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ABSTRACT OF THE DISSERTATION

Modeling and Analysis of Fluid Driven Fracture Propagation
under the Plane Strain Condition

by

Young Hoon Kim

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, March 2013

Dr. Guanshui Xu, Chairperson

The process of fracture propagation driven by the pressure of the fluid flow between the frac-

ture surfaces has been of considerable interest for understanding natural geological phenom-

ena such as the formation of volcanic dikes and developing hydraulic fracturing technologies

for industrial applications. Man-made hydraulic fracturing has been most commonly used

for stimulation of oil and gas reservoirs to increase hydrocarbon production, stimulation

of geothermal reservoirs, remediation of soil and groundwater aquifers, injection of wastes,

goafing and fault reactivation in mining, and measurement of underground in situ stresses.

Computational modeling and simulation of fluid driven fracture propagation in realistic

geological formation has been a challenging problem because of various complexities includ-

ing formation heterogeneities and the use of highly nonlinear engineered fluids. At present,

one of the main obstacles for the robust industrial application of the simulating technology

is the computational efficiency and stability. The objective of this study is to investigate

the numerical efficiency and stability of various algorithms that can be potentially used in

modeling of fluid driven fracture propagation. For simplicity, we have focused on fracture
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propagation in the plane strain condition. The fracture is assumed to in homogeneous linear

elastic medium and modeled using displacement discontinuity boundary element method

(DDBEM). The nonlinear power-law fluid flow is modeled using conventional lubrication

theory. The coupled equations are then discretized using zero order elements for its effi-

ciency. The coupled equations become increasingly stiff and difficulty to solve when the

power law indices become smaller. Various numerical algorithms such as Newton iteration

with line search, trust-region and quasi-Newton method are investigated and compared.

We have also extended the model to the fluid driven non-planar fracture propagation. A

numerical crack propagation criterion based on the minimum local shear stress under mixed

loading condition is proposed and compared with conventional theoretical and numerical

criteria. The new crack propagation criterion provides more accurate and smooth crack

initiation paths. Finally we have studied the geomechanics interaction between two simul-

taneous fluid driven fractures. The results provided some useful inputs for optimal design of

multiple stage and multiple fracturing treatments along horizontal wells currently adopted

by the oil and gas industry for the economical recovery of unconventional resources such as

shale gas and oil.

vii



Contents

List of Figures xi

List of Tables xiii

I Modeling and Analysis of Fluid Driven Fracture Propagation
under the Plane Strain Condition 1

1 Introduction 2
1.1 Hydraulic fracturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Numerical models of hydraulic fracturing . . . . . . . . . . . . . . . . . . . 5

2 Crack opening displacement 8
2.1 Stress field and dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Displacement discontinuity method (DDM) . . . . . . . . . . . . . . . . . . 9

2.2.1 Displacement discontinuity over a finite line segment . . . . . . . . . 9
2.2.2 Dislocation discontinuity in an infinite body . . . . . . . . . . . . . . 12
2.2.3 A plane crack under tensile . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Stress intensity factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Use of special crack-tip element . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Propagation of crack driven by internal fracturing fluid flows 23
3.1 Dynamics of a fracturing fluid flow inside crack . . . . . . . . . . . . . . . . 23

3.1.1 Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Power-law fluids (non-Newtonian) . . . . . . . . . . . . . . . . . . . 26

3.2 Numerical solutions of solid-fluid coupled field problem . . . . . . . . . . . . 27
3.2.1 Solid-fluid interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Grid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Explicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Courant-Friedrichs-Lewy Condition (CFL Condition) . . . . . . . . . 33
3.2.5 Implicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Numerical solvers for implicit method . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 System of nonlinear equations and merit function . . . . . . . . . . . 37

viii



3.3.2 Newton iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Ill-conditioned Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Quasi-Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Line search method . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.6 Trust-Region method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Parameters and numerical solver settings . . . . . . . . . . . . . . . . . . . 55
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Analysis of crack propagation under mixed loading condition 62
4.1 Curved crack problem and dislocation based solution . . . . . . . . . . . . . 62

4.1.1 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Edge dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Displacement discontinuity on curved crack . . . . . . . . . . . . . . 69

4.2 Crack propagation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Maximum circumferential tensile stress . . . . . . . . . . . . . . . . 70
4.2.2 Minimum strain energy density . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Maximum strain energy release rate . . . . . . . . . . . . . . . . . . 74
4.2.4 Minimum local shear stress . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.5 Crack path comparison . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Propagation of parallel cracks . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusions and ongoing works 90

Bibliography 95

Appendix A Plane crack in a tensile field 99

Appendix B Analytical Jacobian matrices 105
B.1 For right half-crack in Grid I . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 For right half-crack in Grid II . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.3 For full inclined crack in Grid II . . . . . . . . . . . . . . . . . . . . . . . . 108
B.4 For double parallel cracks in Grid II . . . . . . . . . . . . . . . . . . . . . . 110

II Previous Works 113

6 Fabrication and characterization of THUNDER actuators, prestress-induced
nonlinearity in the actuation response 114
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Fabrication and measurements . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



Bibliography 131

7 Design and analysis of micro SAW-IDT accelerometer based on the
perturbation of surface acoustic wave on strained surface 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Design of micro SAW-IDT accelerometer . . . . . . . . . . . . . . . . . . . . 137
7.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Unperturbed surface acoustic wave . . . . . . . . . . . . . . . . . . . 139
7.3.2 Initial fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.3 Perturbation integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.4 Material properties and geometrical parameters . . . . . . . . . . . . 143

7.4 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 150

Appendix C Perturbation integral 152

x



List of Figures

1.1 Vertical and horizontal wells . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 PKN and KGD geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 A plane crack under tensile field . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 A special crack tip element . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Comparison of displacement discontinuity . . . . . . . . . . . . . . . . . . . 21
2.4 Difference in displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Propagation of a plane crack caused by internal fluid flow . . . . . . . . . . 28
3.2 Grid systems for finite difference discretization . . . . . . . . . . . . . . . . 30
3.3 Explicit finite difference schemes . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Implicit finite difference schemes . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Growth of crack with time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Special crack tip element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Injected fluid volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Decrease in well bore pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9 Pressure distribution inside crack . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Edge dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Curved crack in local coordinates . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Inclined crack under tensile . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Crack path prediction based on crack propagation criteria . . . . . . . . . . 77
4.6 Crack path comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Crack initiation angle comparison . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 Inclined crack with internal fluid flow . . . . . . . . . . . . . . . . . . . . . 78
4.9 Crack path prediction based on crack propagation criteria . . . . . . . . . . 80
4.10 Crack path comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.11 Crack initiation angle comparison . . . . . . . . . . . . . . . . . . . . . . . . 81
4.12 Parallel cracks with internal fluid flow . . . . . . . . . . . . . . . . . . . . . 82
4.13 Path prediction of parallel cracks . . . . . . . . . . . . . . . . . . . . . . . . 85
4.14 Crack initiation angle comparison . . . . . . . . . . . . . . . . . . . . . . . . 85
4.15 Displacement - initial gap distance . . . . . . . . . . . . . . . . . . . . . . . 86

xi



4.16 Displacement - power-law index . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.17 Displacement - flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.18 Displacement profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.19 Change in stress field (σyy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.20 Change in stress field (σxy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Assembly of THUNDER actuator . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Measurements of dome heights . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 The arched configuration of THUNDER 7-R model . . . . . . . . . . . . . . 125
6.4 Distribution of the residual thermal stresses in the PZT layer . . . . . . . . 127
6.5 Deflections under applied voltages . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Schematic design of Micro SAW-IDT accelerometer . . . . . . . . . . . . . . 137
7.2 An elastic half-space and the coordinate system for surface acoustic wave . 139
7.3 Simplified model for theoretical and finite element analysis . . . . . . . . . . 140
7.4 Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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Chapter 1

Introduction

1.1 Hydraulic fracturing

The petroleum engineering mainly focuses on estimation of the recoverable volume of oil

and gas trapped in porous rock formation subjected to high in-situ stress. This is related

with many disciplines, such as drilling, production, operation, reservoir evaluation, reservoir

stimulation, oil and gas facilities engineering. The hydraulic fracturing is one of the methods

used in reservoir stimulation and nowadays this plays the most important role in petroleum

engineering.

Hydraulic fracturing is a process to make channels from well bore to the rock formations

that contain oil or gas. The channel is created by designed crack propagation due to an

internal flow of pressurized fluid. During the production stage, when the fluid pressure is

removed, the crack is closed due to existing in-situ stress. But the conductive channels

for oil or gas is maintained by sands or sand-like proppants that mixed and transported by

fracturing fluid. Consequently, the permeability of rock formation is increased and oil or gas
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can flow through the fractured formation and seep into well bore. It has been proved that

the hydraulic fracturing technology have improved the production efficiency and recovery

of oil and gas in history. And it also increases the recoverable reserves of oil and natural

gas [1–3]. After the first hydraulic fracturing is performed in Kansas by Stanolind Oil

in 1947 on a gas well in the Hugoton field, approximately 2.5 million hydraulic fracture

operations have been conducted world wide and it is reported that 60% of current drilled

wells use hydraulic fracturing [4].

In usual hydraulic fracturing, wells are drilled straight down, vertically through the pay zone.

The conventional vertical drilling would need to drill and fracture multiple wells to cover

the area. Commonly, such a solution is not very economically rewarding. Recently, using

advanced drilling technology, such as coiled tubing and horizontal driller, the horizontal

drilled well was introduced. In horizontal drilling, the well is first drilled straight down,

then slowly turn the drilled well horizontally within the rock formation with the turn radius

of 300-500 feet. Then continue to drill for several thousand meters more in horizontal

direction. By this technology, the well has a pay zone of several thousand feet as shown in

Fig. 1.1. The horizontal drilling also allow us to exploit previously determined uneconomic

area [5]. The horizontal well is currently limited to the the reservoir that the vertical well

is not economically rewarding because the cost of horizontal well is three times expensive

than the cost of vertical wells. In such condition, the production of horizontal well is 2.5 to

7 times the rate and reserves of vertical well [6].

The hydraulic fracturing treatment begins with the creation of initial path for the fracture.

In this process called perforation, a specially designed explosive charge makes a deep hole

3



Vertical well Horizontal well

Pay zone

Fractures

Figure 1.1: Vertical and horizontal wells

through the casing and rock formation. Then, viscous fracturing fluid is injected into well

bore at high pressure. When the fluid pressure inside man-made crack in rock formation

exceeds the in-situ stress plus the tensile stress of rock, tensile failure or splitting of rock

occurs. The length and width of crack is basically increases as long as the fluid pressure is

maintained. The crack will grow in the direction having minimum resistance and eventually

propagates along the direction to the smallest principal stress in formation [7].

In-site fracture geometry design involves the situation of pay zone, such as in-situ stress

profile, formation permeability, formation modulus, etc and it also includes estimation of

the required resources, such as volume of fluid, injection time, hydraulic horse power for

pumping and schedule, selection of propping agent and amount, etc [8]. The recent hydraulic

fracturing job uses from 60,000 gal of fluid and 100,000 lbm of propping agents to the

maximum of 1 million fluid and 5 million proppants in the largest fracturing treatment [4].

Therefore, accurate prediction of crack propagation is the most essential process to optimize

the design of hydraulic fracturing and for efficient use resources.
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1.2 Numerical models of hydraulic fracturing

As hydraulic fracturing becomes an essential stimulation technique for oil and gas produc-

tions, there has long been great interest in understanding how hydraulic fractures grow

in certain conditions. Because the cracks are growing thousands of feet below the ground,

predicting physical behavior of crack propagation has been quite challenging. There are two

classical models of fracture geometry exist. The first crack propagation model for break-

ing rock formation using Sneddon’s plane strain crack solution is proposed by Perkins and

Kern in 1961 [9, 10]. This model is improved by Nordgren who includes fluid loss effect in

the model [11]. The another important model is developed by Khristianovic and Zheltov,

and also by Greertsma and de Klerk [12, 13] in 1955 and 1969, respectively. This model is

adapted to the power-law fluids case by Daneshy [14]. The first model is called Perkins-

Kern-Nordgren (PKN) model and the later is called Kristonovich-Geertsma-Daneshy (KGD)

model. The schematics of these two basic models are illustrated in Fig. 1.2.

The most of early hydraulic fracturing models were designed by applying one of these mod-

els. The PKN model have limited hight but relatively large length whereas the KGD model

is height independent and plane strain condition is applied to horizontal plane. Therefore,

the PKN model is normally used when the fracture length is much greater than the fracture

height, while the KGD model is used if fracture height is more larger than the fracture

length [16]. Generally, either of these two models can be used in certain formations to de-

sign hydraulic fractures. The major purpose of using hydraulic fracturing models to make

better decisions in process, rather than trying to determine accurate dimensions of fracture.

In fracture design process, the estimated geometry from model calculations must be com-

5



(a) PKN model

(b) KGD model

Figure 1.2: PKN and KGD geometries [15]

pared with actual results. By this calibrating process of fracture models with field results,

the models can be used to make design changes and improve the success of stimulation

treatments. If the correct fracture height value and the other parameters, such as in-situ

stress, shear modulus, formation permeability, and total leak-off coefficient are reasonably

known and used in the models, it will provide more accurate estimates of created fracture

length and width [8].

Although significant progress has been made in engineering hydraulic fracturing treatments
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as described earlier, numerical solutions for hydraulic fractures, especially the prediction of

crack propagation driven by non-Newtonian fluid is still difficult because of the nonlinear-

ity of the equation governing the flow of fluid in the fracture and the nonlocal character

of the elastic response. This difficulty is caused by three important physical facts. First,

the local opening displacements of crack is depends on not only the local fluid pressure

but also the fluid pressure at another point. Second, the rate of local fluid flow is depends

highly on the local crack opening displacement and power-law index of fluid. Third, the

process is time dependent, in which the fracture propagates with an unknown speed, which

also changes with time. Numerous efforts to overcome the complexity of fracture geometry

by improving the classical models or to develop new hydraulic fracturing model have been

made in decades from two dimensional model to pseudo three dimensional and fully three

dimensional [15,17–32].

The most of given models are based on fixed or moving mesh along the crack path and

also the surrounding area. With significant improvements in hydraulic fracturing treatment

technology, such as the simultaneous fracturing and horizontal drilling, the fractured area

becomes more large and complicated which means the total number of required elements

also rapidly increases and costs massive computations for the prediction of fracture geom-

etry. Therefore, the need of more efficient numerical model of hydraulic fracturing arises.

Our research focuses on developing an efficient and robust numerical model of crack propa-

gation driven by internal fluid flow which applicable to the complicated and large fractured

area problem.
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Chapter 2

Crack opening displacement

2.1 Stress field and dislocation

Consider a plane crack having a width 2L located at the region −L < x < L and y = 0 in

a two dimensional body subjected to uniform tension σyy = S at its remote boundaries as

shown in Figure 2.1. The analytical solution for this problem can be obtained by applying

S

S

x

y

uy

2L

Figure 2.1: A plane crack under tensile field
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the Flamant and Kelvin solutions in elasticity problem and Fourier transform [33–35] (see

Appendix A for detail). The traction σyy(x, 0) due to the dislocation uy(ξ, 0) is expressed

by

σyy = − Guy(ξ)dξ

2π(1− ν)(x− ξ)
(2.1)

The traction due to the whole distribution of dislocations can be written by a integral form:

σyy = − G

2π(1− ν)

∫ +L

−L

uy(ξ)dξ

(x− ξ)
(2.2)

where

uy(ξ) = −2S(1− ν)

G

ξ√
L2 − ξ2

(2.3)

The complete stress field and crack opening displacement are given by

σyy =
S|x|√
x2 − L2

, |x| > L, y = 0 (2.4)

uy(x, 0
+)− uy(x, 0−) =

∫ x

−L
uy(ξ)dξ =

2S(1− ν)

G

√
L2 − x2 (2.5)

2.2 Displacement discontinuity method (DDM)

2.2.1 Displacement discontinuity over a finite line segment

The displacement discontinuity boundary element method (DDBEM) is proposed by Crouch

in 1976 [36,37]. Under plane strain conditions for the z direction, the x− and y−components

of displacement in a homogeneous, isotropic, linearly elastic body are given by [33]

ux = Bx −
1

4(1− ν)

∂

∂x
(xBx + yBy + β) (2.6a)

uy = By −
1

4(1− ν)

∂

∂y
(xBx + yBy + β) (2.6b)
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where ν is Poisson’s ratio and Bx, By and β are the Papkovitch functions, which in the

absence of body forces satisfy Laplace’s equation:

∇2Bx = 0, ∇2By = 0, ∇2β = 0 (2.7)

with ∇2 =
∂2

∂x2
+

∂2

∂y2
. The two particular sets of Papkovitch functions are chosen, one

is free from shear traction and the other is free from normal traction on the plane y = 0.

These two sets of functions can be found by substituting Eq. (2.6) into the stress-strain

relations for plane strain and choosing Bx, By and β satisfying σxy = 0 for shear traction

free or σyy = 0 for normal traction free.

In case of shear traction free, the Papkovitch functions are taken as

Bx = 0 (2.8a)

By = 4(1− ν)
∂φ

∂y
(2.8b)

β = 4(1− ν)(1− 2ν)φ (2.8c)

where∇2φ = 0, the displacement and stresses can be expressed in terms of a single harmonic

function φ as

ux = −(1− 2ν)
∂φ

∂x
− y ∂

2φ

∂x∂y
(2.9a)

uy = 2(1− ν)
∂φ

∂y
− y∂

2φ

∂y2
(2.9b)

and

σxx = 2G

(
∂2φ

∂y2
+ y

∂3φ

∂y3

)
(2.10a)

σyy = 2G

(
∂2φ

∂y2
− y∂

3φ

∂y3

)
(2.10b)

σxy = −2Gy
∂3φ

∂x∂y2
(2.10c)
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The expression for σxy shows that the shear stress vanishes on y = 0 because
∂3φ

∂x∂y2
is finite

on y = 0.

For the case of a body free from normal traction, Papkovitch functions are given by

Bx = 0 (2.11a)

By = 4(1− ν)
∂χ

∂x
(2.11b)

β = 8(1− ν)2

∫
∂χ

∂x
dy (2.11c)

where ∇2χ = 0, the displacement and stresses in terms of χ are

ux = 2(1− ν)
∂χ

∂y
+ y

∂2χ

∂y2
(2.12a)

uy = (1− 2ν)
∂χ

∂x
− y ∂

2χ

∂x∂y
(2.12b)

and

σxx = 2G

(
2
∂2χ

∂x∂y
+ y

∂3χ

∂x∂y2

)
(2.13a)

σyy = −2Gy
∂3χ

∂x∂y2
(2.13b)

σxy = 2G

(
∂2χ

∂y2
+ y

∂3χ

∂y3

)
(2.13c)

The expression for σyy shows that this stress component vanishes on y = 0 because
∂3χ

∂x∂y2

is finite on y = 0.

A constant displacement discontinuity over a finite line segment −a ≤ x ≤ a on y = 0 can

be solved in two parts, for a displacement discontinuity in the normal displacement uy and

for a discontinuity in the transverse displacement ux.

The boundary conditions for a normal displacement discontinuity Dy are

σxy(x, 0) = 0, −∞ < x <∞ (2.14a)
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uy(x, 0) = 0, x < −a and x > a (2.14b)

lim
y→0+

uy(x, y)− lim
y→0−

uy(x, y) = Dy, −a < x < a (2.14c)

The harmonic function φ which satisfy the boundary conditions Eq. (2.14) with Eq. (2.9)

is found by

φ(x, y) =
Dy

4π(1− ν)

{
y arctan

x+ a

y
− y arctan

x− a
y

+ (x+ a) ln
[
(x+ a)2 + y2

] 1
2 − (x− a) ln

[
(x− a)2 + y2

] 1
2

}
(2.15)

Similarly, the harmonic function χ is given by

χ(x, y) =
Dx

4π(1− ν)

{
y arctan

x+ a

y
− y arctan

x− a
y

+ (x+ a) ln
[
(x+ a)2 + y2

] 1
2 − (x− a) ln

[
(x− a)2 + y2

] 1
2

}
(2.16)

2.2.2 Dislocation discontinuity in an infinite body

The displacement discontinuity Di in Eq. (2.14) can be rewritten as

Dx = ux(x, 0−)− ux(x, 0+) (2.17a)

Dy = uy(x, 0
−)− uy(x, 0+) (2.17b)

From Eq. (2.6) to Eq. (2.17), we obtain the displacements

ux = Dx [2(1− ν)φ,y − yφ,xx] +Dy [−(1− 2ν)φ,x − yφ,xy] (2.18a)

uy = Dx [(1− 2ν)φ,x − yφ,xy] +Dy [2(1− ν)φ,y − yφ,yy] (2.18b)

and stresses

σxx = 2GDx (2φ,xy + yφ,xyy) + 2GDy (φ,yy + yφ,yyy) (2.19a)

σyy = 2GDx (−yφ,xyy) + 2GDy (φ,yy − yφ,yyy) (2.19b)
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σxy = 2GDx (φ,yy + yφ,yyy) + 2GDy (−yφ,xyy) (2.19c)

The function f and its derivatives are

f(x, y) = − 1

4π(1− ν)

{
y

(
arctan

y

x− a
− arctan

y

x+ a

)
−(x− a) ln[(x− a)2] + y2]

1
2 + (x+ a) ln[(x+ a)2] + y2]

1
2

}
(2.20a)

f,x =
1

4π(1− ν)

{
ln[(x− a)2] + y2]

1
2 − ln[(x+ a)2] + y2]

1
2

}
(2.20b)

f,y = − 1

4π(1− ν)

(
arctan

y

x− a
− arctan

y

x+ a

)
(2.20c)

f,xy =
1

4π(1− ν)

[
y

(x− a)2 + y2
− y

(x+ a)2 + y2

]
(2.20d)

f,xx = −f,yy =
1

4π(1− ν)

[
x− a

(x− a)2 + y2
− x+ a

(x+ a)2 + y2

]
(2.20e)

f,xyy = −f,xxx =
1

4π(1− ν)

{
(x− a)2 − y2

[(x− a)2 + y2]2
− (x+ a)2 − y2

[(x+ a)2 + y2]2

}
(2.20f)

f,yyy = −f,xxy =
2y

4π(1− ν)

{
x− a

[(x− a)2 + y2]2
− x+ a

[(x+ a)2 + y2]2

}
(2.20g)

The displacements on y = 0 are then defined by substituting Eq. (2.20) into Eq. (2.18),

ux = − 1

2π
Dx lim

y→0±

(
arctan

y

x− a
− arctan

y

x+ a

)
− 1− 2ν

4π(1− ν)
Dy ln

∣∣∣∣x− ax+ a

∣∣∣∣ (2.21a)

uy =
1− 2ν

4π(1− ν)
Dx ln

∣∣∣∣x− ax+ a

∣∣∣∣− 1

2π
Dy lim

y→0±

(
arctan

y

x− a
− arctan

y

x+ a

)
(2.21b)

Due to the discontinuity of arctan
(

y
x−a

)
and arctan

(
y

x+a

)
, we have

lim
y→0±

(
arctan

y

x− a
− arctan

y

x+ a

)
=



0 for |x| > a, y = 0±

π for |x| < a, y = 0+

−π for |x| < a, y = 0−

(2.22)

The Eq. (2.21) must be limited for three separate cases
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for |x| > a, y = 0±

ux(x, 0) = − 1− 2ν

4π(1− ν)
Dy ln

∣∣∣∣x− ax+ a

∣∣∣∣ (2.23a)

uy(x, 0) =
1− 2ν

4π(1− ν)
Dx ln

∣∣∣∣x− ax+ a

∣∣∣∣ (2.23b)

for |x| < a, y = 0+

ux(x, 0+) = −1

2
Dx −

1− 2ν

4π(1− ν)
Dy ln

∣∣∣∣x− ax+ a

∣∣∣∣ (2.23c)

uy(x, 0
+) =

1− 2ν

4π(1− ν)
Dx ln

∣∣∣∣x− ax+ a

∣∣∣∣− 1

2
Dy (2.23d)

for |x| < a, y = 0+

ux(x, 0−) =
1

2
Dx −

1− 2ν

4π(1− ν)
Dy ln

∣∣∣∣x− ax+ a

∣∣∣∣ (2.23e)

uy(x, 0
−) =

1− 2ν

4π(1− ν)
Dx ln

∣∣∣∣x− ax+ a

∣∣∣∣+
1

2
Dy (2.23f)

The stress components on y = 0 are also obtained by substituting Eq. (2.20) into Eq. (2.19)

σxx(x, 0) = − G

π(1− ν)
Dy

a

x2 − a2
(2.24a)

σyy(x, 0) = − G

π(1− ν)
Dy

a

x2 − a2
(2.24b)

σxy(x, 0) = − G

π(1− ν)
Dx

a

x2 − a2
(2.24c)

2.2.3 A plane crack under tensile

As shown in Fig. 2.1, a plane crack under tensile field problem can be defined by the

following boundary conditions,

σxy(x, 0) = 0, −∞ < x <∞

σyy(x, 0) = −p, |x| < L

Dy(x, 0) = 0. |x| > L

(2.25)
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The normal stress σyy at a point (x, 0) due to a constant displacement discontinuity Dy

over the interval |x| ≤ a, y = 0 is given by Eq. (2.24)

σyy(x, 0) = − G

π (1− ν)
Dy

a

x2 − a2

For the numerical solution of the crack problem, we divide the crack into n line segments.

If discontinuity presents on the line segment of length 2aj centered at the point x = xi,

y = 0, then above equation can be written as

σyy(x, 0) = − G

π (1− ν)
Dy,k

ak

(x− xk)2 − (ak)
2 (2.26)

where, Dy,k is the displacement discontinuity over the interval |x− xk| ≤ ak, y = 0.

The stress at the mid point of ith element due to a displacement discontinuity at the kth

element can be obtained by setting x = xi,

σyy(xi, 0) = − G

π (1− ν)
Dy,k

ak

(xi − xk)2 − (ak)
2 (2.27)

The stress at the mid point of ith element due to a displacement discontinuity over the all

elements can be expressed in a summation form,

σyy(xi, 0) = σyy,i =
N∑
k=1

AikDy,k (2.28)

where, the influence coefficient Aik are

Aik = − G

π(1− ν)

ak

(xi − xk)2 − (ak)
2 (2.29)

By applying boundary condition Eq. (2.25) to Eq. (2.28), we get

σyy,i = −p =
N∑
k=1

AikDy,k (2.30)

The displacement discontinuity Dy can be obtained by solving the system of N liner equa-

tions of Eq. (2.30).
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2.3 Stress intensity factor

Stress and displacement field near crack tip

The stresses in the cracked body subjected to external forces is given by [38]

σij =

(
k√
r

)
fij (θ) +

∞∑
m=0

Amr
m
2 g

(m)
ij (θ) (2.31)

where, σij , k and fij are stress tensor, stress intensity factor defined by k = K/
√

2π and

dimensionless function of θ in the leading term, respectively.

For the higher-order terms, Am and gm are the amplitude and a dimensionless function of

θ for the mth term. The higher order terms depend on geometry. Since the first term is

proportional to 1/
√
r, the first term approaches to infinity while the other terms remain

finite or approach to zero. Therefore, stress near crack tip varies with 1/
√
r and near tip

displacement varies with
√
r.

The near crack tip stress field for mode I in a linear elastic, isotropic material is given by

σxx =
KI√
2πr

cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
(2.32a)

σyy =
KI√
2πr

cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]
(2.32b)

σxy =
KI√
2πr

cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
(2.32c)

and displacement field for mode I is

ux =
KI

2G

√
r

2π
cos

(
θ

2

)[
κ− 1 + 2 cos2

(
θ

2

)]
(2.33a)

uy =
KI

2G

√
r

2π
sin

(
θ

2

)[
κ+ 1− 2 cos2

(
θ

2

)]
(2.33b)

The Mode II near tip stress and displacement fields are as follows

σxx = − KII√
2πr

sin

(
θ

2

)[
2 + cos

(
θ

2

)
cos

(
3θ

2

)]
(2.34a)
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σyy =
KII√
2πr

sin

(
θ

2

)
cos

(
θ

2

)
cos

(
3θ

2

)
(2.34b)

σxy =
KII√
2πr

cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
(2.34c)

and

ux =
KII

2G

√
r

2π
sin

(
θ

2

)[
κ+ 1 + 2 cos2

(
θ

2

)]
(2.35a)

uy = −KII

2G

√
r

2π
cos

(
θ

2

)[
κ− 1− 2 sin2

(
θ

2

)]
(2.35b)

Stress or displacement matching

When displacement or stress near crack tip are known, the stress intensity factor can be

obtained by matching the the displacement or stress with Eq. (2.32) to Eq. (2.35).

KI = lim
r→0

[
σyy
√

2πr
]

(θ = 0) (2.36)

KI = lim
r→0

[
Guy

2 (1− ν)

√
2π

r

]
(θ = π) (2.37)

Energy release rate

Energy release rate and stress intensity factor for a mode I crack in a linear elastic solid is

given by [39]

GI =
1− ν
2G

K2
I (2.38)

Energy release rate for a crack can also calculated by evaluating the path-independent line

integral for any contour that starts on one crack face and ends on the other:

Gi =

∫
Γ

(
Wδi1 − σij

∂ui
∂x1

)
mjds (2.39)

17



where W , σij , ui and mi are strain energy density given by W = σijεij/2, stress tensor,

displacement vector and a unit vector normal to Γ, respectively. The mode I stress intensity

factor is then be obtained by comparison Eq. (2.38) with Eq. (2.39).

Strain energy

Relationship between strain energy and the mode I stress intensity factor is given by [40–42]

∂W

∂b
=

1− ν
G

K2
I (2.40)

Strain energy for the pressurized crack problem can be obtained by calculating the work

done by crack opening displacement.

W = −1

2
p

∫ a

−a
ûy(x)dx

.
= −p

N∑
j=1

ajDj
y (2.41)

or by numerical estimation for slightly different crack length

∂W

∂b

.
=

1

2∆b
[W (b+ ∆b)−W (b−∆b)] (2.42)

2.4 Use of special crack-tip element

As mentioned in Section 2.3, The analytical solution of the pressurized crack problem shows

that the stresses at a distance r from the crack tip always vary as r−1/2 if r is small. The

example of a plane crack corresponds to mode I and for a crack length 2L subjected to

internal pressure p , the mode I stress intensity factor can be defined by Eq. (A.36) and

Eq. (2.36).

KI = lim
x→L+

σyy(x)
√

2π(x− L) (2.43a)

= lim
x→L+

px
√

2π(x− L)√
x2 − L2

(2.43b)
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= p
√
πL (2.43c)

But in more complex situation, the stress intensity factor need be evaluated numerically

hence the requirement in fracture mechanics for accuracy close to the crack tip. The r−1/2

variation of the stresses near the tip is from the relative displacement between the crack

surfaces proportional to x1/2 close to the tip. The special crack tip element d̄y, the relative

normal displacement between the crack surfaces, is given by [37]

d̄y = Dy(x/a)1/2 (2.44)

where 2a is the length of the crack tip element and Dy is the displacement discontinuity at

the center of this element. From Eq. (2.24), the normal stress σyy at a point (x, 0) due to

a constant displacement discontinuity Dy over the interval |x| ≤ a, y = 0 is given by,

σyy(x, 0) = − G

π (1− ν)
Dy

a

x2 − a2
(2.45)

The above equation is derived by substituting d̄y(ξ) = Dy, in the integral,

σyy(x, 0) = − G

2π(1− ν)
lim
y→0

∫ a

−a
d̄y(ξ)

1

(x− ξ)2 + y2
dξ (2.46)

x

y

d̄y = Dy(ξ/a)1/2

r

2a

Figure 2.2: A special crack tip element
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For the crack tip element, we have d̄y(ξ) = Dy(ξ/a)1/2 in 0 ≤ ξ ≤ 2a and the above equation

can be written as

σyy(x, 0) = − GDy

2π(1− ν)
lim
y→0

∫ 2a

0
(ξ/a)1/2 1

(x− ξ)2 + y2
dξ (2.47)

Upon evaluation of the integral, we have

σyy(x, 0) = − GDy

2π(1− ν)

( √
2

x− 2a
+

1

2
√
ax

ln

∣∣∣∣∣
√
x−
√

2a
√
x+
√

2a

∣∣∣∣∣
)

(for x > 0) (2.48a)

σyy(x, 0) = − GDy

2π(1− ν)

1√
ar

(
arctan

√
2a/r −

√
2a/r

r + 2a

)
(for x < 0) (2.48b)

Similar expression can be derived for the special crack tip element on the right-hand end of

the crack. The numerical solution can be obtained by dividing the crack into N elements

such that element i of length 2ai is center at the point x = xi, y = 0. If the first and the last

elements are the crack tip elements, the boundary influence coefficients Eq. (2.29) becomes

Aij = − G

π(1− ν)

aj
(xi − xj)2 − (aj)2

for 2 ≤ j ≤ N − 1 (2.49a)

Aij = − G

2π(1− ν)

[ √
2

S − 2aj
+

1

2
√
ajS

ln

∣∣∣∣∣
√
S −

√
2aj√

S +
√

2aj

∣∣∣∣∣
]

for j = 1, j = N (2.49b)

where S = aj + |x̄i − xj |

Then, a numerical solution to the pressurized crack problem can be obtained by solving the

N simultaneous equations of Eq. (2.30).

More accurate results can be obtained by assuming a more complex form for ûy in the

vicinity of the crack tip, such as ūd(ξ) = c0ξ
1/2 + c1ξ

3/2 over the first two elements. The

constants c0 and c1 are related to the displacement discontinuities Dy,1 and Dy,2 at the mid-

point of these elements and the corresponding boundary influence elements can be derived

by following similar procedure to Eq. (2.49). Even more accuracy can also be achieved by
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adding a term in ξ5/2 to d̄y.

Fig. 2.3 shows displacement discontinuities of the right wing of a plane crack under ten-

sile. The displacement discontinuities of ordinary and crack tip element are obtained from

Eq. (2.30) with Eq. (2.29) and Eq. (2.49) and analytical solution is given by Eq. (2.4). From

Fig. 2.1, the parameters are set to G = 1.0GPa, ν = 0.2, p = −1.0MPa and 10 elements are

used. As shown in Fig. 2.4, use of a special crack tip element provides better estimation of

displacement discontinuity specially at the crack. Additionally, Table 2.1 shows that crack

tip element also allow us to obtain more accurate stress intensity factor in followed crack

propagation analysis.
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Figure 2.3: Comparison of displacement discontinuity
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Figure 2.4: Difference in displacement

Method Analytical Ordinary element Crack tip element

Displacement matching
1.77

2.21 (24.8%) 1.90 (7.3%)

Strain energy 1.82 (2.8%) 1.80 (1.7%)

Table 2.1: Comparison of Mode I stress intensity factor (MPa
√

m)
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Chapter 3

Propagation of crack driven by

internal fracturing fluid flows

3.1 Dynamics of a fracturing fluid flow inside crack

3.1.1 Newtonian fluids

The governing equations of fluid flow are continuity, equation of motion and constitutive

equation. The continuity equation can be described that the system mass remain constant

as the system moves through the flow field, given by

DMsys

Dt
= 0 (3.1)

where
D

Dt
and Msys are material derivative or substantial derivative of system mass given

by

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(3.2a)
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Msys =

∫
sys

ρdV (3.2b)

The equation of motion is given by

σij,j + ρbi = ρu̇i or σij,j + ρbi = ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
(3.3)

where ρbi is the distributed body forces and u̇i is the material derivative of ui given by

u̇i =
∂ui
∂t

+ ujui,j (3.4)

The constitutive equation is

σij = −pδij + µeij (3.5)

where µ is viscosity coefficients, and eij is the rate of deformation tensor

eij =
1

2
(ui,j + uj,i) (3.6)

Using Reynolds transport theorem for a system and a fixed, non-deforming control volume,

Eq. (3.2) can be written as

D

Dt

∫
sys

ρdV =
∂

∂t

∫
cv
ρdV +

∫
cs
ρV · n̂dA = 0 (3.7)

then,

∂

∂t

∫
cv
ρdV = −

∫
cs
ρV · n̂dA (3.8)

by integrating above equation, we obtain the continuity equation

∂w

∂t
= qI − qL −

∂qx
∂x
− ∂qy
∂y

(3.9)

For one-dimensional fluid flow, above equation becomes

∂w

∂t
= −∂qx

∂x
+ qI − qL (3.10)
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where w, q and qL are wall thickness, volume flow rate per unit length and fluid loss,

respectively. From Navier-Stokes equation for Newtonian fluid,

∂ui
∂t

+ ujui,j = bi −
1

ρ
p,i + νui,jj (3.11)

The components of Navier-stokes equation can be described by follow, first term: local

acceleration of the fluid particle, second term: convective acceleration of the fluid particle,

third term: body force or acceleration due to gravity, fourth term: pressure acceleration due

to the pumping action of flow, last term: viscous deceleration due to the fluid’s frictional

resistance to objects moving through it. Therefore, if we assume the fluid is steady (∂ui/∂t =

0) and has no body force or gravitational force is applied (bi = 0), the first and third terms

are dropped. Then, if the fluid is incompressible (ui,i = 0)and u is not varies in the y and z

direction, the second term can also be neglected. Thus Navier-Stokes equation reduces to

p,i = µui,jj or
∂p

∂x
= µ

∂2u

∂y2
(3.12)

by integrating above equation for u with boundary conditions u = 0 for y = ±w/2,

u =
1

2µ

(
∂p

∂x

)[
y2 −

(w
2

)2
]

(3.13)

The volume rate of flow q passing between the plates, can be obtained by integrating the

velocity field over the height of plates,

qx =

∫ w/2

−w/2
udy = − w3

12µ

(
∂p

∂x

)
or

∂p

∂x
+

12µ

w3
qx = 0 (3.14)

Shear stress at the walls can be obtained from,∫ w/2

−w/2

∂τxy
∂y

dy = w
∂p

∂x
= −µ 12

w2
qx (3.15)
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3.1.2 Power-law fluids (non-Newtonian)

Power-law fluid is also called a generalized Newtonian fluid defined by

τ = K ′
(
∂u

∂y

)n′
(3.16)

where τ, ∂u/∂y, K ′ and n′ are shear stress, velocity gradient, flow consistency index and

flow behavior index, respectively. The flow behavior index n′ is given by n′ = 1 for New-

tonian, n′ < 1 for Pseudo-plastic, n′ > 1 for Dilatant fluid. We assume the power-law fluid

discussed in following chapters is non-Newtonian fluid having fluid behavior index of n′ < 1.

Flow analysis for one-dimensional power-law fluid flow between parallel plates can be found

in [19,20,43]. When the velocity profile for power-law fluid is given by,

ux =

(
2n′ + 1

n′ + 1

)
2(1 + 1

n′ )

w
1
n′+2

qx

[(
w

1
n′+1

2
− y

1
n′+1

)]
(3.17)

where

qx =

∫ w/2

−w/2
uxdy (3.18)

The shear stress at wall can be determined by∫ w/2

−w/2

∂τxy
∂y

= w∂
∂p

∂x
= −η′

( qx
w2

)2n+1
(3.19)

where η′ is a viscosity parameter of power-law fluid

By integration of Eq. (3.3) with Eq. (3.17) and Eq. (3.19), we obtain the pressure gradient

equation

∂p

∂x
+ η′

(
|q|
w2

)n′−1 qx
w3

= 0 (3.20a)

∂p

∂y
+ η′

(
|q|
w2

)n′−1 qy
w3

= ρFy (3.20b)

26



and continuity equation is from Eq. (3.9)

∂qx
∂x

+
∂qy
∂y

= −∂w
∂t

+ qI − qL (3.21)

where qx are qy volume flow rate in x and y direction per unit length. |q| is resultant flow

rate given by |q| =
(
q2
x + q2

y

)1/2
. qL is volume leak-off rate per unit fracture area.

The viscosity parameter η′ is related to the usual power-law coefficients K ′ and n′ and it is

given by

η′ = 2(n′+1)K ′(2 + 1/n′)n
′

(3.22)

By limiting to one-dimensional flow with constant fluid injection without leak-off, above

equations become

∂w

∂t
= −∂qx

∂x
+ qI (3.23)

qx = − n′

2 + 4n′

(
w2n′+1

2K ′
∂p

∂x

) 1
n′

(3.24)

∫ w/2

−w/2

∂τxy
∂y

dy = −η′
( qx
w2

)n′
(3.25)

where qI is volume injection rate per unit fracture area and it is applied to regions near the

wellbore and adjacent to perforations only

3.2 Numerical solutions of solid-fluid coupled field problem

3.2.1 Solid-fluid interaction

Consider a plane crack under in-situ stress σxx and σyy while fracturing fluid is injected

at the center of crack to open and provide sufficient pressure for propagation as shown

in Fig. 3.1. The fluid pressure pf inside crack generated by constant fluid injection qI at
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wellbore produces opening displacement of crack surface through the length. When the

mode I stress intensity factor KI at crack tip reaches the mode I critical stress intensity

factor KIc or crack tip opening displacement wtip meets critical opening displacement wcr,

the crack starts growing to x direction. From Eq. (3.23), the wall width is related to

volume flow rate qx and pressure gradient ∂p/∂x. we can assume the pressure field caused

by internal fluid flow as tractions applied to the crack surface. Therefore, solid-fluid coupled

field problem can be solved by coupling the pressure gradient equation in Eq. (3.20) with

the stress created by displacement discontinuities on crack surface in Eq. (2.28). Recall

x

y

w

2L ∆L∆L

KI ≥ KIc

wtip ≥ wcrqI

pf , V σxxσxx

σyy

σyy

Figure 3.1: Propagation of a plane crack caused by internal fluid flow

the equations for fluid flow analysis and the displacement discontinuity solution for a plane

crack under tensile, we can have the solid-fluid coupled solution,

∂w

∂t
= −∂qx

∂x
+ qI (3.26)

qx = − n′

2 + 4n′

(
w2n′+1

2K ′
∂p

∂x

) 1
n′

(3.27)
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and discretized form of displacement discontinuity solution is

pi =
N∑
j=1

Aijwj = pf − σsitu (3.28)

where

Aij = − G

π(1− ν)

aj
(xi − xj)2 − (aj)2

for 2 ≤ j ≤ N − 1

Aij = − G

2π(1− ν)

[ √
2

S − 2aj
+

1

2
√
ajS

ln

∣∣∣∣∣
√
S −

√
2aj√

S +
√

2aj

∣∣∣∣∣
]

for j = 1, j = N

The boundary, initial conditions and constraint are

q(0+, t) =
qI
2

= constant (3.29a)

q(0−, t) = −qI
2

= constant (3.29b)

q(L, t) = 0 (3.29c)

w(x, t) = 0, for |x| ≥ L(t) (3.29d)

∂w(0, t)

∂x
= 0 (3.29e)

w(x, 0) = 0 (3.29f)∫ L

−L
w dx =

∫ t

0
q dt (3.29g)

The first two conditions are for fluid injection at well bore and qi remains constant. The

third and fourth describe there is no displacement or fluid flow beyond the crack tip. The

fifth means the system is symmetry along the y axis and the last term constrains the

fractured volume of the crack must be same as injected volume for given time.
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solid (pn, wn)

fluid (qn)

solid (pn+1, wn+1)

boundary element

i− 2 i− 1 i i+ 1 i+ 2

× × × × ×

× × × × ×
i− 1

2 i+ 1
2

Grid I Grid II

Figure 3.2: Grid systems for finite difference discretization

3.2.2 Grid systems

Two grid systems for fluid flow equations are provided as shown in Section 3.2.2. The node

locations of qi in Grid I are same as those of boundary element in displacement discontinuity

solution which the nodes are located at the center of element. On the other hand, in Grid

II, the qi are located at the edge of boundary elements. The Grid I is comparatively easy

to be coupled with displacement discontinuity solution but requires ghost elements outside

crack. In Grid II, because qi is located at the edge of boundary element, the exact boundary

conditions can be applied. Due to the symmetry of the crack along the y -axis, only the

right hand side of crack is modeled for efficiency.

3.2.3 Explicit solutions

The equations for fluid flow inside crack Eq. (3.26) and Eq. (3.27) are discretized with

explicit finite difference scheme. An explicit forward difference scheme is used in time for

both grid systems and a central difference in space for Grid I and a forward difference for

Grid II are applied as shown in Fig. 3.3.
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solid (pn, wn)

fluid (qn)

solid (wn+1)

element
i− 2 i− 1 i i+ 1 i+ 2

× × × × ×

× × × × ×
pi−2 wi−1 pi wi+1 pi+2

qi−1 qi+1

wi

i− 2 i− 1 i i+ 1 i+ 2

× × × × ×

× × × × ×

wi

qi qi+1

pi−1 pi pi+1
wi−1 wi

(a) Grid I (b) Grid II

Figure 3.3: Explicit finite difference schemes

For Grid I

The continuity equation Eq. (3.26) in Grid I can be discretized by

wm+1
i = wmi −

∆t

2∆x

(
qmi+1 − qmi−1

)
, for 2 ≤ i ≤ n− 1 (3.30a)

wm+1
1 = wm1 −

∆t

2∆x
(qm2 + q̄m1 ) + winj (3.30b)

wm+1
n = wmn +

∆t

2∆x

(
qmn−1

)
(3.30c)

and the pressure gradient equation Eq. (3.27) is

qmi = − n′

2 + 4n′

[
(wmi )2n′+1

2K ′

(
pmi+1 − pmi−1

2∆x

)] 1
n′

, for 2 ≤ i ≤ n− 1 (3.31a)

qm1 = − n′

2 + 4n′

[
(wm1 )2n′+1

2K ′

(
pm2 − p̄m1

2∆x

)] 1
n′

(3.31b)

qmn = − n′

2 + 4n′

[
(wmn )2n′+1

2K ′

(
p̄mn − pmn−1

2∆x

)] 1
n′

(3.31c)

where winj is the created volume at the near well bore element by fluid injection given by

winj =
∆t

∆x

qI
2

, q̄ and p̄ are volume flow rate and pressure of the ghost elements located
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at beyond well bore and crack tip element. By combining above equations we obtain the

explicit finite difference solution

wm+1
i = wmi + λI

{[(
wmi+1

)2n′+1 (
pmi+2 − pmi

)] 1
n′ −

[(
wmi−1

)2n′+1 (
pmi − pmi−2

)] 1
n′
}
,

for 3 ≤ i ≤ n− 2 (3.32a)

wm+1
1 = wm1 + λI

{[
(wm2 )2n′+1 (pm3 − pm1 )

] 1
n′

+
[
(wm1 )2n′+1 (pm2 − pm1 )

] 1
n′
}

+ winj (3.32b)

wm+1
2 = wm2 + λI

{[
(wm3 )2n′+1 (pm4 − pm2 )

] 1
n′ −

[
(wm1 )2n′+1 (pm2 − pm1 )

] 1
n′
}

(3.32c)

wm+1
n−1 = wmn−1 + λI

{[
(wmn )2n′+1 (pmn − pmn−1

)] 1
n′ −

[(
wmn−2

)2n′+1 (
pmn−1 − pmn−3

)] 1
n′
}
(3.32d)

wm+1
n = wmn − λI

[(
wmn−1

)2n′+1 (
pmn − pmn−2

)] 1
n′

(3.32e)

where λI =
n′∆t

2∆x(2 + 4n′)(4K ′∆x)
1
n′

.

For Grid II

The discretized continuity and pressure gradient equations of Eq. (3.26) and Eq. (3.27) in

Grid II system are given by

wm+1
i = wmi −

∆t

∆x

(
qmi+1 − qmi

)
, for 2 ≤ i ≤ n− 1 (3.33a)

wm+1
1 = wm1 −

∆t

∆x
(qm2 − qinj) (3.33b)

wm+1
n = wmn +

∆t

∆x
qmn (3.33c)

and

qmi = − n′

2 + 4n′

[(
wmi−1

)2n′+1

2K ′

(
pmi − pmi−1

∆x

)] 1
n′

, for 2 ≤ i ≤ n (3.34)
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Then we obtain explicit finite difference solution

wm+1
i = wmi + λII

{[
(wmi )2n′+1 (pmi+1 − pmi

)] 1
n′ −

[(
wmi−1

)2n′+1 (
pmi − pmi−1

)] 1
n′
}

for 2 ≤ i ≤ n− 1 (3.35a)

wm+1
1 = wm1 + λII

[
(wm1 )2n′+1 (pm2 − pm1 )

] 1
n′

+ winj (3.35b)

wm+1
n = wmn − λII

[(
wmn−1

)2n′+1 (
pmn − pmn−1

)] 1
n′

(3.35c)

where winj =
∆t

∆x

qI
2

and λII =
n′∆t

∆x(2 + 4n′)(2K ′∆x)
1
n′

.

3.2.4 Courant-Friedrichs-Lewy Condition (CFL Condition)

Recall the discrete forms of fluid flow equations of Eq. (3.26) for Newtonian fluid (n′ = 1)

and elasticity equation Eq. (3.28) [26,44].

wm+1
i − wmi

∆t
=

w3

12µ

1

∆x2

(
pmi+1 − 2pmi + pmi−1

)
pi =

N∑
k=1

Aikwk

Aik = − G

π(1− ν)

ak
(xi − xk)2 − (ak)2

The operators of the equations can be written by

Amn = − G

π(1− ν)

an
(xm − xn)2 − (an)2

=
G

2π∆x(1− ν)

[
1

(m− n)2 − 1
4

]
(3.36)

Cpn =
w̄3

12µ

1

∆x2 (pn+1 − 2pn + pn−1) (3.37)

The eigenvalues of the operators are

Âk = − G

2π∆x(1− ν)

∞∑
k=−∞

eikm∆x

m2 − 1
4

= − G

2π∆x(1− ν)

[
−2π sin

(
|k|∆x

2

)]
(3.38)

Ĉk = − w̄
3

3µ

1

∆x2 sin2

(
k∆x

2

)
(3.39)
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Both are Toeplitz matrices (ai,j = ai+1,j+1) and have eigenfunctions of eikn∆x. The system

matrix AC governs the displacement vector ∆w and the eigenvalue λk of the combined

operator AC are given by

λk = ÂkĈk = − Gw̄3

3µ(1− ν)∆x3 sin3

(
|k|∆x

2

)
(3.40)

For Euler’s method, the time step is restricted by the form

∆t <
6µ(1− ν)∆x3

Gw̄3
(3.41)

Similarly, for central difference scheme,

∆t <
24µ(1− ν)∆x3

Gw̄3
(3.42)

The time step restrictions described above are for a Newtonian fluid. In case of non-

Newtonian fluid n′ < 1, the maximum allowable time step will be much smaller. Therefore,

the use of implicit method is more attracted for the simulation of non-Newtonian fluid.

3.2.5 Implicit solutions

In implicit solutions, discretization of fluid flow equations is similar to explicit solutions, but

the volume flow rate qi and pressure pi are in next time domain and they are determined

from current state of displacement field as shown in Fig. 3.4. Therefore, with n elements,

we obtain a system of n nonlinear equations with n unknowns.

For Grid I

The discretized continuity equation in Gridn I is given by

wm+1
i +

∆t

2∆x

(
qm+1
i+1 − q

m+1
i−1

)
= wmi , for 2 ≤ i ≤ n− 1 (3.43a)
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× × × × ×

pi−2

wi−1

pi

wi+1

pi+2

qi−1 qi+1

wi

i− 2 i− 1 i i+ 1 i+ 2
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Figure 3.4: Implicit finite difference schemes

wm+1
1 +

∆t

2∆x

(
qm+1

2 + q̄m+1
1

)
− winj = wm1 (3.43b)

wm+1
n − ∆t

2∆x

(
qm+1
n−1

)
= wmn (3.43c)

and the pressure gradient equation becomes

qm+1
i = − n′

2 + 4n′

[(
wm+1
i

)2n′+1

2K ′

(
pm+1
i+1 − p

m+1
i−1

2∆x

)] 1
n′

, for 2 ≤ i ≤ n− 1 (3.44a)

qm+1
1 = − n′

2 + 4n′

[(
wm+1

1

)2n′+1

2K ′

(
pm+1

2 − p̄m+1
1

2∆x

)] 1
n′

(3.44b)

qm+1
n = − n′

2 + 4n′

[(
wm+1
n

)2n′+1

2K ′

(
p̄m+1
n − pm+1

n−1

2∆x

)] 1
n′

(3.44c)

Finally, by combining continuity and pressure gradient equations, we have a system of

nonlinear equations that the displacement field wm+1 and pressure field pm+1 in nest time

domain can be solved from the current displacement wm and boundary conditions.

wm+1
i − λI

{[(
wm+1
i+1

)2n′+1 (
pm+1
i+2 − p

m+1
i

)] 1
n′ −

[(
wm+1
i−1

)2n′+1 (
pm+1
i − pm+1

i−2

)] 1
n′
}

= wmi , for 3 ≤ i ≤ n− 2 (3.45a)

wm+1
1 − λI

{[(
wm+1

2

)2n′+1 (
pm+1

3 − pm+1
1

)] 1
n′

+
[(
wm+1

1

)2n′+1 (
pm+1

2 − pm+1
1

)] 1
n′
}
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− winj = wm1 (3.45b)

wm+1
2 − λI

{[(
wm+1

3

)2n′+1 (
pm+1

4 − pm+1
2

)] 1
n′ −

[(
wm+1

1

)2n′+1 (
pm+1

2 − pm+1
1

)] 1
n′
}

= wm2 (3.45c)

wm+1
n−1 − λI

{[(
wm+1
n

)2n′+1 (
pm+1
n − pm+1

n−1

)] 1
n′ −

[(
wm+1
n−2

)2n′+1 (
pm+1
n−1 − p

m+1
n−3

)] 1
n′
}

= wmn−1 (3.45d)

wm+1
n + λI

[(
wm+1
n−1

)2n′+1 (
pm+1
n − pm+1

n−2

)] 1
n′

= wmn (3.45e)

For Grid II

The fluid flow equation in Grid II can be obtained by applying same procedure of those in

Grid I. The continuity and pressure becomes

wm+1
i +

∆t

∆x

(
qm+1
i+1 − q

m+1
i

)
= wmi , for 2 ≤ i ≤ n− 1 (3.46a)

wm+1
1 +

∆t

∆x

(
qm+1

2 − qinj

)
= wm1 (3.46b)

wm+1
n − ∆t

∆x
qm+1
n = wmn (3.46c)

and pressure gradient equations is

qm+1
i = − n′

2 + 4n′

(wm+1
i−1

)2n′+1

2K ′

(
pm+1
i − pm+1

i−1

∆x

) 1
n′

, for 2 ≤ i ≤ n (3.47)

By combining above equations, the implicit solution of fluid flow equations in Grid II are

provided by

wm+1
i − λII

{[(
wm+1
i

)2n′+1 (
pm+1
i+1 − p

m+1
i

)] 1
n′ −

[(
wm+1
i−1

)2n′+1 (
pm+1
i − pm+1

i−1

)] 1
n′
}

= wmi , for 2 ≤ i ≤ n− 1 (3.48a)

wm+1
1 − λII

[(
wm+1

1

)2n′+1 (
pm+1

2 − pm+1
1

)] 1
n′ − winj = wm1 (3.48b)
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wm+1
n + λII

[(
wm+1
n−1

)2n′+1 (
pm+1
n − pm+1

n−1

)] 1
n′

= wmn (3.48c)

3.3 Numerical solvers for implicit method

3.3.1 System of nonlinear equations and merit function

The implicit numerical solutions for given in Eq. (3.45) and Eq. (3.48) for both grid systems

can be expressed by a function vector ri to solve the system of n nonlinear equations by

setting ri = 0. The solution of the displacement in next time domain wm+1 is obtained by

minimizing ri or the merit function f(x) , given by [45]

f(x) =
n∑
i=1

r2
i (x) =‖ r(x) ‖22 (3.49)

Several numerical algorithms are introduced to solve the system of n nonlinear equations

r(x) by minimizing the merit function f(x). The equations ri is given by following.

For Grid I

ri = wi − λI
{[

(wi+1)2n′+1 (pi+2 − pi)
] 1
n′ −

[
(wi−1)2n′+1 (pi − pi−2)

] 1
n′
}
− w0

i ,

for 3 ≤ i ≤ n− 2 (3.50a)

r1 = w1 − λI
{[

(w2)2n′+1 (p3 − p1)
] 1
n′

+
[
(w1)2n′+1 (p2 − p1)

] 1
n′
}
− winj − w0

1 (3.50b)

r2 = w2 − λI
{[

(w3)2n′+1 (p4 − p2)
] 1
n′ −

[
(w1)2n′+1 (p2 − p1)

] 1
n′
}
− w0

2 (3.50c)

rn−1 = wn−1 − λI
{[

(wn)2n′+1 (pn − pn−1)
] 1
n′ −

[
(wn−2)2n′+1 (pn−1 − pn−3)

] 1
n′
}
− w0

n−1

(3.50d)

rn = wn + λI

[
(wn−1)2n′+1 (pn − pn−2)

] 1
n′ − w0

n (3.50e)
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For Grid II

ri = wi − λII
{[

(wi)
2n′+1 (pi+1 − pi)

] 1
n′ −

[
(wi−1)2n′+1 (pi − pi−1)

] 1
n′
}
− w0

i ,

for 2 ≤ i ≤ n− 1 (3.51a)

r1 = w1 − λII
[
(w1)2n′+1 (p2 − p1)

] 1
n′ − winj − w0

1 (3.51b)

rn = wn + λII

[
(wn−1)2n′+1 (pn − pn−1)

] 1
n′ − w0

n (3.51c)

Through explicit and implicit solution, only the right hand side of crack is modeled. The

equivalent elasticity equation is

pi =

N∑
j=1

Aijwj = pf − σsitu (3.52)

where the influence coefficients are given by

Aij = − G

π(1− ν)

[
aj

(xi − xj)2 − (aj)2
+

aj
(xi + xj)2 − (aj)2

]
, 1 ≤ j ≤ n− 1 (3.53a)

Aij = − G

2π(1− ν)

{[ √
2

S1 − 2aj
+

1

2
√
ajS1

ln

∣∣∣∣∣
√
S1 −

√
2aj√

S1 +
√

2aj

∣∣∣∣∣
]

+

[ √
2

S2 − 2aj
+

1

2
√
ajS2

ln

∣∣∣∣∣
√
S2 −

√
2aj√

S2 +
√

2aj

∣∣∣∣∣
]}

, j = n (3.53b)

and S1 = aj + |x̄i − xj | and S2 = aj + |x̄i + xj |

3.3.2 Newton iteration

From multi-variable Taylor series, the nonlinear equation ri(wi + ∆) can be expressed by

ri(w1 + ∆w1, w2 + ∆w2, · · · , wn−1 + ∆wn−1, wn + ∆wn) =

ri(w1, w2, · · · , wn−1, wn) +
∂ri
∂w1

∆w1 +
∂ri
∂w2

∆w2+

· · ·+ ∂ri
∂wn−1

∆wn−1 +
∂fi
∂wn

∆wn (3.54)

38



Let ri(wi + ∆) equals to zero and guess the initial values of ŵj , then above equation can be

expanded into a first-order truncated Taylor series about ŵj , given by

∑
j

∂ri
∂wj

∆wj = −ri(ŵ1, ŵ2, . . . , ŵN ) (3.55)

where the partial derivatives are the Jacobian matrix evaluated with the initial guesses.

The Jacobian matrix J is given by

J =
∂ri
∂wj

=



∂r1

∂w1

∂r1

∂w2
· · · ∂r1

∂wn

∂r2

∂w1

∂r2

∂w2
· · · ∂r2

∂wn

...
...

. . .
...

∂rn
∂w1

∂rn
∂w2

· · · ∂rn
∂wn


(3.56)

and ∆wj and ri are vectors given by

∆w = [∆w1,∆w2, · · · ,∆wN ]T (3.57)

r = [r1, r2, · · · , rN ]T (3.58)

The partial derivatives can be evaluated analytically or by a difference approximation.

∂ri
∂wj

≈ ri(ŵ1, . . . , ŵj + δwj , . . . , ŵN )− ri(ŵ1, . . . , ŵj , . . . , ŵN )

δwj
(3.59)

where δwj is an arbitrarily chosen small value.

If we choose ∆w as the solution vector p, then we can define a model function m(p) given

by

mk(p) = r(wk) + J(wk)p (3.60)
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Then we can obtain the solution vector pk for which mk(pk) = 0,

pk = −J(wk)
−1r(wk) (3.61)

The algorithm for Newton iteration is given by

choose initial guess w0

for k = 0, 1, 2, . . . do

calculate J(wk) and r(wk)

solve Newton equation for pk

pk = −J(wk)
−1r(wk)

update initial value w

wk+1 ← wk + pk

end for

Algorithm 3.1: Newton iteration

There are some deficiencies in Newton iteration [45].

• If the initial point is remote from a solution, this method behave erratically

• The Jacobian matrix may be difficult to obtain

• It may be too expensive to obtain pk when n is large

• When j is singular or near singular (ill-conditioned), pk will not be well defined

Some of these deficiencies can be overcomed by numerical techniques such as modification

of Jacobian matrix, quasi-Newton method and Line search method.
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3.3.3 Ill-conditioned Jacobian

Singular value decomposition (SVD)

In case when the Jacobian matrix J is ill-conditioned, we can approximate the inverse of J

by the singular value decomposition given by [46]

J = U

S
0

V T =
[
U1 U2

]S
0

V T = U1SV
T (3.62)

where

U is m×m orthogonal matrix

U1 contains the first n columns of U

U2 contains the last n columns of U

V is n× n orthogonal matrix

S is n× n diagonal matrix with elements σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

The diagonal elements are modified by

S−1 =

{
1/σi for σi > t

0 otherwise
(3.63)

where t is a small constant.

Then the Newton direction pk can be found by

pk = −V S−1UT1 r(wk) (3.64)
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Levenberg-Marquardt method

When the Jacobian matrix is near singular, the newton direction can be modified by making

the Hessian matrix non-singular. From the quadratic model of the objective function,

mk(p) = rk +∇rTk p+
1

2
pTBkp (3.65)

The solution vector pk is given by

pk = −B−k 1∇rk (3.66)

where the approximate Hessian Bk and gradient ∇rk can be defined by

Bk = JTk Jk (3.67)

∇rk = JTk rk (3.68)

The modified newton direction can be obtained by adding a λkI to Hessian matrix [47].

pk = −
(
JTk Jk + λkI

)−1
JTk rk (3.69)

λk allow modified Hessian not to approach to singularity. Explicit calculation of JTk Jk is

heavy when n is large. But we know the Cholesky factor of (JTk Jk +λkI) is identical to RT ,

where R is the upper triangular factor of QR factorization of J
√
λI


Then the solution vector pk can be easily found by solving following equation

RTRpk = −JTk rk (3.70)

The disadvantage of this approach is that it is difficult to choose λk. If it is too large, the

convergence of Newton iteration will be lost. In case λk is too small, it is obvious that the

Jacobian is still ill-conditioned [45].
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Modified Cholesky factorization

Another method to avoid singularity of Jacobian matrix is a Cholesky factorization of

Hessian Bk. In usual Cholesky factorization is given by B = LDLT , where L is a lower

triangular matrix with unit diagonal elements and D is a diagonal matrix with positive

diagonal elements. In modified Cholesky algorithm, the diagonal elements are increased to

make Hessian sufficiently positive [45]. The procedure is given by

for j = 1, 2, . . . , n do

cij ← ajj −
j−1∑
s=1

dsl
2js

dj ← cjj

for i = j + 1, . . . , n do

cij ← aij −
j−1∑
s=1

dslisljs

lij ← cij/dj

end for

end for

Algorithm 3.2: Modified Cholesky factorization

Then the modified Newton step pk can be obtained by solving

MMT pk = −JTk rk (3.71)

where M = LD1/2.
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3.3.4 Quasi-Newton method

If the function r(x) is twice differentiable, the second order Taylor series gives a quadratic

model of the objective function

mk(p) = rk +∇rTk p+
1

2
pTBkp (3.72)

where ∇r is the gradient of the objective function and B is the Hessian matrix or its

approximate. Then the solution vector can be defined by setting mk(p) = 0

pk = −B−1
k ∇rk (3.73)

In quasi-Newton method, the approximate Hessian matrix are updated using following

equations without calculation of exact Hessian at every iteration. The four famous update

formula are described [45,48–50].

Bk+1 =



(
I −

ykp
T
k

yTk pk

)
Bk

(
I −

pky
T
k

yTk pk

)
+
yky

T
k

yTk pk
DFP

Bk +
yky

T
k

yTk pk
− Bkpk(Bkpk)

T

pTkBkpk
BFGS

Bk +
yk −Bkpk
pTk pk

pTk Broyden

Bk +
(yk −Bkpk)(yk −Bkpk)T

(yk −Bkpk)T pk
SR1

(3.74)

where, yk = ∇rk+1 −∇rk.

An inverse of Hessian can be directly updated using the Sherman-Morrison formula given

by [51]

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, 1 + vTA−1u 6= 0 (3.75)
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where, A is an invertible matrix, u, v are vectors.

Then the inversed form of Hessian matrices are obtained by

Hk+1 = B−1
k+1 =



Hk +
pkp

T
k

yTk pk
−
Hkyky

T
kH

T
k

yTkHkyk
DFP(

I −
ykp

T
k

yTk pk

)T
Hk

(
I −

ykp
T
k

yTk pk

)
+
pkp

T
k

yTk pk
BFGS

Hk +
(pk −Hkyk)p

T
kHk

pTkHkyk
Broyden

Hk +
(pk −Hkyk)(pk −Hkyk)

T

(pk −Hkyk)T yk
SR1

(3.76)

The solution vector pk can be found by

pk = −Hk∇rk (3.77)

When the model function mk is defined as a linear model

mk(p) = r(x) +Bkp (3.78)

where Bk is the approximate Jacobian to be updated.

The quasi-Newton BFGS method for crack propagation is studied in [52]. We use Broyden’s

formula for updating the approximate Jacobian. The Broyden’s formula is same as given

in the quadratic model, but use yk = r(xk+1)− r(xk) [48].

3.3.5 Line search method

Basically, the implicit numerical solvers generate a sequence of iteration to update the

solution vector pk. The iteration stops when the change of pk, values of ri or merit function

mi is within acceptable accuracy ε. The key strategies are how to get the direction and

magnitude to move the point xk to the next state xk+1 to find roots or to minimize merit

function. We have already discussed Newton and quasi-Newton method to find the direction
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pk which minimize the merit function mk. The magnitude, the step length, αk can be

obtained by the line search method or the trust region method. The line search method

generates a limited number of trial step length to find new position can approximate the

minimum of min
α>0

f(xk+αpk). This process is repeated at new point to find the next direction

pk+1 and step length αk+1.

The updated position can be replaced by

xk+1 = xk + αkpk (3.79)

The exact step length αk can be achieved by solving the equations [45]

∂φ(α)

∂α
= 0,

∂2φ(α)

∂α2
< 0 (3.80)

where φ(α) = m(x+αp). the analytical line search requires an explicit expression for φ(α)

and ∂φ(α)/∂α which are not always available in numerical solutions. Therefore, simple

inexact line search algorithms are preferred.

Wolfe conditions

A decent direction condition must be satisfied to utilize line search method. This condition

ensure the function r can be reduced along this direction.

pTk∇rk <0, for linear model (3.81a)

pTk∇rk = −∇rTk B−1
k ∇rk <0, for quadratic model (3.81b)

One of popular inexact line search method is the strong Wolfe conditions require αk to

satisfy [45,49,53]

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk (3.82a)
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|∇f(xk + αkpk)
T pk| ≤ c2|∇fTk pk| (3.82b)

where 0 < c1 < c2 < 1. For a system of n nonlinear equations, the merit function f and

the gradient ∇f are given by

f(x) =
1

2
‖r(x)‖2 =

1

2

n∑
i=1

r2
i (x) (3.83)

∇f(x) = J(x)T r(x) (3.84)

In loose line search, the parameters are given by c1 = 10−4 and c2 = 0.9. The first is

sufficient decrease condition and the second is curvature condition. The sufficient decrease

condition ensure that the reduction in function m is proportional to the step length αk and

the directional derivative ∇rTk pk. The curvature condition indicates that the slope of φ(αk)

should be larger than c2 times the initial slope φ′(0). The line search is performed in two

stages. First, a trial step length is increased from the initial value α1 until it satisfy the

both conditions. If trial value is within an interval, the second stage is performed to reduce

the interval and find an acceptable step length. Both stages are described in Algorithm 3.3

and Algorithm 3.4.
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set α0 ← 0, choose αmax > 0 and α1 ∈ (0, αmax)

i← 1

repeat

evaluate φ(αi)

if φ(αi) > φ(0) + c1αiφ
′(0) or [φ(αi) ≥ φ(αi−1) and i > 1] then

α∗ ← zoom(αi−1, αi) and stop

end if

evaluate φ′(αi)

if |φ′(αi)| ≤ −c2φ
′(0) then

α∗ ← αi and stop

end if

if φ′(αi) ≥ 0 then

α∗ ← zoom (αi, αi−1) and stop

end if

choose αi+1 ∈ (αi, αmax)

i← i+ 1;

until i > imax

Algorithm 3.3: Strong Wolfe line search
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repeat

interpolate to find a trial step length αj between αlo and αhi

evaluate φ(αj)

if φ(αj) > φ(0) + c1αjφ
′(0) or φ(αj) ≥ φ(αlo) then

αhi ← αj

else

evaluate φ′(αj)

end if

if |φ′(αj)| ≤ −c2φ
′(0) then

set α∗ ← αj and stop

end if

if φ′(αj)(αhi − αlo) ≥ 0 then

αhi ← αlo

αlo ← αj

end if

i← i+ 1;

until i > imax

Algorithm 3.4: zoom

Backtracking line search

The backtracking method is to find the trial step length αk by the sufficient decrease con-

dition in Eq. (3.82a).

f(xk + αkpk) ≤ f(xk) + cαk∇fTk pk (3.85)

49



It starts from the initial step length of α0 and decrease until the trial step satisfy the

sufficient decrease condition after several trials. the initial value α0 is usually set to 1 and

c = 10−4. The procedure is summarized in Algorithm 3.5.

choose α0 > 0, ρ ∈ (0, 1), c ∈ (0, 1)

set α = α0

repeat

α← ρα

until f(xk + αkpk) ≤ f(xk) + cαk∇fTk pk

Algorithm 3.5: Backtracking line search

The solution procedure of Newton iteration with line search is explained in Algorithm 3.6.
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given c1, c2 with 0 < c1 < c2 <
1
2 and c = c1

choose x0

for k = 0, 1, 2, . . . do

calculate pk from one of

if J is ill-conditioned then

Singular value decomposition Eq. (3.64)

Levenberg-Mardquardt Eq. (3.70)

Modified Cholesky factorization Eq. (3.71)

else

Newton equation Eq. (3.61)

Quasi-Newton Broyden’s formula Eq. (3.77)

end if

if α = 0 satisfy the strong Wolfe conditions Eq. (3.82a) and Eq. (3.82b) or sufficient

decrease condition Eq. (3.85) then

αk = 1

else

perform strong Wolfe (Algorithm 3.3 and Algorithm 3.4) or backtracking (Algo-

rithm 3.5) line search to find α > 0 satisfy the given conditions

end if

xk+1 ← xk + αpk

end for

Algorithm 3.6: Newton iteration with line search
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3.3.6 Trust-Region method

Basically, the trust-region method is to find the step p by approximately solving the equation

min
p
mk(xk + p), where xk + p lies inside the trust region (3.86)

If the p doesn’t provide a sufficient reduction in f , we declare that the current trust region

is too large and reduce the size of the region to solve the above equation. Usually, the trust

region is defined by ‖ p ‖2≤ ∆, where the scalar ∆ > 0. The trust region’s approach is differ

from the line search method. While the line search method fix the direction pk and seek

the optimal distance αk, the trust region method defines a maximum distance λk first and

seek a optimal direction pk within the trust region constraint. If the step is unsatisfactory,

the size of trust region is reduced and tried again to find pk within the reduced trust region.

The detailed procedure of trust-region method can be found in [45,49,50,54]

Let merit function f(x) = 1
2‖r(x)‖22 and using the approximate Hessian Bk = J(xk)

TJ(xk),

the model function mk(p) is defined by

mk(p) =
1

2
‖rk + Jkp‖22 = fk + pTJT rk +

1

2
pTJTk Jkpk (3.87)

The step pk is an approximate solution of the subproblem

min
p
mk(p), subject to ‖p‖ ≤ ∆k, (3.88)

where ∆k is the radius of the trust region. and the ratio ρk of actual to predicted reduction

is used to determine the trust region at each iteration.

ρk =
‖r(xk)‖2 − ‖r(xk + pk)‖2

‖r(xk)‖2 − ‖r(xk) + J(xk)pk‖2
(3.89)

The detailed procedure is listed in Algorithm 3.7.
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Trust-region dogleg method

The dogleg method is one of the methods for solving the trust region subproblem in

Eq. (3.88). This method obtain the solution of the subproblem based on the Cauchy point

pck. The Cauchy point is given by [45]

pck = −τk(∆k/‖JTk rk‖)JTk rk (3.90)

where τk = min{1, ‖JTk rk‖3/(∆kr
T
k Jk(J

T
k Jk)J

T
k rk)}

Then, the solution step pk is determined by

pk =


pck, if ‖pck‖ = ∆k

pck + λ(pJk − pck), such that ‖pk‖ ≤ ∆k, else

(3.91)

where λ is the largest value in [0, 1] and pJk is evaluated from Newton equation Eq. (3.61).
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set ∆̄ > 0, ∆0 ∈ (0, ∆̄) and η ∈ [0, 1
4)

for k = 0, 1, 2, . . . do

calculate pk as an approximate solution of Eq. (3.88)

evaluate ρk from Eq. (3.89)

if ρk < 1/4 then

∆k+1 = 1/4 ‖ pk ‖

else

if ρk < 3/4 and ‖ pk ‖= ∆k then

∆k+1 = min(2∆k, ∆̄)

else

∆k+1 = ∆k

end if

end if

if ρ < η then

xk+1 = xk + pk

else

xk+1 = xk

end if

end for

Algorithm 3.7: Trust region algorithm
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Trust-region method combined with Newton line search

The trust region method can be combined with other techniques in constructing algorithms.

When the evaluated trial step pk from trust region method is a decent direction, but it is

not acceptable because f(xk + pk) ≥ f(xk), it is possible to try line search along the trial

step to satisfy f(xk + pk) < f(xk) [55]. The backtracking line search method is proposed

and implemented in trust region algorithm just before the trust region radius is reduced.

3.4 Parameters and numerical solver settings

The numerical solution of a plane crack problem is performed with the given parameters in-

cluding rock, fluid properties and simulation parameters. The required parameters are listed

in Table 3.1. For implicit solutions, settings for numerical solvers also must be provided as

given in Table 3.2.

Parameters

G shear modulus(Pa) ν Poisson’s ratio

KIc fracture toughness(MPa
√

m)

K ′ consistency index(Pa · sn′) n′ power-law index

q volume flow rate(m2/s) σ in-situ stress (Pa)

ε termination criterion ∆t, ∆x, L0, Lmax, tmax

Table 3.1: Simulation parameters
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Solver settings and options

Solver

1. NTL: Newton method with line search

2. TRL: Trust-region (dogleg) method combined with line search

3. QNB: Quasi-Newton Broyden’s method with line search

Grid
1. Grid I (5 points, nodes(w, p) = nodes(q) )

2. Grid II (3 points, nodes(w, p) 6= nodes(q) )

Jacobian
1. Analytical

2: Numerical

Line Search
1. Strong Wolfe conditions

2. Backtracking method

Ill-conditioned J

1. Singular value decomposition

2. Levenberg-Marquardt method

3. Modified Cholesky factorization

Crack tip
1. Use special crack tip element

2. No use

Table 3.2: Solver settings and options

3.5 Results

The explicit and implicit simulations of crack growth model are performed with the parame-

ters given in Table 3.3. The simulation results of explicit solution is given in Table 3.4. The

crack propagation is driven by a Newtonian fluid (n′ = 1.0) up to 300m with the injection

rate q = 0.05 m2/s. The time step is determined by CFL condition. It is shown that the

Grid II has an advantage in volume difference, but the Grid I use less computation time

because the time step determined by CFL condition is much larger than the one obtained
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Simulation parameters

G = 1.0 GPa ν = 0.2 KIc = 0.5 MPa
√

m

q = 0.01 ≤ q ≤ 0.11 m2/s n′ = 0.25 ≤ n′ ≤ 1.0 K ′ = 0.001 Pa · sn′

L0 = 25m Lmax = 2000m ∆x = 5m

∆t = 1s

Table 3.3: Simulation parameters (crack growth model)

from Grid II. Therefore, if the volume difference in Grid I is in acceptable range, the use

of Grid I is preferred in explicit solution. The simulation results of implicit crack growth

Grid ∆t No. of time steps CPU time Volume difference

I 5.5×10−4 s 158100 12s 0.3 %

II 3.5×10−5 s 1189587 96s 0.0 %

Table 3.4: Simulation results (explicit model)

model are compared in Table 3.5. First, the line search are compared in Newtons iteration

solver. Line search methods overcome a drawback of Newton iteration algorithm on lower

indexed fluid. The strong Wolfe conditions gives more accurate step length αk. Total num-

ber of iteration is smaller than the other line search method but the algorithm costs more

computations resulting slower solution. The backtracking line search requires more iteration

than the strong Wolfe conditions but the simplicity of its algorithm makes the computation

time less than the Wolfe conditions. Second, the grid systems are compared in trust-region

algorithm. In explicit method, Grid I showed a better performance in computation time,

but in implicit solution, Grid I is slower than Grid II and unstable with lower indexed

fluid. The quasi-Newton shows remarkable speed in computation time with higher indexed
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fluid although the numbers of iterations are much larger than the Newton iteration and

trust-region method. This is because the quasi-Newton Broyden’s update formula doesn’t

require the process for inverting large matrices. But quasi-Newton Broyden’s method has

serious limitations when the fluid’s power-law index n′ is very small. Newton iteration

with backtracking line search seems good choice in computation speed and convergence if

fluid’s power-law index n′ is not extremely small (n′ < 0.25). The trust region method

costs a little more computation time and number of iteration, but it showed more robust

performance than Newton iteration when the various simulation parameters were given.

The crack lengths for varying power-law index n′ are given in Fig. 3.5. The time to create

iteration (CPU time)

Solver Line Grid
Powe-law index (n′)

0.25 0.5 0.75 1.0

NTL

Wolfe

II

9958 (100s) 6711 (67s) 5920 (65s) 7580 (82s)

Back 9992 (61s) 6874 (40s) 5967 (40s) 7571 (51s)

None - 9256 (45s) 6886 (41s) 7569 (50s)

TRL Back
I 12183 (81s) 9648 (67s) 6104 (45s) 7790 (61s)

II 10004 (60s) 6900 (46s) 5967 (44s) 7571 (55s)

QNB Back II - 15837 (64s) 7397 (24s) 9006 (31s)

*∆t=0.25s is used in QNB for n′ = 0.5, ∆t=0.5s is used in TRL for n′ = 0.25, 0.5

Table 3.5: Comparisons of numerical solvers for q = 0.05 m2/s

2000m crack is reduced by using a lower indexed fluid. In the same condition, the injection

time for n′ = 0.25 is 49% of when a Newtonian fluid (n′ = 1.0) is used. This fact allows

us to use less volume of fracturing fluid as shown in Fig. 3.7. Basically, the injection time
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and volume of fracturing fluid can be reduced by using a lower n′ fluid, but the decrease in

injection time from n′ = 0.3 to n′ = 0.25 is only 14.8% of the decrease in time from n′ = 1.0

to n′ = 0.95. The advantage in use of a lower indexed fluid is not noticeable when n′ is small

enough. The use of crack tip element also gives more accurate stress intensity factor KI .
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Figure 3.5: Growth of crack with time

Therefore, it prevent overestimating initiation of crack. As shown in Fig. 3.6, the ordinary

element overestimates the injection time by 13.5% less than the crack tip element when the

crack reaches to 2000m.

When the hydraulic fracturing is started, the higher fluid pressure is required to break

down the formation and to give enough stress for propagation. But, once the crack starts

growing, the well bore pressure is decreased as given in Fig. 3.8. The lower indexed fluid

also make the crack propagates under less well bore pressure.

The distribution of fluid pressure is given in Fig. 3.9. The pressure gradient of n′ = 0.25
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Figure 3.6: Special crack tip element
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fluid along the length of crack, except the crack tip region, is very small compare to the

higher n′ fluid. This makes the system unstable when the numerical solution is performed

because the numerical solutions of this kind of problem Eq. (3.26) and Eq. (3.27) are based

on the gradient of pressure inside crack.
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Figure 3.9: Pressure distribution inside crack
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Chapter 4

Analysis of crack propagation

under mixed loading condition

4.1 Curved crack problem and dislocation based solution

4.1.1 Coordinate transformation

For two orthogonal bases e and ē, there is an orthogonal tensor Q such that ēi = Qei. The

transformation rules for a displacement vector u and stress tensor σ in the basis e to a ū

and σ̄ in the basis ē are given by [56]

ūi = Qijuj (4.1a)

σ̄ij = QikQjlσkl (4.1b)

The orthogonal tensor Q is expressed as the directional cosine between the two coordinate

systems.

Qij = ēi · ej = cos(ēi, ej) (4.2)
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Additionally, a displacement vector in another local coordinate system x̂ − ŷ can also be

x1

x2

x3

x̄1

x̄2

x̄3

e1

e2

e3

ē1

ē2

ē3

Figure 4.1: Coordinate systems

transformed to the local axis x̄− ȳ by following relationships,

ū = Q̄u (4.3a)

û = Q̂u (4.3b)

ū = Q̄Q̂T û (4.3c)

For a crack under uniform stresses σxx, σyy and σxy, the displacement u and stress σ in

local coordinate x̄ and ȳ which is rotated by θ from x− y axis are expressed in matrix form

below x̄ȳ
 =

 cos θ sin θ

− sin θ cos θ

xy
 (4.4a)

ux̄uȳ
 =

 cos θ sin θ

− sin θ cos θ

uxuy
 (4.4b)


σx̄x̄

σȳȳ

σx̄ȳ

 =


cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ



σxx

σyy

σxy

 (4.4c)

The shear and normal stresses at local element can be expressed by

σn = σȳȳ = σxx sin2 θ + σyy cos2 θ − 2σxy cos θ sin θ (4.5a)
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σt = σx̄ȳ = −σxx cos θ sin θ + σyy cos θ sin θ + σxy cos2 θ − sin2 θ (4.5b)

4.1.2 Edge dislocation

z
x

y

bx

by

R

r0

r

θ

Figure 4.2: Edge dislocation [57]

Consider a hollow circular cylinder of infinite length and made of isotropic and elastic solid

as shown in Fig. 4.2. The cylinder is cut and dislocated along the x direction and displace

the lower side to y direction. By assuming a plane strain condition about to the direction

of length and traction free on the surface of the cylinder, the Airy’s stress function is given

by [57]

φ = − Gbx
π(κ+ 1)

[
2r ln r sin θ +

1

R2 + r2
0

(
R2r2

0

sin θ

r
− r3 sin θ

)]
(4.6)

where G is the shear modulus and κ is the Kolosov’s constant given by

κ =


3− 4ν for plane strain

3− ν
1 + ν

for plane stress

(4.7)

where, ν is the Poisson’s ratio.

The singular edge dislocation in the unbounded isotropic material can be obtained by letting
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R→∞ and r0 → 0 in (1). The Airy stress function for a glide dislocation bx in plane strain

becomes

φ = −kbxr ln r sin θ, λ =
G

2π(1− ν)
(4.8)

The governing equation that determines the elastic field is

∇4φ =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
φ = 0 (4.9)

In polar coordinates, (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)2

φ = 0 (4.10)

The derivatives of the stress function produce the stress components for two-dimensional

problem of elasticity in the form

σxx =
∂2φ

∂x2
, σyy =

∂2φ

∂y2
, σxy = − ∂2φ

∂x∂y
(4.11)

In terms of polar or cylindrical coordinates,

σrr =
1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
, σθθ =

∂2φ

∂r2
, σrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
(4.12)

The Michell solution gives the corresponding stress and displacement components [58,59].

σrr = σθθ = −λbx
sin θ

r
(4.13a)

σrθ = λbx
cos θ

r
(4.13b)

ur = −λbx
2µ

[
(1− 2ν) ln r sin θ − 2(1− ν)θ cos θ − 1

2
sin θ

]
(4.13c)

uθ = −λbx
2µ

[
(1− 2ν) ln r cos θ + 2(1− ν)θ sin θ +

1

2
cos θ

]
(4.13d)

The stress and displacement components for Cartesian coordinate system are

ux =
bx
2π

[
θ +

1

2(1− ν)

xy

r2

]
(4.14a)
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uy = − bx
2π

[
1− 2ν

2(1− ν)
ln r +

1

2(1− ν)

x2

r2

]
(4.14b)

σxx = −λbx
y

r4
(3x2 + y2) (4.14c)

σyy = λbx
y

r4
(x2 − y2) (4.14d)

σxy = λbx
x

r4
(x2 − y2) (4.14e)

For a climb edge dislocation with the Burgers vector by can be obtained by rotating the

coordinate axes. Thus, the Airy stress function is

φ = −kbyr ln r cos θ, λ =
G

2π(1− ν)
(4.15)

Then, the stress components for Cartesian coordinate system are

σxx = kby
x

r4
(x2 − y2) (4.16a)

σyy = kby
x

r4
(x2 + 3y2) (4.16b)

σxy = kby
y

r4
(x2 − y2) (4.16c)

With Burgers vector b having components bx and by at the origin, the stress induced at a

point (x, y) are given by

σxx(x, y) = λ
{
bx

[
− y

r4
(3x2 + y2)

]
+ by

[ x
r4

(x2 − y2)
]}

(4.17a)

σyy(x, y) = λ
{
bx

[ y
r4

(x2 − y2)
]

+ by

[ x
r4

(x2 + 3y2)
]}

(4.17b)

σxy(x, y) = λ
{
bx

[ x
r4

(x2 − y2)
]

+ by

[ y
r4

(x2 − y2)
]}

(4.17c)

Consider the stress induced at a point (x, y) in an infinite medium, due to a dislocation at

position (ξ, η), the stresses in the global coordinate system are given by [58],
σxx(x, y)

σyy(x, y)

σxy(x, y)

 = λ

bx

fxxx

fxyy

fxxy

+ by


fyxx

fyyy

fyxy


 (4.18)
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and the influence functions are given by

fxxx(x̄, ȳ) = − ȳ

r4

(
3x̄2 + ȳ2

)
(4.19a)

fxyy(x̄, ȳ) =
ȳ

r4

(
x̄2 − ȳ2

)
(4.19b)

fxxy(x̄, ȳ) =
x̄

r4

(
x̄2 − ȳ2

)
(4.19c)

fyxx(x̄, ȳ) =
x̄

r4

(
x̄2 − ȳ2

)
(4.19d)

fyyy(x̄, ȳ) =
x̄

r4

(
x̄2 + 3ȳ2

)
(4.19e)

fyxy(x̄, ȳ) =
ȳ

r4

(
x̄2 − ȳ2

)
(4.19f)

where x̄ = x− ξ, ȳ = y − η and r2 = x̄2 + ȳ2

x

y

t

n

ti
ni

tj

nj
i

j
θj

θi

Figure 4.3: Curved crack in local coordinates

Consider a curved crack as shown in Fig. 4.3. The stresses at the ith element located at

the center of a line segment between (xi−α, yi− β) and (xi +α, yi + β) due to the Burgers

vector bjx and bjy on the line segment between (xj−ξ, yj−η) to (xj +ξ, yj +η). The inclined
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angle of each segment θi and θj are given by arctan
β

α
and arctan

ξ

η
, respectively. Then the

transformation of local systems to the global coordinate can be achieved byniti
 =

 cos θi sin θi

− sin θi cos θi

xy
 (4.20)

njtj
 =

 cos θj sin θj

− sin θj cos θj

xy
 (4.21)

We define the transformation matrix with θi as qi and the one with θj as qj

The normal and shear stresses at ith element can be obtained by

σit = Kttb
j
x +Ktnb

j
y (4.22a)

σin = Kntb
j
x +Knnb

j
y (4.22b)

where the influence factor K are given byKtt

Ktn

 = λ

Qtt Qtn

Qnt Qnn

fRxxy − fLxxyfRyxy − fLyxy

 (4.23a)

kntknn

 = λ

Qtt Qtn

Qnt Qnn

fRxyy − fLxyyfRyyy − fLyyy

 (4.23b)

The components of transformation matrix Q is given by

Q = qiq
T
j (4.24)

The influence functions are evaluated based on the distances transformed to the local coor-

dinates of ith element.

fRlmn = flmn(qit[xi − (xj + ξ), yi − (yj + η)]T , qin[xi − (xj + ξ), yi − (yj + η)]T ) (4.25a)

fLlmn = flmn(qit[xi − (xj − ξ), yi − (yj − η)]T , qin[xi − (xj − ξ), yi − (yj − η)]T ) (4.25b)

where the normal and transverse transformation vectors are given by

qit = [cos θi sin θi] (4.26a)
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qin = [− sin θi cos θi] (4.26b)

4.1.3 Displacement discontinuity on curved crack

Consider a curved plane crack subjected to a stress field. From Eq. (4.22), The shear and

normal stresses at the midpoint of the ith element in the figure can be expressed in terms

of the displacement discontinuity components at the jth element as follows

σit = Kij
tt u

j
t +Kij

tnu
j
n (4.27a)

σin = Kij
ntu

j
t +Kij

nnu
j
n (4.27b)

The stresses of ith element due to the displacement discontinuities at all n segments are

σit =
n∑
j=1

Kij
tt u

j
t +

n∑
j=1

Kij
tnu

j
n (4.28a)

σin =

n∑
j=1

Kij
ntu

j
t +

n∑
j=1

Kij
nnu

j
n (4.28b)

We can wright the equations in matrix form,Ktt Ktn

Knt Knn

utun
 =

σtσn
 (4.29)

If a crack under in-situ stress σ is opened by internal fracturing fluid flow, σn is replaced

with pf − σn. Then, the normal and shear displacements can be found by

un = (Knn −KntK
−1
tt Ktn)−1(pf − σn −KntK

−1
tt σt) (4.30)

ut = K−1
tt (σt −Ktnun) (4.31)

The fluid pressure is given by

pf = (Knn −KntK
−1
tt Ktn)un +KntK

−1
tt σt + σn (4.32)

69



4.2 Crack propagation criteria

In practical engineering problems, cracks are usually subjected to mixed mode loading. The

both KI and KII are exist on crack surface. The initiation of crack and propagation angle

can be determined by using combination of the opening and glide mode stress intensity

factors. This combination provides a criterion to predict the path of propagating crack.

Various crack initiation criteria have been proposed in literature such as maximum cir-

cumferential tensile stress, maximum strain energy release rate and minimum strain energy

density criterion. Additionally, we discuss a basic propagation angle prediction based on

the ratio of stress intensity factors and numerical method to find the propagation angle that

minimize the shear stress.

4.2.1 Maximum circumferential tensile stress

The maximum circumferential tensile stress criterion was introduced by Erdogan and Sih

[60]. The criterion predicts the crack extension starts from its tip along the radial direction

θc on which σθθ becomes maximum when σθθ reaches a critical stress σc equal to the fracture

stress in uniaxial tension. When a crack is subjected to a mixed mode stress field governed

by the values of the opening mode KI and sliding mode KII stress intensity factor. The

singular polar stress components near the crack tip are expressed by

σrr =
KI√
2πr

(
5

4
cos

θ

2
− 1

4
cos

3θ

2

)
+

KII√
2πr

(
−5

4
sin

θ

2
+

3

4
sin

3θ

2

)
(4.33a)

σθθ =
KI√
2πr

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
+

KII√
2πr

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)
(4.33b)

σrθ =
KI√
2πr

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
+

KII√
2πr

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)
(4.33c)
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Then the maximum circumferential tensile stress is defined by

∂σθθ
∂θ

= 0,
∂2σθθ
∂θ2

< 0 (4.34)

σθθ(θc) = σc (4.35)

The circumferential stress σθθ in the direction of crack extension is a principal stress and

the shear stress σrθ for that direction vanishes. The crack extension angle θc is calculated

by

KI

(
sin

θ

2
+ sin

3θ

2

)
+KII

(
cos

θ

2
+ cos

3θ

2

)
= 0 (4.36)

or

KI sin θ +KII(3 cos θ − 1) = 0 (4.37)

The angle θc can be determined by iterative method or analytically

θc = 2 arctan
1

4

(
1

λ
−
√

1

λ2
+ 8

)
, KII > 0 (4.38)

θc = 2 arctan
1

4

(
1

λ
+

√
1

λ2
+ 8

)
, KII < 0 (4.39)

where λ = KII/KI

The maximum hoop stress is given by

σθθ(θc) =
KI√
2πr

cos
θc
2

(
1− sin2 θc

2

)
+

KII√
2πr

(
−3

4
sin

θc
2
− 3

4
sin

3θc
2

)
(4.40)

The crack initiation occurs when σθθ(θc) reaches the critical stress
KIc√
2πr

. Therefore, the

equivalent stress intensity factor for mixed mode loading is given by

Keq = KI cos3 θc
2
− 3

2
KII cos

θc
2

sin θc (4.41)
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4.2.2 Minimum strain energy density

The strain energy density criterion is introduced by Sih [42]. This criterion predicts the

crack propagates along the direction which the strain energy density becomes minimum

when the strain energy density factor reaches to its critical value.

The strain energy density function can be evaluated from

dW

dV
=

εij∫
0

σijdεij (4.42)

where σij and εij are the stress and strain components

For the plane strain elasticity problems,

dW

dV
=

1

4µ

[
(1− ν)(σxx + σyy)

2 − 2(σxxσyy − σ2
xy)
]

(4.43)

The strain energy density function dW/dV decays with distance r from the crack tip. Then

dW/dV will be assumed to have the form [61]

dW

dV
=
S

r
(4.44)

The factor S can be defined as r(dW/dV ) and it represents the local energy energy release

for a crack growth r.

For crack propagation in a mixed mode condition, the minimum strain energy density factor

can be determined by relations

∂S

∂θ
= 0,

∂2S

∂θ2
> 0 (4.45)

And crack will initiate when

S(θc) = Sc (4.46)
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where the critical strain energy density factor Sc is given by

Sc =
(1− 2ν)

4πµ
K2
Ic (4.47)

The singular stress field near the crack tip is given by

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)
(4.48a)

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2
sin

θ

2
cos

θ

2
cos

3θ

2
(4.48b)

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(4.48c)

By substituting Eq. (4.48) into Eq. (4.43), we obtain the following quadratic form of the

strain energy density factor S

S = c11k
2
I + 2c12kIkII + c22k

2
II (4.49)

where the coefficients cij(i, j = 1, 2) are given by

c11 =
1

16µ
(1 + cos θ)(3− 4ν − cos θ) (4.50)

c12 =
1

16µ
sin θ [2 cos θ − (2− 4ν)] (4.51)

c22 =
1

16µ
[(4− 4ν)(1− cos θ) + (1 + cos θ)(3 cos θ − 1)] (4.52)

and kj = Kj/
√
π (j = I, II)

By substituting Eq. (4.49) into Eq. (4.45) we obtain

[cos θ − (1− 2ν)] sin θk2
I + 2 [cos 2θ − (1− 2ν) cos θ] kIkII

+ [(1− 2ν − 3 cos θ) sin θ] k2
II = 0 (4.53)

[cos θ − (1− 2ν) cos θ] k2
I + 2 [(1− 2ν) sin θ − 2 sin 2θ] kIkII

+ [(1− 2ν) cos θ − 3 cos 2θ] k2
II > 0 (4.54)
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The crack initiation angle θc can be obtained by solving Eq. (4.53) and Eq. (4.54).

4.2.3 Maximum strain energy release rate

The maximum energy release rate criterion is proposed by Erdogan and Sih [60]. This

theory is based on Griffith energy theory and predicts the crack will propagate along the

direction that the elastic energy release per unit length is maximum when the energy reaches

its critical value.

The relation between the stress intensity factors KI(θ) and KII(θ) for a crack with an

infinitesimal kink at an angle θ and the stress intensity factors KI and KII of the original

crack is given by [62]

KI(θ) = κ(θ)

(
KI −

3

2
KII sin θ

)
(4.55a)

KII(θ) = κ(θ)

(
KII −

1

2
KI sin θ

)
(4.55b)

where

κ(θ) =

(
4

3 + cos2 θ

)(
1− θ/π
1 + θ/π

) θ
2π

(4.56)

By substitution of Eq. (4.55) to Irwin’s energy release rate equation, we obtain

G(θ) =
2G

1− ν
(
K2
I (θ) +K2

II(θ)
)

(4.57)

Then, above equation becomes

G(θ) =
8G

1− ν

(
1

3 + cos2 θ

)(
1− θ/π
1 + θ/π

) θ
2π [(

1 + 3 cos2 θ
)
K2
I

−8 sin θ cos θKIKII +
(
9− 5 cos2 θ

)
K2
II

]
(4.58)
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The crack initiation occurs when the G(θc) reaches to its critical value of Gc =
2G

1− ν
K2
Ic.

And, the angle θc can be determined by solving the equations

∂G(θ)

∂θ
= 0,

∂2G(θ)

∂θ2
< 0 (4.59)

The angle θc is limited by −75.2 deg ≤ θ ≤ 75.2 deg where the limits are for pure mode II

loading.

4.2.4 Minimum local shear stress

The minimum local shear stress criterion is basically similar to the maximum circumferential

tensile stress criterion, but this theory is based on displacement discontinuity method which

is numerical method. When the mode I stress intensity factor KI at the crack tip element

reaches the critical stress intensity factor KIc, the initiation angle θc is determined by follow.

The initial range is reasonably set to θ1 ≤ θc ≤ θ2. we assume the crack is extended by

unit crack length ∆l to each angle. Then the local shear stress caused by displacement

discontinuities in main crack is calculated. The local shear stress is given by

σθit =

n∑
j=1

Kθij
tt u

j
t +

n∑
j=1

Kθij
tn u

j
n (4.60)

where the influence coefficient Kθi is evaluated at
(
xtip + ∆l

2 cos θi, ytip + ∆l
2 sin θi

)
by dis-

placement discontinuity method in curved crack problem Eq. (4.23) and Eq. (4.28). When

the local shear stress σθit is successfully defined at the angle θ1 and θ2, the crack initiation

angle θc can be determined by the secant iterative root finding method given by

θi = θi−1 − f(θi−1)
θi−1 − θi−2

f(θi−1)− f(θi−2)
(4.61)

where f(θi) = σθit .
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4.2.5 Crack path comparison

Propagation of an inclined crack under tensile field

Consider an inclined crack under tensile as shown in Fig. 4.4. The displacement discontinu-

ity equation is given in Eq. (4.28) with locally transformed components. The tensile stress is

kept increasing to open and propagate the crack. The crack propagation criteria discussed

in previous section are compared. The simulation parameters are listed in Table 4.1.

θ

n t

σyy

σyy

x

y

θc

Figure 4.4: Inclined crack under tensile

Simulation parameters

G = 1.0 GPa ν = 0.2 KIc = 0.5 MPa
√
m

L0 = 20m Lmax = 100m θ0 = π/6

∆x = 1m σyy = 1.0×104 − 1.0× 106 Pa

[H]

Table 4.1: Simulation parameters (inclined tensile crack)
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Figure 4.5: Crack path prediction based on crack propagation criteria

The predicted crack path in given conditions is shown in Fig. 4.5. The detailed comparison of

crack path predictions in different criteria are shown in Fig. 4.6 and Fig. 4.7. In the first ten

initiation of crack (dotted area in Fig. 4.5), the minimum local shear stress, stress intensity

factor ratio and minimum strain energy density criterion show smoother predictions while

the maximum hoop stress and minimum energy release rate criterion are a little scattered

along their mean path.
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Figure 4.6: Crack path comparison
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Figure 4.7: Crack initiation angle comparison

Propagation of an inclined crack induced by internal fracturing fluid flow

Consider an inclined crack under tensile as shown in Fig. 4.8. The crack is subjected to

in-situ stress σyy and σxx and opened by internal fluid flow.
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x

y

θc

σxxσxx

Figure 4.8: Inclined crack with internal fluid flow
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The discretization of fluid flow equations in Grid II for implicit solution gives a system of

nonlinear equations ri(w) = 0 for elements 1 ≤ i ≤ n

ri = wi − λ
[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′

+ λ
[
w2n′+1
i (pi − pi−1)

] 1
n′ − w0

i ,

for 2 ≤ i ≤ n

2
− 1 (4.62a)

ri = wi − λ
[
w2n′+1
i (pi+1 − pi)

] 1
n′

+ λ
[
w2n′+1
i−1 (pi − pi−1)

] 1
n′ − w0

i ,

for
n

2
+ 2 ≤ i ≤ n− 1 (4.62b)

r1 = w1 − λ
[
w2n′+1

2 (p2 − p1)
] 1
n′ − w0

1 (4.62c)

rn = wn + λ
[
w2n′+1
n−1 (pn − pn−1)

] 1
n′ − w0

n (4.62d)

rn
2

= wn
2

+ λ
[
w2n′+1
n
2

(
pn

2
− pn

2
−1

)] 1
n′ − winj − w0

n
2

(4.62e)

rn
2

+1 = wn
2

+1 − λ
[
w2n′+1
n
2

+1

(
pn

2
+2 − pn

2
+1

)] 1
n′ − winj − w0

n
2

+1 (4.62f)

where

winj =
∆t

∆x

qI
2

λ =
n′∆t

∆x(2 + 4n′)(2K ′∆x)
1
n′

and the pressure p is provided from the displacement discontinuity equation in Eq. (4.30)

given by

pi =
n∑
k=1

[
Aikwk +Bik

(
σsitu
t

)
k

+
(
σsitu
n

)
k

]
(4.63)

The matrices A and B are given by

A = Knn −KntK
−1
tt Ktn (4.64a)

B = KntK
−1
tt (4.64b)
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The components of the influence factor Kij , the local stresses (σt)j and (σn)j are evaluated

about local coordinate system by the procedure described in Section 4.1.1 and Section 4.1.2.

The propagation of an inclined crack with internal fluid flow is solved by Newton iteration

using the analytical Jacobian
∂ri
∂wj

given in Appendix B.3 and the parameters summarized

in Table 4.2.

Simulation parameters

G = 1.0 GPa ν = 0.2 KIc = 0.5 MPa
√

m

q = 0.05 m2/s n′ = 0.5 K ′ = 0.001 Pa · sn′

L0 = 25m Lmax = 200m ∆x = 2.5m

θ0 = π/6 ∆t = 0.2s σyy = −1.0 Mpa

σxx = 1.05 σyy

Table 4.2: Simulation parameters (inclined crack with internal fluid flow)
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Figure 4.9: Crack path prediction based on crack propagation criteria

The path of an inclined crack propagation driven by internal fluid flow is given in Fig. 4.9.

The detailed paths of criteria are described in Fig. 4.10 and Fig. 4.11. The minimum

local shear stress provides the most desirable result which is smooth and less scattered in

initiation angle.
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Figure 4.10: Crack path comparison
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Figure 4.11: Crack initiation angle comparison
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Figure 4.12: Parallel cracks with internal fluid flow

4.3 Propagation of parallel cracks

Consider a pair of parallel cracks subjected to in-situ stress σxx and σyy as shown in Fig. 4.12.

They have equal length and the space between cracks is given by d. Both cracks will be

opened by injecting a fluid at the center of each crack. The volume injection rate qI for both

cracks are kept constant. When the crack start opening, the displacement discontinuity in

one crack affect to the other. The interaction between two cracks and its effect on the

propagation are described.

The displacement discontinuity method gives the stress - displacement relationship of Crack

a and Crack b given by

Kttut +Ktnun = Pt = σsitu
t (4.65a)

Kntut +Knnun = Pn = pf − σsitu
n (4.65b)

where ut and un are the combined local shear and normal displacements of Crack a and

Crack b. Also, the net pressure Pn and Pt, stresses σt and σn of both cracks are evaluated
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about its local coordinates and combined. The influence matrix Kij are obtained from

Eq. (4.23) and procedure described in Section 4.1.1 and Section 4.1.2.

From Eq. (4.65), shear displacement ut can be expressed in terms of normal displacement

un

ut = K−1
tt

(
σsitu
t −Ktnun

)
(4.66)

Then the fluid pressure pf can be found by

pf =
(
Knn −KntK

−1
tt Ktn

)
un +KntK

−1
tt σ

situ
t + σsitu

n (4.67)

The fluid flow equations are discretized in Grid II for implicit solution and this provides a

system of nonlinear equations ri(w) = 0 for elements 1 ≤ i ≤ 2n

for 2 ≤ i ≤ n

2
− 1, n+ 2 ≤ i ≤ 3n

2
− 1

ri = wi − λ
[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′

+ λ
[
w2n′+1
i (pi − pi−1)

] 1
n′ − w0

i (4.68a)

for
n

2
+ 2 ≤ i ≤ n− 1,

3n

2
+ 2 ≤ i ≤ 2n− 1

ri = wi − λ
[
w2n′+1
i (pi+1 − pi)

] 1
n′

+ λ
[
w2n′+1
i−1 (pi − pi−1)

] 1
n′ − w0

i (4.68b)

for i = 1, n+ 1

ri = wi − λ
[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′ − w0

i (4.68c)

for i = n, 2n

ri = wi + λ
[
w2n′+1
i−1 (pi − pi−1)

] 1
n′ − w0

i (4.68d)

for i =
n

2
,
3n

2

ri = wi + λ
[
w2n′+1
i (pi − pi−1)

] 1
n′ − winj − w0

i (4.68e)
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for i =
n

2
+ 1,

3n

2
+ 1

ri = wi − λ
[
w2n′+1
i (pi+1 − pi)

] 1
n′ − winj − w0

i (4.68f)

where

λ =
n′∆t

∆x(2 + 4n′)(2K ′∆x)
1
n′

winj =
∆t

∆x

qI
2

The pressure p is provided from Eq. (4.67).

pi =
2n∑
k=1

[
Aikwk +Bik

(
σsitu
t

)
k

+
(
σsitu
n

)
k

]
(4.69)

The matrices A and B are given by

A = Knn −KntK
−1
tt Ktn (4.70a)

B = KntK
−1
tt (4.70b)

Above nonlinear equations are solved by Newton iteration using the analytical Jacobian

∂ri
∂wj

given in Appendix B.4 and the parameters summarized in Table 4.3

Simulation parameters

G = 1.0 GPa ν = 0.2 KIc = 0.5 MPa
√

m

q = 0.01 ≤ q ≤ 0.11 m2/s n′ = 0.25 ≤ n′ ≤ 1.0 K ′ = 0.001 Pa · sn′

L0 = 25m Lmax = 2000m ∆x = 5m

d = 20 < d < 50m ∆t = 1s σyy = −1 MPa

σxx = 1.05 σyy 2n0 = 20 2nmax = 1600

Table 4.3: Simulation parameters (parallel cracks with internal fluid flow)
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The propagation path of a pair of parallel cracks having gap distance 20m is shown in

Fig. 4.13. Each end of cracks is displaced approximately by 91m when the length of crack

path reaches to 2000m and it is about 4.6% of L. The criteria based on minimum local
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Figure 4.13: Path prediction of parallel cracks

shear stress shows a good prediction as shwon in Fig. 4.14. Several relations between the
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Figure 4.14: Crack initiation angle comparison

displacement of crack path from the original path are compared in Fig. 4.15, Fig. 4.16 and

Fig. 4.17. The displacement are not much affected by the initial gap distance, but it is

highly related with the power-law index n′ and the volume flow rate q. The gap distance

85



increases with increasing n′ and q. This result is caused by the difference in crack width w.

As shown in Fig. 4.18, the higher power-law index n′ produce larger crack widths both in

normal ans shear. The stress caused by larger crack width affect the interaction between

two cracks more than the one created by a lower n′. The change in normal and shear stress

due to the growth of parallel cracks are provided in Fig. 4.19 and Fig. 4.20.
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Figure 4.15: Displacement - initial gap distance
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Figure 4.16: Displacement - power-law index
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Figure 4.17: Displacement - flow rate
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Chapter 5

Conclusions and ongoing works

Concluding remarks

An efficient highly nonlinear numerical model of crack propagation driven by internal fluid

flow is developed using displacement discontinuity boundary element method and finite dif-

ference method. The elasticity problem in solid is modeled with displacement discontinuity

method and the fluid flow is by finite difference method. The solution of coupled field

problem of solid-fluid interaction is obtained by matching the stresses along the surface of

opening crack under tensile with the pressure gradient created by the fluid flow inside chan-

nel. Use of boundary element method allow the crack system has less elements compare to

the conventional methods such as finite element method and finite difference method. And

this leads the elasticity model to have more improved efficiency. The internal fluid flow

is discretized by both explicit and implicit finite difference schemes. The results of both

schemes successfully solve the problem, but the implicit scheme showed better performance

in speed and robustness because the explicit scheme has a limitation on selecting time step
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restricted by Courant–Friedrichs–Lewy (CFL) condition or von Newmann condition. The

dual grid system which allowing an additional grid for fluid flow improved volume accuracy

and utilization of special crack tip element helps us to reduce the numerical error on stresses

and displacements near the crack tip region.

The system of nonlinear equations in implicit scheme is solved by Newton iteration trust-

region and quasi-Newton Broyden’s method. By implementing the line search method of

Wolfe and backtracking, the performance of iterative solver is improved and the stability

issue when the system faces ill-conditioned Jacobian matrix is overcomed with the singular

value decomposition, Levenberg-Marquardt method and modified Cholesky factorization.

The quasi-Newton method shows the remarkable speed when the fluid is close to Newtonian

fluid, but is unstable when the power-law index is lower than 0.5. The Newton iteration

with line search provides a good accuracy and efficiency overall in wide range of power-law

index n′. The trust-region method combined with line search is a little slower than Newton

iteration, but it gives more robust results in various conditions controlled by simulation

parameters.

The prediction of crack path under mixed loading condition is presented and studied with

existing criteria, such as stress intensity factor ratio, maximum circumferential tensile stress,

minimum strain energy density, maximum strain energy release rate and a new proposed

numerical approach for crack initiation criterion, minimum local shear stress criterion. The

new criterion gives the most stable results and smoother path of hydraulically driven crack

propagation among the given criteria.

The growth of two parallel cracks case is simulated and analyzed using the numerical so-

lutions discussed so far. The interaction between two cracks and effect of in-situ stress are
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well implemented. The crack path prediction shows that the distance between cracks are

rapidly increase when cracks start growing, but eventually have stable strait path along

the direction that the effect of interaction is minimized. It also shows that the displaced

distance of crack path from their original path is controlled by a fluid power-law index n′

and a volume flow rate q. This results provides some useful inputs for optimal design of

multiple stage and multiple fracturing treatments along horizontal wells currently adopted

by the oil and gas industry.

The numerical model we developed for crack propagation driven by internal fluid flow will

provide useful information in the design process of hydraulic fracturing process is designed

in site. With the given conditions of rock formation the model will be used for determining

the expected fracture geometry and resources required to create desired fracture such as se-

lection of fracturing fluid, pump pressure, injection time, amount of fluid and etc. Also, the

safe distance from the unwanted area and optimized crack spacing for maximum production

can be obtained form the multiple crack propagation model.

Ongoing works and challenges

The crack propagation model is developed based on elasticity, linear elastic fracture me-

chanics and fluid dynamics theory, but the real situation in field is more complicated. The

goal of this project, developing a numerical model for hydraulic fracturing, is to make our

model as close as possible to real situation in field. To achieve this goal following are must

be considered and implemented to the numerical model of crack propagation driven by

internal fluid flow.
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Fluid leak off The permeability of rock we targeted is very small, but still porous.

Therefore, there is a volume leak-off to rock formation. The one-dimensional leak-off model

is proposed by Carter in 1960s and still used in literatures nowadays. The Carter’s leak-

off model can be improved by coupling the fluid flow inside crack with the porous media

flow of non-Newtonian fluid theory. For plain strain model, this can be solved by two

dimensional finite element model near cracked area and matching this with the fluid flow

model discretized in finite difference scheme.

Poro-elasticity When there is a fluid leak-off in rock formation, some of leaked volume

will be stored in pores of rock. This leads the elastic properties of rock to be changed and

affect the crack geometry.

Temperature effect Generally, the temperature underground increases approximately

25 ◦C per kilometer. Therefore, the hydraulic fracture process will face the complexity

caused by existing vertical temperature gradient. If temperature sensitive fluid is used, its

properties will be changed and the difference in temperature between the fluid and rock

formation in depth will create a thermal stress in rock. Thus, the temperature effect on

fluid properties and the thermal stress must be included in the model.

Proppant transport The proppant is a sand-like material transported by fluid to the

fracture. Then, the crack is filled with proppants and keep opened during the production

after the fluid pressure is removed. The properties of a fracturing fluid is changed due to

the concentration of proppant.
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Filter cake The fracturing fluid usually includes natural polymers and these polymers

are built up on the surfaces of well bore and crack during the hydraulic fracturing process.

This filter cake lower the permeability of the wall and reduces the rate of fluid volume

leak-off to rock formation.

Layered formation and material anisotropy The current model assumes that crack

is in an isotropic and homogeneous medium. But, crack can be created in an anisotropic

medium or in layered structure with the different material properties. In this case, the

elasticity equation modeled with displacement discontinuity method should be modified to

handle stiffness tensor and multiple materials.
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Appendix A

Plane crack in a tensile field

The stress field for dislocation can be determined from the Flamant’s solution. By choosing

the terms that give stresses proportional to r−1 from the stress component table of the

Michell solution, we obtain the stress function given in the Flament’s solution:

φ = C1rθ sin θ + C2rθ cos θ + C3r ln r cos θ + C4r ln r sin θ (A.1)

Due to the symmetry of the problem, the terms in Eq. (A.1) are restricted only to the

symmetric terms about θ = 0, which equivalent to the Kelvin’s solution.

φ = C1rθ sin θ + C3r ln r cos θ (A.2)

Then, the stress components are:

σrr =
2C1 cos θ

r
+
C3 cos θ

r
(A.3a)

σrθ =
C3 sin θ

r
(A.3b)

σθθ =
C3 cos θ

r
(A.3c)
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and the displacement components are

2Gur =
C1

2
[(κ− 1)θ sin θ − cos θ + (κ+ 1) ln r cos θ]

+
C3

2
[(κ+ 1)θ sin θ − cos θ + (κ− 1) ln r cos θ] (A.4a)

2Guθ =
C1

2
[(κ− 1)θ cos θ − sin θ − (κ+ 1) ln r sin θ]

+
C3

2
[(κ+ 1)θ cos θ − sin θ − (κ− 1) ln r sin θ] (A.4b)

where G is the shear modulus and κ is the Kolosov’s constant given by

κ = 3− 4ν, for plane strain (A.5a)

κ =
3− ν
1 + ν

, for plane stress (A.5b)

Consider the equilibrium of a small circle of radius r surrounding the origin and assuming

that there be no net force at the origin,∫ 2π

0
(σrr cos θ − σrθ sin θ) rdθ = 0 (A.6)

by substituting Eq. (A.3a) into Eq. (A.6), we have C1 = 0. Therefore we can obtain the

stress function for the dislocation solution from Eq. (A.2) with C1 = 0.

φ = C3r ln r cos θ (A.7)

And the corresponding stress and displacement components are:

σrr = σθθ =
C3 cos θ

r
(A.8a)

σrθ =
C3 sin θ

r
(A.8b)

2Gur =
C3

2
[(κ+ 1) θ sin θ − cos θ + (κ− 1) ln r cos θ] (A.9a)

2Guθ =
C3

2
[(κ+ 1) θ cos θ − sin θ − (κ− 1) ln r sin θ] (A.9b)
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From Eq. (A.9b), the discontinuity in the displacement uθ on y = 0 is

δ = uθ(0)− uθ(2π) = −C3π(κ+ 1)

2G
(A.10)

By defining a dislocation of strength uy as one which opens a gap δ = uy in plane strain

motion, we can obtain C3 in terms of uy.

C3 = − Guy
2π(1− ν)

(A.11)

The stress field can be found by substituting Eq. (A.11) into Eq. (A.8a) and Eq. (A.8b).

σrr = σθθ = − Guy cos θ

2π(1− ν)r
(A.12a)

σrθ = − Guy sin θ

2π(1− ν)r
(A.12b)

The stress components at y = 0 are

σxx = σyy = − Guy
2π(1− ν)x

(A.13a)

σyx = 0 (A.13b)

The solution above is for a climb dislocations (mode I).

In case of glide dislocation (mode II), the solution can be obtained from the stress function

φ = r ln r sin θ (A.14)

The stress field due to a glide dislocation is given by

σrr = σθθ =
G(1 + ν)ux sin θ

2πr
(A.15a)

σrθ = −G(1 + ν)ux cos θ

2πr
(A.15b)

On the surface of y = 0, the stress components are reduced by

σxx = σyy = 0 (A.16a)
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σyx =
G(1 + ν)ux

2πx
(A.16b)

The dislocation u must satisfy the two closure conditions:∫
Ω
ux(x, y)dxdy = 0 (A.17a)∫

Ω
uy(x, y)dxdy = 0 (A.17b)

which means the total strength of the dislocations in Ω is zero.

The boundary conditions of the crack opening problem given in the Fig. 2.1 are:

σyx = σyy = 0, on − L < x < L and y = 0 (A.18a)

σyy → S, σxy, σxx → 0 at r →∞ (A.18b)

The solution can be represented as the sum of the stress field without a crack and a corrective

solution for a crack.

first, the body without a crack is subjected to an uniform tension:

σyy = S (A.19)

And the boundary conditions for the corrective solution are

σyx = 0, σyy = −S on − L < x < L and y = 0 (A.20a)

σyy, σxy, σxx → 0 at r →∞ (A.20b)

We assume that there is no tangential motion between the crack faces and only consider a

distribution of uy(x) of dislocations per unit length in the range −L < x < L and y = 0. The

traction σyy(x, 0) due to the dislocation uy(ξ, 0) can be expressed by modifying Eq. (A.13a).

σyy = − Guy(ξ)dξ

2π(1− ν)(x− ξ)
(A.21)
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The traction due to the whole distribution of dislocations can be written by a integral form:

σyy = − G

2π(1− ν)

∫ +L

−L

uy(ξ)dξ

(x− ξ)
(A.22)

With the boundary condition in Eq. (A.20), we can construct the Cauchy singular integral

equation for uy(ξ). ∫ +L

−L

uy(ξ)dξ

(x− ξ)
=

2πS(1− ν)

G
, −L < x < L (A.23)

Above equation can be solved by a simple solution based on the change of variable.

x = L cosφ, ξ = L cos θ (A.24)

Substituting Eq. (A.24) into Eq. (A.23), we obtain∫ π

0

uy(θ) sin θdθ

(cosφ− cos θ)
=

2πS(1− ν)

G
, 0 < φ < π (A.25)

which can be simplified using the result:∫ π

0

cos(nθ)dθ

(cosφ− cos θ)
= −π sin(nφ)

sinφ
(A.26)

Then, expand uy(θ) in a Fourier series

uy(θ) =
∞∑
n=0

bn
cos(nθ)

sin θ
(A.27)

Substituting Eq. (A.27) into Eq. (A.25), we obtain

∞∑
n=0

∫ π

0

bn cos(nθ)dθ

(cosφ− cos θ)
=

2πS(1− ν)

G
(A.28)

Using Eq. (A.26), this becomes

−
∞∑
n=0

bn
sin(nφ)

sinφ
=

2S(1− ν)

G
(A.29)

With n = 1,

b1 = −2S(1− ν)

G
(A.30)
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From Eq. (A.27) and Eq. (A.30),

uy(θ) = −2S(1− ν)

G

cos θ

sin θ
+

b0
sin θ

(A.31)

Then, using Eq. (A.24) and Eq. (A.31),

uy(ξ) = −2S(1− ν)

G

ξ√
L2 − ξ2

+
Lb0√
L2 − ξ2

(A.32)

The unknown b0 can be determined by applying the closure condition Eq. (A.17b) to

Eq. (A.32). ∫ +L

−L
uy(ξ)dξ = 0 =⇒ b0 = 0 (A.33)

and

uy(ξ) = −2S(1− ν)

G

ξ√
L2 − ξ2

(A.34)

The stress field surrounding the crack tip in can be determined using Eq. (A.22) and

Eq. (A.34),

σyy =
S

π

∫ +L

−L

ξdξ

(x− ξ)
√
L2 − ξ2

= S

(
−1 +

|x|√
x2 − L2

)
, |x| > L, y = 0 (A.35)

The complete stress field can be obtained by add uniform stress field in Eq. (A.19) to the

above corrective solution.

σyy =
S|x|√
x2 − L2

, |x| > L, y = 0 (A.36)

Finally, the crack opening displacement is given by:

uy(x, 0
+)− uy(x, 0−) =

∫ x

−L
uy(ξ)dξ =

2S(1− ν)

G

√
L2 − x2 (A.37)
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Appendix B

Analytical Jacobian matrices

B.1 For right half-crack in Grid I

for 3 ≤ i ≤ n− 2

Ji,j =δij −
λI
n′

[
(wi+1)2n′+1 (pi+2 − pi)

] 1
n′−1

(wi+1)2n′+1(Ai+2,j −Ai,j)

+
λI
n′

[
(wi−1)2n′+1 (pi − pi−2)

] 1
n′−1

(wi−1)2n′+1(Ai,j −Ai−2,j),

j 6= i− 1, i+ 1 (B.1a)

Ji,i−1 =− λI
n′

[
(wi+1)2n′+1 (pi+2 − pi)

] 1
n′−1

(wi+1)2n′+1(Ai+2,i−1 −Ai,i−1)

+
λI
n′

[
(wi−1)2n′+1 (pi − pi−2)

] 1
n′−1 [

(2n′ + 1)(wi−1)2n′(pi − pi−2)

+(wi−1)2n′+1(Ai,i−1 −Ai−2,i−1)
]

(B.1b)

Ji,i+1 =− λI
n′

[
(wi+1)2n′+1 (pi+2 − pi)

] 1
n′−1 [

(2n′ + 1)(wi+1)2n′(pi+2 − pi)

+(wi+1)2n′+1(Ai+2,i+1 −Ai,i+1)
]

+
λI
n′

[
(wi−1)2n′+1 (pi − pi−2)

] 1
n′−1

(wi−1)2n′+1(Ai,i+1 −Ai−2,i+1) (B.1c)
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for i = 1

J1,j =δij −
λI
n′

[
(w2)2n′+1(p3 − p1)

] 1
n′−1

(w2)2n′+1(A3,j −A1,j), j 6= 2 (B.1d)

J1,2 =− λI
n′

[
(w2)2n′+1(p3 − p1)

] 1
n′−1 [

(2n′ + 1)(w2)2n′(p3 − p1)

+(w2)2n′+1(A3,2 −A1,2)
]

(B.1e)

for i = 2

J2,j =δ2j −
λI
n′

[
(w3)2n′+1 (p4 − p2)

] 1
n′−1

(w3)2n′+1(A4,j −A2,j)

+
λI
n′

[
(w1)2n′+1 (p2 − p1)

] 1
n′−1

(w1)2n′+1(A2,j −A1,j), j 6= 1, 3 (B.1f)

J2,1 =− λI
n′

[
(w3)2n′+1 (p4 − p2)

] 1
n′−1

(w3)2n′+1(A4,1 −A2,1)

+
λI
n′

[
(w1)2n′+1 (p2 − p1)

] 1
n′−1 [

(2n′ + 1)(w1)2n′(p2 − p1)

+(w1)2n′+1(A2,1 −A1,1)
]

(B.1g)

J2,3 =− λI
n′

[
(w3)2n′+1 (p4 − p2)

] 1
n′−1 [

(2n′ + 1)(w3)2n′(p4 − p2)

+(w3)2n′+1(A4,3 −A2,3)
]

+
λI
n′

[
(w1)2n′+1 (p2 − p1)

] 1
n′−1

(w1)2n′+1(A2,3 −A1,3) (B.1h)

for i = n− 1

Jn−1,j =δij −
λI
n′

[
(wn)2n′+1 (pn − pn−1)

] 1
n′−1

(wn)2n′+1(An,j −An−1,j)

+
λI
n′

[
(wn−2)2n′+1 (pn−1 − pn−3)

] 1
n′−1

(wn−2)2n′+1(An−1,j −An−3,j),

j 6= n− 2, n (B.1i)

Jn−1,n−2 =− λI
n′

[
(wn)2n′+1 (pn − pn−1)

] 1
n′−1

(wn)2n′+1(An,n−2 −An−1,n−2)

+
λI
n′

[
(wn−2)2n′+1 (pn−1 − pn−3)

] 1
n′−1 [

(2n′ + 1)(wn−2)2n′(pn−1 − pn−3)

+(wn−2)2n′+1(An−1,n−2 −An−3,n−2)
]

(B.1j)
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Jn−1,n =− λI
n′

[
(wn)2n′+1 (pn − pn−1)

] 1
n′−1 [

(2n′ + 1)(wn)2n′(pn − pn−1)

+(wn)2n′+1(An,n −An−1,n)
]

+
λI
n′

[
(wn−2)2n′+1 (pn−1 − pn−3)

] 1
n′−1

(wn−2)2n′+1(An−1,n −An−3,n) (B.1k)

for i = n

Jn,j =δij +
λI
n′

[
(wn−1)2n′+1 (pn − pn−2)

] 1
n′−1 [

(wn−1)2n′+1(An,j −An−2,j)
]
,

j 6= n− 1 (B.1l)

Jn,n−1 =
λI
n′

[
(wn−1)2n′+1 (pn − pn−2)

] 1
n′−1 [

(2n′ + 1)(wn−1)2n′(pn − pn−2)

+(wn−1)2n′+1(An,n−1 −An−2,n−1)
]

(B.1m)

B.2 For right half-crack in Grid II

for 2 < i < n− 1

Ji,j =− λII
n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1

w2n′+1
i (Ai+1,j −Ai,j)

+
λII
n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1

w2n′+1
i−1 (Ai,j −Ai−1,j) , j 6= i, i− 1 (B.2a)

Ji,i =1− λII
n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1 [

(2n′ + 1)w2n′
i (pi+1 − pi)

+w2n′+1
i (Ai+1,j −Ai,j)

]
+
λII
n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1

w2n′+1
i−1 (Ai,j −Ai−1,j)

(B.2b)

Ji,i−1 =− λII
n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1

w2n′+1
i (Ai+1,i−1 −Ai,i−1)

+
λII
n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1 [

(2n′ + 1)w2n′
i−1 (pi − pi−1)

+w2n′+1
i−1 (Ai,i−1 −Ai−1,i−1)

]
(B.2c)
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for i = 1

J1,j =− λII
n′

[
w2n′+1

1 (p2 − p1)
] 1
n′−1

w2n′+1
1 (A2,j −A1,j) , j 6= 1 (B.2d)

J1,1 =1− λII
n′

[
w2n′+1

1 (p2 − p1)
] 1
n′−1 [

(2n′ + 1)w2n′
1 (p2 − p1) + w2n′+1

1 (A2,1 −A1,1)
]

(B.2e)

for i = n

Jn,j =δnj +
λII
n′

[
w2n′+1
n−1 (pn − pn−1)

] 1
n′−1

w2n′+1
n−1 (An,j −An−1,j) , j 6= n− 1 (B.2f)

Jn,n−1 =
λII
n′

[
w2n′+1
n−1 (pn − pn−1)

] 1
n′−1 [

(2n′ + 1)w2n′
n−1 (pn − pn−1)

+w2n′+1
n−1 (An,n−1 −An−1,n−1)

] 1
n′

(B.2g)

B.3 For full inclined crack in Grid II

for 2 ≤ i ≤ n

2
− 1

Jij =− λ

n′

[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′−1

w2n′+1
i+1 (Ai+1,j −Ai,j)

+
λ

n′

[
w2n′+1
i (pi − pi−1)

] 1
n′−1

w2n′+1
i (Ai,j −Ai−1,j) , j 6= i, i+ 1 (B.3a)

Ji,i =1− λ

n′

[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′−1

w2n′+1
i+1 (Ai+1,i −Ai,i)

+
λ

n′

[
w2n′+1
i (pi − pi−1)

] 1
n′−1 [

(2n′ + 1)w2n′
i (pi − pi−1)

+w2n′+1
i (Ai,i −Ai−1,i)

]
(B.3b)

Ji,i+1 =− λ

n′

[
w2n′+1
i+1 (pi+1 − pi)

] 1
n′−1 [

(2n′ + 1)w2n′
i+1 (pi+1 − pi)

+w2n′+1
i+1 (Ai+1,i+1 −Ai,i+1)

]
+
λ

n′

[
w2n′+1
i (pi − pi−1)

] 1
n′−1

w2n′+1
i (Ai,i+1 −Ai−1,i+1) (B.3c)
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for
n

2
+ 2 ≤ i ≤ n− 1

Jij =− λ

n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1

w2n′+1
i (Ai+1,j −Ai,j)

+
λ

n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1

w2n′+1
i−1 (Ai,j −Ai−1,j) , j 6= i, i− 1 (B.3d)

Ji,i =1− λ

n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1 [

(2n′ + 1)w2n′
i (pi+1 − pi)

+w2n′+1
i (Ai+1,i −Ai,i)

]
+
λ

n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1

w2n′+1
i−1 (Ai,i −Ai−1,i) (B.3e)

Ji,i−1 =− λ

n′

[
w2n′+1
i (pi+1 − pi)

] 1
n′−1

w2n′+1
i (Ai+1,i−1 −Ai,i−1)

+
λ

n′

[
w2n′+1
i−1 (pi − pi−1)

] 1
n′−1 [

(2n′ + 1)w2n′
i−1 (pi − pi−1)

+w2n′+1
i−1 (Ai,i−1 −Ai−1,i−1)

]
(B.3f)

for i = 1

J1j =δ1j −
λ

n′

[
w2n′+1

2 (p2 − p1)
] 1
n′−1

w2n′+1
2 (A2j −A1j) , j 6= 2 (B.3g)

J12 =− λ

n′

[
w2n′+1

2 (p2 − p1)
] 1
n′−1 [

(2n′ + 1)w2n′
2 (p2 − p1) + w2n′+1

2 (A22 −A12)
]

(B.3h)

for i = n

Jn,j =δnj +
λ

n′

[
w2n′+1
n−1 (pn − pn−1)

] 1
n′−1

w2n′+1
n−1 (Anj −An−1,j) , j 6= n− 1 (B.3i)

Jn,n−1 =
λ

n′

[
w2n′+1
n−1 (pn − pn−1)

] 1
n′−1 [

(2n′ + 1)w2n′
n−1 (pn − pn−1)

+w2n′+1
n−1 (An,n−1 −An−1,n−1)

] 1
n′

(B.3j)

for i =
n

2

Jn
2
,j =

λ

n′

[
w2n′+1
n
2

(
pn

2
− pn

2
−1

)] 1
n′−1

w2n′+1
n
2

(
An

2
,j −An

2
−1,j

)
, j 6= n/2 (B.3k)

Jn
2
,n
2

=1 +
λ

n′

[
w2n′+1
n
2

(
pn

2
− pn

2
−1

)] 1
n′−1 [

(2n′ + 1)w2n′
n
2

(
pn

2
− pn

2
−1

)
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+w2n′+1
n
2

(
An

2
,n
2
−An

2
−1,n

2

)]
(B.3l)

for i =
n

2
+ 1

Jn
2

+1,j =− λ

n′

[
w2n′+1
n
2

+1

(
pn

2
+2 − pn

2
+1

)] 1
n′−1

w2n′+1
n
2

+1

(
An

2
+2,j −An

2
+1,j

)
,

j 6= n/2 + 1 (B.3m)

Jn
2

+1,n
2

+1 =1− λ

n′

[
w2n′+1
n
2

+1

(
pn

2
+2 − pn

2
+1

)] 1
n′−1 [

(2n′ + 1)w2n′
n
2

+1

(
pn

2
+2 − pn

2
+1

)
+w2n′+1

n
2

+1

(
An

2
+2,n

2
+1 −An

2
+1,n

2
+1

)]
(B.3n)

B.4 For double parallel cracks in Grid II

for 2 ≤ i ≤ n

2
− 1, n+ 2 ≤ i ≤ 3n

2
− 1

Jij =− λ

n′

[
w2n′+1
i+1 (pi+1 − pi)
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Chapter 6

Fabrication and characterization of

THUNDER actuators,

prestress-induced nonlinearity in

the actuation response

Abstract

This paper documents an experimental and theoretical investigation in characterizing the

mechanical configurations and performances of THUNDER actuators, a type of piezoelectric

actuators known for their large actuation displacements, through fabrication, measurements

and finite element analysis. Five groups of such actuators with different dimensions were

fabricated using identical fabrication parameters. The as-fabricated arched configurations,

114



resulting from the thermo-mechanical mismatch among the constituent layers, and their

actuation performances were characterized using an experimental setup based on a laser

displacement sensor and through numerical simulations with ANSYS, a widely-used com-

mercial software for finite element analysis. This investigation shows that the presence of

large residue stresses within the piezoelectric ceramic layer, built up during the fabrication

process leads to significant nonlinear electromechanical coupling in the actuator response

to the driving electric voltage, and it is this nonlinear coupling that is responsible for the

large actuation displacements. Furthermore, the severity of the residue stresses and thus

the nonlinearity increases with the increasing substrate/piezoelectric thickness ratio and,

to a less extent, with the decreasing in-plane dimensions of the piezoelectric layer.

6.1 Introduction

There have been numerous investigations on piezoelectric ceramics for developing electrically-

driven actuators [1–18], for instance. Widely recognized piezoelectric actuators include

MOONIE (Moon-Shaped Actuator) [19], RAINBOW (Reduced and Internally Biased Oxide

Wafer) [20], CRESCENT (Stress-biased Ceramic-metal Composite Actuator) [21], THUN-

DER (Thin-layer Composite Unimorph Ferroelectric Driver and Sensor) [22], and LIPCA

(Lightweight Piezo-composite Curved Actuator) [23]. THUNDER is referred to a type of

high-performance piezoelectric actuators, which was developed originally by researchers at

NASA Langley Research Center and is currently manufactured and marketed by FACE In-

ternational Corporations [24]. What distinguishes THUNDER actuators from conventional

piezoelectric actuators appears to be the utilization of the residue stresses in the piezoelec-
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tric ceramic layer caused by the mismatch in the coefficients of thermal expansion (CTE)

among the piezoelectric ceramic layer and the metallic substrate and the metallic top layer

during the cooling stage of the fabrication process [25]. These stresses lead to an arched or

bowed configuration as shown in Fig. 6.1.

In operation, the arch curvature increases or decreases in response to a transversely applied

Figure 6.1: (a) A schematic illustration of the constituent layers of THUNDER Assembly
(non-scale) (b) The resulting arched configuration of a THUNDER actuator due to thermal
mismatch.

electric voltage, according to the poling direction of the piezoelectric ceramic layer. While,

an alternating voltage potential drives the pumping motion of a THUNDER actuator. The

advantages of THUNDER actuators in some applications compared to conventional actu-

ators include large deflection and high actuation strength. In addition, THUNDER has

a wide range of operation temperature from -40◦C to 200◦C and it can be effective even

above the ultrasonic frequency (20 KHz). Furthermore, these actuators have been found
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to be durable from the environmental shocks, vibrations and chemicals [24, 26–28]. A con-

siderable amount of efforts have been made to evaluate the performances of THUNDER

actuators with various dimensions, particularly concerned with the aspect ratio effect on

the performance parameters [28–37]. This paper documents our effort in characterizing

the arched configuration resulting from the cooling stage of the fabrication process and the

deflection response to a transversely applied electric voltage. The next section describes

the fabrication of five groups of THUNDER actuators, of which the dimensions have been

standardized by FACE International Corporations, named Model 6R, 7R, 8R, 9R and 10R,

respectively, and discusses the measurements on these actuators under the as-fabricated

condition and under the loading of an electric voltage, respectively. We present, in Section

3, a finite element model and the corresponding analysis using ANSYS. The results show

that the curvature of the arched configuration resulting from the cooling stage increases

with the increasing substrate-to-piezoelectric thickness ratio, and, to a less extent, with the

decreasing in-plane dimensions of the piezoelectric layer. Correspondingly, the magnitude

of the compressive stress within the piezoelectric ceramic layer resulting from the CTE

mismatch follows the same trends. These stresses are large enough to cause significant non-

linear effects in the deflection response of THUNDER actuators to applied electric voltages,

rending the invalidity of the linear piezoelectric model. The nonlinear effect is responsible

for the large actuation displacements of these actuators.
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6.2 Fabrication and measurements

6.2.1 Fabrication

The structure of THUNDER actuator consists of five layers: a metal substrate made of

stainless steel, a piezoelectric ceramic layer, an aluminum top layer and adhesive layers for

bonding. The specific materials of these layers are described in Table 6.1 [25].

The five constituent layers were first assembled in a vacuum bag and then heated from

Layers Materials

1st layer (Metal Substrate) Stainless Steel 304

2nd layer (Adhesive) LaRCTM-SI Polyamide

3rd layer (Piezoelectric Ceramic) PZT-5A (CTS-3195HD)

4th layer (Adhesive) LaRCTM-SI Polyamide

5th layer (Top Coating) Aluminum Alloy 3003

Table 6.1: Constituent layers of THUNDER actuators

room temperature to 204◦C in an autoclave. The assembly was subsequently pressurized

to 241.3kPa with nitrogen and heated to 325◦C, and it was kept under this condition for

30 minutes, before being depressurized and cooled down to 52◦C. The rate of temperature

change was maintained at 5.6◦C/min during the fabrication process. During the cooling

stage, LaRCTM-SI polyamide is expected to solidify at the temperature range of 248-251◦C,

building incremental bonding between the ceramic and metallic layers. The stresses due to

the inter-layer CTE mismatch result in the arched configuration, which depends primarily

upon the dimensions and mechanical/thermal properties of the constituent layers as well

as the solidification temperature of adhesive. There is some loss of polarization in the
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piezoelectric ceramic layer during the fabrication process, because the assembly was heated

very close to Curie temperature of PZT-5A (350◦C). To compensate the loss of polarization,

the actuators were re-poled at room temperature by applying 90 Volts per mil of ceramic

thickness [22,28].

6.2.2 Measurements

Figure 6.2: Measurements of dome heights (a) A schematic of the arched configuration under
the simply supported condition, (b) Detection of the dome height using a laser displacement
sensor.

Model 6-R 7-R 8-R 9-R 10-R

substrate (L×W, mm) 76.2×51.8 97.7×73.4 63.5×13.7 22.2×10.5 25.4×13.7

PZT layer (L×W, mm) 50.8×50.8 72.3×72.3 38.1×13.7 9.5×9.5 12.7×12.7

substrate (T, mm) 0.254 0.203 0.152 0.152 0.152

PZT layer (T, mm) 0.381 0.254 0.203 0.203 0.203

Table 6.2: Dimension comparison chart
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Five models of THUNDER actuator (Model 6R, 7R, 8R, 9R and 10R) were prepared for

the measurements. The dimensions of each model are given in Table 6.2 [24]. The measure-

ments of the arched configuration and actuation performances under applied voltages were

conducted by measuring the dome heights of THUNDER actuators using a laser displace-

ment sensor under the simply supported condition as shown in Fig. 6.2. The sensor was

installed perpendicular to the top surface of THUNDER. For measuring the dome heights,

the THUNDER actuators were placed on a flat plate and the laser sensor scanned heights of

the top surface through the center line of the actuator. Each scan consisted of over 100 data

points, where were fitted to a curve and reduced to a single dome height. The displacements

were calculated by comparing the as-fabricated dome heights to the dome heights under the

applied electric voltages. To evaluate the performance of these THUNDER actuators, five

different voltages were applied to each model. We note that the electromechanical response

is constitutively related to the electric field strength, i.e., the electric voltage per unit thick-

ness. Because the thickness differs significantly among the five models (0.381 mm for Model

6R, 0.254 mm for Model 7R, and 0.203 mm for Models 8R, 9R and 10R), the maximum

electric voltages are chosen so that the maximum electric field strengths across the thickness

are about 2000 V/mm for all these models. The measured dome heights and displacements

under applied electrical voltages are given, respectively, in Tables 6.3 and 6.3. In these mea-

surements, multiple samples were used for each model and significant variations between

different samples were found, particularly for Models 9-R and 10-R with smaller in-plane

dimensions.
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Model 6-R 7-R 8-R 9-R 10-R

Dome Height 4.31 mm 9.57 mm 3.32 mm 0.85 mm 0.90 mm

Table 6.3: The as-fabricated dome heights of the THUNDER actuators

6-R

Applied voltage (V) 165 330 495 660 825

(Electric field, V/mm) (433) (866) (1299) (1732) (2165)

Displacement (µm) 88.7 324.2 649.2 973.2 1297.2

7-R

Applied voltage (V) 103 206 309 412 515

(Electric field, V/mm) (406) (811) (1217) (1622) (2028)

Displacement (µm) 236.2 653.4 1136.1 1660.7 2150.9

8-R

Applied voltage (V) 80 160 240 320 400

(Electric field, V/mm) (394) (787) (1181) (1575) (1969)

Displacement (µm) 17.6 170.2 286.6 426.9 724.6

9-R

Applied voltage (V) 80 160 240 320 400

(Electric field, V/mm) (394) (787) (1181) (1575) (1969)

Displacement (µm) 33.7 36.7 51.7 91.7 124.7

10-R

Applied voltage (V) 80 160 240 320 400

(Electric field, V/mm) (394) (787) (1181) (1575) (1969)

Displacement (µm) -103.0 -64.5 -7.5 40.0 85.3

Table 6.4: Displacements under applied electric voltages
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6.3 Finite element analysis

6.3.1 Finite element model

We have developed a numerical model to analyze the THUNDER actuators, using the

commercial finite element analysis software ANSYS [38]. The relevant properties of the

constituent layers are listed in Tables 6.5 and 6.6.

The mechanical and electrical properties of PZT-5A provided by the vendor (CTS Cor-

Material E (Gpa) ν CTE (10−6/◦C )

Stainless Steel 304 193.0 0.29 17.8

Aluminum Alloy 3003 68.9 0.33 25.1

PZT-5A (CTS-3195HD) 0.31 3.0

LaRCTM-SI Polyamide 3.8 0.4 46.0 (23-150◦C)

60.0 (150-200◦C)

Table 6.5: Material properties used in the finite element analysis [26,39]

Dielectric Piezoelectric Charge Elastic Constant

Constant (1kHz) Coefficient (×10−12m/V) (×10−12m2/N)

KT
3 d31 d33 SE11 SE33 SD11 SD33

1900 -190 390 16.2 18.6 14.6 9.6

Table 6.6: Mechanical and electrical properties of PZT-5A (CTS-3195HD) [39]
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poration) were converted to the form required by ANSYS. The vendor supplied properties

are in following forms [40]:

S = sET + dE (6.1)

D = dtT + εTE (6.2)

where S, T, E, D, sE , d and εT are the mechanical strain vector, mechanical stress vector,

electric field vector or electric flux density, electric displacement vector, compliance matrix,

piezoelectric matrix relating strain/electric field and dielectric matrix evaluated at constant

stress, respectively. However, ANSYS requires the matrices in forms below:

T = cES − eE (6.3)

D = etS + εSE (6.4)

where cE , e and εS are the stiffness matrix, piezoelectric matrix relating stress/electric field

and dielectric matrix evaluated at constant strain, respectively.

Therefore, the vendor supplied matrices can be converted using the following relationships.

cE =
[
sE
]−1

(6.5)

εS = εTdt −
[
sE
]−1

d (6.6)

e = dt
[
sE
]−1

(6.7)

We take the assemblys configuration at the glass transition temperature of adhesive layer

to be the initial stress-free state, from which our finite element simulation for the cool-

ing stage begins. In the simulation, SOLID 226 (3-D coupled field 20-nodes solid) ele-

ments were applied to every constituent layer of the THUNDER assembly to analyze the

thermo-mechanically coupled response of the assembly during the cooling stage. The el-
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ement degrees of freedom for the metallic and adhesive layers are the three-dimensional

displacements and temperature (DOF: UX, UY, UZ, TEMP). The PZT layer was consid-

ered as a thermal-piezoelectric model and its degrees of freedom were the displacements,

temperature and electric voltage (DOF: UX, UY, UZ, TEMP, VOLT). The cooling stage

is modeled as a quasi-static process, and thus the temperature is the sole variation vari-

able in the corresponding simulation. For the subsequent electric loading, we are interested

in the resulting deflection, instead of the transient behavior. Thus the voltage is the sole

variation variable in the simulation for the electric loading stage that follows the cooling

stage. Therefore, the static analysis was performed and SPARSE iterative solver was uti-

lized during these simulations [41]. Although the linear constitutive relations listed above

were adopted, the geometrical non-linear analysis was performed throughout the simula-

tions on both the cooling and electrical loading stages. We note the technical challenges

in using ANSYS to retain the residue stresses along with the arched configurations in the

subsequent electric-loading process simulations.

6.3.2 Simulation results

The cooling stage

The arched configuration of a THUNDER actuator (7-R model) upon the completion of

the cooling stage is shown in Fig. 6.3, in which the contoured color bands represent the

transverse displacement, i.e., the z-component of the displacement in the coordinate system

indicated in the figure. The dome heights obtained from our ANSYS simulations for all five

models of THUNDER actuators are listed in Table 6.7, together with the measured dome

heights and the values published on the website of the FACE International Corporation [24].
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Note that the measured dome height was obtained by measuring the distance between the

center of the actuator top surface and the sitting plate under the simply supported condition,

as illustrated schematically in Fig. 6.2. The comparisons indicate that the simulation results

are consistent with our measurements for all five models of THUNDER actuators. We note,

however, that our measured dome heights are correlated well to those published by FACE

only for the three large actuators, i.e., Models 6R, 7R and 8R, and there are significant

discrepancies for two small actuators, i.e., Models 9R and 10R. It is known that there

are variations among sample actuators, and the relative variations are larger for smaller

actuators. Note that the measurement values obtained from FACE are single-point data

and they are provided here for comparison.

The variation of the lateral stress (the x-component) along the PZT thickness at the

Figure 6.3: The arched configuration of THUNDER 7-R model resulting from the cooling
stage simulation

midpoint (x = 0 and y = 0) is plotted in Fig. 6.4, for each of the five model actuators.
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Model 6-R 7-R 8-R 9-R 10-R

Measured 4.31 mm 9.57 mm 3.32 mm 0.85 mm 0.90 mm

FACE International 4.24 mm 9.55 mm 3.84 mm 0.61 mm 0.64 mm

Calculated 4.56 mm 9.41 mm 3.19 mm 0.74 mm 0.91 mm

Measured vs. FACE 1.5% 0.2% -13.6% 38.86% 41.1%

Calculated vs. Measured 6.0% -1.6% -3.7% -12.3% 0.7%

Table 6.7: Comparison of dome heights data

Note that the vertical axis in Fig. 6.4 is the actuator thickness normalized to the unity. The

thermal stresses caused by the CTE mismatch are compressive within the PZT layer and

tensile in the metallic layers (not plotted). These stresses are responsible for the resulting

arched configurations. We note that this stress distribution qualitatively differs from the

stress distribution in a layered beam under bending. From the conventional theory for

layered beams under bending, there exists a neutral surface and the stresses are tensile on

one side of this surface and are compressive on the other side.

The electrical loading process

In Fig. 6.5, we have plotted the actuation displacements versus the transversely applied

electric voltages for Model 6-R and 7-R1 . The actuation displacements obtained from the

finite element analysis correlate well with the measured values and those from FACE Inter-

national Corporation only for small deflections under relatively low electric voltages. The

11 For small actuators, our measured deflection values differ significantly from those of FACE International
Corporation. We attribute these discrepancies to the sample variations and the error margins as well as the
uncertainties associated with the measurement methods. With our laser sensor setup, we measured the dome
height at each value of the applied electric voltage and derived the corresponding deflection by subtracting
the measured dome height without the electric loading. While the details of measurement procedures of
FACE International Corporation were not provided
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Figure 6.4: Distribution of the residual thermal stresses (x-component) in the PZT layer
along the actuator thickness, normalized to the unity for each of the five models

discrepancies increase with the increasing applied voltages. In particular, the measured

values exhibit significant nonlinearity in the actuator deflection response to the applied

electric voltages, while the finite element analysis results correspond to a linear response, as

expected from ANSYS. It is known in the literature, [42–44] for example, that stresses can

cause changes in macroscopic polarization, and even polarization switching, of piezoelectric

materials, leading to nonlinear macroscopic responses to mechanical and electrical loading

programs. We have conducted finite element analyses and simulations on a large number

of samples with various dimensions. The results conclude that the curvature of the arched

configuration resulting from the cooling stage increases with the increasing substrate-to-

piezoelectric thickness ratio, and, to a less extent, with the decreasing in-plane dimensions

of the piezoelectric layer, as shown in Table 6.8. Correspondingly, the magnitude of the
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compressive stress within the piezoelectric ceramic layer resulting from the CTE mismatch

follows the same trends. As shown in Fig. 6.4, Model 7R of the largest thickness ratio

(0.799) has the largest compressive stress, while Model 6R of the smallest thickness ratio

(0.667) has the smallest compressive stress. Correspondingly, Model 7R exhibits larger

nonlinear effect than Model 6R in the deflection response to the applied electric voltage,

as seen in Fig. 6.5. In the figure, our multiple-point measurements are indicated by the

error bars, while the data from FACE International and our finite element calculations are

single-point values. Note that the curves are fitted with second-order polynomials. It is

apparent that the stresses resulting from the cooling stage are large enough to cause signifi-

cant electromechanical coupling, leading to the nonlinear effects, and thus the conventional

linear piezoelectric theory should be modified in order to model the deflection responses of

THUNDER actuators to high electric voltages.

There have been many investigations, both experimental and theoretical, on the nonlinear

Model 6-R 7-R 8-R 9-R 10-R

S/P thickness ratio 0.67 0.80 0.75 0.75 0.75

PZT in-plane dimension(mm) 50.8×50.8 72.3×72.3 38.1×13.7 9.59.5 12.7×12.7

Curvature 5.12 7.66 6.72 7.36 7.08

Table 6.8: Relation between thickness ratio, PZT in-plane dimension and curvature

responses of piezoelectric ceramics under coupled electro-mechanical loading programs, such

as [45–51]. We hope to develop a numerical model from one of these theories for analyzing

THUNDER actuators, and this model would have to be simple enough to be implemented
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Figure 6.5: Deflections under applied voltages (a) Model 6-R, (b) Model 7-R

into ANSYS to serve the community of engineering researchers who are interested in the

applications of THUNDER actuators.
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6.4 Concluding remarks

The experimental measurements and the numerical simulations show excellent consistency

in characterizing the arched configurations resulting from the cooling stage of the fabrica-

tion process due to the mismatch in the coefficients of thermal expansion of the constituent

layers. For the actuation displacements in the electric loading stage, the measurements in-

dicate the significant nonlinearity in the THUNDER actuator response to applied electrical

voltage variations, rending the invalidity of the linear piezoelectric model deployed with

ANSYS. The observed nonlinear response is attributed to the fact that the residue stresses

within the piezoelectric layer of the arched actuator configuration cause significant nonlinear

electromechanical coupling in the actuation performance under the driving electric voltage.

It is this nonlinear coupling that is responsible for the large actuation displacements. The

residue stresses increases with the increasing substrate-to-piezoelectric thickness ratio, and

to a less extent, with the decreasing in-plane dimensions of the piezoelectric layer.
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Chapter 7

Design and analysis of micro

SAW-IDT accelerometer based on

the perturbation of surface

acoustic wave on strained surface

Abstract

A new four cantilevered micro SAW-IDT accelerometer is proposed and analyzed by the-

oretical and finite element analysis. The accelerometer is based on Rayleigh type surface

wave propagating over the surface of the plate cantilever made of single crystal silicon. It

operates at 1 GHz wirelessly with an external driving electric signal and the corresponding

wavelength is 4.917µm. The frequency shift of the surface acoustic wave is determined under
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an initial biasing field caused by an applied initial force. The analysis is performed by the

first-order perturbation integral theory for small fields superposed on finite biasing fields in

an elastic body and the prestressed full transient finite element analysis which is developed

for embodiment of the first-order perturbation theory in computer simulation. The results

of both theoretical and finite element analysis show excellent consistency in sensitivity and

it provides a good insight for the more complicated system design which requires a large

scale computation.

7.1 Introduction

The technology using surface acoustic wave (SAW) induced by the inter-digital transducer

(IDT) is widely used in communication devices and sensors. For the sensor application,

SAW-IDT device basically convert the change of environment such as temperature and in-

ertial force to the change in wave properties such as frequency and phase. During the con-

version in SAW-IDT devices, a small environmental factor affecting acoustic wave properties

causes a relatively large shift in the electromagnetic properties. Using the characteristics of

SAW-IDT device, which is highly sensitive to its environment, there have been numerous in-

vestigations for developing highly sensitive mechanical, thermal, chemical and bio-medical

sensors [1–8], for instance, a high sensitivity resonator pressure sensor [9, 10], a MEMS-

IDT based accelerometer utilizing a movable reflectors [11], a wireless SAW temperature

sensor [12] and a SAW resonator chemical vapor detection sensor [13]. In this paper, we

primarily focus on the sensitivity of the frequency response of micro SAW-IDT accelerom-

eter to the applied inertial force. Thus, we study the perturbation of surface acoustic wave
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properties under the initial bias fields caused by the various external inertial forces acting

on the normal direction. The new four cantilevered micro SAW-IDT accelerometer is pro-

posed and analyzed by theoretical and finite element analysis. The first-order perturbation

integral theory by Tiersten is adopted to show the effect of the initial field on the wave fre-

quency in theoretical analysis [14]. Then the prestressed full transient finite element model

is developed to observe the effect of the perturbed second-order elastic constant under an

initial field. The the modified second-order elastic constants under an initial field form the

perturbation integral theory is implemented in the finite element model. The computer

simulation is performed and analyzed using ANSYS, a widely used commercial software for

finite element analysis.

7.2 Design of micro SAW-IDT accelerometer

Figure 7.1: Schematic design of Micro SAW-IDT accelerometer
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A schematic design of micro SAW-IDT accelerometer is proposed as shown in Fig. 7.1. The

proof mass is supported by four cantilever plates and a pair of transmitter and receiver

IDTs are placed on the each cantilever. The other ends of cantilevers are fixed to the

support structure or casing. Therefore, each cantilever supports one-quarter of proof mass

and works as an independent sensor with a pair of IDTs in four different locations. When an

external force P is applied on normal direction of the surface of proof mass, a small bias field

will be created along the the cantilever, where the external inertial force can be expressed

by a product of mass of proof mass and applied acceleration. The transmitter IDTs are

connected to the antenna which activate the IDTs wirelessly by an external electric driving

signal to generate surface acoustic wave for propagation along the surface of cantilever

plate. The receiver IDTs convert the mechanical force created by wave propagation into

the electrical signal and send it back to the local station for analysis. If it is assumed that

the properties of surface acoustic wave (i.e. frequency, phase or velocity) are perturbed by

the small biasing field during the propagation, then, the external force P can be determined

by measuring the change in properties of the surface acoustic wave between the transmitter

and receiver IDTs. Then, the sensitivity and sensing range can be adjusted by changing

geometrical parameters and materials. The advantage of using the configuration of this

design is that the acceleration or external force P can be detected in four different locations

which gives more stable and reliable data. And, the accelerometer can be easily calibrated

by putting the thin electrode film on the top and bottom surfaces of the proof mass and

the casing. This allows the electric actuation force replaces the initial force in calibration

mode and also provides another differential capacitance accelerometer in sensing mode.
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7.3 Theoretical analysis

7.3.1 Unperturbed surface acoustic wave

Figure 7.2: An elastic half-space and the coordinate system for surface acoustic wave

Consider an elastic half-space of silicon in a Cartesian coordinate system Xk(X2 > 0) as

shown in Fig. 7.2. Silicon has the crystallographic characteristics of m3m cubic crystal

symmetry and allows plane-strain motions with u3 = 0 and ∂3 = 0. Rayleigh waves propa-

gating in the [100] direction of the (001) plane is studied. The Rayleigh wave solutions in a

half-space of m3m cubic crystals with a traction-free boundary surface are given by [15]:

u1 = exp

(
−2πh

X2

λR

)
cos

(
2πg

X2

λR
+ α

)
exp i

[
ω

(
t− X1
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)
− α

]
(7.1a)

u2 = ir exp

(
−2πh
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)
cos

(
2πg

X2
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)
exp i

[
ω

(
t− X1

VR

)
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]
(7.1b)

where h, λR, g, α, VR and r depend on material parameters.

The real parts solutions of displacements in Eq. (7.1) are:

Re[u1] = U1(X2) cos

[
ω

(
t− X1

VR

)
− α

]
(7.2a)

Re[u2] = U2(X2) sin

[
ω

(
t− X1

VR

)
− α

]
(7.2b)
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where the longitudinal and the shear amplitudes of Eq. (7.2) are:

U1(X2) = exp

(
−2πh

X2

λR

)
cos

(
2πg

X2

λR
+ α

)
(7.3a)

U2(X2) = r exp

(
−2πh

X2

λR

)
cos

(
2πg

X2

λR
− α

)
(7.3b)

The Rayleigh wave solutions provide displacements of surface wave with frequency ω and

wave number ξ in absence of initial fields.

7.3.2 Initial fields

Figure 7.3: Simplified model for theoretical and finite element analysis

To determine the initial fields on the cantilevers created by an external force P , the dashed

area of Fig. 7.1 is simplified as shown in Fig. 7.3. The cantilever Fig. 7.1 is fixed and guided

by proof mass at each end, but only the first half of cantilever from the fixed support is

modeled because we are interested in this portion of cantilever where the pair of transmitter

and receiver IDTs are placed. The initial fields are to be found using the classical plate

theory and they will be implemented to the perturbation integral in following chapter to

find the effect of the existence of the initial fields on propagation of surface acoustic wave.

In case of shown in Fig. 7.3, the cantilever is subjected to the bending moment, M(X1) =
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P (L/2 − X1). For plane-strain motion with w3 = 0 and ∂3 = 0, the deflection w2(X1) is

given by:

− t
3

12
γ11w2,11 = M(X1) = P

(
L

2
−X1

)
(7.4)

and this leads to:

w2 =
6P

γ11t3

(
X3

1

3
− L

2
X2

1

)
(7.5)

where 0 ≤ X1 ≤ L/2, −h ≤ X2 ≤ h, t = 2h and Voigt’s anisotropic plate elastic constant

is given by [16]:

γ11 = c11 −
c2

12

c11
(7.6)

The displacement gradients required for the perturbation integral can be determined from

the procedure in [9] as follows. w1 can be obtained by:

w1(X1, X2) = −w2,1(X1)X2 (7.7)

Then, w1,1, w1,2 and w2,1 can be obtained by differentiating w1 and w2 or from the shear

strain in the classical theory of flexure:

E0
12 =

1

2
(w1,2 + w2,1) = 0 (7.8)

And, w2,2 is found by the stress relaxation condition:

T 0
22 = c21E

0
11 + c22E

0
22 + c23E

0
33 = 0 (7.9)

The determined initial displacement gradients through the procedure described above are:

w1,1 = − 6P

γ11t3
(2X1 − L)X2 (7.10a)

w1,2 = − 6P

γ11t3
(X2

1 − LX1)X2 (7.10b)
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w2,1 =
6P

γ11t3
(X2

1 − LX1)X2 (7.10c)

w2,2 =
c12

c11

6P

γ11t3
(2X1 − L)X2 (7.10d)

w1,3 = w2,3 = w3,1 = w3,2 = w3,3 = 0 (7.10e)

7.3.3 Perturbation integral

Consider a homogeneous material body occupying an elastic half-space V with X2 > 0 as

shown in Fig. 7.2. The body is free from any deformations and fields. Suppose that the

governing equations and boundary conditions allow the propagation of a small-amplitude

Rayleigh wave with frequency ω, wave number ξ, phase speed VR = ω/ξ in X1 direction and

displacement uα. Because the region is unbounded, we have an eigenvalue problem with a

continuous spectrum. Given a wave number ξ, there always exist a wave with a frequency

ω such that VR = ω/ξ which depends on material properties only.

When an initial displacement field w with initial stress T 0 and initial strain E0 is applied,

the frequency of surface wave will be perturbed and it can be denoted by ω + ∆ω. The

change of wave frequency caused by the existence of an initial field is represented by the

following integral from a first-order perturbation analysis [17] (see Appendix C for detail):

∆ω

ω
' 1

2ω2

∫
V ĉLγMαuγ,Luα,MdV∫

V ρ0uαuαdV
(7.11)

where the perturbation of second-order elastic constants under the initial fields are given

by:

ĉLγMα = T 0
LMδγα + cLγKMwα,K + cLKMαwγ,K + cLγMαABE

0
AB (7.12a)

T 0
LM = cLMABE

0
AB (7.12b)
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E0
AB =

1

2
(wA,B + wB,A) (7.12c)

The quantities T 0
LM , E

0
AB and wk are the static biasing stress, strain and displacement field,

respectively. The coefficients cLMAB and cLγMαAB are the second- and third-order elastic

constants, respectively. And ρ0 is the mass density.

In addition to the normal stresses due to the bending, the shear stress T 0
12 exist in non-pure

bending case as shown in Fig. 7.3. But, the shear stress T 0
12 cannot be obtained from the

relation Eq. (7.12) because the shear strain E0
12 vanishes in the classical Kirchhoff flexural

theory. Instead, the shear force T 0
12 can be found using the first moment Q(X2) and shear

force V (X1) over a rectangular cross section as follows [18]:

T 0
12 =

V (X1)Q(X2)

I
= −6P

t3

(
t2

4
−X2

2

)
(7.13)

The coordinate X2 in Eqs. (7.1) to (7.3) is adjusted to X̄2 to correlate it with the one used

in the initial field model where X̄2 = X2 + t/2.

7.3.4 Material properties and geometrical parameters

For silicon, ρ0 = 2, 332Kg/m3 and the second-order elastic constants are [19]:

c11 = 165.7, c12 = 63.9, c44 = 79.56 GPa (7.14)

Silicon has 20 non zero ones in its third-order elastic constants and six are independent as

given below [19]:

c111 = −825, c112 = −451, c123 = −64, c144 = 12, c155 = −310, c456 = −64 GPa (7.15)
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The other 14 can be obtained from the following relations [20]:

c113 = c112, c122 = c112, c133 = c112, c166 = c155, c222 = c111,

c223 = c112, c233 = c112, c244 = c155, c255 = c144, c266 = c155,

c333 = c111, c344 = c155, c355 = c155, c366 = c144

(7.16)

The calculated parameters of silicon for the surface acoustic wave solutions Eqs. (7.1) to (7.3)

are calculated and given below [21]:

VR = 4, 917m/s, g = 0.4808, h = 0.4556, r = 1.226, α = 58◦1′ (7.17)

It is not required in the theoretical analysis, but in the finite element analysis in following

chapter, a piezoelectric thin layer will be used to generate surface wave with IDTs. PZT-5A

is chosen and the properties of PZT-5A are given as follows [22]:

s11 = 16.4, s12 = −5.74, s13 = −7.22, s33 = 18.8, s44 = 47.5× 10−12m2/N

d31 = −1.71, d33 = 3.74, d15 = 5.84× 10−10m/V

KT
11 = 1730, KT

33 = 1700

(7.18)

The constants s, d and KT are the compliance, piezoelectric coupling and relative permit-

tivity, respectively. And, the mass density of PZT-5A is 7,750 Kg/m3.

We are interested in the sensitivity of an accelerometer based on the surface acoustic wave

of the frequency f0 = 1 GHz and the corresponding wave length of Rayleigh type wave of

silicon is λ0 = 4, 917µm. For the geometrical parameters, the length and thickness of the

cantilever as shown in Fig. 7.3 are set to L = 40λ0 and t = 2λ0, respectively. The distance

between transmitter and receiver IDTs is 10λ0. The plate thickness is enough to prevent

any disturbance due to the reflection of wave from the bottom surface. Theoretical analysis
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shows the maximum penetrating depth of Rayleigh type wave in silicon is no more than

2λ0 [21].

7.4 Finite element analysis

Figure 7.4: Finite element model (a) constructed with finite areas and (b) meshed with
triangular elements

We have developed a numerical model to analyze the propagation of the surface acoustic

wave under initial bias field using commercial finite element analysis software ANSYS.

To simulate the perturbation of surface acoustic wave, the effective second-order elastic

constant must be utilized in the model, but this cannot be archived in ANSYS. Instead,

the constants calculated in Eq. (7.12) are used. Because the perturbed second-order elastic

constants GLγMα are not constant over the its length and thickness, so the model shown in

Fig. 7.3 is divided into finite areas as shown in Fig. 7.4. Then, the effective second-order
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elastic constant is applied to each area based on the coordinate of an area centroid. The

perturbed second-order elastic constant is given by:

GLγMα = cLγMα + ĉLγMα (7.19)

Because the ANSYS use different form of material properties, the constants and matrices

given in Eqs. (7.12), (7.14) and (7.18) are converted by following relationships [23,24]:

[cE ] = [sE ]−1 (7.20)

[εS ] = [εT ]− [d]t[sE ]−1[d] (7.21)

[e] = [sE ]−1[d] = [d]t[sE ]−1 (7.22)

where, cE , sE , εS , εT , d and e are stiffness, compliance, dielectric (evaluated at constant

strain), dielectric (evaluated at constant stress), piezoelectric coupling (relating strain/elec-

tric field) and piezoelectric coupling (relating stress/electric field) matrices, respectively.

Then, the areas are meshed with triangular elements as shown in Fig. 7.4. 2-D 8-node

or 6-node structural solid element PLANE183 is used for the areas of silicon structure so

that the elements have the degrees of freedom of displacements ux and uy only and for the

piezoelectric thin layer, 2-D 8-node coupled-field solid PLANE223 is applied to have degrees

of freedom of displacements ux, uy and electrical volt V . Both elements of PLANE183 and

PLANE223 are set to have plane-strain motion and triangular mesh [25].

The computer simulation consists of three stages. First, a static analysis is performed to

create initial field in the model. Because the displacement of proof mass is linearly propor-

tional to the applied force P in small displacement from Eq. (7.5), a static displacement is

applied to the free end of the cantilever while the left end is fixed. The original second-order

elastic constants are used in the first stage. Then, a pre-stressed full transient analysis is
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performed. The elastic property of the cantilever is updated with the perturbed one using

Eq. (7.19) in this stage. The one period of sinusoidal electrical signal of V0 sin(ω0t) and

−V0 sin(ω0t) are applied to the each pair of fingers of the transmitter IDT to generate an

elastic wave in the surrounding of surface. The model is also subjected to the pre-stressing

loads created in preliminary static analysis. In last stage, the driving electrical voltages are

removed and the surface acoustic wave propagates along the surface of cantilever in both

directions. Throughout the simulation, the time step size is set to T0/40 and the element

size along the surface is set to λ0/16, where T0 and λ0 are the period and wavelength of

center frequency [26,27].

Fig. 7.5 shows the propagation of the surface acoustic wave along the strained surface of

Figure 7.5: Displacement ū2 due to the propagation of surface acoustic wave

cantilever at the designated time with the distributions of the displacements in the can-
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tilever. Because the amplitude of the surface acoustic wave is very small compare to the

displacement of initial field, the displacement ū2 is normalized to the initial displacement

field. From Fig. 7.5, a reflection from the left boundary is observed. The reflection can be

minimized by putting a damping material around the left boundary or the interferences of

reflected wave at the receiver IDT can be filtered out by changing period of the sinusoidal

impulse applied to the transmitter IDT.

The results of theoretical and finite element analysis are compared in Fig. 7.6. The fre-

Figure 7.6: Frequency shift of surface acoustic wave under various displacements of proof
mass

quency shifts are calculated without an initial field and with initial fields which the dis-

placement of the proof mass is vary from 0 to 2λ0. The results of both theoretical and

finite element analysis show excellent consistency in sensitivity. As shown in the figure,

the frequency shifts are all linearly dependent of the displacements of proof mass and the

displacement is proportional to the applied force. Therefore, the data of frequency shift
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presented in Fig. 7.6 can be converted into the applied external acceleration with the given

proof mass and the width of cantilever plate.

7.5 Concluding remarks

The four cantilevered micro SAW-IDT accelerometer is proposed which is operating with a

surface acoustic wave propagating over the surface of a silicon plate subjected to non-pure

bending. The operating frequency of the accelerometer is 1GHz and the corresponding

wavelength is 4.917µm. The frequency shifts in the response to the displacements of proof

mass due to the applied loads can be determined locally through the local variations of the

effective material constants. The theoretical and the finite element analysis are performed to

analyze the effect of the existence of initial biasing fields on the properties of surface acoustic

wave. The first-order perturbation theory for small fields superposed on biasing fields is used

in the theoretical analysis and the perturbation of second-order elastic constants obtained

from the theoretical analysis is utilized in the finite element analysis. The perturbation

theory is well interpreted into the pre-stressed full transient finite element model. In both

analysis, the frequency shifts under the initial fields of various loading conditions show

excellent consistency in sensitivity and can be translated to the applied load or acceleration

with an effective proof mass and the cantilever plate width. The sensitivity and sensing

range can be easily achieved by controlling the geometrical parameters of sensor structure

or material properties for the purpose. The finite element model is now only valid for the

small deflection and 2-D plane-strain motion, but it will provide a good insight for the more

complicated system design which requires a large scale computation.
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Appendix C

Perturbation integral

The equation for the first perturbation of the eigenvalue is given by:

∆µ =
Hµ

2ωµ
, ω = ωµ −∆µ (C.1)

where ωµ and ω are the unperturbed and perturbed eigenfrequencies, respectively.

Hµ = −
∫
V
K̃n
Lγg

µ
γ,LdV (C.2)

where V is the undeformed volume of the plate and

K̃n
Lγ = ĉLγMαg

µ
α,M (C.3)

gµα,M is the normalized mechanical displacement vector and K̃n
Lγ is the position of the Piola-

Kirchhoff stress tensor resulting from the biasing state in the presence of the gµα,M .

ĉLγMα = T 0
LMδγα + cLγKMwα,K + cLKMαwγ,K + cLγMαABE

0
AB (C.4)

T 0
LM = cLMABE

0
AB (C.5)

E0
AB =

1

2
(wA,B + wB,A) (C.6)
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The quantities T 0
LM , E

0
AB and wk are the static biasing stress, strain and displacement field,

respectively. The coefficients cLMAB and cLγMαAB are the second- and third-order elastic

constants, respectively.

The present position y is related to the reference position X by

y(XL, t) = X + w(XL) + u(XL, t) (C.7)

The normalized solutions gµγ and f̂µ are defined by

gµγ =
uαγ
Nµ

(C.8)

f̂µ =
ϕ̃µ

Nµ
(C.9)

N2
µ =

∫
V
ρuµγu

µ
γdV (C.10)

where uµγ and tildeϕµ are the mechanical displacement and electric potential, respectively,

which satisfy the equations of linear piezoelectricity subject to the appropriate boundary

conditions.

K̃0
Lγ = cLγMαuα,M + eMLγϕ̃,M (C.11)

D̃0
L = eMLγuγ,M − εLM ϕ̃,M (C.12)

K̃0
Lγ,L = ρüγ (C.13)

D̃0
L,L = 0 (C.14)

The quantities K̃0
Lγ , D̃

0
L, eMLγ and εLM denote the linear stress tensor, the electric dis-

placement vector and the piezoelectric and dielectric constants, respectively, and ρ is mass

density. With Eqs. (C.2) and (C.3),

Hµ = −
∫
V
ĉLγMαg

µ
α,Mg

µ
γ,LdV (C.15)
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Since gµα,M is the normalized surface wave mode shape and ĉLγMα depends on the biasing

state, Hµ can be evaluated when the surface wave mode shape and biasing state are known.

Thus, evaluation of Eq. (C.1) with Eq. (C.15) gives the perturbation integral

∆ω

ω
' 1

2ω2

∫
V ĉLγMαuγ,Luα,MdV∫

V ρ0uαuαdV
(C.16)
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