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In systems where interactions couple a central degree of freedom and a bath, one would expect
signatures of the bath’s phase to be reflected in the dynamics of the central degree of freedom.
This has been recently explored in connection with many-body localized baths coupled with a
central qubit or a single cavity mode — systems with growing experimental relevance in various
platforms. Such models also have an interesting connection with Floquet many-body localization
via quantizing the external drive, although this has been relatively unexplored. Here we adapt the
multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method, a well-known tree
tensor network algorithm, to numerically simulate the dynamics of a central degree of freedom,
represented by a d-level system (qudit), coupled to a disordered interacting 1D spin bath. ML-
MCTDH allows us to reach ≈ 102 lattice sites, a far larger system size than what is feasible with
exact diagonalization or kernel polynomial methods. From the intermediate time dynamics, we find
a well-defined thermodynamic limit for the qudit dynamics upon appropriate rescaling of the system-
bath coupling. The spin system shows similar scaling collapse in the Edward-Anderson spin glass
order parameter or entanglement entropy at relatively short times. At longer time scales, we see slow
growth of the entanglement, which may arise from dephasing mechanisms in the localized system
or long-range interactions mediated by the central degree of freedom. Similar signs of localization
are shown to appear as well with unscaled system-bath coupling.

I. INTRODUCTION

The advent of controllable quantum simulation plat-
forms allows for novel explorations of quantum coherent
phenomena. Certain such architectures have the advan-
tage of using extra degrees of freedom as a way to easily
read out properties of a system [1]. Examples of such
setups include cavity QED with ultracold atoms [2] and
superconducting qubit circuits, the latter of which was re-
cently used to simulate the many-body localized (MBL)
phase in a 10 qubit chain with long-range interactions
mediated by a central resonator [3]. Given that such
platforms are in their early stages, it is important to ex-
plore the interplay of disorder-induced localization and
mediated long-range interactions, and how they affect
the dynamics of localization in these systems.

If localization exists in these systems, it will naturally
be many-body localization since the spins hybridize with
the central degree of freedom to give non-trivial interac-
tions. Rigorous results on MBL have already been es-
tablished in one dimensional systems with short ranged
interactions [4]. In such a setting, it is a stable phase

∗ These authors contributed equally to this work.

of matter, with respect to adding short range perturba-
tions, that can coexist with other types of order [5, 6].
While strong disorder enables localization, it cannot pre-
vent thermalization if interactions are long-ranged, de-
caying slower than r−2D, where D is the spatial dimen-
sion [7, 8]. Even the MBL phase with short-ranged in-
teractions is fragile. It is destroyed upon coupling to
a continuum of bath modes [9] which, intuitively, can
provide arbitrary amounts of energy and allow the sys-
tem to transition between eigenstates of vastly different
character. One sees then that there are two ingredients
to this delocalization mechanism: a continuum of ener-
gies of large enough bandwidth, and hybridization due
to effective infinite-ranged interactions mediated by the
non-Markovian bath.

In fact, for a specific type of memoryless bath, noner-
godicity does survive. This is the case of Floquet MBL,
in which an MBL system is subjected to an external peri-
odic drive with frequency Ω modeled as a time-dependent
Hamiltonian acting on the system [10, 11]. The failure of
thermalization is due to the the inability of the system
to absorb energy in quanta of ~Ω, which itself is a conse-
quence of the discreteness of the energy spectrum. The
external drive, however, is not inherently dynamical and
thus does not capture the backaction present in a fully
quantum mechanical system.
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In this work, we consider the time evolution of such a
system obtained by treating the Floquet drive as a quan-
tum degree of freedom. Specifically, we consider a local-
ized system globally coupled to a d-level system (qudit)
with finite energy spacing, similar to [12]. When the
qudit is a two-level system, it was shown that localiza-
tion does not survive at any finite coupling [13, 14]. But
when it is instead a d > 2 level system, localization was
argued to survive under certain conditions [12]. It is not
known, however, what dynamical signatures should be
expected in such regimes since the geometry and spin-
spin interactions in the system limits the efficiency of
usual computational approaches using matrix product
operators. We bridge this gap by numerically simulat-
ing the non-equilibrium dynamics at much larger system
sizes than previously considered. This is done using the
multilayer-multiconfigurational time-dependent Hartree
(ML-MCTDH) method, which solves the Schrödinger
equation using the time-dependent variational principle
on the manifold of wavefunctions represented by certain
tree tensor networks [15–19].

We furthermore explore the possibility that the addi-
tional degree of freedom can provide alternative, non-
destructive diagnostics of localization. In experimen-
tal settings, the usual observables signaling nonergodic
behavior are correlation functions such as the occupa-
tion imbalance between odd and even sites of the lattice
[20]. More sophisticated setups may attempt to perform
tomographic measurements to reconstruct the reduced
density matrix for a subsystem and show logarithmic
growth of entanglement entropy [3], or to measure the
energy spectrum of the system in order to retrieve en-
ergy level spacing statistics [21]. Though these metrics
serve as gold standards in characterizing MBL, the latter
two methods are difficult to scale with larger systems.
In our model, since quantum fluctuations of the spins
necessarily involve the qudit, there may be signatures of
(de)localization imprinted into the qudit dynamics. Such
a possibility has been explored in autocorrelations of qu-
dit observables [14] probing the energy level statistics, as
well as dynamics of the occupation number [22] by mea-
suring the light intensity output by a single mode cavity.
In this work we show that the qudit qualitatively changes
the spin chain dynamics, and elucidate the timescale on
which this occurs. This provides some insight into the
breakdown of localization, and the possible role that non-
Floquet physics may play in it.

The structure of this paper is as follows: we will discuss
our model and its localization in connection to Floquet
MBL; review the essentials of ML-MCTDH, which we
then apply to study intermediate time dynamics; present
results on thermalizing and nonthermalizing behaviors in
dynamical metrics; and discuss what may be expected in
experiments, where control over the central coupling may
be limited in range.

II. MODEL

We consider a simplified model of many-body localiza-
tion by coupling a one-dimensional chain of qubits (spins-
1/2) via global interactions with a central qudit:

H = H0 + Ωτ̂z + γH1

(
τ̂+ + h.c.

)
, (1)

H0 =

L∑
i=1

hξiσ
z
i + gσz

iσ
z
i+1, H1 =

L∑
i=1

σx
i ,

where τ̂z =
∑d
n=1 n|n〉〈n|, τ̂+ =

∑d−1
n=1 |n + 1〉〈n|, and

the operators H0 and H1 act only on the spin subspace.
The states |n〉 label the states of the central qudit. Here,
h = 1.3, g = 1.07, Ω = π/0.8, and ξi is a random vari-
able drawn uniformly from (−1, 1). When the model
with these parameters is mapped on to the corresponding
Floquet system (i.e., d → ∞), it shows a localization-
delocalization transition at a critical coupling γc . 0.3
[23]. We restrict our discussion to γ either deep in the
localized phase (γ < 0.2) or deep in the ergodic phase
(γ ≈ 1). Finally, throughout this paper we restrict our-
selves to central qudit size d = 7, which is large enough
to display Floquet-like behavior but small enough that
the finite qudit size plays an important role.

The spin part of the Hamiltonian, H0, is a trivial an-
tiferromagnetic Ising chain with longitudinal on-site dis-
order. The diagonal nature of H0 in the z-basis yields
trivial localization in the eigenstates. This manifests in
eigenstates |ψn〉 as vanishing site-averaged magnetization
L−1

∑
i 〈ψn|σz

i |ψn〉 and maximal value of the spin-glass

parameter, q = L−1
∑
i 〈ψn|σz

i |ψn〉2 = 1 at high energy
densities. Values of q ≈ 1 suggest that the eigenstates are
described mostly by a single pattern of magnetization.
Introducing a small coupling to the qudit without longi-
tudinal disorder induces hybridizations that push q → 0.
We find that it is necessary to have both qudit coupling
and strong disorder to preserve the nonergodicity when
probing the system in the middle of the many-body spec-
trum, where the density of states (DOS) is the greatest.

Several features distinguish our model from those stud-
ied previously. While Nandkishore et al. [9] coupled a
“fully MBL” system to an interacting bath of bosons,
the qudit we present here is not bath-like because it does
not have a continuous DOS. The model of thermal inclu-
sions studied by Ponte et al. [13] closely resembles ours,
but crucially we place a constant “magnetic field” Ωτ̂z on
the qudit, thus selecting a preferred direction for the cen-
tral spin. This greatly impacts the ease with which the
qudit fluctuates, which in turn can regulate transitions
in the spin states leading to delocalization.

Recent studies have examined how localization can
persist in the presence of long-ranged interactions [8, 22]
or with central coupling to a single degree of freedom
yielding an effective Hamiltonian with long-ranged inter-
actions [13, 14]. With the exception of a numerical study
[22], these past works have noted that preservation of
localization in the thermodynamic limit requires increas-
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ing the disorder strength with increasing system size or
decreasing the strength of central coupling as γ → γ/L.
Reducing the coupling strength in this way renders the
long-ranged part of the effective Hamiltonian for the spin
chain subextensive. This is also reflected in the dynamics
of the qudit as its transition rate vanishes.

On the other hand, the existence of Floquet MBL af-
fords a different pathway to the coexistence of localiza-
tion and central coupling. In that context, the persis-
tence of MBL is not due to a vanishing coupling to the
external drive, but to a suppression of mixing between
different localized eigenstates of the undriven system.
This picture suggests that an effective Hamiltonian for
only the spin degrees of freedom should show localized
behavior. This is indeed the case, as previous work based
on the high frequency expansion has shown [12]. In this
limit of Ω → ∞ the spins are governed by an effective
Hamiltonian diagonal in the qudit basis, reproducing the
eigenenergies modulo an integer multiple of Ω:

Heff = H0 + (H1)2 |d〉〈d| − |1〉〈1|
Ω

+O(Ω−2). (2)

At lowest order in Ω−1, we see that possible delocaliza-
tion is reserved only for states with |1〉 or |d〉, as (H1)2

induces all-to-all coupling. Increasing L without increas-
ing d, as we do in this paper, means that eigenstates
occupying |1〉 will eventually encroach upon the middle
of the spectrum and contribute to the quench dynam-
ics we study. This can be seen from the density of states

when H0 is dominant as it follows ρ(E) ∝ exp
(
− E2

(J
√
L)2

)
for energy scale J ∼ O(1), meaning ρ(E) will grow wider
with increasing L. An energetically dominant (H1)2 term
will both delocalize the eigenstates and deform the Gaus-
sian density of states in the thermodynamic limit.

We thus assume γ to be small enough such that neither
outcome occurs, and ask when this picture will naively
break down. In such a limit, we can treat the H2

1 field
term in a mean field fashion for each eigenstate:

Heff ≈ H0 +
γ2L

Ω
+
∑
i

γ2

Ω

〈∑
j 6=i

σx
j

〉
σx
i ,

where the effective field
〈∑

j 6=i σ
x
j

〉
in an eigenstate must

be determined self-consistently. For a typical eigenstate,
this field should have value ∼ f(γ)

√
L, where f(γ) must

vanish when γ = 0. This is the case when
∑
j

〈
σx
j

〉
is the

sum of L−1 independent random variables, and the finite
γ eigenstates are assumed to be perturbatively connected
to a corresponding γ = 0 eigenstate. For this model, we
take the lowest order approximation f(γ) ≈ f1γ. With
this assumption [24], the effective transverse field on site
i will begin to compete with the longitudinal fields in H0

when γ2
〈∑

j 6=i σ
x
j

〉
∼ O(g, hi) ∼ O(1). For the high

energy density eigenstates we are interested in, this ef-
fective field will inhibit spin glass ordering and the sys-
tem should obey the eigenstate thermalization hypothe-
sis. Thus, γ ∝ L−1/6 should serve as a rough separatrix

d√
L

γ

Thermalizing

Localizing

0

1 ∞

γ∗c

0.65

0.05

0.35

I

II

L = 24

L = 48

L = 96

FIG. 1. Schematic phase diagram for the coupled system (1),
along with the parameters for which we present numerical
results from ML-MCTDH. The rough phase boundaries are
determined from numerics and analytical arguments. The
data are separated into three solid segments – the strong,
intermediate and weak couplings from top to bottom. The
angle of the segments comes from fixing the qudit size to
d = 7 and scaling the central coupling γ ∝ L−1/2. For ease
of discussion, we group the three coupling regimes as region I
(weak and intermediate) and region II (strong).

between thermalizing and athermal behaviors. Further-
more, couplings that tend to zero faster than L−1/6 will
realize a trivial limit, where the localization comes en-
tirely from H0. The region where this is argument ex-
pected to be most significant is denoted in Fig. 1 through
a color gradient starting around d/

√
L ∼ 1. Note that,

in general models where H1 includes operators diagonal
in the z-basis, we would have f(0) 6= 0; in this case the
scaling is replaced by γ ∼ L−1/4.

Besides scaling the coupling to zero, the all-to-all in-
teractions can be avoided by ensuring that eigenstates
occupying levels |d〉 or |1〉 in the qudit do not partici-
pate in the dynamics. For quenches starting from the
middle of the many-body spectrum, this condition can
be ensured by keeping the qudit size d sufficiently large
compared to the typical width of the 1D many-body den-
sity of states,

√
L. Dynamics in this limit should closely

resemble Floquet physics, since the fluctuations produc-
ing effective long-ranged interactions will cancel out af-
ter accounting for the processes in which the intermedi-
ate qudit state changes by +1 or −1. Away from this
limit, when d/

√
L . O(1), the all-to-all interactions are

unavoidable. The threshold value of d/
√
L for delocaliza-

tion should decrease as the coupling is decreased. These
arguments are summarized schematically in Fig. 1.

There are two important ways to think of this system
and its dynamics: either as a combined many-body sys-
tems with localized and delocalized phases, as was done
in the previous paragraph, or as a central qudit inter-
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|Ψ〉 =

N1∑
j1=1

...

N1∑
jP=1

Aj1,...,jP (t)

P∏
κ=1

|ϕ(κ)
jκ

(t)〉 ,

|ϕ(κ)
jκ

(t)〉 =

N2∑
i1=1

...

N2∑
iQ(κ)=1

Bκ,jκi1,...,iQ(κ)
(t)

Q(κ)∏
q=1

|ν(κ,q)iq
(t)〉 ,

...,

|Ψ〉

Q

N1 = d

b

c

d

S1 S2 S3

N3

d

S4 S5 S6

N3

N2

b

c

S7 S8 S9

N3

c

S10 S11 S12

N3

N2

N1 = d

FIG. 2. Expansion of the wave function |Ψ〉 and the first layer single-particle functions |ϕ(κ)
jκ

(t)〉 used in the ML-MCTDH
approach (left) and a schematic representation of the tree structure of the wave function (right). The black dots represent
single-particle functions (SPFs). The red dot represents the qudit degree of freedom and the blue dots represent the spin degrees
of freedom. The binary expansion of the spin wave function is symmetric and, thus, we choose the numbers of SPFs within one
layer to be equal. In the example shown, only three spins are grouped together in the lowest layer for better visualization. In
the calculation, however, groups of up to 12 spins in the lowest layer are used.

acting with an unusual, localized, spin bath. From this
latter viewpoint, it will be useful to consider scaling the
system bath coupling γ ∼ 1/

√
L, since that will be shown

to achieve a well-defined thermodynamic (L→∞) limit.
This scaled coupling will be used in the majority of our
simulations, and is covered in more detail in Section IV.
For now, we note that γ ∼ L−1/2 scales to zero faster
than the L−1/6 that we predict is required for MBL.
Therefore, at sufficiently late times, we predict MBL with
our scaled coupling.

In this model we use qudits for numerical simplicity
due to their finite Hilbert spaces. However, our conclu-
sions can be easily applied also to the case where the
central degree of freedom is a single bosonic mode, such
as in cavity QED or superconducting circuits. In these
setups we expect similar dynamical behaviors when the
central coupling is appropriately scaled [12].

III. NUMERICAL METHOD

The non-local interaction induced by the centrally cou-
pled qudit makes the simulation based on matrix prod-
uct operator techniques like time-evolving block decima-
tion [25] inefficient. And while alternative approaches
such as the Floquet-Keldysh DMFT [26] exist, they are
valid only in the well-studied Floquet limit in which the
interesting mediated all-to-all couplings are negligible.
Thus, we instead employ the Multilayer Multiconfigu-
ration Time-Dependent Hartree (ML-MCTDH) method
[15, 16, 18, 19, 27] which has been used to study simi-
lar systems in the past, e.g. a two-level system coupled
to a bath of noninteracting spins [28]. The ML-MCTDH
method generalizes the original MCTDH method [17, 29–
32] for applications to significantly larger systems. The
ML-MCTDH approach represents a rigorous variational
basis-set method, which uses a multiconfiguration ex-
pansion of the wave function, employing time-dependent

basis functions and a hierarchical multilayer representa-
tion. Within this framework the wave function is recur-
sively expanded as a superposition of Hartree products

as depicted in Fig. 2. Here, |ϕ(κ)
jκ

(t)〉, |ν(κ,q)
iq

(t)〉 , . . . ,
are the so-called “single-particle functions” (SPFs) for
the first, second, etc. layer and the coefficients Aj1,...,jN ,

Bκ,jκi1,...,iQ(κ)
are the expansion coefficients of the first, sec-

ond, etc. layer. Despite their name, the SPFs describe
multiple degrees of freedom, see Fig. 2. The ML-MCTDH
equations of motions for the expansion coefficients and
the single-particle functions are obtained by applying the
Dirac-Frenkel variational principle [15, 33], thus ensur-
ing convergence to the solution of the time-dependent
Schrödinger equation upon increasing the number of
SPFs. In principle, the recursive multilayer expansion,
which corresponds to a hierarchical tensor decomposi-
tion in the form of a tensor tree network, can be carried
out to an arbitrary number of layers. In practice, the
multilayer hierarchy is terminated at a particular level
by expanding the single-particle functions in the deepest
layer in terms of time-independent basis functions.

In the present application of the ML-MCTDH method,
we separate the qudit wave function and the spin
chain wave function in the uppermost layer as depicted
schematically in Fig. 2. The wave function of the spin
chain is then further expanded in a binary tree (i.e.
P = Q = 2) up to the lowest layer, which comprises
blocks of up to 12 spins. Each of the lowest blocks is
expanded in the time-independent local basis of the un-
derlying Hilbert space. Regarding the number of SPFs
in the first layer, N1, it can be shown that N1 > d leads
to redundant configurations in the expansion [29], and
thus, we set N1 = d in all calculations. The required
number of SPFs in the other layers of the expansion of
the spin-chain wave function was determined by thorough
convergence tests and depends on the coupling strength
γ. In general, fewer SPFs are needed for smaller coupling
strengths. For L=24, two dynamical layers are employed
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0.8

1.0

q E
A

FIG. 3. Dynamics from an initial “super-Neel” state in the regimes of weak (top row, γ = 0.1/
√
L/12) and intermediate

coupling (bottom row, γ = 0.3/
√
L/12). The data is averaged over O(102) – O(103) disorder realizations, with the shaded

bands indicating deviations of ±1 standard error of the mean. (left) Variance of qudit occupations ∆2
Q =

〈
(τz)2

〉
− 〈τz〉2,

(center) deviation from perfect spin glass order 1 − qEA, and (right) entanglement entropy SA between a contiguous half
of the spin chain and its complement. The observables ∆2

Q and 1 − qEA have been appropriately rescaled [24] to show their
coincidence (except a factor of 2) at early times for weak coupling. The dynamics are observed to converge to a single curve
(black dotted line) and appear to be consistent with the dynamics without the nearest neighbor Ising coupling (dashed lines)
as L→∞.

and the required number N2 of SPFs varies from 30 to
120 SPFs. For L=48, a three layer scheme is used where
the number of SPFs in the lowest layer varies from 10
to 30 and in the highest layer from 20 to 60 SPFs. For
L=96, four layers are employed with SPFs which vary
from 10 to 20 in the lowest and from 35 to 50 in the
highest layer.

IV. RESULTS FOR SCALED COUPLING

We examine the system at infinite temperature by fo-
cusing on states in the middle of the many-body spec-
trum, which have energies close to the midpoint between
the maximal and minimal energies of the coupled system,
(Emax and Emin) respectively. We take γ = 0 for t < 0
with the spins in a “super-Neel” state | ↓↓↑↑ . . .〉 and the
qudit occupying its middle state |(d + 1)/2〉. The cou-
pling is switched on instantaneously at t = 0 to a finite
value. The super-Neel state is on average a zero energy
eigenstate of H0 and has subextensive energy variance,
making it a suitable microcanonical probe. Thus, when
the system is thermalizing and shows ensemble equiv-
alence, we expect similar dynamics compared to ones
obtained through averaging over random initial product
states, mimicking an infinite temperature canonical en-
semble.

As there are different dynamical behaviors in our
model, we shall organize our discussion around the
schematic phase diagram in Fig. 1, similar to the one
first introduced in [12]. In this first section, we will con-

sider scaling the coupling as γ ∼ 1/
√
L, corresponding

to the three solid lines in the phase diagram which, from
top to bottom, will be referred to as the strong, inter-
mediate, and weak coupling regimes. The orientation of
these cuts comes from the 1/

√
L scaling of γ. This is

natural if we think of the qudit as our main object of in-
terest, as it gives a well-defined thermodynamic limit for
the qudit when it is coupled to a non-interacting bath,
such as in the spin-boson model [34]. This scaling repro-
duces the Kac prescription [35] for the all-to-all term in
the effective Hamiltonian ensuring also the existence of a
thermodynamic limit for the spins. Specifically, we scale
γ using the following formula:

γ = γ0

√
L0

L
(3)

where L0 = 12 throughout for convenience, such that γ =
γ0 at L = 12. γ0 sets the overall strength of the coupling.
We will consider three regimes, indicated by the solid
lines in Fig. 1: weak coupling (γ0 = 0.1), intermediate
coupling (γ0 = 0.3), and strong coupling (γ0 = 0.7).

A. Weak and intermediate coupling (region I)

The first cases we consider are weak and intermediate
coupling, which are labeled Region I in Fig. 1. These
are both at sufficiently small γ0 that we expect MBL for
the largest accessible system sizes, but for intermediate
coupling (γ0 = 0.3) the system will be near the phase
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FIG. 4. Same as in Fig. 3, but with time rescaled by the system size-dependent coupling γ. Grey dots are independent
calculations using the kernel polynomial method, aimed to extend the maximum time from Ωt/(2π) ∼ 6 × 102 to Ωt/(2π) ∼
1.9 × 103. Between the weak (a,b,c,d) and intermediate (e,f,g,h) coupling regimes, there is a qualitative shift in the long
time behavior of both the qudit- and spin-only observables. This data is suggestive of logarithmic growth in the entanglement
entropy becoming the dominant characteristic after t ∼ 1/γ2. (d,h) Occupations pn of the qudit levels, symmetrized around
the middle level |nmid〉 = |4〉. While both the weak (d) and intermediate (h) coupling regimes have most of their populations
concentrated the initial occupied level, |4〉, the latter case has a much greater fraction of the total population in the extremes
of the qudit’s states. The values of pn for |n− nmid| = 3 in the left panel are too small (∼ O(10−4 − 10−3)) for the scale.

transition for small L. Three observables – the qudit
variance ∆2

Q (Eq. 4), the spin glass order parameter qEA

(Eq. 5), and the entanglement entropy of the half chain
SA (Eq. 6) – are plotted in Figs. 3 and 4, which corre-
spond to identical data with different scaling of the time
axis. The origin of this scaling will be clarified shortly.

Note first that, by preparing both the qudit and the
spins in highly excited states, one would normally expect
the system to relax quickly to a featureless “infinite tem-
perature” equilibrium. That is, all internal levels of the
qudit should be equally occupied, and the spins should be
paramagnetic and translationally invariant. This is not
true for the disordered system we study, as the numerics
demonstrate in Fig. 3: for sufficiently small coupling, the
system shows localization in both the qudit and its the
surrounding spins. The former is signaled by the variance
of the qudit occupations

∆2
Q ≡

〈
(τ̂z)2

〉
− 〈τ̂z〉2 , (4)

which saturates to a quantity far below that of the uni-
form limit, ∆2

Q = (d2 − 1)/12 = 4. Furthermore, the

different system sizes exhibit scaling collapse of ∆2
Q up

to a time scale t ∼ 1/γ. This is a property of the scaled
γ, as it implies that the spin chain acts as a bath for the
qudit with a well-defined thermodynamic limit. More
specifically, it can be shown that the considered model
with scaled coupling γ ∝ L−1/2 fulfills linear response
in the thermodynamic limit, meaning that the effect of
the spin environment on the qudit is captured by the
first two cumulants of the influence functional [36–38].
For our model, the first cumulant vanishes and thus the

reduced qudit dynamics is determined by the second cu-
mulant, given by the force-force autocorrelation function
of the spin chain. This also means that one can construct
an effective harmonic bath whose correlation function is
the same as that of the spin chain resulting in the same
reduced qudit dynamics [37]. For our model, the effec-
tive harmonic bath is characterized by a spectral density
which depends in general on the initial state, the ran-
dom local fields and the spin-spin coupling g. For the
specific initial state considered here, the spectral density
of the effective harmonic bath is equal to the probability
distribution of twice the random local fields, and thus is
independent of g.

Having established scaling collapse of the qudit vari-
ance, we now turn our attention to dynamics of the spin
chain, starting with the spin glass order parameter

qEA(t) ≡ L−1
∑
i

〈ψ|σz
i (t)σ

z
i (0)|ψ〉 . (5)

Unlike the qudit variance, the spin glass order parameter
displays marked drifts with system size (see insets of Fig.
3(b,e)). The tendency of qEA(t) → 1 comes from our
choice of scaling γ, since γ controls the strength of a local
transverse field and thus governs the rate and magnitude
of a single spin’s precession. On reachable timescales
t . 102, the largest system size L = 96 has near perfect
memory of the initial state. This behavior is consistent
with our claim that the scaling of γ ∼ 1/

√
L towards

zero with increased system size is sufficiently fast that
the system will flow to MBL for arbitrary γ0, although
proving MBL would require evolution to much later times
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than we can access.
Though the usefulness of the influence functional ap-

proach is restricted to the qudit, we should – by virtue
of the fact that the initial spin dynamics are driven by
interactions with the qudit (for initial product states like
the super-Neel state we have chosen) – find that the spin
observables are linked to the qudit’s. The spin observ-
ables should therefore enjoy a similar limiting behavior
as γ ∝ L−1/2 → 0. We indeed show this to be the
case within first order perturbation theory. In [24], we
perform time-dependent perturbation theory using the
method of multiple scales. We solve for the time evolu-
tion operator perturbatively by introducing new “inde-
pendent” timescales t, t′ ≡ γt, t′′ ≡ γ2t, . . ., which allow
for control over secular terms growing with t. In the
thermodynamic limit with scaled coupling, we find that
the dynamics of the qudit are described perturbatively to
first order up to time O(1/γ) (dotted lines in Fig. 3), pro-
viding a complementary approach to the linear response
solution from the influence functional formalism. The
perturbative calculation also demonstrates that spin ob-
servables should exhibit similar gradual convergence to
a single limit up to timescales t ∼ O(1/γ). Remark-
ably, the connection between qudit variance and the spin
glass order parameter is even more precise in this limit;
they collapse to a single, universal curve in the thermody-
namic limit upon scaling as ∆2

Q/γ
2
0 and (1−qEA)L/(2γ2

0),

as seen in Fig. 3(a,b,d,e). Physically, this comes from
the fact that a single perturbative excitation of the qudit
through the τ̂+ + τ̂− component of H1 gives a single spin
flip excitation of the spin chain through σx

j .
Finally, we consider the entanglement entropy

SA = −Tr [ρA log2 ρA] (6)

between a contiguous half of the spins with the rest of
the system, which is a defining feature in many body
localization. Here ρA is the reduced density matrix of
half of the spin system, e.g., sites 1 through L/2. As with
the previous two quantities, there appears to be a gradual
convergence of SA to a universal curve with increasing L,
although unlike the other observables, the entanglement
depends on the strength of the coupling prefactor γ0.
By turning off the Ising interaction g (dashed lines in
Fig. 3), we see that the dynamics of entanglement at
short times . O(1) are unchanged – as predicted from
time-dependent perturbation theory – while growth of
entanglement at intermediate times is dependent on this
σz
iσ

z
i+1 interaction.

These observations about the short-time dynamics
hold for both weak and intermediate coupling, as seen in
Fig. 3. However, we can identify a slower timescale be-
yond t . O(1/γ) from first order perturbation theory, on
which the Ising interactions start to play a role. In Fig.
4, the same data is plotted upon rescaling the time by
t/γ−2. The observables are seen to roughly collapse for
both the weak and intermediate couplings and, for inter-
mediate couplings, entanglement in particular shows in-
teresting intermediate time behavior. While the collapse

is imperfect, we note a few salient features. First, deep
in the localized (weak coupling) regime, the spread of the
qudit occupation, the growth of bipartite entanglement
entropy, and the decay of the spin-glass order parameter
appear to be arrested at long times. It is unclear whether
the observables will continue to grow at later times, but
our data leaves open the possibility that they saturate
and that the asymptotic value may be system-size inde-
pendent under the chosen scaling. Second, the dynamics
of the qudit appear to be correlated with dynamics of
the spins, albeit with a slight time delay. Finally, in the
intermediate coupling regime, the entanglement entropy
continues to grow at late times. For L = 16, there ap-
pears to be a logarithmic growth over three decades in
rescaled time (see Fig. 4g). The same may be true for
the L ≥ 24, but we have insufficient data to decisively
prove slow growth over several decades. As seen in Fig.
4h, the period of potentially logarithmic growth coexists
with the period of finite occupation in the edge of the
qudit spectrum (states n = 1 and d), for which the high-
frequency expansion yields all-to-all interactions (see Eq.
2).

It is unclear what drives the logarithmic behavior.
When focusing on the bipartite entanglement entropy,
two generic mechanisms have been studied in recent
years: the slow dephasing from a quench due to inter-
actions between exponentially localized (quasi-local) op-
erators [39, 40], and the linearly diverging semiclassical
trajectories of the collective spin state [41] in long ranged
interacting spin systems. In the former case, it has been
found that the slope of the logarithmic growth is indepen-
dent of the strength of interactions [42]. This does not
appear to be the case in our numerics, with the larger sys-
tem sizes L ≥ 24 ostensibly displaying log growth with
a larger prefactor than in the L = 16 case. Moreover,
there does not appear to be any logarithmic trend when
the system is deep in the localized phase (see top row of
Fig. 4). If conserved quasi-local operators do exist in this
system, then our results would suggest that their local-
ization lengths are strongly dependent on the coupling
γ.

Another possibility for the appearance of logarithmic
growth of SA could come from the mediated all-to-all
interactions predicted in the effective Hamiltonian (Eq.
2). In our qudit system, long ranged interactions begin
to play a significant role when the extremal states of the
qudit are occupied (see discussion in Sec. II). It was ar-
gued that these mediated interactions are responsible for
the localization-delocalization transition upon decreasing
d/
√
L, shown in Fig. 1. Consistent with this, we see sig-

nificantly greater occupation in the extremal qudit states
for intermediate couplings – where logarithmic growth is
seen – compared to weak couplings (see Fig. 4(d,h)). It
is also clear that the slow growth of ∆2

Q for intermedi-
ate couplings is due in part to the slow growth in the
occupations of the |1〉 and |7〉 states.

Regardless of the origin of slow growth, finite occu-
pation at the extremes of the qudit spectrum implies a
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FIG. 5. Dynamics for strong coupling, γ = 0.7/
√
L/12. (a)

Qudit variance ∆2
Q and (b) bipartite entanglement entropy

SA. Results from ML-MCTDH are not included for ∆2
Q as

they are not converged. For system sizes where the dynamics
can be computed exactly (dot-dashed lines), SA saturates the
Page bound SA ∼ L/2. The curves from ML-MCTDH (solid
lines), corresponding to L ≥ 24, saturate the bound set by
the number of single-particle functions in the second layer,
log2 χ2 (dotted lines).

departure from the Floquet regime. Our finite time nu-
merics are unable to resolve whether this implies delo-
calization. Should this mechanism give rise to a sharp
localization transition, it would possibly be of a different
character from the extensively studied MBL transition
based on ergodic grains thermalizing nearby insulating
regions through short range interactions [43–46].

B. Strong coupling (region II)

In the strong coupling regime (Fig. 5), our phase di-
agram suggests that the system lies deep within the
thermalizing phase for our available system sizes due
to strong delocalizing interactions between the spins in-
duced by the central qudit. Our data is consistent with
this expectation, but we note two effects. First, de-
spite the fact that spins thermalize, we observe that the
asymptotic distribution of qudit occupations is nonuni-
form, similar to the athermal qudit regime found in [12].
In section D of [24] we introduce a phenomenological pic-
ture to explain this based on random matrix theory, sug-
gesting that it is rare for the qudit to make transitions
between widely separated states.

Second, we note that due to the ergodic character of
the dynamics in the strong-coupling thermalizing regime,
the accurate treatment of the dynamics represents a sig-
nificant challenge for the ML-MCTDH approach and can-
not be converged for longer times [47]. This well known
limitation of the ML-MCTDH method and other ten-
sor network approaches is due to the following reason.
Within the ML-MCTDH approach, the wave function of
the system is represented in each layer by sums of Hartree
products, the total number of which is determined by the
number Nn of SPFs employed in a given layer n for each

degree of freedom. For example, in the binary tree de-
picted in Fig. 2, N2 SPFs are used in the second layer
to represent each of the two parts of the spin chain re-
sulting in (N2)2 Hartree products that represent the spin
system in the second layer. As a consequence, the en-
tanglement entropy between the different constituents of
the system is bounded by logN2. However, for ergodic
systems, the entanglement entropy is extensive, and thus,
starting from an uncorrelated state, the entanglement en-
tropy grows and eventually exceeds the limit of logN2.
This implies that, for longer times, the wave function of
the system cannot be represented accurately. The ap-
plication of the ML-MCTDH formalism in the ergodic
phase is thus restricted to short times. Therefore, the re-
sults for the qudit variance depicted in Fig. 5 have been
obtained by exact diagonalization and the kernel polyno-
mial method.

Despite this limitation of ML-MCTDH, we are still
able to find signatures of thermalization by examining
the dependence of the dynamics on N2. In the right
panel of Fig. 5, we see that the bipartite entanglement
entropy is upper bounded by log2N2, corresponding to
a maximal entropy state within our variational ansatz.
We observe similarly strong dependence of qEA when in-
creasing N2, which drifts towards zero to indicate para-
magnetic behavior in the spin chain. Other observables,
such as the populations of the qudit levels cannot be
converged, implying that information about the ergodic
state is present, but limited.

V. RESULTS FOR UNSCALED COUPLING

The dynamics of our system with scaled coupling,
γ ∼ 1/

√
L, is perhaps most interesting because it gives

a well-defined thermodynamic limit for the qudit. How-
ever, it is also important to understand the dynamics
when the coupling is held fixed instead of being scaled
by system size, corresponding to the dashed horizontal
line in Fig. 1. Fixing the coupling strength may be easier
to implement experimentally, for example in cavity QED
where the coupling is governed by the position-dependent
electric field strength. Doing so, however, means that we
can no longer easily separate dynamics occurring on dif-
ferent timescales as in the previous section. Furthermore,
we predict that in the thermodynamic limit this will even-
tually result in thermalization, as the long-range interac-
tions induced by the central qudit will eventually domi-
nate at large enough times and system sizes. We choose
the fixed value γ = 0.10607, which precisely matches the
intermediate scaled coupling for our largest system size,
and therefore lives within the predicted MBL phase for
all accessible system sizes.
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FIG. 6. Dynamics with unscaled coupling, γ = 0.10607. On
the reachable timescales, the spin glass order parameter qEA

(a) does not show significant system size dependence. How-
ever, the bipartite entanglement entropy (b), in addition to
being subextensive – SA ∝ Lα, 0 < α < 1 – at short times,
already shows qualitatively different behavior at intermediate
time for L & 24. (inset) Mutual information MI ≡ I(A,B)
between two contiguous halves A and B of the spin chain (see
main text).

The dynamics with fixed coupling, shown in Fig. 6,
looks similar to the data at intermediate scaled coupling
but without as clear a separation of time scales or data
collapse. We note that it is harder to detect the sort of
logarithmically slow delocalization as seen in qEA in Fig.
4f (cf. Fig. 6a). The story is the same with the qudit
variance, which is similar to 1 − qEA when divided by
L. However, with the fixed coupling, the entanglement
entropy reflects a qualitative change in behavior at large
enough system sizes.

We see that at times Ω
2π t ∼ 6 × 101 in the localized

phase (Fig. 6), the smaller system sizes L ≤ 16 establish
a subextensive amount of entanglement entropy. Numer-
ics from ML-MCTDH seem to counter this trend, with
SA continuing to grow slowly beyond this timescale. The
rate of this growth increases with L, which is consistent
with it arising from stronger effective all-to-all interac-
tions described by the high-frequency expansion (Eq. 2).
It also appears to show strong system size dependence
at short times, where a subextensive amount of entan-
glement is established. This should be contrasted with
models of MBL without central coupling, in which the
short time behavior is system size independent.

As a final note, we point out that the entanglement
entropy at fixed γ is subextensive, such that SA/L ap-
pears to be trending towards zero with increasing system
size. This should be contrasted with mutual information
between the two halves of the spin chain,

I(A,B) = S(A) + S(B)− S(A ∪B),

which is extensive. In Ref. [12], mutual information was
used as a proxy for entanglement between the two halves

of the spin chain, as it nominally removes “unimportant”
entanglement with the central qudit. However, since en-
tanglement must be subextensive – indeed, system size
independent – in the MBL phase, our data indicate that
entanglement entropy is a better metric than mutual in-
formation for capturing this. Our initial expectation was
that mutual information would become subextensive at
larger system size, but the results obtained with the ML-
MCTDH method rule out that possibility.

VI. CONCLUSIONS

In this paper we have studied the dynamical behavior
of a qudit coupled to a disordered, interacting bath of
up to L = 96 spins-1/2, which altogether can exhibit
localization at strong disorder. Using a combination of
exact propagation methods and the tensor network-based
ML-MCTDH approach, we find evidence of qualitatively
different dynamical signatures in local observables such
as the spin glass order of the bath and the qudit variance,
consistent with a rough phase diagram (Fig. 1). Most
notably, we find hints of logarithmically slow decay of
localization near the onset of all-to-all interactions in the
bath. This behavior was found to occur after timescales
t ∼ O(1/γ2) where γ is the qudit-spin bath coupling.

The behavior of the qudit observed here is, we believe,
not specific to this model. Our conclusions should ap-
ply equally well to the cases of a cavity photon with
rescaled raising/lowering operators a† → (N0)−1/2a† or

central spin-S systems with operators rescaled as Ŝ →
(S(S − 1))−1/2Ŝ. The feature of these systems is that
the fundamental commutation relation between the rais-
ing and lowering operators vanishes in the limit of large
S or large N0. This fact allows for exact cancellation
between processes that raise or lower the qudit state.
However, this mechanism only serves to protect localiza-
tion for sufficiently large “magnetic field” Ω; it is unclear
how these systems interpolate between the Ω = 0 limit
and the Ω > |g|, |hi|, . . . limit. We note additionally that
the limitations of ML-MCTDH for these types of cen-
trally coupled systems with many-body interacting baths
in the strong coupling regime requires more clarification.
Such clarifications may be necessary to extend the ef-
fectiveness of the method into the thermalizing regime
on the left side of the phase diagram 1, which remains
numerically inaccessible and thus poorly understood.
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by the state of Baden-Württemberg through bwHPC and the DFG through grant no. INST 40/575-1 FUGG (JUS-
TUS 2 cluster) is gratefully acknowledged.

[1] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).

[2] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H.
Schleier-Smith, Phys. Rev. Lett. 122, 010405 (2019).

[3] K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song,
W. Liu, Q. Guo, P. Zhang, D. Xu, H. Deng, K. Huang,
H. Wang, X. Zhu, D. Zheng, and H. Fan, Phys. Rev.
Lett. 120, 050507 (2018).

[4] J. Z. Imbrie, Journal of Statistical Physics 163, 998
(2016).

[5] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and
S. L. Sondhi, Phys. Rev. B 88, 014206 (2013).

[6] V. Khemani, Ph.D. thesis (2016).
[7] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap,

M. Müller, E. A. Demler, and M. D. Lukin, Phys. Rev.
Lett. 113, 243002 (2014).

[8] A. O. Maksymov and A. L. Burin, Phys. Rev. B 101,
024201 (2020).

[9] R. Nandkishore, S. Gopalakrishnan, and D. A. Huse,
Phys. Rev. B 90, 064203 (2014).

[10] D. A. Abanin, W. D. Roeck, and F. Huveneers, Annals
of Physics 372, 1 (2016).
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Supplemental Material for “Localization dynamics in a centrally coupled system”

Appendix A: Linear response property in the thermodynamics limit

In the limit L → ∞ the spin chain can be seen as a macroscopic environment allowing for a different viewpoint
on the dynamics of the qudit. Environments consisting of independent (i.e. noninteracting) degrees of freedom and
appropriate scaling of the coupling γ fulfil linear response theory, i.e. the influence of the environment on the qudit is
fully characterized by the force autocorrelation function of the bath allowing for the description of the influence of the
environment in terms of a bath of harmonic oscillators with an effective spectral density.[37] This idea was used, for
example, to describe the dynamics of a two-level system coupled to a spin bath consisting of independent spins[37, 48]
and to a bath of anharmonic vibrational degrees of freedom[49]. For non-interacting environments this was proven
by showing that all but the leading order term in the cumulant expansion of the influence functional vanish in the
thermodynamic limit. Despite the fact that the spin chain considered in our work consists of interacting spins, one
can show that the linear response property also holds for this model, and thus, the influence of the spin chain on the
qudit can be described by a bath of harmonic oscillators with an effective spectral density.

To this end, we follow the derivation given in Ref. [37] and extend it to the interacting spin chain considered here.
We assume that initially there are no correlations between different spins and the spin chain is in an eigenstate of all
{σzi }. In order to evaluate the different terms in the cumulant expansion[37] the time dependent operator

f̂(t) = −γ
L∑
i=1

eiH0tσxi e−iH0t︸ ︷︷ ︸
σxi (t)

(A1)

is required, which corresponds to the bath part of the system-bath interaction and describes the force exerted on the
system due to its interaction with the environment. Here, H0 is the Hamiltonian of the isolated spin chain. The time
evolved operators σxi (t) = σ+

i (t) + σ−i (t) can be calculated analytically yielding

σ+
i (t) = e2ihξit

1

2

[
[1− σzi−1σ

z
i+1] + [1+ σzi−1σ

z
i+1] cos(4gt) + i[σzi−1 + σzi+1] sin(4gt)

]
σ+
i

= e2ihξitϕ̂i(t)σ
+
i , (A2)

and σ−i (t) = (σ+
i (t))†. Here σ+

i and σ−i are the spin raising and lowering operators, respectively. Using this equation,
one can show that [

σxi (t), σxj (t′)
]

= 0 ∀ i, j with |i− j| ≥ 2, (A3)

This follows from the fact that ϕ̂i(t) only involves spin operators on sites i− 1 and i+ 1.
All terms in the cumulant expansion of the influence functional can be expressed[37] in terms of N -time correlation

functions defined as

C(N)(t1, ..., tN ) = 〈f̂(t1)...f̂(tN )〉0 , (A4)

where 〈...〉0 denotes the expectation value with respect to the initial state of the environment. Initially, the spin chain
is in an eigenstate of all {σzi }, and thus, one finds that

C(1) = 0, (A5)

Consequently, the first term, and by extension all odd order terms in the expansion, vanishes. The second order term
can be expressed in terms of the two-point correlation function

C(2)(t1, t2) = γ2
∑
i

∑
j

〈σxi (t1)σxj (t2)〉
0
. (A6)

It is straightforward to check that the expectation value is zero for all i 6= j, and thus, the two-time correlation
function reduces to

C(2)(t1, t2) = γ2
L∑
i=1

〈σxi (t1)σxi (t2)〉0 . (A7)
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Since 〈σxi (t1)σxi (t2)〉0 is finite but not zero in general, the sum diverges in the thermodynamic limit L → ∞ unless

γ ∼ 1/
√
L, which we will assume in the following by setting γ = γ0

√
L0/L. The next non-vanishing term in the

cumulant expansion is the fourth term which involves the fourth order correlation function

C(4)(t1, t2, t3, t4) = γ4
∑
i,j,k,l

〈σxi (t1)σxj (t2)σxk(t3)σxl (t4)〉
0
. (A8)

Since ϕ̂i(t) does not change the initial state of the spin chain, there can only be up to two different indices in the
expectation value. Thus, the four-time correlation function can be written as

C(4)(t1, t2, t3, t4) = γ4
∑
i,j

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

+ γ4
∑
i,j
i 6=j

〈σxi (t1)σxj (t2)σxi (t3)σxj (t4)〉
0

+ γ4
∑
i,j
i 6=j

〈σxi (t1)σxj (t2)σxj (t3)σxi (t4)〉
0
. (A9)

In the following we will discuss only the first term on the right hand side. The other two terms can be treated
equivalently. The double sum can be decomposed as

γ4
∑
i,j

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

= γ4
∑
i

〈σxi (t1)σxi (t2)σxi (t3)σxi (t4)〉0

+ γ4
∑
i

〈σxi (t1)σxi (t2)σxi+1(t3)σxi+1(t4)〉
0

+ γ4
∑
i

〈σxi+1(t1)σxi+1(t2)σxi (t3)σxi (t4)〉
0

+ γ4
L∑
i,j

|i−j|≥2

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0
. (A10)

The expectation values in the first three sums on the right hand side are bounded by a constant. If the coupling γ is
scaled as γ = γ0

√
L0/L, these terms vanish as L→∞, and thus, we conclude that

γ4
L∑
i,j

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

= γ4
L∑
i,j

|i−j|≥2

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

+O
(

1

L

)
. (A11)

Because the operators in the expectation value act on different Hilbert spaces and the initial state factorizes the
expectation values can be factorized as

γ4
L∑
i,j

|i−j|≥2

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

= γ4
L∑
i,j

|i−j|≥2

〈σxi (t1)σxi (t2)〉0 〈σxj (t3)σxj (t4)〉
0

(A12)

Adding the terms for i = j and |i − j| = 1 to the double sum on the right hand side gives an error of O(1/L), and
thus, one can write

γ4
∑
i,j

〈σxi (t1)σxi (t2)σxj (t3)σxj (t4)〉
0

= γ4
∑
i,j

〈σxi (t1)σxi (t2)〉0 〈σxj (t3)σxj (t4)〉
0

+O
(

1

L

)
(A13)

= C(2)(t1, t2)C(2)(t3, t4) +O
(

1

L

)
, (A14)

where we have identified the two-time correlation functions. With this, we finally conclude that

lim
L→∞

C(4)(t1, t2, t3, t4) = lim
L→∞

C(2)(t1, t2)C(2)(t3, t4)

+ C(2)(t1, t3)C(2)(t2, t4)

+ C(2)(t1, t4)C(2)(t2, t3). (A15)
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Using this one finds that the fourth order term in the cumulant expansion in [37] vanishes in the thermodynamic limit.
In a similar way one can show that all higher order terms in the expansion vanish, proving that in the thermodynamic
limit the influence functional is completely characterized by the force autocorrelation function. Thus, one can construct
a bath of harmonic oscillators with an effective spectral density resulting in the same influence functional.

As a last step we show that for the choice of the ’super-Neel’ state |ESN 〉 = |↑↑↓↓ ...〉 as initial state the force
autocorrelation function does not depend on the spin-spin interaction g. The force autocorrelation function is defined
as

〈f̂(t1)f̂(t2)〉 = γ2
L

∑
i

〈ESN |σxi (t1)σxi (t2)|ESN 〉 , (A16)

where the time-dependent operators are given in equation (A2). For the ”super-Neel” state it follows that

σzi−1σ
z
i+1 |ESN 〉 = − |ESN 〉 ,(

σzi−1 + σzi+1

)
|ESN 〉 = 0, (A17)

holds for all i since the spins at site i− 1 and i+ 1 are always antiparallel. Thus, the action of ϕ̂i(t) is independent
of the index i and gives

ϕ̂i(t) |ESN 〉 = |ESN 〉 . (A18)

Since the spin-spin interaction enters only via ϕ̂i(t), we find that the force autocorrelation function, and conse-
quently the parameters of the effective bath harmonic oscillators, are independent of the spin-spin interaction g. The
corresponding effective spectral density can be calculated from the force autocorrelation[37] yielding

Jeff(ω) =
π

2

1

4h
χ[−2h,2h](ω), (A19)

where χI is the characteristic function of the interval I, i.e. χI(ω) = 1 if ω ∈ I and 0 else. Thus, in the thermodynamics
limit a bath of harmonic oscillators with this spectral density gives rise to the same qudit dynamics as the spin chain
in the ”Super-Neel” state.

Appendix B: Structure of wavefunction

In addition to modifying the entanglement dynamics at short times, the star-like geometry of this system (depicted
in the inset of Figure 2) should render the concept of locality meaningless. Indeed, from the point of view of operator
dynamics, operators for the qudit should immediately spread to O(L) sites after O(1) time[50]. Instead we propose
to analyze the structure of eigenstates in the Hilbert space of the uncoupled (γ = 0) Hamiltonian. In the spirit of
the current understanding of MBL, where eigenstates are weak deformations of the unperturbed system, we parse
wavefunctions in the product basis |s〉 of spins and qudit states – |z〉 ⊗ |n〉 with zi ∈ {↑, ↓},∀i = 1, . . . , L and
n = 1, . . . , d. We quantify “deformations” through a notion of Hilbert space distance as

D(|z, n〉, |z′, n′〉) = max (DH(z, z′), |n− n′|) , (B1)

with DH being the Hamming distance between the bitstrings z and z′ (here, up-spins are “1” and down-spins are
“0”). Intuitively, this measures the minimum number of times the transverse perturbation must be applied to connect
two states in the Hilbert space. For eigenstates, the origin (≡ |ψref〉) is taken to be the product state with the largest
weight while for time evolution, the origin is taken to be the initial state before the quench. Other product states
can then be grouped according to their distance D from |ψref〉. For each D, we calculate the distribution of expansion
coefficients | 〈s|ψ〉 |2 over disorder realizations and equidistant product states {|s〉 | D(|ψ〉, |s〉) = x}. In the nonergodic
phase, these coefficients are suppressed by a factor of (γ/g)2 as D increases (Figure 7(a,b)). One can then regard the
wavefunction as being exponentially localized in Hilbert space. This can be observed also in non-centrally coupled
models of MBL, such as the disordered Ising chain with next-nearest neighbor interactions [42]. In contrast, there is
no such Hilbert space localization at large enough γ in the ergodic phase (inset of Figure 5b). This is corroborated
by the average Hilbert space distance 〈D(t)〉, as measured from |ψref〉. This quantity has been noted by Hauke and
Heyl [51] to saturate to L/2 if the system is (possibly) ergodic, and is consistent with our numerics (Figure 5c).
We additionally find that the experimental accessibility 〈D(t)〉 (noted by [51]) approximately holds (see top panel of
Figure 7c), i.e. 〈D(t)〉 ≥ L(1− qEA)/2 where the inequality is due to the definition of D we have chosen.
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FIG. 7. Distributions of wavefunction coefficients in the unperturbed basis {|s〉}, parsed by the Hilbert space distance D
separating |s〉 and a reference state |sref〉. The colors of the curves lighten for increasing D, while the dashed vertical lines are
guides to the eye for where the expected peak locations should the coefficients decay as ∝ (γ/g)2D. (a) Distributions in the ten
eigenstates closest to the middle of the energy spectrum, choosing |sref〉 to be the unperturbed state with largest weight. (b)
Distribution of coefficients for the system at t = 1012, evolving from |ψ(0)〉 = |sref〉|(d+ 1)/2〉 with |sref〉 being the super-Neel
state. (c) Average Hilbert space distance 〈D(t)〉 from the super-Neel state (bottom) and in comparison with the spin glass
order parameter qEA (top), for γ = 0.1, 0.2, 0.5, 0.7 and for L = 8(dashed), 12(solid).

In the top panel of Figure 7c, the periods where D/L > (1− qEA)/2 are due to the fast increase and saturation of
qudit variance on the timescale of ∼ 1/γ, versus the slower decay of qEA. The latter proceeds on slower timescales
through a combination of qudit-spin flip transitions and the Ising interaction gσz

iσ
z
i+1. This interpretation of the spin

glass order parameter bring new meaning to the results from ML-MCTDH. At least up to intermediate times, the
localization length of the wavefunction in Hilbert space is stable up to L = 96 when γ ≈ 0.106.

That the system is localized in Hilbert space may be useful in improving the performance of ML-MCTDH in this
regime. Currently, ML-MCTDH reduces the size of the full Hilbert space by restricting the dynamics on to a subspace
created by uniformly random vectors. For very large systems, these randomly drawn vectors will be heavily weighted
towards states farther away from the initial/reference state, since their numbers grow combinatorially quickly.

Appendix C: Trivial limit and convergence of qudit variance

The quench setup we examine in this paper – in which we prepare the full system in an eigenstate of the γ = 0
Hamiltonian – results in certain behaviors in the γ → 0 limit which we will explore in this section. The reason for
the existence of a well-defined limit in the dynamics is due to the off-diagonal coupling being the only generator of
dynamics in both the spins and the qudit at short times. We demonstrate this limit by plotting observables rescaled
by γ−2 in Figure 8. This scaling at small γ converges the dynamics at short times up to t ≤ 102. At small enough
coupling, a plateau begins to appear at t ∼ 102. We see hints of this in the MCTDH data for mutual information
(Figure 4c), for example, with the establishment of a plateau for L = 48 and 80 at times 10 ≤ t . 102. This behavior
contrasts with the immediate increase of MI for smaller system sizes at t ∼ 10.
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FIG. 8. Dynamics from the “super-Neel” state for L = 8 across different γ in the localized phase. Rescaling the (a) spin glass
order parameter, (b) qudit variance, and (c) mutual information by the coupling collapses the dynamics at short to intermediate
times. The asymptotic behavior in each case should be interpreted as defining a trivial limit analogous to Anderson localization
vis-a-vis MBL.

We take advantage of the vanishing coupling, which is scaled to zero with system size, to systematically re-
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construct the dynamics using the method of multiple scales. To that end, we solve for the time evolution op-
erator, artificially introducing new ‘independent’ timescales t, t′ ≡ γt, t′′ ≡ γ2t, . . ., which allow for con-
trol over secular terms growing unboundedly as ∼ t. Formally, the time development operator is expanded as
U(t) ≡ U0(t, t′, t′′, . . .) + γU1(t, t′, t′′, . . .) + γ2U2(t, t′, t′′, . . .) + . . . and we shall solve for the full evolution order-by-
order. We note that we have made an important assumption that the only timescales of interest are ∼ γ−n. However,
we are not interested in describing the dynamics for all t at arbitrary γ and L, but only up to the t ∼ γ−1 as γ → 0.

The propagator evolves according to

d

dt
U(t) = −i(H0 + Ωτz + γH1τx)U(t),

where we define τz =

d∑
n=1

n|n〉〈n|, τ+ =

d−1∑
n=1

|n+ 1〉〈n|, and τ− = (τ+)†. From these we construct τx = τ+ + τ− and

τy = −iτ+ + iτ−. With the addition of the new timescales, the time derivative now becomes

d

dt
U =

(
∂

∂t
U0

)
+ γ

(
∂

∂t′
U0 +

∂

∂t
U1

)
+ γ2

(
∂

∂t′′
U0 +

∂

∂t′
U1 +

∂

∂t
U2

)
+ . . .

At the zeroth order, the equation of motion and its solution are

∂

∂t
U0 = −i(H0 + Ωτz)U0 =⇒ U0 = e−i(H0+Ωτz)tU int

0 (t′, t′′, . . .) such that U int
0 (0, 0, . . .) = 1.

At first order,

∂

∂t′
U0 +

∂

∂t
U1 = −i(H0 + Ωτz)U1 − iH1τ

xU0

∂

∂t′
U int

0 +
∂

∂t
U int

1 = −iei(H0+Ωτz)tH1τ
xe−i(H0+Ωτz)tV0, (C1)

where we let U1 = e−iH0tU int
1 . Note at this point that the first term on the LHS is independent of t. Its contribution to

U int
1 would be proportional to t and thus secular. Should there also exist secular terms on the RHS (i.e., independent

of t), U int
0 should be chosen to offset it. Otherwise, it must be independent of t′, i.e. U int

0 ≡ V0(t′′, . . .). If these secular
terms do not exist at all orders, then the multiple scales result would be completely equivalent to the Dyson series in
the interaction picture. In our disordered system, we must be careful of secularity and near-secularity. The former, in
which two states linked by the perturbation are exactly degenerate, occurs with zero probability since the local field
must have a value such that Ω = ±2(hi + g(σz

i−1 + σz
i+1)). More likely is the scenario of near-degeneracies, which at

this order can lead to U int
1 growing arbitrarily large after an arbitrarily long time. Such terms make the expansion of

U uncontrolled at long times. We can, however, absorb near-secular behavior into U int
0 .

Define

A(t′) =
∑
|a〉,|b〉

|Ea−Eb|<1

〈a|H1τ
x|b〉 exp

(
i
∆Eab
γ

t′
)
|a〉〈b|.

To regulate the secular part of (C1), we must have ∂
∂t′U

int
0 = −iA(t′)U int

0 . This makes

U int
0 (t′, t′′, . . .) = exp

−i t′∫
0

A(τ)dτ

V0(t′′, . . .).

The unknown function V0 will be solved for at higher orders. The argument of the exponential should always be
complex, since A(t′) is Hermitian. Thus these resonant terms will not cause U int

0 to have unbounded norm, and the
perturbative expansion for U remains valid. However, our ability to regulate the secularity in this way should not be
taken as a statement on the dynamics being localized. Instead, it implies that more careful consideration of U int

0 is
necessary to understand if resonances are able to cause delocalization. At present, all we need is to examine if we can

safely neglect exp(−i
∫ γt

0
A) if we scale γ → 0 with the inverse system size. We can think of A as roughly being the

adjacency matrix for states in Hilbert space, where two states are connected by an edge if they are resonant. It is
known that the eigenvalues of adjacency matrices are bounded above by the maximum number of edges connecting to
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a vertex in the graph. A naive upper bound for our system is 2L, which is the number of states that can be reached
by applying the perturbation on to the eigenstates of the unperturbed system. Should the spectrum of A saturate
this bound, the matrix exponential will contain time dependence going as exp(−i2γtL) and scaling γ ∝ L−1/2 will
not remove the correction factor in U int

0 . Regardless, this will not pose a problem in our model for the parameters
and initial super-Neel state we have chosen.

Having found the lowest order approximation for U int
0 , we are now left with the nonsecular terms. These can be

straightforwardly used to solve for U int
1 . Let (H1τ

x)reg be the regular version of the perturbation H1τ
x with resonant

matrix elements removed. The equation of motion becomes

∂

∂t
U int

1 = −i ei(H0+Ωτz)t(H1τ
x)rege

−i(H0+Ωτz)t U int
0 (t′, . . .)

=⇒ U1 = −i e−i(H0+Ωτz)t

iV1(t′, t′′, . . .) +

 t∫
0

ei(H0+Ωτz)τ (H1τ
x)rege

−i(H0+Ωτz)τdτ

U int
0 (t′, . . .)


While we can in principle keep going to higher orders, we will stop here and discuss the dynamics with scaled

qudit-spin chain coupling. The results we have obtained so far allow us to accurately describe time evolution up to a
timescale t ∼ O(1/γ). Should we keep decreasing γ, then all the artificial times t′, t′′, . . ., will tend to zero without
affecting the physical time t. Using the initial condition for the unknown functions can then give us closed form
expressions for U . For example, we approximate

U(t) ≈ e−i(H0+Ωτz)t + γ e−i(H0+Ωτz)t

−i t∫
0

ei(H0+Ωτz)τ (H1τ
x)rege

−i(H0+Ωτz)τdτ

 .

This is essentially what one finds in usual perturbation theory, except we now have more knowledge of its convergence
properties.

We can gain some analytical understanding of the qudit variance and the spin glass order parameter from this
approximation to the propagator.

Numerics show that the dynamics of qudit variance ∆2
Q =

〈
τ(t)2

〉
− 〈τ(t)〉2 comes mostly from the first term, as

the second term is essentially constant. We calculate d
dt∆

2
Q ≈

〈{
τz, ddtτ

z
}〉

, where d
dtτ

z = γH1τ
y.

d

dt
∆2
Q ≈ γ 〈ψ| {τz(t), H1(t)τy(t)} |ψ〉

= γ
���

���
���

�:0〈{
τz(0), H

(0)
1 τy(0)

}〉
+ γ2

〈{
τz(1), H

(0)
1 τy(0)

}〉
+ γ2

〈{
τz(0),

(
H

(1)
1 τy(0) +H

(0)
1 τy(1)

)}〉
.

The first term is zero since the operator is off-diagonal. The last term must also vanish since it is not invariant with
respect to redefinition of τz, e.g. changing its spectrum from (0, . . . , d − 1) to (1, . . . , d) by adding a constant term

to the Hamiltonian. Indeed one can check that it is exactly cancelled by the −〈τz〉2 term we have neglected in our
approximation of the qudit variance. A calculation of the remaining term shows

d

dt
∆2
Q ≈ 2γ2

∑
i

∑
±

sin(t∆E±i )

∆E±i

〈
ψ±i

∣∣∣(σx
i τ
x)reg

∣∣∣ψ〉 , (C2)

consistent with usual perturbation theory. Upon disorder averaging, we see that

∆2
Q ≈ 2γ2L

t∫
0

dτ
∑
±

sin(τ∆E±i )

∆E±i

〈
ψ±i

∣∣∣(σx
i τ
x)reg

∣∣∣ψ〉.
Thus the qudit variance – along with other qudit observables such as the population – converge to a single curve
upon scaling the coupling as γ ∝ 1/

√
L. Convergence towards this expression should be expected up to time t ∼

O(γ−1) ∝ O(
√
L). For dynamics from the super-Neel state as we study here, the energy difference with spin i flipped

is ∆Ei = ±2hi. There are no resonances for our chosen values of hi ∈ [−1.3, 1.3] and Ω ≈ 3.93, so we have exactly

∆2
Q ≈ 2γ2

∑
i

∑
±

1− cos (t(2hisi ± Ω))

(2hisi ± Ω)2

d

dt
∆2
Q ≈ γ2L

(
Si[t(2h+ Ω)] + Si[t(2h− Ω)]

h

)
,
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where Si(t) is the sine integral. For fixed γ at large enough L, this expression will violate the bound on the qudit
variance, (d2 − 1)/12, when all the states of the qudit are equally populated. Thus higher order terms are necessary
to prevent this unphysical outcome.

We can similarly look at the spin glass order parameter, and find that for the super-Neel state,

d

dt
(1− q) = 4γ2 1

L

∑
i

∑
±

sin(t∆E±i )

∆E±i
.

This shows the surprising fact that the qudit variance (cf. (C2)) and spin glass order are linearly related to each other
in this limit. This motivates the scaling we take in plotting the results in Figures 3 and 4 in the main text.

Appendix D: Ansatz for qudit populations in the thermalized phase

We consider eigenstate thermalization in the sense that

〈ψ|A|ψ〉 = Z−1 Tr
[
e−βHA

]
,

where β is the temperature reproducing the same energy 〈ψ|H|ψ〉. When we time evolve from an initial state sitting at
the middle of the many-body spectrum, |ψ(0)〉 = | ↑↑↓↓ . . .〉

∣∣d−1
2

〉
, we should consider infinite temperature averages,

i.e.

〈ψ(t)|A|ψ(t)〉 = d−1 Trqd
(
2−L TrS A

)
.

Therefore by setting A = |n〉〈n| for n = (1 − d)/2, . . . , (d − 1)/2, we should expect a uniform occupation over all d
levels of the qudit. We do not observe this in the delocalized phase; instead, the occupations of the qudit seem to
saturate to the distributions shown in Fig. 9 (averaging over ∼ 10 realizations of disorder).

●

●

●

●

●

●

●

■

■

■

■

■

■

■
◆

◆

◆

◆
◆

◆

◆

-3 -2 -1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

n

p
n

Qudit occupations

Scaled coupling γ=0.7/ L / 12

● L=16 (10 realizations)

■ L=20 (10 realizations)

◆ L=24 (6 realizations)

●

●

●

●

■

■

■

■

◆
◆

◆

◆

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

n

p
n

Symmetrized qudit occupations

Scaled coupling γ=0.7/ L / 12

● L=16 (10 realizations)

■ L=20 (10 realizations)

◆ L=24 (6 realizations)

σ=1.85

σ=2.12

σ=2.27

FIG. 9. Occupations of the qudit at t ∼ 102g−1. On the right, the occupations have been vertically spaced by 0.05 for clarity.

On the left, we notice that the occupations appear to be asymmetric about the middle state. This is possibly due to
the small number of disorder averages, but may also be affected by finite size effects or the rather special super-Neel
initial state. As a proxy for the infinite sample limit, we symmetrize the occupations and note that a one parameter
Gaussian ansatz, pn ∝ exp

(
−n2/(2σ2)

)
, fits well.

We propose a model to reproduce these observations based on the partial diagonalization achieved by invoking
Floquet’s theorem. By going into the rotating frame through the transformation exp (−iΩn̂t), the Hamiltonian
becomes time-periodic and we can factorize the time evolution in the “lab frame” as

U(t) = e−iΩn̂te−iKrot(t)e−iH
eff
rotteiKrot(0).

We had previously proven that eigenstates can be written in the form

|E〉 = e−iKrot(0)|εi〉|m〉, E = εi +mΩ where Heff
rot|εi〉|m〉 = εi|εi〉|m〉 and n̂|m〉 = m|m〉
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under the assumptions that (1) the effective Hamiltonian Heff
rot commutes with n̂ and (2) the operator

e−iΩn̂te−iKrot(t)eiΩn̂t

is an analytic function of time t. While explicit expressions for Krot and Heff
rot can be obtained using the high frequency

expansion, the above expressions should hold even when the HFE does not converge, so long as the stated assumptions
are satisfied.

By Floquet’s theorem, the kick operator Krot(t) must be time periodic with frequency Ω. Hence it should be
representable in a Fourier series in powers of e−iΩmt. Because in the rotating frame, factors of e±iΩt are accompanied
by the corresponding qudit raising/lowering operator τ±, we posit that terms in the Fourier series with exp(iΩmt)
should induce transitions between qudit states separated by (signed distance) m. The kick operator should then
decompose into

Krot(t) =

d−1∑
m=1

−m+(d−1)/2∑
n=−(d−1)/2

eiΩmt|n+m〉〈n|Bn+m
n + h.c.,

where the operators Bij act only on the spins. In the HFE, one sees that Bij are imaginary and not necessarily
Hermitian. We shall assume these properties still hold even when the HFE breaks down.

We shall model the effect of the kick operator on only the qudit states by supposing that matrix elements of Bij
between two delocalized spin states are random numbers, with possible dependence on i− j. In short, we propose the
replacement

TrS e
−iKrot(0)ρeiKrot(0) −→ exp(−iK)ρqd exp(iK),

where K is a d× d Hermitian random matrix whose upper triangular part (excluding the diagonal) looks like

(K)mn = ig exp

(
−α

(
m− n
γ/Ω

)2
)
Rmn,

for random Rmn ∼ Normal(µ = 0, σ2 = 1) and g, α > 0. The factor of γ/Ω was inserted so that exp(−iK) would
be the unit matrix in the decoupled and infinite frequency limits. The average over all realizations of K mimics the
nonunitarity of the partial trace over the spins S.

For example, we find good fits to the symmetrized occupations for the following values of the parameters, setting
g = 1:

L γ α

16 0.7/
√

16/12 1/105
16 0.7 1/83

20 0.7/
√

20/12 1/140

24 0.7/
√

24/12 1/175
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We conjecture that the correct form in the limit of large L is

(K)mn = i exp

(
− c
L

(
m− n
γ/Ω

)2
)
Rmn,

where c is a positive number of order 1.
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