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Article

Genetic regulation of liver lipids in a mouse model
of insulin resistance and hepatic steatosis
Frode Norheim1,2, Karthickeyan Chella Krishnan1, Thomas Bjellaas3, Laurent Vergnes4, Calvin Pan1,

Brian W Parks5, Yonghong Meng1, Jennifer Lang1, James A Ward1, Karen Reue4, Margarete Mehrabian1,

Thomas E Gundersen3, Mikl�os P�eterfy1,6, Knut T Dalen2, Christian A Drevon2,3, Simon T Hui1,

Aldons J Lusis1,4,* & Marcus M Seldin1,7,**

Abstract

To elucidate the contributions of specific lipid species to metabolic
traits, we integrated global hepatic lipid data with other omics
measures and genetic data from a cohort of about 100 diverse
inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks.
Association mapping, correlation, structure analyses, and network
modeling revealed pathways and genes underlying these interac-
tions. In particular, our studies lead to the identification of Ifi203
and Map2k6 as regulators of hepatic phosphatidylcholine home-
ostasis and triacylglycerol accumulation, respectively. Our analyses
highlight mechanisms for how genetic variation in hepatic lipi-
dome can be linked to physiological and molecular phenotypes,
such as microbiota composition.
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Introduction

Maintenance of hepatic lipid homeostasis is critical for many physi-

ologic processes (Musso et al, 2018; Svegliati-Baroni et al, 2019).

For example, lipid species such as ceramides and diacylglycerols

appear to be key elements in non-alcoholic fatty liver disease

(NAFLD), insulin resistance, and other metabolic diseases (Raichur

et al, 2014; Ter Horst et al, 2017; Yang et al, 2018; Chaurasia et al,

2019). Recent advances in global lipidomics by mass spectrometry

have allowed a more comprehensive view of the hepatic lipidome

(Gorden et al, 2015; Yang et al, 2018). These analyses have high-

lighted the complexity of lipid species and generated correlative

links to several chronic diseases (Gorden et al, 2015; Luukkonen

et al, 2016; Peng et al, 2018). Although these studies have revealed

intriguing relationships between individual lipid species and

metabolic traits, it has proven difficult to translate findings to a

population scale using traditional approaches, such as gain- and

loss-of-function studies in mice. Systems genetics provides an

alternative approach for unbiased hypothesis generation based on

natural genetic variation, using DNA variation as a directional

anchor. This is accomplished by monitoring clinical traits and

molecular information (such as gene expression or lipidomics) in a

genetically diverse population and analyzing the results using

genome-wide association (GWA), correlation structure, and network

modeling (Civelek & Lusis, 2014).

Two recent studies have leveraged systems genetics approaches

to understand how a number of hepatic lipids change across genetic

backgrounds (Jha et al, 2018a; Parker et al, 2019). The first study

surveyed hepatic lipids in parallel with clinical traits in a set of

C57BL/6 x DBA/2J (BXD) recombinant inbred strains under two

dietary conditions (Jha et al, 2018a). This study identified candidate

genes that may modulate the abundance of a number of hepatic

lipid species using GWA. They also proposed a role for cardiolipins

(CL) in fatty liver progression (Jha et al, 2018a) and found plasma

lipid signatures predicting hepatic lipid composition (Jha et al,

2018b). Another study utilized livers from the Hybrid Mouse Diver-

sity Panel (HMDP) following an overnight fast. They performed liver

lipidomics and proteomics and reported novel proteins regulating

global lipidome structure (Parker et al, 2019). This study also identi-

fied plasma lipid signatures predicting hepatic triglyceride composi-

tion with several biomarkers conserved in humans. Although these

studies constitute valuable resources for future studies of genetic
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regulation of NAFLD (Seldin et al, 2019), limitations in these studies

are the lack of power for association mapping (Jha et al, 2018a) and

omics studies on livers after an overnight fast (Parker et al, 2019)

which will likely not fully resemble lipids accumulating with

NAFLD.

We now report a new resource for investigation of genetic regu-

lation of the hepatic lipidome and its relationship to hepatic steato-

sis (Hui et al, 2015), insulin resistance (Parks et al, 2015), obesity

(Parks et al, 2013), plasma lipids, and gut bacteria (Parks et al,

2013) in mice fed a high-fat/high-sucrose (HF/HS) diet for

8 weeks. Initially, we examined a subset of mouse strains and

observed overall dietary and genetic impacts on the hepatic lipi-

dome. Next, we performed global hepatic lipidomics on 101 HMDP

strains and integrated the data with genomic variation, microbiota

composition, global gene expression, and other phenotypic traits.

To our knowledge, this is the most comprehensive integration of

such measures in a genetically diverse population. Using associa-

tion mapping, correlation, and network analyses, we identified

several novel pathways regulating hepatic lipid levels and provide

experimental validation to define their roles in diet-induced NAFLD

and insulin resistance.

Results

Dietary and genetic impacts on hepatic lipidome

Initially, we evaluated the impact of a HF/HS diet on ~ 250 lipids

from the hepatic lipidome in a small group of genetically diverse

mice from the HMDP. We selected three strains (n = 3 mice/

strain) responding differently to the HF/HS diet: the traditional

C57BL/6J strain, DBA/2J, which becomes highly insulin resistant

(Norheim et al, 2018) and C3H/HeJ, which carries a mutation in

the Tlr4 gene regulating the lipopolysaccharide response locus

(Heppner & Weiss, 1965). The hepatic lipids were measured in

these strains fed a HF/HS or normal chow diet and compared

using limma (Ritchie et al, 2015; Fig 1A). A large number of lipid

species known to be involved in fatty liver development, such as

ceramides (Chaurasia et al, 2019), were significantly changed in

response to the HF/HS diet, regardless of genetic background;

however, some lipids changed in a strain-specific manner, either

across or between diets (Fig 1B). Particularly, the C3H/HeJ mice

seemed to have a somewhat different response to a dietary

perturbation for several of the phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) lipids than the other two strains

(C57BL/6J and DBA/2J) suggesting gene-by-diet interactions. Free

fatty acids (FFAs) and triacylglycerols (TAGs) with fewer carbon

atoms were mostly increased after a HF/HS diet, several of the

same species containing many carbon atoms decreased (Fig 1A–

C). Another example showed that cholesterol esters (CE) were

up- or down-regulated by HF/HS diet, dependent on the number

of double bonds on their carbon backbone. Specifically, CE

(C18:1) was increased and CE(C18:2) was decreased in responds

to diet (Fig 1B and C). The full list of lipids impacted by diet in

each strain is provided in Dataset EV1. These data indicate an

interaction between genetics and diet to mediate changes in the

hepatic lipidome and highlight consideration of genetic back-

ground when determining dietary effects on liver lipids.

We next expanded our survey to assay 256 hepatic lipids of 101

HMDP strains (279 mice) fed a HF/HS diet and to integrate lipido-

mics with other molecular layers (genome and liver transcriptome),

as well as phenotypic outcomes such as HOMA-IR. We reasoned

that these integrations might uncover new mechanisms by which

genetic variation predisposes to metabolic alteration with involve-

ment of liver lipids. A high degree of genetic variation was observed

in the relative abundance of each lipid class compared with total

lipid content (Fig 2A). For example, the most abundant lipid class

(TAG) accounted from 44 to 79% of total lipids in liver and the

content of PC varied > 3-fold (Fig 2A). The less abundant lipids

generally exhibited greater variation across the strains. For example,

ceramide-phosphatidylethanolamine (Cer-PE) and a phosphatidyli-

nositol (PI) species varied 356-fold and 2,199-fold (Fig EV1) across

the strains, respectively. Summary level statistics, such as mean

abundance and variance across the 279 mice, are provided for each

lipid class (Dataset EV2) and individual lipids (Dataset EV3). Not all

lipid species varied substantially across strains. For example, Cer

(34:2) and PC(34:1) showed minimal variation relative to the mean

compared to other lipids (Dataset EV3). While analytical variation

can clearly contribute to these observations, higher variation among

lower abundances across genetic backgrounds has been widely

appreciated for multiple omics measures and reviewed in detail (Liu

et al, 2016).

Relationships between gut microbiota and hepatic lipids

In this study, we provide several examples for how analyses can be

performed on these data to infer new biologic mechanisms, where

the most straightforward is correlation. While simple, analysis of

correlation structure can be powerful. The intuition for assaying

correlation structure is that natural genetic variation has produced a

spread of complex interactions, where new relationships (either

causal or reactive) can easily be inferred. For example, little is

known about how individual hepatic lipid species may be affected

by intestinal microbiota composition. Therefore, we performed

correlation analyses to gauge genetic relationships between the

hepatic lipidome and microbiota composition. Given that both of

these traits appear to be highly heritable, we hypothesized that both

known and new interactions could be identified (Parks et al, 2013;

Org et al, 2015; Org et al, 2017). These analyses highlighted clusters

of TAGs strongly correlated with the abundance of Ruminococcus, a

relationship which has been observed with progression from NAFLD

to non-alcoholic steatohepatitis (NASH) in humans (Boursier et al,

2016; Fig 2B). Additionally, Anaeroplasma, AF12, and Desulfovibrio

showed negative correlations with many CL and lysophosphatidyl-

choline (LPC) species (Fig 2B). Anaeroplasma has been associated

with unfavorable lipid profiles in humans (Granado-Serrano et al,

2019), but the underlying mechanisms are unclear. Desulfovibrio

increases in the gut when C57BL/6J mice transition into hepatic

steatosis and NASH after being treated with streptozotocin and fed a

high-fat diet (Xie et al, 2016). To our knowledge, no previous study

has observed an association between Anaeroplasma, AF12, and

NAFLD. Our analyses suggest that the gut levels of Anaeroplasma,

AF12, and Desulfovibrio might affect the hepatic levels of several

hepatic lipids such as CL and LPC; however, these relationships

require direct experimentation to prove directionality and causality.

Because many lipids were strongly intercorrelated, we next
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aggregated lipid species into modules of correlated members using

weighted gene co-expression network analysis (WGCNA) (Lang-

felder & Horvath, 2008). Lipid species clustered into 12 discrete

modules, some were predominantly a single class, whereas others

included lipids from multiple classes (Figs EV2 and EV3, Dataset

EV4). For example, a majority of the TAGs (36/47) and PCs (9/22)

clustered into single modules (turquoise and magenta, respectively).

Module membership for every lipid from this analysis is provided in
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Figure 1. Dietary and genetic effects on the hepatic lipidome.

A Volcano plot of the fold change (x-axis) plotted against significance (y-axis) of lipids changing upon HF/HS feeding. Lipids are colored according to fold change (log2,
absolute) > 1 (orange), P-value < 0.05 (red), or both (green). P-values calculated from differential expression using limma.

B Heatmap of the fold change (log2) of each lipid in HF/HS compared to chow diet. Only lipid species detected in all mice are shown.
C Examples of different hepatic lipids within one class that are regulated in different directions in HF/HS fed as compared chow fed mice.

Data information: Cer, ceramide; FFA, free fatty acids; LPC, lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; PC, phosphatidylcholines; PE,
phosphatidylethanolamines; PG, phosphatidylglycerols; PI, phosphatidylinositols; PS, phosphatidylserines; SPM; sphingomyelins; TAG, triacylglycerols; CL, cardiolipins; CE,
cholesterol esters. Specific comparison results are provided in Dataset EV1. N = 3 male mice per strain and diet group. Data represent mean � SEM. *P < 0.05,
**P < 0.01, ***P < 0.001. P-values calculated using a Student t-test (two-tail) compared with chow group.
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Dataset EV4. We also assessed relationships between microbiome

abundance profiles and these lipid modules (Fig EV2). This

approach highlighted how intercorrelated lipid groups could better

inform relationships with gut bacteria. For example, several lesser-

abundant species such as Adlercreutzia and Desulfovibrio showed

modest correlation with individual lipids species but were strongly

HMDP Strains

Genetic variation of hepatic lipidome (HF/HS diet)
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Figure 2. Genetic variation of hepatic lipidome in the HMDP.

A The relative genetic variation of hepatic lipidome composition; all lipids were quantified in proportion to the total lipidome. Each lipid class is shown in a different
color where differences can be observed across the strains.

B Heatmap showing correlations between different lipid species (x-axis) and the abundance of gut microbes (y-axis). Microbes were summarized at the levels of order
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correlated with a specific module (red, Fig EV2), which was

composed exclusively of FFAs. While these genera have been

observed to change in the context of inflammatory bowel disease

(Bajer et al, 2017), little is known about their functional roles.

Coregulated lipids are strongly correlated with phenotypic traits

We next focused our WGCNA analysis of specific coregulated lipid

modules on their relationships with clinical traits. As suggested

above, lipids of the same class were generally correlated with

each other across the HMDP strains (Fig 3A). This is consistent with

previous observations and was especially apparent for TAGs

(Jha et al, 2018a). There were also several examples of strong

correlations between lipid classes, such as phosphatidylserines (PS)

correlating with phosphatidylinositols (PI), as well as lysophos-

phatidylethanolamine (LPE) and LPC showing strong correlations

with FFAs (Fig 3A). Because analysis of correlation structure

between lipids is a key component of several analyses, we have

provided the midweight bicorrelation coefficient and corresponding

P-value for all lipid pairs in Dataset EV5. To examine further the rela-

tionships being driven by genetic architecture, we selected several

relevant phenotypic traits and integrated these with separate lipid

species (Fig 3B). Several key lipids showed strong correlation with

traits consistent with previous studies. As examples, the levels of

some hepatic ceramides and PEs correlated negatively with plasma

glucose levels and body fat percentage, respectively (Fig 3B). These

data show that genetic variation may drive hepatic lipids to cluster

within or between classes and that pairwise relationships exist

between individual lipid species and phenotypic traits.

To obtain a comprehensive picture of how lipid subgroups may

relate to these traits, we adopted two network-based approaches.

First, a correlation-based network map was constructed, where

connections between components can be visualized through

strength of correlation (Fig EV4). This cumulative network showed

that metabolic syndrome traits such as body weight and HOMA-IR

were strongly correlated with several lipid species like Cer-PE lipids.

In contrast, plasma glucose concentration was more strongly corre-

lated with several PC species (Fig EV4). Next, we asked if lipid

modules identified from WGCNA (above) were correlated with the

same traits. The turquoise and magenta modules both showed

strong positive correlations with body weight and plasma insulin

concentration (Fig 3C). All the CLs (13/13) clustered into a single

module (blue) which showed a negative association with liver

cholesterol, and plasma HDL, TAG, and glucose (Fig 3C). Other

modules were more diverse in their membership, but still showed

strong correlations with phenotypic traits. For example, the purple

module contained lipid species from seven different classes

(Fig 3C). When combined, this module showed significant correla-

tions with body weight as well as plasma insulin and HDL (Fig 3C).

Taken together, these data show that within a broad network, close

connections can be observed between specific lipid species, global

lipid classes, and traits.

Association mapping prioritizes high-confidence genes involved
in hepatic lipid metabolism

Genetic loci controlling lipid levels were first identified using GWA,

and the genes present in the loci were further examined for evidence

of genetic variation in gene expression. We have previously deter-

mined a genome-wide significance threshold of P = 4.1 × 10�5 for

the HMDP (Bennett et al, 2010). Using this threshold, we identified

407 quantitative loci for 140 lipid species (Dataset EV6). Associa-

tions between genetic markers and gene expression levels were

performed, and local expression quantitative trait loci (local eQTL),

presumably acting in cis, were identified. Gene expression can be

controlled by a combination of both cis- and trans-acting elements.

Genes whose cis components of gene expression were correlated

with lipid levels were considered strong causal candidates (Dataset

EV7). For example, a locus for several hepatic LPCs (Datasets EV6

and EV7), with a peak SNP rs27364570 (Fig 4A), was also associ-

ated with the cis component of the expression of Pex16 (Fig 4B),

encoding peroxisomal biogenesis factor 16. Pex16 expression was

also correlated with LPC levels and certain clinical traits, including

fat mass and liver mass (Fig 4C). Mediation analysis supported a

causal role for Pex16 (Fig EV5). Several lipid loci also harbored

genes previously known to be involved in lipid metabolism. For

example, a number of genes involved in NAFLD-related traits like

estrogen-related receptor alpha (Esrra) (B’Chir et al, 2018), reticulon

3 (Rtn3) (Xiang et al, 2018), and proprotein convertase subtilisin/

kexin type 5 (Pcsk5) (Iatan et al, 2009) were all located within loci

for various liver TAGs and exhibited a local eQTL where the cis

component of the expression correlated with the lipid (Dataset

EV7). In total, we identified 76 loci whose cis component of gene

expression was correlated with lipid levels (55 unique lipid species)

as listed in Dataset EV7. Below we validate two novel regulators of

lipid levels and metabolic traits.

Role of Map2k6 in the control of hepatic TAG(C48:2) and
response to a HF/HS diet

TAGs were the most abundant hepatic lipids (Fig 2B) and showed

strong correlations with metabolic traits (Fig 3B and C). Given the

clear role of TAG accumulation in hepatic steatosis, we searched for

genomic regions which associated with multiple TAG species. We

observed that TAG(56:3), TAG(54:4), TAG(48:2), TAG(48:1), and

TAG(48:0) all mapped to approximately the same area on chromo-

some 11 (Fig 5A, Dataset EV2). This locus included only three

potential candidate genes: ATP-binding cassette subfamily A

member 5 (Abca5), ATP-binding cassette subfamily A member 6

(Abca6), and mitogen-activated protein kinase 6 (Map2k6). Integra-

tion with hepatic gene expression revealed that Map2k6 was regu-

lated in cis by the same loci (Fig B). The hepatic levels of TAG

(C48:2) also showed a significant association with the cis compo-

nent of Map2k6 expression (Dataset EV4). Further, the expression

of Map2k6 correlated significantly with a majority of TAGs, in addi-

tion to TAG(C48:2) (Fig 5C). There were, unfortunately, no probes

for Abca5 and Abca6 on our microarray platform. To test the

hypothesis that genetic variation in the Map2k6 gene was causal for

accumulation of hepatic TAG, male C57BL/6J mice were adminis-

tered 1 × 1012 PFU/mouse adeno-associated virus (AAV) expressing

either GFP or Map2k6 cDNAs under a thyroid-binding globulin

(TBG) promoter and subsequently fed a HF/HS diet for 8 weeks

(Fig 5D). Viral administration led to a substantial increase in liver

MAP2K6 protein levels compared with the GFP control (Fig 5E).

The hepatic lipids were quantified, revealing a significant reduction

in total TAG in the AAV-Map2k6 group (Fig 5F). Moreover, hepatic
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PC levels showed modest, but significant reductions in the Map2k6

group (Fig 5G). This novel regulatory mechanism affecting hepatic

TAGs also appeared to be relevant for other physiologic outcomes.

Overexpression of Map2k6 significantly blunted the increase in body

fat percentage typically associated with a HF/HS diet (Fig 5H), as

well as reduced upregulation of the plasma concentrations of

glucose (Fig 5I) and insulin (Fig 5J).

Interferon-activable protein 203 (Ifi203) influences hepatic PC
(C38:3) levels

We identified a locus (peak SNP at rs31614030) significantly associ-

ated with the expression of a proximal gene, interferon-activable

protein 203 (Ifi203), hepatic PC(C38:3) levels, and plasma insulin

concentrations (Fig 6A–D). In addition, a strong correlation was

observed between the PC(C38:3) levels, Ifi203 expression, and

insulin concentration (Fig 6E–G). While other genes (including

interferon-activable family members) within the same locus showed

strong associations with the peak SNP, albeit not as significant,

Ifi203 was the only one which also correlated in directions consis-

tent with the genetic effects. The surrounding genome view of the

locus and P-value of all genes detected on our arrays are provided in

Fig EV6. Next, we examined the effect of Ifi203 knockdown on

hepatic lipid levels and plasma insulin in vivo (Fig 6H). Mice were

fed a HF/HS diet for 4 weeks to induce hepatic steatosis, then

administered an adenovirus (2 × 109 PFU/mouse) containing either

a scrambled control or a shRNA targeting Ifi203 expression under a

ubiquitous CMV-U6 promoter (Su et al, 2008). The vector contain-

ing sh-Ifi203 resulted in a ~ 60% reduction in Ifi203 mRNA expres-

sion (Fig 6I) and a significant increase in total hepatic PC levels

(Fig 6J). To investigate potential links between Ifi203 and PC

concentrations, we monitored gene expression of enzymes involved

in synthesis or catabolism of PC in livers of the same mice. We

observed a significant increase in mRNA expression of liver phos-

phatidylethanolamine N-methyltransferase (Pemt) when Ifi203 was

knocked down (Fig 6K). Given that the primary function of Pemt is

to catalyze conversion of PE to PC by sequential methylation in the

liver, this seems a plausible mechanism for regulating total PC

levels. Although not statistically significant (possibly due to the

limited time of adenoviral expression or degree of knockdown),

mice receiving the sh-Ifi203 virus trended toward higher levels of

total hepatic TAG levels (Fig 6L) and plasma insulin concentration

(Fig 6M).

Discussion

We report an integrative genetics analysis of 256 lipids from the

hepatic lipidome across 101 diverse inbred strains of mice fed a HF/

HS diet. Our analyses included lipid interactions with diets, with

disease traits such as insulin resistance and obesity, with global

gene expression in liver and adipose, and with the gut microbiome.

We were able to identify quantitative trait loci for about 60% of the

lipid species using a stringent threshold for genome-wide associa-

tion. Based on association mapping and modeling of gene expres-

sion data, we identified Ifi203 and Map2k6 as novel lipid

metabolism regulators. We also carried out analyses relating to gut–

microbiome–lipid interactions that confirmed several previously

established relationships and highlighted potentially novel connec-

tions. Our results provide a rich resource for future experimental

studies of lipid metabolic regulation and the relationship of hepatic

lipids to diet-induced disease traits.

To dissect the interactions between hepatic lipids and traits in the

HMDP, we performed several different analyses. Initially, we

surveyed global correlation structure and observed many previously

described interconnections between lipids and clinical traits. For

example, genetic diversity causing variation in several Cer-PE

species was linked to traits such as body weight and HOMA-IR. This

is in accordance with previous studies in two different transgenic

mouse models where it has been shown that a reduction in plasma

membrane sphingomyelins improves insulin sensitivity and amelio-

rates high-fat induced obesity (Li et al, 2011). Direct genetic modula-

tion of enzymes affecting the ceramide pathways in mice like

dihydroceramide desaturase 1 may drive insulin resistance and

hepatic steatosis (Chaurasia et al, 2019). Our overall network view

of lipids and traits allowed us to visually evaluate relationships,

where we found that increased levels of certain sphingomyelins

correlate negatively with plasma insulin within an interconnected

network with ceramides. The relationship between hepatic sphin-

gomyelin and ceramide levels has been established in mouse models

(Kusminski & Scherer, 2019), but our data additionally suggest these

connections are specifically relevant for regulation of plasma insulin.

To dissect causal genetic interactions, we then performed

GWA. Because human GWAS have limited ability to access tissues

and control for the environment, genetic reference panels in model

organisms such as Drosophila and mice have become attractive

alternatives to complement human studies (Churchill et al, 2004;

Bennett et al, 2010; Mackay et al, 2012; Jha et al, 2018a). One

advantage of the HMDP is that it allows genetic power and resolu-

tion, which may reduce number of candidate genes as compared

to alternative approaches (Seldin et al, 2019). HMDP has been

utilized to study hepatic lipids in chow fed animals after an over-

night, prolonged fast (Parker et al, 2019). In our present study, we

fed the mice a HF/HS diet to investigate the hepatic lipidome after

diet-induced hepatic steatosis. We excluded lipids not identified in

more than 50% of the strains to limit false-positive associations. It

is worth noting that we used the same GWA significance threshold

as previous HMDP studies mentioned above. While this threshold

◀ Figure 3. Genetic lipidome structure and correlation with phenotypic traits.

A Heatmap showing correlations among hepatic lipids.
B Heatmap showing concordance between different lipid species (class listed on y-axis) and certain phenotypic traits on the x-axis.
C Results from WGCNA analyses, where lipids were separated in 12 modules and, labeled distinct colors, based on their internal correlations. Primary lipid classes,

which comprise each module, are listed as primary module members, with the number of species in each module/total number of species detected. The correlations
between each of these lipid modules and relevant phenotypic traits are shown as a heatmap, where bicor (top) and P-value (bottom) are listed. P-values were
calculated based on significance of regression (students test) and adjusted for multiple comparisons (FDR = 0.05).
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◀ Figure 4. Liver Pex16 is a novel regulator of hepatic LPC.

A Manhattan plot of genome-wide association for the levels of hepatic Pex16 transcript, where the only significant locus appears directly surrounding the genomic
location (red arrow). Significant cutoffs are shown for FDR (blue) and Bonferroni (red). The peak SNP (rs27364570) is highlighted with a dark red box. Y-axis shows the
�log10 (P-value) vs. x-axis showing each SNP measured. P-values for GWAS associations were calculated using FaST-LMM.

B Allelic distribution comparing GG vs. TT (x-axis) for the peak SNP of the Pex16 association (rs27364570), where the abundance of each LPC species (y-axis) showed
significantly different levels depending on the allele. P-values for GWAS associations were calculated using FaST-LMM. Boxplots show mean (middle line), 25–75%
quantiles (colored box), and 5–95% quantiles (vertical lines).

C Correlations between expression of hepatic Pex16 with LPC species and phenotypic traits. Box color indicates bicor value, where all relationships are positive and
number in each box shows P-value for each correlation. P-values were calculated based on significance of regression (students test) and adjusted for multiple
comparisons (FDR = 0.05).
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has been robust across HMDP studies, there are many considera-

tions for interpreting GWAS results. For example, distribution of

traits, population structure, and allele frequencies within a popula-

tion can influence results of GWAS. Therefore, it is key to inte-

grate GWAS results with other analyses (e.g., GWAS of multiple

biological layers or correlation structure) and experimentation to

gain confidence in underlying mechanisms. This allowed investiga-

tion of GWA of 220 separate hepatic lipids in mice with disrupted

metabolic homeostasis, where about 60% were significantly asso-

ciated with genomic loci. We note that about 65% of these lipid

QTLs mapped to more than one locus, indicating polygenic regula-

tion. This is comparable to a previous study on hepatic lipids in

the BXD mouse genetic population showing polygenic regulation

for about 50% of the lipids (Jha et al, 2018a). Like other complex

traits, hepatic lipids are likely to be regulated by many genes,

where changes in one lipid class/species will in most cases also

influence levels of multiple others in the same pathway. For these

reasons, it is key to integrate multiple types of analyses when

analyzing system genetics resources.

Our results provide the basis of a systems genetics resource for

integrating genetic regulation of hepatic lipids with hepatic lipid

levels. To validate our resource, we selected two identified high-

confidence candidate genes and provided preliminary evidence that

genetic variation in the Ifi203 and Map2k6 genes alters liver PC and

TAG concentrations, respectively. In selecting candidate genes to

test, there are several important considerations. For example, most

genes in linkage disequilibrium will be correlated with each other,

making it difficult to infer a single causal candidate. Causal infer-

ence tests, such as cis-expression correlation or mediation analyses,

can help to address these constraints. Genetic variation affecting the

level of Ifi203 expression was predicted to correlate positively with

both hepatic PC and plasma insulin levels. This relationship was

validated experimentally for hepatic PC, where reduction in liver

Ifi203 expression via adenovirus led to increased total PC levels.

The fact that we only observed a trend toward increased plasma

insulin concentration after reduction in liver Ifi203 expression might

be explained by limited time of gene knockdown by adenoviral

treatment or degree of Ifi203 knockdown. An accompanied increase

in Pemt gene expression suggested that Ifi203 plays a role in regula-

tion of other genes important for conversion of PE to PC. Although

little is known about the conserved function of Ifi203, it has been

described to be highly expressed in liver and its expression was

shown to be suppressed during liver regeneration (Zhang et al,

2008). The Ifi203 gene belongs to a large family of transcriptional

suppressors, characterized by their responsiveness to interferon

gamma (Landolfo et al, 1998). Overexpression of interferon gamma

via AAV has been shown to suppress markers of hepatic fibrosis

(Chen et al, 2005), where changes in hepatic lipidome could offer a

mechanistic link. Given that many Ifi genes are also locally regu-

lated by SNPs in this locus and that other candidates were not avail-

able in expression arrays, we cannot exclude that other candidates

than Ifi203 also affect hepatic PC levels.

We also identified a locus on chromosome 11 predicted to affect

the levels of several different TAG species. These data were paired

with associations of hepatic gene expression and prioritized Map2k6

as a strong candidate gene. We experimentally validated the impact

of Map2k6 on hepatic TAG levels, where hepatic overexpression of

Map2k6 lowered total TAG levels. Two other candidate genes poten-

tially regulated by this locus, Abca5 and Abca6, might be trans-

porters of lipids (Albrecht & Viturro, 2007). Unfortunately, Abca5

and Abca6 were not present on the liver expression arrays. Map2k6

phosphorylates and activates p38 MAP kinase in response to dif-

ferent stimuli, such as inflammation (Sabio & Davis, 2014). In accor-

dance with these observations, others have shown that murine

livers with increased levels of TAG also show lower Map2k6 expres-

sion (Chung et al, 2015). One recent study showed that mice lacking

Map2k6 were protected against HF-induced obesity, possibly due to

increased energy expenditure and higher Ucp1 expression in adipose

tissue (Matesanz et al, 2017). In contrast, we found that hepatic

overexpression of Map2k6 reduced adiposity, and plasma glucose

and insulin, indicating that liver regulation of Map2k6 may be

pivotal for metabolic disease development. It is likely that the effects

that we observed of Map2k6 on hepatic TAGs and plasma insulin

and glucose are at least partly explained by reduced adiposity.

Future studies focused on the role of Map2k6 in different metabolic

tissues are needed to understand how this canonical pathway affects

metabolic homeostasis. Given that MAPK signaling has been impli-

cated in regulating nearly every cellular process, further efforts

deconvoluting how a single canonical pathway interconnect

complex metabolic processes will be crucial to integrating impacts

into whole-body physiology.

The gut microbiome has a dynamic role in the regulation of

inflammation and liver steatosis (Kolodziejczyk et al, 2019; Yuan

et al, 2019). Changes in the gut microbial community can enhance

◀ Figure 5. Map2k6 regulates hepatic TAG levels and improves metabolic profile.

A Manhattan plot of genome-wide association for TAG(48:2). Red line shows Bonferroni-corrected threshold of significance calculated based on FaST-LMM P-values.
B LocusZoom plots showing the focused genomic region (x-axis) plotted against the �log10 (P-value) of association for liver mRNA expression of Map2k6. P-values for

GWAS associations were calculated using FaST-LMM.
C Correlations between hepatic expression of Map2k6 and all TAGs identified in the study. Blue represents negative correlations.
D Experimental design for validation of Map2k6 as a regulator of hepatic TAGs and phenotypic traits, which changed as a result.
E Western blots of liver homogenate using anti-Map2k6 and anti-b-actin.
F Comparison of total hepatic TAG between Map2k6-overexpressing mice (black bar) and control mice (empty bar).
G Differences in total phospholipid (PC), total cholesterol (TC), and unesterified cholesterol (UC) between Map2k6-overexpressing mice (black bars) and control mice

(empty bars).
H Body fat % of both experimental cohorts prior to (week 0) or 8 weeks on a HF/HS diet.
I, J Plasma concentration of glucose (I) and insulin (J) at the end of the 8 weeks of study.

Data information: *P < 0.05, **P < 0.01, ***P < 0.001 calculated for the significance of correlation (C) or a Student t-test between groups (F–J). Data represent
means � SEM (n = 10 control mice and 7 Map2k6-overexpressing mice). P-values were calculated based on significance of regression (students test) and adjusted for
multiple comparisons (FDR = 0.05).
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the severity of NAFLD via microbiome-derived metabolites (Kolod-

ziejczyk et al, 2019). Gut microbes can utilize carbohydrates to

synthesize different short chain fatty acids that can regulate host

metabolism. Short chain fatty acids can directly act as lipid precur-

sors in the liver or mediate other effects by acting as ligands of G

protein-coupled receptors (Marra & Svegliati-Baroni, 2018). For

example, a recent study showed that an unfavorable gut microbiome

metabolite production is sufficient to induce hepatic steatosis in

normal mice (Yuan et al, 2019). Furthermore, another recent study

showed that a gut microbiome alcohol production is sufficient to

induce hepatic steatosis in normal mice (Yuan et al, 2019). The

composition of the gut microbiome is highly heritable (Org et al,

2015), suggesting that host genetic composition exerts a striking

control over the function of the microbiota. Systems genetics

approaches such as those shown here offer tools to examine such

relationships. We provide several notable correlations between types

of microbes and hepatic lipids. For example, Anaeroplasma, AF12,

and Desulfovibrio show negative correlations with many CL and LPC

species. CLs are essential for mitochondrial bioenergetics functions

(Maguire et al, 2017) and are involved in the development of hepatic

steatosis (Jha et al, 2018a). LPC is a phospholipid generated from PC

by the removal of one of the fatty acid groups and might mediate

lipotoxicity in hepatocytes (Hirsova et al, 2016). Because Desulfovib-

rio increases in the gut when C57BL/6J mice transition into hepatic

steatosis and NASH (Xie et al, 2016), it might be speculated that

Desulfovibrio plays a role in NAFLD progression by affecting hepatic

CL and LPC levels. These new relationships require direct experi-

mentation to prove directionality and causality.

Our study has several limitations. Our association analyses

between hepatic lipids and phenotypes or gut bacterial species are

hypothesis generating. Follow-up studies are required to support

causal relationships. Because the members of each lipid category

are largely correlated, it is important to interpret single correlations

between lipid species and traits with caution. Furthermore, the

number of mice assayed in each strain ranged from 1 to 4 individu-

als. In particular, only one mouse was used for two strains, which

could contribute to analysis bias. Although we provided experimen-

tal in vivo evidence in mice for our murine GWAS candidate genes

Ifi203 and Map2k6 as regulators of accumulation of specific classes

of liver lipids, we did not both overexpress and knock down the

genes in mice. We also did not test whether we could get a dose-

dependent effect on hepatic lipids with different concentrations of

adenoviruses and AAVs. For example, we cannot exclude that less

overexpression of Map2k6 would resulted in a different phenotype.

In summary, our results provide data for hypothesis generation

for genetic and environmental factors of key importance for the

regulation of hepatic lipids in diet-induced NAFLD. We provide

several different examples of how the utilization of systems genetics

approaches can be applied to discover links between the hepatic

lipidome and phenotypic traits, and identified and validated two

novel regulators of hepatic lipids.

Material and Methods

Animals

All animal experiments were approved by the University of Califor-

nia Los Angeles (UCLA) Animal Care and Use Committee, in accor-

dance with Public Health Service guidelines. Mice strains in the

HMDP study were obtained from the Jackson laboratory and have

been described in detail (Hui et al, 2015). Experimental design of

the high-fat/high-sucrose (HF/HS) feeding study has also been

described previously (Parks et al, 2013; Hui et al, 2015). Briefly, the

mice were maintained on a chow diet (Ralston Purina Company)

until 8 weeks of age before switching to a HF/HS (Research Diet-

D12266B, New Brunswick, NJ) diet for another 8 weeks. Mice were

housed in a 12-h light/dark cycle with ad libitum feeding. Mice in

the diet study were either maintained on chow diet for 16 weeks or

maintained on chow diet until 8 weeks of age, and switched to a

HF/HS diet for 8 weeks. Mice from both studies were euthanized

after 4-h fasting starting between 10:30 AM and noon.

Lipid extraction and quantification

Liver samples (about 20 mg) from 279 male mice (n = 1–4 mice per

strain; n = 1 in 2 strains; n = 2 in 23 strains; n = 3 in 73 strains;

n = 4 in 3 strains) were homogenized and lipids extracted by 10 vol

of chloroform:methanol (v:v 2:1) (Folch et al, 1957). Internal stan-

dards, one for each lipid group, were added to the murine liver

samples (1 µg/ml) prior to adding the extraction solvent. The

following lipids were used as internal standards: PC-28:0, PE-28:0,

PG-30:0, PA-28:0, PI-31:1, Cer-35:1, SPM-35:1, DAG-28:0, TAG-39:0,

CE-15:0, CL-56:0, LPC-17:1, LPE-15:0, and FFA-17:1.

Lipidomics analyses were performed on mouse liver extracts

using high-performance liquid chromatography (HPLC) coupled to

time-of-flight mass spectrometry (TOF-MS) as previously described

(Norheim et al, 2018). This platform allows determination of

◀ Figure 6. Ifi203 regulates hepatic PC levels.

A Manhattan plot of genome-wide association for expression of Ifi203 in liver. Red line shows Bonferroni-corrected threshold, and blue shows an FDR = 0.01 P-value
of significance calculated based on FaST-LMM P-values.

B–D Allelic variation plots showing the peak SNP for Ifi203 expression (rs31614030) at the CC or TT allele (x-axis) plotted against expression of Ifi203 (B), levels of
hepatic PC(38:3) (C), and plasma insulin levels (D). Red line shows Bonferroni-corrected threshold, and blue shows an FDR = 0.01 P-value of significance calculated
based on FaST-LMM P-values.

E–G Correlation between the parameters listed above showing significant relationships between hepatic Ifi203 and PC(38:3) (E), hepatic Ifi203 and plasma insulin levels
(F) or PC (38:3) and plasma insulin (G). P-values were calculated based on significance of regression (Student’s test) and adjusted for multiple comparisons
(FDR = 0.05).

H Experimental design for validation of Ifi203 as a regulator of total hepatic PC levels on a HF/HS diet.
I–M Mice receiving the control virus (open bars) or shIfi203 (black bars) were analyzed for liver expression of Ifi203 (I), total PC levels in liver (J), expression of Pemt (K),

total liver TAG content (L), or plasma insulin levels (M). P-values calculated using a Student t-test between groups. Data represent means � SEM (n = 4–5 per
group).
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glycerolipids, glycerophospholipids, CL, sphingolipids, FFA, and CE.

In total, 256 specific lipids within these classes were identified. A

1260 Agilent chromatographic system comprising an auto-sampler,

a binary pump, and a TCC column heater unit coupled to a time-of-

flight mass spectrometer with Agilent JetStream ionization module

for enhanced sensitivity was operated in both positive and negative

ionization modes. To obtain high-resolution chromatographic sepa-

ration of the lipids, a C18-XB Kinetex analytical column with

(2.1 × 150 mm, 2.6 µm) was used with a flow rate of 0.8 ml/min.

The eluting mobile phase was generated using A (10:90 v/v, acetoni-

trile: 10 mmol/l ammonium formate) and B (70:25:5 v/v, isopro-

panol: acetonitrile, 10 mmol/l ammonium formate) mixed by a

binary pump generating a mobile phase gradient as follows: 0 min

(50% B), 12 min (70% B), 55 min (100% B), and 65% (100% B).

Injected volume was 5 µl (positive mode) and 10 µl (negative

mode).

Measurements of total lipid content using colorimetric assays

were performed as previously described (Norheim et al, 2017). A

colorimetric assay from Sigma (St. Louis, MO, USA) and Wako

(Richmond, VA, USA) was used to quantify TAG and PC, respec-

tively. Total cholesterol and unesterified cholesterol were

measured as described previously with in-house reagents (Castel-

lani et al, 2008). All raw lipidomics data are provided in Dataset

EV8. Integrated results from lipidomics and other datasets (e.g.,

mapping, correlation structure) are available at https://systems.ge

netics.ucla.edu/.

Adenoviral construction and administration

Recombinant adenovirus was generated using the AdEasy system

(Bennett et al, 2013). Briefly, linearized shuttle vector containing

full-length mouse cDNA for Ifi203 was transformed into Escherichia

coli BJ5183AD cells containing the adenoviral backbone plasmid

pAdEasy-1 for homologous recombination. Positive recombinants

were linearized and transfected into HEK293AD cells for virus pack-

aging and propagation. Adenoviruses expressing the candidate

gene were purified by CsCl banding and stored at �80°C until use.

For adenoviral infection, 10-week-old male C57BL/6J mice (fed a

HF/HS diet for 4 weeks) were injected the adenoviral construct

(� 2.5 × 109 PFUs diluted in 0.2 mL saline) intraperitoneally. After

overnight fasting, mice were sacrificed 9 days after injection, tissues

were extracted, and gene expression was assessed by RT–PCR. The

control group included mice injected with adenoviral construct

expressing the GFP gene.

AAV vector construction and in vivo transduction

The mouse and mitogen-activated protein kinas kinase 6 (Map2k6)

open reading frame was PCR-amplified from Dharmacon cDNA

clone ID 30541969 and cloned into the pENN.AAV.TBG.PI.eGFP

vector (p1014; Penn Vector Core) to replace eGFP. This vector

drives transgene expression from the liver-specific thyroxine-bind-

ing globulin (TBG) promoter (Yan et al, 2012). AAV serotype 8

(AAV8) particles were packaged and purified on a fee-for-service

basis at the Penn Vector Core (Perelman School of Medicine,

University of Pennsylvania, USA). eGFP-expressing vector was used

as control. AAV8 particles were intraperitoneally injected at a dose

of 3 × 1012 gc per mouse in 8-week-old male mice. After injection,

the mice were switched to a HF/HS diet for 8 weeks. Western blot-

ting was used to verify overexpression of hepatic Map2k6.

RNA extraction and reverse transcription

Cells or tissue were homogenized in Qiazol (Qiagen), and RNA

extraction was carried out as recommended. Samples were

suspended in 0.5 ml Qiazol each; then, 100 µl chloroform was

added. After vortexing, phase separation was achieved with

centrifugation at 18,000 g for 15 min. The aqueous layer was then

transferred to 1 ml isopropanol, vortexed, and then centrifuged

again. The remaining pellets were washed in 70% ethanol in water

then air-dried following centrifugation for 10 min. Purified RNA

was then suspended in 30 µl of water and assessed for purity and

concentration using a NanoDrop ND-100 Spectrophotometer. 2 µg

of total RNA per sample was reverse transcribed using a High-

Capacity cDNA reverse transcription kit (Applied Biosystems) with

random primers. Reverse-transcribed cDNA was then diluted in

water for qPCR analysis.

Quantitative PCR

Quantitative PCR was carried out using a Kappa SYBR Fast qPCR Kit

as recommended by the manufacturer. Samples were analyzed on a

LightCycler 480 II (Roche) and using the Roche LightCycler 1.5.0

Software. All qPCR targets were normalized to geometric mean of

RPL13a and PPIA expression and quantified using the delta Ct

method. All qPCR primer sequences were obtained from Primer-

Bank (http://pga.mgh.harvard.edu/primerbank).

Microbial DNA extraction and sequencing

Cecum samples were collected (Parks et al, 2013) and sequenced

(Org et al, 2015) in previous studies, and methods are briefly

described here. Microbial DNA was extracted following MO BIO

PowerSoil�-htp 96 Well Soil DNA Isolation Kit. The 16S rRNA V4

hypervariable region was amplified with barcoded primers (Capo-

raso et al, 2011) in triplicate using the 5 PRIME HotMasterMix

(VWR). Products were quantified with Quant-iTTM PicoGreen�

dsDNA Assay Kit (Thermo Fisher), and samples were combined in

equal amounts (~ 250 ng per sample) to be purified with the Ultra-

Clean PCR� Clean-Up Kit (MO BIO). Pooled amplicons were

sequenced on the Illumina MiSeq platform.

Raw sequences were processed with the open source Quantita-

tive Insights Into Microbial Ecology (QIIME) software package

version 3.6.1 (Caporaso et al, 2010). Sequences were binned at 97%

similarity using UCLUST against a Greengenes reference database

(McDonald et al, 2012). Singletons, OTUs representing less than

0.005% total relative abundance, and unsuccessful samples with

less than 1,000 reads were removed resulting in 14,722,208 total

reads, with an average of 23,258 reads per sample. Sequences were

rarefied to 10,056 reads per sample to accommodate unequal

sampling depth leaving 613 samples for downstream analyses.

Plasma insulin, glucose, and lipids

Blood was collected from mice using retro-orbital bleeding under

isoflurane anesthesia. Plasma levels of insulin, glucose, HDL, and
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LDL were measured as reported previously (Castellani et al, 2008).

Homeostatic model assessment of IR (HOMA-IR) was calculated

using the equation [(glucose × insulin)/405].

Western blotting

Western blotting was performed as described previously (Chella

Krishnan et al, 2018; Seldin et al, 2018). Primary antibodies were

used as follows mouse monoclonal Map2k6 (Abcam # ab33866) and

rabbit monoclonal b-actin (Cell Signaling # 4967S, 1:1,000). Blots

were imaged using IMAGER.

Association analysis

Genotypes for the mice strains were obtained from the Jackson

Laboratories using the Mouse Diversity Array (Yang et al, 2009).

Single nucleotide polymorphisms (SNP), which had poor quality or

had a minor allele frequency (MAF) of less than 5% and a missing

genotype rate of less than 10%, were removed. After filtering,

200,000 SNPs were left. Genome-wide association for hepatic lipids

was performed using Factored Spectrally Transformed Linear

Mixed Models, which applies a linear mixed model to correct for

population structure (Lippert et al, 2011). A cutoff value for

genome-wide significance was set at 3.46 × 10�6, as determined

previously for the HMDP (Bennett et al, 2010). Hepatic lipids not

identified in more than 50% of the strains were excluded from the

analysis (36 lipid species). LD was determined by calculated pair-

wise r2 SNP correlations for each chromosome. Approximate LD

boundaries were determined by visualizing r2 > 0.8 correlations in

MATLAB (MathWorks).

Accession numbers

The NCBI GEO accession number for microarray data reported in

this paper is GSE64770. Microbiota composition data are available

via NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.

gov/sra/) under accession number SRP059760.

Lipidome module construction

Hepatic lipidome measures were collapsed into modules using

WGCNA. Briefly, hierarchical clustering was used to detect outliers,

retaining 211 lipids. Next, blockwise module construction was

performed using a minimum module size of five lipids and a merge

cut height of 0.25.

Statistics

Correlations were calculated with biweight midcorrelations from the

R package WGCNA (Langfelder & Horvath, 2008). Unless otherwise

noted, values are expressed as means � SEM. The two-sample

Student’s t-test was used to evaluate the difference between the two

groups. Identification of differentially expressed lipid species in each

condition was performed using the R package limma (Ritchie et al,

2015). All analyses were performed using R 3.5.3 (Vienna, Austria),

and P-values < 0.05 were considered statistically significant.

Network models were visualized using the package qgraph and

manhattan plots generated using qqman.

Data availability

The NCBI GEO accession number for microarray data reported in

this paper is GSE64770 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE64770). Microbiota composition data are available

via NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.

gov/sra/) under accession number SRP059760. Lipidomics data are

provided in Dataset EV8.

Expanded View for this article is available online.
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