sphere

in figure 4. D, is the diffusion coefficient of the reactamnt, but for

i
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Figure 2-4. Schematic representation of some variables
and parameters for the rotating sphere.
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a binary electrolyte, it should be considered as the diffusion coefficient

of the salt given by equation 50. Equation 51>applies”tb any axiéymmetric

11,12,28

diffusion layer, and a general treatment is possible. For short

distances from the electrode, the velocity components can be approximated
by

121 d@8) f
-3 & Y2 (2-52)

1]

v f yB(x), and vy

where 8(x) = 0.51023W/Q/V x for the disk as can be obtéined_from the
results of the pfevious section, and for the sphere, it is given by
' equation 43 by setting x = roe. These expressions satisfy the continuity

equation 7;.which can be written in the form

for axisymmetric diffusion layers. ® (=r for the disk and r sin® for

the sphere) is the distance of the surface from the axis of.symmetry.29

The convective diffusion equation now becomes

Oy 1 21 ’dﬂB dey azci '
B "3V R/ Tax 3y "hTT ot (2-54)
. dy
The similarity variable,l’ao’31
x ) .
E = y/8B /[91)1] R/RB dx]l-/3' , , (2-55)
0 .
reduces equation 54 to the form
2
d7c .. de ,
R T - (2-56)
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We want to solve this equation for the case where the concentration is

zero at the surface and takes its bulk value c,_ far away from the

ico

surface (the limiting current condition). -Thus, the solution is -

c , - (2-57)

LY
)
’ 0
where the intégral is a tabulated function of 5.16
Application of the Faréday's law to equation 57 gives the limiting
current distriBution,l -

nFDiciq;r__ _ x | . _
ilim = —;"IT(-""/—B')—- /[QDiJ ®/QR dx] . (2—58)»

0

where n is the number of electrons transferred by the electrode reaction

i

v(see equation 3-1), F is the Faraday's constant and s, is the stoichiometric

coefficient of species i in the electrode reaction. For the rotating

disk, this reduces to the Levich equation,’ »3,9

nFD,c. .
i, = 0.62048 — =12 g 1/3g;1/2 (2-59)
lim CFE v :

.and for the rotating sphere‘,25 it becomes

nFDicioo ¥ Bsinb Sc1/3Rel/2

1., (8) = 0.12443 (2-60)
1im : 9
| *1% [f VBsin® sinede]l/_3
- 0 . . ) .
The average limiting current density is, therefore,
: nFD,c
= B B L 1/3 o172
(ilim)ave 0.90159 e (2-61)

io
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the-that.the'limiting current distribution oﬁ.é digk is uniform,
whereas iﬁ is é function of 6 on a sphere as shown in figure'S. Ihe
beﬁavior of the primary and ihe limiting current-distributioqs has
important consequences in determiniﬁg the generai mass-transfer and -
current-distribution characteristics of the.disk and the sphere as
will be shown‘by_later examples in the thesis.

Equations 59 to 61 can be written for metai deposition from a
‘single salt solution by replacing the ratio nDi/si with z+D/(1 - t+)
(seevequation 3-22), where z, and £+ are the valeﬁce aﬁd transference

number (defined by equation 3-15) of the reactant, and D is given by

equation 50. The Schmidt number is then defined in terms of D instead

of Di° |
Correction terms have been obtained for equations 59 and 60 for finite
34-36 . 37
Schmidt numbers. Sparrow and Gregg~™ give results for the disk

at low Prandtl numbers for the analogous heat-transfer problem. The
effectsvof migration and available physical propertiés of the solﬁtion,38’39
and corrections.due to radial diffusion40 have also been reported fo;
the disk electrode. | |

The results can be extended to accommodate arbitrary changes in the

surface concentration or flux by applying the superposition integral:lz’28

a_c_i_ - . Y88 f * deyy o . (2-62)
3y 4 dx |__ x 1/3"°
y=0 1"(3 . X=X_ [91)i f R/FB dx]

X
(o]
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Figuré 2-5. Local and average Nusselt numbers for a rotating sphere -

at high Schmidt numbers, as calculated by Newman
and compared to Chin's results.8 The Nusselt number

is related to the current densityvby Nu=2rosiin/nFDiqw

(from reference 25).
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or equivalently,

I (2-63)
(x (131/3)1/:;[X dcy R(x ) dx
c, ) ~c. = -FHAT =~ :
o Tem L [ eme e
: x=x X, ‘

.0

The transient form of the convective diffusion equation is treated

for the rotating disk in chapter 6.

2.5. Basié Assumptioﬁs
Some fundamental assumptions are inherent in the forthcoming
development. Maﬁy of these have -already been stated in this chapter.
An explitic sunmary6 of these at this point may be worthwhile for later
reference and to convey the overall limitations of the theory.
1. The disk eleétrode is émbeddedvin an infinite insulating plane.
The spherical electrode is suspended and ailbwed’to rotate in an
otherwise stagnant electrolyte. HoweVer, the ahélysis also‘applies to
a hemispherical cap on an insulating plané§ ‘The counter electrode. is
placed at infinity.
2. Dilute solution theory is applicable_with congtant transport and
thermod&namic propérties. Free convection is not taken into consideration.
3. For simplicity, the analysis is resfricted to metal deposition
.frbm a single salt solution or to a single'electrode reaction in the
presence of excess supporting electrolyte; Migrati§n is not accounted
for explicity. Correction for migration effects can be introduced -
1f needed by the method of successive approximations as discussed in .

3,9-11

detail elsewhere. Also, there are no reactions occurring in the

bulk of the eiectrolyte.
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4. The fluld flow near the electrode is incompressible and
laminar. _Fnrthermore, the hydrodynamic boundary layer is thin (high
Reynolds numbers), so thﬁtfthé boﬁndary—layer sblutibn of the Navier-
Stokes equations is an adequate deécription of the Hydrodynémic
conditions near the surface. |

5. Diffusion in the direction parallel to tbe éiectrode surface
can be heglected whenéver the diffusion layer is thin compared to the
éize of the électrode. It is further assumed that the difoSioﬁ layer
is thin compared to the hydrodynamic boundary layer (high Schmidt
numbers), so that the velocity cbmponents inside fhe diffusion layer
can be approximated by their fifst terms in Taylor's expansions with
respect to distance from the sﬁrface'(equatiqn 52).

6. Outside the diffusion layer, the concentrations are uniform,
and as a consequence the potential in the bulk is goVefned by Laplace's
equation. The gradient of the potential just outside the diffugion
layer is proportional to the éurrent density (equation 7); which in
turn depends on mass transfer within the diffusion layer and the coh—
ditions at the electrode surface. Aé a result, thé potential distribution
inbthe bulk and the concentration distribution in the diffusion layér
are coupled through the conditith'prevailing at the eléctrode surface
(see chapter 3). Mathematical treatment of the problem in the presence
of this coupling may become excessively complex for nonsteady-state
phenomena, and additional assumptions may be needed. These will be
introduced later as they beéome necessary. Additienal discussion

eelating to this assumption is given in section 3.5.
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III. CONDITIONS AT THE ELECTRODE SURFACE

‘When current is applied to an electrochemical cell, two importantv
processes occur at an electrode surface, namely, farédaic reaction
and double-layer charging. The agsessmeﬁt of reaction fates and their
relation to the curfent densi;yvlie in the field of‘elect;odé kinetics.
Much work has been done in this area as reviewed by Vetter.99 The
treatment éf the double~layer effects has been possible after the classical
"work of Grahameél concerning the structure of the double layer at .an

42,45 discussed

ideally polarizable electrode. Delahay and co-workers
how one might account for the faradaic and charging effects simultan-
eously in working mass-transfer and current-distribution problems at

1,6,11 has developed

nonideally polarized electrodes. More recently, Newman
a method for analyzing electrochemical eells by considering the effects
of mass transfer and potential distribution coupled with complex

electrode conditions. Some of these methods are‘discussed here with

possible simplifications for numerical analysis.

3.1. Thermodynamic Principles and Definitions

An electrode reaction of the form

I s.M,~ - ne " (3-1)
obeys the general equilibrium relationship

i syHy = oM~ (3-2)

i
chemical potential of species i, respectively. The stoichiometry of the

where M, is the symbol for the chemical formula and ui ié the electro-

chemical reaction requires
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Ls,z =-n . (3-3)

For very dilute solutions, the electrochemical potential can be related

to the electrostatic potential ¢ by

“H, = RT 1n c, + ziFQ . ' . (3-4)

i i

The equilibrium states of the solution and the metal phases can thus be
determined if ¢ can be measured.

Newman6 has introduced the idea of using reference electrodes to
measure potentials in the solution. Consider a feference eleptrode,
which moves in the solution with respect ;o a statioﬁary reference
electrodg of the same kind. The.manner_in which ﬁhe measured potential

changes is expressed as
VB - = - FW_ . | | (3-5)

Consgider alsd the situation, where the stationary electrode is a reference
electrode of a “given kind." The potential relative to this electrode
as measured by a reference electrode of a different kind and corrected

.for 1liquid~junction potentiéls is given by (see reference 11, section 40)
. ‘ ' v . .
F(Vr - Vr) = - ue_ ~ Fd + const . (3-6)

The constant term is characteristic of the given electrode; for a calomel

- electrode, for example, this is

: o 1l o
const z'uﬂg‘+ 2 quzclz + RT 1n €1~ (3-7)
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where y: is the e;ectfochemical potential of a pure phése apd éCl
chloride concentration in the calomel-electrode coméértment. The notion
of measuring the potential in the sqlution between feference electrodes
of the same kind and thé definition of a poténtial with respect to a
reference electrode of avgiven kind are well—defingd thermodynamic

constructions, which help to derive expressions for nonthermodynamic

quantities such as the overpotantials in terms of measurable properties.

A few additional definitions useful for the purposes of this chapter

fdllow from the theory of the double layer.41 The charge densityrbn the

metal side of the double layer is given by

q =-F¢Z ziFi . (3f8)
i .

where Fi 1s defined as the moles of species i per uhit_areé, which is in
excess at the interfaée over the amount which wduld be present. in the
solution if the concentrations remained uniform. The differential
capacity of the electric double layer is the derivative of the surface-

charge density with respect to the potential at conétant composition:
C = (3q/3V : (39
(a/a0), (3-9)

This is a physical pwoperty of the double layer and has to be determined

experimentally.

3.2. Concentration Overpotential
Let us place two reference electrodes of the same kind as the
working electrode, one (rl) just outside the electric double layer

and the other (r2) outside the diffusion layer as indicated in figure 1,

- ‘is the



Bulk of the solution

Vr2

Figure 3-1.

Diffusion lloyer

~Working
electrode

V

Electric
double layer

Schematic representation of the positions of reference electrodes relative to the
The primed quantity is the

working electrode in the thermodynamic construction.

potential of an electrode of a given kind, whereas the unprimed quantities are the

potentials of electrodes of the same kind.
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and let Agohm(. ¢o - Qm)'be the potential difference between these-v
electrodes when there is the same current;distributibn but no gonééntration

variations.: The concentfation overpotential is then defined as6

_nc ==‘Vrl - VrZ - A®ohm o 3 (3_10)
Application of the thermodynémic principles'of'the;previous ééction
gives, with the aid of equations 2-3, 2-5,and 2-8,

vnc_-.inf' <%-;1-)dy+§—£>:silnz_iﬁ-
_ o 1 1o
0

: @ z D | Bc i .
o i i S
0 . v .

(3-11)

where the Qubscripts o and ® refer to the electrode_surface and the

bulk of ﬁhe solution, fespecti9e1y. In the preéenéé»of exceéé supporting
electfoly;e, conductivity variations iﬁ the solufiqn are negligible.'v
Thé last férm is on the order of thé'reactant conéentratioﬂ divided by
"the supporting eléctrolyte conéentiat10n4ahd 15_theféfore’small;felative

to the second term. Thus, equation 11 reduces to

+

Ry S o
nc = F Z sy 1n < ‘ (3v12)
i io
‘Newman_'also proposes the-approximate form
. ' (z+ - z_)'RT C. v | <, :
n = In—=~-t {1 ~— (3-13)
c 2,z F c + c . ,

for metal deposition in a binary salt solution (see also reference 11,

'seCtién.126)L This expression is obtained from equation 1l by assuming



o
o —g

#

(.

~,

[
.
i

i

-35-

a linear'concentratiqn,distribution across the diffusion layer and

expressing the diffusivities by the Nernst-Einstein expression

Dy = RTy;, . - (3-14)

Equation 8 is substituted for the conductivities, and the transference

number is_givén by

2,0,

t,=1-=1¢t_ (3-15)

+ o+ 2
3.3. Surface Overpotential, Faradic Current, and Electrode Potential
The surface overpotential represents the departure of the working
electrode from its equilibrium potential. In terms of ‘the potential
ﬁith respect to the reference electrode rl defined above, this can be

written as

1 (3-16)

Hs =vV-v
The surface overpotaatial is assumed to be relate&bto the faradaic

current by the semi-empirical Butlet-Volmer expression,

| c° \ | o F : -acF
ift= io(c“) | g exp %ns - exp | - —ﬁns s (3-17)

where io(qm) is the exchénge—current density at thevbulk composition,
aé, ac’ and Y are kinetic parameters for the electrode reaction. For
small current densities Iifl-<<‘io, equation 17 can be approximated with

the linear expression

if = io(aa + ac) *T ns . (3-18)
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'In the other extreme, where the.currentvdensity isvlarge,fthe over-
potential is also large, so that equation 17 reduces to the Tafel

expression,

8

this one expressihg a cathodic process. For anodic currehts, ac is
_ ' ' . _ Y
replaced by -a_. In equations 18 and 19, io —_io(q»)(colcw) , . that
" is, the exchange-current density is concentration dependent.
In the absence of double-layer effects, the faradaic current is

related to the flux by Faraday's law,

N, = - . ' (3-20)

For metal deposition in a binary solution,. the faradaic current can
be related to the concentration derivative of the salt at the electrode
surface by eliminating the potential between the flux expressions

(equation 2—1)vfor the anion and the cation:

dc if(1 _ t+)
Wl ™ " Tz (3-21)
Yly=0 + 4+ v

We now wish to relate the overpotentials to the potential of the

working electrode V. Equation 10 can be written és

N =V+V_-V-V
Cc r r

R (3-22)

1

The quantity ¢ - Vr2 in effect represents the potential difference
between two reference electrodes of the same kind at the same location
in the bulk and is therefore zero. Substitution of the definition

for the surféce overpotential gives

n = - %ff-(lnlifl - Ini) (3-19)



-37-
v=nxo , (3-23)
where
n_= n. +n, | (3—24)

is the total overpofential. The electrode potentiai should be regarded

as determined by a reference electrode of the same kind placed at

infinity with respect to the working elgctrode. @o represents the

~ohmic drop calculated for the actual current dis;ribution and extrapolated
to the electrode surface. It does not contain any‘contributions due>to
concentration variations in the solution, which are compenéated fully

by the concentration overpotential.

3.4, Double-Layer Effects

In the presence of double-layer charging, Faraday's law has to
:be corrected for double;layer effects, and the surface flux is given
by |

or s,1.(n ,c,)
= - i _ i"f s’ §’ . -
Nio ot - nF : o (3-25)

Substitutioh into equation 2-4 gives an expression for the current
density,
4 =y (n e 1 (3-26)
n 9Jt f s’ § ’
where the surface-charge density q is defined by equation 8. The

derivative can be expanded to read
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3q _ 9q _ A . "o (3-27) .
ot 3V _ v' ) T . aci . ot g
rl’. °ly-vy_. |

- C rl . ;

io c y :

- Tjo,j#di ST

) .
where Vrl is the potential of a reference electrode of a given kind

. ) ) y

placed just outside the double layer. The quantity [dq/d(V - Vr'l)']c
' : io :

can be identified as the double-layer capacity defined by equation 9. J

- 1
The derivative 9(V - Vrl)/at can be determined by writing

L
I(V -V ) v
rl d '
at at v - Vrl Vrl + Vrl)
ans a . (3"28)
* 3¢ Y 5¢ V1~ V) -
Substitution of equations 6, 2, and 4 in thét order gives ' _
3 'y o9 |
V-v.) n : j
TS 3¢ ~ oF ot E Si 1n o . _ (3-29)
Comparisoh with equation 11 suggests
' .
a(V— Vrl) - 3(”8 + nc) _ _a i (L _ l_) d
at ot at n\K  K_ Y .
0 ‘ (3-30) o

In the presence of excess supporting electrolyte, the last two terms : Co-

can be dropped.

e ' are thermodynamic
rl’ “jo,j#i
properties of the electric double layer. They either have to be

The derivatives of the type (3q/3cio)v___V
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measured experimentally41 or estimated from the microscopic theory of
the electric double layer (see reference'll, section 52). Delahay

43-45

and co-workers offer some discussion on how to evaluate these

derivatives.

Simplifications of the flux equafion afe possible under certain
conditions. If the results of this section so far are combined and
simplifications introduced for the presence . of an excess amount of

"supporting electrolyte, equation 25 reads

oc
i
N - D, =
io i Oy y=0
(3-31)
ol s : de
R S | _ ~on ) io
- ot nF [%n ¢ t + 1 (}5%—-> ' ot ] '
i io
: v-v
. rl
jo,i#

We would like to reduce this furthér by assuming that a single reactant
is present, and the supporting electrolyte is the major contributor‘

to the double-layer charge on the solution side. We also neglect the
concentration variations of the supporting electrolyte just oﬁtside

the double layer. Thus, equatioh 31 can be approximated as

8
=R _ca © (3-
el o

where the subscript R refers to the reactant. This is the form of the

5 'BCR‘
R " dy

y=0

flux expeession which has been criticized by Delahay.42 The capacitive
term represents here the charging current, and subtracting this from

the measured current gives the faradaic current and therefore equation 20.
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This constitutes an a priori separation of the faradaic and charging

currents and is not permitted if the correct_form of the flux expression,

equation 31, is used. As Delahay shdﬁs, eauation‘32'is a good approxi-

mation only if the electrodé reacfion is highly feversible, so that

the faradaic term.dominateé in the flux equation»fér the reactant.
Another type of simplification ié Justified 1if éoncentration

variations can be ignored such as in well—stirred solutions. Equatioh 26

then reduces to

. an '
1=C 53¢+ 1 (e (3-33)

Combining with equation 2-8 gives

3% on ;
- K &= =Cx—+1_.(n ,c. ) . o (3-34)
» oy y=0 at £ s’ jo

If faradaic reactions are not permitted (ideally polarizable.electrodeal),

this further reduces to the form
- K 5= = ¢ —2 (3-35)

Despite their shortcomings, the simple forms of surface cond;tions
developed in this chapter are very useful for studying the behavior of
electrochemical systéms mainly because they are tractable for mathe-
matical analysis. It is also possible, with the aid of these equations,
to isolate certain aspects of the electrode phenomena fér study in the
absence of other complicating effects. In this_way, one can obtain a

better understanding of the roles played by different effects to
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determine the overall electrode behﬁvior. Various complications can

be inttoduced systematically as indicated. For example, équation 35
éingies,out the cépacitive charging éffect oﬁly. Equation 34 introduces
the faradaic reaction term. Fgraday's law is adequate in most cases
to'aécount for fhe surface éonditibns at stéédy state. It can‘also be
used perhapé for nonsteady state sitﬁations in the ﬁfesence of a purely
reversiblé electrode reaétion. Eduation 32 adds on the effect of

double-layer charging. More complex phenomena are included in equations

30 and 31.

3.5. Statement of the Mathematical Problem and the Method of Solution

We would like to investigate the current distribution and mass

transfer at rotating disk and spherical electrodes with the consideration

of complex electrode conditions such as a faradaic reaction and/or
double-layer charging. This can be accomplished by solving the basic
flux equation 2-1 to satisfy the general boundary condition 25 at the

electrode surface. This is a complex problem due to the fact that

‘the potential distribution and mass transfer are coupled and cannot

be treated separately unless one or the other can be neglected. In

well-gtirred solutions, concentrations are uniform; hence, the problem

involves the solution of Laplace's equation, as discussed in section 2.2,
to satisfy the condition 34. . If the effect of the electric field can
be ignored, a solution of the convective diffusion equation only is

necessary. Some results are given in section 2.4.
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When both the electric field and mass—transfer'effects are present,
a straightforward method of soldtion is not possible. .Newméné has
made a significant contribution by developing'a method‘fof tfeating
.problems of this kind for thin diffusion layers. In the liﬁit of high
Pédlet-’numbers, the diffusion layer is vanishingly thin. Thus, as
far as the pofential distribution is concerned, the concentrations are
uniform in the solution, and Laplace's equation applies so as to
satisfy the current distribﬁtion at‘the electrode surface. Thé
diffuéion layer can be tréated as a separate region where the convective
diffusion equation applies so as to satisfy the same current distribution
at the sﬁrface as the potential and the condition of ﬁniform concentrafion
far from the eleétrode; Hence, thé two solutions have to match through
the boundary conditions epecified at the surface. This is a singular-
perturbation problem."

Nonsteady-state problems of this type are very complicated (see
chapter 6) and tractable only in very few specialized éaSes, such as

46,47 However, efficient and generalized

the convective Warburgvproblem.
numerical methods48 are avallable to treat the steady~state problem

for almost any type of conditions at the électrode surface és long as
the hydrogynamics aré known, and Laplace's equation can be solved for
an arbitrary current distributioﬁ at the surface. 4The numerical
procedure consists of an iterative solution of equation 2-62 or 2-63
together with appropriate expressions of Faradaf's law, and the surface
and concentration overpotentials as derived in this chapter, and an

expression for the potential in the solution, such és equation 2-13

for the disk and equation 2-25 for the sphere, evaluéted at the surface.
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Hence, a total of six equations are needed to solve for the six unknownS,

c, s (Bc/ay)yéo, in’ ns, nc, andvéo. Th;s method_has_been apPlied to

a number of electrode geozxnet'.ri.es.7’48—53 Some results are given for the

disk in the next chapter and for‘the sphere in chapter 5.
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IV. CURRENT DISTRIBUTION ON A ROTATING DISK
BELOW THE LIMITING CURRENT .

Since_Levich3 showed that the limiting currenf distribution is
uniform on a rotating disk electrode (see eqﬁation 2459), the disk
surface has been assumed for a long time to be uniformly accessible
to mass transfer also'at.currentllevelé below the limitiﬁg current,

. Newman14 disputéd this based on the reasoning that if the current
distribution is intermediate between the two extreme cases of limiting
vcurrent and primary current distributions, it can no longer reﬁain
uniform since the primary distribution ié higﬁly_honuﬁiform. He went
on to prove this by a detailed analysis of the qurrentfdistribution
problem with the cénsideration of mass-transfer limitations near the
disk, the_influence of ohmic drop in the solution, and the effect of

7,30 Newman's results have

complex kinetics at the electrode surface.
been verified many times experimentally by direct measurement of the -
thickness of an electrodeposited meta1,54’55 measurements Qf the collectionv

28,55-59

efficiencies on ring—disk systems, application of sectioned

disk electrodes,28 and direct potential mapping by reference probeé
near the surface of the disk.sg’95 |

Some of these results are reﬁiewed heré aléng with a few recent
calculations. The emphasis is on the secbndary &istributién;vwhich is
needed in the formulation of the transient response of a disk (see
chapters 7 and 8), and resulfs for Tafel kinetics, which may be interestingr

to compare with the analogous results for the sphere reported in the

next chapeer.
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" 4.1. Secondary Distributioﬂ for Linear Kinetics

Thg diffusion.layer near a disk eiectréde can be neglected when
the rate of stirring is high (high rotation speeds), so that
Iifl << Iilim" Under these conditions, the secondary cufrent dis-
tributionvis'said to prevaillat the disk surface,7 Furthermore, for
sufficiently small'cgrrent densities Iifl << io, the kinetics of the
electrode reaction can be linearized, and the curreﬁt density canb

thus be expressed by equation 3-18. 1In dimensionless form, this is

1T, 1 9958

K na£g

=g - 0% . ¢-D

where N and £ are the rotational elliptic coordinates (equation 2-14),

and

J = 1oroF(0ta + ac) /RTK (4-2)

is the dimensionless exchange-current density. The superscript ss
denotes steady state_andnhas been added heré to distinguish the
potentials for thé secondary distribution from the potentials corresponding
to the primary distribution (section 2.2) and the.transient distribution
(chapters 7 and 8).

The potential in the solution can be expressed as (see section 2.2)

¢59/¢§'= 3B, oM, ©) . (4-3)

-3
n n

n=0
The choice of ®g (-'I/4foK) as the scaling factor is mathematically
convenient since this_normalizes the numerical value of B:S to unity

regardless of the electrode conditions. Combining-equations 1 and 3
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and employing the orthogonality properties of the Legendre polynomials

give

- .88 . | . ss
v /Qz =1+ 4/73 + 2 Z :ao,n?n , (4-4)
n=1

n . '
max - : ' .
a - 2a a -4 gggfgz——- B°® = é—-a
m,n o,m o,n m,n (4mrtl) J n TJ “o,m

and

n=1 . ‘ _ (4_5)
| (m = _1’ 2, ’ nméx) ’
where
l:
3 n =f n PZm(n) PZn(n) an , A (4-6)
' 0
1 : . : P, (0)
= - _ 2m . 4-7)
3 ,n “f N Byp(M dn 2021 @) ’
0
0 _if n#n
§ = | o (4-8)

m,n 1 1if m=n

The series in equationsv4 ;nd 5 are truncated ét_nmax for the purposes

of numerical calculaﬁion, which involves a straightforward matrix-inversion
’operation; The coefficients B:s have been cbmputed.for various J values60
by picking noax 45. Values for the first 10 terms in the series are
listed in Table 4-1. The quantity VSé/®z, which can directly be calculated
from equation 4 once st are obtained from equation 5, is identified aé

the dimensionless, effective direct-current resistance61 4r0KRéff for the
disk systeﬁ with the reference electrode at infinity.‘ Some values are

given in Table 4-2 for various J values.

oAy
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Table 4-1, The coefficients B:S in the series for

the steady state potential,

J=1

n J=0 J=0.1 J =10
0 1.00000 1.00000 ©  1.00000 1.00000
1 0.31250. 0.30731 0.26863 0.13306
2 0.05273  -0.05446  -0.06568  -0.07356
3 0.01984- 0.02040  0.02491 0.04037
4 -0.00993  -0.01019  -0.01232  -0.02324
5 0.00580 0.00594 0.00713 0.01423
6 -0.00373  -0.00382  -0.00455  -0.00926
7 0.00256 0.00262 0.00312  0.00636
8  -0.00185  -0.00189  -0.00224  -0.00456
9 0.00139 0.00142 0.00168 0.00339
~0.00107 -0.00110 '40;00130_‘ -0.00260
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Table 4-2. The effective direct-current resistance .

K = VS8
4r° Reff =V /¢g) at different values_

of the parameter J.

- J 4r KR
. o e

£f
0.1 © 13.81194
0.2 C 7.44458
0.5 . 3.62161

1 2.34368

2 1.69962

5 1.30375
10 1.16459
20 1.09002
50 . 1.04072
100 ©1.02231
200 ' 1.01217

500 - 1.00543
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The'current distribution is determiped from equatidn 1. The results
are shown in figure 1. The extreﬁe cage_where J=x corresponds to a
.reversible.farad#ic rééctidn for which.the curfent distribution approaches
the primary distribution as a limit.

vThe restuls for J = 0 correspond to the-oﬁher‘extreme case Qhere
the paséage of current from the metal to the solution phase is not
permittea;-thué, a faradaic reaction cannot occur. This type of an
electrode is said to be ideally polarizable.al' If one tries to force
a constant current I through a cell with an ideally polarizable electrode,
the current will be use& to cﬁarge up the double-layer capacity. The
charging process will continue és long és the current is applied, and
this will cause a continuous fise in the eléctr&de éotential_only to
be intef:uptedvby perhaps hydrogen or oxygen evolution (see chépter‘7).
At the instant currentvié applied, the éurrent distribution is nonuniform
on the electrode since the primary distribution is nonuniform. Shortly
afterwards, the current distribution is rendered uniform as the surface
charge redistributes itself quickly. As a result, the potential
diStribution in the solution reaches a steady stafe even though the
electrode poténtial keeps increasing. The boundéry condition 1 can

be written for this situation in>the form

sSs ‘
- = ™ K . -
@ 138)g_o /N = T/Tx , _ (4-9)
which allows one to express the coefficients B:S explicitly:

L 3
(4n + 1)[P, (0)]
(2n - 1) (n + 1)

(4-10) -

B = - 4ao’n(4n + 1)/"M2n(0) = -
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| B ] 1
-6 i /i_= 0 (linear)
avg /to*
.4 -
1.2k /
J=0.1 f/!
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5 : |
Z o2 -
D Je5
0.6} J=20 -
| o
0.4} -
0.2r ]
o) L ! | 1
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r/ 1,
MU B 10282

Figure 4-1. Secondary current distribution for linear
polarization (from reference 7).
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The ﬁotential distribution obtained undef.theseicireumstances.is
identical to the potential distribution which exiéts on a nonideally.
polarized electrode at 1imitiné current conditioes (see figure 4-6).

Newmaﬁ7 reports additionaliresults fer the seeqndafy distribution
at‘higher ¢urrene ievels,'where the liﬁear kinetic expression no longer
holds, |

4.2, Secondary Distribution in the Presence of a Highly Reversible
 Electrode Reaction ' o '

For large_but finite exchange;current densifies, the -current
d#stribution approximates closely the primary distribution on the disk
except near the edge, where the faradaic impedance is large enough to
force the eurrent deneity to remain finite. Numerical results for
this case are difficult to obtain by the method of the previous
section because a large number of terms are required in the series.

An asymptotic expression for the potential can be derived by employing
the singular-perturbation -technique.G2 The singulaf;nature of this
problem has been recognized earlier;61 however, tts eonsequences were
not of immediate interest. The analysis is Outlinee here to render more
complete the overall treatmeht of the secondery distribution at a
disk electrode. A similar prdblembis encountered for the short—tiﬁe

response of a disk electrode and is treated in chapter 9. Still another

_problem of the same type at high frequencies for the alternating-current

distribution on a disk electrode has been treated by Newman.61 We

follow here the same_guidelines“in the mathematieal'formuiation as
developed in that paper.
Since the current density is small compared to the exchange-current

dengity, we can safely assume linear kinetics and use equation 1 to
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express the conditions at the electrode surface;” The‘potential outside
the edge region is given by the primary distribution. As approximated

for small &, this condition can be expressed by

0*5/v%® =1 - ZtanlE M1 - 28/ as £ (4-11)

Furthermore, the condition on the insulating surface is giﬁeh by
3¢°%/an =0 at n=10 . |  (4-12)

A sét of stretched variables can be defined for the edge region

as follows:
$ = % - o°5/v%%) /7, (4-13)

RendT , E=&/F . ' (4-14)

* Substitution into Laplace's equation and the boundary conditions yields

the gystem
‘ 2. .2 ’ L
8,8, , | (4-15)
an® of '
3/ =nd at E=0 , (4-16)
39/N =0 at N=0 ,- | (4-17)
F+Basn 482w . (4-18)

The solution to this system of equations was obtained numerically
by finite-difference methods. The method has been described in detail
by Klingert et al.63 Doubling and overrelaxation techniques were

'gnployed to increase accuracy and speed up convergence, respectively.
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These are-discussed lucidlyiby Fleck33 in a reporf where he has also
developed a generalized.computer brogtam to splve»Laplace's equatidn
for arbitrary electrode geometriés and boundary conditions. The
-overrelaxation factor.qsed here waé 1.9, the valué suggested by
Fleck fof an L-shaped cell geomefry;' A listing of the computer
program is giveh invappendix F. The results are plotted in figure 2.

The'steady-state current or potential can be calculated from

1 - 0P/v®® w1 - I/4r «V®% = 1 - 1/4r kR
o (o] . e

ff
(4-19) .
1
) 88 ,., 58 1
=/ (I-QO/V)dn=ﬁan+A/J ,
= 0' 3
where | , - =
2 (% 52 [ e
AEF f aodn +f (¢°—1/n) dn - 1nb
. : (4-20)

=0,708
These formulas are derived in appendix G. Figure 3 shows a comparison
between the present results and the values for the dimensionless,

effective direct-current resistance obtained in the previous section.

The two results agree quiterwell for large values of J.

4.3. The Effect of Conéentfation Polarizatioﬁ?
At high current levels and moderate stirring rates, the concentration ‘
effeéts cannot be ignored, and therefore the diffusion layer h#s to be
taken into consideration. This is no longer an eleﬁeﬁtary problem
because the convective diffﬁsioh equation an& Laplace's equa;ion have

to be solved simulténeously to satisfy the conditions at the surface
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Figure 4-2.

XBL?738~ 3744

The surface potential distribution for large
values of the kinetic parameter J near the
edge of a disk electrode.
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i

as described in éectipnv3.5. The concentration overpotential is
assumed to be given by equation 3-12 in the presence of excess
supporting électrolyte and equation 3-13 for a binary system. Further-
more, the effects of the other species, which may.be present besides
the limiting reactant in a solution with excess Sﬁpporting electrolyte,
are ignorédlas a simplifying measure. Otherwise; the comvective -
diffusion equation has to be solved for each species, and the con-
centrations of these species have to be considered in calculating the
ovérpoténtials. The nuﬁericai procedure can be modified without much
effort, but with increased computation time, to accéunt for thése
additional complications, if necessary. The details of the mathematical
analysis and the numeriéal method are given in éppendix A,

A scaling of allvpar;meters wbich appear invﬁhe:problem suggests
that the resﬁlts can be best presented in terms of the‘dimensionless

quantities7 (see also appendix A),

ioroZF o
I = ® | (4-21)
| o2 2 |
N = - kil 2R°111°° Tot (1\’_)1/3., - (4-22)
s RTK, (1-t ) v \3D :

in addition to the kiﬁetic,parameters Ga/Z, GC/Z,'and_Y, and the

transference number t,. The pafameter‘z is equal to -z

+ z;/(z+ -z)

+
for a single salt and —n/sR with supporting electfolyte,land'a = 0.51023.
- In the presence of excess supporting electrolyte, DR is the diffusion

coefficient of the limiting reactant; for a solution of a single éalt,

D, is the diffusion coefficient of the salt. The current level 1 /1
R _ v _ ave’ lim
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: also has to be specified for a complete definition of a case problem.

.The effgct of varying‘the,dimensionless exchange current density
J has been demonstrated for tﬁe case of secondary distribufion. Another
parametric study of that type is not included in‘ﬁhis section because
the results are qualitativeiy similar to fhose of section 1; an inqrease
in J, while the other parameters are held cthtant,'causes the current
distribution to become more nonuﬁiform,_

The parameter N can bé regarded as a dimehsionless'iimiting current;
it repeesents the importance of mass transfer in the diffusion layer.
For example; an increase in the rotation speed;Q.faéiiitatés convection,
and as a result the electrode reaction can beéqme mass-transfer
limifed at increasingly higher current densitiés; -Large currént
densities in turn cause large ohmic drops relative to the magnitudé
of the concentration overpotential. As the ohmic drop becomes a |
major factor in determining the electrode potential, the secondary
distribution is approached ﬁore closely. In addition, if the applied
current is ﬁuch abd?e the exchénge-currentvdensity, the kinetic
effects are émall,-the solution is well-stirred, and the current
distribution resembles the primary distribution. This state of affairs
is demonstrateq drapatically for the caée of TAfel kinetics as depicted
in figures 4 and 5. The éxchange—current density contributes a éonstant
terﬁ to the kinetic expression, equation 3-19, and hence its actual
value is not important. As the figures show, the céncentration and
current distributions become more nonuniform with increasing values
of N, but théy are still limited by‘massvtransfer af large current.

levels. The current density can also exceed the limiting current
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Figure 4-4.

MU B-10286

Surface concentration for Tafel kinetics

(from reference 7).
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| Figure 4-5. Current distribution for Tafe1 kinetics with an
' appreciable fraction of the limiting current
-~ (from reference 48)., ‘
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t
§density locally, an interesting result.
]

kinetics and mass transfer. The parameters such as io’ @a, GC, and Y

,in the kinetic expression are assessed5 from current versus voltage

'measurements with the incorrect presumption that the current distribution

‘is unifofm é; all currént levels. The calculated parameters then
idepend on the measured average current déhsity or surface overpotential
"and cannbt be generally applicable. The kinetic parameters should,

‘at leastillprinciplé, be independent of such variables if the non-
‘uniform current distribution is taken into consideration. Neﬁmén7
discusses in detail how this can be accomplished:ﬁéing'his calculated
results. The ohmic drop in the solqtion is often determined by
_interruptef methods in electroanalytical applicatioﬁs.81 Since the
pfimary diétribution'on a disk is nonuniform, the‘ohmic drop between

a reference probe and a given point on the disk strongly depénds on
the position of'the'probe in the solution. Tiedeménn'etval.64 discuss
'the éfror which may be cauéed in the measurements of electrode kineticé
én a diskvif proper corrections are not made for the‘placemen; of the
reference electrode. Miller and Bellavance59 show how this correction
;an be effected properly in experimental measurements. The disk
electrode, on the other hand, is well suited for maéé—transfer studies
which are conducted under limiting current conditions. The measurement
of the limiting current for a given rotation speed along with the
knowledge of the bulk concentration of the limiting‘reactant and

viscosity of the solution makes possible the assessment of the diffusion

coefficient via the Levich equation.

The disk electrode is commonly employed in the studies of electrode

P
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Except for the primary'distributioﬁ, the'potential distribution
near the surface of a disk is'nonuniform, and this may have important
consequences in potentioétatic appiicationsv(see aiscussion at the
end of chapter 5). Tﬁe ﬁaximum potential variation between the cenfer
and the edge of the disk occurs at the limiting‘cuﬁrent7 (figure 6)

and is given by (see reference 11, section 117)

AP =0.363 r 1 /K
o "o av

e <o

. _ (4-23)

This formula may be helpful in design calculations to determine the
permissible values of r , 1 , and K_for a maximum allowable
o’ Tave L

potential variation near a disk electrode.
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Figure 4-6. Potential distribution at the limiting current
and the primary current distribution on a disk
electrode (from reference 7).
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V. CURRENT DISTRIBUTION ON A ROTATING SPHFRE BELOW
THE LIMITING CURRENT

The sphefe has been empioyed in the past as én important electrode
geometry in electrochemical research such as thé’investigation of the
double-layer sfructure on mercury drops65 and the.study‘of the éver—
poteﬁtial and reaction kineticé on copper electrodésvby transient
méthods;6§ The effects of diffdsion were eigher eliminated or ighored

in that work. The rotating sphere has been proposed anew as a potential

" tool in studies of mass transfer and reaction kinetics in electrochemical

8,67 'The convective diffusion equation for a thin diffusion

8,25,36

systems.
layer at limiting current conditions has been soléed recently
(see equafion 2-60) and compared successfuliy with experimental data.68
The present intenest52 in the rotating sphere arises from the fact
that the mass transfer and current distribution characteristics.of the
disk and the sphere turn out to be rather COmpleméntary in some respects.
As reviewed in the previous chapter, the rotating disk exhibits a
uniform limiting current distribution, which makes it attraétivé for
mass tfansfer work. On the other hand, fhe spherical electrode may be
more'suitable for studies of electrode kinetics owing to its uniform
primary distribution. The aisk glectrode can be polished very easily,

but the surface preparétion for the spherical electrode does not.

seem to be just as straightforward if a reasonable spherical shape

is to be maintainéd. However, in high-rate metal deposition or

dissolution studies, the disk electrode tends to rise above or recede

'below the insulating surface rapidly, thereby altering seriously the

hydrodynamic conditions prevailing at the surface.s- This effect is
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within a much lesser degree for the sphere, which maintains its geometry

to the extent permitted by the degree éf uniformity of the current
distribution existing at its surface. Below the limiting current, the
current distribution on a rotating disk is nonuniform. Itis possible
in principle to attain a uniform distribution of cufrent on a ;otating
sphere below the limiting current even in the presence of concentration
variations at the surface as will be shown in this chapter.

The underlying theory, the basic assumptions, and the method of
solution were outlined in chapters 2 and 3. Additional Simplifying
assumptions cited for the disk problem in section 4.3 are also retained
here. A more detailed déscription of the mathematical analysis and

the numerical method is given in appendix A.

5.1. Results for Tafel Kinetics

A problem for the sphere is completely defined, as in the case of
the disk, by specifying the dimensionless.parameters J, N, da/Z, GC/Z,.
Y, t+, and the:current level iave/(ilim)ave' The pgrameter N for the
sphere is given by .

2 : 2 '
e nZF Dpcpg, roQ ( v >l/3 | (5-1)
SRRTKw (1-t +) v 9DR ) .

Since the primary distribution is'uniform, the secondary current distri-
bution, which is obtained by igno;ing the concentration polarization,
is:éiso uniform regardless of the reaction kinetics. As a consequence,
the results do not depend strongly ﬁpon the dimensioniess exchange-
current &énsity J even when concentration polarization is present. Our

numerical calculations for different J values, although not shown

i
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here, confirm this_conclusion. Current and concentration distributions

thus largely depend on N, and the specified cufrént level with respecf
to the average limiting current. In view 6f these observations, and
because mass-transfer effects are important at high current densities,.

we have chosen to repbrt results for Tafel kinetics, thus, for the

' parameter J tending toward zero.

Fighresil and 2 Show the current and concentration distributions
respectively for various current levels at N = 10. All other parameters

are arbitrarily set at 0.5. The current becomes more nonuniform as

~ the limiting current is approached whereas the concentration shows

" marked derivations from its average value at ihtermediate‘current

levels. Figurés 3 and 4 show the effect of increasing N (or increasing

rotation speed) on the current and concentration distributions for a

fixed concentration (co =0.5¢c,) at ﬁhe pole. The current density

exceeds the limiting cufrent locally close ﬁo the_equatof. This
can also be observed in figure 1 for large enoﬁgﬁ current levels. The

same phenoménon has been reported for other geometries under similar
7,48,49

conditions (see'also sectioh-4.3).“With increasing N, the
concentration distribution becomes slightly more nonuniform and appears
to be appfoaching én asymptotic profile. .Meanwhile,Athe current
distribution becomes more uniférm, and the éurrent level tends toward
a 1imiting value different from the limiting current distribution.

This represents a contrast to what has been observed fof’the disk7 and

48,49 where the diffusion layer is completely depleted

plane electrodes,
of the reactant near the trailing edges for large enough flow rates,

thereby limiting the local current density. The present results suggest
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Current distribution for Tafel kinetiés.
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' Figure.5-2. ;Concentration distribution for Tafel kinetics.
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Figure 5-3. The effect of rotation speed on the current distribution
for Tafel kinetics: (1) N=10, i /(i,., ) =0.6277;

. ave lim” ave

(2) N-20, lave/(llim)ave=0'6432;.(3) N-50, lave/(l )

0.6623; (4) N=100, iave/(ilim)ave=0.6722.

lim” ave

.
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distribution for Tafel kinetics.
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the possibility of attaining a uniform current distribution for large
N on a rotating sphere in the presence of appreciable concentration

poiarization. Further investigation is in. order below.

.5.2. Conditions aé High Rotation Speeds

If a constanf;flux situation prevails on_fhe éurface of the sphere,
the concentration derivative inside the integrél in.equation 2-63 is
constant and related‘to the uniform.current density'by Faraday's law
(equation 3-20 or.3-21). After séaling the current with respect to .
the a&erége limiting current dénsity (equation 2-61), equation 2-63

reduces to

) . (5-2)

1~ co/c°° = 0.230825 F(H) i/(ilim ave
where
6 _
F(e) =f 5 sine'de' . (5_3)
o [j' sine/fgfﬁgdé]2/3
« e' . . .

This function F(0) is plotted in figure 5; it increasesvfrom the value
3.14768 at 0 = 0 (the pole) to the value 6.36850 at © = T/2 (the
equator). Since the_surface.concentration is alwaysvpositive or zero,

equation 2 can be satisfied over the entire surface if and only if

‘ v < : _ i
i/(ilim)ave 0.680267 . (5-4)

It also follows from equation 2 that for currents restricted by condition

4 the concentration at the pole will be given by

c (0)/c, > 0.505742 . (5-5)
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Figure 5-5. Concentration distribution for uniform flux

condition at the sphere below the limiting .
current. ' ‘
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Equatioﬁ'4'0r 5 is the condition, thefefore, for whiéh a uniform
distributién of current is possible on the.sphere;‘vThé corresponding
concent:ation distribution is given by equation.Z}' |

If condition 4 or 5 is not met, thg concéntration becomes zero
‘at a certain angle 9*, which can be determined from equation 2 by
setting c01= 0. The cufrent becomes limitéd for 6 >.9* due to this-

zero concentration distribution and is expected to be nonuniform. Hence

+

equation 2 is no more applicable in this region. Under these circumstances,

the current density can be calculated from equation 2-62. After
combining with Faraday's law and equation 2 and some rearrangement,
this becomes

1) _ 4.379408 [1 - e (0)/c,) VBsin®

(ilim ave (5-6)

6" ar . s’ *
xf‘ d_e‘e=e'j'-e ;@0
6 [e" gine/ls_sTrx_Gde]- | | |
Numerical calcﬁlations for various curfent leﬁels yield the
interesting results depicted in figureé 6 and ;. Notice that equations 2.
and 6 do ﬁot_depend on any of the kinetic parameteré or the exchange4
current density; the current and concentration distributions are determined
only by the specified current level for a galvaﬁostétic processﬂ The
reaction parameters are necessary, however, to calculgte the over-
potentiai; or conversely, to calculate the current level if the
electrode potential is fixed (potentiostatic process}. These remarks
are also true for the secondary distribution. 1In fact, the.results of

this section map out the transition from the secondary current




~73-

1.4

06 i, ¢ i) = 0680267
: ave

04}

| - 1 | [ [
1.0 08 0.6 0.4 0.2 0
’ o cos 8 * |

XBL735-3019

. Fig. 5-6. Current distribution at high roﬁation speeds.
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distribution, which is uniform, to the limiting'current distribution,

which is nonuniform.

1im), the secondarf distribution

At 1oﬁ curfen£>levels (1| << i
preyaiis, and fhe’surface conéentration_is equal to the bulk cbncgntration;
As a result; tﬁe éoncentratioﬁ.oVérpotential isvnégligible,'and the
electrode potential is due to the éurface overpotenﬁial and the ohmic
drép in tﬁe solution, the létter being.éiﬁen by (see equations 2-27

and 2-29)

¢ = I/2mcr o, (5-7)

where I is the total applied current. As the curreﬁt level increases,
the ohmic d:op rises linearly with I according to equation 7, and the
surface overpotential increases as InI accofding.té the Tafél expression.
If theré are no mass-transfer iimitations, the concentration overpotential
does not vary signifigantly. Therefore, the currenf distribution is
controlied by the large ohmic drop, which remains uﬁiform at the surfaCe
in the absence of mass-transfer limitations; aqd the curreﬁt dis-
tribution is.also uniform. The concentration becomés zero at the
equator once a critical current level is reached as specified by
equétion 4. Wi;h,incféasing.qurrent, the depleted portion of the
diffusion layer grows from near the equator toward fhe poles, and
correspondingly the region of uhiform cufrent density shrinks in the
same direc;ion. Finally; the 1imiting cufrent distribution is attained.
The present results are significant,.first of éll, in high-rate |
aissolution or deposition studies because the épﬁerical electrode

'maintains its geometry, especially when the current level is kept
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below 0.68(i1im)ave; and high rotation speeds.are;appligd. Secondly,
the placemenf of the reference electrode is not as crucial as for the -
disk because the potential distribution is uniform if constant flux
prevails at'the surface. if the reference elecfrode is close to the
surface, é correction for radial éositioﬁ is reéuired. This consists

of a simple_extrapolation to infiniﬁyvsince the primary distribution

(équatioh 7) is a function of radial displacement only. Under these

conditions, the assessment of the ohmic drop by the interrupter technique,

which measures fﬁé value'cofresponding to the priﬁary distribution,81
is also much more straightforward in comparison to the disk eiectréde
(see chapter 7).

bhmic effgcts due to a nonuniform potential distribution near
the surface of an electrode may become important in éléctroanalytical
work. A»nonuniform ohmic drop can result in a loss of control of the

96,97

electrode potential in potentiostatic applications, ‘cause waste

of current due to hydrogen evolution during the cathodic protection of

metals against corrosion, or render difficult thé’anodic protection of

58,98

metals with active—passive'kinetics. The potential variation

across the surface of a sphere is at a maximum level at the limiting

current (figure 8) as for the disk. The maximum potential

difference between the pole and the equator is

AP = 0.546 v i /K . (5-8)
(o] O ave . :

o2}

Problems due to a nonuniform potential distribution can of course be -
eliminated by operating close to the conditions which effect a uniform-
current and at the same time a uniform-potential distribution on the

sphere as discussed in this section.
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Figure 5-8. Current and potential distributions at the
limiting current on a spherical electrode.
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VI. TRANSIENT CONVECTIVE DIFFUSION TO A DISK ELECTRODE

Nonsteady-~state methods are commonly employed in electrochemistry.

for the study of electrode kinetics and mass transfer in electrolytic

solutions. The fundamental treatment of transient diffusion at electrode

surfaces hés been of interest since the classical'study ofvthe problem.
early in the century by.Roéeburgh and Lash-Milier.?O: Levichg’71 has
solved for the first time the transient.diffusion équation fOr the disk
geometry. Since convection is ignored invthat'treaﬁmenf, thevresults
are valid only for very short times. Subsequent analytic effdrts72’73
with the consideration of,aXiai'convection are also limited to small
time intervals due to approximate methods of analysié; Fairly accurate
numerical golutions are available for response‘to flux step74 and

concentration step75’76

at the surface. However, analyfic results are
always more desirable for design calculations,‘detérmiﬁation of
relaxation times, and investigation of complex‘boundary conditions
invplving electrode kinetics and capaciti&e effects. o

"Krylov and Babak77 have recently attempted an‘éxact solution of
tﬁe‘axial convective~-diffusion equation by a claésicél perturﬁation
expansion technique. They héve reported results for the concentration
step and flux step conditions. Selman76 derived'indéﬁendenfly the
same solution for the concentration sﬁep. The;e resﬁits provide
considerabie improvéments over ﬁhe preVious analytic work but are still
confined to relatively short times if a reasonable numBer of.terms are
to be retained in the series expansion. We woula likg to contribute

here to the past effort by presenting and alternatiVévtreatment for

large times, so that the results can be employed intefchangeably with
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the short-time series of Krylov andvﬁabak within.théir ranges of
applicability. The‘method of.Krylov and Babak is aleo reviewed.
6.1. Theoretical Formulation

We introduce the assumption here that the disk is uniformly
accessib1e3 and thus radial convection can be ignored. One should
realize, however, that the latter assumption is introduced merely as
a mathematical convenience. It is well accepted by now that radial
~ convection becomes significant below the limiting current7 (see also
section 4.3), The experimental data of Nanis and klein78 aeem to
indicate that this assumption may "lead to appreciable error especially
during the transient build-up of overpotential after a step increase
in the current. The more general case with radial convection is
discussed in appendix B.

Without the radial terms, the transient equation for convective

diffusion reads
—3'?.+v'—'=D-———2 '..- B (6__1)

where vy is the axial velocity-component for the.rotating diak
approximated for the diffusion layer (equation 2- 52) We introduce

-

the dimensionless variables.

1/3 ,\2/3 . o
8 = Q(D) (%) t , . (6-2)
1/3 S -
c-y (%) V5 . - O (6-3)
Ce-C - -
0= - (concentration step) = , (6-4)
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or
e ¢ o
0 = m—- (flux step) . _ (6—5)
=0 - v .
Eduation‘6—l thus becomes
50 ..2 30 . 3%0 |
x5 = 38 =+ — . (6-6)
98 _ 4 3;2 .

Consider the build-up case after a step increase'in the concentration

or flux. 'Thevboundary conditions are

©@=0 as [ > E :
, (6D

0=0 at 6 =0
"©=1 at £ =0, 0 >0 (concentration step) ,  (6-8)
or
00/97 = -1 at L =0, 6>0 (flux step) . v (6-9)

Results for the decay case can be obtained simply by subtracting
the results for the build-up case from the steady-state distribution
(see equations 21 and 22). Therefore, a éeparateﬁformulation is not

necessary, contrary to the analysis given by Nanis‘and Klein.

6.2. Short-Time Series76’77

The solution to.equation 6 can be represented in terms of the

series expansion,

6= E :83n/2 G (2) (concentration step) ,  (6-10)
n=0
. © 3ntl
Q= 29 2 Fn(z) (flux'step) L, (6-11)

n=0
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where F and G aré‘functions of the similarity variable z = ¢/v/28.

Substitution into the differential equatidn éhd equating the terms 6f'

equal order in 6 yield

1" ]

G +z26 =0 , .
° ° . (concentration (6-12)
(n>0) ,) step)

" L L
G +2G - 3nG = - 6/2 z°c
n n n n-1

or

11} | B
F +2F -F =0 ,
o ° o (flux step) (6-13)

(n > 0 ,

1]
F +2zF - (3n+l) F_ = - 6/2 z°F
n n n n-1
with the boundary conditions
. (6-14)
(0 =1, G (= =0 |, '
° _ . (concentration
- - . - step)
6@ =0, G =0 @>0) ,
of v N : : .
) .
F (0) = -2, F (=) =0 ,
: | (flux step) (6-15)
0 =0, B =0 >0 . |

Krylov and Babak_haﬁe expfessed the solutions in terms of parabolic

cylinder'functions;77 The rgsults, evaluated at the surface of the

disk, are
(6-16)

;l_.+ %-6 + 3 65/2 + 0(64) . (concentration
/me -t 20/m ‘ step)
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or

0 =2 ‘/%-- g-ez +—3 0712 _ 06%) (flux step) .  (6-17)
e : 70/ _ . :

6.3. Long-Time Series79

It is possible to express O in terms of a steady-state and a transient
part,

0=0% -0 (build-up) , (6-18)

so that each part satisfies equation 6 separafely. The boundary conditions

' ss .
for © are

%% =0 as [+ = -

%% =1 at z=0 (concentration step) ,

or

90%8%/3C = -1 at L =0 (flux step)
These yield the solutions
ss 1 i B ' '
07" = 4 e dx (concentration step) , (6-21)
@) i | |
3/
or
- 3 ‘7 » _
o°8 ='_f e X dx (flux step) |, (6-22)
v . )
l6

where the integral can be found as a tabulated function of ¢C. The

~ transient part of concentration satisfies the conditions

(6-20)




e
S

t

C] Q-O" -as  [+

R .  (6~23)
Ot - Ossz at 6= 0 g
Ot =0.at =20, 96 >0 (cqncentration étep) , (6-24)

20%/32 =0 at £ =0, 8>0  (flux step) . (6-25)

4

The éolution to ot can be derived coﬁvenieﬁtly in tefms of a
boundary-value problem since equation 6vis separabie, and the conditions
23 to 25 are homogeneous in the {-coordinate. Let us express OF in
the form |

©

R L '

n=0

where Zn is an eigenfunction, andvkn is the eigenvalue associated with
it. Substitution into equation 6 and conditions 23 to 25 yields the

Sturm-Liouville syétem

]
z +32%2 +Xrz =0,
n n - nnn
Z @ =0 ,
. n \ (6-27)

. . :
-Zn(O) = O . Zn(O) = 1 (concentration step) ,

‘or . .

p

This system has been solved here numeriéélly'by a method commonly .

.-10,11,80

employed in this laboratory. The coeffiéients B are given by
. n
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ss C3 |
f@e z_ (@) dt
0

- N S (6-29)
) |
f Zn(C) a o
0 L |

and were evalnated by numerical integration. A listing of the computer
program ueed'to.calculate the eigenvalues and the eoeffioients is
given in aopendix C.

Table l lists the eigenvalues and the coefficients B after they
have been extrapolated to zero mesh size. The first three eigen-—
functions are plotted in figures 1 and 2 for concentration step and
flux step, respectively. The results are compared with the short
time series of Krylov and Babak in figures 3 and 4. The two series
match quitevwell ovet'a certain range of 6 for each case even though

»only three terms of each series were used to plot these figures.
The two series are also compared with the numerical solutions of
Hale74 and Selman76 in table 2. The agreement is satisfactory within

the accuracy of those solutions.

The present results enable the assessment of time constants,

1/3

T = KSc'°/Q R (6-30)

for build-up or decay of a concentration gradient after a step change .
in the surface concentration or flux. For a concenttation step,

K = 0.45142, and for a flux step, K = 1.2623. These results are
accurate insofar as the tadial dependence of concenttation can be
-ignored, such as in heat-transfer'studies75 and mass transfer in

nonelectrolytes. In electrolytic mass transfer, equation 30 is

-

L 4
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‘Table 6-1f.The first ten eigenvalues and the related coefficients B of

the eigenfunctions.

155.42872

concentrationgé%ep flux step
' 'An Bn An . Bn :
7.21644439 '1.12818046‘ ‘ + 2.58078493 .0.663516066
;8.1596045 ,0'90505798. 12.3099728 0.081564022
31.1962389 0.7907692  24.4331401 0.034457046
45.7926549 0.718387 38.3054850 Q.01962199
61.6691473 = 0.666834 53.5740271  0.0128965
78.6461928 0.627481 70.0220380 - 0.0092267
96.5966836 0.596032 87.5010784 0.0069829
115.424957 0.570071 105.902059 0.0055048
'135.05591 0.548117 125.140833 0.0044645
0.52920 145.15016 0.0037089
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Figure 6-1. The first three eigenfunctions for the concentration-
o step case. ' :
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Fig. 6-2. The firsf»three'eigenfunctibns for the flux-
step case. ) :
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Figure 6-3. Comparison of the short-time and the 1ong—time series

for a concentration step.
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Tab1e 6¥2. Comparison of the short-time and longFtime'series with

the numerical solutions of Selman’® and Hale’4 at a
few selected values of 6. ' '

~Concentration Step

Sﬁoft-Time | _ -Long—Time" Numerical 76
‘Series (3 terms) Series (9 terms) Solution by Selman
0.0001 56.4190 ~ 8.1551 . 56.4190
0.01 . 5.6495 ’ 5.2647 - 5.6494
0.25 1.3265 _ 1.3198 .- 1.3155
1 1.3988 1.1207 , 1.1207
Flux Step
3] .0
(o]
Short-Time ~ Long-Time Numerical 74
Series (3 terms) Series (9 terms) Solution by Hale
0.0797 0.3209 v 0.3161 ‘ 0.314
0.319 0.6759 0.6001 0.599
1.037 1.5798 0.8473 ‘ 0.847
1.994

3.3551 0.8891 ' 0.889
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. sufficient for making estimates,.but correction»fér nonuniform current
distriﬁutioﬁ<is probably necessary for more acéurate'calculations. A
complete analysis of the convective diffusion equati;n with‘radial
dependence appears to be véfy cqmplitated and raﬁhefidemanding in
numerical effort. However, an'agymptotic calculatiénvfor large times
may be trécﬁable to determine the necessary time.cbnsténts, és discussed

in appendix B.

6.4. Treatment of Complex Boundary Conditions
The above results can now be extended to.treat timé—dependent

surface conditions. Application of the superposition integral gives

¢ - ¢, = le_(0) -c.] 0,(6,8)

(6-31)
e'dco : \ ,
+ a—-é_'ese' ec(e‘-e ,0) 48,
or equivalently, ' E ,
o dc 3 . '
€ = Cp = - 3z — [0,(6-6 ,0)] a6 , (6-32)
: ' L=0 06 :
X !
0 ¢=0

where the subséfipt o dehotes conditions at the eleétrode surface, and
Gé,ana Of represent'the concentrétion—step‘and tbe flgx-step solutions,
_reépectively.‘ Differentiation of equation 31 yields an explicit
expression for the flux at the surface,

SOC' | ' .
: ad , (6-33)

Q

t=0

Wi

de ., SOCI f de_
bV = [c_(0) - c,] 557 + v
3 o L3 P 8 lge" 3T

' 0 I . 6=6
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which may prove mdre useful for certain calculatiéns.

- These equations are in a convenient form to calculate the potential

in current-controlled applicétions, or vice versa, the current in potentio-~

static cases. For example, 1f the double-layer effects can be‘ignored

in a reversible situation, and if the time depen&ence of the applied

éurrentris known, the flux at the surface can be obtained from Faraday's

law and substituted into equétion 32 to calculate the concentration.
The overpotentials, ohmic drop, and the electrode potential can then

be calculated in a stfaightforward manner. If, on the other hahd, the

potential is controlled, a trial and error solution of one of the integral .

equations is necessary simultaneously with the expressions for the
overpotentials, the potential in the solution, and the electrode
potentiai.

Double-layer effects may become important in transient electrode
pfocessés. Delahay and co—workers42_45 have shown how to treat thé
conditions at an electrode surface in the presence of mass transfer, -
faradaic reaction, and doubie—léyer chargiﬁg (see section 3.4).
Equations 31 to 33 can be applied conveniently té treat thése effects.
A simple e#ample is given beléw. - |
6.5. The Effect of Double-Layer Charging

Nanis and Klein78 have conducted experiments to.determine the
transient behavior of the overpotential in the preséﬁce of a highly
reversiblevelectrode reaction. Theilr experimental relaxation times

lag those which would be predicted by the theory formulated in the

previous sections. The discrepancy is possibly due to the assumption
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that the disk is uniformly accessible to mast-transfer, When the
current‘is initially switched on as a step, the flux is much higher
at the edge than at the center of the disk, an&'the overpotential
" thus builds up at a fastér rate at the edge rei;tive.to the center.
This :esﬁlts in a réther nonuniform overpotential éarly in the transient
process in violation of the'assumptioﬁ. |

| Another possible.causé of the‘discrepancy_is the effect of double-
layer charging; some of the current may be used to charge the double
layer, theréby delaying the build-up of the overpotential. This effect
is investigated here for the‘case of a fast and highly reversible
deposition of a single réactant in the presence of an excesé amount
of supporting‘electtolyte. The double-layer capacity is assumed to
be independéﬁt of the potential (see'chépter . Since the electrode
reaction is fast, it is safe td assumé also that‘nc:>> ns.' In the
light of these assumptions, equation 3-32.shogld be adequate to express
the conditioné at the electrode surface. After Substituting equation 3-12
for the concentration overpotential and putting invdimensionless form,

equation 3-32 can be written as

'?ﬁl -1 I_ T '
3 .
where
0= c/e,
2
8.CRT 1/3 )
R (—3—) scl/3 gel’ 2.,  (6-35)

Q= =373
cn F ro
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and I/iL_is the curfent level. The importancé of the double-layer
charging depends on the'magnitude of the parameter Q which is normally.
ofvorder 16-3 to 10_2. Even though this seems small, it is hard to
predict in advance whether the double—layef effeét.is also small
because the derivative dOo/de can be quite large at smél} times and

influence the transient behavior at large times.

Equation 34 was combined with equation 33 aﬁd,then solved numerically

for an iﬂitial step increase in the current. Thgvrésults are compared
to the case where the double-layer effects are completely ignored in
table 3. This latter case is identical to the fqu—step solutions
given‘in sections 2 énd'3. The same results can be obtained from
equations 33 and 34 by setting Q = 0 and are also included in table 3,
so that errors due to the numerical method will:noﬁ be attributed fo
double-layer effects.

Tﬁe resﬁlts_indicate a definite delay in the relaxation of
concentration with increasing Q so as to alter appreciably the
characteristic time constants calculated previously in the absenge
of the double—layerveffect. However, this delay is not at all as
large as that meaéured by Nanis and Klein. The results of Nanis and
Klein are for a redox reaction, but the consideration of the product
concentration in the present calculations would probably ndt alter
the results appreciably.7 The present results seem;?o suggest that
the double-layer charging does not effect significantly the transient
mass—-transfer phenomena at a disk in the presence of a reversible
reaction. However, the validity of the assumption that fhe concentration

of the supportihg electrolyteAdoes not change has not been tested. The
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Table 6-3.

R A

The effect of double-layer charging on
transient mass transfer to a disk in -
the presence of a highly reversible

electrode reaction (I/IL=1);

0

ot %o(0) €, (e=0.001) @ (q=0.01)
0 1 1 1 1
0.2 0.452  0.452 0.455  0.469
0.4 0.265  0.267 0.269 0.285
0.6 0.158 0.160 0.162 0.179
0.8 0.094 0.09  0.098 ©0.115
1 0.056 0.057 0.060 - 0.076
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effect of migration has been shown to be negligible under steady-state

situatio‘ns-;az’g'3

but, it can be significapt in transient phenomena
since the time derivatives of concentration entefvthe equations for
the surface flux rather than the absolute valuesv(seevequations 3-25
and 3—31). .In order to incorporate into the anaiyéis the concentration
variatidns of the supporting electrolyte, the cénvgctive—diffusion
equatioh ﬁas to be solved for the supporting électrolyte with the
consideration of migration effects (see reference il, section 73) for
.a step changé'in the concentration or flux and the solutioﬁ generalized
into a form such as equation 32 to account for afbitrary initial
‘conditions. The system of integral equations for the supporting
electrolyte and the reacfant can then be solved together to-satiéfy
a general boundary céndition of the‘type’given by equation 3-25. An
analysis of this tyée is outside the present scopé.

The numerical method of this section is discqssed in appendix D.
Even though the results were not conclusive, the ﬁethod may be of some

interest since it demonstrates an application of the equations of the

previous section to a relatively complex electrode process.
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VII. THE TRANSIENT RESPONSE OF A DISK ELECTRODE
UNDER GALVANOSTATIC CONTROL

Invstudies of electrode kinetics,'the uncompensated ohmic drop
in the eolution has often been measured by transient methods since
the development of the commutator methoo by‘Glasstone.86 The more
accurate interrupter technique has subsequently*been invented87 and
pervfected88-90 as a reliable tool in the last couple of decades. The
presence of a nonuniform current distribution at the electrode snrface
(such as in the case of a disk electrode below the iimiting.current),
however. appears to complicate the interpretation of interrupter data,
as this subject has already received ample thought and experimentation
(references 15,59,64,81,89; see also the dlscu351on on reference 15).

Newman81 has shown that the step change in potential at-interruption
correspon&s‘to the primary current_distribution and_discuséed the time
constants for decay of the double-layer capacity due to a faradaic
reaction and redistribution of charge within the double layer A more
complete mathematical study will be presented here in order to determine
the transient response of a disk electrode to step changes in the-cell
7current.6 ‘

The problem was originally conceived for»an>ideally polarizable
electrode-With the'purpose of calculating the transients’One would
observe during the charging.and decay of the double—layer capacity.
However, the effect of a faradaic reaction can be incorporated into the
‘formulation without any added difficulty in the_analysis. The more
generai case will therefore be analyzed nith due notice of-the

mathematical subleties relevant to an ideally_poiarizable electrode.
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7.1. Mathematical Model

The pfesent‘analysis intends to investigate the effects of double-
layer charging and a faradaic reaction on the transient beﬁaviof
of the disk in the absence of concentration variations. The model
therefore differs from the oné describgd in chapter 6 because the
diffusion layer is ignored, wﬁereas the effect of the ohmic drop in
the solution is considered along with the types éf electrode conditions
mentioned aBove. The results have a physical significance in situations
where the current level is low and the rate of stifring is high, and
hence the concentration variations in the solution can actually be
neglected. It is further assumed that linear kinetic relationships
govern the electrode reaction and the double—layer_capacity is independent
Qf the potential. The latter assumption is a reasoﬁable approximation
for small changes in the electrode potentiél,'eséecially for cathodic
polarizatidns with respect to the electrocapillary maximum. Some
attention has been directed to the proper treatment of the capacitive
effect of fhé diffuse double layer in.transienﬁ'problems in the
presence of éoncentration and sigeable potential variations, ahd the

readér is directed to the pertinent_literaturell’4l-47’91

(see also
sections 3.4 and 6.5). More discuésion is also ip order in a later
section concerﬁing'the validity of the above assumptions in practical
application.

The potential in the solution satisfies Laplace's equation 2-10

and the conditions at infinity and on the insulating surface expressed

by equations 2-11 and 2-12, respectively. The potential is furthermore
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well behaved on the axis of the disk. The normal component of the current

density at the electrode surface is given by (see equations 3-18 and

3-34)
, . . 4F _
.8 . O 4
in , ¢ ot + (aa + oLc) RT ns K oz
| - | (7-1)
at z=0, r<r_ ,° A
)
where
ng=Vv- L. o (7-2)

We would like to-have our model simulate.thé transienf-résponse _

| of a disk,electfodé.for the charging or décayﬁof the double-layer
capacity immediafely after the current is turned oﬁ'or off respectively.
The potentiai in solution for the charging pgriod can then be'repreéented
as the difference of A_Steady state and a traﬁsieﬁtvéontribution,

t .
¢ = éss»- o, . (7-3)

such that each part satisfies Laplace'é equation-by‘itself. The

electrodé'potential V can éimilarly be‘e#pressed:as‘the differgnce of

a steady state‘and”a transient part. The steady stafe part of the

potential iﬁciudes the contribution of the total cell current, while

the transient part contains no netvcurreht."Once the current is

turned qff, therefore, the steadybstate part vanishes, and the decay
' t

period is represented by only the transient part: ¢ = ¢, The

steady state part of the potential is treated in section 4.1.
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7.2. An Eigenvalue Problem
The transient part of the potential -can berekpressed by a series
expansioﬁ of the form

t ht ~t/T SR : :

® _ ce Iy (r,z) , (7-4) .
oP Z 1 SR e __ .
o] i=1 ' e

where»U1 is a characteristic dimensionless potential defined here to be

independent of time, ahd T, 1s a time constant’for decay corresponding

i

The analysis can be pursued conveniently in terms

to the potential Ui'

of two additional diménsionless quantities, namely the dimensionless

eigenvalue,
-roC B
Ai = ¥t J o, e i (7-5)
: i :
and the dimensionless time,
Kt
e = —-——r C . (7“6)
o
Equation 4 then transforms to the form
ot IR )N ' v
— = Z c.e T U /(n,B)y .. (7-7)
o o |
0 i=] o
The transient part of the electrode potential can analogously be
expressed as
. © , :
t . =8\ L+T)
vV—=CeeJ+E ce 1 o, (7-8)
oP o i i
. © i=1




DY O T '
s A EAI.j . {kj st i') Lj ,f - "J“ %; s é;g

- =101~

1

i

where VU  is a constant which will hencefofth»be_takén to be unity,
‘thus providing a normalization for the eigenfUnCtions_Ui.

The functions U, satisfy_Lapléce's equation,

i
CVug=o0 o, (7-9)
and the conditions -
oU, '
i .
- 0 aF. n=0 |,
U =0 as E>= , ) (7-10)

Ui well behaved at n' = 1 .

The solution can therefore be given by

o0

U, = Z;Bn,'i P, () M, (E) . | (7-11)
. n= ’ : .

The zeroeth term is excluded from the summation sih¢e U, includes no
contribution to the net current. The boundary éoﬁdition 1 now reduces

to

13

ETRICARE BENCETY

Combining equations 11 and 12 and invoking the orthogonality property

of the Legendre polynomials yield

Ya_ B =% . (7-13)
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n
max

n=1

The above éet of,eqdafions can be solved simultanebusly for Ai and

Bn,i°' |
are given in table.l, and the first three,eigehfunctions are plotted

bThe computef program 1s’reproduced.in appendix E. Some results'

in figure'I;

| Each term in equatioh 4, and the corresponding'terﬁ in equation 8,
describes a potential distribﬁtion and a state of charge 1in thg electric
double layer whiéh can decay'wifh é single time constant and involves
no net currént-flow to the éounter electrode at infinity. The state

of charge is proportionai to V-@é or to 1-U for a particular

i,o
eigenfunction. If this stﬁte of charge is non-uniform, it'will have
associated with it.a-flow of current through the solution in a direction
which tends to make. even the charge disffibution acrﬁSs the eleétrode
At the same time, the double-layer charge may be decaying through the
A faradaic reaction (if J>0).

If each eigenfunction is to répresenf a single time constant,
the amount of current'floving tﬁrough the solution tfelated'to an/ag
at £ = 0) must be propoftional, over the surface of the eléctrode, to
vvthe rate of change of the double—layer charge. vEﬁdafion 12 represents
this state of affairs. Only for certain chafactéristic decay coﬁstants
_ Ai'is it possiblé to find constant current and cﬁa:ge distributions
which decay with a'sipgle time constant, and theéé‘eigenvalues are

not knogn in advance. The lowest eigenvalue, either Ao = 0 or

v Al = 4.12130, is the most important because its effect can most

2 : [a + .TJ_ 4m ™ 1] o,m (m = .1,2, . .' . nmax-) K (7'_].-1.‘)
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The first five eigenvalues and the related

Table 7-1.
: . coefficients Bn,i of the eigenfunctions.
N A, Ay Ay As
| 4.12130 7.34208  10.5171 13.6773  16.8308
n i=1 i=2 i=3 i=4 i=35
1 4.56973  3.77405  3.44403 3.25860  3.13835
2 3.58511 -3.70789 -4.65165 =-4.79056 -4.75592
'3 0.51738  -7.51662 -0.26793 2.76530  4.12700
4 0.10883 -2.89555 - 9.61986 5.38647’ '1,50528
5 -0.03142. -0.67828  6.80910 ,;8.19376 -8.96687
6 0.02274 -0.02899  2.44679 -10.7732  3.13094
7 20.01587 -0.03991  0.44950 -5.76314 12.7102
8  0.01161  0.02427  0.11317 -1.72889  10.1185
9  -0.00879 -0.01882  -0.02225 0.42934  4.33793
10 0.00684  0.01470  0.02444 -0,02855 1.34839
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Fig. 7-1. The first three eigenfunctions for the
transient solution. : '
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‘readily'Se observeétexperimentally aftef the othér eigenfunctioné have
decayed»to_negligible values.

It is a further éoﬁsequence of boun&afy §Ondi§ion 12 (current in
solutioﬁ is proportional to surfaée’chargg'for each eigenfﬁnction)

that the eigenfunctions U

i satisfy the unusual orthogonality relationship

1]
® M. (0) '
1 2n .2 . ..
1 A E4n+l Bn,i it i=3,
1 "1ngp=1 o ‘
f Ui,o(l'uj,o) ndn = o (7-15)
0 0 , if i # 3

This has much the same meaning; the pbtential at ‘the surface for one
' eigenfundtiqn is in a sense orthogonal tq the cufreh; dénsity for
another eigenfunction., | ‘

One can study the eigenfunctions in figure'l go visualize how
the current flows thréugﬁ the sblution. The potential is nonuniform
for a given eigenfunction because the state of charge is nonqniform.
The cur?ent‘density in the solution is proportiéhal to l_Ui,o and
flows from a fegion of high charge to a region of»iow charge.. The
highe? order eigtnfunctions have moré minima and maxima in'tﬁe curves.

The current need therefore flow a shorter distance in order to even

up the charge, and the_tiﬁe constants are correspondingly shorter.

7.3. Tfansient Potential Distrihution

In orde; to be éble.to céléula;e thevvélhesqu‘ci andvthereby
complete the analysis, we need to spécify suitable initial'conditions
for the problem. Let us assume that the current is.switched on as

a step at 9 = 0+ and kept constant until 6 = Och’ at which instant it
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is turned off. The time scale for the decay peficdfcéh be defined as

o =00, L » (7-16) -

Therefore, for the charging period,

V=0 =¢" at 6=0+,E5=0 , (7-17)
: o o ST _ .
and for the decay period
V= V(ech) - ¢§ ' ‘ N v
| at ' =0+, E=0 . - (7-18)
% = ¢o(ech) - ¢g , ‘

Application of the initial condition (17) for the charging period to '

equation 3 gives

958 @ | o
7 1 E CiUs o + | - (7-19)
) i=1 S

Multiplication by (l—Uj o)n and integration with respect to ﬁ yields

l q>ss v
P (1-U ) ndn Z4n+ l'n n,J
0

c. = ' - ) (7-20)

’ t ;Mzn(o) 2
. U. (1-U. ) ndn 2n_ - g2
3,00 12—1 in + 1 B0,

0

: Application of the corresponding initial condition for the electrode

potential gives

.

AN — S
c, = ” 1 C; =77 - o (7-21)
o
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Fér the decay*period where ¢ = @t'(the ﬁegative of tﬁe transient
pafﬁ for charging), thé samevresuits, sdmmarizé& by.equations 19 through
21, also aﬁﬁly as long as ech is largefendughvsbbphat‘the‘steady state
has been reached tight before interruptign. If this is not the case,

the equations for:decéy become

. ' v
bt =8 (A+I)] -6 (A 4T)
® . c‘[l—e ch™1 :‘e P, (7-22)
P i - i
o i=1
4
" for the potential in the solution, and
_ -6 J. . L. — -6 (A +3) | -8 (A,+]) A
Y o-c '(l—e ch ) e 9y C, [1—e ch™ 1 e 1 (7-23)
oP o i :
o ‘ i=1

are the same as for

for thezelectrode potential. The coefficients Ci

the charging-period, giQen by equations 20 and 21.

: Fof an ideally polérizable electrode (J=0), thé_same relatiohships
" hold to express the potential in the solution, both’fér charging and
for decay. The electrode potential, hoﬁever, increases indefinitely
once the current is ;aned 6n and decays to a.noﬁzeto value after the
interruptién of cqrrenﬁ. This is bééause of the fa€t that the net
double-layer charge has no means for decay in the absence of an.électrode
reactioﬂ; it can only redistrigute by fléw-of current through the
solution iﬁférder govéttéin a final uniform state. .Hence, for the

charging period we have

Y _444p- z ce I . (7-24)
p T i
0P | | |



-108-

The constant term can be obtained by intergrating condition 1 over
the electrode surface for the total period of charging to obtain the v

net charge added to the double layer:

ffo [%h (V-0 ) r oty _ _
2mC 2 dtrdr = 2T i dtrdr = It
, SR oot ,. , n ch

0 0 | 0 70

4

(7-25)

Substitution of equations 3 and 24 into the left_side and integration

lead to the .result

D=2 E B5S 2 = 1.08076 = 32/3m% . (7-26)
n o,n " : .
n=0 ‘

Finally, the electrode potential for the decay period is

. 1] .

i -A® - 6 '
_ 4 ' i ., 1ich ‘ _
= ech + E Cie : <l.e > . ‘(7 27)

i=1"

%le

Thebanélyéis at this point can readily be éxfended'to aécount
for arbitrary changes in the cell current by a straightforward :
application of the superposition integral. If'the'time depéﬁdent
cell currgnt is given by I(6), the eléctrode pofeﬁfiél can be expressed
as |

ey [° 67
4roKV = I(0) + CoJe f I(0) e "db
0 . f (7-28)

: . : -6\, +J) e 0N, + J)
i _ i
E 2 C,(h, + D) e f 1) e a6

i=1 0
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in the presence of an electrode reaction, and
o o, © A >« - -As Y A B |
4r kv = 1(0) + = | 1(8) db6 + E c.he | 1(9) et dd (7-29)
for an idéally pplafizéble'eléctfode. One appliéation of these equations
would be for an:alterhating current situation, wheré the frequency
dispersion of the measured impedance is of interest. This discussion
is postponed to the next' chapter where an analpgoﬁé equation for the

potentiostatic case is developed.

7.4. 'Reéglts and Discussion

Figure 2 depicts a typical poténtiél trace for double layer
charging and aecay in the presence of a faradéiC‘fea;tioh,vand figure 3
shows pdtential decay curves after the interrﬁption bf currentvfor
various values of the kinetic parameter J. For Both representations,
the curreﬁ£ is interrupted after the doublevlgyef is charged tovsteady
state condiﬁioﬂs. For large decay periods, thé 31qp§ of each curve
approaches the corresponding J vaiue on a semi—logg#ithmié scale as
can be inferred‘froﬁ equation_23; Curves simiiaf'to figure 2 could
be construéted for different J valéés by making use of the information
contained.in figure 3 and by femembefing that the ohmic drop is given
by the primary distribution ¢§ and the charging and decay portions of
eacﬁ curve are symmetric. o

The facf that the instantaneous poteﬁtial stépvimmediately,
preceding both the charging and decay portions of figure 2 corresponds
to thevprimafyvcurrent distribution81 is implicit in‘thevpresent

analysis by virtue of the parficular initial coﬁditions (equations 17
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Figure 7-2 Double layer charging and decay in the presence
of a faradaic reaction. :
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Decay of the electrode potential for various
values of the kinetics parameter J. A steady
condition was attained before interruption of
the current. ' :
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and 18) employed. 'Nanis and Késselm_anl5 have e#pressed the contrary
view iﬁ'this regard,v We would like to stress that the same criterionv
would hold for thé ohmic drop even if the diffdsion'layer were taken
into'consideration. An experimental verification along these lines
'v'has been provided by Miller and Béllavance.59
'_ The transient response of én ideallyvpolarizabié elegtrode to step

-changes in the current is debicfed in fiéure 4. 'The étep‘portionS'again
correquﬁd ;o.the primary distribution. The differences in comparison
to figurélz aré‘obvious. Tﬁe potential-time relationshib becomes
'linear‘fof sufficiently large charging pefiods as the surface current
density attains a uniform distribution. After thé-interruption of .
,_cﬁrrent,f;he electfode potential degays to a nonzero value, given by
46¢£/wé_ Decay curves for various charging periods are sketched in
L figurévs to show the effect of short charging times on the potential

‘:décgy.‘ Tbe Same'effect is aleo discermable when.J ié greater thén

GZero;;Suf the dependencé oﬁ the charging period w#s not of pfime

;ﬁhtgiésﬁ in,constructing.figuré 3 and was suppressed by allowihg a
steady étaﬁe to develop before current interruptioh;_ ,v

An important resuit éf the present anéiysié ié the assessment of

an accuraté time éonétant for'thg decay of the double~layer capacity
in the absence of concentration gradiehts at the electrode surface.

From'equafion 5, we obtain

. (7-30)
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Figure 7-4. Double layer charging and decay in the absence
\ of -a faradaic reaction. : '
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Figure 7-5.

Decay of the electrode potential for various charging
periods in the absence of a reaction. The slope

here is related at long times to the first

eigenvalue Al' '
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When an electrochemical reaction is possible, the dominant time

constant at long times’isu_
T = — . (7-31)

as idéhtified byuNgwmanps; When an electrochemical_fe#ction is not
| péssibie (the ideally polarizable ele;;rode), thié'time constant
becomes infinite, and the poteﬁtial decays'téba nonzéfo constant;
The dominapt time constant then is

rOC 1 roC

T ‘= AlK = 4.12 P ’ (7—32)

also suggested in the same context81 but without the determination
of the numerical factor. The present analysis ampiifies the roles and
interrelationship of these two quantitiés and the processés‘they describe.
A direct.expérimehﬁal test of these ﬁime conétants mayvbe performed
with the utility of an Qriginal feference electrode system designed by
Miller and Bellavance.59 This consists of two probes positionéd |
coaxially with the disk in the solution, so that fhe pétential drop
between}two distinct locations in the solution could be measured. If
linear electrode kinetics and finite.eXChange‘curfeﬁt densities_are
ensgred,’aﬁd'poqcentration gradients ﬁear fhe surface of the disk are
avoided, the time constant so measured‘sﬁould co:respond to equation 30

for 1 = 1.
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l7.5. Validity and Significance of Theoretical Results in Practical
' Application

The reference electrode was assumed to be positioned at infinity
relative to the working electrode in obtaining all our results. In
practical situations, the reference ‘electrode has to be placed at a
finite distance from the disk and 1if this is not accounted for in
the evaluation of experimental data, serious errors may result.64‘ The
necessary correction‘is‘rather!simple'to accomplishi since one can
assume without significant error that -the primary distribution prevails
in the bulk of the solution the reading on the reference electrode
can be extrapolated to infinite distance from the disk.59

A possible application of the present results might be in the

study of the double-layer structure at solid-surfaces. Difficulties
are encountered in the measurement of differential capacities at solid
'electrodes due.to the frequency dispersion:effect 61 except when it is
feasible to construct and employ spherical electrodes.65’66 Such
.difficulties may be overcome by attempting to measure relaxation times -
in interrupter experiments; in the absence of mass transfer,lthese
relaxationvtimes are related to the differential capacity of the

disk electrode as shown in previous sections.

In practice, one first investigates the structure of the double

layer in the presence of supporting electrolyte alone. If currents

due to gas evolution and reduction of impurities are avoided, the working

electrode is an ideally polarizable electrode. In this way, one finds
out about the relationship between the electrode potential and the

surface charge density.41 One may then add a small amount of reactant
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: i
. ‘ ~ \ .
‘and assume that the same charge-potential dependence prevails.

Investigagions along these lines éppear tb be successfﬁl‘ih.depicting
qualitatively the.influénce of thé doublg;layer st;ucture on faradaic
reactidns,as.reviewéd'by Pairsons.92 -

| Let_us_considef an ideélly polafizab}e disk system'where ro = 0.635 cm,
Cc =30 ﬁf/cmz, K = 0.036 bhm—l—cm—l, and the ohmic d;op is 11 ohms. The

current is interrupted after charging the electrode for 1 msec at

~

I =15 mA. The characteristic time constant for decay can be calculated

from equation 32 as T = 128 Msec. We can further compute

QP = 55 mv |,
o

] ]
AV EVE =0+) - V(O =) = 0.08076“@% = 4.44 mV

If the reference electrode is placed alongvthe axls of the disk, we have

4o (r=0) =¢ (r=0,0 = Q+) - 9% (r=0, 68 =)
_ _ ' _ .88, _ _ P
= ¢°(r = Q, 8 =0+) = @o-(r = 0) @o
- ss _ - aP (& _
2 (e -1)- (-1
n=0 . . : :
= 15 mV ,
AV - 8) = BV - A0 (r=0) =-106mV ,
' 1 It
V-0 (0 = =V( =) =—SB_ 132 gy
o 2 :
WrOC

It is interesting to note that A¢°(r = 0) is larger than AV and can be

detected with relative ease with a double-probe reference electrode.59
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The negatiye valpe of A - @o) indicates that thiquuantify (which we
would have called the electrode overpotential if-a_faradaic.reacfion
were present) actually increaseé at the center of the disk as the
charge redistributes itself in the double layer to effect a final
uniform aﬁd nonzero charge distribution. The change in V - ®o during
the transient process is also moderately small compafed to its absolute
value, so that the double-layer capacity C can be assumed to be inde-
pendent pf the poteﬁtial in this range without much error.

In reality, it is impossible to have a perfect ideally polarizable
electrode. One can approximate it by maintaining its potential by an
external soﬁrce.41 If the current is intefrupted,'the potential of a
real electrode will decay more or less slowly to its open-circuit
potential due to the reduction of impurities present in the solution.41

Thus if an électfode reaction is possible either owing to the presence

of impurities or a reactant in the solution, the characteristic times

for decay are

rOC :
T = — ‘ -
e 5 (7 33)
for the electrode potential, and
1 roC

s " %1247 %

for the potential in the solution. Even if Tafel kinetics might
govern the electrode reaction soon aftervinterrupfion, linear kinetics
"will take over at large times as the overpotential decays, and the
above time constants will become prevalent. Thus, if J is small, let

us say 0.005, then the electrode potential will decay with a time

(7-34)
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'constént Te = 106 msec whereas the potent131 in.tHe solution will
decay much morevrapidly, with the time constant TS.= 0.13 msec.

If, however, J is of o%der unity or larger, this effecﬁ is rather
appreciable and has to be accéunted for. One poséibiiity is to measure
TS and Te simultaneously Sy a disk electrode-double probe refergnce
electrode set-up appropriately hooked up to a dual-beam oscilloscope.

By subtracting the reciprocals of the two time constants, we obtain

R N - (7-35)

which is independent of the exchange current density.

If the electrode reaction is mass-transfer controlled, the
characteristic times depend on additional paramétets such as the diffusion
~coefficient of active species and the diffusion-layer thickness. For
the situation whefe one is concerned about the reduction of impurities
at the disk after the interruption of current, a reasonable estimate

of the faradaic current can be obtained from

i, = 5 . (7-36)

where § is the Nernst diffusion layer thickness. Assuming a highly
reversible reaction controlled by diffusion and the capacitive effect

of the double layer, the capacitive current is

. _ o~ _C _
i =C oy . . (7-37)
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where nc is the concentration overpotential givéﬁ by equation 3-12.

" Since the net current is zero,

1=4i_+41 =0 . (7-38)

When we combine these four eqdations and integrate, we obtain - a
characteristic time constant for this case (compafé to equation 6-35):
siCRTé v
'['D B ———e . - ‘ (7—39)

2.2 .
n F Dicfn

TD thus depends inversely on the concentration of impurities, which
has to be kept as small as possible. Consider the reduction of a
.‘bivalent’ion (n/si = 2) with D = 10_5 cmz/sec, § = 10—3 cm, and

c = 10"9 mole/cm3. Then, T

o = 0.2 msec.

D
In case the capacitive effect can be ignored, and a purely mass-

transfer-controlled electrode process in considered, the appropriate

2 v
time constant is proportional to 6" /D, or more exactly,

1/3
_ 3.26 Sc . . _
p = ADQ ’ ' (7-40)

where Q is the angular frequency of rotation of the disk and AD is a
constant characteristic of the diffusion process. Determination of
this constant requires a detailed analysis of the trahsient mass
transfer problem at a disk electrode as discussed in chapter 6 and
appendix B. With the simplifying assumption of a radially independent
concentration distribution, we obtained A_ = 2.581 for a step change

D
of flux (see chapter 6). Using this value for AD’ Sc = 1000, and
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§ = 250 radians/sec, we obtain T = 51 msec. Nanis and Klein report

D
experimental relaxation times (defined as thé time required for the -
overpotenfial to decayvto 99 percent of its initial value) of 50 to
0.5 secondsbfor rotafional Reynolds numbers between 130 and 8500,
respectively, in 0.005 M ferrocyanide—ferricyanidé rédox éystem in

2M KOH solution.

The above discussion suggests that the effects o6f the double

layer and mass transfer can be controlled according to the needs of

the experimenter by proper désign of the electrochemical system and

the experimental method. It is possible to reduce mass transfer

effects by choosing a system where the relaxation :imes due to mass
transfer .are of a much larger scale than the felaxation times associated
with the diffuse douBle layer. The magnitude of the effect is also
important as well as its duration. Notebthat while the ﬁime constant

in equation 40 becomes smaller as { increases, the‘aﬁplitude of the
corresponding concentration disturbance would decrease. In other words,
the other extreme where the concentration effects would become
negligible is the well-stirred solution case, one of our assumptions

in treating the theoretical problem.

7.6. Experimental Measurement

We have performed soﬁé experimgnts in an atﬁempt to test our
theoretical resulté. :These experiments were rather crude, preliminary
runs executed Qithllimited équipment in a limited amount of time, and
tﬁus the results are not in any way conclusive. Sd@e of our
éxpefience, which is still at a somewhat primitive stage, is summarized

below.
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The eléctrolytic cell (see figure 6) consisted éf a large, 7-gallon
capacity pyrex ténk equibbed with a mechanical s#irrer, a tube with a
fritted glass end for bubbling nitrogen into the.sélution, and a -
counter electrode of platinum foil (0.00025 in.j£ﬁick, ~1000 cm2 in
érea)-pastedvon the container wall. The cell waé filled with 0.01 molar
KC1 soldtion; The solutioﬁé were prepared by wéighing dried KC1 crystalé
(Bakef Reagent) inté a known volume of distilled water (conductivity -

1077 to 1070

ohm_l-cm_l). No temperature cﬁntrél,wés used; owing to
the large Qolume of the electrolyte, temperatures remained remarkably
stable (within 0.02°C.duringrexperimental runs. The conductivity of
the solution was assessed by interpolation from published data102 at
the measured concentration and temperature. |

A few types of reference electrodes were tried such as platinum
or copper wires extended to.position in the solution in sealed glass
jackets.ahd calomel electrodes (commercial types pufchased from
Corninvalass Works) connected to Luggin capillaries. Platinum and
copper wires_provide to the oscilloscope strong signals, which can be
detected easily by standard preamplifier unité employed with
oscilloscopes. The calomel electrode should be a better choice for
.this experiment since it is reversible to the chloride ion. On the
other hand, the resistance of the calomel electrode along with the
resistance of the Luggin capillary is probably éomparable to the
input resistance of the oscilloscope preamplifier; hence, a more
sophisticated amplification may be necessary to register a strong

enough signal and minimize the noise. However, not much attention

was paid to the proper measurement nor the magnitude of the potential,
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Figure 7+~6. Eiectrolytic cell.
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other than making sure that the hydrogen overpotential was not éxceeded,
because the main purpose of the present effort was to measure the

time constants of the transient potentials in the soiution and at the
disk rather than the potentials thermselves.

The disk electrodes used were made of copper. (CDA Copper No..110)
and mercury (Ballard's, triple distilled) with'luéite insulating planes.
The copper electrode (r0 = 2.54 cm) was polished with successively finer
grades of sandpaper and finished with 1 micron diamond paste. The
mercury eleétrode (ro = 2.17 cm) was prepared by ﬁéchining a circular
compartment in lucite with slanted walls (see figure 7) in order to
offset the contact angle and attain a reasonably flat mercury surface.
Mercury was chosen as an electrode metal because accurate and reliable
data are available for its double-layer capacity.al’103

Figure 8 shows the electronic circuitry. The current source was
obtained from Electronic Instruments, Inc. (Model C612). Transient
potential signals were observed on a Tektronix, Type-555 Dual Beam
Oscilloscope.with Type~D Plug-in Units. A high-gain operational
amplifier (Type-0 Plug-in Unit) was used occasionally to improve weak
signals from the calomel electrodes. FThe test pulser (USAEC No. 91315)
and the interrupter (IMRD No. 02191) were built in the Lawrence
Berkeley Laboratory. The pulser generated regular and delayed signals
to trigger the interrupter and the»oscilloscope, respectively. The
pulger-interrupter system could be operated continuously to generate
pulses at a certain frequency or manually to provide a single pulse
whenever necessary. The performance of the inter?upter circuit is

demonstrated by figures 9 and 10. Duration of the pulse is about 2 msec,
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Figure 7-7. Mercury-disk electrode (approximate dimensions).
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Figure 7-9. Interrupter signal with a 100  resistor in place
of the electrolytic cell (I=10 mA; 0.5 V/division,
vertical; 1 msec/division, horizontal).

XBB 739-5609

Figure 7-10. Interrupter signal with a 100 § resistor in place
of the electrolytic cell: expanded time scale
(I=10 mA; 10 V/division, vertical; 20 Usec/division,
horizontal).
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‘the shortest that could be obtained with the given equipment. Tﬁe
step increase in the signal in figure 9 corresponds to the instant
when the curreﬁt is switched on. If this poftion of the trace is
expanded horizontally (time axis), é sharp spike becomes visible
(figure 10). This is due to a discharge of electrons as the circuit
is being closed. The spike reéches a height of about 40 volts when
a current of 10 mA is passed across a 100 @ resistor. The step
decre#se in the signal when the current is interrupted aﬁpears to be
c1ean.of sparks., |
The oscilloscope traces were normally photographed on Polaroid
transparencies using a Tektronix Type C-12 camera. These were then
analyzed with the aid of a Jarrell-Ash Recording Microphotometer. This
ingtrument méasures the intensity of a very narrow light beam transmitted
through a tranéparent photograph. It is also equipped with a traveling
stage, which moves in the longitudinal and transverse directions, and
vernier scales in~each direction for measuring the position of the
stage. The transparencies were placed on the stage and traced to
measure the‘coordinates of the potential decay curves. Readings were
taken at intensity maxima along the curves at régular intervals of the
~time coordinate. These points were plotted on a semi-logarithmic
graph paper as suggested by figure 3 or 5 and time constants calculated
from slopes of the linear portions of the curves.
Figures 11 to 14 shbw typical oscilloscope traces observed during
a regular experiment; these were obtained with a mercury-disk electrode.
Figure 11 and 12 depictmthe potential of the disk as measured with

respect to the upper and lower reference probes, respectively. The
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Figure 7-11. The transient response of the mercury disk with
respect to the upper probe for charging and
decay (I=10 mA; 1 msec/division, horizontal).

XBB 739-5611

Figure 7-12. The transient response of the mercury disk with
respect to the lower probe for charging and
decay (I=10 mA; 1 msec/division, horizontal).
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Figure 7-13. The double-probe response to charging and decay
of the double-layer capacity (I=10 mA; 1 msec/
division, horizontal).

XBB 739-5610
Figure 7-14. The double-probe response to decay of the double-

layer capacity: expanded scale (I=10 mA; 0.1 msec/
division, horizontal).
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signal of the lower pfobe has been multiplied by ;1. The sum of these
two signals 1is shown in figure 13 and fepresents the double-probe
potential. Figure 14 shows the decay part of the same signal on a
expanded scale and is more suitable for final analyeis to calculate
the desired time constants. The overshoot of voltage when the current
is turned on is due to the sparking effect discussed above.

The time constants obtained from both the single-probe and double-
prebe treceé generally turned out to be much smaller tﬁan those calculated
from equations 33 and 34 assuming a small J value relative to Al' For
example, with the mercury-disk electrode, &ouble—pfobe traces gave a
time constant of abqut 250 Hsec whereas the value calculated from
equation 34 for C = 20 uf/cm2 and small J is about 7.5 msec. The time
constant from the single-probe measurement was very close to the
double-probe result; but, it was generally larger ﬁhan the double-
probe measurement, the difference ranging from asvlow as a few micro-
seconds up to about 50 microseconds. These time consfants yielded
double~layer capacities between 5 to 50Uf/cm2, which are within the

103 The time constants

correct order of magnitude for a-mercury surface.
measured with the copper disk Qere even worse in reﬁroducibility; the
values fluctuated in the range 10--1 to 10 msec. Nonetheless, the
calculated capacities varied between 10 to lozuf/cmz, again within
the correct order of_magnitude.66

It appears from fhese.results that impurities are present in
the golution, and these react with the disk electrode either with a

high exchange-current density or by a mass~transfer-controlled process.

For the former case, the time constants for decay of the potential in
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' the solution and the disk electrode are given by equations 33 and 34.
These equations yield time constants, which become smalier and at the
éame time closer in value to one another, with larger values of the
parameter J. If the rate of discharge of impurities at the electrode
surface is limited by mass transfer, equation 39 gives a better
extimate of the time constant. The value-calculated in the numerical
example following that equation is in fact fairly close to the present
experimental results for mercury. |

The mercufy—disk electrode 1s superior to the copper disk in
obtaining more reproducible results because the mercury surface can
be regenerated by cathodic polarization, whereas the copper surface
is altered irreversibly during an experimental ruﬁ. The situation can
be improved for the mercury electrode by operating at cathodic potentials
at all times. This can be accomplished by interrupting the current

from a higher cathodic level to a lower one instead.bf altogether
breaking the circuit. If the current is interrupted by breaking a closed
circuit, as was the case in the present experiment, ;he electrode
potential decays to its open-circuit potential with respect to the
reference electrode being used. This potential is usually.low enough
to cause considerable adsorption of impruities on the mercury surface,
thereby altering its differential capacity significantly.

It also seems quite possible fhat vigorous bubbling of nitrogen
through the solution was not adequate in deaerating the large volume

of electroiyte used. Presence of oxygen in the solution could have
complicated the electrokinetic behavior of the disk electrode appreciably.

Further purification of the water from fonic and'organic impurities by



+
X
L™
e
&
.
e
™
-, «
.

_133-

repeated distillation may also be necesSary; Ionic impurities can be

removed by reducing them on an auxiliary electrode which can later be

‘removed from the solution. Other electrochemical purification

techniques are reviewed by Parsons.92

The bulky design of the present electrolytic cell was decided
upon in order‘to amplify the effect of double-léyer charging, so that
this effect could be observed with relative ease; Smaller designs
may however prove to be more feasible for improving the purification

and dederation of the electrolytic solution.
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VIII. THE TRANSIENT RESPONSE OF A DISK ELECTRODE
UNDER POTENTIOSTATIC CONTROL

Invfhe previous chapter, we developed a model for treating the
transient response of a disk electrode in the absence of concentration
gradients near the.surfacé. We will report here a mathematical
analysis develobed for the same model but with the electrode poténtial
put under control instead of the current.93 The results could be
relevant tb some electroanalytical applications of the disk electrode;
for instance, interrupter methods under potentioétatic control are
already in common use.>”*0 |

The problem was formulated with certain assumptions in chapter 7
and will not be repeated here. The only difference in the present
formulation lies in the fact thatkthe electrode potential is set at
zero time as a step to a given value V and maintained at that value
thereafter. Our purpose here is therefore to simulate the transient
decay of the cell current from an initial value I° corresponding to

the primary distribution to a final steady-state value I .

8.1, Analysis

The potential in the solution can be expressed in terms of a steady
state and a transient contribution as given by equation 7-3. A detéiled
analysis of the steady-state problem is given in séction 4.1. The
treatment given in that section for the ideally polarizable electrode,
however, does not apply for the present situation; 9°% vanishes in the
absence of an electrode reaction since no net current is associated

with the working electrode at steady state when the potential is fixed.
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In terms of the rotational elliptic coordinates N and &, the

transient part of the potential can be expressed as

A
,—v-= :z: Cie

1=0

-8 (A +3) -
Ti(n ’g) s (8-1)

where Ti is a dimensionless potential independent of time, Ai is an
eigenvalue éharacteristic of the potential Ti’ and 6 and J are the
dimensionless time and exchange current density, respectively. Since

o satisfies Laplace's equation, the functions Ti also satisfy

v, =0 . (8-2)

The boundary conditions associated with Ti are

aT ' 3
) —5%-= 0 at n =0 (on the insulating portion of the disk) |,

Ti =0 ag & +« (far from the disk) , o ( (8-3)

Ti well behaved at N = 1 (on the axis of the disk) ,

and
—F +AnT, =0 at & = 0 (on the disk electrode) |, (8-4)

which is obtained by a direct substitution of equation 1 into the
boundary condition on the disk electrode.

Equations 2 to 4‘constitute an eigenvalue problem, which can be
solved in a straightforward fashion (see section 7.2). The solution

to equation 2 gatisfying the conditions 3 is

=

T, = Z B, B, (M) M, (E) . (8-5)

n=0
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Substitution into equation 4 for each i and inversion of the resulting

set of linear equations with the norﬁalization condition B = 1 yield

i,o

the numerical values of the eigenvalues Ai and the coefficients B1 n
?

(see table 1 and appendix E). The first four eigenfunctions are plotted

with respect to the radial position on the surface of the disk in
figure 1.

The functional behavior of Ti o has much the same significance
b

as the corresponding eigenfunctions U of the galvanostatic problem

i,o0

in depicting the nonuniform state of charge and the pattern of local
current flow on the surface of the disk during the transient process.

One may note, in fact,zthat‘Ti o in figure 1 are quite similar to the

corresponding curves for U o given in figure 7~1 for i > 0., The
, ,

i
eigenvalues Ai also become more similar in numerical value to Ai of
the galvanostatic series with increasing 1i.

An important departure from the galvanostatic case is clearly that
¢t does include a net current in the present situation. This additional
contribution is contained, for example, in the firét eigenfunétion To’

which unlike Uo is nonzero. The fact that To exhibits no extremum

points nor any zeroes suggests that it persists the longest during
the decay process and is therefore associated with the largest time

constant.

The eigenfunctioas Ti o satisfy the orthogonality relationship
’

1 0 if i#3
nT, T, dn= (8-6)
.’. 1,0 3,50 _.l..:ii 232521 32 if 1 =4
0 A bn+1 "n,i *
i n=0
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Table 8-1. The first six eigenvalues and the related coefficientS‘Bn i of

’

the eigenfunctions.

A A A A A A

0 1 2 3 4 . 5

1.15777 4.31680 7.46018 10.6023 13,7441 16.8858
n i=0 i=1 i=2 1=3 1=4 i=5
0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.39451 -3.30704 -3.20144 _3.08673 - -3.00260 -2.94030
2 -0.01974 -3.09447 2.69232 3.87544 4.20749 4.29990
3 0.01259 ' -0.52802 6.45944 0.65745 -2.15584 -3.53764
4 -0.00657 -0.10223 2.64610 -8.32547  -5.09803  -1.69133
5 0.00393 0.02410 0.63787 -6.16121 . 7.06426 8.21141
6 -0.00256 -0.01843 0.03554 -2.27051 9.75697 -2.49615
7 0.00178 0.01289 0.03502 -0.43176  . 5.33233  -11.5222
8 -0.00129 -0.00946 -0.02056 - -0.10618 1.62964  -9.36731
9 0.00097 0.00718 0;01605 0.01863 - 0.40730 -4.07287

10 -0.00075 -0.00559 -0.01255 -0.02158 0.02998 -1.27763
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Behavior of the first four eigenfunctions on
the surface of the disk electrode (potentiostatic
case). '
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From the initial condition

¢=Vv at 6=0+,8=0 , (8-7)

the coefficients Ci can now be calculated from the equation

| A
c, = % ' (8-8)
1 | 2 My (0) , 7 |
T Zo in ¥ 1 Pn,1
n= '

The current is given by

1
I = -2mr Kf g_‘l" dn

0
I © -6\ +J)
w0 1
- Io [-—Io - E-o Cie ) ] (8-9)

The ratio Im/Io is a known quantity once the value of J is specified
and can be obtained directly from the steady-state aﬁalysis. Some
calculated values are given in table 4-2 (reciprocal of 4roKReff).
Figure 2 shdws current versus time traces for varioué J values.

Each curve is characterized by a time constant for decay given by

1 roC

Rl w7

(8-10)

The analysis can be generalized by superposition to incorporate
an arbitrary time dependence of the-applied potential V(8). The current

is then given by

= V(0) + 3 C O e
1=0

, 6 ,
-6 (A ,+J) (A, +J)
4: - 1 f e 1 " yo) a8 (8-11)
o ' 0
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Figure 8-2.

XBL7210-7067

Current traces at various J values for decay
(or charging) of the double-layer capacity.
The slope of each curve at large times is
related to A1+J.
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8.2. Frequency Dispersion in Capacity Measurements

The alﬁernating-current_impedance of an electrode is often’
interpreted in terms of an équivalent circuit consisting of a
capacitor and a resistor in series (figufe 3). With this kind of a
representation, the measured values of the effective resistance and
capacity for a smooth electrode may become frequency debendent in
situations where faradaic reactions arevimportant61 or for certain
electrode geometries, such as the disk, which exhibiﬁ different current

61,94 As discussed by

distributions with different frequencies.
Bauer gg_g;.,94 electrode.geometries such as concéntric spheres,
concentric cylinders, and infinite parallel planes should be free of
the frequency-dispersion effect since they have a uniform current
distribution independent of the frequency. We caﬁ also add to this
cathegory the spherical electrode and its hemispherical-cap variety8
discussed invchapter 5. As reviewed by Bauer gg_glA, Grahame observed
the frequency dispersion effect in his ekperiments with a growing
hercury drgp at the tip of a capillary. However, the cause must have
been the shielding effect of the blunt capillary tip61 which distorts
the sﬁherical equipotential surfaces, so that the cufrent distribution -
bgcames nonupiform.

Newman6l has given a rigorous analysis of the frequency-dispersion
effect in capacity measurements at a digk electrode. According to

this treatment, the electrode potential and the potential in the

solution can be expressed as

v=vel , (8-12)
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Figure 8-3. Equivalent circuit for impedance measurements at

an electrode (from reference 61).
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and

0= v eI U,z . (8-13)

- respectively, where Vo is the amplitude and W the frequency of the,

applied potential, and E is a complex potential determined by the

solution of Laplace's equation:

U= D BP, (MM, (5) . (8-14)

n=0
The complex coefficients E; are determined from condition 7-1, which

gives

= S Mg (® |
Z m,n jQ+J 4m+1 B =_ao,m

n=0 (8-15)
M=0,1,2, ...) ,
where = wCrO/K is the dimensionless frequency. E; are obtained
numerically from equation 15 by carrying a finite number of terms in
the series.
61
The impedance is given by
= = K~ o -
Z=V/1 1/4ro Bo (8-16)
In terms of the resistance and capacity of the equivalent circuit,
this is
z =R . +1/§uC _ Tt (8-17)
eff eff o

Therefore, we obtain

g - 02 2 .
4r KR g = Bor/(Bor * B o (8-18)
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and
c/c = (m/4) QB /(B2 ; B2 )y | - (8-19)
eff ol “or ol

where Bor and Boi are the real and imaginary parts of Eo’ respectively.
The tilde over Réff serves to distinguish betﬁeeh the effective direct
current resistance defined in section 4.1 and the-present alternating-

current resistance.

is to use eQuation 7-28

jut

An indirect method of calculating E; and Ce

ff ff
by setting 1(6) = Ioejwt or équation 8-11 by sdbstituting V(9)=Voe
The resulté obtained by this method should be identical with Newman's
results and provide a good way of checking the validity of the'theory and
results presented in chapter 7 and the previous section of this chapter.

Hence, Bor and Bo can also be expressed in terms of the coefficients

i
Ci.gnd Ai as follows:

2
1 CiOy + 7 (8-20)
Bor =1+ 4r KR 2 .2
o eff 1:1‘(11 + D"+ Q
®© C, (A, +J)
2 ivi
_Boi = - Z;r———*—- 5 . (8-21)

oFett {H 0, + 02+
In terms of the results of chapter 7, one can also derive the expressions

) 2 ' |
C gy + ) . (8-22)

4r KR =1+ E
ff :
o'e = (Ai + J)Z + Q2

and

c (A, + )

2&)
C/C g = (T/4) Q }E: (8-23)

=0 ¢y + nt+
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The results are compared in table 2 for varioué values of  and J.
The first 20 termsvwere-used in both the galvanostatic and potentiostatic
series. The resuits obtained from the former compare quite well with |
the more accurate calcﬁlations of Newman at low frequencies, whereas
the agreement is very poor at high frequencies. Bétter agreement is
obtained at high frequencies by the potentiostatic series; however, the
accuracy is not as good as would be expected at low frequenéies. This
is probably due to the fact that the error introdﬁced by truncating the
series in equations 20 and 21 is amplified when these equations are |

subgtituted into equations 18 and 19 to calculate the effective resistance

'and capacity. The truncation error is introduced only once when the

galvanostatic'sefies are used for the same calculation via equations 22
and 23. This reasoning leads us to speculate that the potentiostatic
series are probably more accurate than the galvanostatic series over a
moderate time range. The present results indicate, however, that
numerical difficulties are inevitable for very short times (or high
frequencies) because a large number of terms are required in both the
galvanostatic and potentiostatic series to attain a reasonably accuracy.

A separate treatment of the potential at short times overcomes these

‘ difficuities as discussed in the next chapter.
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- The effect of frequency and exchange—qufrent density on

the effective resistance and capacity of the equivalent
circuit as calculated from the galvanostatic and
.potentiostatic series and compared to Newman's results.

Galvanostatic  Potentiostatic Newman's
Series Series ‘Results6l ' - ,.~i
Q@ 4rkR .. C/C.. 4rKkR.. C/C.. p 4r KR .. C/C_.c |
J=0.1 0.1 7.441 0.50009 7.358 0.464‘  7.44572  0.50009
1.0 1.i98 0.9987 1.204 O.§87 1.20335 0.99906
10.0 1.052 1.53 1.029 1.218 .1.03478 1.23430
1b0.0 1.021 15.7 1.001 1.563 . 1.00462 1.73404
J=1 0.1 2.326 0.00997 2.364 10.0097 2.33106  0.00997
1.0 1.702 0.508 0.693 0;498 1.70571 0.50658
10.0 1.062 1.44 1.041 1.192 1.04657 1.20762
100.0 1.022 15.0 1.002 1.561  1.00480 1.73084




SEETENV NI I 2 S

S

-147~-

IX. THE SHORT—TIME RESPONSE Of A‘DISK ELECTRODE

Series expressions wére obtained in chapters .7 and 8_for the
potential and the current under galvanostatic and poteptiostatic
control, réépectively; Those resulté are readi1y1applicaﬁle to
describe the long-time response of the disk and determine the relaxation
time of ﬁhe ove;ﬁotential after a step change 1n the applied current
or the current decay after a step chaﬁge in the potential. However, a
large number of terms need to be included in the series to express
the short—tiﬁe behavior accurately. This can be accomplished more
efficiently by @eriving an asymptotic solution to the problem valid
at small times. A similar problem is encountered in connection with
the steady—state-distributibn for large yalues of the exchange-current
density. This situaﬁibn resembles closely the present problem from

a mathematical standpointvand has been treated in section 4.2.

9.1. Mathematical Model

.Shortly after the cell current is turned bn,thé current distribution
on the surface is given by the primaryvdistribution everyWhe;e except
at a small region near the edge pf thevdisk. Sihce the primary current
density is infinite at the edge, the double-layer capacity is charged
more rapidly in thiq region than at other parts of tﬁe disk, so that
the current density is reduqed to a finite value. On the insulating
plane of the disk, the‘current density vanishes, és expressed in
equation 2-12. Furthermore, at the surface, the passage of current
is primarily‘due fo the charging of the eieétric'dOuble layer; hence,

equation 3-35 applies. Charge transfer may also occur by means of a
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faradaic reaction. This effect is small at short times as long as
the exchange current density is not too large (sée éection 4.2), and
it is neglected here. Diffusion is also neglected. .

Let us now introdqce the stretched variables appropriate to the

edge region:

- T V-2 | ‘ . .
¢ = — . _ (9-1)
' 2/ ( P ) .

n=n//o, E=¢/F (9-2)

where N and & are the rotational elliptic coordinates, and © is the .

dimensionless time defined by equation 7-6. Qz is the uniform potential

in the solution juét.outside the double layer cbrresponding to the
primary distribution (see.sections 2.2 and 4.1). 1If the electrode
potential is kept at a constant value V, then ¢§ = V. 1If, however,
the electrode is under galvanostatic control, ¢g = I/4roK. With this
differencé in mind, the present analysis applies fo both galvanostatic
and potentiostatic cases unless stated otherwise. Equation 1 represents
a separation of variables, such that ¢ is a function of N and & only.
Substitution of the stretched variables into Laplace's equation
and the boundary conditiomns and subsquent simplification as 9 is
made to approach 0 yields a set of equations, which are identical to
equations 4-15 through 4-18, except for the condition at the surface

which reads for the present case

33

: = %-ﬁ& - = 9% at £=0 . (9-3)

QL



These results indicate that the inner region is of order r06 in the
original; cylindrical coordinate system. Moreover, the dimensionless

potential is of order /@-, and the dimensionless current density, given

by
'1ro/'<q>g = - (V- ¢>o)/2-¢ge , (9-4)
is of order 1/76.

9.2. Numerical Method and Results
One possible way of solving the system of equations 4-15, 4-17,

4-18, and 9-3 is by finite difference methods>>’93

as in the case of
the steady-state problem for large exchange-current densities. This
‘'scheme did not prove to be straightforward in converging to a stable
solution due to the complex nature of the present surface condition,

equation 3. The problem for the potential at the surface can also be

expressed (see appendix H) in terms of the integral equation,

-100‘—2-2?‘*--"_‘:2&3&
$°(n)=Ff 1nn*-n| =%, M) -— —=
0

-1] dan, . (9-5)

In order to bring the prdeEm into a finite domain, this integral

equation can be written in the form:

- -2 -
n n n, -
- _,]_- 8 -2 - % - * ao ) -
¢o—," I lnn*—nzi ("*2- o~ 2 - —1)dn*
v 0 N, |
] . -
1 8 .1 1 1 o
* o === "2 37% &, ™ °
X, vx X, *



-150-

where

$; = (50 - llﬁ*)/ﬁ* , _fx = 1/7% (9-7)

and ns is a convenient breaking point. VEquatidn»6 can now bg
integratedkfor the entire range of n, whereas equationbs has to be
truncated at some point with the possibility of neglecting aﬁ important
contribution to the integral. Numerical solution of this integral
equation (éee‘appendix'H) turned out to be more efficient than the
- finite difference techhique in obtaining results for the present
problem. |
The results‘are shown in figure 1. The shape éf the curves is
also charactéristic of the current distribution néar the edge since
the dimensionless potential 60 is proportional to the current density
as indicated by equation 4. The current distribution approaches the
primary distribution toward the center of the disk. Howevér, it
remains finitg and much more uniform than the primafy distribution in
the edge region; the finite capacity of the electrié double layer
does not allow it to become infinite.
The electrode potential for the galvanostatic case or the applied

current for the potentiostatic case is given by

(galvanostatic) V/¢§ -1

L rv-o
= p° dn . (9-8)
(potentiostatic) 1—I/4roK¢£ 0 ¢ ,
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Figure 9-1. The surface potential dist;ibutioﬁ at short times
' near the edge of a disk electrode.
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Substitution of the stretched variables and integration yields (see '

appendix G)

where A is given by equation 4-20. The numéricai solution obtained
from equation 6 was integrated according to eqdafion.4—20 for the

whole range of N, and the value of A was found to be 0.841. Equation 8
is plotted in figure 2 usiﬁg this'value and.cdmpared to the results of
bchéptérs 7-and 8. The long-time series approach the present short-
time series as an asymptote for small.values of 6. The potentiostatic
series appears to be more accurate than the galvanoétatic series for
the same number of terms. The same conclﬁsion was reached in section 8.2
after comparing the results obtained from those series with the more
accurate céicul&tions of Néwman61 concerning the frequency dispersion of
the alternating-~current impedance of a disk electrqdé.

The pPresent work demonstrates once more the efficiency and
convenience of the singular-perturbation method in obtaining asymptotic
solutions to problems which would otherwise be laborious to solve
numerically. In electroanalytical applications,‘oné usually focuses
attention to the conditiéns at the electrode surfacé, and the conditions{
in the bulk can be accounted for adequately by using the expression
for the primary distribution. Therefore, expressing the surface
potentiai in terms of an integral equation provides additional economy
in the numerical work since the bulk of the solution does not enter

the calculations explicitly.

1 V-9 o N
dn = - = 61n0 + A8. (9-9)
¢p u . . LI
J0 o/ . ' )
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Figure 9-2. Comparison of the short-time solution and the

long-time seriesl,2

- of a disk electrode.

for the transient response
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The results reported above are universélly 5pplicable since no
parameters appear in the problem, and numerical calculations need not
be repeated. Furthermore, the results are, in a semse, independent
of the disk geometry ﬁecause the formulation is confined to a small
region near the edge. Hence, they can also be madé_to apply undgr
similar conditions to any electrode geometry embedded in an insulating

plane.
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X. CONCLUSIONS AND RECQMMENDATiONS
Generaliéed schemes for treating current—distribution.and mass-—
transfer pfobléms in electrochemical systems have been reviewed.
Mathenatical relationshiﬁs'are set forth for expreséing convective
tfansport‘in the electrdlyté and faradaic and nbnféradaic processes
at the electrode surface. A method for obtaining solutions to these

equations, simultaneously with the solution of Laplaée's equation

.for the pbtential in the electrolyte, is discussed to determine the

steady-state and transient Behavior of electrochémical systems. Specifié

applications are presented for the rotating-disk and -spherical electrodes.
The steady-state current and concentration distributions below

the 1limiting current have been calculated for a rotating spherical

electrode. Mass transfer is assumed to be restricted to a thin

diffusion la&er near the electrode surface so that the current dis-

tribution can be obtained by solution of Laplace's equation in the

bulk and the convective diffusion equation in the diffusion layer. The

two solutions are matched according to the conditiopsbat the electrode

surface including complex electrode kinetics. Analogous solutions for

the disk electrode are reviewed and compared with the results for the

4

" sphere.

Nume:icél results for the sphere indicate that the current dis-
tribution becomes more nonuniform with incréasing mass—transfer
limitations, and that the‘exchange-chrrent denéity ié not an important
parameter in contrast to the results for the disk. Furthermore, the
current distfibution is shown to reach a uniform distfibution below a

cartain current level, suggesting theipossibility of operating at
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uniform flux below the limiting current even if the concentration

distribution may be nonuniform. The disk electrode exhibits a uniform

flux and concentration at the 11miting-current, and this property
makes the disk a convenient tool for mass-transfer studies. The
spherical electrode, on the other hand, may be more suitable for

kinetic studies since it can have uniform current and potential dis-

tributions near the surface below the limiting current at high rotation

speeds. 

The spherical electrode also exhibits a uniform secondary-current
distributioﬁ; Since its pfinary distribution is uniform as well, the
_transient response of a sphere to changes in the appliéd current or
potential ih the absence of mass transfer constitutes an elementary
problem. The transient behavior of a rotating sphere in the presence -
of convective diffusion, hewever, appears to be difficuit to treat
analyticaily dﬁe to the complex dependence of its shear stress dis-
tribution on bosition at the surface. The problem may be worth
investigation, but there seems to be no immediafe interest in it at
present.

The tfeatment of transient diffusion to a rotafing disk has drawn
significant attention in the past. Analytic solutions are obtained
at large times for the transient convective diffusion equation for the
-disk in the absence of radial concentration‘gradientg considering a
step change in the concentration and a step change in the flux at the
surface. These solutions are shown to match available results for
short times with the suggestion that the serigs for short times and

long times can be employed interchangeably for nonsteady-state
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calculétipns.' The results are extended ﬁovinvestigate the effect of
double~layer charging on transient mass tranéfer in the presence of a
highly reﬁefsibie electrode reagtidn. The effec; is shown to be small
under the present assumptions. A method is proposed to caléulate the
transient béhavior of a disk in the presence of radial convection as
well as faradaic and nonfaradaic effects at the electrode surface.
The formulation can be extended, if needed, to apply at moderate times
by_adding more terms to the regular perturbation expansions. The
numerical method, even though straightforward, seems to require lengthy
coﬁputations._ |

The transient behawior of a disk electrode due‘;o double-layer
charging and a faradaic reaction has been worked out theoretically
in the absence of mass-transfer effects. Both galvanostatic and
potentiostatic cases have been considered. For either case, the _
analysis leads to a boundary-value problem, which yields analytic

solutions in terms of a new set of eigenfunctions. These equations

are extended to account for arbitrary variations in the applied

current or potential by employing the superposition integral. The
results demonstrate the effect of a faradaic reaction and a nonuniform
current distribution on the double~layer charging and decay at a disk
electrode. The overall treatment of the problem allows the determination
of accurate time coﬁstants characteristic of decay due to a faradaic
reaction and due to redistribution of charge in the double layer in

the presence of a nonuniform current distribution.
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The theoretical results seem to promise practical uses in the
measuremént'of double-layer capacifies at solid surfaces and estimation
of exchange-current densities. Design criteria are discussed for
possible applications. A preliminary experiment is conducted, and
double-layei capacities are obtained for copper and ﬁercury electrodes
within the correct order of magnitude. improvements for the experimental-
design are suggested to increase accuracy and reproducibility. The use
of smaller cell and:electrode dimensions and employment of more
_ sophistiéated purification procedures to reduce the éontent of
ihpurities iﬁ the solution to a ﬁinimal level would probably be necessary.

Series solutions for the secondary distributibn #nd transient
response’of a disk electrode prove to become inadequate for large
exchangé-current densities and at short times, respectively. A
singular-preturbation analysis is given to obt#in asymptotic solutions
for such cases. The results show that the potential distribution for
each case resembles the primary distribution‘closeiy except in a small
‘region near the edge where the current distribution remains finite

and much more uniform than the primary distribution._
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APPENDIX A. Evaluation of the Integral Equation for
Concentration in an Axisymmetric Diffusion Layer

Equation 2-62 can be combined with Faraday's law to obtain an

explicit expression for the current density:

(A-1)

nFDRm fx dc I | dx

- - Ro [
n (4 . dx | x 1/3 °
1‘(3) sp1-t,) X=X, [91)Rf &/RE dx]
. X
[¢]

where the symbols have their meanings as defined in sections 2.4 and 4.3.

In dimensionless form, this can be written as

RTK i z d@
7 ¢<c>j
0

__iC_;_;_ s (a-2)
e’ @ - )3

where

Go = cRo/ Cpao , ' (A-3)

¢ = e/ (i)

. v ' (A-4)
z =I 8in6/B(®) sin® d9 (sphere) |,
. .
N ¥ iy
$(%) = Ng /1‘(3) (disk) ,
: (A-5)

¢(g) = N/B(P) sinG/I'(-g—) (sphere) ,

and N is given by equation 4-22 for the disk and equation 5-1 for the

sphere.
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i We define the dimensionless overpotentials
E_= ZFnisT,' E = ZFnc/RT , o (A-6)
ZFn/RT = E=E_+E_ , (A-7)

so that equations 3-13 and 3~17 can be expressed as

RTK_ 1 GE_  -BE
_~on Y 8 s
—7 = J6, [e -e ] s (A-8)
(o] .
E, = 1In o,+tQ-0) , (A-9)

respectively, where J is given by equation 4-21, and-

a = aa/z, B = ac/z . . (A-10)

By combining equations 6 to 10, equation 2 van be eXpreésed in the form

‘ T '
o e) dg
R(Go) = (%) I —ac v T 173 o (a-11)
C=C (L -1L)
0 .
where
_ at, (© -1) —ap Ot (1-0))
RO ) = 0] % ¥Fe T O T - ftTHE, T 0n (A-12)

Equation 11 is now in a suitable form for numgriéal analysis.
The method ﬁsed was devised by Acrivos and Chambré69 for solving
integral equations of this type. The manner by which‘equation 11 is
broken into a finite-difference form and integrated is explained clearly
by those authors and will not be repeated here. One should note,

however, that the right-hand side of equatidn 11 has a nonzero limit
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as § » 0, and this has to be taken intb account in the finite-

difference formulation. At x = 0, equation 1 redUCeé to

RTKcoin 0) oy
= T = 8 r(ﬁ) 1 - OO(O)]‘ , (A-13)
[o] 3 .

where.G‘a 1 for a disk, and 8 = 1.15247 for a sphere.

The following numerical procedure was employed;‘

1. The current density or the concentration was specified at the
center of the disk or pole of thé sphere. As an initial guess, this
was assumed fo apply to the whole electrode. Equivalently; one has
the option to specify the electrode poténtial V or tﬁe current level
iave/(ilim)ave' However, this choilce requires an additional iteration
loop in the numerical procedure.49

2. The overpotentials were determined from eqpations 8, 9, and 7.

3. Equation 11 was solved to obtain a new concentration dis-
tribution at the surface. The current was calculated from equation 12.

4. The coefficients Bn were calculated from equation 2-16 for
the disk and 2-26 fdr the sphere by setting V = RT/ZF. The Gaussian
numerical integration technique was employed. The potential distribution
at the surface @o was then computed.

5. The electrode potential was determined according to equation 3-23
by using the values of N and ¢o at r or 6 equal to 2e;o. A new over-
potential distribution was then calculated from the same equation.

6. The steps 3 through 5 above were repeated until no significant

changes occurred in the calculated quantities.
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A listing of the computer prograﬁ for the sphere is given below.
The firét.input card in the main program reads the number of mesh
points LMAX ﬂeeded to divide the § domain into LMAX-1 equally spaced
increments as required by the Acrivos and Chambré method. NMAX is the
number of terms carried in the series for @o. IH is the total number
of Gaussian abscissae and weight factors used in step 4 above. The
next two cards read the Gaussian abscissae X(I) and the corresponding
weight factors W(I). The final input card readé the pa;ameters

for the problem. The key to notation is as follows:

c(): 6_(0)

AN: N
TPLUS: t_
ALPHA: O

BETA: B8
GAMMA: Y
EXCH: 1/J

DAMP: A damping factor for speeding up the
iteration procedure. A value of 1
corresponds to no damping and 0 to

1007 damping.

A blank input card terminates the program. The output prints Oo,
i/iave’ and E as a function of cos® along with the coefficients Bn'
The current level iave/(ilim)ave (= AVG in program notation) is also

printed. SUBROUTINE THETA solves equation 11 by the method of Acrivos
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and Chambre. FUNCTION P(N,X) computes the Légendfe polynomials of

order N and argument X.  SUBROUTINE ZETA has beén written to transform

between equally-spaced § and 6 coordinates and to éalculate $(5). : BRI
FUNCTION GRAND(T) calculates the dimensionless shear stress B(8) on

the rotating sphere.
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PROGRAM CURD( INPUTOQUTPUT)
CURRENT DISTRIBUTION ON A ROTATING SPHERE WITH AN INTEGRAL
EQUATION FOR THE DIFFUSION LAYER
DIMENS ION B(Zl)'C(ZOI)QCUR(ZOI)QF(ZOI)9Pp(219201)0R(201)9AA
1(200)938‘200)9X(40)1N(40)9CUG(40)QPG(ZIOQO)QZG(QO),ZIG(ZOI)
COMMON . LMAX9ZMAXsZIGsIMsX9ZGsR
COMMON EsCUR,C s TPLUS »ANSEXCH ALPHA ,BETAsGAMMA s TAF 3 AA4BB4C14+C2
1+EX . : .
101 FORMAT (6H ERRORsI4)
102 FORMAT (3H N=9F10e4910H o TPLUS=9FBelsbH 9 V=94F1l0e5+8H » AVG=y
1F10¢6/41H0O R C CUR ETA/(4F11.5))
103 FORMAT (314) :
104 FORMAT (9E8.4) ]
105 FORMAT (7H1ALPHA=yF8s4s9H s BETA=sF8.4910H » GAMMA=,F84,499H » E
1XCH=9FB844)
107 FORMAT (2H089F9o595F11.5/(6F1105))’
108 FORMAT (6E12,9)
READ 10%s LMAXsNMAX,IH
EX= 2073,0
DO 29 L=1,LMAX
A= L .
AA(L)= 260%A#REX = (A+160)#%EX - (A-1s0)%#%EX

. 29 BB(L)= A®¥EX -~ (A-140)%**EX

IM=2%1H
IHP1= IH + 1
READ 108y (X(1)sI=IHP1,yIM)
READ 108 (W(I)sI=2IHP1,sIM)
DO 33 I=1sIM
IF (I-TH) 31931432

31 IR=IM-1+1
X({I)= 065 ~ 0e5#*X(IR)
W(l)= W(IR)
GO TO 133

32 X(I)= 0e5 + 0OeS5%X(I)

33 CONTINUE
CALL ZETA
DO 134 N=1sNMAX $ DO 34 [=1,1IM

34 PGI(Nesl)= P(28N=2eX(1))
DO 1 L=1sLMAX
DO 1 N=1sNMAX

1 PP(NsL)= P(2%N-2,s R(L))
DZ=xZMAX/FLOAT (LMAX-1)
EX= 1.073,0
C22 1611984652

3 READ 1049 C(1)sANsTPLUSIALPHABETA »GAMMAEXCHsDAMP
Cl= C2#(1,0-Cl1))
IF (Cl1)) 44445

4 STOP

5 JCOUNT=z O
TAF= 1,0
IF (EXCH=400) 75746

6 TAF= 04,0
EXCH= 1 .0

7 ETAC=ALOG(C(1)) + TPLUS¥*¥(1,0-C(1))
CUR(1)= - (1,0~ C(l))'AN*EXCH*1.11984652/C(1)**GAMMA*1.15247
ETASx ~ALOG(TAF-CURI(1))/RBETA
IF (CUR(1)) 8510,8

8 DO 9 J=1,100
Fz TAF#EXP(ALPHA*ETAS)-EXP(-BETA*ETAS)
FP= TAF#ALPHA®EXP(ALPHA®ETAS)Y+BETAXEXP(-BETA¥ETAS)
IF (ABS{CUR(1)=F) = 0.0000001*%ABS({CUR(1))) 10451049

9 ETAS= ETAS + (CUR(1)=F)/FP ‘ .

10 CUR(1)= 1611984652%#AN®(1,0~C(1))*#1e15247
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DO 11 L=1,sLMAX.

CiLrs C(1) :

E(L)= ETAC + ETAS

B(1)= 0.0

PRINT 105, ALPHA+BETAsGAMMALEXCH
BoLD= B(1) 3

JCOUNT= JCOUNT + 1

CALL THETA

DO 16 I=1,1IM

LI= 2G6(1) /DZ + 1

CUG(T)= CUR{(LIN+(CUR(ILI+1)—CUR(LINI*(X{T)®*¥2-R{LT)*%#2)/{R(LI+1)%**2

1-R(LI)*%2)

v= E(1) X

DO 15 N=1sNMAX

B(N)= 040

DO 14 I=1s1IM

B(N)= B(N) + CUG(I) #PG(NsT)*W (1)
B(N)==0s5%B(N)*(4%¥N=3)/(2%N-1)

V= v + B(N)#PP(N,y1)

DO 18 L=2sLMAX

PHI= V

DO 17 N=1sNMAX

PHI= PHI -~ B(N}*PP(NsL)

E(L)= E(L) + DAMP*(PHI-E(L))

JERR= 1

IF (JCOUNT-100) 19519520 -

IF (ABS(B(1)=BOLD) — 0,000001#ABS(R(1))) 21521512
PRINT 101, JERR

AVG= ~B(1)/AN/1,11984652/1.5/ZMAX®*(2,/34)
DO 22 L=1sLMAX

CUR(L)= =CUR(L)/B(1)

RAT1= CUR(1)%*AVG

RAT2= (V-E(1))/B(1)

PRINT 102s ANsTPLUS»VsAVGs (R(J)sC(J)sCURIJISEL(J) sJ=1sLMAX)
PRINT 107s (B(I)s1=14NMAX)sTAFsRAT2,RAT]

PRINT 103, JCOUNT

GO TO 3

END
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SUBROUTINE THETA

SUBPROGRAM FOR CALCULATING CONCENTRATION

DIMENSION E(ZOI)’CUR(ZOI)’A(ZOO)yB(ZOO)gTH(ZOl)oZIG(ZOl)
DIMENSION X(40)4+2G(40)sR(201)

COMMON NZT1+ZMAXsZIGsIMsXeZGsR

COMMON EsCURsTH . ’T)PN'EXCH’ALQBE’GAM’TAF’A’B’CIQCZQEX
FORMAT (17HONOT CONVERGED ATs14)

NZT= NZTl 1.

DEVM 0.,0001

D2 = loO/NZT $ D2=DZ#ZMAX

S= TH(1)

DO 60 NZ = 24sNZT1

2 = (N2 - 1)%DZ

SUM. = 0.0

IF (N2 oLEe 2) GO TO 42

CALCe SUM(TH(J)I®*A(K))

DO 40 JU=34N2Z

K =z N - J +1

SUM = SUM + TH{(J- 1)*A(K)
ETA= E(NZ)
NJ = NZ - 1

DO 56 N=1+20

X1 = TAF#S##&(GAM — AL)*EXP(AL*ETA)*EXP(AL*T*(S ~ 1401)
DX1 = X1#({GAM —~ AL)/S + AL*T)

X2 = S¥%(GAM + BE)REXP(-BE®ETA)*EXP(BE*T#(1.0 - S))
DX2 = X2%((GAM + BE)/S - BE*T)

C3 = 1,50%#C2#2IG(NZ)/D2%%(1e/3%)

X3= C3#(TH( 1)*B(NJ) + SUM — S)+CI1%¥ZIG(NZ)/Z*%*(1e/30)

DTH= S = ((X1-X2)/PN + X3 #EXCH)/({(DX1~-DX2)/PN - C3*EXCH)
CUR(NZ)= PN* X3 :
IF (ABS{S-DTH) =~ DEVM*ABS(DTH)) 60+60+56

'S = DTH

PRINT 101y NZ

TH(NZ) = DTH

RETURN

END

FORTRAN II FUNCTION P(NsX)
CALCULATION OF LEGFNDRE POLYNOMIALS
Pl=z 1.0

P2= X

IF (N-1) 1923

P=. P1

RETURN

P= P2

RETURN

NM1= N - 1

DO 4 NU=1sNM1

P=({ X#FLOATF(2%¥NU+1)#P2~ FLOATF(NU)*PI)/FLOATF(NU+1)
Pl1= P2

P2= P

RETURN

END
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SUBROUTINE ZETA

DIMENSTON X(40)52G(40)921G(201)sXZ(201)sXX(40)
COMMON LMAX s ZMAX 2 T1GsIMsXs2ZGsX2

N=101 $ ZMAX=0.417077493

DZ=2ZMAX/FLOAT (LMAX-1) $ Z=DZ $ XZ(1)1=1+0 § J=2 }
GRAND3=GRAND(0+0) $ SUM=0s0 $ XOLD=0+0 $ IMP1=IM+1
T30LD=0e0 $ SUMOLD=040

DO 3 M=1,IMP1 $ IF(M.NE.IMP1) DT=(X(M)=XOLD)/ (N-1)
IF(MeEQeIMP1) DT=(1e=XOLD)/(N-1) § DO 2 I=3,Ny2°
T2=XOLD+DT*#([-2) $ T3=T2+DT $ GRAND1=GRAND3
GRAND2=GRAND(T2) $ GRAND3=GRAND(T3)

SUM=SUM+ (GRAND1+4 ¢ O¥GRAND2+GRAND3) #DT /3.0
IF(SUMJLE.Z) GO TO 15

K=LMAX=J+1

X2(K)=T30LD+(T3-T30LD)*(2~ SUMOLD)/(SUM SUMOLD)
J3J41 $ 2=2+DZ $ IF(JeNEJLMAX) GO TO 13 $ XZ(J)=0.0 $ GO TO 15
IF(SUM.GT+Z) GO TO 12

SUMOLD=SUM '

T30LD=T3 $ IF(MeEQ.IMP1) GO TO 3

XOLD=X (M) $ 2G(M)=SUM

CONTINUE $ DO & M=21,IM $ MM=IM=M+1 $ XX(MM)=X(M)
ZG(M)=SUM-ZG(MM) $ DO 5 M=1»sLMAX
ZIG(M)=GRAND(XZ(M 1) § DO 6 M=1,IM

X{M)y=XX(M)

RETURN $ END

FUNCTION GRAND(T)

X=T

AC=ACOS(X) $ X=1.0-X%#X % IF(X.GT.O.) GO TO 1
GRAND=0,0 $ RETURN

RX=SQRT(X)

B=z0,51023%AC~0,1808819#AC**3~ 0.040408*X*RX
GRAND=SQRT(B#RX)$ RETURN $ END
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"APPENDIX B. A Method for Calculating the Time Constant for
the Transient Response of a Disk Electrode
in the Presence of Mass Transfer, Nonuniform
Electric Field, and Double-Layer Charging.

For a thin diffusion layer on the surface of a disk, the transient

convective diffusion equation is

- 2
dc dc dc. 8%¢
R R R R
TtV et Yy 5 - Dk Tz (B-1)

where the concentration and the diffusion coefficient are those of
the 1imiting reactant; the concentration variations of the other species
are not considered. The velocity components are expressed by

equation 2-52. Equation 1 can be transformed into the dimensionless

form
30, o (.30 _ 30} _ 2%
ot ¥\rar T tar) T2 (8-2)
C
where
0 = CR/CRW , (B-3)

cey (2 V2 s (B-4)

9 = 9(%)1/3 (%) £ . '(3—5)'.

The boundary conditions are

O©=1 as § >+ (B-6)

00/0r = 0 at r =0 . - | (B-7)
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Another condition has to be specified aﬁ the surface. The.in;tial
condition Qill be left as arbitrary. Since.the present analysis seeks
the purpose of obtaining a characteristic time constant for large
times, an initiai condition does not have to be specified.

For 1arge 8, the solution to the conveétive—diffusion equation

satisfying the conditions 6 and 7 can be expressed as

x

-ADO _ om .
O=1+ke E Am(r/ro) 7 Zm(C) , (B-8)
m=0
where k is a dimensionleés constant, AD is an eigenvalue, Zm are

functions yet to be determined, and A.m are coefficients in the series for

Zm. Substitution back info equation 1 gives

" . 2! ‘
zm + 3% zm +‘(AD - 6ml) z = 0

(B-9)
(m=0,1,2, ...)
with the boundary’condition,
z =0 as [+ , ~ (B-10)
and a normalizing condition,
Zm =1 at =0 . (B-11)

Let us assume that an excess amount of supporting electrolyte
is present, and the electrode reaction is reversible and fast. The
third necessary condition to solve the diffusion-layer equations can

be expressed as (see equation 3-32)

s on
= R -—c—c)
" noF (j'n c ot ) . (B-12)
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The concentration overpotentiai is given by equation 3-12 which can

be linearized at large times and combined with equation 8 to read

| s RT -AB ° L ’
n =- -2 ke D Z:Am(r/r’o)zm i (B-13)

c nF
m=0

At large times, the potential distribution in the solution can

be expressed by (see equations 2-13 and 7-7)

spRT —ADG 2 |
b= - F ke E BnPZH(Tl) MZn(E) . (B-14)

n=0

Application of Ohm's law (équation 2~-8) gives the current density,

K

od © 3 l
i ==K 7= == — ¥ (B-15)
n © 3y.y=0 ron 13 £=0
Substitution of equations 8, 13, 15 and 14 into equation 12 yields
after some arrangement
o ’ o ‘
LN e om0 =94 @andH)® vz o) + pA 6
n n 2n 2n Z n ) Zm( ) D)] s (B-16)
n=0 m=( .
where N is given by equation 4-22, and
r CQ 1/3 2/3 '
0 D ay :
P K (v) (3) _ (B-17)

is thg dimensionless capacity. Application of orthogonality property-

of the Legendre polynomials gives

=]

ZAm[NZm(O) sRA L, (B-18)

m=0

_4n + 1
= [
MZn(o)

B
n
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where

. 1
2.m ' :
Lo.n =[ n@-nH" e, (m dn .  (8-19)
0

But, since ¢ contains no net current, Bo = 0 (see section 7.3), and

for n = O, equation 18 reduces to

Z AmINZ!;(O) +PAY/(m+ 1) =0 . (B-20)

m=0

The electrode potential can be expressed as

s RT -ADG
nF

V=n +¢ =~ ke - . (B-21)
c o

Substitution of equations 13 and 14 and again due to the orthogonality

property of PZn(n), we obtain the result

o0
Bn = (n+1) (1 - AmLm,n) (n>0) . (B-23)
m=0
Combining this with equation 18 yields
| ]
hd NZm(O) +_PAD '
E AL 0 +1f=1 (n>0) , (B-24)
m m,n M. (0)
m=0 : 2n _
o
2 : Am . .
mtic 1 (n=0) . : (B-25)
m=0 :

From here on, the problem involves a numerical-solution of
equations 9 to 11, 20, 24, and 25 once the parameters N and P are specified.
Equation 9 has to be solved numerically noax times considering that the

series in n and m are both fruncated at n .x* OF 2 power series solution
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has to be Qorked out. .Moreovér, the numerical éolution can only be
obtained by an iterative procedufg, which maj be somewhat demanding in

the computation time. Because of this, and since the;e seems to be
nd-immediate interest in the numerical results, a numerical énalysis

has not been pursued. The numerical work, however, should be
étraightforwafd. One possible method of solution is to guess AD’ and
calculate Z;(O) by solving the set of eqdéeions 9 to 11. Then,

equations 20 and 24 can be solved for the coefficients Am. This procedure
can be repeated until the coefficients satisfy equation 25. After

AD 18 calculated, the desired time constant can be obtained from

" equation 7-40. Another method, which would simplify the iteration

procedure’significan;ly, is to specify AD and N (or P) and back

calculate N (or P). In this way, one needs to solve the set of
differential equations B~9 only once; the desired parameter N (or P)

and the coefficients Am can then be obtained iteratively from equations 20,
24, and 25. it is possible to perform a parametric study by this method
andbmap out AD as a function of N and P. Afterwards, the results can

be interpolated easily to calculate AD for specified values of P and N.
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" APPENDIX C. Computation of the Transient Convective
Diffusion to a Disk Elec&rode in the Absence
of Radial Convection
The numerical problem involves the solution of the system of

equations 6-27. We added to this system another equation
dA /dz =0 , (c-1)

and'oﬁtained solutions to this nonlinear, coupled set of differential
equations by employing the numerical method developed By Newmanlo’ll’so
for equations of this type._ The coefficients Bn Qere computed by
numerical integration using Simpson's rule. Calculation of %% also
involves numerical integration; Simpson's rule was used for ¢ < 1.375,
and Gauss-Laguerre integration proved to bé more aécurate for larger
values of Z. |

The error due to the finite-difference approximation of the
differential equations is O(hz),80 where h is the mesh size. The
numerical results were thus coreected to zero mesh size by extrapolating
linearly with respect to h2. Another soﬁrce of error is due to the
fact that the T axis is unbounded at one end and has to be truncated
for numerical calculation. The maximum value set for { was increased
for several successive.calculations until the results did not change
significantly.

The key to notation on the input cardsvfor the computer program

is as follows:



1

Z(I),w(D):

NJ:

MODE:

NAMBDA :

AMBDA :
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abscissae and weight factors for 8-point Gauss-

Laguerre integration

number of mesh points. A value of zero terminates

the execution of the program
mesh size

chooses between the boundary conditions for a
concentration step (MODE=1) or a flux step (MODE=2).
A blank card terminates operation with a specified
set of NJ and H; the next card should be blank

to terminate execution or define new values for

NJ and H. |

subscript for the eigenvalue of interest and the
corresponding coefficient Bn in the series such
as 0,1,2,3,... |

first guess for an eigenvalue. A value of zero
terminates calculation in a specified MODE; the
next card should be blank or set a new MODE.

A set of input cards have to be read in twice with different

values of NJ and H for each time in order to obtain results which are

automatically extrapolated to zero mesh size by the computer.
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PROGRAM TRNDIF{ INPUTsOUTPUT)

TRANSIENT DlFFUSION TO A DISK-- RESPONSE TO A STEP CHANGE IN

CONCENTRATION OR FLUX -

DIMENSION A(2+2)eB(202)9C(2» 802)oD(2¢5)oG(2)1X(2o2)oY(ZoZ)d

1SS( 802)9AA(2510)sBB(2510)+2(8)sW(8)

COMMON. AsBsCyDsGoeXsY9sNJsNsHsMODE » AMBDA
STEADY STATE DISTRIBUTION

C1=1.11984652 $ NZ=8S READ 109s(Z(I}sW(I)sI=1sN2Z)
PRINT 102 $ ICHECK=0 $ HH=0.0

DO 1100 I=1s2 $ DO 1100 J=1510 $ AA(I+J)=0.0
BB(15J120,0 .

READ 101sNJsH $ IF(NJ.EQ.0) STOP
ICHECK=ICHECK+1 $ HHO=HH $ NM1aNJ-1

" PRINT 103,NJ $ ZMAX=H¥*(NJ-2) $ H=H/2.0

61

62
63

51
12
15

16
17

N=2#NJ-3 $ SSUM =0.0 $ GRAND3=1.0

J=1 3 DO 2 I=234Ne2 8§ J=J+1 $ T2=H*([-2)

IF(T2¢GTele375) GO TO 61 $ T3=T2+H § GRAN01=GRAND3
GRAND2=EXP(-T2%#3) $ GRAND3=EXP(~T3#%3)

SS{J)=SSUM +(GRAND1+4 ¢0O*GRAND2+GRAND3 ) #H/3+0 $ SSUM=SS(J)
SS(J)=1.0-C1#SS5(J)

Hz2.0%H $ HHaH¥*H

DO 63 I=JsNM1 $ T3=H¥*¥(]-1) § SS(!)=0.0'SVDO 62 L=1sNZ

SS(I)=SS(II+WIL)I*160/(1e0+2Z(L)/T3NN3)%#%(2,0/340)
SS(I1)=C1/3.0#EXP(~T3#%#3)/T3/T3%#SS5(1)

TRANSIENT DISTRIBUTION

READ 101+MODE $ IF(MODE) 3543544

GO TO (1+26)4ICHECK

GO TO (41942)+MODE

PRINT 104 $ GO TO 53

PRINT 105

READ 101 +NAMBDA, AMBDA $ IF(AMBDA) 353445

CALL GUESS $ JCOUNT=0 $ N=2

COLD=C(291)

JCOUNT=JCOUNT+1 & J=0 $ DO 6 I=1sN & DO 6 K=19N S Y(IsK)=0e0
X{IsK)=0e0

JuJ+]l §$ DO 8 I=14N $ G(1)=00 $ DO 8 K=1sN

A(lsK)=0e0 & B(I4K)=0.0

D(1sK)=0e0 $ IF(J-1) 999913

GO TO (10,11)9sMODE

X(191)=1e0 $ B(1el)==1,0 % G(1)=32,0%H

B(2+s2)==1.0 8 D(2+2)21,0 $ GO TO 12

B(ls1)==140 8% X(1s1)=1,0

D(2s1)=H $ G(2)=H $ B(2+2)32=-1.0 § D(ZQZ)*I.O

CALL BAND(J) $ GO TO 7

IF(J=NJ) 14515915

2ETA=H®{J=2) $ A(1e1)=1e¢0/H/H=15%ZETA%ZETA/H $ A(292)=~1e0
B(191)=C(20J)=2,0/H/H $ B(192)=Cl(1esJ) % B(2+2)=1e0
D(191)=1e0/H/H+)1S#2ETARZETA/H $ G(1)=C{1lyJ)%C(2+J)
IF{JeGTe3) GO TO 12 $ A(292)=040 $ IF(JEQs2) GO TO 51
B{2+2)=0e0 % Al{2491)=1e0 $ IF(MODECEQe2) G(2)=1,0 $ GO TO 12
D{2+2)=2-1,0 ’

CALL BAND(J) & GO 1O 7

B(1s1)=1e0 $ B(292)21e0 $ A(2+2)==140

CALL BAND(J)

IF(ABS(C(2+1)-COLD)-0. 000001#ABS(C(2+1))) 18918916
IF{JCOUNT-20) 5+5417

PRINT 106
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CALCULATION OF COEFFICIENTS IN SERIES

SUM1=0,0 $ SUM2=0.0 $ GO TO (19+20)+MODE

GRAND3z040 $ GRAND6z0.0 § GO TO 21

GRAND3=1+0 $ GRAND6=1.0 -

DO 23 [33sNM1s2 $ T2=H#(I-2) $ T3=T2+H $ GRAND1=GRAND3
GRAND2=zEXP(T2#%#3)%#C (191 ') $ GRANDI=EXP(T3#%#3)%C(1s1+1)
GRAND4=GRAND6 $ GRANDS=GRAND2#C(1sI ) $ GRANDE=GRAND3I*C(1s1+1)
GRAND2=GRAND2#SS{1-1) $ GRAND3=GRAND3#SS(T)

 SUM1=SUM1+(GRAND1+4+0#GRAND2+GRAND3) #H/340

23

24
25

SUM2=SUM2+ (GRAND4+4 .0 %#*GRANDS+GRANDGE) #H/ 3.0 $ SUM=SUM1/SUM2
AK={C(19NJ=2)=C(1oNJ))/2,0/HREXP(T2%%3)

IF(MODE.EQe2) SUM=SUM/C1

PRINT 107sNAMBDASC(201) sSUMsAK

LINEAR EXTRAPOLATION TO INFINITE NUMBER OF MESH POINTS

GO TO (24925) s ICHECK

AA(MODE sNAMBDA+1)=C(2s1) $ BB(MODEsNAMBDA+1)=SUM $ GO TO 43
IF(AA(MODE yNAMBDA+1) ¢EQe0e0) GOTO 43 .
AA(MODE.NAMBDA+1)=(AA(MODE.NAMBDA+1)*HH-((Zvl)*HHO)/(HH HHO)
BB ( MODE s NAMBDA+1 ) = (BB(MODE ¢ NAMBDA+1 ) #HH- —SUM *HHO )/ (HH-HHO)
GO TO 43

OUTPUT

PRINT 108sZMAX $ DO 27 121,10

IF(AA(1+1)eGTe0.0) GO TO 28 $ GO TO 30

PRINT 104 $ DO 29 I=1,10 § JU=l-1

IF(AA(191)eGTe0s0) PRINT 1079sJsAA(1s1)8B(1,s1)

DO 31 I=1,10

IF(AA(2+1)4GT+0.0) GO TO 32 $ GO TO 1001

PRINT 105 $ DO 33 I=1,10 $ J=1-1

IF(AA(2311eGT40e0) PRINT 1079J9AA(2+1)sBB(2,1) $ GO TO 1001
FORMAT (144E8.4)

FORMAT { 1H1)

FORMAT (/776X s *JMAX=%414)

FORMAT ( /6X s #CONCENTRATION STEP#/(9X»%#N%,7X»#LAMBDA# ,6X s #COEFF#) )
FORMAT ( /76X 9 #FLUX STEP*/(9X o ¥#N¥% o 7X o #_AMBDAX 46X 9 RCOEFF*) )
FORMAT ({6X s ®*NEXT RUN DID NOT CONVERGE#) &

FORMAT({110+5€1548)

FORMAT (1H19///6X o ®IMAX=INFINITY
FORMAT (4E18.12)

END

IMAX=#,F8,5)



e XaXs]

[a¥aXa)

101

0 ® -~

-178-
SUBROUTINE GUESS
FIRST GUESS FOR THE TRANSIENT DISTRIBUTION

DIMENSION A(232)9B(2+2)sCl2» 802)00(205)§G(ZlOX(ZOZ)oY(ZQZ)
COMMON AsBsCeDsGoXsYsNJs NyHsMODE s AMBDA =~

Ja0 $ N=1

DO 10 I=1sN & DO 10 K=1sN $ Y(IsK)=0.0

X({IsK)=0e0

J=J+1'$ DO 12 I=z1sN $ G(1)V=0,0 $ DO 12 K’lON

A({l4K) 2060 & B(19K)=0e0

D(IsK)=0e0 & IF(J=1) 13513,17

GO TO (16+15)sMODE

B(lel1)=—160 8 X(191)21,0 % G(1)=2,0%H $ GO TO 16
Bl{ls1)=2-1e0 $ X(191)=140 $ D(191)=2,0%H $ G(1)=2,0%H
CALL BAND(J) $ GO TO 11 '
IF(J-NJ) 1819519

ZETAz=H#®#{J~-1) $ A(l'l)=1.0/H/H-l05*ZETA*ZETA/H .
B(1ls1)=AMBDA=2,0/H/H $ D(1s1)=1e0/H/H+1e5#ZETARZETA/H
CALL BAND(J) 8 GO TO 11

B{ls1)=1e0 $ CALL BAND(J) '$ DO 20 I=1sNJ

C(2+s1)=AMBDA $ RETURN SEND

SUBROUTINE BAND(J) i
SOLUTION OF COUPLED ORDINARY DIFFERENTIAL EQUATIONS

DIMENSION A(ZoZ)oB(Z’Z)’C(Z’ 802)9D(25)9G(2)9X{202)9Y(2s2)
1E(2+3+802)

COMMON AsBosCsDsGoXsY sNJsSN
FORMAT (21H DETERM=0 AT J=s[4)
IF (J=2) 1648

NP1zaN+1

DO 2 I=19N

D{(I+2%N+1)=G(1)

DO 2 L=1sN

LPN=L+N

D(TIsLPN)2X(IsL)

CALL MATINV(N.Z'N+190ETERM)
IF (DETERM) 44344

PRINT 101sJ

DO 5 K=1sN
E(KsNP1s1)=D{(Ko2®N+1)

DO 5 L=1sN

E(K9L91)=-D(K9L)

LPN=L+N

X(KsLL)==D(KsLPN)

RETURN

DO 7 I=1sN

DO 7 K=alsN

DO 7 L=1sN
D(TokK)=D(IoKI+A(T L)X (LK)
IFtJ=NJ) 119949

DO 10 I=1sN"

DO 10 L=1sN
G(IN2G(I)=Y(TsLIRE(LsNP1s»JI=-2}
DO 10 M=19N

at



o

N

10
11

12

13

14

15

16
17

18

19
20

A(I’L)=A‘I!L)+Y(I’M)*E(M Led=2)
DO 12 I=1sN

D(IsNP1)=-G(1)

DO 12 L=1sN

D(IsNP1)= D(IQNP1)+A(IOL)*E(LQNPIOJ 1)
DO 12 K=1sN
BlIoK)=B(IsKI+A(TIsL)#E(LsKsJ-1)
CALL MATINV(NsNP1yDETERM)

IF (DETERM) 14+13514

PRINT 101,J

DO 15 K=1sN

DO 15 M=1,4NP1

E(KsMs J)==D(K M)

IF(J=NJ) 20416416

DO 17 K=1sN

CiKsJ)=E(KsNP1lsJ)

DO 18 JJ=29NJ

M=NJ=-JJ+1

DO 18 K=1sN

C(KsM)=E(KsNP1sM)

DO 18 L=1sN
C(KoM)‘t(KoM)+E(K’LoM)*((L9M+1)
DO 19 L=1sN

DO 19 K=14sN
C(Kyl)'L(K01)+X(K’L)*C(L93)
RETURN

END
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SUBROUTINE MATINV(NsMsDETERM} |

MATRIX INVERSION .

DIMENSION A(232)eB(292)sC( 2
COMMON AsBsCoeD
DETERM=1.0

DO 1 I=1N
ID(I)=0.

DO 18 NN=1sN
BMAX=0,

DO 6 I=1eN

IF (ID(I)) 24246
DO 5 J=1sN

IF (ID(J)) 34345

IF(ABS (B(I+J))=-BMAX) 59594

BMAX=ARS (B({IsJ))
IROwW=1I

JCOL=J

CONTINUE

CONTINUE

IF (BMAX) 79748
DETERM=0, :
RETURN

ID(JCOL) =1
IF(JCOL~-IROW) 991249
DO 10 J=1sN
SAVE=B ( IROWs ))
B{IROWsJ)=B(JCOLJ)
B{JCOL »J)=SAVE

DO 11 K=1sM

SAVE=D( IROWsK)
D{IROWK)=D(JCOL 9K)
D(JCOL ¢K) =SAVE
F=1e/B(JCOL s JCOL)

DO 13 JU=1sN

R{JCOL ¢J)=B( JCOL s J) *F
DO 14 K=1oM :
D(JCOL oK) =D(JCOL 9K) ¥F
DO 18 I=14N
IF(I-JCOL) 15918415
F=B(IsJCOL)

DO 16 J=1sN
B(IsJ)aB(1sJ)=~F%#8(JCOLJ)
DO 17 K=1sM
D(1sK)=N(1sK)=F%#D(JCOL,K)
CONTINUE

RETURN

END

802)sD(2+5)s1D(2)
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~ APPENDIX D. Numerical Solution of the Integral Equation
for the Transient Concentration on a Rotating
Disk in the Presence of Double-Layer Charging

We wish to solve the integral equation

i/IL do 8 4o
- _Q o _ o
F/3) T8 T3 j el

90
2
'ac

do . (D-1)

=0
. '
6=6-6

8=6

(o]

The 6 axis can be broken into D oox - 1 intervals of size A6 and equation 1

thus written in the finite-diffgrence form as follows:

I/1 .0 -0
L Q o,k o,k~1
TG/3) 48 o
Hd

(p-2)

(3-1)A8 ' '
(eo,j - eo,j"l)] St H(e - 6 ) de = f(e) ’

1
gl
i
U =
N

(3-2)48
where
' BOC
H® -6 ) = T ‘ (D-3)
C=o '
v6=9—6

Forﬁard'differences have been used for the time derivatives , hence

the error associated with the finite difference approximation is

0(46). The errof can however be reduced to O[(AQ)Z] by averaging the
coefficient_of the derivative between the mesh points k and k-1.  Let us.

also define

6 |
co = [ e ax ' (0-4)
0 ' '
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' ) ‘ ,
where x = 6 - § . For small 6, H(x) is given by equation 6-16,

HGO) = -1//7% - 3x/4 5 )

therefore, equation 4 becomes

G(®) = - 2/B77 - 36%/8 . (0-6)
For large O, equation 4 can be broken up as follows:

8 6 @-7)
G(0) -=f [HGx) - B(®)] dx -f [H(x) - H()] dx + OH(®) .
0 0 ’

This can be evaluated by substituting the results of the long-time

solution (section 6.3) to obtain

Y

G(8) =f [H(x) - H(®)] dx + Znne T -8/T3) ,  (0-8)
0 _ n=0
" where
J. [H(x) - H(®)] dx = const. (D-9)

0
' *
The constant term can be calculated by picking a convenient time 6
for switching from the short-time to long-time series. Equations 6 and

: *
8 can be equated at 8 and solved for the constant term:

x . o2 2. a8t |
n
const. = -2v0 /m + 6 /T'(4/3) - 36 /8 - E B e /A (D-10)
n=0

= -00336 .




This method provides a smooth transition from one series to the other.

Equation 2 can now be written in the form

(k-j+1) A8
£0) = Iy Z(@ - 0, 4 l)fﬂ(x) ax
. k) o ®-11)
%—Z ){G[(k—j+1) 48] - G (k-3) 48]},
=2
which becomes, after some rearrangement,
I/1 6 , -0 - : _
L Q o,k - o,k-1 _ - _
T(4/3) ¥ 16 o . MOk " Pt de—jeo,j ’ (0-12)
. ’ j=2
where
A = G(AB)/406 (>-13)
bz = {G(RAB) - G[(2-1) A6]}/A6 , (D-14)
dy = {G[(&+1] 48] - 2G(RA0) + G[(2-1) AO]}/ 46 . (D-15)
The algebraic solution fo equation 12 can be expressed as
’ ) 1/2
1f{.2 4 £
k= 8e1/2 E( -1° A_A% eo,k—l) , (D-16)
where
RN
Af, Y r—(a-—/-jT'F Q/A8 .+ b E Q-j"l'l o3| (D-17)

Equation 16 can now be used to calculate @o at the mesh points

k=2, 3, 4, . . ., each time using the values'ofeo at smaller values

of k, which-have already been calculated. The value of Oo 1 of course

corresponds to the initial condition and has been set equal to unity here.



~184-

A listing of the computer program follows. . The key to the input

notation is

LMAX: number of terms used in the long~time series
NMAX : number of mesh points

TMAX : the upper limit desired for 6

*
TS: 6

WL(L),AA(L): eigenvalues and coefficients in the long-time series
for concentration step

WR(L),BB(L): eigenvalues and eoefficients in the long-time series
for flux step

CUR: I/IL
Q: Q
DT: A6

Settiﬁg CUR=0 terminates the execution. The initial value of A® should
be a small number, such as 10-4, because (BGC/BE)Z=0 goes‘to infinity
as 1//5, and hence the contribution to the integral may be significant
at small times. The program first computes the surface concentration
in the interval © = 0.0001 to O = 0.001 (smaller © can be used if
desired). The mesh size is then increased by a factor of 10, and the
calculation is repeated for the interval_0.00l to 0.01 using the results
of the prgvious cycle as the first (NMAX-1)/10 points. A -similar
method was employed by Hsueh84 to calculate the transient response of

a stagnant diffusion ce11.85
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PROGRAM CAPEFF{INPUTsOUTPUT)
TRANSIENT DIFFUSION TO A DISK IN PRESENCE OF THE CAPACITIVE EFFECT

DIMENSION C(101)4CC{101),B8(101)sD(101)sG(101),WL{10)sAA{10)sWR(10)
1+BB8(10) v
P123,141592654 § C1=0,8929795116 $ C(1)=1,0.

" READ 101 sLMAXINMAX»TMAXTS
READ 1029 (WL(L)sL=1sLMAX) $ READ 102s (AAlL}sL=1sLMAX)

READ 102s(WRIL)sL=1sLMAX) $ READ 102s(BB(L)sL=19sLMAX)

1 READ 103+CURyQOsDT $ IF(CUReLE«0.0) STOP $ JUBEGIN=2 $ Q=C1#Q0
AK=ZTS/C1l=240#SQRTITS/P1)~-3.0/840%TS*TS $ DO 2 L=1sLMAX

2 AKSAK-AA(L) /WLIL)®EXP{-WL(L)*TS)

3 PRINT 1049sCURsQOsDT 8 DO 6 I=1sNMAX $ T=(1-1)%DT
IF(TeGTeTS) GO TO 4 $ X=2.,0%SQRT(T/PI) $ Y=340/8,0%T*7
G(I)=—X-Y $§ CC(I}=X~-Y $ GO TO 6

4 G(I)=AK~-T/C1 $ CC(1)=C1 $§ DO 5 L=1sLMAX
G(I)=GIII+AA(L) /WLIL)REXP(~WL(L)*T)

S CCULIN=CCUII-RBIL)I*EXP(-WR(L)#*T)

6 CCUI1)=1+0-CCII)/C1%CUR $ A=G(2)/DT*#C1l $ NM1=NMAX-1 $ DO 7 [=1,NM1
BII)=(GlTI+1)~G(I)1)*C1/DT $ IF(1.EQsNM1) GO TO 7
D(I)=(G(I+2)~2.0%G(I+1)+G(]1)}*»C1/DT :

7 CONTINUE $ DO 10 J=JUBEGINsNMAX $ JUMl=JU~1
DEL=CUR+Q/DT+B (UML)

IF{J.EQe2) GO TO 9 $ DO 8 I=25JIM]

8 DEL=DEL-C(I}#D(JU~-1)

9 DEL=DEL/A

0 ClJ)=0,5#(DEL+SQRT(DEL#DEL-4.,0#Q¥*C(JM1)/A/DT))

DO 11 I=1sNMAXs2 $ T=(I1-1)1%#DT $ IF(T«GT4TMAX) GO TO 1

1

" 11 PRINT 1054TsC(I)sCC(I) & DO 12 K=1411 $ J=K¥*10-9

cCtk)=CCty) .
12 C(K)=C(J) & UBEGIN=12 $ DT=10.0%#DT & GO TO 3

101 FORMAT(214+2E844)

102 FORMAT(6E12.8)

103 FORMAT(9EB.4) ' '

104 FORMAT(1H1 96X o %1 /ILIM=#3F5e336Xs%#Q=%9FTa59 6Xo#DT=¥gETal// (12X o %TH*
To14Xo#CH9p14XyRCCH))

105 FORMAT(3F15.5)
END
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APPENDIX E. Calculation of the Transient Response
of a Disk in the Absence of Mass Transfer

The transient response of a disk electrode can be calculated
once the eigenvalues and the corresponding coefficients in the series,
discussed in chapters 7 and 8, are determined. We wish to solve the

nonlinear set of equations

n
max _
n=1
nmax s ' _ :
a 4+ Mo M2m(0) ] B = a
m,n Ai m + 1 n,i o,m (7-14)
n=1
(m=1’2""’nmax)

for the galvanostatic problem and the analogous set

n

| E ao,ﬁBn,i = 2/1TAi -1/2 , : (E-1)
n n=1 , .
max
. . dm,n M2m(0) _
m,n Ai 4m + 1 n,i 4 ,m

(E-2)

(w=1,2,..., nmax)

for the potentiostatic problem. The fact that.Bo =0 1is implicit

i

9

in equations 7-13 and 7~-14, and that Bo i is normalized to unity, in
’

equations E-1 and E-2, respectively. The following iterative scheme

is used, utilizing the Newton-Raphson convergence method, to obtain .

numerical solutions:
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| 1. An initial guess is made for Aivo: Ai aé ciose'to the actual
value as possible. A bad guess may converge to a differgnt eigenyalue
than the one‘desired, or convergence may not be aﬁtained at all. However,
the spacing between the eigenvalues appeafs to be approaching T with
increasing order; if the value of an eigenvalue is known, a good guess
for the next one can be obtained by addiné.or subtracting T. The same
arguments also apply to Ai'
2., Equatisn 7-14 or E-2 is solved by matrix inversion. Wg next

solve the expression

max : 5 ' '
a + DD MZm(O) dBn,i - M2m(0) Bm (E—j)
m,n A dm + 1 dA dm+1 ,2
_ i i Ai

n=1
for the derivatives dB /dA . A similar equation can be written for
. .

the potentiostatic case by differentiating equation 2 with respect to

R

3. A correction term for the eigenvalue is calculated by expanding

equation 7-13 or E-1 in the following manner:

“max dBn i .1
D %o (Bt * @ My )= (E=4)
n=1 , . . .
‘ n,i 2 -
2 : %,n (Bn,i + T;_ A}‘i)- HI (l - A>\’i/A:I.) -1z
n=1 ' : »

Solving for AAi or Aki gives
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max
1/2 - )
/ Z; ao,n n,i . S
.n= ]
M. =g S . (E-6)
max S .
o,ndB ,i/dAi
n=1 '
or ) : : .
. n . \ !
2/10\1 -1/2 -2 ao,an,i |
AN ' n=

= _ .v i (E_—7)

n
max »
2 .
2/ﬂAi+ E ao,ndBn’i/dAi

n=1

i

The new value of the eigenvalue is thus

Aynew T o1a Ty s (E-8)

or

A = 3 _

1,new " Mo1a ¥ My - o (E-9)
4. The numerical steps 3 and & are‘repeated until no significant

change occurs invAi or Ai' Convergence, of course, is very rapid

becauee the problem has been linearized around trial values which

become very close to the true solutionm.

A listing of the computer program is reproduced below for performing
these calculations for any number of eigenvalues desired. Results for

the eigenvalues and the coefficients B or Bn

n,i ,1

output for separate computations of the eigenfunctions, the coefficients
Ci and Ci’ the electrode potential for the galvahestatic problem, the

current for the poltentiostatic problem, and other desired calculations

are punched on cards as-
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according to the formulae developed in chapters 7 ahd 8. The integral

a o is calculated according to equation 4-7, and aa (equation 4-6)

1s obtained by Gaussian integration.

Important symbois in the program héve meanings as follows:

NMAX :

IH:
IMAX:
X(1),W(@):

MODE:

n
max

number of pointé used in Gaussian integration

" number of eigenfunctions required

Gaussian abscissae and corresponding weight factors

specifies the mode of operation for the galvanostatic
problem (MODE=1) or the potentiostatic problem
(MODE=2). A value of 0 terminates execution.

The program calls the subprograms FUNCTION P(N,X) (appendix A) and

SUBROUTINE MATINV (appendix C). -
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PROGRAM SECLIN(INPUTsOUTPUTsPUNCH)

PROGRAM FOR SECONDARY CURRENT DISTRIBUTION ON A DISK ELECTRODE
WITH LINEAR KINETICS

DIMENS ION X(96)9W(96)oR(45a96)’PM(45)oB(hSo#S)'Q(45o65)oD(hS-l)o
100(45’98T(45920),AMBDA(20) :

COMMON BsD ‘

COMPUTATION AND INTEGRATION OF LEGENDRE POLYNOMIALS -
103 FORMAT (514)
106 FORMAT (1H1) .
108 FORMAT(2XoFl9ol6o2X'Fl9ol6)
132 FORMAT(4E1846)
READ 103sNMAXsIHsIMAX 3 [HP1l=a]H+1 $ IM=2*IH
READ 108s (X(I)oW(I)sIxIHP1sIM)
DO 3 I=214IM $ IF(leLTeIHPLl) GO TO. 1 $ X(I1)=0e5+045%X(1) $ GO T0 2
IR=IM=1I+1 $ X(I)20e5-0,5%X (IR} & W(I)=W(IR)
XX=SQRT(1.0-X(I)*%2) § . DO 3 NN=1sNMAX $ N=NN-1
R(NNsI)=P(2%¥NsXX) $ DO 4 NN=1sNMAX & N=NN-1"
DO 4 L=1sNMAX $ Q(NNsL)=0e$ DO 4 I=1+IM
4 QINNsL)=Q(NNsL)+RILsT)EX(I)*R(NNsT)*W(I)
DO 5 M=1sNMAX $ DO 5 N=1,NMAX
5 Q(MsN)=Q(MsN) /24 $ PI=3,141592654 $ 00(1)'0 5 % Q0(2)=0e125
PM(1)==24/P1 & PM(2)=4,%PM(1) $ NXMI=NMAX-1 $ DO 10 N=2,NXM1
QO(N+1)=-QO(N)/FLOAT(N+1)* (FLOAT(N)-1e5)
10 PM(N+1)=PM(N)®*(FLOAT(2%#N)/ FLOAT(2%N-1))%%2

W N e~

TRANSIENT DISTRIBUTION
12 READ 103sMODE $ IF(MODE.EQ.QO) STOP
PRINT 106 $ 1=0 $ AMBDA(1)=4.1213 _
IF(MODE+EQe2) AMBDA{1)=1,1578 $ DLAMDA=3,19
15 I=I+1 $ IF(1.GTeIMAX) GO TO 28 $ IF(1+EQel) GO TO 20
IF(lelL,Te3) GO TO 16 $ DLAMDA=AMBDA{I-1)-AMBDA(I-2)
16 AMBDA(1)=AMBDA(I-1)+DLAMDA _
20 DO 22 M=1sNXM1 $ D(Ms1)=Q0(M+1)
IF(MODE.EQe2) D(Ms1)=-D(Ms1) $ DO 21 N=1sNXM1
21 B(MsN)=Q(N+1sM+1) .
22 B(MgM)-B(MoM’+PM(M+1)/FLOAT(Q*M+1)/AMBDA(I) $ F=0e5
IF(MODE«EQe2) F=24/PI1/AMBDA(I)}~-F
CALL MATINV(NXM1+1+DETERM) $ DO 24 M=1,NXM1 $ BT(M’I)=D(M91)
FaF-QO(M+1)%#BT(Msl)
D(Mg1)=D(Ms1)#PM(M+1)/FLOAT(4%M+]1) /AMBDA(T)*%2 3 DO 23 N=1,NXM1
23 B(MeN)2Q(N+19M+1) : :
24 B(MsM)=B(MsM)+PM(M+1) /FLOAT(4%M+]1) /AMBDA(T)
CALL MATINVI(NXM1s1,DETERM) $ DAMBDA=0.0
IF(MODE+EQe2)DAMBDA=2,/PI/AMBDA(1)#%2 $ DO 25 N=1sNXM1
25 DAMBDA=DAMBDA+QO(N+1)*D(N»1) $ DAMBDA=F/DAMBDA
AMBDA(1)=AMBDA({1)+DAMBDA ’
26 IF(ABS(DAMBDA) «GTeleE~-6*ABS{AMBDA(I))) GO TO 20 % GO TO 15
28 PRINT 132, (AMBDA(1)s1=1»IMAX) .
PRINT 132+((BT{(NsI)sI=1sIMAX)sN=1sNXM1}
PUNCH 132, (AMBDA(I)sI=1sIMAX)
PUNCH 132s((BT(NsI)sI=1sIMAX)sN= 1oNXM1)
GO TO 12 $ END
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APPENDIX F. Numerical Solution of Laplace's Equation
" for the Edge Region of a Disk Electrode for Large
Exchange-Current Densities

We reproduce below a listing of the computer program, which was
adaptéd from a programAwtitten by Néwman6l and used'in this work to
solve the system of equations 4-15 to 4-18 by finite difference methods

33,63 The solution is first obtained

with successive overrelaxationf
for a coarse mesh size H, which is then reduced to finer mesh sizes by
successive doubling.33 The number of mesh points is kept constant,
thereby shrinking the n and & axes at each doubling, so that a higher
accuracy can be attained for the potential closer'to'the'eAge. |

The program has to be rerun for each doubling;-consequtive runs
may also be necessary to veach a desired level of éccuracy. A disk
| file (TAPE 5) is therefore needed to store the caiculated values of ¢
each time execution is terminated, to be read again as the initial
values for the next run. TERR is the desired error limit and MM the
maximum number of iterations allowed for each run.

At the end of a run, 60 values are printed along with the total
number of iterations (JCOUNT) for that run and the number of mesh
points (KERR) where the desired accuracy has not been reached.
Execution stops when the desired accuracy 1s attained (KERR=0).

Numerical ihtegration i8 also performed to calculate the value of A

(SADD in program notation) according to equation 4-20.
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PROGRAM EDGE(INPUT.OUTPUToTAPE 5)
DIMENSION ‘TR( 81, 81):X(101)oY(101)
COMMON TR XsY

FORMAT (EB8.4414)

FORMAT (1HO0+2165F10e5)

FORMAT (1H1+E1042s F1046/(F10e3» F20o7))
FORMAT (E24.8)

FORMAT (F10e352E24.8)

REWIND .5 o ‘ -

DIVIDE H BY 1/2 AT EACH DOUBLING

Nz 81 $ H=0,20 $ READ 101s TERRsMM $ DO l J=1oN 8 X(J)=H¥®(J=~1)
Y(J)=X(J) $ DO 1 I=1sN

TR{TIsJ)=Y(J) +1,0/H/FLOAT(N-1) $ OMEG=1.9 $ NN=N-1

REMOVE NEXT CARD FOR FIRST RUN :
READ (5) ((TR(I4J)sI=1sN)sJ=1sN) $ REWIND 5

REPUNCH NEXT CARD WITH LAST VALUE OF SADD WHEN DOUBLING

- SAD=0.0

13

14

SON

-0 v®d ~ - WV ]

bt et

16

17

REMOVE NEXT SEVEN CARDS EXCEPT WHEN DOUBL ING

DO 15 IN=1941 $ 1=42-IN $ -1S=2%] -1 % TR(ISs81)=TR(1+41)
DO 13 JN=1940 $ J=241-JN $ JS=2%J-1 $ TR(ISsJS)=TR(I,J)
TROISsJS+1)=0e5#(TRIISsJS)+TR(ISsJS+2))

IF(INeEQes1) GO TO 15

DO 14 J=1481 8 TR(IS+1+J)1=0e5%(TRIIS»JI+TR(IS+24J))
CONTINUE

CONTINUE

DO 9 MzlsMM $ JCOUNT=M $ KERR=0 $ DO 8 J=1+NNS DO 8 [=1sNN
IF (1eEQel) GO TO 2 $ IF (IeEQeN) GO TO 3
AR=TR(I~19J)4+TR(I+19J) & GO TO 4

AR=22,0#TR(2+sJ) $ GO TO &

ARu22,0%#TR(N=1+J)

IF (JeEQeN) GO TO 5 $ IF (JeEQel) GO TO 6
TNUR=AR+TR( 19 J+1)+TR{IsJ=1)1-4.0%TR{IsJ}) $ GO TO 7
TNUR=AR+2,0%TR(13J-1)+2.0%H-4,0%TR(IsJ) $ GO TO 7
AR=AR+2.0%#TR([+2)

TNUR=4 qO%(AR/ (4,042 0%HEX(T))~TR(I4J))
TNUR=OMEG#TNUR /4,0

IF(ABS(TNUR) 4GTTERR*#ABS(TR(I+J)))KERR= KERR+1
TRII+J)=TR(TsJ)+TNUR

IF(KERR.EQs0) GO TO 10

SUM=z~0,5%#TR(191) $ DO 11 I=2,Ns2
SUMz=SUM+TRII-1911+2+0%TR(141)
SUM=H/1e5%#({SUM+0.5%TR{8151))-1.0%ALOGIX(N))
SUM=SUM#2,0/3.141592654 + SAD
SADD=-0,5%#(TR(41+1)-1.0/X(41)) $ DO 16 I= 42sNs2
SADD=SADD+TR(I-191)=1e0/X{1-1)+2.0%TR(141)-240/X(1)
SADD=H/1¢5%(SADD+0,5%TR(B81+1)-0e5/X(811))
SADD=SADD#2,0/3,1641592654 + SAD $ PRINT 104s SADD
DO 17 I=419N $ DIFF=TR{Is1)-1.0/X(1)

PRINT 105s X{1)sDIFF :

PRINT 103, TERRsSUMs (X(I)sTR(I»l)s I=1sN)"
WRITE(S5) ((TR(IsJ)sI=1sN)sJ=14N) $ REWIND 5

PRINT 102y JCOUNTSKERR)OMEG $ STOP $ END -
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APPENDIX G. Integration of the Potential at the Surface
‘at Short Times or High Exchange-Current Densities

The calculation of the current or the potential at short times
(chapter 9) or the effective cell resistance in the presence of high

exchange~current densities (section 4.2) requires evaluation of the

NARAY
[-(ap)‘m’
0

(o]

integral,

where ¢§ is to be replaced by the electrode ﬁotential V in problems
involving high exchange-current‘densities or a potentiostatic process.
Since the solutions obtained for ¢o in these cases. are singular-
perturbation expansions valid at two separate regions near the disk
electrode, thg integration 1is not straightforward.61

The potential distribution in the edge regiqn is obtained by
solving Laplace's equation for the boundary conditions prescribed for
each problem as discussed in detail in section 4.2, éppendix F,
chapter 9, and appendix H. The potential in the outer region is given
by equation 4-11 or H-3. The first approximation for the integrand

in the outer region is obtained by substituting the outer solution

into the boundary condition at the surface (equation 3-35):
W - 8)/® = 2x/m , (G-1)

where Y 18 the stretching variable which is equal to © or 1/J depending

on the type of problem at hand.
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Let us define,

" yv-o o |
s(n) = dn . (G-2)
o[ ()

0 [o]

For the outer region, this becomes

o | 1 V-0 |
s(n) = s(1) - —21 dn
, ; ©n ° _

= S(1). + (26/m) Inn .,

©-3)

For the inner region, equation 2 can be expanded in the following manner:

L ooy b /v-0 Av-o L\
S(n)-/?f( °)dn=ﬁ f( °) an + ( °-—-—)dn
oP oP L ep ™
) 0 (o] 0 (o] (o]
2Y "
+W—f
b

3=

dn} = (2/m Ylmn - (Y¥/7) lnY G-4)

b T -
+ (2Y/m) ,f $,dn + f (¥ - 1/n) dn - 1ob| .
0 b

The matching condition,

1im S(n) = lim S(7) , - (6-5)
™0

N
gives the result

S(1) = - (1/7) YlnY + AY , | (G-6)



b

[

where
2 { (b5 . (7 -
Aa=% %J' aodnq.j (3, - 1/n) dn - 1nb ¢ . (G-7)
. L b

The integral has been broken up this way because fhe first integral in
equation 7 is unbounded as b** and the second integral as b-0. The
value of b should be picked so that ad deviates appreciably from the
primary distribution 1/n in the range 0<N<b. The second integral then
corrects for the small difference between 50 and 1/N at larger values

of n.
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APPENDIX H. Integral Representation for. the Potential
at Short Times

H.1. Matﬁematical Formulation

The integral equation for the potential in the solution near a
disk electrode is given by equation 2-21. After subétituting
equation 3-35 for the current density and coﬁverting into rotational

elliptic coordinates, equaﬁion 2-21 can be expressed as

-o
]
;;_ % f K(m) ae( )ndn , (k-1
o 0 + V1 - ni Qo '
where the assumption N <<1 has been introduced for the edge region.

The assumption cannot be applied to the dummy variable N, because the

integration has to be carried over the entire surface of the disk.

Define,

[ 2 V_Q
- F(m,n ) = T

°) ngdn, .  (H-2)

a (
~The potential distribution in the outer region is approximated by

(see equation 4-11)

¢/¢§ =1-26/T . (8-3)

Substitution into equation 3-35 and integration gives

v-¢
o

oP

o

28 B}
A (-



e

Hence, for the outer region, equation 2 can be written as

~ ' g 1 .
F(,n ) = F(,1) - —;’ — K@ g,
B A #V1 -2
' S ) (H-5)
I A () IR
%*
0 1 w1 - n2

The first integral in the brackets corresponds to the primary
distribution. Proof:

Let us write equation 2-21 for the primary distribution by

‘replacing ¢ with ® and 1 with the primary current density (see

equation 2-18):

r
- o
P = 1/tkr = == L 0.5
o o K an >
o \Il - (r*/ro)

K(m) r*dr*

r+r*

(H-6)

¥

1
- 4¢£[ K(m) , an
x
R V1o n? +V1 - 2

Thus, independent of the value of n, we have

4 1 K(m) (H-7)
- _dn* =1 .
m 0 \,1-n2'+\,1-ni ) |
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] . .
For small values of 0 , the second integral in equation 5 can be

approximated by

]

N __ Km n 4 '
f : ln = dn n (ln — + 1). (H-8)
1+Vl-n 0 o "

0
Equation 5 for the outer region therefore reduces to

_F(nn)=F(n1)-1+5ﬂ—<1n4-,+1). (H-9)

Tl’2 - n

In the inner region, equation 2 can be expressed in the form

n _ o _ 09
f K@) |3 (0, - 1, —8%
n
0 L =

F(n,n ) = L (8-10)

IS

Both N and N, are small in the inner region. Therefore,

lin K@) = lim 7 1n 752 - 16/9_2 : (#-11)
nn0  n,n,50 O]

Equation 10 can now be broken up into several parts:

F@E,A ) = 2_2/3_ ’f 1n(16/6) G(n,) dn, -f In
m
4 0 0 '

® - - n _
- f 1n ;6/9 - G(n,) dn, +f 1n 16/6 an l
- - -2 =2 *
- J, [ng - n°| A [ny - n°l

n

-2 =2 - -
ng =N ' G(n,) dn,

(H-12)
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where
e . _ T2 38
G(n*) = -§-¢o(n*) - -1 . (H-13)
an |_ _ |
n=n

In the original unstret;hed coordinate system, the first integral can

be expressed as

. | L
‘ = = 6 m ar
1n(16/e)f_c(n)dn =-1i(1—61—lf L o+ 1) dn
A * * /e— b 2¢2 §E,€=o

_1nQe/0) [_1 fro privar - 1) o 16/ ( 1\
/b 4kr OP - /B 4kr &P
‘ o 0 0 (ol o]

Under galvanbstatic control, I = 4Kro¢£, and the integral is identically

zero. For potentiostatic control, the current is given by equation 9-9,

and the integral is therefore of order Y8 and still small compared

. .
to the second integral, which is of order unity. For large n , the

last integral in equation 12 can be approximated by

1

n - - 1! B ) ‘__l
f n—28L i ~n o F WA e L @)
0 ,n* -n ,

| _- 1
Equation 12 for the inner region thus becomes at large N

® ®
R -2 - - - 16/9 - -
F(n,n) = - &'/_2—. ) f 1In ni ",nz’ G(n,) dn, + f lp -I‘_—g-/_—zT G(n,) dn,
L ne-n
0

(H-16) -
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Finally, the matching condition,

o~ ] - - | :
lim F(n,n ) = lim F(A,,N) (H-17)
n'~0 =! -

n -»o

has to be satisfied. Substitution of equations 16 and 9 gives, after

cancelling the matching terms,

P = ifw 1n|R2 - ﬁz'l G(n,) dn s (H-18)
o L * * ok
 0 , .

which 1s identical to equation 9-5.
H.2. Numerical Analysis

The evaluation of equation 18 for numerical solution may become
huite complicated algebraically; however, we will oufline here the
present method for the interested reader and try to keep the analysis
as rigorous as possible. The bars over the stretched variables and
the subscript o, which implies that a quantity is evaluated at the
electrode surface, will henceforth be eliminated for simplicity in
notation.

Equation 18 can be broken up as follows:

a(M) + b(n) + d(x) = "(”s¢" +1/n) for mn_, (H-19a)

=‘ﬂ(n¢' + 1/n) for n>ns , (H-19b)

where

) 2 n
n n n
- s |.2_ 2] (M . D% 3¢ _
a(n) nsf |n2 - 2| <2¢ > an*>dn* ., (H-20)
! |
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n
s n :
b(n) = [ 1n|ni - n2| <_2n_*_ > dn, , (H-21)
0 s -
4
1/n '
1 s 1 1 1 9P
d(x) = —] In [—=— - = = dx, (H-22)
2 f;: 7x xila‘ oz, * '
0 .
¢ = (6 - 1/m/m (H-23)
¢ = (- 1/n)/n, (B-24)
x=1/n* . o (H-25)

This way, equation 18 can be integrated inside a finite doma;n. The
variable ¢" is defined for convenience in the numerical solution of the
integral equation because at the breaking point ngs ¢' = ¢".

Let jmax denote the mesh point at n = ns and.jjmax at N = ® or

x = 0, We divide the n axis into jmax - 1 equally-spaced increments

of An and the x axis into jjméx - jmax equally-spaced increments of

Ax, namely,
ns
ATI = j -1 s (H_26)
max .
ns(ijax - Jmax)
In finite difference form, the first integral in equation 19 can be
written as
jmax o ' 111 \ "
- (3-1)4n 22| 2 by 5% -1 |
a() =n_ E Ia|n-n"|{— 5 _ (H-28)

3=2 (§-2)4n

A 2 " "
L My by j-¢* 1_1] an
2 An. *
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We define the functions,

£(n,,N) = nsf

0

2 .
: Ny L I 2 2, e My -
h(ng,n) =1 n|ng - 1 - 5an/ M o (6-30)
70

N

oS

1 |n2 - n2| Te | De dn (H-29)
1 % 7 28n *

N

which can be integrated analytically to give

n 2
)1 (.2 2 * 2 2 n 2
f(n*;n)/ns = {g (n* -n ) - m; lnl'ﬂ* -n , +'—§ Inn |
2 3 9 (H-31)
. n3 . n,-n 3:.+ n, . n,n
6An “"In_¥ 8 9An © 3An .
3
- n 2
oo Y12 2) * 2 _ 2|, n° 2
h(n,,‘.n)/ns is(n* n“)+ 6&]: 1n|n* n , +— Inn
(H-32)
2 3 2
. n3 ) N, =N ny ny n,n
6fn " |n,+n| "8 T 9An T 3&n
Note the limiting cases,
| - n,n? o
lim £(n,,N) = - 1im h(n,,Nn) = ————-_(1n2n - —) _
NN n,n 3An 3 (H-33)
2
+-H§ (1nn? - 1)

In terms of these functions f and h, equation 28 becomes, after some

rearrangement,
j_o-1
max _

a(n) = ¢, ;[£@n,n) - £(0,M] + E th[G-1)4an,n] - h[(3-2)4n,n]  (H-34)
=2 o

+ £(38n,0) - £1Q@-Dan,N} + 0, o [ - h(ns;An,n)] )

max

o
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The second integral in equation 19 can also be evaluated analytically:

2

b(n) = - 7‘;1]-; (3n§ + nz) 1n'n§ - nzl + Z—ns- 1‘nn2. ‘ |
- (H-35)
ns - N 7
+ 1 1n noFn + 3 ns ’
S
and
‘ : ns 2
lim b(m) = -2n_ lan_ +— (1n ns + 7) : (H-36)

nn
8

The third'integral can be written in finite difference form as follows:

jjmax (ijax—j+l)Ax

d(x)-% z | -2 §/4
' . VX, Vx| X,
.j-jmax+1 (jjmax—J)Axv (H-37)
by . = by o
X *,1 i *41-1 dx* .
This can be transforméd into the forﬁ,
v 4
d(x) = ¢*,j ge[(jjmax - jmax - 1) Ax,x] - e(l/ns,x)f (H-38)
max - .
33 .71
+ E g {e[mm -3+ 1) Ax,x] - 2e[(31,, - ) Ax,x]
j=jmax+1 ’ '
+ e[(jjmax ".j = 1) Ax’x]f + ¢*’jjmax -e(Ax,x) ’
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where

x .
*-
-1 1 1 1
e(x,,x) = 2hx f In|— - — 377 dx,
b /;: Yx | x (Hf39)
: x1/4 _ x1/4
21 .1/4 1 1 1/4 *
= == lnj— - —| - x In .
e _ ’ 1/4 1/4
X, v Xy + X
Note also that as x > 0,
e(x,,x) = 2= (xi/4 P B ) I (H-40)
X
and as x, > Xx,
2 1/4 .. 4
e(x,x) = 7—x In — . (H-41)
’ Ax /; |

Equation 19 can now be represented by the generalized expression,
i3 -1 | |
i B, L + 6, X, =D -
(By x J,kAk] 3 k (B-42)
j=1 . _ »
(k=1,2 s ¢ ey jjmax-l) >
" '
. = < = > )
where Xj ?*,j for j Jmax’ Xj ¢*,j for j jmax’ 6j,k is the
Kronecker delta, and the coefficients Bj k* Ak’ and D, are given as
) . 1]

. k
follows:

Bl’k = f(An’nk) - f(oynk) » ) (H"43)
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199 pax | | (H-44)

+ £@3bn,n) - £1G-D Ml o,

J max ~max
max

B, =hOMon) +elGd 3 -1 dx,x ]

‘ (H-45)
- |
- e(mlx ) - h(n-an,ny)

By = elip, ~i+D) Mxx ] - 2e[(,,,~1) dx,x]

Ipax I3
: (H-46)
+e[(3j ,-3-D &x,x 1,
A, =-m_, (H-47)
ks
max
A =-m , (H-48)
D, =-bn) +m/n_, (H-49)
k<j
max
Dk = - b(nk) + ‘lT/T]k . (H-50)
Ipax ¥ Hpax

Equation 42 represents a set of linear equations which can be solved

by standard methods for the unknowns Xj' The equation including the

unknown ij " has been dropped from this set because its coefficient
max

is infinite (the function e is undefined at x = 0). However, we know

in advance that ij should become zero as x + 0.

max
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H.3. Computér Program

PROGRAM SHORT calculates the potential 50 at small times on the
surface of a disk electrode, and integrates {{ according to eqdation 4-20.
It calls SUBROUTINE MATINV (see appendix C) to solve equation 42. One

input card is required in order to specify jmax’ ji s ns, and b

max

(see equation 4-20).
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PROGRAM SHORT(INPUT.OUTPUT)
C ° TRANSIENT RESPONSE OF A DISK AT SHORT TIMES
' DIMENSION B(1015101)sD(10151)sE(205101)4F(101,101)9G(101)y
1H(1015101)
COMMON B»sD :
HP=3,141592654 $ BB=1+39 $ READ 1019sJMAX s JIMAXSES
SES=ES*ES $ JIM1=JJIMAX=1 $ IMl=UMAX-1
JPI=JMAX+1 $ JUMUIaJIMAX-JMAX $ DE= ES/JIM1 $ DZ=10/JIMI/ESHRG
DO 18 K=19JJM1 $ ITF(K=JMAX) 19192
1 ETAS=(K=1)#DE $ SETAS=ETAS*ETAS $ IF(KeEQ.1) GO TO 3
e 2S=1.0/SETAS/SETAS 8 RZS=SETAS $ RRZS=1.0/ETAS
IF(KeNE+JMAX) GO TO 3
G(K)3-2+0%ESHALOG(2+0%ES)+ES/4¢ 0% (2,0%ALOG(ES)+7+0) $ GO TO 4
, 2 2S={JIMAX-K)#DZ $ RZS=1e0/SART(2ZS) $ RRZS=ZS*#0,25
e ETAS=SQRT(RZS) 8 SETAS=RZS _ :
3 XL1=ALOG(ABS(SES-SETAS)) $ XL2=ALOG(ABS(( ES-ETAS)/( ES+ETAS)))
G(K)=—0e25/ES*(3s0%#SES+SETAS) #XLI+ETAS*XL2+1e 75#ES
IF(KeNEel) G(K)=G(K)+0e25%SETAS*ALOG(SETAS)/ES
4. DO 7 J=19JIMAX
ETA=(J-1)*DE § SETA=ETA®*ETA $ IF(JeNE.K) GO TO 5
IF(KeNEel) GO TO 41 $ HIJsK)=040 $ F(JsK)=0,0 $ GO TO 7
41 F(JsK)=ETAS®SETAS/340/DE#(ALOG(240%ETAS)~440/3,0)*ES
H{J»K)==F(JsK) $ GO TO 7
5 XL1=ALOG(ABS(SETA-SETAS)) $ XL2=ALOG(ABS((ETA ETAS) /(ETA+ETAS)))
6 HH=(SETA-SETAS)/840%(XL1-140)
F(JsK)=(({SETA®ETA*XL]- SETAS*ETAS#¥XL2)/2+0~SETA®ETA/340-ETA*SETAS)/
13.0/DE $ H(JyK)=(HH=F(JsK) ) *ES 8 F(JsK)=(HH+F(JyK) ) *ES
7 CONTINUE $ DO 13 J=JMAXsJUMAX $ Z=(JJIMAX-J)*DZ
IF(JeNFeJIMAX) GO TO 8 8 E(14K)1=0,0 $ GO TO 13
8 R2=1.0/SQRT(Z) $ RRZ=Z#%0.25 $ IF(JeNEeK) GO TO 10
E(JIMAX-J+19K)=~2.0/D2Z#RRZS*ALOG(4,0*R2ZS) $ GO TO 13
10 IF(KeNEe1) GO TO 11
E(JIMAX=J+19K)==2.0/DZ#RRZ*(ALOG(RZ)+2+0) $ GO TO 13
11 XL1=ALOG(ABS(RZ-RZS)) $ XL2=ALOG(ABS((RRZ-RRZS)/(RRZ+RRZS)}))
E(JIMAX=-J+19K)==2.0/DZ*#(RRZ*XL1-RRZS#*XL2)
13 CONTINUE $ B(Ks1)=F(2sK)=F(1sK) $ DO 14 J=2yJIM1
14 B(KsJ)zH(JsK)~H(J=1 sK)+F(J+1eK)=F (JsK)
B(KsJMAX) =H(IJMAX 9K ) =H{ JMAX=1,K)+E(JIMIsK)-E(JIMI+1sK)
DO 15 J=JP1sJIM1
15 B(KyJ)= E(JIMAX-J+2+K) =2, O%E (JIMAX=J+1sK) +E (JIMAX=J oK)
B(KsJIMAX)= E(29K) $ B(JIMAX9sK)=0s0 $ IFIK-JMAX) 16316517
16 B(KsK)=B(KsK)-HP*ES $ D(Ks1l)=-G(K)+HP/ES $ GO TO 18
17 B(KsK)=B(KsK)~HP*ETAS $ D(Ks1)=-G(K)+HP/ETAS
18 CONTINUE $ D(JJMAX+1)=0¢0 $ CALL MATINV(JIM1s1+DETERM)
PRINT 102 $ DO 19 J=1sJMAX $ E(1+J)=(J-1)%DE
19 B(Js1)=ES%D(Js1)+1,0/ES $ DO 20 J=JIMAXs»JIM]
F(leJ)=(JIMAX=J)*DZ $ E(19J)=140/F(1sJ)%%0,25
20 B(JUs1)=E(19J)%D(Js1)+1e0/E(1J)
"PRINT 1035 (E(15J)sB(Js1)sJ=19JIM1) $ SUM=0,0
DO 21 I=35JMAXs2 $ SUM=SUM+D(1-2+1)+4.0%#D(I-191)+D(1»1)
21 IF(E(1+1)4GEs BB) GO TO 22
22 PRINT 104+E(1s1) $ SUMM=(1e0/ES+SUM®DE/3.0%ES—ALOG(E(1s1)))#2.0/HP
J3l42 § SUM=0,0 $ DO 23 I=JsJMAX»2
- 23 SUM=SUM+B(I1=251)1~1e0/E(1+1-2)+4e0%(B(I-151)~1e0/E(1s1=1))+B(I,41}-1
’ 160/E(1y1) $ SUM=SUMM+SUM#DE/3,0%2+0/HP $ PRINT 105sSUMs SUMM
PRINT 102 $ DO 24 I=JMAX,JJIM]
G(IV=D(1s1)/F(1s1) $ F{1sI)=SQRT(F(1s1))
24 PRINT 106sF(191)9G(I) $ SUM=0e0 $ DO 25 I1xJP1l,yJJMl
25 SUM=SUM+(G(II+G(I-1))*(F(1sI~-1)-F(1s1))/24,0/HP
PRINT 106sSUM $ STOP
101 FORMAT (214+E844)
102 FORMAT (1H1s5X s #ETA% 15X s %PHI*)
103 FORMAT(F10e35F20.7)

(2%
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104 FORMAT(//6Xs#Bz#,F8s3)
105 FORMAT (6Xs*Ax#3E13,696X9E1346)
106 FORMAT(2E15.6)

END :



%

LK

o,n

- _
B'P > Em

B(9)

NOMENCLATURE
The numbers in parehtheses refer to equation numbers.
10.51023
see equation 4-7
' see:eqﬁatioh s
constant defined in equation 4-20
‘coefficient in series for concentration (B-8)
constant defined in equation G-7
dimensionless velocity derivative on the surface of a
rotating sphere (2-43)
coefficient in series for potential (2-13)
coefficient in series for COnéentrdtion (6-29)
coefficient in series for Ui
coefficient in series for ]
coefficient in series for Ti
concentration of salt, mole/cm3
concentration of gpecies 1, mole/cm3
double-layer capacity, f/cm2
apparent double-layer capacity in the equivalent circuit
(figure 8-3), f/cm2
coefficient in the galﬁanoétafic sefies for ¢t (7—4)
coefficient in the pbténtiostatic series for ¢t (8-1)
32/31% (7-26) |
diffusion coefficient of salt, cmz/sec (2-50)

diffusion coefficient of species 1, cm2/sec



F,G,H

F_(2),6_(2),
B (2)
F_(2),6, ()
-4

c(n,)

[~
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symbol for the electron

dimensionless overpotential (A-7)

dimensionless surface overpotential (A-6)
dimensionless concentration'ovetéotential (A-6)
Faraday's.constant, 96,487 C/equiv
function’defiﬁed by equation Hf2

dimensionless concentration on a sphere at high rotation
speeds (5-3) - |
dimensionless velocity componenté for the rotating
disk (2-32) |

functions in series for the velocity components of

the rotating sphere (2-40)

functions in short-time series for concentration (6-~10,11)

gravitational acceleration, cm/sec2
function defined by equation H-13

current density, A/l:m2

capacitive current density, A/cm2
faradaic current density, A/cm2

normal component of the current density, A/cm2

exchange-current density, A/cm2

‘total current, A

initial current, A
final current, A

limiting current, A



z .

N .LZ

.

2n

dimensionless exchange-current density (4-21)

dimensionless exchange-current density for linear

’kihetiés‘(442)

undetermined consfant in appendix B -

an ) e/a??

, constant defined in equation 6-30
complete ellipti;jihtegral of the first kind

see equation B-19

see equation 2-22

symbol for the chemical formula of species i
Legendre function of order 2n (éeé reference 7)
number of electrons transferred by the electrode
reaction‘(3—1) |
dimensionless limiting current density (4-22, 5-1)
flux of species i, mole/cmz-éec

pressure, dyne/cm2

dimensionless dynamicvpreésure (2-34)

dimensionless capacity (B-17)

‘Legendre polynoﬁial of order 2n

dynamic'prevssure,.dyvne‘/cm‘2
charge demnsity on fhe ﬁetal side of the double layer,
¢/ cm? |
dimensidnieés caﬁacity (6;35)
radial distance,.ém | -

radius of disk or sphere, cm



Re

s(m)

Sc

<
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.univeréal gas constant, 8.3143 J/mole—deg

resistance, ohm

hdmogeneous rate of production of speciles 1, mole/cm3-sec

apparent direct-current resistance of equivalent circuit

(figure 8-3), ohm

apparent alternating—current resisténce of equi&alent
circuit (figure 8-3), ohm

normal distance of surface from axis of cymmetry, cm
riQ/V, rotational Reynolds number |

.stoichiometric coefficient of species i1 in electrode
reaction

function defined by equation G-2

Schmidt number |

time, sec

total period of charging, sec

absolute temperature, °K

mobility of species i, cmz-mole/J-sec

eigenfunction in the galvanostatic series for Qt

complex, aimensionless potential in the solution (8-13)

velocity, cm/sec

electrode ﬁotential relative to infinity, V

amplitude of applied alternating potential, V
potential with respect to a refefence electrode of the
same kind, V

potential with respect to a reference electrode of a

given kind, V



Greek symbols:
aa,ac

a,B
B
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scaling factor for the potential, V

distance along electrode from'itsiupstream end, cm
variable defined in equation 9-7

normal distance from the electrode surface, cm
stretching variable (G-1)

axial distance, cm

t//26, similarity variable in short-time seéries fof
concentration |

charge number of species i

stretched radial coordinate (2-41)

—z+z_/(z+-é_) for a single salt,-n/sR with supporting

- electrolyte

impedance, ohm
eigenfunction in series for concentration (6-26)

eigenfunction in series for concentration (B-8)

transfer coefficients

aa/Z, dc/Z, transfer coefficients

velocity derivative at the electrode surface, secnl
Nernst &iffusion-layer thickness, cm

constant defined in equation A-13

Kronecker delta

rotational elliptic coordinate (2-14)

total overpotential, V

concentration overpotential, V
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surface overpotential, V
parabolic coordinate (4-14 or 9-2)
exponent in composition dependence of exchange-current

density

surface concentration of species 1, mole/cm2
-1 =1

conductivity, ohm ~-cm

eigenvalue characteristic of Ti

eigenvalue characteristic of Zn

eigenvalue characteristic of Ui
eigenvaiue characteristic of diffusion

viscosity, g/cm-sec |

electrochemical potential of species i, J/mole
kinematic &iscosity, cm2/sec

number of species ivformed due tqﬂdissociation of one
mole of e;ectrolyte

frequency of applied potential, radian/sec

wCro/K, dimensionless frequency

angular rotation speed, radian/sec

polar angle in spherical coordinates

function defined by equation A-5

stretched dimensionless potential in the solution.
(4-13 or 9-1)

potential in the solution, V

ohmic drop in the solution, V

rotational elliptic céordinate (2-14)

similarity variable for Lighthill transformation (2-55)



o
-
Seugun
Ve
R
c‘j
-~
W
",
-
g!'b ad
P
Lo,

| E parabolic coordinate (4—14'or‘9—12)
P density, g/cm3
T ‘ time constant for decay
6 angle fran-pble of sphere
6 dimensionless time (6—2)
6 | dimengionless time for charging (7—6)
9' dimensionless time for decay (7-16)
ech |  dimensionless total period of charging
0 .. dimensionless concentration
@c dimensionless concentration for concentration step (6-14)
Gf dimensionless concentration for flux step (6-15)
Ui constant in series for V& (normalized to unity)
Ti eigenfunction in the potentiostatic series for ¢t
z dimensionless axial coordinate (2-33)
4 dimensionless axial coordinate (6-3)

subscripts:

ave average

1lim limiting current

R reactant

o at the electrode surface
® far from the surface

+ anion

- cation



superscripts:
o

P

88
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pure state
corresponds to primary distribution
steady-state part

transient part



REFERENCES

1. John Newman, '"Engineering Design of Electrochemical Systems,"

Industrial and Engineering Chemistry, 60(4), 12-27 (April, 1968).
2. N. Ibl, "Probleme des Stofftransportes in der angewandten

Electrochemie, " Chemie-Ingenieur-Technik, 35, 353-361 (1963).

3. B. Levich, "The Theory of  Concentration Polarization," Acta

Physicochimica U.R.S.S., 17, 257-307 (1942).

4., M. Eisenberg, C. W. Tobilas, and C. R. Wilke, "Ionic Mass
Transfer and Concentration Polarization at Rotating Electrodes,"

Journal of the Electrochemical Society, 101, 306-319 (1954).

5. A. C. Riddiford, "The Rotating Disk System," Advances in

Electrochemistry and Electrochemical Engineering, 4, 47-116 (1966).

6. John Newman, "The Bffect of Migration in Laminar Diffusion

Layers," International Journal of Heat and Mass Transfer, 10, 983-997

(1967).
7. John Newman, "Current Distribution en a Rotating Disk below

the Limiting Current," Journal of the Electrochemical Society, 113,

.1235-1241 (1966).
8. Der-Tau Chin, "Convective Diffusion on a Rotating Sphere

' Electrode," ibid., 118, 1434-1438 (19%1).

9. Veniamin G. Levich, Physic.ochemical Hydrodynamics (Englewood
Cliffs:. Prentice-Hall, Iné.,'1962). v

10. John Newman, "Transport Processes. in Electrolytic Solutions,"

Advances in Electrochemistry and Electrochemical Engineerigg, 3, 87—135

(1967).



~218~

11. Johmn S. Newman, Electrochemical Systems (Englewqod Cliffs:
Prentice-Hall, Inc., 1973).
12. John Newman, "The Fundamental Principles of Current Distribution

and Mass Transport in Electrochemical Cells," Electroanalytical Chemistry,

6, 187-352 (1973).
13. John Newman, Douglas Bennion, and Charles W. Tobias, "Mass

- Transfer in Concentrated Binary Electrolytes," Berichte der Bunsengesellschaft

fur physicalische Chemie, 69, 608-612 (1965). For corrections see
ibid. 70, 493 (1966).
14. John Newman, "Resistance for Flow of Current to a Disk, "Journal

of the Electrochemical Society, 113, 501-502 (1966).

15. Leonard Nanis and Wallace Kesselman, "Engineering Applications
of Current and Potential Distributions in Disk Electrode Systems,' ibid,
118, 452-461 (1971).

16. Milton Abramawitz and Irene A. Stegun, eds., Handbook of

Mathematical Functions (Washington: National Bureau of Standards, 1964).

17. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids

(Oxford: Clarendon Press, 1959).
18, Th. v. Karman, "Uber laminare und turbulente Reibung,"

Zeitschrift fur angewandte Mathematik und Mechanik, 1, 233-252 (1921).

19. L. Howarth, "Note on the Boundary Layer on a Rotating Sphere,"

Philosophical Magazine (7th Ser.), 42, 1308-1315 (1951).
20. R. Byron Bird, Warren E. Stewart, and Edwin N. Lightfoot,

Transport Phenomena (New York: John Wiley & Sons, Inc., 1960).

.



[ L]

-219-

~21. W. G. Cochran, "The flow due to'a rotating disc," Proceedings

of the Cambridge Philosophical Society, 30, 365-375 (1934).

22. M. H. Rogers and G. N. Lance, "The rotationally symmetric
flow of a viscous fluid in the préSence of an infinite rotating disk,"

Journal obeluid Mechanics, 7, 617-631 (1960).

23, W. H. H. Banks, '"The Boundary Layer on a Rotating Sphere,"

The Quarterly Journal of Mechanics and Applied Mathematics, 18, 443-454
(1965). |
24. R. Manohar, "The Boundary Layer on a Rotating Sphere,"

Zeitschrift fur angewandte Matematik und Physik, 18, 320-330 (1967).

25. John Newman, 'Mass Transfer to a Rotating Sphere at High

Schmidt Numbers," Joufﬁal of the Electrochemical Society, 119, 69-71 (1972).

26. F. P. Bowden and R. G. Lord, '"The aerodynamic resistance

to a sphere rotating at high speed," Prbceediggs of the Royal Society

(London), A271, 143-153 (1963).

~27. K. Stewartson, "On rotating laminar boundary layers," in

Boundary Layer Research, IUTAM Symposium, 59-71 (1957).
28. ‘William H. Smyrl and John Newman, '"Ring-Disk and Sectioned

Disk Electrodes," Journal of the Electrochemical Society, 119, 212-219

(1972).

29. Hermann Schlichting,_BoUndary—Layer Theory (New York: McGraw-

Hill Book Company, '1968), p. 223.
30. M. J. Lighthill, "Contributions to the theory of heat transfer

through a laminar boundary layer," Proceedings of the Royal Society

(London), A202, 359-373 (1950).




-220~

31. Andreas Acrivos, "Solution of the Laminar Boundary Layer

‘Energy Equatidn at High Prandtl Numbers," The Physics of Fluids, 3,
657-658 (1960). |
32. Kaoru Kojima, "Engineering Ahalysis of Electrolytic Cells:

Electric Resistance between Electrodes," Research Reports of the

Faculty of Engineering, Niigata University, no. 13 (1964).

-33. R. N. Fleek, D. N. Hanson, and C. W. Tobias, "Numerical
Evaluation of Current Distribution in Electfochemical'Systems" (UCRL-11612),
September, 1964. |

34, John Newman, "Schmidt Number Correction for the Rotating Disk,"

Journal of Physical Chemistry, 70, 1327-1328 (1966).

35. D. P. Gregory and A. C. Riddiford, "Transport to the Surface

of a Rotating Disc," Journal of the Chemical Society, 3756-3764 (1956).

36. Der~Tau Chia, "Rotating Spherical Electrode: A Perturbation

Theory for Schmidt Number Corrections," Journal of the Electrochemical

Society, 119, 1049-1052 (1972).

37. E. M. Sparrow and J. L. Gregg, "Heat Transfer from a Rotating

Disk to Fluids of Any Prandtl Number," Journal of Heat Transfer, 81C,
249-251 (1959).
38. J. Newman and L. Hsueh, "The Effect of Variable Transport

Properties on Mass Transfer to a Rotating Disk," Electrochimica Acta, .

12, 417-427 (1967).
39, L. Hsueh and J. Newman, "Mass Transfer and Polarization at a

Rotating Disk Electrode," ibid,, 12, 429-438 (1967).




40. William H. Smyrl and John Newman, "Limiting Current on a

Rotating Disk with Radial Diffusion," Journal of the Electrochemical

Society, 118, 1079-1081 (1971).

41. David C. Grahame, "The Electrical Double Layer and the Theory

of Electrocapillarity," Chemical Reviews, 41, 441-501 (1947).

42, Paul Delahay, '""Electrode Processes without a Priori Separation

of Double-Layer Charging," Journal of Physicai Chemistry,lzg, 2373-2379
(1966) . |

43, Paul Delahay and Gilles G. Susbielles,‘"Double—Layer Impedance
of Electrodes with Charge-Transfer Reaction,"libig,; 70, 3150-3157 (1966).

44, P. Delahay, K. Holub, G. Susbielles, and G. Tessari, '"Double-
Layer Perturbation without Equilibrium between Concentrations and
Potential," ibid., 71, 799-780 (1967).

45. Karel Holub, Gino Tessari, and Paul Delahay, "Electrode‘
impedance without a PrioriVSeparation of Double~Layer Charging and
Faradaic Process," ibid., 71, 2612-2618 (1967).

46. Peter Appel, Dissertation, University of California, Berkeley,
in progress. |

47. Eugene Levart and Daniel Schuhmann, "Migrétion—Diffusion

Qoupling and the Concept of Electrochemical Impedance," Journal of

"Electroanalytical Chemistry and Interfaciél Electréchemistry, 24, 41-52

(1970).
48. W. R. Parrish and John Newman, "Current Distribution on a

Plane Electrode below the Limiting Current," Journal of the Electro-

chemical Society, 116, 169-~172 (1969).




=222~

49, W. R. Parrish and John Newman, "Current Distributions on
Plane Parallel Electrodes in Channel Flow," ibid., 117, 43-48 (1970).

50. John Newman, '"The biffusion Layer on a Rotating Disk Electrode,"
ibid., 114, 239 (1967). |

51. Richard Alkire and Ali Asghar Mirarefi, "The €urrent Distribution
within Tubular Elgctrodes under Laminaf Flow," submitted to Journal of

the Electrochemical Society.

52. Kemal Nigancioglu and John Newman, hC#rrent Distribution on a
Rotating Sphere below the Limiting Current" (LBL—1837); ibid., to be
published.

53. Robert V. Homsy and John Newman, "Current Distribution on a

Plane below a Rotating Disk" (LBL-1887), submitted to Journal of the

Electrochemical Society.

54, YVinay Marathe and John Newman, 'Current Distribution on a
Robating Disk Electrode," ibid., 116, 1704-1707 (1969).

55. Stanley Bruckenstein and Barry Miller, "An Experimental Study
of Nonuniform Current Distribution at Rotating Disk Electrodes," ibid.,
117, 1044-1048 (1970).

56. W. J. Albery and J. Ulstrup, ''The Current Distribution omn av

Rotating Disk Electrode," Electrochimica Acta, 13, 281-284 (1968).

57. W. J. Albery and M. L. Hitchman, "Current Distribution on a

Rotating Disc Electrode," Transactions on the Faraday Society, 67,

2408-2413 (1971).
58. William H. Smyrl and John Newman, ''Detection of Nonuniform

Current Distribution on a Disk Electrode," Journal of the Electrochemical

' 'Society, 119, 208-212 (1972).




,~
N
i,
&
-
%
.
[
L
-
£
T
T
i,
-
o,

~223-

59. Bﬁrry Miller and.Maria I. Bellavance, 'Measurement of Current
and Potential Distribution at Rotating-Disk Electrodes,ﬁ ibid., 120,
42-53 (1973). :

60. Kemal Niqancioilu and John Newman, '"The Transient Response of
a Disk Electrode" (LBL-1109), ibid., to be published.

61, John'Newman, "Frequency Disﬁersion in Capacity Measurements

at a Disk Electrode,' ibid., 117, 198-203 (1970).

62. Kemal Nigancioglu and John Newman, "The Short-Time Response

of a Disk Electrode" (LBL-1896), submitted to Journal of the Electro-

chemical Society.

63. J. A. Klingert, S. Lynn, and C. W. Tobias, "Evaluation of

Current Distribution in Electrode Systems by High-Speed Digital

Cemputers," Electrochimica Acta, 9, 297-311 (1964).
' 64. William H. Tiedemann, John Newman, and Douglas N. Bennion,
"The Error in Measurements of Electrode Kinetics Caused by Nonuniform

Ohmic Potential Drop to a Disk Electrode,'" Journal of the Electrochemical

Society, 120, 256-258 (1973).

65. David C. Grahame, '"Properties of the Electrical Double-

Layer at a Mercury Surface. I. Methods of Measurement and Interpretation

of Results," Journal of the American Chemical Society, 63, 1207-1215

(1941).
66. E. Mattson and J. O'M. Bockris, "Galvanostatic Studies of the
Kinetics of Deposition and Dissolution in Copper + Copper Sulphate

System," Transactions of the Faraday Society, 55, 1586-1601 (1959),




-224~

67. Der-Tau Chin, "A Rotating Ring~Hemispherical Electrode in

Electroanalytical Applications," Journal of the Electrochemical Society,

120, 631-635 (1973).

68. Der-Tau Chin, "An Experimental Study of Mass Transfer on a
Rotating Spherical Electrode," ibid., 118, 1764-1769 (1971).

69. Andreas Acrivos and Paul L. Chambre, "Lamiﬁar Boundary Layer

Flows with Surface Reactions,"” Industrial and Engineering Chemistry, 49,

1025-1029 (1957).
70. T. R. Roseburgh and W. Lash-Miller, "Mathemafical Theory of
the Changes of Concentration at the Electrode, Brought about by Diffusion

and by Chemical Reaction," Journal of Physical Chemistry, 14, 816-884 (1910).

71. B. Levich, "Theory of Concentration Polarization. III," Acta

Physicochimica U.R.S.S., 19(2-3), 133-138 (1944).

72. "Yu. G. Siver, "Unsteady Electrode Processes in Stirred Media.

II. Voltammetry at Constant Current Density,'" Russian Journal of

Physical Chemistry, 34, 273-276 (1960) (Zhurnal Fizicheskoi Khimii, 34,

577-384 (1960)).
73. V. Yuy. Filinovskii and V. A. Kiryanov, ''Contribution to the

Thedry of Nonstationary Convective Diffusion near a Rotating Disc

Electrode," Doklady Physical Chemistry, 156, 650-652 (1964) (Doklady

Akademii Nauk SSSR, 156, 1412-1415 (1964)).

74. J. M. Hale, "Transients in Convective Systems. I. Theory of
Galvanostatic and Galvanostatic with Current Reversal Transients at

a Rotating Disk Electrode," Journal of Electroanalytical Chemistry, 6,

187-~197 (1963).

e



-225-

75. Donald R. Olander, '"Unsteady-State Heat and Mass Transfer in

the Rotating-Disk-Revolving-Fluid System,' International Journal of Heat

and Mass Transfer, 5, 826-836 (1962).

' 76. Jan Robert Selman, Measurement and Interpretation of Limiting

Currents, Ph. D. Thesis (UCRL-20557), University of California, Berkeley,
June, 1971,

77. V. S. Krylov and V. N. Babak, '"Nonsteady-State Diffusion to the

Surface of a Rotating Disc," Soviet Electrochemistry, 7, 626-632 (1971)
(Elektrokhimiya, 7, 649-654 (1971)).
78. Leonard Nanis and Irving Klein, "Transient Mass Transfer at

the Rotating Disk Electrode," Journal of the Electrochemical Society,

119, 1683-1687 (1972).
79. Kemal Niqancidﬁln and John Newman, "Transient Convective
Diffusion to a Disk Electrode" (LBL-1881), submitted to Journal of

Electroanalytical Chemistry énd Interfacial Electrochemistry.

- 80. John Newman, "Numerical Solution of Coupled, Ordinary

Differential Equations," Industrial and Engineering Chemistry Fundamentals,
7, 514-517 (1968).

81. John Newman, "Ohmic Potential Measured by Interrupter Techniques,"

Journal of the Electrochemical Society, 117, 507-508 (1970).

82. John Newman, "Effect of Tonic Migration om Limiting Currents,"

Industrial and Engineerigg;Chemistry Fundamentals, 5, 525-529 (1966).

83. Stanley L. Gordon, John S. Newman, and Charles W. Tobias,
"The Role of Ionic Migration in Electrolytic Mass Transport; Diffusivities

of [Fe(CN) ]3_ and [Fe(CN) ]4- in KOH and NaOH solutions, "Berichte der
6 6

Bunsengesellschaft fur physicalische Chemie, 70, 414-420 (1966).



-226-

84, Limin Hsueh, Diffusion and Migration in Electrochemical Systems,

Ph. D. Thesis (UCRL-18597), Univeréity of California, Berkeley, December,
1968.
85. Limin Hsueh and John Newman, ''The Approach to Limiting Current

in a Stagnant Diffusion Cell,'" Journal of the Electrochemical Society,

117, 1242-1245 (1970).

86. Samuel Glasstone,.hlntermittent Current Electrolysis. Part II.

Overvoltage Study of the Lead Electrode," Journal of the Chemical Society

(London) , 123, 2926-2934 (1923).

87. A. Hickling, "Studies in Electrode Polarisation. Part I.
The Acgurate Measurement of the Potential of a Polarized Electrode,"

Transactions of the Faraday Society, 33, 1540-1546 (1937).

88. Sigmund Schuldinger and Roger E. White, "Studies of Time-
Potential Changes on an Electrode Surface during Current Interruption.

I. Zinc-Steel Couple in Synthetic Sea Water," Journal of the Electro-

chemical Soclety, 97, 433-447 (1950).

89. J. D. E. McIntyre and W. F. Peck, Jr., "An Interrupter
Technique for Measuring the Uncompensated Resistance of Electrode
Reactions under Potentiostatic Control." ibid., 117, 747-751 (1970).

90. Richard Bezman, 'Sampled-Data Approach to the Reduction of
Uncompensated Resistance Effects in Potentiostatic Experiments,"

Analytical Chemistry, 44, 1781-1785 (1972).

91. A. M. Johnson and John Newman, 'Desalting by Means of Porous

Carbon Electrodes,'" Journal of the Electrochemical Society, 118, 510-517

1971).

s -

ar

3



-227-

' 92. Roger Parsons, "The Structure of the Electrical Double Layer

and Its Influence on the Rates of Electrode Reactions,'" Advances in

Electrochemistry and Flectrochemical Engineering, 1, 1-64 (1961).
93. Kemal Ni§ancio§1u and John Newman, 'The Transient Response
of a Disk Electrode with Controlled Potential” (LBL-1173), Journal of

the Electrochemical Society, to be published

94. Henry H. Bauer, Michael S. Spritzer, and Philip J. Elving,
"Double~Layer Capacity at a Pyrolytic Graphite Disk Electrode," Journal

of Electroanalytical Chemistry and Interfacial Electrochemistry, 17,

299-307 (1968).

95, D. H. Angell, T. Dickinson and R. Greef,; "The Potential

Distribution near a Rotating-Disk Electrode,"’Electrochimica‘Acta, 13,
120-123 (1968). |

96. J. E. Harrar and Irving Shain, "Electrode Potential Gradients
and Cell Design in Controlled Potential Electrolyéis Experiments,"

Analytical Chemistry, 38, 1148-1158 (1966).

97. John Newman and J. E. Harrar, 'Potential Distribution in
Axisymmetric Mercury-Pool Electrolysis Cells at the Limiting Current,"

Journal of the Electrochemical Society, 120, 1041-1044 (1973).

98. Nader Vahdat and John Newman, '"Corrosion of an Iron Rotating

Disk" (LBL-896), ibid., to be published.

99. Klaus J. Vetter. Elektrochemische Kinetik (Berlin: Springer-

Verlag, 1961). English translation: Electrochemical Kinetics.

Theoretical and Experimental Aspects (New York: Academic Press, 1967).

100. J. O'M. Bockris, "Electrode Kinetics,' Modern Aspects of

Electrochemistry, 1, 180-276 (1954).




=228~

101. Roger Parsons, '"Faradaic and Nonfaradaic Processes,"

Advances in Electrochemistry and Electrochemical Engineering, 7,

177-219 (1970).

102. Thomas W. Chapman and John Newman, A Compilation of Selected

Thermodynamic and Transport Properties of Binary Electrolytes in

Aqueous Solution (UCRL-17767), Lawrence Berkeley Laboratory, University

of California, Berkeley, May, 1968.
103. A. Frumkin, "The Study of the Double Layer at the Metal-

Solution Interface by Electrokinetic and Electrochemical Methods,"

Transactions of the Faraday Society, 36, 117-127 (1940).



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




-

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
- UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





