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Abstract

Foveated Vision Models for Search and Recognition

by

Thuyen Van Ngo

Computer vision has made a significant progress in recent years thanks

to advancement in neural network architectures and computing power. At

the sensory level, the current machine vision systems sample the visual data

uniformly to make predictions about the scene. This is in contrast with the

human vision system that has high visual acuity only in a small central region,

the fovea, and much coarser sampling away from the center. There has been a

renewed interest, particularly in the context of active vision for robotics navi-

gation and scene exploration, to develop biologically motivated methods that

can leverage such foveated computations. While foveated vision offers com-

putational savings at or near the region of interest, it requires eye movements

to scan the scene for effective image understanding. The hypothesis is that

methods that can leverage non-uniform sampling of the field of view together

with eye-movements will lead to a new class of active vision systems that are

optimized computationally for specific tasks of interest.

Inspired by the above observations, this research provides, for the first time,
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a comprehensive study of the human visual search in the constrained setting

of person identification in the wild. A novel video database is created that

systematically tests how different parts of a person contribute towards eye-

movements and person identification. Our study shows that the search errors

can dominate the overall recognition accuracy in human subject experiments.

This calls for new strategies for integrating eye tracking with foveated image

representations. Towards this two specific approaches are investigated further.

In the first approach, a deep neural network based method is developed

to model eye movements. Using the long-short-term-memory to model the

successive fixations. The proposed method outperforms state of the state of

the art performance while simplifying the feature extraction procedure. The

second approach focuses on the foveated image model that leverages multiple

fixations. A convolutional neural network method is proposed that works

directly with the foveated input images that achieves competitive recognition

rates compared to standard neural networks operating on the same number of

input pixels.

Overall the thesis investigates the requirements and implementations that

could support active foveated vision, and lays down the ground work for future

studies in this area.
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Chapter 1

Introduction

1.1 Motivation

Different from machine vision, human vision possesses a movable spatially

variant visual sensory system that has high resolution at the central fovea and

decreasing resolution in the periphery. This allows us to process fine details

where necessary (in the fovea) but still gives us enough information in the

periphery for further exploration. The configuration reduces the number of

pixels in the retina one thousand times less than the representation which

uses high resolution in the whole field view. The pixel reduction benefits both

communication and computation, allowing us to understand the scene very

efficiently. Given intensive computation required in current computer vision
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Introduction Chapter 1

algorithms, it is desirable to take this into account for machine vision systems.

However, most computer vision algorithms only work with uniformly sampled

images. Not until recently, there exits machine vision systems that can work

with nonuniform sampled inputs [1, 2] as well as active vision systems [3, 4]

and mechanical systems to support sensory movement [5, 1].
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Figure 1.1: Distribution of rods and cones (photoreceptors) in the human

retina, adapted from R. W. Rodieck, The First Steps of Seeing, Sinauer As-

sociates, 1998 [6]. The graph illustrates that cones (green) have low density

throughout the retina, with a sharp peak in the center of the fovea and rods

(red) have high density throughout most of the retina, with a sharp decline in

the fovea.
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Introduction Chapter 1

This trend is likely to continue with robotics systems requiring exploration

and environment understanding at the same time. Given the similar goals of

such machine vision systems and human vision, and the efficiency of human

vision in carrying out common search and recognition tasks, it is desirable

to understand how foveated vision work and build computational recognition

system for foveated sensory signals directly.

1.2 Summary of Dissertation Contributions

Different from current computer vision systems where the input images

are assumed to be collected in a regular 2-D grid, the foveated configuration

requires the system to 1) plan sequence of locations to fixate; 2) gather in-

formation at each fixation; and 3) integrate acquired information across those

locations. Our goal is to understand characteristics of such systems and build

modern neural architectures that operate on the learned principles. Towards

this, we first study how humans perform a visual search task. Next, a neu-

ral network based approach is proposed to model eye movements that further

improves upon the current state of the art models. Finally, a new foveated

convolutional neural network is presented that leverages multiple fixations and

is adaptive to available computational resources. The main contributions are

now summarized:

3



Introduction Chapter 1

• This research provides new insights into visual search by humans. A

novel and unique dataset is curated that includes videos in the wild.

One interesting observation from the human subject experiments is

that humans can make more search errors than recognition errors in

person identification tasks. Also humans tend to look at below the face

when the person’s head is occluded or otherwise not visible, and look at

the face regions even when the facial features are unavailable. Finally,

current computational machine vision methods do not prioritize face

regions as humans do in such person identification tasks.

• We propose a simple and efficient method for gaze estimation. The

proposed approach removes dataset-dependent feature engineering steps

and achieves state of the art performance.

• Complementing the gaze prediction, we propose a convolutional neural

network for foveated image recognition. This is the first recognition

system to operate on fovated images directly. The proposed method

is able to handle multiple fixations, and can be made adaptive to

the computational budget by allowing more fixations to improve the

overall recognition performance.

This thesis is organized as follows:

4



Introduction Chapter 1

• Chapter 2 discusses current research in visual search and foveated

vision.

• Chapter 3 studies how humans search for target people in dynamic

scenes. A novel video database is created that systematically tests

how different parts of a person contribute towards eye-movements and

person identification. In this task subjects rely strongly on the face

where performance drops by a large amount when facial information

is removed. Our study shows that the search errors can dominate

the overall recognition accuracy in human subject experiments. The

recorded eye movements show that humans have strong a bias to-

wards faces. But when being forced to fixate at faces subjects do

not obtain maximum performance, which suggests that face-centered

strategy does not necessarily maximize the person identification per-

formance in human subject trials but likely arises as a byproduct of

the implementation of a heuristic strategy that optimizes perceptual

performance across a battery of evolutionary important tasks. Per-

formance of two current computer models, a foveated ideal observer

and a naive convolutional neural network, is compared against human,

showing that machine models treat faces similar to other features and

are outperformed by human subjects by a large margin.

5
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• Motivated by the results in Chapter 3, Chapter 4 aims to model hu-

man eye movement directly. Given an image, we want to predict the

most likely sequence of fixations a human would follow. We leverage

recent advances in image recognition using convolutional neural net-

works and sequence modeling with recurrent neural networks. Feature

maps from convolutional neural networks are used as inputs to a recur-

rent neural network. The recurrent neural network acts like a visual

working memory that integrates the scene information and outputs

a sequence of fixations. The model is trained on human eye track-

ing data. The proposed approach removes dataset-dependent feature

engineering steps and achieves state of the art performance.

• Chapter 5 goes a step further to build a model of image recognition

that can operate on foveated input images. Current methods use spa-

tially variant filtering to create foveated images, retaining the same

number of pixels as the original inputs. Assuming a log-polar repre-

sentation of foveated sensory signals, a circular convolutional neural

network is designed to perform image recognition. To the best of our

knowledge, this is the first time that a convolutional network is de-

veloped to work directly with the foveated image data. The proposed

method is also able to handle multiple fixations giving better perfor-

6
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mance with more fixations, thus adaptive to the given computational

budget.

• Chapter 6 summarizes the thesis and proposes future directions.

7



Chapter 2

Visual Search and Active Vision

Biological vision has always been a great source of inspiration for design of

computer vision algorithms. Previous research includes methods that func-

tionally mimic biological vision systems to varying degrees, to models that are

primarily developed to explain biological observations. In the following we

briefly review some well-known models of visual attention and search.

2.1 Studies of Visual Attention and Search

There exist many works on visual attention that estimate saliency or the

gaze distribution over an image. Most methods rely on bottom-up processing,

which is the processing of information that uses only the input from the envi-

ronment. In [7] center-surround feature maps are computed from the Gaussian

8
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pyramid for color, intensity and orientation channels, and then combined into

a single saliency map. Graph-Based Visual Saliency (GBVS) model [8] ex-

tracts similar features as [7] but builds a graph associated with each feature

map. Saliency maps are then the stationary distributions of a Markov chain

induced by the graphs, and finally combined into a single saliency map. The

model proposed in [9] is based on center-surround property, contrast sensitiv-

ity function, visual masking and perceptual decomposition. Figure 2.1 shows

the result of such a model beside the original image. The input image on the

left contains two baskets of objects. The resulting saliency on the right is able

to pick up regions with dominant objects in the scene.

9
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Figure 2.1: Example results of a visual attention model, obtained using algo-

rithm from [9]. The input image on the left contains two baskets of objects.

The heat map of output saliency is overlaid on the input image. The resulting

saliency on the right is able to pick up regions with dominant objects in the

scene.

Another body of work has devoted to visual search. Since search comes

with goals, humans utilize top-down processing, taking advantage of prior

knowledge about the targets to efficiently identify them. An importance

question during search is the strategies humans use to make eye movements

[10, 11, 12, 13]. Due to the foveated nature of the visual system, humans need

to fixate to the object of interest to obtain a high resolution image of the stim-

uli in the fovea. Thus eye movements are needed to gaze at different objects

in the scene. Such movements are called saccadic eye movements. Not only

search but many other tasks would require top-down processing and making

10
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eye movements. Figure 2.2 shows typical saccades while reading a piece of

text. The size of the circles represents the time spent at any one location and

the line connecting any two circles represents a saccade.

Figure 2.2: Example of eye movement during reading obtained from [14].

2.2 Computational Models of Human Visual

System

Most models of the human visual system focus on visual recognition, which

is the ability to label an image with a meaningful category irrespective of view-

ing distance, position, size or context. For human vision, this task involves

most of visual areas, from primary visual cortex (V1) to inferior temporal cor-
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tex (IT). Neurons in higher level can maintain selectivity while being invariant

to positions and scales. IT neurons, for example, response strongly to various

faces at different position and sizes but not at all to other stimuli. Current

computational models achieved this ability by organizing computation in a

hierarchical manner, corresponding each stage of computation with a neural

process in cortex area. Computation at a certain stage pools or integrates

different adjacent inputs from the previous stage, obtaining more complex

representations. A computational unit, therefore, will be able to response

similarly to slightly translated inputs. This invariance will increase with more

stages of computation. A mong very fist hierarchical models are feedforward

models with a homogeneous multilayered architecture. Later Fukushima pro-

posed Neocognitron [15] architecture to further account for translation invari-

ance. These models are all motivated from pioneering physiological studies by

Hubel and Wiesel [16]. Many models have been proposed since then based on

the simple-complex-cell models by Hubel and Wiesel, including VisNet [17],

HMAX [18], and, convolutional neural networks (CNNs). A schematic of the

HMAX model is shown in Figure 2.3.
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V1

V2-V4

PIT

AIT

complex cells
simple cells

Figure 2.3: Schematic of the HMAX hierarchical computational model of the

visual cortex [18]. V1, V2 and V4 correspond to primary, secondary and qua-

ternary visual areas; PIT and AIT to posterior and anterior inferior temporal

areas, respectively.

Variants of Fukushimas Neocognitron [15] have become popular in com-

puter vision and are popularly referred to as convolutional neural networks

(CNNs). While existing computer alogirthm algorithms could recognize geo-

metric patterns in images, they were not able to generalize very well, or learn

how those patterns might occur in other parts of the image. Fukushimas con-

tributions take advantage of the shift invariance property of visual input for

13
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Figure 2.4: A modern convolutional architecture first proposed by Yann Lecun

in [19] for digit recognition. The network consists of successive convolutions,

nonlinearity and downsampling. At the end, activations are flattened into a

vector before classification.

recognition build that into the classifiers. Yann Lecun then improved the ar-

chitecture [19] and co-developed backpropagation for efficient training of such

networks [20].

Another important feature of this architecture is that it forces weight-

sharing among neurons and thus reduces the number of parameters involved.

While traditional image classification approaches rely on manual encoding

of features, having an expert define where certain patterns will occur in an

image. CNNs can obtain this same information efficiently through training.

Equipped with development of large datasets and unparalleled computing re-

sources, CNNs have achieved state of the art performance in computer vision

in recent years.
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2.3 Foveated Active Vision

Active vision has been studied extensively in robotics for the ability to

actively move the sensors to explore the environment. This ability is desir-

able for mobile robots where they need to navigate and understand unseen

environments. Such a system shares many goals similar to human observers

exploring a new environment. Motivated by efficiency of human visual system,

many recent works have built hardware to actuate human-like foveated vision

systems, mostly focus on the device’s ability to 1) capture foveated images

and 2) make cameras movable. Examples of such systems include foveated

wide angle lens for active vision [21], binocular, foveated active vision system

[4], reconfigurable foveated active vision system [22]. However, there are very

limited image processing and computer vision methods that can operate on

foveated inputs. Simple algorithms exist to detect lines, circles [23] and other

simple shapes but they are very far away from being able to recognize object

classes or guide camera movements for navigation.

In order to fully take advantage of the aforementioned foveated sensors,

it is necessary to develop algorithms that can work directly with foveated

inputs, including eye movement planing and object recognition. Inspired by

the human visual system, this thesis will explore what would be important to

humans and how they make eye movements 2) models of human eye movements

15
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3) recognition models with foveated input images.
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Chapter 3

Face-centered human strategy

for searching for people in the

wild

This chapter focuses on understanding how humans search for person identifi-

cation in dynamic scenes. More specifically we study factors that would affect

the search task, including where human subjects fixate in the scene while car-

rying out the task. In static scenes, current research suggests that human

subjects focus on the face region when the resolution enables face recognition,

and use the whole body information otherwise [24], [25], [26] and [27]. In con-

trast, the results presented in this chapter focus on dynamic, in the wild, data

17



Face-centered human strategy for searching for people in the wild Chapter 3

where there could be multiple distractors such as other people in the scene

moving around in a natural, unconstrained, environment. Humans tend to

look at the face region in natural scenes and also in manipulated scenes where

faces are removed. We conclude the chapter evaluating two different machine

models for the task: a foveated ideal observer (FIO) and a naive convolutional

neural network (CNN). Both CNN and FIO do not weight faces as important

as humans do.

3.1 Introduction

There is a large body of work investigating human visual search with simple

synthetic displays (Ts among Ls) [28, 29, 30, 31, 32, 33]; or simple target in

noise [34, 35, 36, 37, 38] or objects in real scenes [39, 40, 41] and trying to

understand the underlying eye movement strategies [10, 11, 12, 13], important

features [28, 42] and processing limitations. There is also a separate literature

identifying the eye movement plans [43, 44, 45, 46, 47] and facial features

utilized by humans to determine the identity [48], gender an emotion in a

face. Those studies suggest that humans primarily use the eyes and mouth

for the face judgments [48, 49] and fixate at a featureless point just below

the eyes to optimize the acquisition of information through their foveated

visual system [43]. A number of recent studies have expanded the processes

18
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by which a person is recognized from a picture or video of the whole person

[24, 25, 27, 26]. Yet, those studies involve a single person in a picture or video

rather than in a search in a crowd scenario and have not looked at the eye

movement patterns of observers and their functional importance.

Little is known about how humans search for another person in crowds.

Which features of a person (face, head, body) guide the eye movements to-

wards searched people in the crowd? Which features are critical to correctly

determine the identity once a target person is fixated? Do humans direct their

eyes to a consistent location within a person and do these fixations have a func-

tional importance for identification? And finally, does the human utilization of

features and eye movements reflect an interaction between the distribution of

visual information critical for the person identification and the foveated nature

of the human visual system?

To answer these questions, we construct a novel video-in-the-wild database

for human subject experiments. The subjects are tasked with deciding if a

given video segment contains one of two target persons or neither, a 3-category

decision. The database is curated so as to expose specific parts of the human

body, i.e., face only, body only, and facial hair with body. We investigate the

influence of the presence or absence of these features on the search error where

the subjects fail to fixate on the target of interest, and separate that from

19
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the recognition errors which are due to mis-identification while fixating on the

correct target. We measure the location of fixations within the head-to-toe

image of people in the videos to assess whether there is a consistent point of

fixation and how fixation varies with viewing angle as well as absence of salient

features. To assess whether the position of fixation to people has a functional

importance for perceptual performance, we conducted a separate psychophysi-

cal study with still pictures where observers are instructed to maintain fixation

at different points along the persons body.

3.2 Materials and Methods

Subjects. Each separate study (free eye movements and forced fixation study)

was completed by a separate group of 60 undergraduate students (120 total,

55 males and 65 females) participating for research credits. Informed consent

was obtained for all subjects following guidelines provided by the Institutional

Review Board at the University of California, Santa Barbara. Participants also

provided consent to the utilization of their pictures in scientific publications.

Eye Tracking. The left eye of each participant was tracked using an SR-

Research Eyelink 1000 Tower Mount eye tracker sampling at 1000 Hz. A

nine-point calibration and validation was run before each 120-trial session,

with a mean error of no more than 0.5 degrees of visual angle. If participants

20
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moved their eyes more than one degree from the center of the fixation cross

before the stimulus was displayed, the trial would be aborted and restarted

with a new stimulus.
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3.2.1 Visual Search Task

Figure 3.1: A snapshot of LabelMeVideo toolbox for video annotation. The

software provides rectangle and polygon drawing tools for each frame. The

annotator only needs to draw a shape (rectangle in this case) in sampled

frames and the software will provide smoothed shapes across all frames by

interpolation. The tool is used to annotate head and body.

22
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Figure 3.2: A snapshot of the custom face annotation tool in Matlab. This

provides an easy way to draw ellipses to fit the shape of faces. In the above

image, the ellipse is initialized on a person’s face (red region on the left) and

resized by the annotator accordingly to fit the face.

Stimuli. The dataset consists of 120 videos collected at UCSB campus by

the Vision and Image Understanding Lab. The videos were staged with our

target people and other distractor people at different campus locations across

different days to ensure that clothing varied across the videos. The filming
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lasted over six weeks. All participants in the video have given written con-

sent to be filmed and allow utilization of their images. Two people (a male

and female) which we will refer to as Fando (male) and Lis (female) were as-

signed as targets. One third of the video clips contained Fando (but not Lis),

one third contained Lis (but not Fando), and one third contained neither of

them. Six second clips were extracted from each video for our experiments.

To isolate certain features, individual frames need to be annotated with the

corresponding features. Body and head annotations were conducted using La-

belMeVideo [50]. The face annotation was done using an in-house software

written in Matlab. All annotations were collected by undergraduate students

at the University of California, Santa Barbara participating for research cred-

its over a school year. The outline of the procedure is shown in Figure 3.1 and

Figure 3.2. A background of each video can be obtained by taking median of

all frames in the video due to the fixed camera settings. The region within

each annotation is filled with this background erasing the specific feature while

preserving immediate background. Sampled frames from stimuli can be viewed

in Figure 3.3 and Figure 3.4.
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intact

bodiless

Figure 3.3: Example frames from four conditions in the experiment: intact

(top) and bodiless (bottom). Sampled eye movement data from human sub-

jects are also overlaid in the corresponding conditions.
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faceless

headless

Figure 3.4: Example frames from four conditions in the experiment: face-

less (top) and headless (bottom). Sampled eye movement data from human

subjects are also overlaid in the corresponding conditions.
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Task: The task was to assess whether Fando, Lis was present or neither

were present (3 category task). There were four feature conditions intermixed:

intact videos with all features (intact), headless, bodiless, and faceless. To

minimize effects of memory of specific videos, the experiment was a between

subject design, meaning that each observer saw a video only once and different

videos might come from different conditions.

Procedure: Observers first watched sampled videos and images of targets to

familiarize themselves with the targets (Fando and Lis). These sample images

were not used in the experiment. They then were presented with a total

of 120 video clips. During each trial, observers were briefly shown a video

(framerate = 30 frames per second) with randomly chosen presentation times

(1, 2, 3, 4, 5, or 6 sec). No specific instructions were given to observers about

eye movements or search strategies. After the presentation of the video clip

and response image was shown, observers select one of three keys to indicate

whether Fando, Lis or neither were present. A schematic overview of the

experiment is shown in Figure 3.5.
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Fando Lis Neither

Videos 

Fixations
500-1500ms 

Stimuli
free: 1-6s 

Response

Targets

Figure 3.5: Task time line for the free eye movement experiment. First the

participating human subject is asked to fixate to a specific fixation on the

screen. A stimulus (a video) is then shown for a duration from one to six

seconds. After that the subject needs to provide a response on where she/he

sees the first target, the second target, or neither of them in the video.

3.2.2 Forced Fixation Task

Stimuli. 120 static images are cropped around a person of interest from the

videos used in the visual search task. They are then normalized to a fixed

28



Face-centered human strategy for searching for people in the wild Chapter 3

scale occupying 15 degrees of visual angle. Similar to the visual search task,

one third of the images contained Fando (but not Lis), one third contained Lis

(but not Fando), and one third contained neither of them.

Task: The task was to assess whether either of Fando or Lis is present, or

neither is present. There are four feature conditions intermixed: intact videos

will all features (intact), headless, bodiless, and faceless. The experiment also

uses a between subject design where each observer saw an image only once

and different images might come from different conditions.

Procedure: Observers first watched sampled images of targets to familiarize

themselves with the targets (Fando and Lis). These sample images were not

used in the experiment. A dot representing the desired fixation location is

then presented and the subject is asked to fixate to the dot. Stimulus is

then presented for 200ms. The trial is discarded if the subject makes an eye

movement away from the dot (1 degree). After the presentation of the image

and response image was shown, observers select one of three boxes to indicate

whether Fando, Lis or neither were present. A schematic overview of the

experiment is shown in Figure 3.6.

29



Face-centered human strategy for searching for people in the wild Chapter 3

Forced fixations
(static images) 

Fixations
500-1500ms 

Stimuli
fixed: 200ms 

Response

Fando Lis Neither

Figure 3.6: Task time line for the forced fixation experiment. First, the partic-

ipating human subject is asked to fixate to one of four designated locations on

the screen. The similus (an image) is shown for 200 ms. During the process,

the subject is not allowed to make eye movements. If an eye movement is

detected, the trial will be discarded. At the end the subject needs to provide

a response on where she/he sees the first target, the second target or neither

of them in the image.
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3.2.3 Computational Models

We utilized computational models to generate theoretical predictions of

the influence of features on recognition performance taking into consideration

the distribution of discriminatory information across the head and body of

people and the foveated nature of the human visual system. The models

were developed for the forced fixation task with the still images extracted

from the videos and utilized for the human study. Below we describe the two

computational models.

Foveated Ideal Observer. The first model we utilized to evaluate what

might be the optimal point of fixation for person identification is the foveated

ideal observer. The model has been utilized previously to correctly predict the

human optimal point of fixation to faces and how these change with central

vision loss [43, 46, 51]. The model takes into account the varying spatial detail

of visual processing with retinal eccentricity, and integrates the information

across the visual field to make optimal decisions. To simulate the effects of

eccentricity on sensitivity to different spatial frequencies, we used a spatially

variant contrast sensitivity function (SVCSF) linear filtering function that took

points of fixation, eccentricity, and direction away from fixation as variables.
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The function has a form given by:

F (f, r, θ) = c0f
a0e−b0f−d0(θ)r

n0 (3.1)

Fixation in center
of image

Rotationally symmetric
CSFs (frequency domain)

0 1Contrast

Figure 3.7: Foveated (spatially varying) filtering. For a given fixation, the

space is quantized into polar bins. For each bin, a filter with frequency re-

sponse computed using Equation 3.1 is applied to the image within the corre-

sponding bin. The results for all bins are combined in the output. The image

demonstrate the procedure for two bins: one at the fixation and another bin

nearby.

In the above equation f is spatial frequency, (r, θ) are polar coordinates

of the considered location centered at the fixation. d(θ) is the orientation-

dependent that is linearly interpolated among upward, downward and hori-

zontal directions dd, du, dh. The parameters c0, a0, dd, du, dh of the equation

are constants whose values are based on previous work for faces [43, 46, 51].
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Input Argmax
foveated
Templates

Neither

Fando Lis

(a) Overview of FIO prediction pipeline. A template is represented

by a vector where each element is the dot product of the noisy

template with other templates in the dataset. First a Gaussian

distribution is built for each template assuming the noise follows a

gaussian distribution. Given a noisy image, its likelihood of belong-

ing to each class is computed using the aforementioned distribution.

Classifier
Conv

Layers

Representation

A
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 p
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Fando
Lis

(b) Overview of CNN prediction pipeline. First features are ex-

tracted using a pretrained CNN. An SVM classifier is then used to

make prediction on target classes.

Figure 3.8: Foveated ideal observer and traditional convolutional neural net-

work models for classification.
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The exponential decay n0 was fitted to match human experiment data in the

forced fixation task. The overall filtering procedure is shown in Figure 3.8a.

For any given fixation point, the input image (with the same contrast and ad-

ditive white noise as viewed by the humans) is filtered by the SVCSF. The FIO

compares this filtered noisy input with similarly filtered noise-free templates

of each possible face, resulting in a set of template responses. The template

responses follow a multivariate normal distribution with mean vector and co-

variance. The model then computes the multivariate normal likelihoods of all

template responses given that each image of a target is present (Fando, Lis,

or other people). The likelihoods are summed within each class, resulting in

a collection of summed likelihood terms. The FIO then takes the maximum

of these summed likelihoods as the decision. FIO model can be summarized

in Figure 3.7. Since the same data is used for creating the model and mea-

suring performance, FIO measure the goodness of fit rather than recognition

performance.

We ran the FIO on a total of 120 still images are extracted from different

videos. Of these images one third contained Fando, one third Lis and one third

neither. White noise with a standard deviation of 4 was added to the images.

Convolutional Neural Networks. In contrast to FIO models, convolutional

neural networks offer a way to validate the model for new images in the test-
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ing data set. Convolutional layers apply convolution operations to the input,

passing the result to the next layer. The convolution emulates the response

of an individual neuron to visual stimuli. The final layer acts as a classifier to

produce the desired output. CNN model is summarized in Figure 3.8b.

We used Resnet152 [52] to extract features from images and only trained a

Linear SVM [53] on the extracted features. Inputs to the CNN could be either

original or foveated filtered images. Images are splits into 5-fold validation

sets so that appearance of people are different among 5 sets. In each training

session one fold is held out for validation and the results are averaged across

5 folds.

3.3 Results

3.3.1 Influence of features on human search accuracy

Figure 3.9 shows average perceptual performance (proportion correct, PC)

of human subjects, for the feature conditions were 0.7892 ± 0.0118, 0.5717 ±

0.0144, 0.5492 ± 0.0144, 0.7300 ± 0.0128 for the intact, faceless headless and

bodiless condition correspondingly. The results show a big influence on task

performance for the face and head (24 % and 27 % PC reduction against the

intact condition) compared to the body (5 % PC reduction), even though they
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are all statistically significant (p-value � 0.05). The contributions of head

and face are less distinctive (p-value = 0.055). In detail, the pairwise two-

sided t-test between conditions are: intact vs faceless t = 12.8, p-value = 0;

intact vs headless t = 14.50, p-value = 0; intact vs bodiless t = 3.4, p-value =

3.4 × 10−4; bodiless vs headless t = 10.9, p-value = 0; bodiless vs faceless

t = 9.2, p-value = 0; headless vs faceless t = 1.6, p-value = 0.055.
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Figure 3.9: Human performance in Proportion Correct. Overall the face and

head information are important for the search task, indicated by a large drop

in human performance when face or head information are absent.

Figure 3.10 shows performance as a function of presentation time for the
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various feature conditions. Overall the pattern of results were similar across

all presentation times with intact achieving the highest accuracy, bodiless, and

then faceless and headless and no significant interaction (analysis of variance,

or ANOVA); Grouping trials with the same viewing time we can see the average

PC of all conditions are increasing overtime and their distinctions are less

pronounced when videos are very short (at one second two-sided t-test between

intact and bodiless p-value = 0.33 and faceless and headless p-value = 0.7) and

become more obvious when time increases (at six seconds the test results are

p-value = 0.0034 p-value = 0.02 correspondingly).
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Figure 3.10: Human performance as a function of viewing time. The trends

are similar to the overall performance 3.9, emphasizing the importance of face

and head information.

3.3.2 Eye movement Analysis

Fixations during search. On average, each video contained an average of

3.7±0.14. Of all fixations, 45 % were directed towards people in the videos (40

% with a tolerance of 0.5 deg). Figure 3.11 shows the number of fixated people

increased with presentation time but it was typically less than the total number

of people in the video. Specifically the average numbers of fixated people are

1.7± 0.04, 2.645± 0.034, 2.795± 0.04, 2.99± 0.03, 3.29± 0.04 and 3.31± 0.04
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for the viewing time of one, two, three, four, and five seconds correspondingly.
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Average number of people in videos

Figure 3.11: Number of people being fixated as a function of viewing time.

3.3.3 Search Error and Recognition Error

To isolate contributions of the features to eye movement guidance towards

the targets from contributions to recognition performance, we divided errors

into two categories. Search errors refer to trials in which observers miss the

target and fail to fixate on it. Recognition error are the trials in which observers

fixate the target but fail to identify correctly identify it. Figure 3.12 shows

search and recognition errors averaged across observers. In intact and bodiless

conditions the search errors dominate recognition errors. The results also show
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that the head and face features are important not only for recognition but also

to guide eye movement during search. Search errors also increased significantly

when the head and faces were removed.
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Figure 3.12: Search and Recognition Errors. The horizontal bar show the

comparison between two conditions where * indicates statistical significance

whereas ** does indicates not statistical significance. In intact and bodiless

conditions the search errors dominate recognition errors. When the head or

face is absent, the recognition errors jump more than search errors. This

suggests face and head have more influence on recognition.

The averages of quantities are calculated per subject and shown in Figure

3.12. Average recognition errors are 24.67 ± 1.3, 18.41 ± 1.5, 7.83 ± 0.99

7.33±1.03 for headless, faceless, bodiless and intact conditions correspondingly.
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Average search errors 17.0±1.05, 15.75±1.11, 12.5±1.05, 9.5±0.9 for headless,

faceless, bodiless and intact conditions. And the average errors 41.67 ± 1.78,

34.17 ± 2.2, 20.5 ± 1.6, 16.83 ± 1.5 for headless, faceless, bodiless and intact

conditions. p-values of two-sided t-test comparing recognition error during

headless, faceless and bodiless condition against intact condition are 1.3 ×

10−09, 3.9×10−06 and 0.365. Similarly p-values for search error are 1.6×10−05,

1.7× 10−04 and 0.02. Statistically significant tests are denoted by ∗ in Figure

3.12.

3.3.4 Preferred Points of Fixations within the silhou-

ette of a person

We also analyzed the preferred points of fixation on the silhouette of the

people in the videos. We analyzed a total of 20,000 fixations. To analyze the

preferred points of fixations, we utilized the annotations of the people in the

videos to map fixations into a normalized silhouette. Figure 3.13a and Figure

3.13b show the heat maps of the fixations across the four feature conditions.

In general, we see a remarkable consistency of looking at the face of a person.

The only departure from this strategy is the headless condition in which the

observers look at the upper part of the body just below the location where the

head would appear.
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intact faceless headless bodiless

n = 7761 n = 6890n = 7515 n = 7592

intact faceless headless bodiless

(a) All fixation densities.

intact faceless headless bodiless intact faceless headless bodiless

2194 19582146 2275

(b) First fixation densities.

Figure 3.13: Fixation distributions overlaid on a normalized person template.

Left: densities are normalized within conditions, highlighting conditional dis-

tributions. Right: densities are normalized across conditions, showing relative

distributions. Overall we see a strong attention bias to face and head. Es-

pecially in the absence of the face, the fixation distribution is still centered

around the face. In the absence of the head, the distribution center shifts to

below the face region.
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(a) Distribution of face sizes.
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(b) Vertical fixation distributions across face sizes. Within each condition, the

fixation distributions does not change a lot when face sizes or distances to the

camera change.
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Because the distance of individuals from the camera varied across and

within the video, the visual angle subtended by a person varied. We assessed

the influence of the visual angle subtended by the individuals on the video

(see methods) on fixations. Figure 3.14b shows the fixation location expressed

in terms of % of distance between the top of the head and the feet for dif-

ferent visual angles subtended by the faces (x-axis). For all feature condi-

tions we found statistical significant changes in the preferred points of fixation

(ANOVA, p-values 4.16 × 10−26, 3.17 × 10−81 1.16 × 10−19 and 6.44 × 10−26

for faceless, headless, bodiless and intact conditions correspondingly). How-

ever, the magnitude of the changes with viewing angle were not large with the

largest (headless condition) being a change in 10 % of the distance between

the head and the feet of the indviduals in the videos. Fixation distributions

on the normalized person template across different face sizes also have similar

trends, as shown in Figure 3.17 and Figure 3.18.

To evaluate whether these preferred points of gaze had functional impor-

tance, we conducted a second experiment that forced observers to maintain

one of four fixation locations along the midline of the person body while the

stimulus was displayed for 200 ms (Figure 3.6).
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3.3.5 Human Accuracy vs. FIO, CNN, FIO-CNN
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Figure 3.15: When being forced to fixate at faces subjects do not obtain

maximum performance for faceless and bodiless conditions. This suggests that

face-centered strategy in previous experiment does not necessarily maximize

performance in human subject trials.

Fig 3.15 shows proportion correct for human observers as a function point

of fixation for the four feature conditions. Detailed comparisons of different
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fixations within each condition is shown in Table 3.1. Except the faceless and

headless conditions, fixating away from the face location led to appreciable

performance degradation in terms of PC. The behavioral results show that

humans guide eye movements to locations on the face that lead to high per-

ceptual accuracy. However, these results do not necessarily show that humans

enact gaze patterns that are optimized for the statistical distribution of dis-

criminating information present in the human face combined with the foveated

nature of the human visual system.

distance to top (deg) 1.5 4.5 7.5 10.5
intact -1 0.9914 0.8188 0.0189
headless -1 0.63 0.63 4.2× 10−3

faceless 9.5× 10−3 -1 3.6× 10−3 2.9× 10−6

bodiless 0.21 -1 5.9× 10−3 4.7× 10−5

Table 3.1: For each condition, the fixation with peak human performance is

chosen as the anchor to compare against performance at other fixations. The

table show p-values for two-sided t-test of such comparisons.

We investigate the model performance compared to humans. Different

from humans, the FIO, CNN and FIO-CNN performance degraded as much

or more for the bodiless condition. At the same time, they do not degraded

as much as human in the absence of faces or heads.
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Figure 3.16: Human and models performances (fixate at faces). Models’ per-

formances degrade as much as or more than humans for the bodiless condition.

At the same time, they do not degraded as much as human in the absent of

faces or heads.

3.4 Discussion

In static scene, it is commonly believed and has been shown that humans

tend to shift their attention toward regions that are most useful for recognizing

or identifying people (for maximal information gain). In most cases they tend
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to look at the face when it is available and look at the body when the face

information is not useful. Our study shows that, in unconstrained dynamic

scene, especially viewing time is limited, humans tend to look at the face region

when its information is not even available. Our forced fixation experiments

and FIO models also suggest maximal information location should be shifted

below the face. This demonstrates the face-centered human strategy is not

related to higher information content in faces, but likely arises as a byproduct

of the importance of faces for other evolutionary critical tasks.

The fact that the popular machine models fail to weight the importance of

faces for the task and their performance fall behind humans by a large margin

suggests the need for modeling human eye movements. We will explore this

further in the next chapter.
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Figure 3.17: Fixation distributions at different face size.
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Figure 3.18: First fixation distributions at different face size.
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Chapter 4

Predicting fixation points with a

recurrent neural network

Chapter 3 shows that humans make distinct eye movements towards the faces

while searching for other people. It also shows that machine models failed to

weight the important of facial features for the task. Motivated by these findings

we aim to model how humans make eye movements or gaze. Given one image,

the model predicts what would be the sequence of locations a human would

likely look at in the free viewing task. Such a model could be classified as a

visual attention model. Recent works in visual attention, however, only focus

on saliency map prediction, discarding the sequential aspect of human eye

movements. Since the order of exploration is important when encountering
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new environments, the ability to make gaze prediction is needed, particularly

for active vision applications.

In the following, We present a model that generates close-to-human gaze

sequences for a given image in the free viewing task. The proposed approach

leverages recent advances in image recognition using convolutional neural net-

works and sequence modeling with recurrent neural networks. Feature maps

from convolutional neural networks are used as inputs to a recurrent neural

network. The recurrent neural network acts like a visual working memory

that integrates the scene information and outputs a sequence of saccades. The

model is trained end-to-end with real-world human eye-tracking data using

back propagation and adaptive stochastic gradient descent. Overall, the pro-

posed model is simple compared to the state-of-the-art methods while offering

better performance on a standard eye-tracking data set.

4.1 Introduction

Due to sensory and computational limitations, humans and many other

animals employ visual attention as the strategy to actively explore the envi-

ronment. Human visual system only has high visual acuity in a small region,

the fovea, and the photoreceptor density drops rapidly when moving away from

the fovea [54]. When a human observer gazes at a point, the fixated region is
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projected onto the fovea and sampled with highest density. The peripheral on

the other hand is perceived with low resolution. This helps reduce the amount

of information the brain needs to process at a given time but it requires the

eyes to move constantly to integrate the information of the entire scene. The

mechanisms which control such eye movements have been extensively studied

in psychology and neuroscience [55, 56].

A similar computational bottleneck exists in computer vision where pro-

cessing the entire image might be prohibitively expensive. For example, the

Figure 4.1: Given an image we would like to predict a sequence of fixations

that a human might look at. On the right is the image with fixation sequence

predited by our model. The image on the left is actual eye tracking data from

mutiple subjects.

popular deformable part model for object detection [57] takes a few seconds to

process a single image as it uses scanning windows over the whole image. In

face recognition or image classification with convolutional neural networks, the
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input image normally needs to be cropped so that objects are aligned roughly

at the center of the image. It could be advantageous in these cases to have an

attentional model to select meaningful regions to process. Toward this, recent

work in computer vision has focused on (1) saliency models, which predict

the probability map of fixations; and (2) objectness measures, where poten-

tial regions containing objects are selected. However, these models ignore the

sequential nature of visual attention, which could be valuable information for

visual search and large scale image analysis.

Predicting the fixation sequence is quite challenging and has not received

much attention in computer vision. Relevant work include [58, 59], however

they do not use the temporal information in the eye-tracking data. In [60, 61]

the models tend to be specific to the datasets of interest. In contrast, the

proposed model is simple and does not require either prior information or

feature-engineering. Our model takes advantage of recent advances in image

recognition with convolutional neural network and sequence modeling with

recurrent neural network to achieve comparable performance to the state of

the art methods.
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4.2 Related Work

Since saliency is an important block in visual attention modeling, we first

review existing saliency models. Following this, related works on gaze scanpath

predictions and sequential modeling are discussed.

4.2.1 Saliency Models

A comprehensive review of saliency models can be found in [62].

Cognitive methods propose biologically plausible computational architec-

tures to compute saliency. In [7] center-surround feature maps are com-

puted from the Gaussian pyramid for color, intensity and orientation channels,

and then combined into a single saliency map. Graph-Based Visual Saliency

(GBVS) model [8] extracts similar features as [7] but builds a graph associated

with each feature map. Saliency maps are then the stationary distributions

of a markov chain induced by the graphs, and finally combined into a single

saliency map. The model proposed in [9] is based on more features of human

visual system including center-surround property, contrast sensitivity function,

visual masking and perceptual decomposition.

Information theoretic methods select the most informative regions as salient.

In Attention based on Information Maximization (AIM) model [63], Shannon’s

self-information measure is used to compute saliency. Saliency Using Natural

55



Predicting fixation points with a recurrent neural network Chapter 4

statistics (SUN) model [64] gathers natural image statistics which is subse-

quently used to compute the difference against current image statistics as a

new kind of self-information. In [65] saliency is modeled by minimizing the

conditional entropy of a local region given its surroundings. In [66] authors

use Incremental Coding Length (ICL) to measure the perspective entropy gain

of each visual feature and select features with maximinum coding length in-

crements for saliency.

Learning-based methods learn models from recorded eye-tracking data or

labeled saliency regions. Discriminative features are extracted from each image

location to compute the saliency probability. These features could contain high

level semantics (e.g., faces or text) and therefore could be used to model the

top-down attention. This group of methods includes task dependent attention

models [67, 68, 69], and saliency models based on conditional random field

[70, 71], support vector machine [72, 73], and convolutional neural networks

(CNNs) [74, 75]. These learning based models could be useful for gaze sequence

predictions [61].

4.2.2 Scanpath Models

Scanpath models aim to predict an ordered set of fixations for a given

image. The first model [7] generates a scanpath from a static saliency map.
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The model uses a Winner-Take-All neural network and inhibition of return

scheme to output a sequence of winners as the fixation predictions. In [76] the

authors introduce a stochastic model for scanpath generation. They show that

distribution of natural scanpath magnitudes is similar to Levy distribution ,

which has a power law dependency in the saccades magnitudes. This approach

is extended in [77] to model eye gaze shifts using Levy flight, a random walk

in which the step-lengths follow Levy distribution, but each jump has an ac-

ceptance probability determined by gain of saliency. [59] proposes a model to

generate scanpaths on natural images based on the principle of information

maximization. The model exploits three factors guiding sequential eye move-

ments: reference sensory responses, fovea periphery resolution discrepancy,

and visual working memory. [60] introduces the first learning based method

for gaze sequence prediction by integrating semantic information along with

Levy flight and saliency map into a Hidden Markov Model. In [61] authors

use reinforcement learning to learn a fixation policy to obtain state of the art

performance.

4.2.3 Sequence Modeling

Learning-based methods have achieved better performance for fixation se-

quence predictions since they utilize the ordered information available in the
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Figure 4.2: The overview of our model. Each location (a bin among 16x16

bins) in the input is mapped to a feature vector of dimension 512 in the

feature maps. Given the feature at current location, the RNN outputs the

distributions of next locations.

training data. Recurrent Neural Networks (RNNs) have recently shown to be

an elegant and flexible approach to process sequences, either as input, out-

put or both. While RNNs are hard to train, some versions can be trained

effectively and obtain the state of the art performance in several sequence pre-

diction problems including machine translation [78], image captioning [79] and

video description [80].

In this work, we utilize both CNN and RNN’s power and simplicity to

model fixation sequences. Compared to the state of the art [61] and other

previous works [60, 62], our model offers several advantages. First, it does

not assume any prior knowledge about the data. Most other works integrate

some understanding about eye tracking data in the models. For example, the
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center bias and Levy flight distribution of eye movements have been used either

as features or priors in [61, 60, 62]. The model in [61] is even trained with

different set of features for different eye tracking datasets. Due to end-to-end

training, we expect our model to learn such knowledge from the data itself

without any feature-engineering efforts. Second, the proposed method unifies

the feature extraction steps into a single pass through a CNN. Other methods

normally need to extract low level features such as edges or color features and

then compute semantic features using object detectors.

4.3 Approach

The overall approach is shown in Figure 4.2. Given an image, we first

extract features from a pretrained CNN. These features are then used as inputs

into a RNN to make predictions about the fixation locations. We now will

discuss in detail each component of our model.

4.3.1 CNN Feature extraction

Many recent works exploited transfer learning or domain adaptation using

pretrained CNNs [79, 81]. The idea is that knowledge gained from training

millions of images for classification could be used for different tasks. The
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pretrained features from convolutional neural network have been shown to be

effective for many different tasks ranging from fine-grained image classification

[82], image segmentation [81] to image caption generation [79]. These features

contain not only the semantic information of the images as a whole, but also

the locations of such information in images [83] which make it an appropriate

choice for our model. We modify the original 16-layer VGG network [84]

to retain only convolutional layers of the network. This helps us maintain

the spatial information in the extracted feature maps and allows to run the

network with different image sizes. In our experiments, we use input size of

512x512 and the resulting output feature maps are of size 16x16. Since we

only use convolution and pooling layers these maps represent 256 regions in

the input image. We modify the original 16-layer VGG network [84] to retain

only convolutional layers of the network. This helps us maintain the spatial

information in the extracted feature maps and allows to run the network with

different image sizes. In our experiments, we use input size of 512x512 and the

resulting output feature maps are of size 16x16. Since we only use convolution

and pooling layers these maps represent 256 regions in the input image.
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Figure 4.3: Illustration of a LSTM block. The green connections are feedfor-

ward with associated weight matrices. The blue are feedback weight connec-

tions.

4.3.2 Spatial Quantization

In line with the CNN feature extraction, we spatially quantize the input

image into 256 regions by a 16x16 grid. Each region could be represented by

a 512-dimensional feature vector from the CNN feature maps. At the same

time eye tracking fixation data are binned into those regions. Each fixation is

now represented by the center of the region it is in, and a sequence of fixations

is a sequence of jumps from one region to another. This greatly simplifies the

modeling process compared to other models where fixation locations are at

super-pixel level [60, 61]. In line with the CNN feature extraction, we spatially

quantize the input image into 256 regions by a 16x16 grid. Each region could
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be represented by a 512-dimensional feature vector from the CNN feature

maps. At the same time eye tracking fixation data are binned into those

regions. Each fixation is now represented by the center of the region it is in,

and a sequence of fixations is a sequence of jumps from one region to another.

This greatly simplifies the modeling process compared to other models where

fixation locations are at super-pixel level [60, 61].

4.3.3 Long Short Term Memory (LSTM)

LSTM [85] is designed to mitigate the vanishing and exploding gradients

during training of recurrent network, and has been widely used for sequential

modeling. Training a traditional RNN could be difficult because the gradient

signal is multiplied many times by the recurrent weight matrix during back

propagation. If the weights are small, the resulting gradient signal could be

so small that learning will become either too slow or even stop working (van-

ishing gradients). On the other hand, if the weights are large, the gradient

signal could end up being too big and cause the learning to diverge (exploding

gradients). LSTM aims to fix these issues by introducing a modular structure,

referred to as a memory cell, as in Figure 4.3. A memory cell includes an input

gate, an output gate, a forget gate and a self-recurrent connection. The gates

control how the cell modulate its dynamics and its interactions with the input
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and the output. The forget gate modulates whether the cell should remember

or forget its previous state. The input gate controls how much of the input

would have an effect in the cell, and the output gate controls the effect of the

cell at the output (on other neurons).

An example of a LSTM block is shown in Figure 4.3 and its main compu-

tations with intput xt, output ht and its recurrent cell ct are as follows:

it = σ (Wixt + Uiht−1 + bi) (4.1)

ft = σ (Wfxt + Ufht−1 + bf ) (4.2)

ot = σ (Woxt + Uoht−1 + bo) (4.3)

c̃t = tanh (Wcxt + Ucht−1 + bc) (4.4)

ct = ft � ct−1 + it � c̃t (4.5)

ht = ot � ct (4.6)

Here the gates {it, ft, ot} are modeled as perceptron units using sigmoid ac-

tivation σ. {Wi,Wf ,Wo,Wc} and {Ui, Uf , Uo, Uc} are the weight matrices for

the feedforward and feedback connection correspondingly; {bi, bf , bo, bc} are

biases. The gates’ modulation operator � is element-wise multiplication.
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4.3.4 Scanpath Model with LSTM

The key observation is that saccade planning is not memoryless, i.e. it

is influenced by the gaze history [86]. Such visual working memory could be

naturally modeled using a LSTM. In our case, the LSTM models the condi-

tional transition probability of the next fixation given the current fixation and

the history of information it has seen so far. The history is expected to be

remembered in the state vectors ct and ht. The transition probability pt is

computed as follows:

zt = CNN(St) (4.7)

xt = FFx(zt) (4.8)

ht = LSTM(xt, ht−1, ct−1) (4.9)

yt = FFy(ht) (4.10)

pt = softmax(yt) (4.11)

Here we use CNN to extract the feature zt at the current location St. FFs are

one-layer perceptrons: the first one is used to map the dimension of zt to the

number of LSTM cells and the second is used to map LSTM output to the

distribution over possible locations:

P (St+1|St, ct−1, ht−1) = pt (4.12)

In order to predict the first fixation, the initial states of LSTM is also computed
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from the CNN features using one-layer perceptrons:

ho = FFh(CNN), co = FFc(CNN) (4.13)

4.3.5 Learning

We aim to estimate parameters θ of the model (all weight matrices and

biases) from eye tracking data. The log-likelihood of one fixation sequence

S = {S2, S3, . . . , Sn+1} given an image I:

L(S|I; θ) =
n∑
t=1

logP (St+1|St, ct−1, ht−1) (4.14)

=
n∑
t=1

log pt(St) (4.15)

The model is optimized so that the log-likelihood over all training samples is

maximized:

θ? = arg max
θ

∑
(I,S)

L(S|I; θ) (4.16)

The equivalent form of this is the minimization problem on traditional log loss

(negative log-likelihood). From Figure 4.2 we can see that the computation

flow of equation 4.15 for each sequence is actually a DAG and thus the learning

can be performed using standard back propagation.
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4.3.6 Sequence Prediction

There are multiple approaches that can be used to generate a sequence

from the trained model. The simplest prediction scheme is to sample the most

probable location given the current location St and the states of the LSTM:

Lt+1 = arg max
St+1

P (St+1|St, ct−1, ht−1) (4.17)

We sample the first location according to p1. Given the feature at that location

we can sample from p2, and continue until we reach some maximum pre-defined

sequence length.

The optimal way would be searching for the sequence with maximum like-

lihood based on equation 4.15. However, it is too expensive because of the

exponential growth in the number of sequences. Instead we use beam search

to generate m best sequences with largest likelihoods. We do this by always

maintaining m best candidate sequences at each step. At the end of the step,

each candidate will have 256 children for the following locations. Among all

resulting sequences we choose m of them with the maximum likelihood. Fi-

nally, we return the best among m candidates as the predicted sequence. We

use the beam search in the our experiments with a beam of size 20.

We can also simulate the stochastic scanpaths by considering P (St+1|St, ct−1, ht−1)

as a multinomial distribution and sample the next fixation from this distribu-
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tion.

4.4 Experiments

4.4.1 Evaluation metrics

There are several metrics have been proposed to measure the consistency

of eye tracking sequences. In [59] authors employ time-delay embedding [87].

This method divides each sequence into segments of length k, starting at some

order t. By varying t, we have a set of vectors representing the sequence. The

similar between two sequences is then measure by the distance between the two

represented sets. However, multiple segments of a sequence might be matched

to the same segment of another sequence. Recently [88] proposes a method

based on the Dynamic Time Warp algorithm (DTW) [89]. The algorithm

represents each scanpath as a geometric vector and calculates similarity using

some geometric measure. A more popular approach is to use string alignment

algorithms [90]. The main idea is to think of sequence as string and the dis-

tance between two sequences is then the cost it takes to align so that the two

strings are matched. The notion of match could be different. For example in

[60], two fixations are matched if they are within a certain spatial distance.

We use similar approach as [61]. First all fixations are clustered and fixations
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in each cluster will be assigned a unqiue label (alphabet). The sequence is

then represented as a string of alphabets and two fixations are matched if two

associated alphabets are the same. We use Needleman-Wunsch string match-

ing algorithm to compute distances [91]. A predicted sequence is compared to

data from all of the human subjects and scores are averaged to obtain the final

score. We also compute score between any two subjects and average them to

get the upper bound for the performance.

Similar to [61], we use meanshift clustering to assign labels for fixations.

The meanshift bandwidths are chosen to maximize interaction among clusters:

I =
Nb −Nw

C
(4.18)

Here Nb is number of fixation transition between clusters, Nw is number of

transitions within clusters and C is the number of clusters.

4.4.2 Dataset

We evaluate our model using the MIT [72] dataset. The dataset contains

1003 images with various types of object categories and scenes (indoor, out-

door, landscape and portrait). Eye tracking data was collected during a free

viewing task with 15 subjects per image, with a total of about 15,000 se-

quences. This is currently the largest free-viewing eye-tracking dataset avail-
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Figure 4.4: Sampled images in MIT1003 dataset with eye tracking data over-

laid.
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able for natural images. Sampled images from the dataset are shown in Figure

4.4.

4.4.3 Training Details

Due to limited training data, the main challenge is to deal with overfitting.

To reduce overfitting, we only train the RNN part of the model, leaving the

CNN part untouched (no fine-tuning). We do a simple data augmentation with

horizontal flipping: each image and its eye-tracking data are flipped to create

more training examples. Even though eye-tracking data are not absolutely

invariant to this transformation (humans might not look at flipped texts for

example), we obverse slight improvement in the results. We also try to keep

the number of model paratmeters small, limiting LSTM size to only 64 recur-

rent dimensions. The model is trained with dropouts [92] using rmsprop [93],

a variant of adaptive stochastic gradient descent, without using momentum

term. The LSTM weights are initialized with random orthogonal matrices,

and the remaining weights are randomly initialized with a small variance. The

model is developed and trained with the Theano [94] library.
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Figure 4.5: Evaluation of the RNN model (blue triangle) and baseline models

GBVS [8] (black cross) and Judd [72] (green star) and inter-subject perfor-

mance (red circle) on the MIT dataset.

4.4.4 Results

It was first shown in [62] that when using winner take all method (WTA)

to compute fixation sequences, GBVS [8] and Judd [72] saliencies perform

significantly better than other saliency models. Recently [61] has shown that

SVM saliency models like Judd’s with WTA fixations can perform comparably
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Figure 4.6: Top row: human fixation sequences. Bottom row: predicted se-

quences. The right most image examples illustrates a failure case where one of

the faces is completely missed by the RNN model. Only the first few fixation

points are shown. The numbers inside the square nodes correspond to the

sequential order of these points.
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with state of the art [61] itself. Since we were not able to get access to the

evaluation codes of the referenced models [59, 60, 61], we could only compare

our models with WTA using Judd and GBVS saliencies. We randomly split

the data, using 90% for training and 10% for testing. We retrain the SVM

saliency model using the same training data. The LSTM model uses beam

search with beam size 20. The comparisons are limited to 6 fixations for each

sequence (similar to [61]). Figure 4.5 shows the performance of three models

on the test set. The inter-subject performance is calculated over the whole

dataset. Our method performs slightly better than WTA on SVM (Judd’s

saliency).

Figure 4.6 shows some sample results from our model. Comparing with

the human-observed fixation sequences, we see that the model predictions

correspond to meaningful semantic regions.

4.5 Conclusion

We presented a model to predict a sequence of fixations that humans are

likely to look at in a given image (in free-viewing task). We present a simple

framework to model sequences with recurrent neural networks using local-

ized features extracted from a pre-trained convolutional neural network. The

model is trained to maximize the likelihood of fixation sequence given an image
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using free-viewing human eye-tracking data. Despite its simplicity and lim-

ited data, we achieve favorable performance compared to more complicated

methods. With recent advances in eye-tracking technology, we would expect

better performance of our model when large eye-tracking datasets become

available in the future. Exploring a similar framework to predict dynamic

gaze in videos will have interesting applications in video object tracking and

human assisted annotations of large data sets. We have presented a model to

predict a sequence of fixations that humans are likely to look at in a given im-

age (in free-viewing task). We present a simple framework to model sequences

with recurrent neural networks using localized features extracted from a pre-

trained convolutional neural network. The model is trained to maximize the

likelihood of fixation sequence given an image using free-viewing human eye-

tracking data. Despite its simplicity and limited data, we achieve favorable

performance compared to more complicated methods. With recent advances

in eye-tracking technology, we would expect better performance of our model

when large eye-tracking datasets become available in the future. Exploring

a similar framework to predict dynamic gaze in videos will have interesting

applications in video object tracking and human assisted annotations of large

data sets.
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Chapter 5

Foveated Image Recognition

In this chapter we introduce a new convolutional network model for working

with foveated image data. Given a fixation and a foveated representation of

the input around that fixation, the model predicts the likelihood of the object

class it belongs to. Since foveation comes at the cost of active scanning of the

scene/image data, a greedy method is proposed of potential fixation locations

to explore. The model is the first of its kind that is applicable for active

foveated vision. Since foveated sensors are not yet generally available, the

experiments described in this Chapter use standard rectangular pixel images

that are transformed through a log-polar transformation to create the foveated

representations for recognition.
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5.1 Introduction

In many computer vision applications, including robotic vision and drone

systems, there is a need to actively monitor the environment. This requires

that the sensor scan the field of view for activities or objects of interest. While

most existing vision sensors sample the visual field uniformly, there is a sig-

nificant potential for utilizing non-uniform sampling such as the ones found

in biological foveated vision systems. The primary motivation is in the com-

putational efficiency offered by such foveated sensors that typically required a

small fraction of the computing power for feature extraction and gaze predic-

tion. Multiple fixations will enable constructing a comprehensive description

of the scene for specific tasks. As noted in earlier, previous research in this

context has focused on mechanisms of eye movements (attention) [29] and neu-

ral representations of foveated sensory inputs [95]. Most research in machine

vision has involved analysis of passively sampled images. In the following we

present one of the first approaches to utilizing foveated samples in the context of

image recognition, and demonstrate the feasibility of simultaneously optimizing

the recognition and gaze prediction tasks.
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Figure 5.1: Traditional foveated images at different scales [96]. A spatially

varying filter is used to obtain a foveated version of the original image at the

same resolution with decaying level of blurring when moving away from the

fixation.

5.2 Related Work

Recent works aiming on foveated image recognition [97, 98] use high resolu-

tion followed by appropriate spatial filtering to simulate the foveated data. In

[97] a spatial filtering step is required to obtain a foveated version of the same

resolution of the original image with decaying level of blurring when moving

away from the fixation. An example of such filtering operations are shown

in Figure 5.1. In [98] the authors first compute the histogram of gradients

(HOG) features on the original images, followed by a foveated template which

pools HOG features for each bin of the template, which is then used to make

decision on object class or next set of fixations. These methods demonstrate
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the potential of foveated recognition but fail to take advantage of the reduced

resolution of such representations.

Given the challenges associated with processing and integrating multiple

fixations, including gaze prediction and working with non-uniformly sampled

data, there are very few works on image/object recognition using foveated

samples. In [99] the authors use foveated images in communication for band-

wdith reduction. In [100] a corner detector was developed based on Moravec

operator [101] to model overt attention of foveated vision. More recently [23]

used Fourier transform to detect lines and circles in log-polar images. In the

following we present one of the first convolutional neural network architectures

that work directly with the foveated image inputs for image recognition. Fur-

ther, the model can obtain better accuracy with more fixations, thus can be

easily adapted to varying computational resources.

5.3 Foveated Representation

There are many ways to create a foveated images from regular 2-D images.

Multiresolution methods maintain different versions of uniform resolution im-

ages at multiple scales. They do not require bookkeeping of sophisticated

geometric transformations, and also work well with existing image processing

methods. However, the representation is redundant and cannot represent im-
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ages acquired directly by foveated sensors. Geometric methods use geometric

transforms or look up tables to build a non-uniform sampling grid, which can

be interpolated back to a uniform grid for visualization. In this work we use

the log-polar transformation since it closely follow cortical mapping in in the

retina The idea is to quantize the space into bins in the log-polar domain. In

our experiments we use 48 angular bins and 48 radial bins, see Figure 5.2.

An example of a reconstructed image from the log-polar samples is shown in

Figure 5.3.

log
(r)

log-polar

Figure 5.2: Log-polar sampling: A log-polar mapping followed by bilinear

interpolation is used to map the original cartesian grid to the log-polar array.
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(a) Original image at 512x512.

(b) Log-polar transformed image at 48x72 (scaled up for visualization).

(c) Image reconstructed from the log-polar data in (b) above, scaled to 512 × 512

pixels.

Figure 5.3: Log-polar transform and reconstructed image.
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5.3.1 Group Convolution

In a normal convolutional network a scanning window of kernel size h1×w1

is correlated with corresponding locations in the input, see Figure 5.4. In

contrast, in group convolution, the input and output are divided into groups

and a similar operation is performed within each group. This provides a way

to make separate computation streams within a network by specifying same

number of groups for all convolutions. We use group convolutions throughout

the network to separate convolutional operators into 4 distinct groups, each

ideally would represent a processing stream at different resolutions.

Figure 5.4: Normal convolutional network: In a conventional convolutional

network, given an input featue map of dimension c1, output feature map di-

mension c2, and filters of size h1×w1, the output feature map is computed as

the dot product of the filters with the corresponding spatial input.
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Figure 5.5: Overview of a 2-group convolution operator. Given c1 feature maps

in the input, c2 filters of size c1
2
× h1 × w1, each output feature map location

is the dot product between the filter and corresponding spatial input in the

same group.

5.3.2 Circular Convolution

Performing convolutions in the log-polar coordinates is not obvious due to

the irregularity of the spatial grid. Notice that the main difference with respect

to normal convolution is the periodicity of the signal in the angular dimension

but non-periodic in the radial direction. The operation can be implemented by

a circular padding before applying conventional convolution operation. The

illustration of such operation is shown in Figure 5.6.

82



Foveated Image Recognition Chapter 5

log
(r)

Figure 5.6: The log-polar transform places adjacent bins in spatial domain to

two sides of the angular coordinate. Thus convolution operators must take

care of this circular nature of the input in the angular coordinates. The blue

and green pixels show how circular padding is done prior to a convolution with

kernel size 3.

5.4 Network Architecture

For the recognition task we follow the design of state-of-the-art deep net-

works [52]. The input image is first convolved with a set of 64 filters. Since

our foveated input is very small compared to standard networks, we only use

kernels size 2x2 instead of 7x7 in this convolutions. After this, the network
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2x2,C/4
relu

relu

relu

C-d

1x1,C/4

1x1,C

Res-C

Figure 5.7: Overview of a residual block [52] with number of input channels

C. The block includes three convolutions and a residual connection. The last

activation function is applied after adding the result with residual connection.
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2x2 conv, 64

Res-128

Res-256

Res-512

Block 2

Block 3

Block 4

1x

2x

3x

AvgPool

FC-1000

Figure 5.8: Network architecture (a 21-layer Resnet). The network starts with

a normal convolution then uses repeated residual blocks (1xBlock2, 2xBlock3

and 3xBlock4). Number of filters doubles every time we reduce (half) the

spatial resolution.

85



Foveated Image Recognition Chapter 5

replicates many residual blocks. Each residual block consists of a 3 convo-

lutions and a residual connection as shown in Figure 5.7. Each convolution

is followed by batch normalization and a rectified non-linearity unit. Spatial

dimension reduction is performed by inserting stride-2 convolutions instead of

max-pooling. Number of filters is doubled every time we reduce spatial di-

mension. An average pooling layer is used prior to fully connected layer for

classification. We limit the depth of our network to 21 layers due to memory

limitation during training. An overview of the network is shown in Figure 5.8.

To accommodate multiple fixations, we extract features from the last con-

volutional layer and average them across fixations before classification. This

process is summarized in Figure 5.9.
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Fovated Images

Fixation CNN

Fixation CNN

Fixation CNN

Average FC 

Features

Final output

Figure 5.9: For multiple fixations, features from last convolution layers are

averaged across fixations before the classification layer.

5.4.1 Training Objective

For each image, the network outputs an activation feature vector

φ = (φ1, φ2, · · · , φC) with the same dimension as the number of classes C.

This vector is then normalize using softmax fucntion to obtain the likelihood

of the input belonging to each class. The probability of the input belonging

87



Foveated Image Recognition Chapter 5

to class k is given by:

pk =
exp(φk)
C∑
j=1

exp(φj)

(5.1)

During training the true class label for the input t is also given. In this

case, we represent t as a one-hot vector of dimension C (number of classes).

The cross entropy loss is then applied to the prediction and corresponding

target t:

L =
1

B

B∑
i=1

C∑
k=1

−t(i)k log(p
(i)
k ) (5.2)

In the above equation B is the number of samples used in each training

iteration (batch size), the superscript i indicates the index of a sample in the

batch. To minimize the loss, its gradients with respect to parameters of the

networks are computed using backpropagation and stochastic gradient descent

is used to update the weights.

For each image we randomly sample fixations near the image center. Then

a log-polar transformed input for that fixation is created and is used as input

for the network. We use learning rate 10−2 and weight decay 10−5. The

network is trained for 90 epochs. The learning rate is scheduled to decay by a

factor of 10 at the 30-th and 60-th epochs.
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5.4.2 Inference

The proposed model uses multiple fixations. In the following experiments

we consider two scenarios, one with random fixations and the other with greedy

fixations, as explained below.

Random Fixations: We choose the first fixation at the center of the image

and subsequent fixations as random around the center of the image.

Greedy Fixations: Gradient based class activation map (GradCam)[102] is

a way to evaluate the locations of important features with respect to a specific

object class. The overview of this process is outlined in Figure 5.10. First

the gradients of the class score with respect to the feature map is computed.

Spatial average of the corresponding gradients gives us the weights indicating

how importance the features are to that class. The saliency map is then the

weighted sum of the feature maps. Given an initial prediction, we generate

the top 4 predicted classes based on the class probability scores (equation 5.1)

and these class labels are used to generate four corresponding GradCams. The

highest score location in each GradCam map is used as new fixations. In total

we have 5 fixations to make predictions. An overview of the process is shown

in Figure 5.11.
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Figure 5.10: Overview of gradient based class activation map (GradCAM)

[102]. For a given class and feature map A, the global average pooling of

gradients of the class prediction score with respect to the map A is used to

weight the importance of individual maps with respect to that class. The

weighted sum of activation in the feature map followed by rectified linear

activation to obtain Grad-CAM map for the input image for that particualr

class.
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First fixation 4 new fixations

Fovated Image

Feature map

Top 4 predictions

4 GradCAM Maps

CNN GradCAM 

Figure 5.11: Generate fixations in a greedy manner. From the feature map

generated from the first fixation. Top4 class prediction are used to create

saliency map with GradCAM. For each map the location with maximum score

are used as new fixation. In total we have 5 fixations.

5.5 Experiments

We evaluate the results using ImageNet [103] 2012 using top-1 accuracy

on the provided validation set. The dataset includes 1.2 million images of

1000 object classes. Current state of the art model uses 152 layers and oper-

ates on 224x224 input resolution, achieving 79.8 percent top-1 accuracy [104].

Since we are limited by the existing hardware resources, we use 21 layers in

our implementation. In order to make fair comparisons, the baseline models

and our proposed architecture all use the same number of layers, with the
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proposed method using circular convolutions instead of normal convolutions.

We use two baselines 1) 1× pixel CNN using downsampled inputs with the

same resolution as foveated images, and 2) 4× pixel CNN using downsampled

inputs with four times the number of pixels as foveated images. The results

are reported in Figure 5.12 show that the proposed method at the lowest res-

olution (single fixation) perform on par with the state-of-the-art models with

the same number of down-sampled pixels. With additional fixations, the pro-

posed method outperform normal convolutional models when both models are

processing the same number of pixels. Given that in our existing implemen-

tation fixations are not optimally generated and integrated, we would expect

considerable room for improvement in future research.
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Figure 5.12: Model performance on validation set compared to downsampling

baselines (denoted by the horizontal bars). Top-1 accuracy increases with the

number of fixations. When using random fixations, model performance at 4

fixations and 1 fixation are similar to downsampling base lines with the same

number of pixels. The greedy fixations brings consistent improvements when

we have multiple fixations.

5.6 Discussion

We proposed a convolutional network architecture that combines foveated

image samples and multiple fixations for object recognition. The primary mo-
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tivation for this work comes from biological vision systems that effectively

combine non-uniform, foveated sampling on the retina, together with eye-

movements that scan the scene and sample data at different locations, for

scene understanding and recognition. Our results demonstrate the feasibility

of foveated image recognition with the potential to outperform current state-

of-the-art models. The main contribution is a convolutional neural network

that works directly with the foveated input images that achieves competitive

recognition rates compared to standard neural networks operating on the same

number of input pixels. We also propose an adaptive mechanism trading com-

putation for accuracy without changing the model. Future research directions

include utilizing the sequential nature of the fixations for more efficient and

effective recognition models.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The thesis investigated the requirements and implementations that could

support active foveated vision. Towards this we carried out extensive human

subject experiments to understand how humans perform visual search. Results

from the experiments called for modeling human eye tracking data directly. We

proposed neural networks models for gaze prediction that outperform previous

works. Lastly, we proposed a convolutional network that could directly operate

on foveated input images for object recognition. The main contributions of

the thesis are summarized below:

• A comprehensive study of how humans search for target people in
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dynamic scenes (chapter 3) is presented. A novel video database is

created to test how different parts of a person contribute towards eye-

movements and person identification. We find subjects rely strongly on

the face where performance drops by a large amount when facial infor-

mation is removed. Another finding is that the search errors can dom-

inate the overall recognition accuracy in human subject experiments.

The recorded eye movements show that humans have strong a bias

towards faces. However, when forced to fixate on faces, subjects do

not obtain maximum performance, which suggests that face-centered

strategy might not necessarily maximize the person identification per-

formance in human subject trials but likely arises as a byproduct of

the implementation of a heuristic strategy that optimizes perceptual

performance across a battery of evolutionary important tasks. Per-

formance of two current computer models, a foveated ideal observer

and a naive convolutional neural network, is compared against human,

showing that machine models treat faces similar to other features and

are outperformed by human subjects by a large margin.

• We propose a neural model to predict human eye movement, trained

directly on human subjects data (chapter 4). Given an image, the

model predicts the most likely sequence of fixations a human would
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follow. In developing this model we leverage recent advances in image

recognition using convolutional neural networks and sequence model-

ing with recurrent neural networks. Feature maps from convolutional

neural networks are used as inputs to a recurrent neural network. The

recurrent neural network acts like a visual working memory that in-

tegrates the scene information and outputs a sequence of fixations.

The model is trained on human eye tracking data. The proposed

approach removes dataset-dependent feature engineering steps and

achieves state of the art performance.

• Finally, we develop an image recognition model that operates on foveated

input images (chapter 5). This is in contrast with current methods

that use spatially variant filtering to create foveated images, retain-

ing the same number of pixels as the original inputs. Assuming a

log-polar representation of foveated sensory signals, a circular convo-

lutional neural network is designed to perform image recognition. To

the best of our knowledge, this is the first time that a convolutional

network is developed to work directly with the foveated image dat.

The proposed method is also able to handle multiple fixations giving

better performance with more fixations, thus adaptive to the given

computational budget.
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6.2 Future Work

6.2.1 Foveated Image Recognition with Gazing

The main limitation of our fixation prediction model is that it is not oper-

ating on foveated input. At the same time, our foveated recognition model is

not taking sequential nature of fixations. A combination of a foveated image

recognition with fixation planing and integration would be ideal. This can

be done using a recurrent model integrate information from each fixation and

output both the next location and class probabilities at the same time.

6.2.2 Foveated Object Detection

A natural extension of the work presented in Chapter 5 is to perform object

detection with foveated images. Object detection is an expensive visual search

task, requiring multiple stages of computation [105]. The model proposed in

the previous section could be further extended to output the spatial extent of

the object at current fixation, a boundind box for example. However we need

a mechanism to determine when an object is detected or more exploration

is necessary. This could be implemented similarly to what currently done in

machine translation where the model predict a STOP token indicating the end

of a sentence.
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6.2.3 Learned Foveated Filtering

Most current work on foveated filtering makes assumptions about the na-

ture of the spatially varying filters based on either biological experiments (for

example, the FIO models described in Chapter 3, or computational models

such as those based on Gabor filtering.) An alternate approach would be to

learn these filters from data just like any convolutional filters in deep learning

architectures. One can approximate the process by sampling with high resolu-

tion log-polar space and then perform spatially varying filtering. The learned

kernels represent the optimal foveated filtering for a specific task. This can be

useful for human vision research to understand how low-level visual process-

ing is done and for a better understanding of the further understanding the

notion of metamers introduced in [95]. Figure 6.1 shows a set of spatially vary-

ing filters trained using imagenet dataset to maximize recognition accuracy,

and it would be interesting to explore this further in the context of foveated

recognition described in Chapter 5.
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Figure 6.1: Visualization of learned (spatially varying) filters
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