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ABSTRACT 8 

In this study, we analyze drivers of non-El Niño Southern Oscillation (ENSO) precipitation 9 

variability in the Southwest United States (SWUS) and the influence of the atmospheric basic 10 

state, using atmosphere-only and ocean-atmosphere coupled simulations from the Community 11 

Earth System Model version 2 (CESM2) large ensemble. A cluster analysis identifies three 12 

main wavetrains associated with non-ENSO SWUS precipitation in the experiments: a 13 

meridional ENSO-type wavetrain, an arching Pacific North American-type (PNA) wavetrain, 14 

and a circumglobal zonal wavetrain. The zonal wavetrain cluster frequency differs between 15 

models and ENSO phase, with decreased frequency during El Niño and the coupled runs, and 16 

increased frequency during La Niña and the atmosphere-only runs. This is consistent with an 17 

El Niño-like bias of the atmospheric circulation in the coupled model, with strengthened 18 

subtropical westerlies in the central and eastern North Pacific that cause a retraction of the 19 

waveguide in the midlatitude eastern North Pacific. As such, zonal wavetrains from the East 20 

Asian Jet Stream (EAJS) are more likely to be diverted southward in the East Pacific in the 21 

coupled large ensemble, with a consequently smaller role in driving SWUS precipitation 22 

variability. This study illustrates the need to reduce model biases in the background flow, 23 

particularly relating to the jet stream, in order to accurately capture the role of large-scale 24 

teleconnections in driving SWUS variability and improve future forecasting capabilities. 25 

1. Introduction  26 

One of the greatest scientific challenges in the field of atmospheric dynamics is providing 27 

skillful climate/weather predictions beyond the traditional two-week time horizon and into 28 

the subseasonal to seasonal (S2S) range (Vitart et al. 2017). This challenge is particularly 29 

notable for precipitation prediction in the SWUS, which is plagued by low prediction skill 30 

compared to other regions (Kumar and Chen 2020, Roy et al. 2020, Becker et al. 2022).  In 31 

addition, the region contains the most populous and agriculturally productive state in the 32 

United States, California. As a result, improved prediction of precipitation is of utmost 33 

importance for local, state, and federal bodies to properly allocate and manage limited water 34 

resources in the SWUS (e.g., Sengupta et al. 2022).  35 

The importance of improved prediction has been especially illustrated by the recent 36 

persistent multi-year drought in the region (Seager and Henderson 2016, Swain et al. 2014, 37 

Swain 2015). As of 2016, it was estimated to have resulted in billions of dollars in economic 38 
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losses as well as shortages of water for rural consumption, agriculture, hydroelectric power, 39 

and other usages (Lund et al. 2018). However, despite numerous studies over the past decade 40 

analyzing the mechanisms regulating SWUS precipitation, there is little consensus regarding 41 

the drivers of the drought-inducing atmospheric circulation, and there are many gaps to fill 42 

regarding our understanding of SWUS precipitation variability. 43 

In this study, we are primarily concerned with large-scale atmospheric patterns and 44 

teleconnections that regulate SWUS precipitation. Although SWUS precipitation is brought 45 

by midlatitude cyclones and associated atmospheric rivers (ARs) that form over the northern 46 

Pacific Ocean during boreal winter (Ralph and Dettinger 2011, Dettinger 2013, Rutz et al. 47 

2014, Payne and Magnusdottir 2014), known limits in atmospheric predictability (Lorenz 48 

1963) make it impossible to predict individual storms and ARs on S2S timescales. Despite 49 

this, there may still be potential to predict the large-scale atmospheric circulation pattern that 50 

regulates AR landfall and frequency (e.g., DeFlorio et al. 2019). AR landfall and SWUS 51 

precipitation anomalies are strongly associated with the presence of trough or ridge 52 

conditions in the midlatitude Eastern North Pacific (ENP). A trough results in a strengthened 53 

subtropical East Pacific jet, which guides more storms and ARs toward the SWUS, while a 54 

ridge is associated with a weakened subtropical jet and decreased storm and AR activity in 55 

the SWUS (e.g., Gibson et al. 2020, Mundhenk et al. 2016, Swain et al. 2017, Teng and 56 

Branstator 2017, Payne and Magnusdottir 2016). Therefore, identifying the dominant S2S 57 

drivers of trough or ridge conditions in the ENP provides a path for improving SWUS 58 

precipitation prediction and areas to focus future model development. 59 

Traditionally, ENSO has been the primary tool for SWUS precipitation prediction on 60 

seasonal (and to a lesser extent subseasonal) timescales. This is because of its large effect on 61 

the Northern Hemisphere atmospheric circulation during boreal winter and its slow evolution 62 

on seasonal timescales. During an average El Niño, Eastern tropical Pacific warm SST 63 

anomalies drive deep convection that leads to the propagation of Rossby waves to the 64 

midlatitudes (Hoskins and Karoly 1981), resulting in an extension of the Northern subtropical 65 

Pacific jet and wet conditions in the SWUS (Trenberth 1997, Horel and Wallace 1981, 66 

Ropelewski and Halbert 1986, L'Heureux et al. 2015, Deser et al. 2018). During an average 67 

La Niña, the opposite occurs, with a weakening of the jet and dry conditions in the SWUS.  68 

However, the ENSO-SWUS precipitation relationship is dependent on the spatial and 69 

temporal evolution of SST’s (Lee et al. 2018, Patricola et al. 2020), can be dominated by 70 
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noise (Kumar and Chen 2020, Zhang et al. 2018, Swenson et al. 2019), and may vary 71 

nonlinearly with ENSO strength (Jong et al. 2016, Garfinkel et al. 2019). Therefore, the 72 

observed ENSO response in any particular period can deviate significantly from the 73 

composite ENSO response. Notably, the teleconnection has appeared weaker during the 74 

recent decade and persistent drought conditions (Lee et al. 2018). The water years 2013-14 75 

and 2014-15 (defined as a November through March season) experienced severe drought 76 

conditions, despite neutral and weakly positive ENSO conditions, respectively. The following 77 

historically strong 2015-16 El Niño only resulted in average SWUS rain, followed by the 78 

region unexpectedly experiencing a brief respite during the ENSO-neutral 2016-17 deluge 79 

(Wang et al. 2017). Clearly, the ENSO state has not been sufficient to provide skillful 80 

predictions of SWUS precipitation during this time period, and it is necessary to find non-81 

ENSO drivers of precipitation that can provide additional predictive skill. 82 

There are many potential non-ENSO drivers of SWUS precipitation that researchers have 83 

explored. First, these include non-ENSO SST variability, such as Western Pacific tropical 84 

SST (Hartmann 2015, Seager and Henderson 2016, Watson et al. 2016, Lee et al. 2015) and 85 

Indian Ocean SST (Siler et al. 2017, Seager and Henderson 2016), as well as sea ice 86 

concentration variability (Cohen et al. 2017, Lee et al. 2015), all of which may drive 87 

midlatitude circulation responses. Additionally, there may be a role for the Madden Julian 88 

Oscillation (MJO), due to its slow eastward propagation of organized tropical convection 89 

with a semi-regular period of 30-90 days (Zhang 2005).  The MJO has been found to excite 90 

different midlatitude circulation patterns depending on its phase (Arcodia et al. 2020, Moon 91 

et al. 2011, Riddle et al. 2013, Roundy et al. 2010), and it plays a role for subseasonal 92 

prediction (Mundhenk et al. 2018, Henderson et al. 2016, Stan et al. 2022, Lim et al. 2021) 93 

and potentially even seasonal prediction (Peng et al. 2019, Peings et al. 2022). Lastly, there 94 

are teleconnection patterns associated with internal midlatitude atmospheric dynamics, which 95 

may be intrinsic modes of the atmosphere that may also be excited by outside forcing. The 96 

most prominent of these teleconnections include the PNA pattern (Li et al. 2019, Lopez and 97 

Kirtman 2019) and the circumglobal teleconnection patterns (CGT’s; Branstator 2002, 98 

Branstator and Teng 2017, Hoskins and Ambrizzi 1993), which are associated with Rossby 99 

wavetrains guided by the jet stream that can set up trough or ridge conditions in the ENP 100 

(Teng and Branstator 2017). 101 
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Although many potential non-ENSO teleconnections have been explored, and there are 102 

indications that including these non-ENSO drivers can lead to improved predictions (e.g., 103 

through machine learning; Gibson et al. 2021), there is still a long way to go in providing 104 

skillful S2S predictions of SWUS precipitation. In addition, there is still a need to explore 105 

how non-ENSO SWUS precipitation variability can vary depending on the ENSO state and 106 

model choice. ENSO may modulate the tropical mean state that regulates tropical convective 107 

variability (e.g., MJO intensity and propagation; Liu et al. 2016, Kang et al. 2021) as well as 108 

the extratropical atmospheric background flow that is instrumental for Rossby wave 109 

propagation and breaking. Similarly, different model setups introduce their own unique 110 

biases in the mean state, feedbacks, and model physics and parameterizations that may 111 

influence SWUS teleconnection variability. Recent studies show that even in S2S forecasting, 112 

mean state biases quickly emerge after initialization (Garfinkel et al. 2022). In addition, there 113 

may be large differences in tropical convective variability between atmospheric models often 114 

used in hindcast experiments and coupled models typically used in forecasting (e.g., MJO 115 

propagation; Woolnough et al. 2007, DeMott et al. 2019), as well as between models and 116 

observations.  117 

Due to these issues, we supplement our analysis of observations and reanalysis data with 118 

the fully coupled CESM2 large ensemble experiment (Rodgers et al. 2021) and the 119 

atmosphere-only CESM2 Atmospheric Model Intercomparison Project (AMIP) experiment 120 

(NCAR Climate Variability and Change Working Group). This allows for a robust 121 

assessment and reduction of the influence of internal variability in statistical analyses for 122 

studying how a state-of-the-art climate model represents the key teleconnections that 123 

influence SWUS rainfall, during different ENSO states, as well as with either a freely 124 

evolving ocean or with prescribed observational SST. During our analysis of the model 125 

experiments and observational and reanalysis dataset, we aim to answer the following major 126 

questions with regards to subseasonal monthly variability of SWUS precipitation: 127 

1. What are the dominant non-ENSO teleconnection patterns that interfere with the 128 

expected ENSO-SWUS precipitation teleconnection? 129 

2. How do the different teleconnections interact with the ENSO basic state? 130 

3. How well are these teleconnections represented in models, and how might that affect 131 

SWUS precipitation prediction? 132 
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Section 2 presents the data and methodology used.  Section 3 describes results from our 133 

analyses, and Section 4 contains the conclusions and a discussion of the main findings. 134 

2. Data and Diagnostics 135 

a. Observational and Reanalysis Data 136 

For historical global atmospheric variables, we use monthly data from the ERA5 global 137 

reanalysis product (Hersbach et al. 2020), which uses a data assimilation system to constrain 138 

observations from 1940-present with a horizontal spatial resolution of 31 km and 137 vertical 139 

levels. We use historical SST from the Extended Reconstructed Sea Surface Temperature 140 

version 5 (ERSSTv5) dataset, which is a monthly global sea surface temperature dataset 141 

derived from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS) 142 

Release 3.0, with data from 1854 to present on a 2.0° by 2.0° grid. Historical precipitation 143 

over the United States is taken from the Climate Prediction Center (CPC) monthly rain gauge 144 

data set over the years 1948-present on a 0.25° by 0.25° grid. 145 

b. Model Experiment Data 146 

The model data comes from two experiments running CESM2. The first set of 147 

simulations is the CESM2 large ensemble (LENS2; Rodgers et al. 2021), which uses the fully 148 

coupled version. We use the first 50 ensemble members, which use the original Coupled 149 

Model Intercomparison Project 6 (CMIP6) biomass burning protocol and simulate the period 150 

1850-2100 (Danabasoglu et al. 2020). The second set of simulations (GOGA) uses the 151 

atmosphere-only component of CESM2, the Community Atmosphere Model version 6 152 

(CAM6), on a 1.25° by 0.9° horizontal grid with 32 vertical levels and a model top at 2.26 153 

hPa. GOGA is a ten ensemble-member experiment where CAM6 is forced by prescribed 154 

global monthly SST from ERSSTv5 over the period 1880-2021, having been branched from 155 

the 11th LENS2 member on January 1st, 1880 through perturbations to the air temperature 156 

field. 157 

c. Data Treatment and Climate Indices 158 

Each dataset is trimmed to a common time interval, 1948-2020, which is also used to 159 

calculate climatological fields. Additionally, SST anomalies are calculated after first 160 

subtracting the global mean SST at each timestep to account for the global warming trend. 161 

All data are analyzed in either monthly or seasonal averages during NDJFM periods. 162 



7 

 

To represent ENSO, we use the Niño 3 index, calculated as the areal average of SST 163 

anomalies over the eastern tropical Pacific Ocean (210°E-270°E, 5°S-5°N). Analyses have 164 

also been tested using the Niño 3.4 index, which captures more central Pacific ENSO 165 

variability, but the results are similar. SWUS precipitation is calculated as an areal average 166 

over land within the box (235°E-251°E, 31°N-40°N). This region includes most of 167 

California, Nevada, Utah, and Arizona. 168 

We perform linear regressions to measure and then remove the anomalies associated with 169 

ENSO, when analyzing non-ENSO mechanisms. This is performed individually at each grid 170 

point, such that for a variable 𝑋 at latitude 𝜙, longitude 𝜆, and timestep 𝑖, the linear part of 𝑋 171 

dependent on ENSO is calculated as 172 

𝑋!"#$
%,',( = 𝑎 ∗ 𝐸𝑁𝑆𝑂( + 𝑏 173 

where 𝑎 and 𝑏 are constants derived from a simple linear regression between the ENSO 3 174 

index and variable 𝑋%,' over all timesteps 𝑖. Note that when calculated using variable 175 

anomalies, 𝑏 is zero. Using this, we can also calculate “non-ENSO” anomalies by subtracting 176 

the linear ENSO anomalies from the total anomaly 177 

𝑋)*)+!"#$ = 𝑋 − 𝑋!"#$ 178 

where we have omitted the subscripts 𝑖, 𝜙, and 𝜆 for simplicity. Analyses have also been 179 

performed using a quadratic least squares regression to account for the influence of nonlinear 180 

ENSO dependence, but results are similar and the main conclusions do not change. 181 

d. Clustering Algorithm 182 

The following analyses use an algorithm that places map patterns into separate clusters. 183 

Before clustering, we reduce the dimensionality of the data by using extended empirical 184 

orthogonal functions (EEOF’s), where we select multiple variables, inputting the anomalies 185 

of these variables during selected timeframes and locations. For example, later analyses use 186 

monthly 200 hPa meridional wind and streamfunction anomalies during NDJFM months over 187 

a longitude-latitude box (180°E-260°E, 20°N-70°N). After this selection, we compute the 188 

first 20 EEOF’s. 189 

After computing the EEOF’s, we perform the clustering using a Gaussian Mixture Model 190 

(GMM) algorithm from the Scikit-learn library in Python (Pedregosa et al. 2011). Each 191 

timestep is a sample data point with dimensionality equal to the number of selected EEOF’s. 192 
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The clustering algorithm iteratively solves for N clusters from the data points, where N is a 193 

user-defined input, and each cluster is defined by a multivariate Gaussian probability 194 

distribution. Due to the possibility of local maxima, the clustering algorithm is randomly 195 

initiated 100 separate times. The highest scoring result is saved according to the Bayesian 196 

Information Criterion (BIC) score. After calculating the N clusters, each data point can be 197 

assigned to the cluster for which it has the highest probability (according to the multivariate 198 

Gaussian probability distributions).  199 

Using a GMM has distinct advantages over the common clustering algorithm k-means, 200 

which can be formulated as a primitive version of the GMM expectation-maximization 201 

algorithm. While k-means has spherical distributions shapes, fixed partitions, and single 202 

cluster membership, GMM allows for elliptic distribution shapes, overlapping clusters, and 203 

probabilistic cluster membership. As such, GMM is more flexible and advantageous when 204 

analyzing monthly mean data that contains multiple overlapping atmospheric patterns. 205 

e. Stationary Wavenumber of Rossby Waves 206 

We use the 200 hPa mean flow to calculate the wavenumber for stationary Rossby waves 207 

from linear theory using a Mercator coordinate transform as in Hoskins and Ambrizzi (1993), 208 

where 𝐾, is the stationary wavenumber, 𝑈 is the zonal wind, 𝑎 is the Earth’s radius, 𝜙 is 209 

latitude, and 𝛽- is the Mercator coordinate equivalent of the meridional gradient of absolute 210 

vorticity. 211 

𝐾, = 𝑎 3
β. cos𝜙

𝑈 8
/ 0⁄

 212 

𝛽- = 92Ω − 3
1

cos𝜙
𝜕
𝜕𝜙8

0

(𝑈 cos𝜙)@
cos0 𝜙
𝑎0  213 

We interpret the stationary wavenumber as follows. Under the assumption that locally the 214 

medium is varying only in the meridional direction, the zonal wavenumber 𝑘 is constant, so 215 

that for each zonal wavenumber, the meridional wavenumber 𝑙	can be deduced from the 216 

following: 𝐾,0 = 𝑘0 + 𝑙0. This implies that for stationary, linear Rossby wave solutions, a 217 

wave with zonal wavenumber 𝑘 is restricted to regions of 𝐾, > 𝑘, or else 𝑙 will be imaginary 218 

and the waves will decay. Put another way, linear waves are refracted towards regions with 219 

higher 𝐾,. Naturally, this places larger restrictions on short waves with higher zonal 220 
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wavenumbers, particularly in waveguides along the jet streams. However, even larger scale 221 

waves with smaller wavenumbers will be refracted by the medium. While many of the 222 

assumptions of linear theory are not strictly valid, it can be useful for qualitative analysis. 223 

3. Results 224 

Our goal is to analyze non-ENSO mechanisms and how they regulate SWUS precipitation 225 

while interacting with ENSO. However, it is important to recognize that ENSO variability 226 

may differ between reanalysis, GOGA, and LENS2. This may impact the teleconnection 227 

strength between ENSO and SWUS precipitation, as well as how ENSO interacts with other 228 

non-ENSO mechanisms.  In the first section we briefly compare ENSO tropical SST and 229 

convective variability, its induced large-scale atmospheric response, and the strength of the 230 

ENSO teleconnection with SWUS precipitation in each of the model experiments and 231 

reanalysis, before analyzing non-ENSO variability in the latter sections. 232 

233 
Fig. 1. Regression (left column) of monthly NDJFM SST (shading) and monthly NDJFM precipitation 234 
(contours) with the Niño 3 index in ERA5/ERSSTv5, GOGA and LENS2. Contour interval in left column 235 
is 1.0	mm	day!"	K!", with zero contour omitted. Regression (right column) of monthly NDJFM SF200 236 
(shading) and monthly NDJFM 200 hPa zonal wind (contours) with Niño 3 index in ERA5, GOGA, and 237 
LENS2. Contour interval in right column is 1.5	m	s!"	K!", with zero contour omitted. 238 
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a. Comparison of model variability of the ENSO-SWUS precipitation teleconnection 239 

In Figure 1, we display the regressed fields associated with the Niño 3 index during 240 

NDJFM months. The SST expression of ENSO (left column) is nearly identical between 241 

ERSSTv5 and GOGA, as expected due to the experimental design.  However, in LENS2 242 

there is a westward extension of the warm SST pool during El Niño as previously shown by 243 

Capotondi et al. (2020). As a result, the tropical atmospheric precipitation response is also 244 

shifted westward. However, this shift is not clearly manifested in a different ENSO 245 

extratropical response in LENS2, compared to GOGA and observations.  246 

When comparing 200 hPa streamfunction (SF200) and 200 hPa zonal wind (U200), each 247 

dataset displays a similar meridional wavetrain in the central-eastern Pacific, which results in 248 

a trough in the extratropical North Pacific and strengthened subtropical North Pacific 249 

westerlies (Fig. 1 right panels). Calculating the longitude of maximum jet strengthening, we 250 

find that it occurs at 142.5° W in ERA5, 148.75° W in LENS2, and 155° W in GOGA. Thus, 251 

despite nearly identical monthly SST variability in GOGA and ERA5, there is about a 12° 252 

longitude westward shift in the jet strengthening maximum in GOGA. In contrast, despite a 253 

westward shift in warm tropical SST and convection in LENS2, the jet response maximum is 254 

shifted eastward relative to GOGA. This indicates that the zonal location of tropical warming 255 

and convection associated with ENSO is not necessarily a good predictor of small zonal shifts 256 

in the extratropical response, which could be important for SWUS precipitation prediction. 257 

This concept is further elucidated when we construct regression maps with monthly 258 

NDJFM SWUS precipitation (Figure 2). While we might have initially expected a weaker 259 

ENSO-SWUS precipitation teleconnection in LENS2 due to the westward tropical convection 260 

shift (Patricola et al. 2020), this is clearly not the case. When analyzing the relationship 261 

between SWUS precipitation and tropical SST, it appears that GOGA has the weaker ENSO-262 

SWUS rain relationship, in contrast to stronger relationships in LENS2 and ERA5/ERSSTv5, 263 

which exhibit stronger SST and precipitation signals in the ENSO region. Potentially, this 264 

may be related to the aforementioned shifts in the ENSO-induced jet response, where an 265 

eastward shift results in a stronger SWUS precipitation response. However, it is also 266 

important to remember that GOGA uses prescribed SST in the extratropics, so the lack of air-267 

sea feedbacks may also weaken this relationship, such as by changing feedbacks in Rossby 268 

wave forcing or storm feedbacks. 269 
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270 
Fig. 2. Regression (left column) of NDJFM monthly SST (shading) and precipitation (contours) with 271 
SWUS precipitation in ERA5/ERSSTv5, GOGA and LENS2. Contour interval in left column is 272 
0.5	mm	day!" per mm	day!", with zero contour omitted. Regression (right column) of NDJFM monthly 273 
SF200 (shading) and U200 (contours) with SWUS precipitation in ERA5, GOGA, and LENS2. Contour 274 
interval in right column is 1.0	m	s!" per mm	day!", with zero contour omitted. 275 

When analyzing the SF200 and U200 patterns regressed with SWUS precipitation (Figure 276 

2 right column), we identify similar patterns in the ENP in each dataset, with a trough and 277 

associated strengthened subtropical East Pacific westerlies. However, outside this region, 278 

there are numerous differences between GOGA, LENS2, and ERA5. Both LENS2 and ERA5 279 

display significant signal from ENSO, with a meridional wavetrain in the central-eastern 280 

Pacific and strong negative zonal mean SF200 responses in the midlatitudes that resemble the 281 

ENSO regressed responses. In GOGA, there are also similarities to the regressed ENSO 282 

pattern, but the influence is weaker. GOGA exhibits stronger hints of a zonal pattern with 283 

troughs over East Asia, east of Japan, and in the ENP, which does not overlap with the ENSO 284 

regressed response. Similar patterns have been identified in previous studies, associated 285 

either with atmospheric internal variability or convection in the western tropical Pacific 286 

(Gibson et al. 2020, Swain et al. 2017, Teng and Branstator 2017). 287 
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As expected, ENSO is the dominant climate pattern associated with SWUS precipitation 288 

in each of ERA5, LENS2, and GOGA, although the connection appears weaker in GOGA. 289 

However, SWUS precipitation is highly variable, and ENSO only explains a small fraction of 290 

its variance. Figure 3 shows the correlation between the Niño 3 index and SWUS 291 

precipitation at monthly timescales, where it is under 0.2 for each model and in observations 292 

(at seasonal time scales, the correlation is ~0.26 for GOGA and ~0.42 for observations and 293 

LENS2). Despite this low correlation, the dominant ENSO signal in the large-scale 294 

atmospheric dynamics makes it difficult to ascertain the role of non-ENSO teleconnection 295 

patterns. To address this, we next analyze non-ENSO anomalies during wet and dry SWUS 296 

periods with similar background ENSO states. 297 

 298 
Fig. 3. Distribution of SWUS P anomalies as a function of the Niño 3 index for NDJFM months in GOGA 299 
(left), LENS2 (middle), and observations (right). The black line is the regression between SWUS P and 300 
Niño 3. Orange points indicate wet SWUS rain months used. Green points indicate dry SWUS rain months 301 
used. 302 

b. Variability of the ENSO-SWUS precipitation teleconnection in LENS2 and GOGA 303 

Focusing on non-ENSO teleconnections, we first calculate non-ENSO anomalies by 304 

regressing out the Niño 3 index as described in section 2c. Then, we create composites for 305 

NDJFM months with high non-ENSO SWUS rainfall minus low non-ENSO SWUS rainfall. 306 

In GOGA, which has ten ensemble members, we composite the three wettest minus the three 307 

driest ensemble members at each timestep. Note that in this case, each group has identical 308 

SST variability. In LENS2, which has a freely-evolving ocean, we take the wettest 30% 309 

minus the driest 30% of months over all the data. Using non-ENSO anomalies in conjunction 310 

with the composite method is effective at removing the ENSO signal from our analyses. We 311 

perform the analysis on NDJFM months rather than seasons, due to the larger sample size, 312 

although results are overall similar. Composite analyses are not performed on reanalysis data 313 

due to the small sample size. 314 
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315 
Fig. 4. Difference between high versus low SWUS rainfall months in GOGA (left column) and LENS2 316 
(right column), and during positive ENSO (top row) and neutral/negative ENSO (bottom row). In each 317 
panel, 200 hPa meridional wind (shading) and 200 hPa streamfunction (contour) is plotted. The contour 318 
interval is 2.5 ∙ 10#	m$	s!". The zero contour is omitted. 319 

In anticipation that the ENSO background may affect which non-ENSO teleconnections 320 

drive SWUS precipitation variability, we compare El Niño periods where Niño 3 anomalies 321 

are greater than 0.5° C to neutral/La Niña periods where Niño 3 anomalies are less than 0.5° 322 

C. In addition, due to the wider distribution of Niño 3 anomalies in LENS2, only months with 323 

anomalies of magnitude 3.3° C and less are considered, in line with the historical record. 324 

Figure 4 displays the composite results for 200 hPa meridional wind (V200) and SF200. 325 

There are two clear dominant patterns that are associated with non-ENSO SWUS 326 

precipitation. First, there is a zonal wavenumber-5 CGT with troughs over northern Africa, 327 

eastern India, the subtropical west Pacific, the ENP, and the Atlantic oceans. This pattern is 328 

the dominant pattern in GOGA during both ENSO states, as well as being present in LENS2 329 

neutral/La Niña months. Comparatively, the pattern is weaker in LENS2 El Niño months. 330 

This result supports the previous findings of Teng and Branstator (2017) regarding the 331 

significant role CGT’s may play in ENP ridges and troughs. 332 

The second dominant pattern in Figure 4 is a meridional El Niño-like wavetrain in the 333 

central-eastern Pacific, with a ridge in the subtropical East Pacific and trough in the ENP. 334 

This pattern is most apparent in LENS2 El Niño months, which coincidentally had the 335 

weakest zonal pattern. The pattern is also apparent, albeit slightly weaker, in LENS2 336 
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neutral/La Niña months. In GOGA, the meridional wavetrain signal is much weaker if 337 

present at all. 338 

Although the meridional wavetrain resembles an El Niño response, it is not a result of 339 

linear ENSO variability, due to the composite method and removal of linearly regressed 340 

ENSO anomalies. To affirm this and identify tropical forcing patterns for the circulation 341 

patterns in Figure 4, identically constructed composites for non-ENSO precipitation and non-342 

ENSO SST are displayed in Figure 5. Analyzing SST first, there is no GOGA SST signal as 343 

expected. By contrast, LENS2 contains weak SST signals in the tropics and stronger SST 344 

signals in the extratropics, which are likely driven by the atmospheric circulation. All tropical 345 

SST differences are less than 0.25 K, so it appears that tropical SST variability is only weakly 346 

related to the differences in SWUS precipitation. However, it is possible that SST anomalies 347 

induced by the atmospheric variability may feedback on and modulate the atmospheric 348 

circulation in LENS2, even if they are not the direct drivers (e.g., Watanabe and Kimoto 349 

2000, Lau and Nath 1996). 350 

351 
Fig. 5. As in Figure 4, but for precipitation (shading) and SST (contours). Contour interval is 0.25 K, with 352 
zero contour omitted. The red box is the NEIO (80°E-100°E, 5°N-20°N). The green box is the rainA 353 
region (140°E-170°E, 0°N-10°N).  354 
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Despite the lack of significant tropical SST differences, there are still significant tropical 355 

precipitation differences that appear unforced by SST and may explain the different 356 

circulation patterns present in each model experiment and ENSO state. First, in LENS2, there 357 

is a tropical Pacific precipitation pattern that resembles a southward shift and weakening of 358 

the Intertropical Convergence Zone (ITCZ). This pattern is stronger during LENS2 El Niño 359 

months relative to neutral/La Niña months, while not showing any significant presence in 360 

GOGA. The meridional wavetrain varied in a similar way with model experiment and ENSO 361 

state, so this tropical precipitation pattern may be associated with the meridional wavetrain 362 

pattern. 363 

When we analyze precipitation in the West Pacific and Indian Ocean in Fig. 5, we note 364 

two significant features. First, there is a common signal in the rainA region (140°E-170°E, 365 

0°N-10°N), highlighted by the green box, during each ENSO phase and each model 366 

experiment. Teng and Branstator (2017) found this precipitation signal to be associated with 367 

zonal wavetrain patterns that set up ridges or troughs in the ENP. Second, we highlight in red 368 

the region in the Northeast Indian Ocean (NEIO), which only contains a precipitation signal 369 

during GOGA neutral/La Niña months. Due to its proximity to the EAJS, we hypothesize that 370 

this precipitation signal may be related to the zonal wavetrain pattern. Later, in section 3e, we 371 

will analyze the atmospheric responses to precipitation in each of these regions to investigate 372 

why the rainA signal is common for each model experiment and ENSO phase, while the 373 

NEIO precipitation signal is strongest during GOGA neutral/La Niña months. 374 

c. Clustering to identify unique teleconnections that bring SWUS precipitation 375 

So far, we have visually identified two non-ENSO circulation patterns that can regulate 376 

SWUS precipitation: a zonal CGT and an East Pacific meridional wavetrain. However, it is 377 

possible that there are other unidentified patterns hidden within the composite, as it is 378 

difficult to disentangle individual circulation patterns. Additionally, the composite method 379 

offers no quantitative measure of the frequency of occurrence for individual patterns. To 380 

address this, we use a clustering algorithm to analyze wet SWUS months individually and to 381 

identify unique circulation patterns associated with SWUS precipitation. Then, we can assess 382 

the relative frequencies of the unique patterns, the tropical forcing associated with each 383 

pattern, and how the cluster frequencies change in each model set-up and with different 384 

ENSO backgrounds. 385 
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The method used for clustering anomalies is described in section 2d. Using non-ENSO 386 

SWUS precipitation, input months are selected as the wettest 30% of NDJFM months from 387 

the ten GOGA ensemble members and the wettest 30% of NDJFM months from the first ten 388 

ensemble members of LENS2, in order to equalize the influence from each one. Input 389 

variables include the first 20 EEOF’s of non-ENSO V200 and non-ENSO SF200 over the 390 

ENP and North America (180°E-260°E, 20°N-70°N). 391 

We find that searching for 3 clusters produces the best results, based on the BIC score and 392 

by visual inspection.  Composites are constructed by assigning each month to one of the 393 

calculated clusters. The composites for precipitation and SF200 are displayed in Figure 6, 394 

along with the relative frequency of each cluster within each model experiment. Cluster 395 

frequencies and composites are also calculated for ERA5, although the results are less 396 

statistically reliable due to the smaller sample size. Additionally, we calculate the cluster 397 

frequencies for each ensemble member individually, then calculate the standard deviation of 398 

the ensemble spread. 399 

400 
Fig. 6. Composite non-ENSO anomalies for each cluster in ERA5, GOGA, and LENS2. Monthly NDJFM 401 
SF200 (contours) and precipitation (shading). Contour interval is 2.5	 ∙ 10#	m$/s. Zero contour is omitted. 402 
Frequency of each cluster in each dataset is displayed in subplot title, with ensemble member standard 403 
deviation in parentheses. 404 
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Cluster 1 (top row) can be described as an arching wavetrain that strongly resembles the 405 

PNA teleconnection pattern and is similar to patterns found previously associated with non-406 

ENSO precipitation in the SWUS (e.g., Li et al 2019, Lopez and Kirtman 2019, Jiang et al. 407 

2022). The cluster is associated with different tropical precipitation patterns in each dataset. 408 

In ERA5, there are only very weak tropical anomalies. By contrast, the arching wavetrain is 409 

associated with precipitation in the West Pacific rainA region in GOGA. In LENS2, it is 410 

associated with a quadrupole of precipitation anomalies over the equatorial and off-equatorial 411 

Pacific. These differences highlight a potentially strong role for internal atmospheric 412 

variability for Cluster 1. Despite this, Cluster 1 is the most common cluster in ERA5 and 413 

GOGA, and second most common in LENS2, despite not being one of the wavetrains 414 

identified earlier in our composite analysis. 415 

Cluster 2 (middle row) is associated with a meridional wavetrain, shifted slightly 416 

westward relative to the meridional wavetrain found earlier (Figure 4 right column), so that it 417 

resembles more closely the regressed ENSO response (Figure 1). This pattern, compared to 418 

the other clusters, is associated with stronger precipitation anomalies in the tropical Pacific. 419 

In particular, in each model experiment this cluster is associated with a north-south dipole of 420 

precipitation in the central tropical Pacific, as well as a north-south dipole of opposite sign in 421 

the tropical West Pacific. This cluster is nearly twice as common in LENS2 (38.7%) as it is in 422 

ERA5 (22.7%) and GOGA (23.7%). 423 

Lastly, Cluster 3 is a zonal wavetrain that resembles the composite atmospheric pattern 424 

associated with SWUS precipitation in GOGA (Figure 4 left column). It is a zonal 425 

wavenumber 5 wavetrain that propagates through the EAJS and sets up a trough over the 426 

ENP region. It is associated with excess precipitation in Southeast China and the off-427 

equatorial central North Pacific in each dataset, although this signal is weaker in GOGA 428 

relative to ERA5 and LENS2. This cluster is more frequent in GOGA (38.7%) than it is in 429 

LENS2 (26.6%) and ERA5 (30.9%). 430 

In addition to variations with model, cluster frequencies may also depend on the ENSO 431 

background state, which may modulate non-ENSO variability (e.g., by changing preferential 432 

non-ENSO convection patterns in the tropics, propagation of Rossby waves in the 433 

extratropics, etc.). Figure 7 displays the frequency for each cluster during El Niño and 434 

neutral/La Niña backgrounds for each experiment. For all datasets, the zonal and arching 435 

wavetrain clusters are more prevalent during neutral/La Niña backgrounds than during El 436 
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Niño, while the meridional wavetrain cluster is more prevalent during El Niño backgrounds. 437 

The fact that each of ERA5, GOGA, and LENS2 displays similar cluster relationships with 438 

ENSO phase, despite their differences, indicates the robustness of this dependence on ENSO. 439 

440 
Fig. 7. Cluster frequencies for each cluster in Figure 6 for each dataset and ENSO phase. 441 

d. Role of the background flow on Rossby waveguide characteristics 442 

So far, we have identified three clusters associated with non-ENSO SWUS rainfall and 443 

found that both model choice and the ENSO background state influence cluster frequency. 444 

There are many potential causes for these differences, such as differences in tropical 445 

convective variability (e.g., MJO, ITCZ), modulations of Rossby wave source and 446 

propagation by the atmospheric mean state, and different internal midlatitude atmospheric 447 

dynamics. All of these likely play a role in modulating cluster frequencies, and each may be 448 

affected by model setup and ENSO phase. However, for the rest of this paper, we will focus 449 

on the waveguide effect of the atmospheric mean state, with a brief discussion of the 450 

differences in tropical convective variance and Rossby wave source in Section 3f. We now 451 

turn to how changes in the background flow due to model biases and ENSO can affect the 452 

characteristics of the waveguide in the North Pacific, with potentially significant effects on 453 

Rossby wavetrains that impact SWUS precipitation. 454 
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 455 

Fig. 8. (left) NDJFM climatological U200 for ERA5 (top) and corresponding biases in GOGA (middle) 456 
and LENS2 (bottom), as well as NDJFM climatological stationary wavenumber in ERA5, GOGA, and 457 
LENS2. (middle) NDJFM U200 regressed response to El Niño and corresponding stationary wavenumber 458 
for ERA5, GOGA, and LENS2. (right) As in middle column but for La Niña. Contour intervals are 10 m/s 459 
(top left) and 2.5 m/s (elsewhere). In each panel, U200 is contoured, and stationary wavenumber is shaded. 460 

To investigate the role of the basic state on Rossby wave propagation, we calculate the 461 

ERA5 NDJFM climatological U200 and the mean U200 biases in GOGA and LENS2, 462 

respectively (Figure 8 left column). We also calculate the climatological NDJFM stationary 463 

wavenumber for each experiment (section 2e). 464 

In ERA5, the climatological jet stream over Southeast Asia forms a narrow strip of 465 

maximum 𝐾, that serves as an effective waveguide through the EAJS. This waveguide 466 

extends toward the Eastern North Pacific, while a separate waveguide forms in the 467 

tropical/subtropical Eastern Pacific that is later associated with the Atlantic jet stream.  468 

In the model experiments, LENS2 displays stronger zonal wind biases in the North 469 

Pacific that have more significant effects on the stationary wavenumber field, compared to 470 

GOGA. While GOGA is characterized by a similar North Pacific waveguide as in reanalysis, 471 

LENS2 displays a nearly 10 m/s strengthening of the subtropical eastern Pacific westerlies, 472 

which is associated with a strong increase in the meridional vorticity gradient in the central 473 

and eastern subtropical Pacific, with a smaller decrease on the poleward side of the jet. This 474 
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is associated with a southward shift in the waveguide, with a westward retraction in the 475 

midlatitude ENP region and eastward extension in the subtropics. 476 

This change in the waveguide can have significant effects on Rossby wave propagation, 477 

particularly for high wavenumber (short length) waves. Considering regions with 𝐾, ≥ 5, 478 

where CGT’s of zonal wavenumber 5 are theoretically bound, both ERA5 and GOGA are 479 

characterized by a North Pacific waveguide that extends towards the ENP, so that 480 

wavenumber 5 wavetrains from the EAJS propagate zonally into the ENP. In LENS2, 481 

changes in the East Pacific waveguide cause the same waves to deviate southward to join the 482 

southern waveguide, at least according to linear theory and on a climatological basis. 483 

Similarly, differences in the background flow due to ENSO may alter the stationary 484 

wavenumber field and Rossby wave propagation. Figure 8 displays the regressed U200 485 

anomalies associated with El Niño (middle column) and La Niña (right column), as well as 486 

the average stationary wavenumber field that occurs during each ENSO phase. Notably, the 487 

ENSO driven jet response is similar to the mean bias in LENS2, and it has similar effects on 488 

the waveguide. During El Niño, there is a westward retraction of the midlatitude waveguide 489 

in the North Pacific, while in La Niña there is greater eastward extension into the midlatitude 490 

ENP region. Curiously, La Niña can be thought to counteract the LENS2 mean state bias, 491 

such that during LENS2 La Niña, the waveguide is similar to that which occurs during ERA5 492 

and GOGA El Niño. 493 

The dependence of the waveguide on model mean state biases and ENSO phase may 494 

partially explain some of the cluster frequency dependences found earlier, particularly for the 495 

zonal wavetrain pattern, which has a higher zonal wavenumber. For example, during La 496 

Niña, EAJS zonal wavetrains may propagate into the ENP more frequently, due to the 497 

eastward, northward extension of the waveguide relative to El Niño. Through identical 498 

reasoning, GOGA may be dominated by the zonal wavetrain variability more than LENS2. In 499 

this way, it appears that large-scale changes in the background flow, due to ENSO, model 500 

biases, or other variabilities, may result in significant changes to the waveguide, Rossby wave 501 

propagation, and potentially teleconnection sign and strength.  502 
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 503 
Fig. 9. Difference between high versus low Northeast Indian Ocean rainfall months in GOGA (left 504 
column) and LENS2 (right column), as well as in positive ENSO (top row) and neutral/negative ENSO 505 
(bottom row). 200 hPa meridional wind (shading) and 200 hPa streamfunction (contour) is plotted. The 506 
contour interval is 1.5 ∙ 10#	m$	s!", with zero contour omitted. NEIO precipitation region is indicated by 507 
red box. 508 

e. Effect of the background state on SWUS precipitation teleconnections 509 

Although we have demonstrated how changes in the background flow can affect the 510 

waveguide, it is still necessary to confirm its effects on Rossby wave propagation and SWUS 511 

precipitation. We now construct composites on rainfall in the NEIO (red box from Figure 5) 512 

and in the rainA region (green box from Figure 5), to demonstrate how the waveguide affects 513 

two types of Rossby wavetrains. Composites are calculated in an identical manner to Figures 514 

4 and 5, but replacing SWUS precipitation with the NEIO or rainA precipitation, in order to 515 

analyze the non-ENSO response to NEIO and rainA precipitation. 516 

In Figure 9, the atmospheric circulation associated with NEIO precipitation consists of a 517 

zonally oriented wavetrain in the EAJS, which is similar in each model experiment and 518 

ENSO phase. However, significant differences emerge as the wavetrain propagates 519 

downstream towards the East Pacific.  520 

During GOGA El Niño months, the wavetrain deviates southward in the East Pacific 521 

before continuing zonally eastward. Contrarily, in GOGA neutral/La Niña months, the 522 

wavetrain continues to propagate zonally eastward through the midlatitudes over the ENP and 523 

the United States. This aligns with the subtropical bias of the East Pacific waveguide during 524 

El Niño, relative to La Niña. Due to the meridional shift of the wavetrain, NEIO precipitation 525 

is associated with a neutral SWUS rain response in GOGA El Niño months and a dry SWUS 526 

in GOGA neutral/La Niña months (Figure 10). 527 
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528 
Fig. 10. Difference between high versus Northeast Indian Ocean rainfall months in GOGA (left column) 529 
and LENS2 (right column), as well as in positive ENSO months (top row) and neutral/negative ENSO 530 
(bottom row). In each panel, Western North America precipitation (shading) is plotted. 531 

Analyzing LENS2, there is a notable similarity between the circulation pattern during 532 

LENS2 neutral/La Niña months and GOGA El Niño months. However, this is not surprising 533 

considering that the waveguide and stationary wavenumber field during LENS2 La Niña was 534 

similar to that during GOGA El Niño. Slight differences do lead to a slightly drier SWUS in 535 

LENS2 neutral/La Niña months. 536 

During LENS2 El Niño months, there appears to be even further southward deviation of 537 

the EAJS wavetrain once it approaches the East Pacific, so that the weak trough over Alaska 538 

in LENS2 neutral/La Niña months has shifted southward into the ENP. However, it is 539 

important to note that NEIO precipitation during LENS2 El Niño is associated with relatively 540 

higher precipitation variability in the central tropical Pacific, relative to La Niña and GOGA, 541 

which may obfuscate the response. In any case, NEIO precipitation is associated with a wet 542 

SWUS during El Niño in LENS2, contrasting the drier response during neutral/La Niña 543 

months. 544 
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 545 

Fig. 11. Difference between high versus low rainA rainfall months in GOGA (left column) and LENS2 546 
(right column), as well as in positive ENSO (top row) and neutral/negative ENSO (bottom row). 200 hPa 547 
meridional wind (shading) and 200 hPa streamfunction (contour) is plotted. The contour interval is 1.5 ∙548 
10#	m$	s!". The zero contour is omitted. rainA precipitation region is indicated by green box. 549 

 550 

Fig. 12. Difference between high versus low rainA rainfall months in GOGA (left column) and LENS2 551 
(right column), as well as in positive ENSO months (top row) and neutral/negative ENSO (bottom row). In 552 
each panel, Western North America precipitation (shading) is plotted. 553 
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Lastly, we have analyzed the response to precipitation in the rainA region (Figure 11). It 554 

is associated with an arching wavetrain response that resembles the PNA, and thus may be 555 

related to Cluster 1. Comparing El Niño to neutral/La Niña in GOGA, there does seem to be a 556 

slight southward shift during El Niño, but it is not significantly enough to change the dry 557 

SWUS response (Figure 12). In LENS2, there are more impacts from covarying tropical 558 

precipitation patterns in the central Pacific, but the wavetrains are largely similar and set up a 559 

ridge in the ENP, associated with dry anomalies in the SWUS. Thus, differences in the 560 

waveguide due to model bias and ENSO did not significantly alter Rossby wave propagation 561 

enough to alter SWUS rain anomalies. In this way, it is likely that the role of the waveguide 562 

is more important for short wavelength zonal wavetrains than long wavelength arching 563 

wavetrains. This may potentially explain why the zonal wavetrain cluster frequency differs 564 

between GOGA and LENS2, while the arching wavetrain cluster frequency is comparable for 565 

both. 566 

3f. Potential role of tropical forcing and Rossby wave source 567 

While we have shown how biases in the waveguide can modulate zonal wavetrains and 568 

likely affect the frequency of the Cluster 3 zonal wavetrain pattern, we still do not have an 569 

adequate explanation for the increased frequency in LENS2 (38.7%) for the Cluster 2 570 

meridional wavetrain, relative to GOGA (23.7%) and ERA5 (22.7%). Due to the strong 571 

tropical precipitation signal associated with SWUS precipitation in the LENS2 composites 572 

(Figure 5) and in Cluster 2 (Figure 6), the frequency difference is likely related to tropical 573 

forcing. In particular, we are interested in two possible mechanisms related to tropical 574 

forcing. First, there is the amount of tropical convective activity (represented by standard 575 

deviation), where we expect that if LENS2 has increased convective activity in the tropics, 576 

there might be increased activity in the meridional Cluster 2 pattern. Second, the LENS2 577 

subtropical Pacific jet bias, which increases the meridional vorticity gradient in the vicinity of 578 

the strengthening, may increase the sensitivity of Rossby wave source to meridional 579 

divergent outflow (Sardeshmukh and Hoskins 1988). In this section, we briefly analyze and 580 

link these two possibilities to the meridional wavetrain pattern by comparing the tropical 581 

upper level divergence activity between each of LENS2, GOGA, and ERA5, and analyzing 582 

the extratropical response to a region of increased tropical divergence activity in LENS2. 583 
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584 
Fig. 13: (left) non-ENSO NDJFM standard deviation of monthly 200 hPa divergence (shading) and bias 585 
from ERA5 (contour). (middle) as in left column but for the irrotational meridional wind. Contour intervals 586 
are 0.5	 ∙ 10!#		s!" (left) and 0.15	m/s  (middle), with zero contour omitted. (right) Normalized regression 587 
response to divergence in blue box (150°W-130°W,5°N-15°N) for 200 hPa divergence (shading) and 588 
streamfunction (contour). Contour interval is 1	 ∙ 10#		m$	s!", with zero contour omitted. 589 

Analyzing the standard deviation of tropical divergence (Figure 13 left), most of the 590 

variance is associated with the north Pacific ITCZ and the South Pacific Convergence Zone 591 

(SPCZ) in each of the datasets. However, both LENS2 and GOGA exhibit increased activity 592 

over the Western Pacific and the ITCZ, relative to ERA5. The regions of increased 593 

divergence activity are associated with regions of increased meridional divergent flow 594 

activity (Figure 13 middle). In GOGA, this increased activity occurs in the equatorial central-595 

western Pacific, between the SPCZ and the ITCZ. In LENS2, there is increased meridional 596 

divergent flow activity in the Eastern and Western Pacific, in particular. We expect that 597 

regions of increased meridional wind activity are also associated with increased variance in 598 

Rossby wave source from the advection of the mean state vorticity and potentially Rossby 599 

waves propagating to the extratropics. 600 

To relate the tropical divergence activity differences to the meridional wavetrain 601 

frequency, we now choose a region at the eastern tip of the ITCZ where LENS2 exhibits 602 

increased activity relative to both GOGA and ERA5 (blue box, 150°W-130°W,5°N-15°N), 603 
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which is associated with lobes of increased meridional divergent flow activity to the north 604 

and south. We calculate the non-ENSO regression response to the areal mean of divergence 605 

in this region (Figure 13 right), normalized by the standard deviation in LENS2 (1.85	 ∙606 

10+2	s+/), which was nearly 20% higher than the standard deviation in GOGA (1.60	 ∙607 

10+2	s+/) and in ERA5 (1.56	 ∙ 10+2	s+/). Positive (negative) divergence is associated with a 608 

meridional wavetrain that weakens (strengthens) the subtropical jet and induces a dry (wet) 609 

response in the SWUS. Thus, there appears to be a clear link between the overestimation of 610 

tropical convective activity and the higher frequency of the meridional Cluster 2 wavetrain 611 

pattern in LENS2. 612 

It is less clear, however, whether the subtropical jet bias affects the wavetrain response to 613 

the tropical divergence. Based on previous studies (e.g., Wang et al. 2020, Garfinkel and 614 

Hartmann 2010), we would have expected an equal tropical divergence to produce a stronger 615 

wavetrain amplitude in LENS2 due to the increased meridional vorticity gradient. However, 616 

while there is a change in orientation of the wavetrain in ERA5 and GOGA compared to 617 

LENS2, the amplitude of the response is similar in ERA5 while much weaker in GOGA. It is 618 

possible that other factors are affecting the extratropical response, such as air-sea feedbacks 619 

in the extratropics or the specific shape of the tropical convective pattern, which complicates 620 

the situation. Idealized modeling studies that prescribe a basic state wind and tropical heating 621 

would likely be required to separate and diagnose the effect of the jet bias from other 622 

variabilities. 623 

3g. Implications for future climate change 624 

While the focus of this study is on analyzing model variability, it is interesting to examine 625 

how regional climate variability may change in the future due to global warming. As such, 626 

we now briefly compare the LENS2 historical period (1948-2020) with the simulation of the 627 

last 3 decades of the 21st century in LENS2 (2071-2100), based on the SSP3 RCP 7.0 628 

scenario. 629 

Figure 14 displays the future change in the basic state zonal wind, as well as the future 630 

change in the tropical divergence activity. Similar to previous multi-model studies, there is an 631 

extension of the subtropical jet in the Pacific in future simulations under LENS2 (Allen and 632 

Luptowitz 2017, Wang et al. 2022). This strengthening in the subtropics increases the 633 

meridional vorticity gradient and results in a strengthened southward shift of the waveguide 634 

(i.e., in the direction of the LENS2 model bias). Previous studies have shown that such future 635 



27 

 

changes in the basic state may result in eastward shifted teleconnection patterns (Zhou et al. 636 

2020, Wang et al. 2022). In addition, there may be similar effects as previously discussed for 637 

zonal wavetrains and Rossby wave source. Besides the basic state wind, there is an increase 638 

in divergent wind activity in the equatorial East Pacific, in line with previous studies that 639 

have found increased MJO precipitation activity in the East Pacific (e.g., Wang et al. 2022, 640 

Maloney et al. 2019), and a decrease in West Pacific divergent wind activity.  641 

These changes are likely associated with the El Niño-like warming of the tropical East 642 

Pacific in future LENS2 (not pictured), and they may alter the frequencies of teleconnection 643 

patterns affecting SWUS precipitation. In fact, we find that when calculating cluster 644 

frequencies in future LENS2 simulations using the historical cluster patterns, there is a 645 

decrease in the arching Cluster 1 (34.7% → 29.9%), an increase in the meridional Cluster 2 646 

(38.7% → 45.2%) and a slight decrease in zonal Cluster 3 (26.6% → 24.9%). The decrease in 647 

Cluster 1 and increase in Cluster 2 is in agreement with the increase in East Pacific divergent 648 

flow activity and decrease in West Pacific divergent flow activity. It is consistent with the 649 

mechanisms we describe in section 3f and also consistent with the previously found 650 

relationship between ENSO and cluster frequency (Figure 7), suggesting that projected El 651 

Niño-like climate change reinforces the existing model biases in LENS2. This illustrates how 652 

model bias may affect future projections of SWUS precipitation, a region where climate 653 

projections are notoriously uncertain (e.g., Gershunov et al. 2019). 654 

655 
Fig. 14: (left) LENS2 historical NDJFM U200 climatology (shading) and change in LENS2 future SSP370 656 
scenario (contour). Contour level is 2 m/s, with zero contour omitted. (right) non-ENSO NDJFM standard 657 
deviation of monthly 200 hPa divergence in LENS2 historical (shading) and change in LENS2 future 658 
SSP370 scenario (contour). Contour interval is 0.3	 ∙ 10!#		s!", with zero contour omitted.  659 
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4. Summary and Conclusions 660 

In this study, we have analyzed monthly wintertime SWUS precipitation variability in 661 

reanalysis and in both a coupled (LENS2) and atmosphere-only model setup (GOGA). The 662 

objective of the study was threefold: 1) extract the dominant non-ENSO teleconnection 663 

patterns that influence SWUS precipitation during the cool season (NDJFM), 2) reveal the 664 

influence of the background state on the non-ENSO teleconnections and 3) compare the 665 

frequency and fidelity of these teleconnection patterns in LENS2 and GOGA. 666 

Composite analyses suggest that non-ENSO SWUS precipitation in GOGA is strongly 667 

associated with zonal wavetrains, while in LENS2 meridional wavetrains have a stronger 668 

influence. The meridional wavetrain is associated with precipitation in the tropical central 669 

and eastern Pacific that resembles a southward shift or weakening of the ITCZ. Meanwhile, 670 

the zonal wavetrain is potentially associated with Indian Ocean and West Pacific 671 

precipitation, similar to findings from Teng and Branstator (2017). A clustering algorithm 672 

that extracts non-ENSO patterns associated with wet SWUS winter months also supports and 673 

refines these results. The algorithm identifies three major clusters: an arching wavetrain that 674 

resembles the PNA, a meridional “ENSO-like” wavetrain over the central North Pacific, and 675 

a zonal CGT-type wavetrain pattern. The zonal wavetrain pattern most often occurs in 676 

GOGA, while the meridional wavetrain pattern occurs most commonly in LENS2. The 677 

meridional wavetrain cluster displayed strong associations with tropical Pacific precipitation, 678 

in contrast to the PNA-type cluster, which displayed only weak tropical precipitation 679 

anomalies, in agreement with previous studies separating the influence of the PNA and 680 

ENSO-type teleconnections (Li et al. 2019, Lopez and Kirtman 2019). 681 

Since LENS2 and GOGA use the same atmospheric model (CAM6), these differences 682 

cannot be attributed to differences in atmospheric model physics or 683 

parameterizations.  However, differences in their ocean representations do lead to differences 684 

in the atmospheric mean state. In GOGA, the background flow over the North Pacific is 685 

similar to the ERA5 reanalysis, with an EAJS waveguide that extends northward and 686 

eastward across the Pacific into the ENP. In contrast, LENS2 has a westerly bias in the 687 

eastern Pacific subtropical westerlies, which leads to a westward retraction of the midlatitude 688 

waveguide and extension of the subtropical waveguide associated with the southward shift of 689 

the meridional vorticity gradient. The LENS2 bias is similar to an El Niño forced response, 690 
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which is associated with a westward retracted (eastward extended) East Pacific midlatitude 691 

waveguide during El Niño (La Niña).  692 

The differences in background flow, and thus the waveguide, alter how remote forcing 693 

affects SWUS precipitation. For example, NEIO precipitation excites a zonally oriented 694 

wavetrain (wavenumber 5) in the EAJS in both ensembles, but the wave propagates 695 

differently in the East Pacific depending on the waveguide characteristics in GOGA versus 696 

LENS2. This is also true for differences between each ENSO phase, and it results in differing 697 

patterns on SWUS precipitation in response to the NEIO remote forcing. The influence of the 698 

waveguide is not as pronounced for larger scale arching wavetrains. For example, the arching 699 

wavetrain in response to tropical West Pacific precipitation is similar in GOGA and LENS2 700 

and for each ENSO phase, resulting in similar rain responses in the SWUS. 701 

In summary, variations in atmospheric basic state due to different SST variability, while 702 

using the same atmospheric model, may significantly affect teleconnections that regulate 703 

SWUS precipitation and their frequency, although there are other factors that also likely play 704 

an important role such as the variance of tropical convective activity and the modulation of 705 

Rossby wave source by the mean state vorticity gradient. As shown by previous studies (e.g., 706 

Henderson et al. 2017), models must accurately model both tropical convective variability 707 

and the atmospheric mean state, or else forecast accuracy of remote extratropical regions will 708 

likely be limited. Even in the field of S2S and seasonal prediction, where models are 709 

initialized from observational data and only run for a short period of time, persistent model 710 

biases quickly emerge that may affect forecast fidelity (Garfinkel et al. 2022), and 711 

understanding these biases in the S2S/seasonal prediction models is critical to achieve higher 712 

skill in S2S prediction of SWUS P. 713 

Understanding these biases will likely require a combination of analysis of model output 714 

from operational forecast models, such as from the S2S and NMME (Kirtman et al. 2014) 715 

databases, and idealized modeling studies which can prescribe tropical heating and basic 716 

states (e.g., Watanabe and Kimoto 2000, Wang et al 2020, Henderson et al. 2017). There is a 717 

continued need to refine our understanding of systematic biases in long-range prediction 718 

models to inform potential avenues for model improvement and higher prediction skill.  719 
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