
Lawrence Berkeley National Laboratory
LBL Publications

Title
How to write a plugin to export job, power, energy, and system environmental data from 
your Cray® XC™ system

Permalink
https://escholarship.org/uc/item/6m8610fq

Journal
Concurrency and Computation Practice and Experience, 30(1)

ISSN
1532-0626

Authors
Martin, Steven
Whitney, Cary
Rush, David
et al.

Publication Date
2018-01-10

DOI
10.1002/cpe.4299
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6m8610fq
https://escholarship.org/uc/item/6m8610fq#author
https://escholarship.org
http://www.cdlib.org/


Received: 9 June 2017 Accepted: 7 August 2017

DOI: 10.1002/cpe.4299

S P E C I A L I S S U E P A P E R

How to write a plugin to export job, power, energy, and system
environmental data from your Cray® XC™ system

Steven Martin1 Cary Whitney2 David Rush1 Matthew Kappel3

1Cray Inc., Hardware Management Group,

Chippewa Falls, WI, USA
2LBNL/NERSC, Operations Technology Group,

Berkeley, CA, USA
3Cray Inc., Cray Linux Environment OS, Seattle,

WA, USA

Correspondence

Steven Martin, Cray Inc., Hardware

Management Group, Chippewa Falls, WI, USA.

Email: stevem@cray.com

Summary

In this paper, we take a deep dive into writing a plugin to export power, energy, and other sys-

tem environmental data from a Cray® XC™ system. With the release of the System Management

Workstation 8.0 software, Cray has enabled customers to create site-specific plugins to export

all of the data that can flow into the Cray Power Management Database into site-specific infras-

tructure. In this paper, we give practical information on what data are available using the plugin,

and how to write, test, and deploy a plugin. We also share and explain example plugin code, detail

design considerations when architecting a plugin, and look at some practical use cases supported

by exporting telemetry data off a Cray® XC™ system. This paper is targeted at plugin developers,

system administrators, data scientists, and site planners. The plugin feature was developed by

Cray in response to discussions with and requirements from select members of the CUG XTreme

SIG. This paper demonstrates lessons learned developing prototype plugins that export data off

Cray® XC™ systems using Kafka, Redis Pub/Sub, and RabbitMQ. This plugin capability is in-use

internally at Cray, used in production at NERSC, and is under consideration for deployment on

systems at LANL and Sandia.

KEYWORDS

Cray XC40, energy efficiency, power measurement, power monitoring

1 INTRODUCTION

The plugin capability described in this paper is supported on Cray® XC™ systems running the Cray SMW 8.0 UP01 release and newer. The “xtpmd”

daemon runs on the Cray SMW and handles System Environment Data Collection (SEDC)1 and high-speed power telemetry data. The xtpmd sup-

ports plugins with the help of xtpmd_plugd. Shared memory is used to communicate between xtpmd and xtpmd_plugd, and xtpmd_plugd interacts

with the plugin using a defined C API.

The plugin capability is the result of requests from Cray customers, and driven by interactions with the Cray XTreme Systems SIG, starting with

a special “System Monitoring Collaboration” meeting in San Jose, CA, on January 28, 2016. XTreme members at the January meeting requested

access to SEDC and Cray high-speed power and energy data as a stream before it is injected into the Cray PMDB.2 Cray followed up at CUG 2016

with slides3 giving a preview of this feature. A prototype plugin was then developed using Redis Pub/Sub4 transport and coded using Hiredis.5 This

proof of concept was demonstrated as part of the Trinity phase-2 factory trial. That demonstration highlighted the ability to stream data out of the

Cray management plane and into site specific infrastructure. Code for the factory trial plugin was shared with ACES and NERSC. The NERSC team

has now integrated xtpmd plugins as a new source of data for their “Center-wide Data Collect.”6

In previous work,7-9 the Cray advanced power management development team members have outlined Cray® XC™ system power management

capabilities and CAPMC workload manager interfaces. The latest publication on Cray® XC™ system power management is available online.10

This paper is organized as follows: In Section 2, we take a detailed walk through example code shipping with the SMW software release and

cover the basics of a minimal plugin that writes data in csv format to local files. In Section 3, we cover the types of data available via the plugin

infrastructure. Section 4 covers the plugin system configuration file. Section 5 dives into methods and considerations for testing and deploying a

customized site-specific plugin. In Section 6, we look at a set of design considerations for plugin development. Section 7 gives an overview of the

plugin development, design, lessons learned, and a few screen shots from work at NERSC.

Concurrency Computat: Pract Exper. 2018;30:e4299. wileyonlinelibrary.com/journal/cpe Copyright © 2017 John Wiley & Sons, Ltd. 1 of 18
https://doi.org/10.1002/cpe.4299

https://doi.org/10.1002/cpe.4299
http://orcid.org/0000-0002-8489-2012


2 of 18 MARTIN ET AL.

2 PLUGIN CODE BASICS

This section details basic concepts used in the example plugin code supplied on the SMW 8.0 software releases. In brief, the example plugin writes the

data from each of the five sources to CSV formatted output files. The example code can be found in the smw:/opt/cray/hss/default/pm/xtpmd_api

directory. The two files that make up the example are xtpmd_plugin.h and xtpmd_plugin_csv.c. A Makefile is not included in the example directory,

so we share one in Listing 1.

The header file xtpmd_plugin.h defines required data structures, helper functions, and prototypes for functions required when implementing a

plugin. The first two function prototypes are defined as shown in Listing 2.

These helper functions are provided by the plugin infrastructure. The first is intended for reading key=value instance parameters from the

plugin's configuration file. The second is provided to free memory allocated by the first. The default configuration file for xtpmd plugins is

smw:/opt/cray/hss/default/etc/xtpmd_plugins.ini, and it supports the example plugin code. We will discuss instance parameters (or instance vari-

ables) and the configuration file in more detail in Section 4.

Next, the header file defines the pmd_data_opts_t data structure shown in Listing 3, which is used by the plugin initialization functions to regis-

ter callback functions for process streaming telemetry data from any of the four supported data sources. The user_data pointer will be passed to

the functions when they are called, allowing callbacks to manage plugin-specific state. Comments in the header file should be read by plugin code

developers looking for more details.

The enum shown in Listing 4 defines application and job-related event codes that can be expected for plugins that register to receive application

and job information.

The pmd_job_opts_t structure shown in Listing 5 is used to initialize handling of application and job related information. It is much the same as

the pmd_data_opts_t structure previously defined other than the prototype for the recv_apevent callback function.

The comments at the end of the xtpmd_plugin.h file are important. They show the interface for the initialization functions needed to implement

a working plugin (see Listing 6). A valid plugin will implement one or more of these initialization functions, but need not define all five. That is, one

need only to use the initialization functions associated with the data one seeks to collect.

When the plugin is loaded, each of the functions that the implementation has defined will be called. This performs one-time initialization which

registers the callback function with its associated data pointers.

The example xtpmd_plugin_csv.c begins by defining prototypes for the five callback functions that it will register. The prototypes match parame-

ters defined in the pmd_data_opts_t and pmd_job_opts_t data structures discussed earlier in this section.



MARTIN ET AL. 3 of 18

The implementation-specific csv_ctx_t structure is defined as shown in Listing 7. Member elements in this structure are used to track state for

the output file specific to each data stream being collected by the plugin. Pointers to these data structures are returned in the user_data elements

of the pmd_data_opts_t and pmd_job_opts_t structures by the plugins initialization functions. More complicated plugins are expected to replace

csv_ctx_t with their own data structures optimized for whatever state is needed. For example, the NERSC plugins we describe in Section 7 track

RabbitMQ11 connections.

The function static csv_ctx_t *init_ctx(int version, char *prefix) is called for each plugin data source and performs all needed initialization work.

That work includes

• determining if the data source (prefix) is enabled,

• allocation of the csv_ctx_t tracking data structure,

• reading in parameters from the configuration file,

• opening the source-specific output file, and

• adding the initialized csv_ctx_t structure to ctx_lst list.



4 of 18 MARTIN ET AL.

3 DATA SOURCES

The xtpmd_plugin infrastructure enables access to data streams falling into these five categories:

• Blade-level SEDC data

• Cabinet-level SEDC data

• Blade-level power and energy (PMDB) data

• Cabinet-level power and energy (PMDB) data

• Application- and job-level information

All data available directly via the plugin interface are also published into the Cray PMDB. Other data present in the Cray PMDB can be useful to

plugin developers, consumers of the data provided by the plugin(s), or both. See Section 6 for more information.

3.1 Blade-level SEDC data

Blade level SEDC data available for different blade types vary. All Cray® XC™ blades have sensors that support temperature, voltage, current, and

power, as well as a few miscellaneous status sensors. For example, a system in the Cray Chippewa Falls data center containing a mixture of supported

blade types has over 562 unique blade-level sensor IDs. For brevity, we only show a subset of them in detail in this paper. Table 1 lists sensors in these

categories with Nodes 1 to 3, and socket 1 edited out. The command xtgetsedcvalues -l -t bc can be used to query these data on an SMW running

the latest Cray software.

3.2 Cabinet-level SEDC data

Cabinet level SEDC are data also available for a large numbers of sensors falling into the same basic categories as seen for the blade-level SEDC

sensors in 3.1, with 191 unique sensors on the same system sampled in section 3.1. The command xtgetsedcvalues -l -t cc can be used to query this

type data on an SMW running the latest Cray software.

3.3 Cabinet- and Blade-Level Power and Energy Data

The PMDB data are more normalized. Table 2 shows the default enabled sensors supported on Cray® XC™ systems.

As noted in Martin et al,12 the CPU and Memory sensors listed in Table 2 are supported in the newest Cray® XC™ blades.

TABLE 1 SEDC data

ID Sensor description Unit ID Sensor description Unit

1257 ARIES_TEMP degC 1796 NODE0_PCH_THERMAL degC

1300 NODE0_CPU0_TEMP degC 1301 NODE0_CPU1_TEMP degC

1308 NODE0_CPU0_CH0_DIMM0 degC 1312 NODE0_CPU0_CH1_DIMM0 degC

1636 NODE0_S0_VRM_CTEMP degC 1637 NODE0_S0_VRM_MTEMP degC

1200 VDD_0_9V V 1201 VDD_1_0V V

1202 VDD_1_0V_OR_1_3V V 1203 VDD_1_2V_GTP V

1204 VDD_1_2V_HSS V 1206 VDD_1_8V_HSS V

1207 VDD_2_5V_HSS V 1208 VDD_3_3V_PDC V

1210 VDD_3_3V_HSS V 1211 VDD_3_3V_MICROA V

1213 VDD_5_0V V 1216 VDD_13_0V_STDBY V

1258 ARIES_VDD_VCORE V 1259 ARIES_VDD_1V0 V

1260 ARIES_VDD_1V8 V 1261 ARIES_VDD_3V3 V

1262 ARIES_VDD_13V0 V 1263 ARIES_VCORE_CURRENT centiA

1264 ARIES_1V0_CURRENT centiA 1265 ARIES_1V8_CURRENT A

1654 NODE0_S0_VCC_OUT mV 1708 NODE0_S0_MVIN mV

1710 NODE0_S0_VDR01_OUT mV 1712 NODE0_S0_VDR23_OUT mV

1676 NODE0_S0_VCC_IN mA 1680 NODE0_S0_VCC_OUT mA

1732 NODE0_S0_VDR01_IN mA 1734 NODE0_S0_VDR23_IN mA

1736 NODE0_S0_VDR01_OUT mA 1738 NODE0_S0_VDR23_OUT mA

1468 NODE0_CPU0_CH0_DRAM_ACC J 1469 NODE0_CPU0_CH1_DRAM_ACC J

1470 NODE0_CPU0_CH2_DRAM_ACC J 1471 NODE0_CPU0_CH3_DRAM_ACC J

1500 NODE0_CPU0_VCC_ACC J 1516 NODE0_CPU0_PCKG_ACC J



MARTIN ET AL. 5 of 18

TABLE 2 PMDB power and energy data

ID Sensor description Unit ID Sensor description Unit

0 Cabinet Power W 1 Cabinet Energy J

2 Cabinet Voltage mV 3 Cabinet Current A

8 Cabinet Blower Power W

16 HSS Power W 17 HSS Energy J

32 Node 0 Power W 33 Node 0 Energy J

40 Node 1 Power W 41 Node 1 Energy J

48 Node 2 Power W 49 Node 2 Energy J

56 Node 3 Power W 57 Node 3 Energy J

36 Node 0 CPU Power W 37 Node 0 CPU Energy J

44 Node 1 CPU Power W 45 Node 1 CPU Energy J

52 Node 2 CPU Power W 53 Node 2 CPU Energy J

60 Node 3 CPU Power W 61 Node 3 CPU Energy J

68 Node 0 Memory Power W 69 Node 0 Memory Energy J

76 Node 1 Memory Power W 77 Node 1 Memory Energy J

84 Node 2 Memory Power W 85 Node 2 Memory Energy J

92 Node 3 Memory Power W 93 Node 3 Memory Energy J

3.4 Application- and Job-Level Information

The application- and job-level data available via the plugin are bit different than the previous four sources that support streaming sensor data. While

the application- and job-level data stream out of this interface, the application and job data are event-driven. The supported events are enumerated

in the xtpmd_plugin.h header file, as shown in Listing 4 of Section 2. The nine defined events are all handled by the same user registered handler.

Listing 8 shows output from the example plugin running on a system at the Cray Chippewa Falls data center. Some of the defined events may not be

seen by a plugin depending on the workload manager used at the customer site.

The example in Listing 8 shows two sequences of job_start, app_start, app_end, job_end. Both jobs are run by the same user, reserve and use only

one node (nid 2), and run a single application. Note that lines are wrapped to fit the formatting of this paper.

4 CONFIGURATION FILE OVERVIEW

The default configuration file for xtpmd plugin support is located on the Cray SMW or Cray external PMDB node at

/opt/cray/hss/default/etc/xtpmd_plugins.ini. This file supports the example plugin code.

The default file that ships with the SMW release is filled with useful comments. For a more in depth description of the file format, refer to Desktop

Entry Specification website.13

Listing 9 shows the default configuration file. One line that will need to be edited when testing or deploying a plugin in supervised mode is the

instances=csv key-value pair. It is commented out in the file, and to run the plugin_csv plugin, that line would need to be uncommented. As the

comment line instances=csv;other suggests multiple plugins can be started and run concurrently.

The object=path_to_valid_lib.so must point at a plugin file runnable by the crayadm user.

The xtpmd_plugd support code reads in all of the key-value pairs for the plugin at load time and makes them available to the plugin via the char

*plugin_get_instance_var() helper function. With the exception of the object=path_to_valid_lib.so, it is the responsibility of the plugin to define and

implement handling of plugin-specific key-value pairs.



6 of 18 MARTIN ET AL.



MARTIN ET AL. 7 of 18

FIGURE 1 Unsupervised mode testing

5 PLUGIN TESTING

This section describes how to test an xtpmd plugin. Compiling and running the provided “csv” example plugin helps verify the environment is working.

To test a plugin, one can run it by hand or in what we call unsupervised mode. As shown in Figure 1, the command ipcs can be run to find shmid and

shmsize parameters needed to call xtpmd_plugd from the command line. The third parameter is the plugin_name which in this case is plugin_csv.

The fourth parameter is the configuration file to use.

There are two easy ways to kill an unsupervised plugin. The first is to enter Ctrl-D in the terminal window where it is running. The second is to

issue a kill -9 pid_of_plugin from another window.

Note if you are having problems starting your plugin, that you need to run it as crayadm and all the files must have correct permissions for crayadm.

A good source if debug information is the power_management-YYYYMMDD log file found in the smw:/var/opt/cray/log directory. This is the file

that captures stderr and stdout when a plugin is running in supervised mode.

Listing 10 shows the important parts extracted from a configuration file on a testing and benchmarking system in the Cray Chippewa Falls data

center where we are running a Kafka14 plugin. The key-value pairs are used to pass configuration information into the plugin. This offers a great deal

of flexibility without need to recompile the plugin or implement an ad hoc configuration file. The output was modified to obscure some IP address

and internal system name information.

To test a new version of this plugin without shutting down the running copy:

• Copy the configuration file into a sandbox directory where crayadm has read permissions so that it can be edited without a chance of modifying

the running running plugin if or when it gets restarted

• Edit the line “object=” to point at the new plugin.so

• Optionally edit:



8 of 18 MARTIN ET AL.

a. The “kafka_broker_ip=” line to use a test broker

b. The “*_topic= lines”

c. The “*_enabled= lines”

• Start the modified plugin as shown in Figure 1.

Testing Checklist:

• Talk to the system administrator before starting!

a. Testing new processes on the SMW could impact system stability, or the ability of the SMW to respond to RAS events.

b. Appropriate planning and agreement with system stakeholders are required.

• Test for memory leaks.

• Test whether your plugin causes a high load on the SMW.

a. /usr/bin/top is your friend

• Make sure required libraries are in the path for crayadm at boot time, or your plugin may run in unsupervised mode but fail in production.

• If your plugin writes to local files, make sure something prevents them from filling up the file system.

6 PLUGIN DESIGN CONSIDERATIONS

Design considerations covered in this section fall into the following categories:

• Limiting the plugin's impact

• Library usage

• Time stamp formatting

• Translating binary fields

• Getting data off-node

• Other formatting considerations

6.1 Limiting the plugin's impact

Now that we have a plugin environment to stream the data from the SMW, we have to be conscious of what resources this streaming capability

will use. Since the SMW is the main management system for the Cray® XC™ system, additional processes and/or functions should be evaluated and

reviewed by the administration team. Considerations would include but are not limited to memory usage of the plugins, network usages in both

number of connections and bandwidth, processes activity such as forking or threading, and disk usage. If the desired plugin may use or consume too

many of these resources, using an external PMDB server is an option to consider. The two primary designs detailed in this paper both stream the

data off of the SMW using minor amounts of memory and network connection. In these designs, if a bandwidth issue were to arise on the SMW, the

use of text-based messages would likely be the main concern.

6.2 Library usage

There are two primary ways to deal with any additional libraries that the plugin may require to run. The least intrusive method for the SMW may

be to compile the plugin with static libraries. This may require additional care in the plugin creation. The other primary method would be to load

or compile the different libraries the plugin may require on the SMW itself. Building and storing shared libraries on the SMW may be accomplished

by placing them in /usr/local/lib which will be loaded from /etc/ld.so.conf file. This is the method that NERSC has used, and this configuration has

survived an SMW software upgrade.

6.3 Timestamp formatting

The callbacks for all five plugin data sources return an unsigned 64-bit “ts” parameter that represents the number of microseconds since January 1,

1970, UTC. There are routines available to convert this data into several different string formats including time zones that match a site's location. It

could be argued that not translating into a string is the correct choice for plugins where a computer is the primary consumer, as conversion can be

done at any time if needed.

The code in Listing 11 is used in several internal plugins to convert 64-bit “ts” into a standards based string. The choice to use Coordinated

Universal Time (UTC) was made to remain site-independent and avoid disruptive events such as Daylight Saving Time.



MARTIN ET AL. 9 of 18

6.4 Translating binary fields

There are multiple fields provided to the five callback functions that at some point need to be translated from their native binary representation into

something another computer program or a human can understand. Timestamps were covered in section 6.3. This section describes nid-to-cname,

source-to-cname, and scan ID translations.

The code sequence in Listing 12 loads a hash table with “nid” to “cname” translations. These translations can be useful for plugins implementing

recv_apevent handlers. For clarification, a “nid” is Cray shorthand for a Cray Node ID. Cray uses the term “cname” for strings that represent physical

locations in the system. All compute nodes in Cray® XC™ systems have both a “nid” and a “cname.” Translating back and forth can be necessary for

tasks such as calculating total power consumption of a set of nodes assigned to a job or application.

Cray “cnames” are used to name physical locations of cabinets, blades, nodes, and other components. The next code block (Listing 13) shows code

that loads cabinet-level source to “cname” translations into the source2cname hash table. These translations are needed for cabinet-level SEDC and

PMDB sensor data.

Listings 14 and 15 are near clones of the above, with only the “SELECT” string that reads data from PMDB changing to read out blade- and

node-level translations, respectively.

In Listing 16, we load SEDC scan ID descriptions into the sedc_ids hash table. The descriptive strings describe the sensor with a human-readable

name, as well as its unit of measure.

In listing 17, we load PMDB scan ID descriptions into the pmdb_ids hash table. The descriptive strings describe the sensor with a human-readable

name, as well as its unit of measure.



10 of 18 MARTIN ET AL.



MARTIN ET AL. 11 of 18

Slight variations of code shown in Listings 12 through 17 have been used in several Cray internal plugins as well as the plugins running in

production on the NERSC Cori system. Discussion of Cori in more detail is provided in Section 7.

6.5 Getting data off-node

In addition to the Kafka method listed above, one could use RabbitMQ to send data from the SMW. Listing 18 shows a concentrated listing of

the code to create a connection to RabbitMQ. The connection is built by first creating a new amqp connection and then setting the SSL options.

The secure path is then used to connect to the RabbitMQ server. A defined account and password are needed to authenticate the connection.

The connection handle is placed in the rcon structure of the plugin to be used when sending the data. Most of the error checking has been removed

to conserve space.

Code shown in Listing 19 publishes the data to the RabbitMQ server.

6.6 Other formatting considerations

Formatting the data before transmission will obviously slow down the processing speed of the plugin. However, one reason for processing in the

plugin is to speed up the ingest on the receiver side. We formatted the data into JSON syntax and added a bit of enrichment, which can only be

gathered on the Cray SMW (or Cray external PMDB node). This provided a nice trade-off. No official timing was done, but in general when JSON is

fed to Logstash to feed Elastic,15 Logstash was able to process almost 2 times more data.



12 of 18 MARTIN ET AL.

The example in Listing 20 shows a handler for PMDB streaming data that generates JSON formatted strings that are then passed to

a plugin specific xjson_output() function. The xjson_uint64 function calls gen_time_string() and uses the source2cname and pmdb_ids

hash tables shown in Listings 13, 14, 15, and 17 above. The xjson_uint64() function can handle both “BC_PMDB” data and “CC_PMDB” data.

A nearly identical xjson_double() (not shown) can handle “BC_SEDC” data and “CC_SEDC” data; it uses the sedc_ids hash table.

Listing 21 shows formatted JSON generated by the xjson_uint64() function described above. The actual string generated is all on one

line without extra spaces.

The code examples in the section are from a plugin that writes its output to local files in plain text, or using Lib Z compression. The json_output

function shown in Listing 22 checks if compression is requested and calls ether the gzputs() or the standard lib fputs() function. Unfortunately, error

handling is slightly different for the two functions.

The long example in Listing 23 shows an implementation of an application and job information callback that formats its output as a string

with JSON semantics. This example also uses hash tables to do the binary-to-string conversions that were built up in the code examples shown in

section 6.4.



MARTIN ET AL. 13 of 18

Listing 24 shows formatted JSON generated by the xjson_apevent() function shown above. The actual string generated is all on one line without

extra spaces.

7 NERSC PLUGIN DEPLOYMENT

At NERSC we have implemented the xtpmd plugin architecture based strongly on the work provided by Cray. Our extension added the ability to

stream the data directly to RabbitMQ thus allowing it to flow directly into our NERSC data collect.

The NERSC design created a plugin for each of the five data sources described in Section 3. This was a simple first step in parallelizing the data

collection. This provided five different streams quickly. The next step was for data enrichment. Since the power and environmental data all contain

the data's cname, while the job data contains the nid number, we had to enrich the job stream with some extra information, the corresponding

cnames. This information is loaded into memory from the PostgreSQL database running on the SMW 6.4. We also loaded in the text strings of the

different sensor IDs and conversions for the location IDs. Loading from the SMW database at startup guarantees that we have the most updated and

correct data when inserting into the database. Also with Elastic,15 we do not have to worry if sensors change names or new ones get added when

we do software upgrades, the new data are indexed as they arrive.

One other key task the job plugin does is break the node list of a running job into its individual nids and cnames creating two arrays. These arrays

and all other information is placed on a single text JSON line and fed into RabbitMQ, at which point it moves into Elastic with minimal additional

processing. All plugins for Cori basically feed the “NERSC Center-wide Data Collect”6 at about 19K inserts a second or about 1.5 billion documents

in about 66 GB of storage a day.



14 of 18 MARTIN ET AL.

7.1 Some key points learned during this project

• Although restarting xtpmd should be nonintrusive, if HA is enabled on the SMW, this will cause the HSN to pause. HA seems to be configured to

restart the whole subsystem if xtpmd has an issue. For this reason, it is recommended that SMW HA be set into maintenance mode for a xtpmd

daemon restart.

• In the xtpmd_plugin.ini file, the default method to call the plugin prepends the value: “plugin_” to the plugin name, see below in the example.

• Rebooting the SMW may cause a custom xtpmd_plugin.ini file to be overwritten with the default file (this is fixed in SMW 8.0 UP03).

• To restart a plugin without restarting xtpmd is easy. Just kill the plugin process. The xtpmd process will notice that the plugin has gone away and

will restart it. This is also a good way to change configuration parameter.

• Make sure the libraries are in a location that the “crayadm” user can read.



MARTIN ET AL. 15 of 18

NERSC plugin to-do list:

• RabbitMQ is not a threaded library; the plugin must open multiple connections. Develop a way to round-robin plugin data flow to multiple

RabbitMQ sockets.

• Devise graceful fallback and recovery if RabbitMQ goes away.

• Add monitoring for plugin communication failures.

• Develop a more graceful method to restart a plugin.

7.2 About the code and configuration

The code itself is based on Cray's example from CUG3 extended to add the RabbitMQ library and some string processing to create a JSON output

line which gets written to RabbitMQ. In Listing 25, you can see the configuration information that is in the Cori production xtpmd_plugin.ini file.

First, the plugin definitions (Listing 25, lines 1 and 2). These are the five defined NERSC plugins expected.

The “instances” are the plugin names. That name is used in the next part of the configuration file. This block starts with the plugin name, which

get the string “plugin_” prepended to it.

Listing 25 line 3 starts the plugin-specific parameters for the plugin_bp plugin. Line 4 defines the full path to the shared library bp_plugin.so for

this plugin. Next, on line 5 is an enable flag in case we would like to disable this plugin the next time xtpmd is restarted. The hostname and port

(lines 6 and 7) are where the RabbitMQ service is located. Line 8 specifies the RabbitMQ exchange to be used; from that exchange, telemetry gets

routed based on the routingkey (in line 9) to Logstash which uses parts of the routingkey to place the data into the correct Elastic index. The system

and type fields (lines 10 and 11) are used by Logstash to help manage the data flow. Finally, the last two lines are the account login and password

information to initially connect to the RabbitMQ. At this point, we can make changes to the NERSC Center-wide Data Collect without having to

change the plugin binaries.

We should have a word about data loss. Although the connections are all TCP and we have have not noticed any substantial data losses, the xtpmd

infrastructure (by design) will drop data instead of backing up the stream in memory. If the plugin cannot keep up, xtpmd will drop what the plugin

can not process. This would almost be like a UDP stream. We have not devised any method to save data either in memory or to disk if we have a

RabbitMQ issue. If we have an Elastic issue, the RabbitMQ servers will do the spooling. Lastly, the “kill -9” restart will also lose data both in the

shutdown and restart at which time no data would be flowing to the NERSC infrastructure. With these reasons, we have tried to keep the plugins

simple and fast; most enhancements and monitoring happening after it leaves the SMW and arrives at the NERSC infrastructure.

7.3 NERSC Cori Telemetry Visualization

This section show a few views created using the data being collected on Cori. The page layout is in Cori cabinet and row order, thus also giving a

physical view to the data.

Figure 2A showsa detailed view of the power in each cabinet. Each graph is displaying the four nodes in that slot.

Figure 2B shows cabinet air temperatures. Note that blower cabinets are associated with the cabinet cname of the cabinet to its right. The

exception is the end blower which has the cname of the cabinet to its left.

Figure 3A shows the detailed power of a slot. Each column lists the data for one of the four nodes in that slot. The top two graphs show the

summary for the slot.

Figure 3B is the CPU temperature view. This is showing the maximum temperature of any of the CPUs during that time period. We do this to

summarize all 192 CPUs in each cabinet. Drill-down graphs are implemented to view more detailed information.



16 of 18 MARTIN ET AL.

FIGURE 2 Screenshots of Cori telemetry Grafana dashboard showing (A) cabinet power and (B) cabinet temperature

FIGURE 3 Screenshots of Cori telemetry Grafana dashboard showing (A) node power and (B) node CPU temperature

FIGURE 4 Screenshots of Cori telemetry Grafana dashboard showing (A) an individual node's temperature and (B) an individual node's power.

7.4 NERSC Cori Problem Gathering

NERSC recently had a temperature throttling event and the NERSC Center-wide Data Collect was used to examine the data visually. The summary

that follows is for one node.

First, we searched for any throttling events in the log data and found: “2017-03-23T01:39:08.965711-07:00 c4-2c0s11n1 xtconsole 2173

p0-20170322t150819 [console@34] CPU22: Package temperature above threshold, cpu clock throttled.”

With the event time, 3/23 at 01:39 and location c4-2c0s11n1, we used the Grafana16 dashboards to gather insight into what had happened on

the system. Figure 4A shows the temperature of all four nodes in Slot 11, with Node 1 reaching 80C at about 1:39 and that it is the only processor

to do so. In Figure 4B, we show a graph of the affected slots power data at the time of the throttling event. The power profiles of all the nodes look

very much alike, none showing any significant differences.

After viewing the CPU temperature, we now turned our gaze to the cabinet water data. Figure 5A is the water ingress and egress tempera-

tures, the water pressure, and the value position. The steep part of the valve graph was taking place at the same time as the reported thermal

throttling event.



MARTIN ET AL. 17 of 18

FIGURE 5 Screenshots of Cori telemetry Grafana dashboard showing (A) an individual cabinet's water profile and (B) an individual cabinet's air
profile

Next, we viewed the cabinet blower screens. In Figure 5B, first column shows rising temperatures in each chassis and a large step in fan speeds.

By Cray design, all blower cabinet fans in a row must run at the same speed. The fan speed is changed in response to the hottest socket in the row

of cabinets. The valve position (controlling water flowing through each cabinet) is modulated as needed to control the cabinet outlet air temp to a

configurable set-point.17,18

In Figure 5B, the third column shows air velocity and as expected with an increase in fan speed we see an increase in airflow. Figure 5B, the second

column shows the cabinet outlet air temperature. These air temps sensors are positioned in the airflow after the water coil has removed most (if

not all) heat generated by the blades in the cabinet. There was a 1C rise about 3 seconds before the event that would have triggered the change in

water valve position noted above and seen in Figure 5A. We should point out that the rise in outlet air temperature above the system set-point was

temporary and shows the short lag in thermal response to the change the inlet water valve position.

8 CONCLUSION

With CUG 2016 providing the groundwork for Cray® XC™ system xtpmd plugin development, this work dived more deeply into details needed to

develop a plugin. This paper shows the process, starting with the base plugin calls, followed by plugin enhancements and data enrichment. Finally,

the NERSC dashboard's data visualization demonstrates how the data were used to solve a problem facing the center. There is more work to do—this

is only the beginning of the uses for the data, be they monitoring or machine learning.

This has been a collaborative effort between Cray, the user community, and customers to design and test the streaming telemetry plugin capability.

This new monitoring capability allows customers to collect power, energy, thermal, and application data and to make that data available to system

administrators, application developers, and the HPC research community as appropriate given site-level infrastructure and policy.

ORCID

Steven Martin http://orcid.org/0000-0002-8489-2012

REFERENCES

1. Cray System Environment Data Collection (SEDC). http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Collections_SEDC_
Administration_Guide_CLE60UP03_S-2491.pdf. Accessed 9 April 2017

2. Cray Power Management Database (PMDB). http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf. Accessed 9 April 2017

3. Martin S. CUG 2016 Cray XC Power Monitoring and Management Tutorial: Cray User Group (CUG); 2016. https://cug.org/proceedings/cug2016_
proceedings/includes/files/pap112.pdf. Accessed 9 April 2017

4. Redis. https://redis.io/. Accessed 9 April 2017

5. Hiredis. https://github.com/redis/hiredis. Accessed 9 April 2017

6. Whitney C, Davis T, Bautista E. CUG 2016 NERSC Center-wide Data Collect: Cray User Group (CUG); 2016. https://cug.org/proceedings/cug2016_
proceedings/includes/files/pap101.pdf. Accessed 9 April 2017

7. Martin S, Kappel M. Cray XC30 Power Monitoring and Management: Cray User Group (CUG); 2014. https://cug.org/proceedings/cug2014_proceedings/
includes/files/pap130.pdf. Accessed 9 April 2017

8. Martin S, Rush D, Kappel M. Cray Advanced Platform Monitoring and Control (CAPMC): Cray User Group (CUG); 2015. https://cug.org/proceedings/
cug2015_proceedings/includes/files/pap132.pdf. Accessed 9 April 2017

9. CAPMC API Documentation. http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf. Accessed 9 April 2017

10. XC™ Series Power Management Administration Guide (CLE 6.0.UP03) S-0043. http://docs.cray.com/PDF/XC_Series_Power_Management_
Administration_Guide_CLE60UP03_S-0043.pdf. Accessed 9 April 2017

http://orcid.org/0000-0002-8489-2012
http://orcid.org/0000-0002-8489-2012
http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Collections_SEDC_Administration_Guide_CLE60UP03_S-2491.pdf
http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Collections_SEDC_Administration_Guide_CLE60UP03_S-2491.pdf
http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://redis.io/
https://github.com/redis/hiredis
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf


18 of 18 MARTIN ET AL.

11. RabbitMQ. https://www.rabbitmq.com/. Accessed 9 April 2017

12. Martin S, Rush D, Kappel M, Sandstedt M, Williams J. Cray XC40 Power Monitoring and Control for Knights Landing: Cray User Group (CUG); 2016. https://
cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf. Accessed 9 April 2017

13. Desktop Entry Specification. https://freedesktop.org/wiki/Specifications/desktop-entry-spec/. Accessed 9 April 2017

14. Kafka. https://kafka.apache.org/. Accessed 9 April 2017

15. Elastic. https://www.elastic.com. Accessed 9 April 2017

16. Grafana. https://grafana.com/. Accessed 9 April 2017

17. Pautsch G, Roweth D, Schroeder S. The Cray® XC© Supercomputer Series: Energy-Efficient Computing; 2013. http://www.cray.com/sites/default/files/
WP-XC30-EnergyEfficiency.pdf. Accessed 9 April 2017

18. Draney B, Broughton J, Declerck T, Hutchings J. Saving Energy with “Free” Cooling and the Cray XC30: Cray User Group (CUG); 2013. https://cug.org/
proceedings/cug2013_proceedings/includes/files/pap165.pdf. Accessed 9 April 2017

How to cite this article: Martin S, Whitney C, Rush D, Kappel M. How to write a plugin to export job, power, energy, and system

environmental data from your Cray® XC™ system. Concurrency Computat: Pract Exper. 2018;30:e4299. https://doi.org/10.1002/cpe.4299

https://www.rabbitmq.com/
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://freedesktop.org/wiki/Specifications/desktop-entry-spec/
https://kafka.apache.org/
https://www.elastic.com
https://grafana.com/
http://www.cray.com/sites/default/files/WP-XC30-EnergyEfficiency.pdf
http://www.cray.com/sites/default/files/WP-XC30-EnergyEfficiency.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap165.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap165.pdf
https://doi.org/10.1002/cpe.4299

	How to write a plugin to export job, power, energy, and system environmental data from your Cray0.2emXCsystem
	Abstract
	INTRODUCTION
	PLUGIN CODE BASICS
	DATA SOURCES
	Blade-level SEDC data
	Cabinet-level SEDC data
	Cabinet- and Blade-Level Power and Energy Data
	Application- and Job-Level Information

	CONFIGURATION FILE OVERVIEW
	PLUGIN TESTING
	PLUGIN DESIGN CONSIDERATIONS
	Limiting the plugins impact
	Library usage
	Timestamp formatting
	Translating binary fields
	Getting data off-node
	Other formatting considerations

	NERSC PLUGIN DEPLOYMENT
	Some key points learned during this project
	About the code and configuration
	NERSC Cori Telemetry Visualization
	NERSC Cori Problem Gathering

	CONCLUSION
	References




