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Motion control in high-speed micromilling processes requires fast, accurate following of a specified

curvilinear path. The accuracy with which the path can be followed is determined by the speed at which

individual trajectories can be generated and sent to the control system. The time required to generate

the trajectory is dependent on the representations used for the curvilinear trajectory path. In this study,

we introduce the use of subdivision curves as a method for generating high-speed micromilling

trajectories. Subdivision curves are discretized curves which are specified as a series of recursive

refinements of a coarse mesh. By applying these recursive properties, machining trajectories can be

computed very efficiently. Using a set of representative test curves, we show that with subdivision

curves, trajectories can be generated significantly faster than with NURBS curves, which is the most

common method currently used in generating high-speed machining trajectories. Trajectories are

computed efficiently with subdivision curves as they are natively discretized, and do not require

additional evaluation steps, unlike in the case of NURBS curves. The reduced trajectory generation time

allows for improved performance in high-speed, high-precision micromilling. We discuss the use of

several metrics to quantify the quality of the subdivision interpolation, and apply them in calculating

the error during trajectory generation for the test curves.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Motion control in high-speed micromilling processes requires
fast, accurate following of a specified curvilinear path. In high-
speed micromachining of parts which typically contain small
features of very high curvature the requirements on accuracy can
become extreme. In these applications, the accuracy with which
the path can be followed is determined by the speed at which
individual trajectories can be generated and sent to the control
system. The time required to generate the trajectory is dependent
on the representations used for the curvilinear trajectory path.
Common representations include point sets with linear or circular
interpolation, polynomial splines, and more recently, non-uni-
form, rational, b-spline (NURBS) curves. It is critical for the
trajectory computation time to be minimal in order to limit chord
error. As feature scales shrink and machining feedrates increase,
the requirements on the trajectory generation system increase,
ll rights reserved.
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and numerical methods are required to very rapidly compute
trajectories.

We discuss in this paper the use of subdivision curves as a
method for generating high-speed micromilling trajectories.
Subdivision curves are discretized curves which are specified as
a series of recursive refinements of a coarse mesh. Using
the recursive properties of subdivision curves, the machining
trajectories can be computed very efficiently. Catmull–Clark
subdivision curves are used in representing the trajectories;
these curves converge at the limit (infinite recursion) to cubic
b-spline curves, and have properties of continuity comparable
to that of cubic NURBS curves. The trajectory generation
methodology discussed in this paper is to vary the discretization
(or subdivision level) of the Catmull–Clark curves to match
the accuracy required in the trajectory vectors. Since these
curves are natively discretized, additional discretization
steps are not required—unlike in the case of NURBS curves—

and the trajectories are computed very efficiently. The discrete
representation can also be exploited to develop error measures
for the trajectory curve which can be used to estimate
the quality of the machined features and predict phenomena
such as gouging. We also compare this trajectory generation
method to NURBS-based methods, and we show that a significant
improvement in performance can be achieved.
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Fig. 1. Chord error in trajectory generation.
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2. Background and related work

2.1. Interpolation methods

In high-speed, high-precision micromilling, the spindle path is
often initially specified as an ordered set of locating points
through which the spindle is required to travel. If the distance
between specified points is sufficiently large, a point-to-point
travel method may allow for accurate path following. If the
distance between points is small, however, this method results in
frequent velocity variation [1,2], slow implementation [3], and
discontinuities in the travel path. Data transmission errors [4] or
delay are also possible as the data point density becomes large. In
order to avoid these error sources in cases which require high
point densities, the set of data points is first interpolated to obtain
a parametric description of the spindle location data points.

Common interpolation methods include linear, circular, poly-
nomial spline, and the NURBS method. Each of these methods has
certain advantages and disadvantages for path following. The
linear and circular methods consist of determining one or more
lines and circles which most closely approximate the set of data
points using a least-squared-error fit. This method—sometimes
referred to as ‘‘reference word interpolation’’ [5]—is easy to
implement [6]. The resulting interpolation is simple to apply to a
trajectory-following algorithm. However, this method may result
in large amounts of interpolation error for data sets which do not
approximately describe lines and circles [7], or which require a
large number of linear and circular segments to approximate the
data set to within specified error limits. The large number of
segments results in the same drawbacks as point-to-point
following: feedrate fluctuation and discontinuity.

The polynomial spline method of interpolation may be used in
cases of data sets which do not closely resemble lines and circles.
In this method, splines of a specified degree (often cubic or quintic
splines) are fit to the specified spindle location data points. This
method can be used to fit a non-linear set of data points with
fewer individual segments, while still maintaining ease of
implementation [8]. However, this method still suffers from a
lack of continuity between individual segments. The NURBS
method is an improvement to the polynomial spline method, as
continuity between the spline segments is enforced. In addition,
the NURBS method requires less memory than other methods
[1,8,9] and is computationally stable [1].
2.2. Real-time trajectory generation

Once a parametric description has been found for a set of
location data points, the description can be utilized in trajectory
generation. Trajectory generation refers to the process of
determining time-dependent individual velocities for each axis
of the machine tool. At each sampling instant, trajectories are
chosen which will result in the most accurate following of the
specified spindle path. This process should be distinguished from
the motion control loop, which seeks to accurately achieve the
specified velocities.

The trajectory generation process samples the interpolated
curve at discrete intervals such that a fixed chord length is
achieved between the sampled points. The chord length is
determined based on the specified feedrate and the minimum
sampling time of the controller. Since the minimum sampling
time is known a priori, the chord length is constant for a given
feedrate. The trajectory generation algorithm is employed to
compute individual stage velocities during each time step. In
some cases, this can be done offline as the curve to be followed is
completely specified. However, in cases where high following
accuracy is required, and in applications where the following
errors may be large (such as high-speed high-precision micro-
milling), a suitable real-time error compensation method must be
applied to the trajectory generation algorithm. Since errors are
measured in real-time, the trajectory generation (and the
compensation) must be computed in real-time as well.

The process of trajectory generation gives rise to a source of
geometrical error known as ‘‘chord error’’ [10]. This error is
illustrated in Fig. 1.

Chord error increases with increasing feedrate, decreasing
feature size, and decreasing sampling rate. In order to constrain
the effects of chord error to a specified error limit, the feedrate is
typically limited. Eq. (1) describes the method by which feedrate
is limited in micromilling [11].

f r
2

Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� rÞ � ððr� rÞ � dmaxÞ

2
q

ð1Þ

Here, r is the radius of curvature of the feature, r is the tool
radius, Ts is the sampling time in seconds, and dmax is the
maximum chord error.

Eq. (1) reveals that high values of sampling time (low sampling
rate) can severely limit the maximum feedrate achievable,
particularly as the feature radius of curvature decreases and the
required precision increases. In order to achieve the high
feedrates required in high-speed, high-precision micromilling, a
high sampling frequency (or small sampling period) is needed.
This can only be accomplished in real-time by increasing the
speed of the trajectory generation.

A review of the literature reveals that the most widely studied
method of interpolation and trajectory generation is using NURBS
curves.

2.3. Interpolation trajectory generation by NURBS

The NURBS method can be used either as a method of
approximation or as a method of interpolation. The interpolation
method is used to create a set of splines of specified order which
pass through all data points specified, while the approximation
method is used to create a set of splines which pass nearby all
data points specified to within a set error limit. In this paper, we
compare the NURBS method of interpolation against the subdivi-
sion curve method.

The NURBS method of interpolation consists of finding the
control points for a set of approximating splines of a specified
continuity to interpolate all the given data points. We refer the
reader to [12] for a full derivation of NURBS interpolation.

The NURBS method suffers from a key disadvantage when
applied to a real-time motion control system. The rate at which
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Fig. 2. Catmull–Clark subdivision applied to 2D curve. Numbers denote levels of

subdivision.
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trajectories can be generated from a NURBS path description is
highly limited due to the computational complexity of this
method [1,13]. This limitation can cause large amounts of chord
error in regions having high curvatures in the path, and may
require low feedrates to compute the trajectories in real-time.

In this paper we propose subdivision curves as an improve-
ment over NURBS for real-time trajectory generation in
high-speed, high-precision micromilling. Due to the reduced
computational complexity of this method, real-time trajectory
generation times are reduced. Thus, this method can be employed
in cases of required high precision, high feedrates, and/or high
curvatures.
3. Trajectory generation with subdivision curves

3.1. Subdivision surfaces

A subdivision surface, e.g. [14–16], is a generalization to three
dimensions of a boundary representation expressed as the limit of
a sequence of successive refinements on a given input control
curve. They are specified using a control mesh of fixed topology
and a subdivision scheme that is applied recursively to the mesh
[17]. Each subdivision step increases the number of vertices in the
mesh, and the subdivision scheme specifies the position and
topology of new vertices in the mesh at each step. Since most
subdivision schemes are based on splines, the schemes are
generally local; that is, the position of new vertices are usually
based on their 1- or 2-ring neighbors. Subdivision schemes are
generally devised to ensure strict analytical properties at the limit
(the surface generated when the scheme is applied infinite times).
Analytically the limit surface behaves like piecewise polynomial
patches.

In this work, however, we are concerned with the generation
and evaluation of inherently two dimensional toolpaths. As such,
we apply the subdivision method in only two dimensions to
efficiently generate approximations of spline curves. There are
several subdivision schemes that can be applied for trajectory
representation and generation. Schemes can be classified based
on the smoothness that can be achieved ðCnÞ and if they are
approximating or interpolating [17]. Some popular subdivision
schemes are classified in Table 1.

In this paper, we use the Catmull–Clark subdivision scheme in
two dimensions to represent the machine tool trajectories. This
scheme is based on tensor product bicubic splines, and generates
a C2 curve at the limit for regular meshes [14,21]. It also can be
combined with so-called sharp schemes to pin specific vertices of
the mesh [22]. The Catmull–Clark scheme is very versatile, and
since it was derived from bicubic curves, it is closely analogous to
NURBS curves. While other schemes can be just as effective, the
close relationship with NURBS curves makes it very suitable for
this application. Fig. 2 shows an example of Catmull–Clark
subdivision applied to a 2D curve.
Table 1
Classification of subdivision schemes.

Name Type Smoothness

Loop [15] Approximating C2

Modified Butterfly [16] Interpolating C1

Catmull–Clark [14] Approximating C2

Kobbelt [18] Interpolating C1

Doo–Sabin [19] Approximating C1

Root-three ð
ffiffiffi
3
p
Þ [20] Approximating C2
3.2. Basic trajectory generation

To generate machine tool trajectories using subdivision curves,
we begin with the set of spindle locating points that need to be
interpolated. A cubic spline curve is fit through these points, and
the control points of the spline are used as the control points of
the subdivision curves. This ensures that the subdivision curve
interpolates the same points as the NURBS curve.

The trajectory generation samples the subdivision curve at
discrete intervals such that a fixed chord length is achieved
between the sampled points. The chord length is determined
based on the feedrate of the machine tool and the minimum
sampling time of the controller. For the purposes of this analysis,
and to ensure a constant maximum feed per tooth, we assume
that the feedrate during cutting is fixed. The minimum sampling
time is known a priori, thus the chord length the machine tool has
to travel in each time step is constant. The trajectory generation
algorithm computes individual velocities for the machine tool
axes during each time step. While trajectory generation can be
pre-computed as the curve is completely specified, error com-
pensation needs to be applied in real-time, and hence the
trajectory generation is also done in real-time. We first look at
the basic trajectory generation algorithm for a given subdivision
curve.

From the control points of the fitted spline, we have a
subdivision curve of known topology with control points c. From
the subdivision formulation, we know that:

Mc¼ x ð2Þ

where x are the subdivided points (the actual curve), and M is the
subdivision tensor at some required level of subdivision. The
subdivision tensor is a mathematical way of applying the multiple
recursion steps to the subdivision control mesh, and is a function
of the subdivision level. The subdivision level is chosen such that
the maximum spacing of points in the subdivided curve is less
than the chord length the machine tool travels during each time
step. This ensures that the interpolation is accurate and that no
regions of the curve are ‘‘missed’’ during machining.

M is a ðp� qÞmatrix; there are p points in the subdivided curve
and q points in the input control mesh. Hence, we can represent
x as

x¼

m1

m2

^

mp

2
66664

3
77775

c1

c2

^

cq

0
BBBB@

1
CCCCA

ð3Þ

where mi is the i th row in M, and ci is the i th control point.
The goal of the method is to find a set of points, P, separated by

the required chord length, Lrequired, that lie on the curve. The vector
difference between adjacent points in P is the trajectory between
the points. The points in P are found sequentially as the position
of piþ1 is dependent on pi and the trajectory error the machine
tool has encountered in traveling to pi.

The crux of the trajectory generation algorithm lies in
generating piþ1 for a given pi using the arc length parametrization
of the curve. From the arc length parametrization, the first point
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along the curve that is arc length Lrequired away from pi is
calculated. piþ1 necessarily cannot be before this point, as the
chordal distance between two points on a curve cannot be larger
than the arc length between the two points. From this point the
pairwise chordal distance between the pi and each subsequent
point is computed, until the point located at a distance greater
than the chordal length is reached, based on which piþ1 is
computed.

Mathematically, the algorithm is developed as follows. The arc
length parametrization is calculated based on the set of distance
between adjacent control points, D. D is pre-computed very
efficiently using the subdivision tensor of the curve; from Eq. (3),
D is calculated as follows:

D¼

m1 �m2

m2 �m2

^

mp�1 �mp

2
66664

3
77775

c1

c2

^

cq

0
BBBB@

1
CCCCA

ð4Þ

Using the arc length parametrization, the start point for finding
piþ1 is identified. From this point, the chordal length between pi

and successive points on the subdivided curve is evaluated (as the
euclidean distance between the two points). If x denotes the
points on the curve, then point xj can be found which is the closest
point to pi located further than the distance Lrequired. The point piþ1

clearly lies on the curve between xj�1 and xj. piþ1 is calculated by
interpolating between xj�1 and xj. This is done as:

piþ1 ¼ axjþð1� aÞxj�1 ð5Þ

where,

a¼
Lrequired � Jpi � xj�1J

Jxj � xj�1J
ð6Þ

The trajectory Ti is then

Ti ¼ piþ1 � pi ð7Þ

The distance the machine travels in this step is: di ¼ JTiJ

However, this trajectory term does not account for the
trajectory-following error in the machine. Discrepancies between
the spindle location at each step ðsiÞ and the evaluated position
ðpiÞ must be compensated for during trajectory generation. A
schematic of the trajectory generation is shown in Fig. 3.
4. Error metrics

As subdivision curves are naturally discretized, it is straighfor-
ward to compute positional errors during trajectory generation.
The actual positions of the spindle can be compared to the
commanded positions, and the actual distance traveled by the
spindle can also be compared to the length that was required to
be traveled. Based on this, we define the following error terms to
Actual Tool Path

Subdivision Curve
Following Error

Ti−1

si−1 si

si+1

pi−1

pi+1

pi

Ti+1

Ti

i

Fig. 3. Schematic of trajectory generation.
measure the quality of the subdivision surface itself, as well as the
quality of the trajectory generation algorithm. The quality of the
subdivision surface is dependent upon the level of subdivision
used in the surface relative to the chordal length ðLrequiredÞ.

The error metrics are as follows (where /a� bS

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 0ðJai � biJÞ

2
q

):
1.
Tab
Erro

E

e1

e2

e3

e4

e5
e1 ¼/Lactual � LcommandedSFIs a comparison of the actual
distance traveled in each step and the commanded distance.
This metric is an indicator of the error in the movement of the
spindle, as it is related to the mismatch between the actual and
commanded positions during interpolation.
2.
 e2 ¼/Lactual � lstepSFIs a comparison of the actual distance
traveled in each step and the step length at the given feedrate
and controller sampling time. This metric can be used to
confirm if errors in trajectory generation are due to poor
algorithm performance or poor machine tool performance.
Along with this error, if e1 is large, then it indicates that the
machine tool is exhibiting a large amount of following error. If,
along with this error, e3 is also large, it indicates that the
subdivision algorithm is performing poorly.
3.
 e3 ¼/Lcommanded � lstepSFIs a comparison of the commanded
distance traveled in each step and the step length at the given
feedrate and controller sampling time. This metric is an
indicator of the effectiveness of the trajectory generation
algorithm. The algorithm is required to generate at each step a
trajectory such that the distance traveled is equal to the
theoretical distance the spindle can travel in one time-step at
the given feedrate.
4.
 e4 ¼/Lactual � LarclengthSFIs a comparison of the actual dis-
tance (or the chord-length) and the arc-length along the set of
data points being interpolated. This metric is an indicator of
the discretization of the subdivided curve. If e4 is large and e1 is
small, it indicates that the chord-length is much larger than
the arc-length, and directly implies that the subdivision is
coarse and must be refined. In addition to this, if e2 is small as
well, this can be used to predict gouging during machining. For
gouging to occur, the chord-length distance traveled along the
curve must be larger than the arc-length for that region of the
interpolant. A check is performed to determine if e1; e2 are
small to ensure that this discrepancy is due to the curve
characteristics, rather than to poor machine performance or
algorithm performance.
5.
 e5 ¼/si � piSFCompares the actual positions si and the
required positions pi over all the trajectory steps. This is a
measure of the quality of the overall trajectory generation, and
is related to e1.

Table 2 summarizes what the different error metrics indicate.
5. Performance tests

The subdivision trajectory generation and the NURBS trajec-
tory generation were implemented using MATLAB, Version 2007a.
le 2
r metric indicators.

rror metrics Types of errors

Following error

Trajectory algorithm

Trajectory algorithm

Curve discretization, gouging

Following error
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MATLAB is used in the implementation as it provides similar
computational libraries to compare the two approaches. Whilst
OpenGL libraries are available for NURBS interpolation, compar-
able subdivision code libraries are not available. Therefore, by
consistently applying MATLAB for the comparative study based on
the theoretical formation of both approaches, the unintentional
bias of the results in favor of optimized NURBS code over non-
optimized sub-division code was necessarily avoided. All tests
were performed on a 2.8 GHz Intel Xeon Quad-core PC with 4GB
memory.

To test the robustness of the algorithms against machine tool
errors, a random error generator was used to add noise to the
trajectory generation. The error generator randomly changed the
goal position of the spindle as it began traversing a trajectory. The
error was generated as a uniformly distributed random point
within a ‘‘bubble’’ of fixed size. The size of the bubble was
specified relative to the chord length during interpolation.
Position error was compensated in all cases.
X (mm)

Y
(m
m
)

Gears

X (mm)

Y
(m
m
)

Involute function

Fig. 4. Examp
5.1. Example curves

The performance of the subdivision and NURBS trajectory
generation algorithms was tested by computing the trajectory
generation time for a variety of curves. Plots of the curves used in
this study are shown in Fig. 4. These curves were selected for
smoothly varying features, and are representative of the complex
geometries that may be machined at the micro-scale. Each of
these curves were represented by a set of spindle location data
points which were subsequently interpolated by both NURBS
interpolation and subdivision curves interpolation. The average
spacing between adjacent spindle location data points is
approximately 100mm.
5.2. Computational time comparison

The runtime for a complete set of trajectory generation events
was calculated using NURBS interpolation, and was repeated
X (mm)

Y
(m
m
)

Astroid function

X (mm)

Y
(m
m
)

Lissajous function

le curves.
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using subdivision interpolation. The time required to generate a
single trajectory was compared for the two interpolation
methods. A range of controller sampling periods for a fixed
feedrate of 1 mm/s, and a range of feedrates for a fixed sampling
period of 2.5 ms was considered. The random bubble size was set
to be 10% of the step length in both cases. The subdivision limit
was determined such that the largest feature in the subdivided
curve was smaller than the minimum step length. This was done
to ensure that the trajectory generation would proceed forward in
every step. If this condition is not met, it is possible that the
algorithm would keep interpolating between the same two points
in successive steps, leading to errors in the trajectory generation.

The computational time per step for the NURBS and the
subdivision cases for the four test cases are shown in Fig. 5 for
the sampling period case, and in Fig. 6 for the feedrate case. The
subdivision method provides a 3-10X improvement in speed over
NURBS in all the cases.

As the controller sampling period increased, the trajectory
generation time for the NURBS method did not increase, as the
complexity of the NURBS curve does not depend upon the
distance traveled during each time step. In contrast, trajectory
generation time for the subdivision method decreases as the
Sampling Period (s)

C
al
cu
la
tio
n
Ti
m
e
(s
)

Gears

Sampling Period (s)

C
al
cu
la
tio
n
Ti
m
e
(s
)

Involute function

Fig. 5. Comparing NURBS and subdivision trajec
sampling period increases. This is because the chord length
decreases with decreasing sampling frequency, and the subdivi-
sion level required to accurately traverse the curve increases with
decreasing chord length. The decrease is linear for the most part,
but some non-linearity is introduced due to changes in the
subdivision level that result from curve geometry and the spacing
of the initial data points. Even given this increase, however, the
subdivision method is faster than the NURBS method.
5.3. Applying the error metrics

The error metrics can be used in estimating the effectiveness of
the trajectory generation algorithm. We calculate the error
metrics for the gears curve, which contains typical micromilled
features. The results for this curve provide a representative
sample of errors found in the test curves.

Consider metric e1, which can be used as an indicator of the
machine performance. Fig. 7 is a plot of e1 calculated at different
feedrates and different amounts of simulated machine trajectory-
following errors, for a fixed controller sampling time of 5 ms. This
figure indicates that this error metric does not change
Sampling Period (s)

C
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n
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m
e
(s
)

Astroid function

Sampling Period (s)

C
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Lissajous function

tory generation—sampling period variation.
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Fig. 6. Comparing NURBS and subdivision trajectory generation—feedrate variation.
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significantly with increasing feedrate, but changes very
significantly with the simulated machine trajectory-following
errors. The error metric is approximately half the simulated
machine trajectory-following error; this can be explained by
examining the method by which the error metric is calculated.
Since the metric involves taking the root-mean-square, the signed
errors are lost, and as the error is evenly distributed about the
goal position, the metric shows approximately half the random
error value. For example, for the case of a 10% machine error, an e1

value of about 5% can be expected. Fig. 8 is a plot of e5 for the
same cases. This plot indicates that this error metric increases
with simulated machine trajectory-following error as well as with
the feedrate. As the feedrate increases, the chord length increases,
and this leads to increasing mismatch between the actual and
commanded positions.

For a simulated machine trajectory-following error size of 10%
for the gears curve, error metrics e1, e2, e3 are shown against
feedrate in Fig. 9 (with a fixed sample time of 5 ms). We can see
that e3 is close to negligible for all the cases, and that e1 and e2 are
almost identical. This indicates that the trajectory generation was
accurate, as the step length is equal to the trajectory chord length
in each case (this was ensured by using the interpolating function
during generation). This also implies that the primary source of
error in this system was from a mismatch between the actual and
commanded lengths.

Error metric e4 can be used to indicate the accuracy of the
subdivision. Fig. 10 is a plot of this error metric against different
levels of subdivision used for the analysis, beginning at the
minimum level required for accurate trajectory generation (with
all other variables fixed–feedrate: 1 mm/sec, sampling time:
5 ms). As the subdivision level increased, this error metric
decreased, indicating that the curve was being interpolated
more accurately, and that errors like gouging were also
decreasing.

The difference between the arc length and the chord length
can also be studied on a step-by-step basis. Fig. 11 shows this
error for each trajectory step for the gears curve at a subdivision
level of 5. We can clearly see spikes in the curve corresponding to
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the six gear teeth; each tooth has two spikes, corresponding to the
large error in the high curvature regions found at the gear corners.
6. Discussion

Subdivision curves are a very capable representation for
generating machine tool trajectories. Since they are naturally
discretized, the additional processing required to numerically
sample them at high-speeds is minimal. Error metrics are also
easy to calculate as we are operating on a discrete set of points.
The potential for ambiguity is reduced when using subdivision
curves as the curve is explicitly defined at the vertices, unlike in
the case of NURBS curves where the curve must be evaluated. In
addition to providing an off-line measure of interpolation
suitability, the error metrics can also be applied in real-time
error monitoring during machining. For example, the difference
between arc length and chord error as shown in Fig. 11 could be
monitored during machining, and employed as a way of
predicting part quality before manufacturing is completed. These
metrics can also be used as feedback to the motion control loop to
improve the following error in the machine tool.

Using subdivision curves for trajectory generation has the
potential of increasing the productivity of micromilling through
increased feedrates. The amount of chord error in a micromilling
operation is dependent on the chord length traversed by the
spindle during one sampling iteration. The chord length is equal
to the product of feedrate and sampling time. Therefore, a
decrease in sampling time will allow an increase in feedrate
without an increase in chord error. Sampling time is limited by
trajectory generation time. Since trajectory generation by sub-
division curves is faster compared to the NURBS method, this
allows for increased feedrates during micromilling.

It has to be noted that in the subdivision curves method, the
time to generate a trajectory is dependent only on the chord
length, which is a function of both the sampling time and the
feedrate. The NURBS method does not exhibit the same depen-
dency. This means that the algorithm behaves similarly at cases of
high feedrate and high sampling rate as well in cases of low
feedrate and low sampling rate. In terms of machining perfor-
mance, however, these two cases are not comparable. The
performance of the machine tool (especially with respect to
following errors) is much better in the latter case, but the
algorithm does not necessarily reveal this. Additionally, because
of this effect, the amount of increased feedrate available by using
the subdivision method depends upon the chord length: a longer
chord length will result in greater benefit, while a shorter chord
length will result in a smaller benefit.

It is important to note that subdivision curves have to be
carefully applied in machining applications; if used improperly
this method can lead to significant errors. The subdivision level
used in the trajectory generation should be determined such that
discretization errors are decreased. When using uniform subdivi-
sion, the level should ensure that the largest feature is smaller
than the chord length. When using adaptive subdivision schemes,
the level can be locally defined based on the size of the local
feature relative to the chord length. Adaptive schemes can
potentially further decrease the run-time of the algorithm, as
the computational complexity of the curve is determined based
on the local feature size and curvature.
7. Conclusions

In this study, we introduced the method of subdivision curves
as an interpolation method with reduced trajectory generation
time when compared to the NURBS method. The reduced
trajectory generation time allows for increased feedrate or
reduced chord error in high-speed, high-precision micromilling.
Several error metrics were developed to quantify the quality of
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the subdivision interpolation. A set of test curves were used to
compare the trajectory generation times for the subdivision
curves method compared to the NURBS method. Subdivision
curves were shown to reduce trajectory generation calculation
time by as much as 10 times, relative to NURBS.

This research underscores the requirements advanced manu-
facturing processes such as high-speed micromilling place on
design representations. It is no longer adequate for the design
tools used in manufacturing processes to accurately capture the
shape. They also need to be robust enough to allow for fast
computational analysis for application in real-time environments.
Subdivision curves have the potential for application in this
domain, as they offer bounded guarantees on the geometric
fidelity of curves and surfaces, while making available new
computational methods to improve the performance of applica-
tions that operate on the geometric property of the curves. Their
utilization in traditional manufacturing domains have been
limited, and this work has demonstrated that they offer rich
potential in improving the accuracy and performance of manu-
facturing processes.
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