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Experimental Games on Networks: Underpinnings of Behavior and 

Equilibrium Selection*  

 
Gary Charness†, Francesco Feri‡, Miguel A. Meléndez-Jiménez§, 

and Matthias Sutter# 

 
July 22, 2013 

 
Abstract. We study behavior and equilibrium selection in network games. We conduct a series 
of experiments (with 580 participants) in which actions are either strategic substitutes or strategic 
complements, and participants have either complete or incomplete information about the 
structure of a random network. In our initial set of experiments on 5-person networks, we find a 
great deal of qualitative and quantitative support for the theoretical predictions of the Galeotti, 
Goyal, Jackson, Vega-Redondo, and Yariv (2010) model. The degree of equilibrium play is 
striking, in particular with incomplete information. There are intriguing patterns in our data, such 
as a taste for positive payoffs (but also security) when this supports the choice of one of the 
potential equilibria in a complete-information setting. To shed further light on the underpinnings 
of behavior and equilibrium selection in the laboratory, we study three more 5-person networks 
and test robustness by conducting sessions with three 20-person networks. Overall, we see strong 
evidence that choices and the equilibrium played depend on one’s degree and the connectivity of 
the network, and suggestive evidence that choices also depend on the clustering in the network. 
 
 
JEL Codes: C71, C91, D03, D85 
 
Keywords: Random networks; Incomplete information; Connectivity; Clustering; Strategic 

substitutes; Strategic complements; Experiment 
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1. Introduction 
Social networks are a prominent feature of the economic landscape. A network is a non-

market institution, but has important market-like characteristics. In a sense it can be considered 

to be an intermediate case between bilateral bargaining and matching in a large centralized 

market. Network structure affects choices in a wide variety of environments and network 

analysis has been applied to many important environments.1 Examples include systems 

compatibility (Katz and Shapiro 1994), airline route design (Hendricks, Piccione and Tan 1995), 

matching markets (Gale and Shapley 1962, Kelso and Crawford 1982, Roth 1984, Crawford and 

Rochford 1986, Roth and Sotomayor 1989), bargaining (Kranton and Minehart 2001), and 

friendship (Currarini, Jackson and Pin, 2009). Network analysis is also useful for job search and 

labor-market issues, since workers frequently find jobs through personal contacts and employers 

value the additional enforcement channel available through these personal intermediaries 

(Montgomery 1991, Calvó-Armengol 2004, Calvó-Armengol and Jackson 2004, 2007).  

A growing empirical literature has documented the effects of social networks on 

behavior; the information gleaned from these has motivated theoretical work. Since social 

networks are so prevalent in economic settings, modeling these networks is essential in order to 

understand how network structure affects behavior. However, it is very difficult (if not 

impossible) to cleanly test theoretical predictions using field data, since there are many 

confounding features in the environment.2 In this respect, controlled laboratory experiments are 

often viewed as the ideal tool for qualitatively testing theory (e.g., Falk and Heckman, 2009). 

In this paper, we describe a series of laboratory experiments that implement specific 

examples of a more general network structure. Our starting point is the model in Galeotti, Goyal, 

Jackson, Vega-Redondo, and Yariv (2010), which considers general environments in which the 

agents’ actions are either strategic complements or substitutes. Economic environments typically 

have a considerable degree of either complementarity or substitutability, so that this notion 

applies to a wide variety of economic environments and includes perhaps most of the game-

theoretic applications in the network literature. Strategic complements (positive network 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Jackson (2010, p. 512) states that network structure “influences patterns of decisions regarding education, career, 
hobbies, criminal activity, and even participation in micro-finance.” For an exhaustive review of social and 
economic networks, with particular attention to theoretical models, see Jackson (2008). 
2 Typical problems with field data are the use of idiosyncratic data sets, multiple simultaneous influences, and the 
issue of measurement error. 
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externalities) arise when the benefit that an individual obtains from choosing an action is greater 

as more of her neighbors do the same. An example of strategic complements is human capital 

investment, whereby one’s own investment is more beneficial if others also make this 

investment.3 Strategic substitutes arise when the benefit that an individual obtains from choosing 

an action is greater as more of her neighbors do the opposite. An example is choosing routes to 

avoid congested roads, since one certainly receives a greater benefit from choosing a route that 

has not been chosen much by others. 

In addition to the broad applicability of our setting, to the best of our knowledge we are 

the very first to experimentally study an environment in which the agents are uncertain about the 

precise network structure. This enhances the applicability and the external validity of our 

experiment, as there are many economic situations in which individuals have a good sense of the 

number of other people with whom they are interacting in some form of network, but know 

neither the identity of these others nor how these others are connected to still others. As 

examples for such situations, Galeotti et alii (2010) mention choosing which languages to study 

before embarking on a career in diplomacy, researchers choosing software based on 

compatibility, and choosing whether to receive a vaccination. 

A critical problem for network theory is that even simple games have multiple equilibria, 

so that a great variety of outcomes are consistent with theoretical analysis. This naturally limits 

the predictive power of the theory and the scope of policy recommendations, since multiple 

equilibria make it difficult-to-impossible to offer definitive advice regarding how such labor 

markets, search markets, etc. should be organized. To make meaningful policy 

recommendations, it is very important to determine which equilibrium is likely to occur. A 

central goal in network analysis is to refine the set of equilibria to be able to make better 

predictions about the likely outcomes. In some cases with networks on games, there is the result 

that uncertainty about elements of the network tends to reduce the equilibrium multiplicity that 

arises under complete information, as shown by Galeotti et alii (2010). Another method for 

examining equilibrium selection is through experimental testing. This is our approach, as 

experimental work will provide empirical information regarding which of the multiple equilibria 

tends to actually prevail behaviorally and may even lead to clear insights ex post. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 In fact, positive network externalities may be large enough to more than offset inferior quality or efficiency. A 
familiar example is that of the QWERTY keyboard; another is the general adoption of the VHS format over the 
Betamax format around 1980 despite the fact that the Betamax format was widely acknowledged to be superior. 
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In our first set of experiments, we consider a specific experimental environment that 

includes three different five-person networks. In the case of complete information, each person 

knows the network structure (which of the three networks is in play) and the node to which she 

has been assigned. In contrast, with incomplete information each person only knows the 

probability that each of the three possible networks has been randomly drawn and her degree 

(the number of connections to others). This probability is a treatment variable.4 The experimental 

results are striking. In fact, we find a great deal of support for every one of the theoretical 

predictions. Participants are, to a large extent, active in the network (which can be interpreted as 

purchasing a particular good) when the prediction is that they will be and they are inactive (not 

purchasing) when the prediction is that they won’t be. In all scenarios, the modal behavior by 

every individual is consistent with the observed equilibrium outcome, and the overall rate of 

such equilibrium play is quite high. We also do generally find support for a reduction in the 

multiple-equilibrium problem going from complete to incomplete information.  

In the simpler case of complete information, we do not observe a multiplicity of 

equilibria. Behavior that is highly consistent with the same particular equilibrium is observed in 

each and every independent group. With strategic substitutes and complete information, this 

equilibrium is not the efficient one, but in a certain sense it is ‘risk dominant’, as a deviation 

from the selected equilibrium is less harmful than a deviation from the efficient equilibrium. In 

other words, there is a trade-off between efficiency and the cost of a mistake, since the efficient 

equilibrium results in a higher cost for agents’ errors. With strategic complements and complete 

information, the efficient equilibrium is selected. Remarkably, the predictions are borne out 

qualitatively for every node and quantitatively (within 10 percentage points of the extreme point-

prediction) for most nodes, for both strategic substitutes and strategic complements. 

With incomplete information, the only information provided is one’s degree, so we do not 

distinguish amongst positions with the same degree. As with complete information, the 

qualitative predictions of the model are supported for both strategic complements and strategic 

substitutes. As theory predicts, we observe that participants do use monotone (threshold) 

strategies. The frequency of active players increases with connectivity (the extent to which the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Again, to the best of our knowledge this is the first experiment on networks to ever consider behavior under 
incomplete information and the concomitant increased complexity of the environment. In fact, a major challenge 
was to create a design that abstracted from the Galeotti et alii (2010) theoretical model and yet was comprehensible 
for the participants. By explaining the game very carefully and by having participants play for 40 periods to allow – 
and control for – learning, we are confident that the participants understood the game quite well. 
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nodes of the network are connected) with both strategic substitutes and strategic complements. In 

scenarios where incomplete information induces a unique equilibrium, we see that participants 

make the choice that is consistent with this equilibrium an overwhelming majority of the time.  

Our experiment demonstrates that the theory in Galeoti et alii (2010) does remarkably 

well in predicting behavior in our initial networks in the incomplete-information scenario. 

However, these networks are not ideal for the purpose of studying equilibrium selection, and 

questions remained concerning the underpinnings. The model does predict that the connectivity 

(holding degree constant) increases activity in this environment, but this needed to be tested for 

robustness and applicability to other (potentially larger) networks. We also wished to study 

whether connectivity also increases activity levels in networks with complete information. 

Finally, we also suspected that the degree of clustering in the network5 would be an important 

influence on behavior and equilibrium selection, since an increased level of clustering 

(increasing the probability that two neighbors of a player are also linked) reduces the 

independence of the equilibrium strategies of the neighbors.6 

To test this and to examine the robustness of our findings to other networks, we 

conducted new treatments with another set of five-person networks and with a set of 20-person 

networks. In the first case, we focus on strategic complements (both with complete and 

incomplete information). In the second, we focus on strategic complements and incomplete 

information.7 The data from these new treatments reinforces the evidence that connectivity is a 

key consideration for equilibrium selection, and also provides evidence that the degree of 

clustering does indeed have an effect on behavior and equilibrium selection.  

We also consider a puzzle from the results in the first set of experiments: While people 

are able to form a three-person active clique8 in one of the networks with strategic complements 

and complete information, the no-activity equilibrium is played when the chance that this 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 A cluster is a fully-connected triple of nodes. One simple measure of the degree of clustering is the ratio between 
the number of closed triples and the number of potential closed triples. 
6 In equilibrium the strategies of linked individuals are correlated in the sense that are best responses to the strategies 
of the neighbors. Consider three players, A, B and C, where B and C are both neighbors of A and are not themselves 
neighbors. Their equilibrium strategy is a best response to the strategy of A and to strategies of other linked players.  
Now consider that A,B and C form a clique i.e. players B and C are neighbors between themselves. In such a case 
the equilibrium strategy of B (C) is a best response to the strategies of A, C (B) and others. Therefore, there is more 
correlation between the equilibrium strategies of B and C (neighbors of A). 
7 We only consider complements in this environment because this offers a multiplicity of equilibria in all scenarios. 
We only consider incomplete information in the large-network case because, with complete information, the number 
of equilibria would be very large, and each player’s strategy would have a huge number (20) of components. 
8 A clique in a network is a group of three fully-interconnected nodes. 
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network is in force is 80%. Is this difference caused by uncertainty per se? It is true that the 

three-person clique seems difficult to sustain (the gain from being active is relatively small), so 

that certainty could be an important consideration. To test this, we change the probability that 

this particular network is in force to 95%. Here we see evidence that play in the 95% and 80% is 

converging to the no-activity equilibrium, while activity is fully sustained in the case of 

certainty, suggesting an important effect of uncertainty per se on behavior in network games.   

All in all, people do largely behave in accordance with some simple principles and 

generally make very sensible choices in complex environments. First, behavior closely resembles 

the theoretical equilibrium when this is unique. Second, when there are multiple equilibria, there 

are general features of networks, such as connectivity, clustering, and the degree of the players, 

that predict informed behavior in the lab. Third, our evidence reveals some specific patterns. 

People have a strong attraction to efficiency and positive profits, so that the inactive equilibrium 

is rarely played when there is another equilibrium with activity; this is consistent with 

experimental work in which payoff dominance is a key consideration for equilibrium selection. 

And yet there are some moderating forces on the attraction to efficiency: 1) people seem content 

with capturing only the lion’s share of the efficient profits in exchange for greater security, and 

2) uncertainty about the network structure makes it considerably more difficult to coordinate on a 

demanding, but efficient, equilibrium that is typically implemented with complete information. 

We believe that our findings, while certainly not a full characterization, nevertheless offer 

considerable predictive power for behavior in games on networks. 

The remainder of the paper is organized as follows. We discuss the relevant literature in 

section 2, and describe the experimental design and implementation in section 3. Our 

experimental results are given in section 4, and we offer a discussion of our results and their 

implications in section 5. We conclude in section 6, and propositions and proofs regarding our 

networks are given in the Appendix A. 

 

2. Literature review 
In this section we review related theoretical and experimental work. We refer the 

interested reader to Jackson (2008) for a comprehensive overview of theoretical work on and 

applications of social and economic networks.  
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Our study relates to exogenous networks, as agents have no control over the structure of 

the network. Thus, we do not consider the issue of how networks were formed, but simply 

presume that the links are already in place due to some relationships that have (or had) value, and 

that the cost of (endogenous) change is prohibitive. In this sense, the networks we use are 

effectively stable.  Nevertheless, networks in the field are typically endogenous, and moreover 

they evolve over time.  Indeed, as Kirman (1997) argues, “the individuals in the economy learn, 

not only about the appropriate actions for them to take but also, about whom they should interact 

with. The network therefore evolves over time with the evolution of the players and there is a 

continual feedback from one to the other.”  

However, the (relative) rates at which networks and actions evolve depend very much on 

the specific economic context.  While some networks are very volatile, many others are fairly 

stable over time (for example housing neighborhoods, networks of co-workers, particularly in 

countries with low levels of job mobility, insurance networks in developing countries, etc.). In 

the first case, interaction within the network evolves as fast as the network itself, but in the 

second case, the networks adjust very slowly, whereas interaction among the agents located in 

the network can be very frequent.  In this sense, the study of agents’ behavior under exogenous 

networks can be seen as a simplification of economic situations of the second kind, where 

players may be aware that at some point there will be chances to alter the network, but in the 

interim choose their actions taking the network as given.9  

Regarding theoretical works, a handful of papers show that the outcomes of games in 

general depend on the specific network structures, when there are either strategic substitutes or 

complements and either complete or incomplete information.10  Galeotti et alii (2010) was the 

starting point for our experimental design. They obtain general results in games with incomplete 

information about the degrees of one’s neighbors, where one’s payoffs depend not only on one’s 

action, but also on the actions of neighbors; they consider both strategic substitutes and strategic 

complements. The multiplicity present is substantially reduced under incomplete information. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 There are also practical difficulties in allowing multi-player networks to develop endogenously; for example, there 
are a myriad of possible networks that can manifest and disappear, complicating the analysis and requiring more 
observations in the endogenous case. 
10 For the complete-information case, see for example Ballester, Calvó-Armengol and Zenou (2006), Bramoullé and 
Kranton (2007), Goyal and Moraga-Gonzalez (2001), and Calvó-Armengol and Jackson (2004). For the incomplete-
information case, see Jackson and Yariv (2005), Sundararajan (2006), and Galeotti and Vega-Redondo (2011). 
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Our initial task was to adapt this theory to a distilled selection of networks that represented these 

possibilities and that differed from each other by only one link.  

 

Overall, there is relatively little research in experimental economics on network games, 

particularly when one considers the wealth of theoretical contributions in this area.11 Here we 

restrict our discussion of the literature in experimental economics to designs with exogenous 

networks (where the participants have no control of the network structure), as in our own 

environment.12 Some research has examined the consequences of network structure on 

equilibrium selection in coordination games, which is relevant for our settings with a multiplicity 

of equilibria. Keser, Ehrhart and Berninghaus (1998) use a 3-person coordination game; in one 

treatment, each participant is connected to two neighbors on an 8-player circle, while in the other 

treatment, people play within closed 3-person groups. The 3-person group quickly coordinates on 

the payoff-dominant equilibrium while the circular group eventually coordinates on the risk-

dominant equilibrium. Cassar (2007) compares convergence to equilibrium across three different 

network structures: a local interaction network, a random network, and a “small-world” network 

(each link in the circle has a probability of being re-wired to a ‘short cut’ of a chord across the 

circle). She finds that participants converge to the efficient equilibrium in the small-world 

network, but less so in the other networks.13  

Fatas, Meléndez-Jiménez and Solaz (2010) consider network effects primarily in relation 

to the voluntary-contribution mechanism.  They have 4-person groups repeatedly play a standard 

VCM in four different network structures: the line, the circle, the star, and the complete network. 

Information about another person’s contribution is only transmitted if and only if there is a direct 

link between the parties. Contributions are in fact affected by the network structure, with the 

complete network and the star leading to 30-40 percent higher contributions than with the line 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Researchers in sociology have long been interested in studying networks in experiments (see the seminal studies 
by Stolte and Emerson, 1977, or Cook and Emerson, 1978; see also surveys of Willer, 1999, or Burt, 2000). Note, 
however, that sociologists have been in particular interested in studying the exercise of power in networks, 
something with which the literature in experimental economics has not yet been concerned. 
12 Regarding experiments on coordination games in networks see also Berninghaus, Ehrhart and Keser (2002), Boun 
My et alii (2006) and Corbae and Duffy (2008). There are other experiments on networks in other environments, 
including buyer-seller networks (Charness, Corominas-Bosch, and Fréchette 2007), the prisoner’s dilemma (Riedl 
and Ule 2002; Kirchkamp and Nagel 2007), and endogenous networks (Falk and Kosfeld 2003; Deck and Johnson 
2004; Callander and Plott 2005; Berninghaus, Ehrhart, and Ott 2006; Berninghaus, Ehrhart, Ott, and Vogt 2007). 
13 Charness and Jackson (2007) frame a Stag Hunt as the choice of adding a link between two players in a pre-
existing network, where this link can be added by either mutual consent or unilateral consent. Whether the payoff-
dominant or the risk-dominant equilibrium prevails depends primarily on the degree of consent required. 
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and the circle. It is clear that there is at least one person with a degree of three in each of the 

networks with higher contributions; such a person knows the contribution of every other player 

and every other player observes their choice, with this being common information. The degree of 

an individual does not appear to affect contributions, however.14 

Choi et alii (2011) study networks of three players in the lab. In each of three stages, each 

player must decide whether to contribute his unit of endowment to a public good (an irreversible 

decision) or to keep it. At each stage, each player can only observe the past decisions of his 

neighbors in the network. The public good is provided if and only if, after the third stage, at least 

two players have contributed. Each player earns his unit of endowment (in case he has not 

contributed it) plus two units (in case the public good is provided). There are multiple equilibria: 

inefficient ones (where no one contributes) and efficient ones (where two agents contribute). 

Choi et alii report that participants who are uninformed and are observed by others tend to 

contribute early, while informed ones tend to delay their contributions. They also observe 

significant differences in the levels of cooperation across networks and find evidence of 

coordination failures in networks where two participants are symmetrically situated. In their 

paper, in comparison to ours, the network only matters through the information received in the 

three stages. Furthermore, subjects’ payoffs depend on own and global behavior, rather than 

depending only on own and neighbors’ behavior, as in our case. Moreover, we study larger 

networks by considering five-player and 20-player networks with different structures. 

Kearns et alii (2006, 2009) conduct experiments where players have a collective goal, 

studying how the capacity to achieve a common goal depends on the network structure. Kearns 

et alii (2006) consider a game of substitutes in which all players receive exactly the same payoff; 

it is more difficult to achieve success with networks generated by preferential attachment than 

with either “small-world” networks or networks based on cyclical structures.15 Kearns et alii 

(2009) examine a game of complements, where the entire group aims to coordinate (vote) on a 

choice, and where there is heterogeneity in preferences. In contrast to these studies, the key 

aspect of our design is that earnings and optimal strategies are directly related to network 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Carpenter (2007) mainly considers the issue of group size in the VCM, but also has treatments in which people are 
only allowed to punish their closest neighbors. He finds that, relative to not punishing at all, both the possibility to 
monitor either the complete or half of the group yields significantly more contributions, and the possibility to punish 
only a single player elicits significantly fewer contributions. In a more recent paper, Carpenter et alii (2012) study 
the effects of punishment in VCM played in networks. 
15 Preferential attachment is a stochastic process generating random networks. A characteristic of this process is that 
the more connected a node is, the more likely it is to receive new links. 
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features, like the degree (in equilibrium, subjects with different degrees select different choices). 

Further, in our case players only care about their own choices and those of their neighbors. 

Additionally, we present a framework where one choice is safe and the other one is “risky” 

(providing a payoff related to the degree and the neighbors’ choices). Hence, we have 

multiplicity of equilibria of very different natures (for instance, efficient but risky equilibrium vs. 

inefficient but safe one), which renders the equilibrium-selection problem a crucial issue. In sum, 

our experiment can be seen as venturing into some new realms. We contrast strategic 

complements and strategic substitutes, considering both complete and incomplete information 

concerning aspects of the network structure.  

 

3. Experimental design 

The Game 

In the experiments in this paper we focus on the two specific games that Galeotti et alii 

(2010) use to introduce and motivate their results, which we now briefly summarize. Consider a 

player who can choose between being active (e.g., buying a product) or inactive (e.g., not buying 

the product). The player is located in a position within a network and her payoff depends both on 

her choice and on the choices of her neighbors. 

• With strategic substitutes, a player earns 100 if either she or at least one of her neighbors 

is active, and earns 0 otherwise. Being active costs 50, while inactivity is costless. 

• With strategic complements, if a player is inactive, she earns 50 and, if she is active she 

earns 33.33 times the number of neighbors that are active.16  

The networks used in our experiments are shown in Figure 1: 

[Figure 1] 

Experiment 1: In this experiment we used the three networks displayed in the top panel: 

The Orange, Green and Purple networks. In the case of incomplete information, the value for p 

is the probability that the Orange network was in force (each of the other two networks was 

selected with probability (1-p)/2). Note that, since the Orange network has a higher connectivity 

than the other two ones (we can get the Orange network both by adding the link BD to the Green 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 In our experimental design, in the case of strategic complements we have added 50 to all the payoffs as compared 
to the original game used by Galeotti et alii (2010) to avoid losses. 
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network and by adding the link CD to the Purple network) by parameter p we modulate the 

connectivity. We had 12 sessions with 20 participants in each. There were two sessions and thus 

40 subjects in each of the six treatments below. 

• strategic substitutes with complete information; 

• strategic complements with complete information; 

• strategic substitutes with incomplete information and p = 0.2; 

• strategic substitutes with incomplete information and p = 0.8; 

• strategic complements with incomplete information and p = 0.2; 

• strategic complements with incomplete information and p = 0.8.  

In each session, the 20 participants were split randomly into two matching groups of 10 

subjects, and this was common information to the participants. In each of 40 periods (plus five 

unpaid trial periods), the members of a matching group were randomly assigned to groups of five 

subjects who played the stage game of a given treatment.  

 The experimental instructions are provided in Appendix D.17 In treatments with complete 

information, participants were always informed at the beginning of a period about the chosen 

network (which was re-drawn each period, each network being equally likely) and the 

participant’s position in it. At the end of a period, each person received feedback about her 

neighbors’ decisions and the payoff resulting from her choice and those of her neighbors. Before 

a new period began, participants also received the respective feedback for all prior periods. In 

treatments with incomplete information, subjects were informed about their degree at the 

beginning of a period. At the end of the period, each person received information about the 

actual network that was in effect, her position in it, the number of her neighbors who chose to be 

active, and the payoff resulting from her choice and those of her neighbors.18 

Since behavior could potentially be affected by risk preferences, we also tested for these 

after the 40 periods of play, using the method described in Charness and Gneezy (2010). Each 

person received an endowment of 100 tokens and could invest as many of these as desired in a 

risky asset. This asset had a 50 percent chance of success, in which case it paid 2.5 times the 

number of tokens invested; the investment was lost if the asset failed. Whatever was not invested 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 We only provide the instructions for “complete information – substitutes” and “incomplete information – 
complements – p = 0.8”. The remaining cases are analogous.  
18 Regarding the payoff transformations used in the sessions, during the experiment payoffs were given in ECUs 
(Experimental Currency Units), with 20 ECU = 1 Euro.  
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was kept. This method is easy for people to comprehend and gives a specific risk parameter, 

except for the few people who invest 0 or 100.  

Based on the equilibrium analysis reported in Appendix A, we summarize the pure-

strategy equilibrium predictions for each treatment of Experiment 1 in Table 1.19  

 [Table 1] 

With complete information and strategic substitutes, all three networks have equilibria in 

in which two nodes are active and equilibria in which three nodes are active. The former are 

more efficient by having the lowest total cost, but the latter are more stable in the sense of 

Boncinelli and Pin (2012). In the case of strategic complements, we have a unique equilibrium in 

the green and purple networks, where all individuals are inactive; and there are two equilibria in 

the orange network: In addition to the full-inactivity (inefficient) equilibrium, there is an 

equilibrium in which the clique formed by positions B, C and D is active. 

With incomplete information, Galeotti et alii (2010) show that the equilibria are defined 

by a threshold: In the case of strategic substitutes, those players with degree below (above) the 

threshold are active (inactive), and the threshold increases with connectivity. In the case of 

strategic substitutes, those players with degree above (below) the threshold are active (inactive) 

and the threshold decreases with connectivity. Thus, as depicted in Table 1, in the case of 

strategic substitutes, the theoretical prediction is that players with degree 1 (degree 3) are active 

(inactive) in both treatments, i.e., p = 0.2 and p = 0.8. Players with degree 2 are active only when 

p = 0.8. With strategic complements, the theoretical prediction is that no one will be active when 

p = 0.2, but that (in addition to the no-activity equilibrium) there is room for players with high 

degree (degrees 2 and 3) to be active in equilibrium when p = 0.8.   

Comparing across informational regimes (Table 1), it becomes clear that the equilibrium 

multiplicity with complete information and strategic substitutes is fully resolved with incomplete 

information; this is also the case with strategic complements and p = 0.2, but not with p = 0.8, 

where multiple equilibria remain. Thus, by this design we can study if people are behaviorally 

responsive to the different network positions and the different level of information they have 

when the incentives are either fully complements or substitutes.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19 We refer readers interested in the mixed-strategy equilibria to the working-paper version, Charness et alii (2012). 
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We conducted this initial set of sessions at the University of Innsbruck in March of 2011, 

using the software zTree (Fischbacher 2007). A total of 240 undergraduate students from various 

academic disciplines were recruited with the help of ORSEE (Greiner 2004) from a pool of 3,800 

students registered for experiments. No subject was allowed to participate in more than one 

session. On average, a session lasted about 80 minutes, with an average payoff of 16 Euro per 

subject (including a 5 Euro show-up fee). 

After conducting these sessions and seeing the results, we added an extra treatment to the 

Experiment 1 setting. In an effort to ascertain the dramatically-different behavior with strategic 

complements according to whether the orange network is known to be in force or is only 80% 

likely to be in force, we also ran two sessions with our initial networks and with the likelihood of 

p = 0.95 that the orange network being in force. The set of (pure-strategy) equilibria in this 

additional case coincides with the one for p = 0.8: There is one equilibrium in which all degrees 

are inactive and another one in which players with degree 1 are inactive and players with degrees 

2 and 3 are active. A total of 40 new subjects participated in these sessions. 

Experiment 2: After observing our results for Experiment 1 and receiving helpful 

comments, we designed a new experiment to study the issue of equilibrium selection in the lab in 

more detail. We focus on strategic complements in the new treatments.20 The new treatments are: 

• strategic complements with complete information; 

• strategic complements with incomplete information and p = 0.2; 

• strategic complements with incomplete information and p = 0.8.  

In this experiment, we used the networks depicted in the middle panel of Figure 1: The 

Blue, Red and Brown networks. With incomplete information, the value for p is the probability 

that the Blue network was in force (each of the other two networks was selected with probability 

(1-p)/2). We created these three new networks by adding a link to each of the three initial 

networks used in Experiment 1 (with re-labeling to avoid visually-crossed lines).21 We note that 

the red and brown networks have the same average connectivity but different clustering, with a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 This is so since, in the main context – of incomplete information – analyzed in Galeotti et alii (2010), there is 
multiplicity of equilibria in the case of strategic complements, whereas they find a unique equilibrium in the case of 
substitutes. In the complete information scenario, we also focus on the case of strategic complements in the new set 
of treatments. 
21 Specifically, we add the link CE to each of the networks, and then switch the labels of nodes D and F. 
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clustering coefficient of 1/3 for the red network and 0 for the brown network. The blue network 

has higher average connectivity, but also has a higher clustering coefficient.22 

Table 2 shows the theoretical predictions for the network scenarios in Experiment 2, 

which are derived in the equilibrium analysis reported in Appendix A.  

 [Table 2] 

Note that all treatments share two equilibria, one in which all subjects are inactive and another 

(efficient) one, in which the maximum number of players that can (profitably) coordinate on 

activity do so.23 Then this design allows us to study the equilibrium selection and to relate it to 

the network characteristics. A comparison between the treatments with p = 0.2 and p = 0.8 

allows us to test the prediction that an increase in the connectivity (and the same for the degree) 

should increase the probability that the efficient equilibrium is played, since the higher the 

connectivity, the higher the payoffs if the players are coordinated on the efficient equilibrium. 

Regarding clustering, Keser, Ehrhart and Berninghaus (1998) show that three-player cliques 

achieve more coordination than do 8-player circles, despite the same average connectivity.24 

Similarly, the results of Cassar (2007) also suggest that clustering increases the probability that 

agents coordinate on the payoff-dominant equilibrium. So our prediction is that clustering 

enhances the selection of the efficient equilibrium.  

We ran the sessions of Experiment 2 in Innsbruck in November, 2012. There were two 

sessions of each of the treatments with the new 5-person networks, and thus 40 people in each of 

these treatments, yielding a total of 120 new participants. 

Experiment 3: With the aim to confirm the results previously observed, with regard to 

the equilibrium selection, we design a new experiment using a more complex environment. We 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22 The (global) clustering coefficient is defined as the effective number of cliques (triangles) divided by the number 
of potential cliques. For example, consider the blue network. Players C and E are neighbors of B and therefore there 
is a potential clique. Since players C and E are linked, the clique is effective. On the other hand, players A and E are 
neighbors of B (another potential clique). Since they are not linked, the clique is not effective. 
23 The scenario of incomplete information presents an additional Bayes-Nash equilibrium when p = 0.8, in which 
only players with degree 3 are active. However this equilibrium is weak, since players with degree 2 are indifferent 
between being active or inactive (see Appendix A for details). Indeed, in this equilibrium it is only because the 
remaining players with degree 2 are inactive, that a player with degree 2 has weak incentives to be inactive himself. 
It is an evanescent equilibrium since, in any dynamic setup, starting at this equilibrium, if one player with degree 2 
switches from inactive to active (which is also a best response), then all the remaining players with degree 2 would 
have (strict) incentives to become active. Moreover, it is inefficient, as it is Pareto dominated by the (efficient and 
strict) equilibrium in which players with degrees 2 and 3 are active. By all these reasons, and because it has no 
behavioral support in our data –the frequency of activity of players of degree 2 in that scenario is close to 80%-, we 
barely mention this equilibrium throughout our analysis.    
24 Note that in our design it suffices for a 3-player clique to coordinate for activity to be optimal. 
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use the three different 20-person networks, shown in the bottom panel of Figure 1, under the 

incomplete-information regime. We consider only strategic complements for the same reasons 

mentioned above (cf. Footnote 20). In this case, we additionally focus on the incomplete-

information scenario because the strategy space in the case of complete information would be 

very large.25 Players know the network but not their position within the network. In each period, 

people are randomly allocated to the nodes of the network and are informed of their degree 

(color). They then make a choice between active or inactive. The network remained the same for 

all 40 periods. We had three treatments, one for each of the networks that, as explained below, 

differ in terms of connectivity and clustering. The experimental instructions (to the treatment 

corresponding to Network 1) are provided in Appendix D. 

Table 3 gives a summary of network characteristics for these networks. Note that 

networks 2 and 3 are formed by adding seven links to network 1 (see Figure 1), that both 

networks 1 and 2 have zero clustering whereas there is positive clustering in network 3, and that 

networks 2 and 3 have the same level of connectivity and the same degree distribution. Hence 

both networks 2 and 3 are more connected than network 1, but additionally, network 3 presents a 

higher clustering. 

 [Table 3] 

The equilibrium predictions (in pure strategies) are shown Table 4 (see Appendix A for a 

derivation of these results). As we can see, with this design, all three networks have the same set 

of (pure-strategy) equilibria: 1) An efficient equilibrium, in which players with degree higher 

than 1 are active, and 2) an inefficient equilibrium, in which all players are inactive. 

 [Table 4] 

A comparison of networks 1 and 2 allows us to study the robustness of the connectivity 

effect on the selection of the efficient equilibrium in the large-network case, and the comparison 

of networks 2 and 3 allows us to study the effect of clustering. As in the former experiment our 

prediction is that clustering enhances the selection of the efficient equilibrium. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 In our design, the strategy of a player in the incomplete information scenario has four components (there are 4 
possible degrees in the networks considered), whereas in the complete information scenario a strategy would have 
20 components (we consider networks with 20 different positions).  
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For each of the three treatments (different 20-person networks), we conducted three 

sessions with 20 participants each at the University of Innsbruck in December 2012, having in 

total 180 new participants.  

 

4. Results 
4.1 Experiment 1 
Measurement  

 We analyze our data with an econometric model to control for robustness of our stated 

results. We estimate the probability of being active as a logistic function of explanatory variables 

listed below. We have arranged the data as a panel where the unit of observation is a participant 

who is observed for 40 periods. The models are estimated using random effects and are shown in 

Appendix C.  

The explanatory variables in the econometric model of the data from complete-

information sessions are period, dummies for player position, all interactions between period and 

these dummies, and risk preference. One model is estimated using data from sessions with 

substitutes and another model is estimated using data from sessions with complements. The 

results are summarized by the estimated probabilities to be active computed by player position, 

network, and treatment (see Table 5 below and Appendix C). 

The explanatory variables in the econometric model of the data from incomplete-

information sessions are period, a dummy for the connectivity (with p = 0.2 as benchmark), and 

dummies for a player’s degree, interactions across these variables, and the measured level of risk 

aversion. The results of this model are summarized by the marginal probabilities computed with 

respect to connectivity and degree (see Table 6 below). 

 

Complete information 

Table 5 presents the summary statistics for behavior in the three networks for both 

substitutes and complements with complete information, as well as the estimated rate of activity.  

Figure 2 shows the evolution per network and position across the 40 periods.26  

 [Table 5 and Figure 2] 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26 There are eight subjects in each network position in this treatment. Thus, the maximum number of observations 
behind each circle in Figure 2 is eight. 
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Strategic Substitutes 

The main observation is that the equilibrium where A, C and E are active, and B and D 

inactive (denoted ACE/BD henceforth) is focal in all networks. There is strong support for this.27 

Averaging the absolute difference between the theoretical prediction and the observed behavior 

over all nodes, individual play is consistent with the equilibrium ACE/BD in 87.6 percent of all 

cases. There is no support for any of the other equilibria, so the problem of equilibrium 

multiplicity does not seem to be present behaviorally. In 52.5 percent of the observations the 

groups fully coordinate on this equilibrium; this is increasing over time (36.9 percent in the first 

20 periods and 68.1 percent in the last 20 periods). In fact, the correlation coefficient between the 

period and the average frequency of equilibrium play is 0.724, with p < 0.01. 

The econometric analysis confirms our previous impressions. In all networks (with 

strategic substitutes) the estimated activity probability for position A and for position E is close 

to 100 percent. On the other hand, the estimated activity probability for positions B and D is 

never more than 10 percent. While position C has a lower estimated activity rate than positions A 

in E in networks Orange and Green, being active is still by far the most likely outcome for 

position C. Thus, the equilibrium ACE/BD prevails in all networks. In Figure B.1 (in Appendix 

B), we see that this regularity is present in all groups participating in the experiment. 

Note that, across all different possible equilibria, ACE/BD is the equilibrium that 

involves a maximum number of active players; i.e. it is not fully efficient, since three players pay 

the cost instead of two, with complete coverage in both cases (the net social benefit is 350, 

compared to the social benefit of 400 with only two purchases). However, it can be argued that 

the selected equilibrium ACE/BD is more stable than the equilibria where only two players are 

active.  To see this, consider any of the three networks and the equilibrium ACE/BD.  If any 

player who is active, i.e. A, C or E, deviates to inactive, only the deviating player incurs a loss 

(of 50) and, from that configuration, only such a player would have incentives to switch his 

action (to become active again), leading back to the initial ACE/BD equilibrium.  On the other 

hand, in the efficient equilibrium, after a deviation of a player to inactivity, at least two players 

would have incentives to become active, one of them being the deviator (for example, consider 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
27 The weakest support is from player C in networks where he or she has degree 2. Even so, there is a strong trend 
over time towards C being active, as this rate increases from 58.7 percent in the first 20 periods to 76.6 percent in 
the final 20 periods with the Orange network and from 52.8 percent to 80.8 percent with the Green network. 
Similarly, player C’s activity rate increases from 90.2 percent to 98.4 percent with the Purple network. 
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the equilibrium BE/ACD in the Orange network: if B deviates, each of A, B and C incur a loss of 

50). Thus, from this configuration, there could be convergence to a different equilibrium that 

yields much lower payoffs. 

Boncinelli and Pin (2012) provide support for this intuitive idea, as they show that in Best 

Shot Games, the equilibrium that involves a maximum number of active players is the unique 

stochastically-stable one. This result applies directly to our set-up.28 Summarizing, there is a 

trade-off between efficiency and stability. 

Result 1: With complete information and strategic substitutes, agents’ behavior in all 
three networks is consistent with the inefficient, but stochastically-stable equilibrium 
ACE/BD. Coordination on this equilibrium increases over time. 

 

Strategic Complements 

For complements, we see an impressive rate of play (96.1 percent) consistent with the 

unique equilibrium (no activity) in the Green and Purple networks.29 The Orange network 

admits two equilibria, with either three active players (B, C, and D) or none. Here the play 

resembles the active equilibrium, as players B, C, and D are active 74.0 percent of the time, and 

players A and E remain inactive 95.6 percent of the time. This is also the efficient equilibrium, 

since players B, C, and D each earn more than with the inactive equilibrium. Thus, we find 

strong support for the theoretical predictions, with successful coordination by players in a clique 

to achieve the efficient equilibrium when this can involve a profit. At the group level (see Figure 

B2 in Appendix B), three of the four matching groups coordinate quite well on the efficient 

equilibrium. Over time, equilibrium play becomes more frequent, indicated by a correlation 

coefficient between the period and the frequency of equilibrium play of 0.622 (with p < 0.01). 

The estimated probabilities of being active confirm this impression (Table 5). In all 

networks, the estimated probability of positions A and E choosing active is close to 0. This is 

also true for positions B, C, and D in the Green and Purple networks, while in the Orange 

network positions B, C and D are predominantly active (the estimated activity rates are 

respectively 0.843, 0.746 and 0.813). Interestingly this equilibrium is very robust since it is in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 The Equilibrium ACE/BD is the only stable one in the Orange and Green networks, and there is an additional 
stable equilibrium in the Purple network: ACD/BE (which is also inefficient).  
29 Of course, A and E will never wish to be active, since the maximum possible gain is less than the cost. 
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fact a strong Nash equilibrium (it is immune to deviations from any coalition of players). In 

contrast, the other equilibrium (all inactive) is clearly not strong Nash.  

Result 2: With complete information and strategic complements, players in the Green and 
Purple networks play the unique equilibrium, while players in the Orange network 
behave consistently with the efficient equilibrium BCD/AE. There is increasing 
coordination on the equilibrium over time.  

Note the difference in outcomes between strategic substitutes and strategic complements: 

while people select the inefficient equilibrium with substitutes, with complements they select the 

efficient one. We can explain this difference by looking at the relation between efficiency and 

private incentives. With substitutes, efficiency is achieved when players B and D are active; but 

they strictly prefer the inefficient equilibrium ACE/BD that gives them a higher payoff. So they 

can implicitly coordinate on inactivity in order to force players A, C and E to be active. With 

complements the private incentives are more in line with efficiency, given that the efficiency 

gains are earned from those subjects who are active in producing the efficient outcome.  

Finally we look at the role of risk aversion. Theoretically we could expect that a greater 

degree of risk aversion would be correlated with less activity in the case of strategic 

complements and more activity in the case of strategic substitutes. In Appendix C, we see that 

the marginal effect of risk aversion on the probability of being active is almost always 

insignificant, except for a modest difference (in the expected direction) for complements.  

 

Incomplete information 

Strategic substitutes 

Table 6 presents the summary statistics for behavior with incomplete information and 

both strategic substitutes and complements under each probability regime, as well as the 

marginal effects on activity. Figure 3 shows the evolution per network and position across the 40 

periods for both substitutes and complements. 

 [Table 6 and Figure 3] 

For strategic substitutes we observe that, in each case (p = 0.2 and p = 0.8), modal play 

coincides with play in the unique equilibrium.30 The correspondence is excellent for degrees 1 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30 The proportions are 94.8, 71.8 and 98.9 percent of the time, respectively, for degree 1, 2 and 3 when p = 0.2, and 
92.9, 59.5 and 89.9 percent when p = 0.8. 
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and 3, but less so for degree 2. Overall, 87.6 percent of all choices were consistent with 

equilibrium play when p = 0.2 and 84.0 percent when p = 0.8.  

Regarding the effect of connectivity within a particular degree (recall that higher values 

of p imply higher connectivity), Table 6 shows no significant difference in the behavior of 

players with degree 1 across the values of p. For players with degree 2, the probability of being 

active is significantly higher when p = 0.8, with a marginal effect of 0.547; for players with 

degree 3, this probability is marginally-significantly higher with p = 0.8, but the marginal effect 

is small (it is 0.024). Hence, our data are quite consistent with the equilibrium prediction. 

Next we consider the effect of having different degrees. Participants with degree 2 are 

significantly less likely to choose to be active than those with degree 1; the decrease is quite 

large when p = 0.2 and much smaller when p = 0.8. People with degree 3 have a much lower and 

significantly different probability of choosing to be active than do people with degree 1, for both 

values of p. Comparing degree 3 to degree 2 we find a significantly lower probability of 

choosing to be active for people with degree 3, with a large difference when p = 0.8 and a much 

lower one when p = 0.2.31 All of the differences across the probability values are qualitatively in 

the direction of the theoretical prediction.32 Hence, our analysis suggests that the expected effects 

of connectivity and degree are observed in the lab.  

We can also examine behavior over the course of the 40 periods. Behavior is quite stable 

for players with degrees 1 and 3 (and very close to the equilibrium prediction). The frequency of 

choosing to be active for players with degree 2 is always below ½ when p = 0.2, and mostly 

above ½ when p = 0.8; this qualitatively follows the equilibrium prediction, although deviations 

are observed. We note that when p = 0.8, players of degree 2 display a convergence to the 

equilibrium. Overall, the correlation coefficient between the period and the frequency of 

equilibrium play is 0.233 (not significant) with p = 0.2 and is 0.594 (p-value < 0.01) with p = 0.8. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
31 The marginal effects for degree 2 versus degree 1 are -0.816 and -0.273 for p = 0.2 and p = 0.8, respectively; for 
degree 3 versus degree 1, these are -0.980 and -0.961 for p = 0.2 and p = 0.8, respectively.  Finally, the marginal 
effects for degree 3 versus degree 2 are -0.687 and -0.164 for p = 0.2 and p = 0.8, respectively. 
32 The fact that players with degree 2 play equilibrium strategies less frequently than players with degrees 1 and 3 
may reflect their lower cost from deviating: (I) Consider the case p = 0.2, where players with both degree 2 and 
degree 3 are inactive in equilibrium. A player with degree 3 has more chances of being linked with an active player 
than does a player with degree 2 (i.e. the cost of deviation for a player with degree 2 is lower); (II) Consider the case 
p = 0.8. Here players with both degree 2 and degree 1 are active in equilibrium. Similarly, in this case, the cost of 
deviating to become inactive is lower for players with degree 2 than for players with degree 1 (a deviating player 
with degree 2 is more likely to be linked to an active player), and we could expect more deviations from them. 
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Summarizing, when players face a game of strategic substitutes with low connectivity, 

individual play and the level of coordination is stable over time. With higher connectivity there is 

a strong trend to the unique equilibrium and an increasing level of coordination. 

Result 3: Under incomplete information, with strategic substitutes people play 
consistently the unique equilibrium and the probability of activity is decreasing with the 
degree and increasing with connectivity.  

 

Strategic complements 

Now consider the case of strategic complements. When p = 0.2, there is a unique 

equilibrium (all inactive), and play by people with degrees 1 and 2 is strongly consistent with the 

equilibrium prediction (98.0 and 82.1 percent). However, subjects with degree 3 are inactive 

only a bit more than half the time (55.6 percent). Still, in the aggregate, individual play is 

consistent with the equilibrium prediction six out of seven times. When p = 0.8, there are two 

pure-strategy equilibria. In one of these, no players are active, while in the other players of 

degree 2 and 3 are active. The latter equilibrium is the efficient one but it is also riskier. While 

the behavior of individuals with degree 1 is strongly consistent with these equilibria (98.2 

percent, note they are inactive in both equilibria), the evidence on the behavior of individuals 

with degrees 2 and 3 is mixed, with activity rates of 31.0 and 51.0 percent respectively. 

Regarding the effect of connectivity within a particular degree, the behavior of players 

with degree 1 does not significantly differ across the values of p. Players with degrees 2 and 3 

are significantly more likely to choose to be active for the higher values of p, reflecting attempts 

by the players of higher degree to coordinate on activity.33 However, these attempts are largely 

unsuccessful over time. The decline over the course of the session is faster when p = 0.2 (where 

activity is not present in any equilibrium) and slower when p = 0.8. 

Concerning the effect of the degree we see that a person with degree 2 is significantly 

more likely to be active than a person of degree 1, but the increase is considerably higher with p 

= 0.8 than with p = 0.2 (the marginal effects are 0.153 and 0.041, respectively). This is 

qualitatively in the direction of the theoretical prediction, since players with degree 2 are active 

in the efficient equilibrium when p = 0.8. Perhaps unsurprisingly, since players of degrees 2 and 

3 make the same choice in either equilibrium in this environment, the same relationship holds 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
33 The results are robust to the inclusion of risk attitudes, as the marginal effects are very small and insignificant. 
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between players with degrees 1 and 3, with higher marginal effects when p = 0.8 (0.562 versus 

0.328 with p = 0.2). Finally, players of degree 3 are significant more likely to be active than 

players of degree 2, for all values of p. This evidence, not predicted by theory, may reflect the 

greater incentive for players of degree 3 to coordinate on the efficient equilibrium.  

The pattern is revealing. It seems that subjects with higher degrees (particularly with 

degree 3) attempt to coordinate on being active and making some profits. But this more efficient 

play erodes over time, with low or very low rates of activity for everyone by the end of the 

session; the correlation coefficient between the period and the average frequency of equilibrium 

play is 0.926 for p = 0.2, and 0.639 for p = 0.8, with a significance level of one percent. So it 

seems that the inefficient (but safe) equilibrium would prevail in the long run. Our interpretation 

is that coordination problems lead participants to eventually play the risk-dominant equilibrium. 

In any event, modal play (in the aggregate) corresponds to this no-activity case.  

Summarizing, when players face a game of strategic complements, individual play with 

low connectivity converges to the unique equilibrium with an increasing level of coordination; 

individual play with higher connectivity appears to converge to the inefficient equilibrium. 

Result 4: Under incomplete information, with strategic complements the modal play 
coincides with the unique equilibrium with lower connectivity, while the probability of 
activity increases with the degree and connectivity. 

Finally we look at the role of risk aversion under incomplete information. In Appendix C, 

we see that, as it was the case with complete information, when there is incomplete information 

the marginal effect of risk aversion on the probability of being active is also almost always 

insignificant, except for a modest difference (in the expected direction) for complements.  

 

Certainty versus uncertainty with strategic complements 

We find a puzzling difference in play when it is certain that the Orange network is in 

force (complete information) and when this is only very likely (p = 0.8). The immediate question 

that arises is whether this difference is driven by there simply being any element of uncertainty 

regarding the network in force. Recall that the result with complete information is driven by the 

ability of the BCD clique (i.e., the positions with degree 2 or 3) to coordinate on activity, and 

that the potential benefit of such coordination is only one-third of the potential loss from trying. 

Perhaps even a tiny amount of uncertainty will make such coordination too difficult to achieve.  
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Accordingly, we conducted another treatment in which the probability that the Orange 

network is in force is 0.95. There are two equilibria: the efficient one where nodes with degree 2 

and 3 are active (played when the Orange network was definitely in force) and a second one in 

which all players are inactive (the inefficient one, to which behavior converged in our treatment 

of incomplete information with p = 0.8).34 If we observe differences between this environment 

and one with complete certainty, it indicates that coordination on efficient-but-risky equilibrium 

is too difficult without common knowledge of the precise network having been implemented. 

This explanation is in part based on the abundant experimental evidence that people are loss 

adverse and tend to overestimate small probabilities.  

The aggregated activity rates observed for players with degree 2 or 3 (the activity rate for 

players of degree 1 is always negligible) with p = 0.95 look considerably closer to those found in 

the treatment of complete information when the Orange network was in force (hereafter we 

denote this environment by p = 1) than to those found with incomplete information and p = 0.8. 

The activity rates for players of degree 2 are 31.0, 67.9, and 72.8 percent for p = 0.8, 0.95, and 1, 

respectively, while the corresponding activity rates for players of degree 3 are 51.0, 75.7, and 

74.6 percent. So at first glance it seems that there is no pure uncertainty effect. However, the 

patterns of play over time suggest otherwise: 

 [Figure 4] 

	
   Simple inspection of Figure 4 shows a clear negative trend in the rate of activity in both 

treatments of incomplete information (p = 0.8 and p = 0.95), but no evidence of decay with 

complete information (p = 1). Table 7 provides analytic evidence of this visual evidence: 

 [Table 7] 

We report the estimated rates of activity by treatment and degree for the average period 

(20) and for the last period (40).35 Comparing these rates in the two treatments with incomplete 

information, we find a clear and highly significant evidence of the connectivity effect for degrees 

2 and 3. Comparing the estimated rates of activity in treatments p = 0.95 and p = 1 we find that, 

while in period 20 there is no significant difference, in period 40 the differences are significant at 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
34 When p = 0.95, if players are coordinated in the efficient equilibrium, the probability of a loss when an agent has 
degree 3 is approximately 1%, while this probability is 7% when he has degree 2. Then, assuming coordination in 
the efficient equilibrium, over a total of 40 periods an individual would experience, on average, one period of losses. 
35 We estimated the probability of being active using a logit panel model with random effects. 
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5% in the direction of a higher activity rate with complete information. Table 7 also shows that 

the trend in the activity rate for degree 2 is significantly more negative with p = 0.95 than with 

complete information. Thus, it appears that there is indeed an effect of uncertainty per se over 

time, indicating that learning plays a role in how participants react to uncertainty. The trends 

indicate that the inefficient (no-activity) equilibrium will eventually predominate with 

incomplete information, while the efficient equilibrium prevails with complete information. 

Thus, there is evidence that uncertainty per se (regardless of the degree) is enough to derail 

attempts at coordination on the efficient equilibrium. 

One may wonder why the effect of uncertainty does not appear until time has passed in 

the sessions. We suspect that this is a contagion effect in the coordination game. When players 

observe that some other players are inactive (together with the fact that they also face an 

uncertain context), they also become inactive. So we feel that the uncertainty matters together 

with the coordination context players face: Given the uncertainty, players may have different 

thresholds regarding how much perceived inactivity induces them to become inactive 

Result 5: We see that even a very small amount of uncertainty about the network in force 
(p = 0.95) can lead to considerable differences over time with respect to behavior with 
certainty, derailing attempts to achieve the efficient equilibrium. 

 

4.2 Experiment 2 
As mentioned earlier, we only consider strategic complements in Experiment 2, as these 

are better suited for testing equilibrium selection. 

Complete information 

Table 8 presents the summary statistics for behavior in the three networks under complete 

information, as well as the marginal effects on activity. Figure 5 shows the evolution per network 

and position over time.  

 [Table 8 and Figure 5] 

We see that the modal play corresponds to the efficient equilibria in all the three 

networks, but that the intensities of play vary. The results suggest that there is a positive effect of 

degree since within each network the frequencies of activity are higher for players with degree 3. 

There seems to be also a positive effect of clustering, as indicated by the fact that those players 

with degree 2 that should be active in the efficient equilibrium and those players with degree 3 
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are more likely to be active in the red network than in the brown network. Additionally, the more 

connected (also more clustered) blue network has higher rates of activity than do the red and 

brown ones. We do not observe any time trends for any position in any of the networks. 

The econometric analysis (we estimate an econometric model analogous to that described 

in Experiment 1) for network and position (at the average period and average risk levels) shows 

that players in positions B, C, D and E have an activity rate that is significantly different from 0, 

although this probability is very small for players in position B of the Red network. These results 

confirm that the efficient equilibrium prevails for all three networks. Note that the only 

difference between the Blue and Red networks is one extra link in the Blue network; this extra 

link changes the probability that B players choose to be active from 92.86 percent to 18.52 

percent, a highly-dramatic decrease which is consistent with the equilibrium prediction (in the 

efficient equilibrium, position B is active in the Blue network, but inactive in the Red one).  

Result 6: Under complete information, the efficient equilibrium prevails for all three 

networks. There is a strong effect of degree on activity, as well as an effect of clustering. 

Incomplete information 

Table 9 presents the summary statistics for behavior with incomplete information, as well 

as the marginal effects on activity. Figure 6 shows the evolution per degree over time. 

 [Table 9 and Figure 6] 

Modal play for all degrees corresponds to the efficient equilibrium both when p = 0.2 and 

p = 0.8. In both treatments there is a positive effect of degree on activity levels (degree 3 is, 

respectively, 22.4 and 17.1 percentage points more active than degree 2). Regarding the effect of 

connectivity, there is no difference across values of p for players with degree 3, but there is a 

small difference for players with degree 2 (6.7 percentage points) that suggests a positive effect 

on the selection of the efficient equilibrium.36 The main difference in time trends across the two 

values of p is that there is a clear negative trend for players with degree 2 when p = 0.2, while the 

trend with p = 0.8 is constant (or even slightly positive). There are no time trends for players of 

degree 1 (who are almost never active) or for players of degree 3 (who are almost always active).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
36 While a 6.73 percentage-point increase is certainly not large, it is nevertheless nearly one-quarter of the maximum 
27.52 percentage-point increase possible from the activity rate with p = 0.2. 
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In order to check the significance of the effects for degree and connectivity, we report (in 

the bottom part of Table 9) the marginal effects for players of each degree estimated using an 

econometric model analogous to that described in Experiment 1. We see a significant degree 

effect on the likelihood one chooses to be active. Comparing rates for degree 1 and either other 

degree gives extremely large marginal effects, as predicted by theory. There is also a small but 

significant effect of degree with respect to players of degrees 2 and 3, which is not predicted in 

equilibrium. The increase in the (estimated) probability of being active is 5.2 and 9.3 percentage 

points when p = 0.2 and p = 0.8, respectively. Both marginal effects are significant at the 10% 

level with two-tailed tests.  

Finally, in the middle of Table 9 we report the marginal effects of connectivity (p = 0.8 

compared to p = 0.2) over the probability of being active, measured at the average risk levels. 

Since we have observed in Figure 6 a remarkable difference in trends across p = 0.2 and p = 0.8 

for players with degree 2, we measure the marginal effect both at the average period (20) and at 

the final period (40).   

At period 20, there are no significant differences for any degree. This is unsurprising for 

players with degree 3, since the frequency of activity is already close to full activity when p = 

0.2. However, when we use period 40 to measure the marginal effect of connectivity for players 

with degree 2, we find significance at the 10% level on a two-tailed test.37 Hence, there is an 

effect of connectivity on activity rates for players with this degree, but people need some periods 

of learning before this effect materializes. No difference is observed or predicted for players of 

degrees 1 or 3.38  

Summarizing, we have: 

Result 7: Under incomplete information, modal play corresponds to the efficient 
equilibrium for all probability values. Once again, there is a strong effect of degree and 
there is evidence that the probability of activity increases with the connectivity. 

4.3 Experiment 3 
In Table 10, we display the frequencies of activity by degree and network, as well as the 

marginal effects on activity.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
37 The econometric analysis shows that, both for degree 2 and 3, the differences in the trends corresponding to 
treatments p = 0.8 and p = 0.2 (measured by the marginal effect of treatment on the marginal effect of period by 
degree) are positive and significant (at the 5% level for degree 2 and the 10% level for degree 3).  
38 Finally, we mention that, as in Experiment 1, the marginal effects (not reported here) of risk preference on the 
probability to be active are not significant for any degree or connectivity level. 
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 [Table 10] 

Players with degree 1 are rarely active, as we have seen in our other experiments with 

strategic complements (activity can never be profitable). We see a strong positive degree effect 

on the choice of being active, as the activity rates increase by degree in all three networks and for 

each degree. In networks 2 and 3, nearly every player with degree 3 or 4 is fully active.39  

We find a clear connectivity effect when the behavior is compared across network 1 and 

either of networks 2 or 3. The activity rates in networks 2 and 3 are much higher than in network 

1 for players with multiple connections. Regarding clustering, since players with degree 3 and 4 

are already fully active in network 2, we can only consider players with degree 2 if we aim to 

identify a clustering effect; but even in this case, the activity rate in network 2 is very high 

(88.1%). We find that the probability of being active is only slightly higher in network 3 

(92.9%), but the modest 4.8 percentage-point increase does represent more than 40 percent of the 

maximum 11.9 percentage-point increase possible from the activity rate with network 2. 

In Figure 7 we observe the evolution of activity in each network (by degree). The results 

show convergence to the inefficient equilibrium in network 1 and clear adherence to the efficient 

equilibrium in networks 2 and 3. This shows a clear and strong connectivity effect. 

 [Figure 7] 

In order to study the significance of these effects, as before we estimate a logit panel-data 

model with random effects and report the marginal effects across networks in relation to the 

probability of being active (measured at the average period and risk levels). The estimations 

show a significant connectivity effect on the choice of being active (the marginal effect for 

players of degrees 2, 3 and 4, comparing network 1 to either of networks 2 or 3). However, the 

clustering effect (marginal effect of network 3 over network 2, measured for players with degree 

2) is not significant, perhaps due to the high activity rate in network 2 (ceiling effect).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
39 In the third session of network 3, we identified one person whose behavior was anomalous. This individual was 
always active when her degree was 2, whereas she was always inactive when her degree was 3 or 4.  This pattern is 
in stark contrast to the incentive structure of the game and the behavior of all the other 179 subjects that played 
either in networks 1, 2 or 3. Thus, although we keep the data of this session for our analysis, we decided to remove 
the data from this specific anomalous individual throughout all our analysis. Consider that without this individual, 
we have completely full activity for players with degree 3 and 4, while this person is never active with degree 3 or 4 
(but is active at a lower degree); furthermore, network 2 has full activity for players of degrees 3 and 4. Thus, if we 
include this individual and compare behavior in networks 2 and 3, we would find an odd “clustering” effect. 
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We do see some suggestive evidence of a clustering effect at the session level. In network 

2, there is full activity for all players with degrees 3 and 4 and partial inactivity for degree 2 

players in all three sessions. The pattern is different in network 3 for players with degree 2, who 

are fully active in two out of three sessions and in the other there is a partial degree of inactivity 

for degree 2 players. Summarizing, we have: 

Result 8: Activity rates increase by degree in all three networks. We find a clear and 
strong connectivity effect across networks and suggestive evidence of a clustering effect. 
 

5. Discussion 
In this section, we address issues of behavior with respect to equilibrium predictions. We 

first consider how well the experimental data fits the theoretical predictions, and then discuss the 

extent to which potential multiple equilibria manifest in each treatment and the issue of 

convergence over time. Finally, and perhaps most importantly, we examine the underpinnings of 

factors that appear to drive the selection of a particular equilibrium or equilibria. 

 

5.1 Conformance of the experimental results to the theoretical predictions 
Experiment 1 

The results in Experiment 1 are quite consistent with the theoretical predictions for 

behavior in our games. These results provide not only very strong qualitative support, but also 

surprisingly strong quantitative support. With complete information and strategic substitutes, 

87.6 percent of activity choices correspond to a stochastically-stable equilibrium in which 

everyone makes positive profits. When the game involves strategic complements, play 

corresponds to the predicted equilibrium 96.1 percent (100 percent in the last 10 periods) of the 

time when it is unique. Matters are a bit more complicated when there are two equilibria. While 

overall the efficient equilibrium is played 74 percent of the time by the players who should be 

active (82.6 percent over all players), one of the four 10-person groups converged to the no-

activity equilibrium. In the last 10 periods of the session, the activity rate for players B, C, and D 
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combined was 83.9 percent overall for three of the groups, but was only 11.1 percent for the 

other group.40 So we see heterogeneity across groups. 

The results with incomplete information are particularly striking, given the much greater 

complexity of this environment. With substitutes, play is consistent with the unique, no-activity 

equilibrium 87.6 percent of the time when p = 0.2 and 84.0 percent of the time when p = 0.8. 

Play in the last 10 periods is even more consistent with the equilibrium for both p = 0.2 (91.0 

percent) and p = 0.8 (91.2 percent).41 But these percentages are relatively low for subjects with 

degree 2, as there is a substantially lower expected cost if one deviates from equilibrium play. 

With incomplete information and complements, play is consistent with the unique 

equilibrium 85.7 percent of the time (97.2 percent in the last 10 periods) when p = 0.2. When p = 

0.8, there is an equilibrium with no activity, while players of degree 2 and 3 are active in the 

other. The overall activity rates are 31.0 percent for players with degree 2 and 51.0 percent for 

players of degree 3, painting a murky picture. However, these rates decline to 4.3 percent and 

14.9 percent in the last 10 periods, so that behavior is converging to the no-activity equilibrium.  

The effects of degree and connectivity on activity are entirely consistent with the 

theoretical predictions, which imply a negative relationship between degree and activity with 

strategic substitutes, but a positive relationship with strategic complements. Furthermore, activity 

rates for agents with degrees 2 or 3 are higher for both complements and substitutes with higher 

connectivity (agents with degree 1 should never be active with complements for either p-value, 

but should always be active with substitutes for either p-value). Indeed, these qualitative 

predictions are borne out by the data.42 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
40 Purely in terms of expected value, being active pays off for player B, C, or D if the chance that both of the other 
two players are also active is at least 2/3, which corresponds to 81.6 percent for each player without correlation. But 
a taste for social efficiency may lower this threshold.   
41 The rates in the last 10 periods for degrees 1, 2, and 3 with p = 0.2 are 99.5 percent, 72.7 percent, and 100 percent, 
respectively. The rates in the last 10 periods for degrees 1, 2, and 3 with p = 0.8 are 94.6 percent, 78.4 percent, and 
95.2 percent, respectively. 
42 Summarizing, the activity rates for degrees 1, 2, and 3, respectively, the rates with substitutes drop from 95 to 28 
to 1 percent with p = 0.2 and from 93 to 60 to 10 percent for p = 0.8. The activity rates with complements increase 
from 2 to 18 to 44 percent with p = 0.2 and from 2 to 31 to 51 percent for p = 0.8. Concerning connectivity, the 
comparisons with substitutes across p = 0.2 and p = 0.8 are 28 versus 60 percent for degree 2, and 1 versus 10 
percent for degree 3; the respective comparisons with complements are 18 versus 31 percent for degree 2, and 44 
versus 51 percent for degree 3. 
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Experiment 2 

The results of Experiment 2 are more mixed, but still provide strong qualitative and some 

quantitative support for the predictions. In this design, there is always an equilibrium with no 

activity and exactly one efficient equilibrium (not the same across networks) with activity by a 

proper subset of the players. With complete information (strategic complements), 81.2 percent of 

the overall choices correspond to the efficient equilibrium (76.2 percent for roles predicted to be 

active in the equilibrium). The overall percentage is highest for the Blue network, lower for the 

Red network, and lowest for the Brown network. Note that this pattern matches the number of 3-

player cliques in each network, reflecting the difficulties in successful coordination on activity. 

All four groups coordinate on the efficient equilibrium with the Blue network, but one group in 

the Red network and two groups in the Brown network fail to do so.43 

The equilibria with incomplete information (and complements) are the same for p = 0.2 

and p = 0.8, with a no-activity equilibrium and one in which players with degrees 2 and 3 are 

active44; obviously, players of degree 1 should never be active. While activity rates are slightly 

higher for degree-2 players with more connectivity (79.21 percent versus 72.48 percent), for 

degree-3 players the activity rates are essentially the same with low and high connectivity (94.87 

and 96.36 respectively). There is no overall time trend with the exception of degree-2 players 

and low connectivity, as the activity rate, respectively for degree-2 players and degree-3 players, 

in the last 10 periods is 62.14 and 93.86 percent when p = 0.2 and 78.95 and 98.06 percent when 

p = 0.8. Indeed with p = 0.2, while two groups completely converge to the efficient equilibrium 

(in the last 10 periods 99.38 percent activity for players with more than one degree), the other 

two groups do not (47.50 percent activity in the last 10 periods) and in fact seem to be headed 

toward the no-activity equilibrium.  

In experiment 2, the effects of degree are consistent with the theoretical predictions, as 

there is more activity with higher degree with both complete and incomplete information. We 

also confirm the effect of connectivity in the case of incomplete information. Regarding 

complete information, we see that the increased connectivity and clustering in the Blue network 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
43 The rate for players predicted to be active in the Red network is 83.5 percent for the three coordinating groups, but 
only 42.5 percent for the other group; the corresponding rates for the final 10 periods are 79.1 and 22.2 percent. By 
the same token, the rate is 86.1 percent for the two coordinating groups in the Brown network and is 38.2 percent for 
the two non-coordinating groups; the corresponding rates for the final 10 periods are 88.3 and 18.7 percent. 
44 Recall that there was also an additional evanescent (weak) equilibrium for p = 0.8, in which a player with degree 
2 is not active. Yet, this equilibrium does not have any behavioral impact (cf. Footnote 23). 
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lead to higher activity rates (more groups coordinating on activity) than in the other networks. In 

addition, comparing behavior in the Red network to that in the Brown network allows us to 

identify a pure effect of clustering, holding connectivity constant. The last two rows of Table 8 

show that for these players the activity rate in the Red network is higher than in the Brown 

network, with aggregate rates of 71.0 percent and 64.2 percent, respectively. Since the activity 

rate is higher in the Red network than in the Brown network for all four groups, a binomial test 

that conservatively considers each group to be only one independent observation, gives p = 

0.062, on a (justified) one-tailed test. So there does appear to be an effect from clustering. 

 

Experiment 3 

In this difficult stress test with 20-person networks, the theoretical predictions do well. 

The activity rates increase steadily by degree, at least up to the point where the activity rate is 

near 100 percent (for degrees 3 and 4 in networks 2 and 3). All three networks had the same two 

equilibria, one featuring no activity and the other being the efficient equilibrium. We have 

predictions regarding connectivity and clustering that can be tested by comparing activity rates 

across network 1 and network 2 (change in connectivity, same clustering) and across network 2 

and network 3 (same connectivity, change in clustering), respectively. Figure 7 indicates that 

there is a very high degree of conformance with the efficient equilibrium in networks 2 and 3, 

but considerable decay over time with network 1 for players with degrees 2, 3, and 4.  

In fact, the pattern becomes much clearer by looking at the session-level data for network 

1. In one session, rates were completely stable, with about 5 percent, 43 percent, 85 percent, and 

100 percent for degrees 1, 2, 3, and 4, respectively, both on average and for the last 10 periods. 

There is sharp decay in activity rates in both of the other sessions, where the average activity 

rates in the last 10 periods are 0 percent, 2.5 percent, 17.5 percent, and 62.5 percent for degrees 

1-4, respectively. While some hubs still cling to the possibility of gaining through activity, we 

speculate that they would eventually give up and the no-activity equilibrium would be reached. 

So it seems that adding seven links to the 20 in network 1 greatly affects behavior. 

Activity rates are lower in each of the three sessions of network 1 than in any of the three 

sessions of either network 2 or network 3, and two of the three sessions with network 1 clearly 

converge to the no-entry equilibrium. Yet, for some reason, the efficient equilibrium is played in 

networks 2 and 3. This brings us to our next section. 
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5.2 Equilibrium selection 
We find some strong and interesting patterns, and generally a strong adherence both 

qualitatively and quantitatively to the theoretical predictions. Nevertheless, a key issue for policy 

is that of equilibrium selection, where theory is typically silent and experimental work is 

particularly useful. Our results help to shed some light on this issue and perhaps allow us to 

reach some conjectures about equilibrium selection in games on networks.  

Overall, there is a predominant tendency for a group to converge to one of the theoretical 

equilibra.45 When there is a unique equilibrium, this is played almost universally. We again 

mention that this is the case in games of incomplete information, where players don’t even know 

the network that has been drawn, let alone their position in it.  

But there are definite patterns in the data that beg for an explanation. In Experiment 1, a 

particular near-efficient equilibrium is played in all three of the networks when we have strategic 

substitutes and complete information. With strategic complements, only the Orange network has 

an equilibrium involving positive activity. This equilibrium requires a high degree of 

coordination on activity amongst the members of a 3-person clique, as the potential loss from the 

attempt is three times the potential gain. This clique is successful in coordinating on the efficient 

equilibrium in three of the four groups, with an overall activity rate of 86.08 percent in the final 

10 periods (11.11 percent activity rate in the other group). Yet, this equilibrium has vanished 

behaviorally (Figure 3) when the probability is 80 percent that the Orange network has been 

drawn. In Experiment 2, with complete information the efficient equilibrium is largely observed 

in two of the networks, but not so much in the network where there is no clique. However, with 

strategic complements and incomplete information, the efficient equilibrium is played even when 

there is only a 20 percent chance that the Blue network has been drawn. In Experiment 3, we see 

the efficient equilibrium played in two of the networks, but not in most sessions of the third.  

One general tendency we see is that people have a strong taste for achieving coordination 

on efficient outcomes. There is substantial evidence that people like efficiency (e.g., Charness 

and Rabin 2002; Engelmann and Strobel 2004). This is in some sense similar to the taste for 

achieving payoff-dominant outcomes seen in the experimental literature (e.g., Charness, 2000). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
45 Throughout the paper, we have ignored the existence of mixed-strategy equilibra in our networks. But these don’t 
seem to have behavioral impact.  
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But people are also concerned about the perceived risk/reward ratio and even uncertainty per se.  

For example, there is a clear thirst for achieving the payoff-dominant outcome in Charness and 

Jackson (2007), but playing Stag only predominates when the hurdle for successful coordination 

is lower. We see equilibrium selection as reflecting the underlying tastes of the individuals in a 

group for efficiency. If many people in the group are willing to take the chance on the efficient 

(but risky) equilibrium with positive activity, they may well be able to sustain the maximum 

payoff stream. Each group of players will have a particular taste for doing so and will essentially 

fall on either side of a threshold value that separates “basins of attraction”. Certain conditions 

enhance the likelihood that the efficient equilibrium is selected. 

We have seen that connectivity (how well a network is connected) often seems to 

influence the likelihood of activity, affecting which equilibrium emerges: the no-activity, zero-

profit equilibrium or one featuring activity and positive profits.46 When connectivity is higher 

with incomplete information and strategic substitutes in Experiment 1, a more active equilibrium 

occurs, although with strategic complements the more active equilibrium collapses over time. 

With complements and complete information, the extra link in the Orange network leads to 

successful coordination (in three groups out of four) on the active equilibrium. We see some 

evidence of a connectivity effect in Experiment 2 with incomplete information, as half of the 

groups converged on the no-activity equilibrium with p = 0.2, but no groups did with p = 0.8. 

Finally, there is a clear effect of connectivity when comparing behavior within networks 1 and 2 

in Experiment 3 (complements and incomplete information). 

The manner in which the network is connected also seems to matter; we consider the 

clustering coefficient, which reflects the number of cliques (groups of fully-connected agents) in 

the network. There is no direct way to test for clustering effects in Experiment 1, since the 

Orange network differs from the others by having both an extra link and a corresponding clique 

that appears. Nevertheless, the success in coordinating on the efficient equilibrium in the Orange 

network with complements and complete information is suggestive that clustering may have an 

effect. In Experiment 2, we do find a small-but-significant clustering effect with both complete 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
46 The formal definition in graph theory refers to the minimum number of elements (nodes or edges) that must be 
removed to disconnect the remaining nodes from each other.  
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and incomplete information. In Experiment 3, there is a modest increase in the activity rate for 

players with degree 2 when cliques are present.47 

A third factor that feeds into equilibrium selection is the degree of uncertainty. To some 

extent, this may help to explain why cliques are more effective, since there is in some sense more 

“certainty” when a group is fully connected. And even when it is very probable (p = 0.95) that a 

clique is present, the efficient equilibrium that predominates with complements and certainty in 

Experiment 1 has collapsed into the no-activity equilibrium in half the groups. It is not so easy to 

coordinate among three people when the loss from failure is thrice the gain from success, and 

any degree of uncertainty exacerbates the difficulty considerably. With known positions, there 

may be a flavor of common knowledge or even tacit communication, as each individual in the 

clique knows that the other individuals in the clique, etc., know the situation. Perhaps the 

awareness of a shared fate makes people more confident about the likelihood of successful 

coordination. The efficient equilibrium is usually played with incomplete information in 

Experiment 2, and is also consistently played in the two networks in Experiment 3 with higher 

connectivity. 

Thus, while people have a taste for efficiency, the hurdle appears to be too high for some 

coordination problems.  And we have also seen that groups are willing to absorb some cost to 

participate in the near-efficient equilibrium in Experiment 1 (positions A, C, and E active) with 

complete information and substitutes, rather than one of the equilibria with full efficiency (one 

less active player). As we have discussed, the near-efficient equilibrium is stochastically-stable 

and yields 87.5 percent of the total payoffs received in an efficient one. Our view is that this 

represents a group awareness of the riskiness of having only two active players. This is not 

unfamiliar in other coordination games. For example, even though there is an extremely high 

level of coordination on the payoff-dominant outcome in Charness (2000) when there is simple, 

one-way communication, the risk-dominant equilibrium prevails without communication; it 

seems that communication moves beliefs sufficiently to cross the threshold value. 

Summarizing, we see a number of intertwining factors that combined determine which 

equilibrium is selected in games on networks. Higher connectivity and more clustering increase 

activity rates and facilitate coordination on efficient outcomes. Uncertainty (incomplete 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
47 Players of degree 3 or 4 are fully active even without any cliques (network 2), so this can’t increase by 
introducing cliques (network 3) and in fact it remains the same.   
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information) is a negative influence on activity rates, but can be overcome when the coordination 

problem is less severe or when the active equilibrium is unique. There is also a strong taste for 

efficiency, but people will invest a modest amount for “insurance” that they will still earn profits 

if one other person deviates from the equilibrium. No one of these factors is determinative, but 

can be seen as reinforcing or weakening beliefs in the likelihood of successful coordination. That 

said, nearly every single group has largely converged to an equilibrium by the end of the 40 

periods in the session.  

 

6. Conclusion 
Networks are a ubiquitous feature of the social and economic landscape, with important 

applications in the areas of bargaining, job search, political interactions, and systems 

compatibility, among others. The question of how network structure affects behavior is a vital 

one for business decisions and governmental policy. We conduct an experiment designed to test 

how games with strategic substitutes or complements, which are general to many economic 

environments, are played on a variety of networks. We include the case of incomplete 

information in our experimental design, and to the best of our knowledge we are the first to 

consider experimentally the challenging case of uncertainty regarding aspects of the network 

structure. In our view, there is almost always a degree of uncertainty concerning the prevailing 

network structure in the field, so this is a very relevant design choice.  

A central issue in network theory is that of equilibrium selection, since it is more difficult 

to make informed policy decisions when one cannot predict the effects of network structure on 

outcomes. Considerable theoretical research has been conducted on trying to refine these or to 

gain insight into how to predict which of a multiplicity of equilibria actually prevails. Our 

principal objectives in conducting our experiments were to test theoretical predictions with 

complete and incomplete information and to provide empirical evidence that sheds light on 

factors that influence which equilibrium will actually prevail in practice in network settings. In 

fact, our results suggest that the problem of equilibrium multiplicity may in practice not be so 

severe. This is particularly true with complete information and substitutes in Experiment 1, 

where people seem to be willing to trade a relatively small difference in potential gain for an 

increased likelihood of actually receiving a gain. We find that a number of factors help to 

mediate which equilibrium prevails. There are higher rates of activity (and so higher 
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profitability) with higher connectivity and clustering, and people have a definite taste for 

efficiency when there is not much uncertainty and risk is limited. 

We find that play conforms very strongly to the qualitative and quantitative theoretical 

predictions for whether agents are active or inactive. The degree to which this is true is 

impressive with complete information, and is somewhat startling with incomplete information, 

considering the cognitive challenges of making decisions under uncertainty. While even in early 

periods subjects’ play is remarkably close to equilibrium predictions, this further improves in 

later periods, indicating that people learn over time to avoid mis-coordination. When we restrict 

our attention to the more ‘settled’ behavior in the last 10 periods of the sessions, we observe 

strong convergence to an equilibrium for almost every group. In the case of incomplete 

information, we also find strong qualitative support for the predicted relationships between 

degree and activity and connectivity and activity. Our results are robust to a variety of smaller 

networks and larger networks. 

Overall, we feel that experimental research such as this will be quite useful in making 

pragmatic choices regarding which network structure to implement and in predicting outcomes 

for an already-existing network structure. Given the uncertainty in the field environment, further 

experimental research that incorporates incomplete information and uncertainty would certainly 

seem worthwhile. While we have taken a first step in identifying the effects of uncertainty, 

probabilities are often unknown in practice. Likewise, we consider it as interesting to examine 

how communication between players in a network may have an impact on equilibrium selection. 

Our results have shown a remarkable degree of equilibrium play and coordination on a particular 

equilibrium without any communication, but it seems promising to study whether 

communication may even further improve successful coordination on the efficient equilibrium.  

Finally, it would be valuable to develop experiments involving endogenous network formation 

with multiple players.  One major difficult is that a large number of networks are possible, 

making it difficult to get enough data to draw even tentative conclusions.  One approach is to 

provide an existing framework with some specified options, as in Charness and Jackson (2007), 

but that is just a start.  

Improved behavioral network theory may well be the result of the knowledge gleaned 

from this and future laboratory experiments.  
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Tables and Figures 
Table 1: Equilibria in Experiment 1 

I) With complete information 

 Network Active nodes Inactive nodes 

Substitutes 

Orange 
A, C, E B, D 
B, E A, C, D 
A, D B, C, E 

Green 

A, C, E B, D 
B, D A, C, E 
B, E A, C, D 
A, D B, C, E 

Purple 
A, C, D B, E 
A, C, E B, D 
B, E A, C, D 

Complements 
Orange B, C, D A, E 

- A, B, C, D, E 
Green - A, B, C, D, E 
Purple - A, B, C, D, E 

II) With incomplete information 

 Probability of the 
Orange network Active degrees Inactive degrees 

Substitutes 0.2 1 2, 3 
0.8 1, 2 3 

Complements 
0.2 - 1, 2, 3 

0.8 - 1, 2, 3 
2, 3 1 

 0.95 (addendum to 
Experiment 1) 

- 1, 2, 3 
 2, 3 1 
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Table 2: Equilibria in Experiment 2 
 I) With complete information 

Network Active nodes Inactive nodes 

Blue B, C, D, E A 
- A, B, C, D, E 

Red C, D, E A, B 
- A, B, C, D, E 

Brown B, C, D, E A 
- A, B, C, D, E 

 II) With incomplete information  
Probability of the Blue 
network Active degrees Inactive degrees 

0.2 - 1, 2, 3 
2, 3 1 

0.8 
- 1, 2, 3 
2, 3 1 
3 1, 2 (weak equilibrium) 

 
 
  

Table 3: Network Characteristics in Experiment 3 

 

 
 

Table 4: Equilibria in Experiment 3 
Network Active degrees Inactive degrees 

Network 1 
- 1, 2, 3, 4 
2, 3, 4 1 

Network 2 
- 1, 2, 3, 4 
2, 3, 4 1 

Network 3 
- 1, 2, 3, 4 
2, 3, 4 1 

  

 Network 1 Network 2 Network 3 

Degree 
distribution 
(# nodes) 

degree = 1  8 4 4 
degree = 2  6 4 4 
degree = 3 4 6 6 
degree = 4 2 6 6 

Number of links 20 27 27 
Clustering 0 0 >0 
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Table 5: Complete information in Experiment 1 
Frequencies of activity by treatment, network and player position 

 Orange Green Purple 
Active 

(%) Total Active 
(%) Total Active 

(%) Total 

Substitutes 

A 88 
(94.62) 93 96 

(91.43) 105 113 
(92.62) 122 

B 8 
(8.60) 93 16 

(15.24) 105 6 
(4.92) 122 

C 63 
(67.74) 93 70 

(66.67) 105 115 
(94.26) 122 

D 10 
(10.75) 93 18 

(17.14) 105 22 
(18.03) 122 

E 85 
(91.40) 93 99 

(94.29) 105 112 
(91.80) 122 

Total 254 
(54.62) 465 299 

(56.95) 525 368 
(60.33) 610 

Complements 

A 4 
(3.51) 114 1 

(0.95) 105 1 
(0.99) 101 

B 85 
(74.56) 114 4 

(3.81) 105 13 
(12.87) 101 

C 83 
(72.81) 114 11 

(10.48) 105 1 
(0.99) 101 

D 85 
(74.56) 114 2 

(1.90) 105 5 
(4.95) 101 

E 6 
(5.26) 114 1 

(0.95) 105 1 
(0.99) 101 

Total 263 
(46.14) 570 19 

(3.62) 525 21 
(4.16) 505 

Estimated activity rates by treatment, network and player position  
(at period = 20 and average risk level) 

  Substitutes Complements 
Position Orange Green Purple Orange Green Purple 

A 0.989*** 
(0.007) 

0.975*** 
(0.014) 

0.977*** 
(0.013) 

0.010 
(0.007) 

0.000 
(0.000) 

0.000 
(0.000) 

B 0.011 
(0.008) 

0.048* 
(0.025) 

0.013 
(0.009) 

0.843*** 
(0.050) 

0.007 
(0.006) 

0.050* 
(0.027) 

C 0.767*** 
(0.076) 

0.754*** 
(0.079) 

0.990*** 
(0.008) 

0.746*** 
(0.067) 

0.010 
(0.009) 

0.000 
(0.000) 

D 0.023 
(0.014) 

0.091** 
(0.039) 

0.097** 
(0.040) 

0.813*** 
(0.057) 

0.001 
(0.002) 

0.006 
(0.007) 

E 0.978*** 
(0.014) 

0.987*** 
(0.010) 

0.970*** 
(0.016) 

0.000 
(0.001) 

0.001 
(0.002) 

0.000 
(0.000) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Table 6: – Incomplete information in Experiment 1 
Frequencies of activity by connectivity (p) and degree 

  
p = 0.2 p = 0.8 

Active 
(%) Total	
   Active 

(%) Total	
  

Substitutes 

degree = 1 731 
(94.81) 771 628 

(92.90) 676 

degree = 2 156 
(28.16) 554 225 

(59.52) 378 

degree = 3 3 
(1.09) 275 55 

(10.07) 546 

Total 890 
(55.63) 1600 908 

(56.75) 1600 

Complements 

degree = 1 15 
(1.97) 763 12 

(1.76) 681 

degree = 2 107 
(17.89) 598 116 

(31.02) 374 

degree = 3 106 
(44.35) 239 278 

(51.01) 545 

Total 228 
(14.25) 1600 406 

(25.37) 1600 

Marginal effects of connectivity (p) by treatment and degree  
(p = 0.8 vs. p = 0.2 at period 20 and average risk level) 

 Substitutes Complements 

degree = 1 0.004 
(0.009) 

-0.000 
(0.001) 

degree = 2 0.547*** 
(0.083) 

0.111** 
(0.056) 

degree = 3 0.024** 
(0.010) 

0.233* 
(0.132) 

Marginal effects of degree by treatment and connectivity (p)  
(at period 20 and average risk level) 

 Substitutes Complements 

degree = 2 vs. degree = 1 
p = 0.2 -0.816*** 

(0.041) 
0.041** 
(0.017) 

p = 0.8 -0.273*** 
(0.064) 

0.153*** 
(0.053) 

degree = 3 vs. degree = 1 
p = 0.2 -0.980*** 

(0.007) 
0.328*** 
(0.091) 

p = 0.8 -0.961*** 
(0.009) 

0.562*** 
(0.095) 

degree = 3 vs. degree = 2 
p = 0.2 -0.164*** 

(0.045) 
0.287*** 
(0.079) 

p = 0.8 -0.687*** 
(0.063) 

0.409*** 
(0.061) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Table 7. Experiment 1  

Estimated activity rates by connectivity (p), degree and period (at average risk level) 

 p = 0.80 p = 0.95 p = 1 

degree = 2 
period = 20 0.153*** 

(0.053) 
0.805 

(0.072) 
0.746 

(0.067) 

period = 40 0.007*** 
(0.004) 

0.416 
(0.131) 

0.747** 
(0.102) 

degree = 3 
period = 20 0.563*** 

(0.095) 
0.919 

(0.034) 
0.828 

(0.045) 

period = 40 0.012*** 
(0.006) 

0.388 
(0.117) 

0.685** 
(0.090) 

Estimated trends of activity rates by connectivity (p) and degree (at period 20 and average risk level) 

degree = 2 -0.008 
(0.003) 

-0.014 
(0.004) 

0.000*** 
(0.000) 

degree = 3 -0.047*** 
(0.008) 

-0.011 
(0.004) 

-0.006 
(0.002) 

***, **,* denote significant difference respect to treatment p=0.95 at 1%, 5% and 10% levels, 
respectively, two-tailed tests  

Note that p = 1 means the orange network in the treatment of complete information.  
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Table 8. Complete Information in Experiment 2 

Frequencies of activity by network and player position 

 Blue Red  Brown 

Position Active 
(%) Total Active 

(%) Total Active 
(%) Total 

A 0 
(0.00) 112 1 

(0.93) 108 2 
(2.00) 100 

B 104 
(92.86) 112 20 

(18.52) 108 79 
(79.00) 100 

C 109 
(97.32) 112 92 

(85.19) 108 62 
(62.00) 100 

D 85 
(75.89) 112 70 

(64.81) 108 60 
(60.00) 100 

E 108 
(96.43) 112 68 

(62.96) 108 56 
(56.00) 100 

Degree 2^ 85 
(75.89) 112 138 

(63.88) 216 178 
(59.33) 300 

Degree 3 321 
(95.54) 336 92 

(85.19) 108 79 
(79.00) 100 

Estimated activity rates by network and player position 
(at period 20 and average risk level) 

 Blue Red Brown 

A 0.000 
(.) 

0.000 
(.) 

0.000 
(.) 

B 0.989*** 
(0.007) 

0.065** 
(0.034) 

0.913*** 
(0.042) 

C 0.996*** 
(0.003) 

0.992*** 
(0.005) 

0.581*** 
(0.120) 

D 0.882*** 
(0.052) 

0.753*** 
(0.091) 

0.668*** 
(0.109) 

E 0.999*** 
(0.001) 

0.785*** 
(0.085) 

0.674*** 
(0.110) 

Degree 2^ 0.882*** 
(0.052) 

0.769*** 
(0.080) 

0.641*** 
(0.091) 

Degree 3 0.995*** 
(0.003) 

0.992*** 
(0.005) 

0.913*** 
(0.042) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
^ Here we are only referring to those players with degree 2 active in the efficient equilibrium. 
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Table 9. Incomplete information in Experiment 2 

Frequencies of activity by connectivity (p) and degree 

 p = 0.2 p = 0.8 

 
Active 

(%) Total Active 
(%) Total 

degree = 1 25 
(7.81) 320 23 

(7.19) 320 
 

degree = 2 603 
(72.48) 832 339 

(79.21) 
428 

 

degree = 3 425 
(94.87) 448 821 

(96.36) 
852 

 

Total 1053 
(65.81) 1600 1183 

(73.94) 
1600 

 

Marginal effect of connectivity (p) by degree and period  
(p = 0.8 vs. p = 0.2 at average risk level) 

 period = 20 period = 40 

degree = 1 0.001 
(0.005) 

-0.001 
(0.002) 

degree = 2 -0.041 
(0.060) 

0.272* 
(0.151) 

degree = 3 -0.000 
(0.001) 

0.004 
(0.004) 

Marginal effect of degree by connectivity (p)  
(at period 20 and average risk level) 

degree = 2 vs. degree = 1 
p = 0.2 0.943*** 

(0.030) 

p = 0.8 0.900*** 
(0.049) 

degree = 3 vs. degree = 1 
p = 0.2 0.995*** 

(0.003) 

p = 0.8 0.994*** 
(0.004) 

degree = 3 vs. degree = 2 
p = 0.2 0.052* 

(0.031) 

p = 0.8 0.093* 
(0.051) 

***, **,* denote significance at 1%, 5%, 10% levels, respectively, two-tailed tests 
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Table 10. Experiment 3  

Frequencies of activity by network and degree 

 Network 1 Network 2 Network 3 

 
Active 

(%) Total Active 
(%) Total Active 

(%) Total 

degree = 1 26 
(2.71) 960 16 

(3.33) 480 34 
(7.17) 474 

degree = 2 177 
(24.58) 720 423 

(88.13) 480 434 
(92.93) 467 

degree = 3 291 
(60.62) 480 720 

(100) 720 707 
(99.58) 710 

degree = 4 195 
(81.25) 240 719 

(99.86) 720 709 
(100) 709 

Marginal effect of network by degree (at period 20 and average risk level) 

 Network 2 vs. Network 1 Network 3 vs. Network 1 Network 3 vs. Network 2 

degree = 1 0.004 
(0.004) 

0.010* 
(0.006) 

0.006 
(0.006) 

degree = 2 0.832*** 
(0.038) 

0.836*** 
(0.037) 

0.004 
(0.014) 

degree = 3 0.284*** 
(0.060) 

0.284*** 
(0.060) 

-0.001 
(0.000) 

degree = 4 0.051*** 
(0.019) 

0.051*** 
(0.019) 

0.000 
(0.000) 

***, **,* denote significance at 1%, 5% and 10% levels, respectively, two-tailed tests  
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Figure 1: The networks 

Experiment 1 

 
Orange network   Green network    Purple network 

Experiment 2 

 
 Blue network     Red network     Brown network 

Experiment 3 

Network 1	
   Network 2	
  

Network 3	
  

	
  Network 2 = Network 1 + links 3-15, 7-12, 7-14,    
5-14, 2-8, 13-18, 18-20  

 
 Network 3 = Network 1 + links 3-15, 3-12, 7-15,   

5-8, 9-17, 2-17, 11-18	
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Figure 2: Relative frequency of active choices across periods, by network 
player position and treatment – Experiment 1, Complete information 
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Figure 3: Relative frequencies of choices by degree, games, and p  
Incomplete information, Experiment 1 
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Figure 4. Observed activity probabilities, by degree and p, Experiment 1 

                       
See Table 1 for equilibrium predictions. 
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Figure 5. Observed probabilities of being active, by network and position in      
Experiment 2, Complete information                        

	
  

	
  
See Table 2 for equilibrium predictions. 
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Figure 6. Observed probabilities of being active, by connectivity and degree 
Experiment 2 

	
  
See Table 2 for equilibrium predictions. 
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Figure 7. Observed probabilities of being active, by network and degree  
Experiment 3 

	
  
See Table 4 for equilibrium predictions. 
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Appendix A: Proofs 

 
Complete information, 5-player networks 
	
  
Let 𝑠! ∈ 0,1   𝑖 ∈ 𝐴,𝐵,𝐶,𝐷,𝐸  be the action of the player in position 𝑖 where 1 means to be 

active 0 means to be inactive. Then a strategy profile is give by s = (sA, sB, sC, sD, sE). Let be 𝑁! 

the set of player that have a link to player 𝑖 and 𝑛! = 𝑁! . Let 𝜋!(𝑠! , 𝑠!!) be the expected payoff 

of the player in position i. 

 

Proposition 1. Consider the scenario of strategic substitutes and complete information of 
Experiment 1. In the Orange network the pure-strategy Nash equilibria are: (1,0,1,0,1), 
(1,0,0,1,0), and (0,1,0,0,1). In the Green network the pure-strategy Nash equilibria are 
(1,0,1,0,1), (0,1,0,1,0), (1,0,0,1,0), and (0,1,0,0,1). In the Purple network the pure-strategy Nash 
equilibria are (1,0,1,0,1), (1,0,1,1,0), and (0,1,0,0,1). All these equilibria are strict. 
 
Proof: It suffices to prove the following claim: In a Nash equilibrium (i) 𝑠! = 1 if and only if, 
∀𝑗 ∈ 𝑁! , 𝑠! = 0; and (ii) 𝑠! = 0 if and only if ∃𝑗 ∈ 𝑁!   𝑠. 𝑡. 𝑠! = 1. Then the result directly follows. 
To prove the claim, assume a Nash equilibrium where ∀𝑗 ∈ 𝑁! ,   𝑠! = 0. Then the best response of 
player 𝑖 is 𝑠! = 1 because 𝜋!(0, 𝑠!!)   = 0 and 𝜋!(1, 𝑠!!)   = 50. Assume a Nash equilibrium where 
∃𝑗 ∈ 𝑁!   𝑠. 𝑡.   𝑠! = 1, then the best response of player 𝑖 is 𝑠! = 0 because 𝜋!(0, 𝑠!!)   = 100 and 
𝜋!(1, 𝑠!!)   = 50. Assume a Nash equilibrium where 𝑠! = 1 and ∃𝑗 ∈ 𝑁!   𝑠. 𝑡.   𝑠! = 1, then the best 
response of player 𝑖 is 𝑠! = 0 because 𝜋!(0, 𝑠!!)   = 100 and 𝜋!(1, 𝑠!!)   = 50, a contradiction. 
Assume a Nash equilibrium where 𝑠! = 0 and ∀𝑗 ∈ 𝑁! ,   𝑠! = 0, then the best response of player 𝑖 
is 𝑠! = 1 because 𝜋!(0, 𝑠!!)   = 0 and 𝜋!(1, 𝑠!!)   = 50, a contradiction. It is straightforward to see 
that all the equilibria are strict. QED 
 
Proposition 2. Consider the scenario of strategic complements and complete information of 
Experiment 1. In the Orange network there are two pure-strategy Nash equilibria: (0,0,0,0,0), 
and (0,1,1,1,0). In the Green and Purple networks there is a unique Nash equilibrium: 
(0,0,0,0,0). All these equilibria are strict. 
 
Proof: We first prove the following claim: 𝑠! = 1 is a best response if and only if 𝑠!!∈!! ≥ 2. 
To this aim, suppose a strategy profile where 𝑠!!∈!! ≥ 2. Then, the best response of player 𝑖 is 
𝑠! = 1, since 𝜋! 0, 𝑠!! = 50  and  𝜋! 1, 𝑠!! ≥ 66.66. Suppose now a strategy profile where 
𝑠! = 1 is a best response and 𝑠!!∈!! < 2. Then, 𝜋! 0, 𝑠!! = 50 and 𝜋! 1, 𝑠!! ≤ 33.33, a 
contradiction. Thus, the claim follows. The claim implies that, in all Nash equilibria, 𝑠! =
0  𝑖𝑓  𝑛! = 1.  
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Consider the Orange network. Since players A and E choose 0 in all Nash equilibria (𝑛! = 𝑛! =
1), in a pure-strategy Nash equilibrium either 𝑠! = 𝑠! = 𝑠! = 1 or 𝑠! = 𝑠! = 𝑠! = 0. Consider 
the Green and the Purple Network. Players A and E in the Green network, and players A, C and E 
in the Purple network choose 0 in all Nash equilibria (all of them have 𝑛! = 1). Hence, in a Nash 
equilibrium, players B and D in the Green network and player D in the Purple network also 
choose action 0, since they have 𝑛! = 2 and one of their neighbors has 𝑛! = 1 (and, therefore, 
chooses action 0). It follows that, in a Nash equilibrium, also player C in the Green network and 
player B in the Purple network choose action 0, since all their neighbors also choose 0. It is 
straightforward to see that all the equilibria are strict. QED 

 
Incomplete information, 5-player networks 

In Incomplete information scenario players are not informed about which network has 
been drawn, but they know their own degree (the number of neighbors they have, either 1, 2 or 
3). With this information in hand, each player decides whether to be active (action 1) or not 
(action 0). Since each player only learns her degree (and the prior p), she can only condition her 
behavior on this information. In this sense, a (symmetric) strategy profile is represented by a 
vector 𝑠 = 𝑠!, 𝑠!, 𝑠! , where 𝑠! ∈ 0, 1  is the action chosen by an agent with degree 𝑗 ∈
1, 2, 3 . There are 8 strategy profile candidates to be a pure – strategy Nash equilibrium: sI = 

(0,0,0), sII = (1,0,0), sIII = (0,1,0), sIV = (0,0,1), sV = (1,1,0), sVI = (1,0,1), sVII = (0,1,1) and sVIII = 
(1,1,1). Let 𝜋!

!(𝑥! , 𝑥!!) be the payoff of an agent (indexed by i  ∈ 𝑁) with degree j  ∈ {1,2,3}. 

Proposition 3. In the scenario of strategic substitutes and incomplete information of Experiment 
1 there exists a unique pure-strategy Bayes-Nash equilibrium: 1, 𝑠!∗, 0 , with 𝑠!∗ = 0 if p = 0.2 
and 𝑠!∗ = 1 if p = 0.8. All these equilibria are strict. 
 
Proof. We first define some conditional probabilities that shall be useful in the proof. Let q1(j) be 
the expected probability for an agent that, conditional on having degree 1, her neighbor has 
degree j. By applying Bayes’ rule we get q1(2) = !(!!!)

! !!! !!!
 and q1(3) = ! !!! !!!

! !!! !!!
. Let q2(j1,j2) be 

the expected probability for an agent that, conditional on having degree 2, her neighbors have 
degrees j1 and j2. By applying Bayes’ rule we get q2(1,2) = !(!!!)

! !!! !!!
, q2(2,2) = !!!

! !!! !!!
, q2(1,3) 

= !!!
! !!! !!!

 and q2(3,3) = !!
! !!! !!!

. Let q3(j1,j2,j3) be the expected probability for an agent that, 

conditional on having degree 3, her neighbors have degrees j1, j2 and j3. By applying Bayes’ rule 
we get q3(1,1,2) = !!!

!!!!
 and q3(1,2,3) = !!

!!!!
.  

First, we prove that candidates sI, sIII, sIV, sVI, sVII and sVIII cannot be equilibria. 
For all 𝑝 ∈ 0,1 , sI is not an equilibrium, since 𝜋!! 0, 𝑥!!! = 0 < 50 = 𝜋!! 1, 𝑥!!! . 
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Regarding sIII, in order to be an equilibrium, it would require 𝜋!! 0, 𝑥!!!!! ≥ 𝜋!! 1, 𝑥!!!!!  and 
𝜋!! 1, 𝑥!!!!! ≥ 𝜋!! 0, 𝑥!!!!! , i.e., q1(2) ≥ !

!
 and !

!
≥  q2(1,2) + q2(2,2), but these inequalities are 

incompatible for all 𝑝 ∈ 0,1 . 
Regarding sIV, in order to be an equilibrium, it would require 𝜋!! 0, 𝑥!!!" ≥ 𝜋!! 1, 𝑥!!!"  and 
𝜋!! 1, 𝑥!!!" ≥ 𝜋!! 0, 𝑥!!!" , i.e., q2(1,3) + q2(3,3) ≥ !

!
 and !

!
≥  q3(1,2,3), but these inequalities are 

incompatible for all 𝑝 ∈ 0,1 . 
For all 𝑝 ∈ 0,1 , sVI is not an equilibrium, since 𝜋!! 1, 𝑥!!!" = 50 < 100 = 𝜋!! 0, 𝑥!!!" . 
For all 𝑝 ∈ 0,1 , sVII is not an equilibrium, since 𝜋!! 1, 𝑥!!!"" = 50 < 100 = 𝜋!! 0, 𝑥!!!"" . 
For all 𝑝 ∈ 0,1 , sVIII is not an equilibrium, since 𝜋!! 1, 𝑥!!!""" = 50 < 100 = 𝜋!! 0, 𝑥!!!""" . 

Finally, we prove that candidates sII is an equilibrium if and only if 𝑝 ≤ !
!
, and that sV is an 

equilibrium if and only if 𝑝 ≥ !
!
. Let us start with sII. First, we observe that, for all 𝑝 ∈ 0,1 , 

𝜋!! 1, 𝑥!!!! = 50 > 0 = 𝜋!! 0, 𝑥!!!!  and 𝜋!! 0, 𝑥!!!! = 100 > 50 = 𝜋!! 1, 𝑥!!!! . Hence, in order to 
be an equilibrium, it requires 𝜋!! 0, 𝑥!!!! ≥ 𝜋!! 1, 𝑥!!!! , i.e., q2(1,2) + q2(1,3) ≥ !

!
,  which 

simplifies to 𝑝 ≤ !
!
. Thus, if p = 0.2, sII is a strict equilibrium and, if p = 0.8, it is not an 

equilibrium. Consider now sV. First, we observe that, for all 𝑝 ∈ 0,1 , 𝜋!! 0, 𝑥!!! = 100 >
50 = 𝜋!! 1, 𝑥!!! . Hence, in order to be an equilibrium, it requires both 𝜋!! 1, 𝑥!!! ≥ 𝜋!! 0, 𝑥!!!  
and 𝜋!! 1, 𝑥!!! ≥ 𝜋!! 0, 𝑥!!! , i.e., !

!
≥ q1(2) and !

!
≥ q2(1,2) + q2(2,2) + q2(1,3). The second 

inequality implies the first one, and the equilibrium condition simplifies to 𝑝 ≥ !
!
. Thus, if p = 

0.2, sV is not an equilibrium and, if p = 0.8, it is a strict equilibrium. QED 
 
Proposition 4. In the scenario of strategic complements and incomplete information of 
Experiment 1, if p = 0.2 there is a unique Bayes-Nash equilibrium: (0,0,0); if p ∈ {0.8, 0.95}, 
there are two pure-strategy Bayes Nash equilibria: (0,0,0) and (0,1,1). All these equilibria are 
strict. 
 
Proof. The conditional probabilities q1(j), q2(j1,j2) and q3(j1,j2,j3) are defined in the proof of 
Proposition 3. We first prove that candidates sII, sIII, sIV, sV, sVI, and sVIII cannot be equilibria: 
For all 𝑝 ∈ 0,1 , sII, sV, sVI and sVIII are not equilibria, since 𝜋!! 1, 𝑥!!!! ≤ !""

!
< 50 = 𝜋!! 0, 𝑥!!!! . 

For all 𝑝 ∈ 0,1 , sIII is not an equilibrium, since 𝜋!! 1, 𝑥!!!!! = !""
!
(𝑞! 1,2 + 2(𝑞! 2,2 ) <

50 = 𝜋!! 0, 𝑥!!!!! . Regarding sIV, in order to be an equilibrium, it would require 𝜋!! 1, 𝑥!!!" ≥
𝜋!! 0, 𝑥!!!" , i.e., !""

!
𝑞! 1,2,3 ≥ 50. However, the inequality does not hold since, for any 

𝑝 ∈ 0,1 , 𝑞! 1,2,3 < 1. 
We now prove that candidates sI is an equilibrium for all 𝑝 ∈ 0,1 , and that candidate sVII is 

an equilibrium if and only if 𝑝 ≥ 1/2. We start with candidate sI. For all 𝑝 ∈ 0,1 , and 𝑘 ∈ {1,2,3}, 
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𝜋!! 0, 𝑥!! = 50 > 0 = 𝜋!! 1, 𝑥!! . Hence sI is a strict equilibrium. Now consider candidate sVII. 
First, we observe that, for all 𝑝 ∈ 0,1 , 𝜋!! 0, 𝑥!!!"" = 50 > 100/3 = 𝜋!! 1, 𝑥!!!"" . Hence, in 
order to be an equilibrium, it requires both 𝜋!! 1, 𝑥!!!"" ≥ 𝜋!! 0, 𝑥!!!""  and 𝜋!! 1, 𝑥!!!"" ≥
𝜋!! 0, 𝑥!!!"" , i.e., 

!""
!
(𝑞! 1,2 + 𝑞! 1,3 + 2𝑞! 2,2 + 2𝑞! 2,3 ) ≥ 50  and  

!""
!
(𝑞! 1,1,2 + 2𝑞! 1,2,3 ) ≥ 50.  

The first inequality simplifies to 𝑝 ≥ 1/2 and the second one simplifies to 𝑝 ≥ 1/5.  Hence, if p = 
0.2, sVII is not an equilibrium and, if p = 0.8 it is a strict equilibrium (since both inequalities 
strictly hold). QED  
	
  
Proposition 5. In the scenario of Experiment 2 (strategic complements and incomplete 
information), (i) if p =   0.2, there are two pure-strategy Bayes-Nash equilibria: (0,0,0) and 
(0,1,1); these equilibria are strict. (ii) If p=0.8 there are two pure-strategy strict Bayes-Nash 
equilibria: (0,0,0) and (0,1,1); and there is a pure-strategy weak Bayes-Nash equilibria: (0,0,1). 
	
  
Proof. We first redefine the conditional probabilities for the case of Experiment 2. By applying 
Bayes’ rule we get q1(2) = !!!

!
, q1(3) = !!!

!
, q2(2,2) = !!!

!(!!!(!!!))
, q2(1,3) = !!!

!(!!!(!!!))
, q2(2,3) = 

!(!!!)
!!!(!!!)

, q2(3,3) = !
!!!(!!!)

, q3(1,2,2) = !!!
!(!!! !!! )

, q3(2,2,2) = !!!
!(!!! !!! )

, q3(1,3,3) = !
!!! !!!

, and 

q3(2,3,3) = !!
!!! !!!

. 

For all 𝑝 ∈ 0,1 , sII, sV, sVI and sVIII are not equilibria, since 𝜋!! 1, 𝑥!! ≤ !""
!
< 50 =

𝜋!! 0, 𝑥!! . For all 𝑝 ∈ 0,1 , sIII is not an equilibrium, since 𝜋!! 1, 𝑥!!!!! = !""
!
(2𝑞! 2,2 +

𝑞! 2,3 ) < 50 = 𝜋!! 0, 𝑥!!!!! . 
We now prove that candidate sI is an equilibrium for all 𝑝 ∈ 0,1 , and that candidate sVII is an 

equilibrium if and only if 𝑝 ≥ 1/2. We start with candidate sI. For all 𝑝 ∈ 0,1 , and 𝑘 ∈ {1,2,3}, 
𝜋!! 0, 𝑥!! = 50 > 0 = 𝜋!! 1, 𝑥!! . Hence sI is a strict equilibrium. Now consider candidate sVII. 
First, we observe that, for all 𝑝 ∈ 0,1 , 𝜋!! 0, 𝑥!!!"" = 50 > 100/3 = 𝜋!! 1, 𝑥!!!"" . Hence, in 
order to be an equilibrium, it requires both 𝜋!! 1, 𝑥!!!"" ≥ 𝜋!! 0, 𝑥!!!""  and 𝜋!! 1, 𝑥!!!"" ≥
𝜋!! 0, 𝑥!!!"" , i.e., 

  !""
!
(2𝑞! 2,2 + 𝑞! 1,3 + 2𝑞! 2,3 + 2𝑞! 3,3 ) ≥ 50  and  

!""
!
(2𝑞! 1,2,2 + 3𝑞! 2,2,2 +2𝑞! 1,3,3 + 3𝑞! 2,3,3 ) ≥ 50.  

It can be directly verified that both inequalities (strictly) hold for any 𝑝 ∈ (0,1) and, therefore, sVII 
is a strict equilibrium. 

Finally, consider sIV. First, we observe that, for all 𝑝 ∈ 0,1 , 𝜋!! 0, 𝑥!!!" = 50 > 100/3 =
𝜋!! 1, 𝑥!!!" . Hence, in order to be an equilibrium, it requires both 𝜋!! 0, 𝑥!!!" ≥ 𝜋!! 1, 𝑥!!!"  and 
𝜋!! 1, 𝑥!!!" ≥ 𝜋!! 0, 𝑥!!!" , i.e., 
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  50 ≥ !""
!
(𝑞! 1,3 + 𝑞! 2,3 + 2𝑞! 3,3 )  and  

!""
!
(2𝑞! 1,3,3 + 2𝑞! 2,3,3 ) ≥ 50.  

The first inequality simplifies to 𝑝 ≤ 0.8 and the second one simplifies to 𝑝 ≥ 0.5.  Therefore, sIV is 
not an equilibrium if p = 0.2, and it is a weak equilibrium if p = 0.8. QED  
 
Incomplete information, 20-player networks 
	
  

In this scenario players are informed about which network is in place but they do not know the 
specific position they have in the network. They know only their own degree (the number of 
neighbors they have, either 1, 2, 3 or 4). With this information in hand, each player decides 
whether to be active (action 1) or not (action 0). Since each player only learns her degree, she 
can only condition her behavior on this information. In this sense, a (symmetric) strategy profile 
is represented by a vector s = s!, s!, s!, s! , where s! ∈ 0, 1  is the action chosen by an agent 
with degree j ∈ 1, 2, 3,4 .  

 

Proposition 6. In the scenario of Experiment 3 in the three 20-player networks there are two 
pure-strategy Bayes-Nash equilibria: 0, 0, 0, 0  and 0, 1, 1, 1 . Both equilibria are strict. 

 
Proof. Let 𝜋!

!(𝑥! , 𝑥!!) ≡ 𝜋!
!(𝑥!) be the payoff of an agent (indexed by i  ∈ 𝑁) with degree 

j  ∈ 1,2,3,4  from action 𝑥! when other players choose 𝑥!!. Note that (i) in all Nash equilibria, 𝑠! = 0 
because 𝜋!!(0, 𝑥!!)   = 50 and 𝜋!!(𝑥! , 𝑥!!)   ≤

100
3 ; (ii) the strategy profile 0, 0,0, 0  is a strict 

Bayes-Nash equilibrium in all networks because a deviation to action 1 produces a payoff of 0 
(against a payoff of 50 from action 0). Then there are 7 strategy profiles candidates to be a pure-
strategy Bayes-Nash equilibrium: all possible combinations of 𝑠!, 𝑠!, 𝑠! in 𝑠 excluding 
0, 0,0, 0 .  

Consider Network 1. Strategy 0,1,0,0  is not an equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 =
22.22   ≤ 50 = 𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,0,1,0  is not an equilibrium because  𝜋!! 1, 𝑥!! = 16.66 <
50 = 𝜋!!(0, 𝑥!!)  . Strategy 0,0,0,1  is not an equilibrium because  𝜋𝑖4 1, 𝑥−𝑖 = 0 < 50 =
𝜋𝑖4(0, 𝑥−𝑖). Strategy 0,1,1,0  is not an equilibrium because 𝜋!! 1, 𝑥!! = 116.66 > 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,1,0,1  is not an equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 = 44.44 < 50 =
𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,0,1,1  is not an equilibrium because 𝜋!! 1, 𝑥!! = 41.66 < 50 =
𝜋!!(0, 𝑥!!)  . Finally, strategy 0,1,1,1  is a strict equilibrium because 𝜋!! 1, 𝑥!! = 116.66 > 50 =
𝜋!!(0, 𝑥!!)  , 𝜋!! 1, 𝑥!! = 58.33 > 50 = 𝜋!!(0, 𝑥!!), and 𝜋!! 1, 𝑥!! = 55.55 > 50 = 𝜋!!(0, 𝑥!!).  

Consider Network 2. Strategy 0,1,0,0  is not an equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 = 0   ≤
50 = 𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,0,1,0  is not an equilibrium because  𝜋!! 1, 𝑥!! = 11.11 < 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,0,0,1  is not an equilibrium because  𝜋𝑖4 1, 𝑥−𝑖 = 44.44 < 50 =
𝜋𝑖4(0, 𝑥−𝑖). Strategy 0,1,1,0  is not an equilibrium because 
𝜋!! 1, 𝑥!! = 41.66 < 50 = 𝜋!!(0, 𝑥!!)  . Strategy 0,1,0,1  is not equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 =



 59 

25 < 50 = 𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,0,1,1  is not equilibrium because 𝜋!! 1, 𝑥!! = 66.66 > 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,1,1,1  is a strict equilibrium because 𝜋!! 1, 𝑥!! = 116.66 > 50 =
𝜋!!(0, 𝑥!!)  , 𝜋!! 1, 𝑥!! = 94.44 > 50 = 𝜋!!(0, 𝑥!!), and 𝜋!! 1, 𝑥!! = 66.66 > 50 = 𝜋!!(0, 𝑥!!).  

Consider Network 3. Strategy 0,1,0,0  is not an equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 = 0   ≤
50 = 𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,0,1,0  is not an equilibrium because  𝜋!! 1, 𝑥!! = 11.11 < 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,0,0,1  is not an equilibrium because  𝜋𝑖4 1, 𝑥−𝑖 = 33.33 < 50 =
𝜋𝑖4(0, 𝑥−𝑖). Strategy 0,1,1,0  is not an equilibrium because  𝜋𝑖2 1, 𝑥−𝑖 = 33.33 < 50 =
𝜋𝑖2(0, 𝑥−𝑖)  . Strategy 0,1,0,1  is not an equilibrium because 𝜋!! 1, 𝑥!! = 33.33 < 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,0,1,1  is not an equilibrium because 𝜋!! 1, 𝑥!! = 66.66 > 50 =
𝜋!!(0, 𝑥!!)  . Strategy 0,1,1,1  is a strict equilibrium because  𝜋𝑖4 1, 𝑥−𝑖 = 116.66 > 50 =
𝜋𝑖4(0, 𝑥−𝑖), 𝜋!! 1, 𝑥!! = 94.44 > 50 = 𝜋!!(0, 𝑥!!), and 𝜋!! 1, 𝑥!! = 66.66 > 50 = 𝜋!!(0, 𝑥!!). QED 
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Appendix B: Figures by groups  

(x,y,z) means group x, network y position z where	
  Network:	
  Orange	
  =	
  1,	
  Green	
  =	
  2,	
  Purple	
  =3	
  
Position:	
  A	
  =	
  1,	
  B	
  =	
  2,	
  C	
  =	
  3,	
  D	
  =	
  4,	
  E	
  =	
  5.	
  
	
  
Figure B.1: Complete information and substitutes: Relative frequencies of active choices 
across periods, by group, network and position.  
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3, 3, 1 3, 3, 2 3, 3, 3 3, 3, 4 3, 3, 5

4, 1, 1 4, 1, 2 4, 1, 3 4, 1, 4 4, 1, 5

4, 2, 1 4, 2, 2 4, 2, 3 4, 2, 4 4, 2, 5

4, 3, 1 4, 3, 2 4, 3, 3 4, 3, 4 4, 3, 5

13, 1, 1 13, 1, 2 13, 1, 3 13, 1, 4 13, 1, 5

13, 2, 1 13, 2, 2 13, 2, 3 13, 2, 4 13, 2, 5

13, 3, 1 13, 3, 2 13, 3, 3 13, 3, 4 13, 3, 5

14, 1, 1 14, 1, 2 14, 1, 3 14, 1, 4 14, 1, 5

14, 2, 1 14, 2, 2 14, 2, 3 14, 2, 4 14, 2, 5

14, 3, 1 14, 3, 2 14, 3, 3 14, 3, 4 14, 3, 5
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Figure B.2: Complete information and complements: Relative frequencies of active choices 
across periods, by group and position in the Orange network.  
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Appendix C: Econometric model (Variables and Estimations) 
Experiments 1 and 2 
Network:  
Experiment 1 
Orange = 1, 
Green = 2,  
Purple =3 
Experiment 2 
Blue = 1, 
Red = 2,  
Brown =3 
Position:  
A = 1,  
B = 2,  
C = 3,  
D = 4,  
E = 5. 
Complete information 
dij = 1 if network=i and position = j , 0 otherwise 
tij: interaction between dij and period 
Incomplete information 
d1=1 if p=0.8, 0 otherwise 
degree2 = 1 if player’s degree=2, 0 otherwise 
degree3 = 1 if player’s degree=3, 0 otherwise 
d1_period: interaction between period and d1 
d1_degree2: interaction between d1 and degree2 
d1_degree3: interaction between d1 and degree3 
deg2_period: interaction between degree2 and period 
deg3_period: interaction between degree3 and period 
deg2_per_d1: interaction between degree2, period and d1 
deg3_per_d1: interaction between degree3, period and d1. 
 
risk_0_1: marginal effect of risk when d1=0 and degree==1   
risk_0_2: marginal effect of risk when d1=0 and degree==2 
risk_0_3: marginal effect of risk when d1=0 and degree==3 
risk_1_1: marginal effect of risk when d1=1 and degree==1 
risk_1_2: marginal effect of risk when d1=1 and degree==2 
risk_1_3: marginal effect of risk when d1=1 and degree==3 
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Experiment	
  1	
  

Complete	
  information	
  -­‐	
  Strategic	
  Substitutes	
  

	
  
Marginal	
  effects	
  of	
  risk	
  
 

 Coef. Std. Err. z P>z [95% Conf. Interval] 

Risk .0083711 .01168 0.72 0.474 -.014525 .031267 

 

	
  
	
  
	
  
	
  

Log likelihood = -388.50483    

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period 0.030663 0.047141 0.65 0.515 -0.06173 0.123057 

d12 -8.40485 1.7711 -4.75 0 -11.8761 -4.93356 

d13 -3.90144 1.265561 -3.08 0.002 -6.38189 -1.42098 

d14 -6.95259 1.5288 -4.55 0 -9.94899 -3.9562 

d15 -1.80211 1.416295 -1.27 0.203 -4.578 0.973777 

d21 -2.43685 1.350567 -1.8 0.071 -5.08391 0.210213 

d22 -5.75513 1.357171 -4.24 0 -8.41514 -3.09512 

d23 -4.33103 1.260564 -3.44 0.001 -6.80169 -1.86037 

d24 -5.59522 1.326514 -4.22 0 -8.19514 -2.9953 

d25 -1.22466 1.440592 -0.85 0.395 -4.04816 1.598853 

d31 -0.87704 1.366207 -0.64 0.521 -3.55476 1.800676 

d32 -6.18386 1.418038 -4.36 0 -8.96316 -3.40455 

d33 -2.10023 1.34226 -1.56 0.118 -4.73101 0.530551 

d34 -4.85752 1.249787 -3.89 0 -7.30706 -2.40798 

d35 -1.86108 1.328373 -1.4 0.161 -4.46464 0.742488 

t12 -0.03139 0.073418 -0.43 0.669 -0.17528 0.112509 

t13 0.02826 0.053593 0.53 0.598 -0.07678 0.133299 

t14 -0.06707 0.065325 -1.03 0.305 -0.19511 0.060959 

t15 0.053105 0.068362 0.78 0.437 -0.08088 0.187091 

t21 0.078902 0.061831 1.28 0.202 -0.04228 0.200088 

t22 -0.0878 0.059385 -1.48 0.139 -0.20419 0.028597 

t23 0.046098 0.053475 0.86 0.389 -0.05871 0.150906 

t24 -0.0617 0.05645 -1.09 0.274 -0.17234 0.048942 

t25 0.050011 0.074264 0.67 0.501 -0.09554 0.195565 

t31 0.005485 0.061208 0.09 0.929 -0.11448 0.125452 

t32 -0.13539 0.06704 -2.02 0.043 -0.26678 -0.00399 

t33 0.106867 0.072718 1.47 0.142 -0.03566 0.249391 

t34 -0.09514 0.05377 -1.77 0.077 -0.20053 0.010246 

t35 0.040081 0.058256 0.69 0.491 -0.0741 0.154262 

Risk 0.008371 0.011682 0.72 0.474 -0.01453 0.031267 

_cons 3.491075 1.312174 2.66 0.008 0.919263 6.062888 
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Complete	
  information	
  -­‐	
  Strategic	
  Complements	
  

  

Marginal	
  effects	
  of	
  risk	
  
 

 Coef. Std. Err. z P>z [95% Conf. Interval] 

Risk .0274705 .00797 3.45 0.001 .011846 .043095  

 
 
	
  
	
  
	
  
	
  

Log likelihood = -280.54602    

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period 0.012517 0.045182 0.28 0.782 -0.07604 0.101071 

d12 7.203613 1.407627 5.12 0 4.444714 9.962512 

d13 5.912277 1.359848 4.35 0 3.247023 8.57753 

d14 7.21883 1.402497 5.15 0 4.469987 9.967673 

d15 4.015273 1.500287 2.68 0.007 1.074765 6.955781 

d21 1.862151 2.698071 0.69 0.49 -3.42597 7.150273 

d22 2.566745 1.610425 1.59 0.111 -0.58963 5.723119 

d23 5.055612 1.463772 3.45 0.001 2.186673 7.924552 

d24 2.257243 1.837471 1.23 0.219 -1.34413 5.85862 

d25 1.806821 2.147597 0.84 0.4 -2.40239 6.016034 

d31 4.098842 2.678017 1.53 0.126 -1.14998 9.347658 

d32 4.726608 1.400217 3.38 0.001 1.982232 7.470983 

d33 1.841959 2.148467 0.86 0.391 -2.36896 6.052878 

d34 3.49502 1.504369 2.32 0.02 0.546511 6.443529 

d35 3.505376 2.435331 1.44 0.15 -1.26779 8.278537 

t12 -0.04634 0.051205 -0.9 0.365 -0.1467 0.05402 

t13 -0.01217 0.050444 -0.24 0.809 -0.11104 0.086698 

t14 -0.05783 0.050785 -1.14 0.255 -0.15737 0.041705 

t15 -0.35341 0.138617 -2.55 0.011 -0.62509 -0.08172 

t21 -0.36076 0.413782 -0.87 0.383 -1.17175 0.450241 

t22 -0.1474 0.088299 -1.67 0.095 -0.32047 0.025659 

t23 -0.25116 0.083561 -3.01 0.003 -0.41494 -0.08738 

t24 -0.23798 0.174672 -1.36 0.173 -0.58033 0.104369 

t25 -0.2018 0.16164 -1.25 0.212 -0.51861 0.115004 

t31 -0.97318 0.975 -1 0.318 -2.88415 0.93778 

t32 -0.15397 0.062666 -2.46 0.014 -0.2768 -0.03115 

t33 -0.31792 0.270881 -1.17 0.241 -0.84884 0.212999 

t34 -0.20028 0.090852 -2.2 0.027 -0.37835 -0.02222 

t35 -0.61405 0.566495 -1.08 0.278 -1.72436 0.496265 

Risk 0.027471 0.007972 3.45 0.001 0.011846 0.043095 

_cons -6.23145 1.347641 -4.62 0 -8.87277 -3.59012 
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Incomplete	
  information	
  -­‐	
  Strategic	
  Substitutes	
  

Log likelihood = -835.0852    

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period .0353746 .0157977 2.24 0.025 .0044117 .0663375 

d1 -.6814024 .6378184 -1.07 0.285 -1.931503 .5686988 

degree2 -4.581403 .4443026 -10.31 0.000 -5.45222 -3.710586 

degree3 -7.392577 1.027527 -7.19 0.000 -9.406494 -5.37866 

d1_period .0466369 .0242576 1.92 0.055 -.0009071 .094181 

d1_degree2 1.671407 .6139628 2.72 0.006 .4680618 2.874752 

d1_degree3 2.461545 1.148353 2.14 0.032 .210815 4.712274 

deg2_period -.0500117 .0189244 -2.64 0.008 -.0871029 -.0129206 

deg3_period -.162495 .0831316 -1.95 0.051 -.32543 .0004399 

deg2_per_d1 .0302095 .0289505 1.04 0.297 -.0265325 .0869514 

deg3_per_d1 .0148065 .0875422 0.17 0.866 -.1567731 .1863861 

Risk -.0158006 .0069383 -2.28 0.023 -.0293993 -.0022018 

_cons 4.136116 .5870075 7.05 0.000 2.985603 5.28663 

Marginal	
  effect	
  of	
  risk	
  

risk_0_1 -.0002897 .0001697 -1.71 0.088 -.0006223 .0000429 

risk_0_2 -.0021784 .0010144 -2.15 0.032 -.0041666 -.0001901 

risk_0_3 -.0000198 .0000251 -0.79 0.431 -.000069 .0000294 

risk_1_1 -.0002272 .0001254 -1.81 0.070 -.0004729 .0000185 

risk_1_2 -.0032382 .0014454 -2.24 0.025 -.0060711 -.0004052 

risk_1_3 -.0003819 .0002303 -1.66 0.097 -.0008333 .0000695 
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Incomplete	
  information	
  -­‐	
  Strategic	
  Complements	
  

Log likelihood = -708.07396    

Choice Coef. Std. Err. z P>z [95% Conf.Interval] 

Period -.1447516 .0408935 -3.54 0.000 -.2249014 -.0646018 

d1 -.5010158 .8928432 -0.56 0.575 -2.250956 1.248925 

degree2 4.341514 .5878049 7.39 0.000 3.189437 5.49359 

degree3 7.213081 .7566286 9.53 0.000 5.730116 8.696045 

d1_period .0096085 .0590735 0.16 0.871 -.1061734 .1253905 

d1_degree2 1.385479 .8816709 1.57 0.116 -.3425639 3.113522 

d1_degree3 1.891547 1.03034 1.84 0.066 -.1278814 3.910976 

deg2_period -.0436345 .0444213 -0.98 0.326 -.1306986 .0434297 

deg3_period -.0674082 .047188 -1.43 0.153 -.1598949 .0250785 

deg2_per_d1 .016171 .0639297 0.25 0.800 -.1091288 .1414708 

deg3_per_d1 -.0309548 .0656667 -0.47 0.637 -.1596591 .0977496 

Risk -.0019786 .0082606 -0.24 0.811 -.0181691 .0142118 

_cons -3.559826 .797559 -4.46 0.000 -5.123013 -1.996639 

Marginal	
  effect	
  of	
  risk	
  

risk_0_1 -2.75e-06 .0000119 -0.23 0.817 -.000026 .0000205 

risk_0_2 -.0000811 .0003397 -0.24 0.811 -.000747 .0005848 

risk_0_3 -.0004371 .0018246 -0.24 0.811 -.0040132 .0031391 

risk_1_1 -2.02e-06 8.78e-06 -0.23 0.818 -.0000192 .0000152 

risk_1_2 -.0002572 .0010765 -0.24 0.811 -.002367 .0018527 

risk_1_3 -.0004869 .0020325 -0.24 0.811 -.0044706 .0034969 

	
  

Incomplete	
  information	
  -­‐	
  Strategic	
  Complements	
  -­‐	
  p	
  =	
  0.95	
  

Log likelihood = -412.52192 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

Period -0.06831 0.020013 -3.41 0.001 -0.10754 -0.02909 

degree2 6.656791 0.632275 10.53 0 5.417555 7.896027 

degree3 8.786581 0.654056 13.43 0 7.504655 10.06851 

deg2_period -0.01938 0.026316 -0.74 0.461 -0.07096 0.032195 

deg3_period -0.07553 0.025416 -2.97 0.003 -0.12535 -0.02572 

Risk 0.00991 0.014227 0.7 0.486 -0.01798 0.037794 

_cons -3.95017 0.878676 -4.5 0 -5.67234 -2.228 
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Experiment	
  2	
  

Complete	
  information	
  

Log likelihood = -403.98366 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

Period -0.78131 0.953394 -0.82 0.412 -2.64993 1.087306 

d212 7.296092 2.976187 2.45 0.014 1.462872 13.12931 

d213 8.593323 3.199112 2.69 0.007 2.323179 14.86347 

d214 4.512357 2.864328 1.58 0.115 -1.10162 10.12634 

d215 10.06287 3.512437 2.86 0.004 3.178619 16.94712 

d222 3.465771 2.897039 1.2 0.232 -2.21232 9.143864 

d223 12.1354 3.286807 3.69 0 5.69338 18.57743 

d224 5.38125 2.878885 1.87 0.062 -0.26126 11.02376 

d225 5.527497 2.895627 1.91 0.056 -0.14783 11.20282 

d231 3.632378 3.391387 1.07 0.284 -3.01462 10.27937 

d232 6.245805 2.889733 2.16 0.031 0.582033 11.90958 

d233 4.87267 2.872389 1.7 0.09 -0.75711 10.50245 

d234 5.146739 2.86956 1.79 0.073 -0.4775 10.77097 

d235 4.783574 2.871477 1.67 0.096 -0.84442 10.41156 

t212 0.797173 0.954438 0.84 0.404 -1.07349 2.667836 

t213 0.783776 0.955599 0.82 0.412 -1.08916 2.656715 

t214 0.810881 0.953742 0.85 0.395 -1.05842 2.68018 

t215 0.774828 0.957463 0.81 0.418 -1.10177 2.651421 

t222 0.629482 0.953886 0.66 0.509 -1.2401 2.499064 

t223 0.576057 0.954651 0.6 0.546 -1.29503 2.44714 

t224 0.72249 0.953831 0.76 0.449 -1.14699 2.591964 

t225 0.724289 0.953799 0.76 0.448 -1.14512 2.593701 

t231 -0.43954 1.189874 -0.37 0.712 -2.77165 1.89257 

t232 0.74131 0.953731 0.78 0.437 -1.12797 2.610588 

t233 0.708418 0.953723 0.74 0.458 -1.16084 2.57768 

t234 0.713307 0.953636 0.75 0.454 -1.15578 2.582398 

t235 0.732869 0.953727 0.77 0.442 -1.1364 2.602138 

Risk 0.027857 0.012704 2.19 0.028 0.002958 0.052755 

_cons -4.34676 2.900478 -1.5 0.134 -10.0316 1.338073 

	
  
Marginal	
  effects	
  of	
  risk	
  
 

 Coef. Std. Err. z P>z [95% Conf. Interval] 

Risk 0.027857 0.0127 2.19 0.028 0.002958 0.052755 
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Incomplete	
  information	
  

Log likelihood = -564.68216 

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

Period -0.03954 0.028585 -1.38 0.167 -0.09557 0.016485 

d1 2.246575 1.169403 1.92 0.055 -0.04541 4.538561 

degree2 9.844207 0.898926 10.95 0 8.082345 11.60607 

degree3 13.70468 1.303205 10.52 0 11.15045 16.25892 

d1_period -0.0962 0.04866 -1.98 0.048 -0.19157 -0.00083 

d1_degree2 -5.43655 1.117169 -4.87 0 -7.62616 -3.24694 

d1_degree3 -4.86144 1.554457 -3.13 0.002 -7.90813 -1.81476 

deg2_period -0.07148 0.032004 -2.23 0.026 -0.13421 -0.00875 

deg3_period -0.05 0.043899 -1.14 0.255 -0.13604 0.036042 

deg2_per_d1 0.224834 0.053274 4.22 0 0.120419 0.329249 

deg3_per_d1 0.222774 0.06418 3.47 0.001 0.096984 0.348565 

Risk 0.011876 0.012558 0.95 0.344 -0.01274 0.036489 

_cons -5.29965 1.047908 -5.06 0 -7.35351 -3.24579 

Marginal	
  effect	
  of	
  risk	
  

Choice Coef. Std. Err. z P>z [95% Conf. Interval] 

risk_0_1 4.66E-05 5.96E-05 0.78 0.435 -7E-05 0.000164 

risk_0_2 0.000597 0.000709 0.84 0.4 -0.00079 0.001986 

risk_0_3 9.11E-06 1.29E-05 0.7 0.482 -1.6E-05 3.45E-05 

risk_1_1 6.41E-05 0.000082 0.78 0.434 -9.7E-05 0.000225 

risk_1_2 0.001013 0.00118 0.86 0.391 -0.0013 0.003326 

risk_1_3 9.90E-06 0.000014 0.71 0.481 -1.8E-05 3.74E-05 
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Experiment 3 
n2 = 1 if network=2, 0 otherwise 
n3 = 1 if network=3, 0 otherwise 
d2 = 1 if player’s degree=2, 0 otherwise 
d3 = 1 if player’s degree=3, 0 otherwise 
d4 = 1 if player’s degree=4, 0 otherwise 
d2n2: interaction between d2 and n2  
d2n3: interaction between d2 and n3  
d3n2: interaction between d3 and n2  
d3n3: interaction between d3 and n3  
d4n2: interaction between d4 and n2  
d4n3: interaction between d4 and n3  
n2p: interaction variable between n2 and period 
n3p: interaction variable between n3 and period 
d2p: interaction variable between d2 and period 
d3p: interaction variable between d3 and period 
d4p: interaction variable between d4 and period 
d2n2p: interaction variable between d2, n2 and period 
d2n3p: interaction variable between d2, n3 and period 
d3n2p: interaction variable between d3, n2 and period 
d3n3p: interaction variable between d3, n3 and period 
d4n2p: interaction variable between d4, n2 and period 
d4n3p: interaction variable between d4, n3 and period 
 
risk_1_1: marginal effect of risk when network 1 and degree==1   
risk_1_2: marginal effect of risk when network 1 and degree==2 
risk_1_3: marginal effect of risk when network 1 and degree==3 
risk_1_4: marginal effect of risk when network 1 and degree==4 
risk_2_1: marginal effect of risk when network 2 and degree==1   
risk_2_2: marginal effect of risk when network 2 and degree==2 
risk_2_3: marginal effect of risk when network 2 and degree==3 
risk_2_4: marginal effect of risk when network 2 and degree==4 
risk_3_1: marginal effect of risk when network 3 and degree==1   
risk_3_2: marginal effect of risk when network 3 and degree==2 
risk_3_3: marginal effect of risk when network 3 and degree==3 
risk_3_4: marginal effect of risk when network 3 and degree==4 
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Log likelihood = -1047.914  

choice Coef. Std. Err. z P>z [95% Conf. Interval] 

period -0.05858 0.024295 -2.41 0.016 -0.10619 -0.01096 

n2 1.332241 0.784154 1.7 0.089 -0.20467 2.869154 

n3 0.423339 0.780118 0.54 0.587 -1.10566 1.952342 

d2 4.759135 0.528128 9.01 0 3.724024 5.794246 

d3 7.331392 0.573277 12.79 0 6.207789 8.454995 

d4 10.60647 0.856568 12.38 0 8.927626 12.28531 

d2n2 0.174066 0.832004 0.21 0.834 -1.45663 1.804763 

d2n3 2.272886 0.879686 2.58 0.01 0.548733 3.997039 

d3n2 21.21926 4313.574 0 0.996 -8433.23 8475.669 

d3n3 2.881053 1.292484 2.23 0.026 0.347831 5.414274 

d4n2 1.109566 2.070312 0.54 0.592 -2.94817 5.167304 

d4n3 17.64513 4942.264 0 0.997 -9669.02 9704.305 

n2p -0.02345 0.038179 -0.61 0.539 -0.09828 0.051381 

n3p 0.051894 0.031444 1.65 0.099 -0.00973 0.113522 

d2p -0.03878 0.026727 -1.45 0.147 -0.09117 0.013601 

d3p -0.03067 0.027 -1.14 0.256 -0.08359 0.022246 

d4p -0.09452 0.034091 -2.77 0.006 -0.16134 -0.02771 

d2n2p 0.216455 0.044848 4.83 0 0.128555 0.304354 

d2n3p 0.089878 0.039223 2.29 0.022 0.013002 0.166754 

d3n2p 0.101249 194.1649 0 1 -380.455 380.6575 

d3n3p 0.109483 0.068038 1.61 0.108 -0.02387 0.242834 

d4n2p 0.277924 0.140703 1.98 0.048 0.002151 0.553697 

d4n3p 0.099375 213.2344 0 1 -417.832 418.0312 

risk1 0.014794 0.005353 2.76 0.006 0.004303 0.025285 

_cons -5.35813 0.596135 -8.99 0 -6.52653 -4.18973 

Marginal	
  effect	
  of	
  risk	
  

choice Coef. Std. Err. z P>z [95% Conf. Interval] 

risk1_1_1 4.47E-05 2.52E-05 1.77 0.076 -4.72E-06 9.42E-05 

risk1_1_2 0.001786 0.000759 2.35 0.019 0.000298 0.003274 

risk1_1_3 0.003011 0.001138 2.65 0.008 0.000781 0.00524 

risk1_1_4 0.000718 0.000351 2.04 0.041 2.97E-05 0.001406 

risk1_2_1 0.000163 0.000133 1.23 0.22 -9.7E-05 0.000423 

risk1_2_2 0.003687 0.001344 2.74 0.006 0.001052 0.006322 

risk1_2_3 8.74E-13 . . . . . 

risk1_2_4 5.34E-05 9.63E-05 0.55 0.58 -0.00014 0.000242 

risk1_3_1 7.17E-05 5.58E-05 1.29 0.199 -3.8E-05 0.000181 

risk1_3_2 0.002873 0.001327 2.17 0.03 0.000273 0.005473 

risk1_3_3 0.000179 0.000196 0.91 0.361 -0.00021 0.000563 

risk1_3_4 9.74E-12 . . . . . 
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 Appendix D: Experimental instructions  

	
  
I) Complete Information - Substitutes (Experiment 1) 
[Note: The corresponding instructions for Experiment 2 are analogous (it just changes the three 
networks)] 
The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non-negligible amount of 
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment. 
1.- The experiment consists of 40 periods. In each period you will be randomly assigned to a 
group of 5 participants. This group is determined randomly at the beginning of the period. 
Therefore, the group you are assigned to changes at each period. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 
period your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants.  
2.- At each period, the computer selects randomly a network for your group: the orange 
network, the green network or the purple network:  
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Once a network is selected, you (and the other members of your group) are randomly assigned to 
a position: A, B, C, D or E, all of them being equally likely. The assignment process is random: 
At each period, you are equally likely to be located in each of the 5 positions. At each period, 
you will be informed of the selected network (color) and of your position (letter). 
In a network, a link is represented by a line (connection) between two positions. For example, in 
the orange network, position B has three links: it is linked to positions A, C and D (but it is not 
linked to position E). Summarizing: 
-­‐ In the orange network there are two positions with 1 link (positions A and E), one position 

with 2 links (position C), and two positions with 3 links (positions B and D). 
-­‐ In the green network there are two positions with 1 link (positions A and E), three positions 

with 2 links (positions B, C and D), and no position with 3 links. 
-­‐ In the purple network there are three positions with 1 link (positions A, C and E), one 

position with 2 links (position D), and one position with 3 links (position B).  
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You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  
3.- At each period, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE or INACTIVE (the other participants are asked to make the same 
choice). Your payoff of the period will depend on your choice and on the choices of those 
participants of your group located in positions linked to yours: You earn 100 ECU if either you 
or at least one of the participants located in positions linked to yours choose to be ACTIVE. 
Being active has a cost of 50 ECU. Hence, 
• If you choose to be ACTIVE your period payoff is 𝟓𝟎 ECU for sure [100  – 50]  
• If you choose to be INACTIVE your period payoff can be:  

Ø 𝟏𝟎𝟎 ECU if at least one participant linked to you choose to be ACTIVE, or 
Ø 𝟎 ECU if no participant linked to you choose to be ACTIVE.  

 
4.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
- The selected network. 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
5.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods selected will the 
same probability). These earnings are transformed to cash at the exchange rate of 20 ECU = 1 €. 
In addition, just by showing up, you will also be paid a fee of 5 €. 
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II) Incomplete Information – Complements – p=0.8 (Experiment 1) 
[Note: The case p=0.2 is analogous (it just changes the virtual urn composition). The 
corresponding instructions for Experiment 2 are also analogous (it just changes the three 
networks)] 
The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non-negligible amount of 
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment. 
1.- The experiment consists of 40 periods. In each period you will be randomly assigned to a 
group of 5 participants. This group is determined randomly at the beginning of the period. 
Therefore, the group you are assigned to changes at each period. In this room, there are 10 
participants (including yourself) that are potential members of your group. That is, at every 
period your group of 5 participants is selected among these 10 participants, each of them being 
equally likely to be in your group. You will not know the identities of any of these participants.  
2.- At each period, the computer selects one color from a virtual urn. The virtual urn contains 10 
balls: 8 orange balls, 1 green ball and 1 purple ball.  

 
All the 10 balls of the virtual urn are equally likely to be selected by the computer. The color of 
the selected ball determines a network for your group: the orange network, the green 
network or the purple network. Once the network has been selected, the ball is returned to the 
virtual urn. Thus, in each period the color selection process is identical (there are always 8 
orange balls, 1 green ball and 1 purple ball, and one of them is randomly picked by the 
computer). The three possible networks are: 
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Once a network is selected, you (and the other members of your group) are randomly assigned to 
a position: A, B, C, D or E, all of them being equally likely. The assignment process is random: 
At each period, you are equally likely to be located in each of the 5 positions. At each period, 
you will neither be informed of the selected network (color) nor of your position (letter).  
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In a network, a link is represented by a line (connection) between two positions. For example, in 
the orange network, position B has three links: it is linked to positions A, C and D (but it is not 
linked to position E). Summarizing: 
-­‐ In the orange network there are two positions with 1 link (positions A and E), one position 

with 2 links (position C), and two positions with 3 links (positions B and D). 
-­‐ In the green network there are two positions with 1 link (positions A and E), three position 

with 2 links (positions B, C and D), and no position with 3 links. 
-­‐ In the purple network there are three positions with 1 link (positions A, C and E), one 

position with 2 links (position D), and one position with 3 links (position B).  
 
You can notice that both the green and the purple network have one link less that the orange 
one: In the green network positions B and D are not linked, and in the purple network 
positions C and D are not linked.  
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below.  
3.- At each period, you will only be informed about how many links your assigned position has 
(1 link, 2 links or 3 links) in the selected network, but you will neither know with certainty which 
is the selected network nor your exact position.  
For example, if at a particular period you are informed that your position has 3 links, there are 
different paths that could lead to this outcome: It may be the case that the selected network is the 
orange network and you have been assigned to position B or D, or it may be the case that the 
selected network is the purple network and you have been assigned to position B.  
4.- At each period, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE or INACTIVE (the other participants are asked to make the same 
choice). Your payoff of the period will depend on your choice and on the choices of those 
participants of your group located in positions linked to yours. If you choose to be INACTIVE, 
your period payoff is 50 ECU. If you choose to be ACTIVE, your period payoff is calculated as 
follows: First, add 100 ECU per participant linked to you that also chooses to be ACTIVE; then, 
divide the result by 3. Hence, 
• If you choose to be ACTIVE your period payoff can be: 

Ø 𝟏𝟎𝟎,𝟎𝟎 ECU if 3 participants linked to you choose to be ACTIVE !""!!""!!""# , 
or 

Ø 𝟔𝟔,𝟔𝟔  ECU if 2 participants linked to you choose to be ACTIVE !""!!""
!

, or 

Ø 𝟑𝟑,𝟑𝟑 ECU if 1 participants linked to you choose to be ACTIVE !""
!

, or 
Ø 𝟎,𝟎𝟎 ECU if no participant linked to you choose to be ACTIVE. 

• If you choose to be INACTIVE your period payoff is 𝟓𝟎,𝟎𝟎 ECU for sure. 
 
5.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
- The selected network. 
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- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
6.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods selected with the 
same probability). These earnings are transformed to cash at the exchange rate of 20 ECU = 1 €. 
In addition, just by showing up, you will also be paid a fee of 5 €. 
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III) Network 1 (Experiment 3) 
[Note: The corresponding instructions for Network 2 and Network 3 are analogous (it just 
changes the figure of the network)] 
The aim of this Experiment is to study how individuals make decisions in certain contexts. The 
instructions are simple. If you follow them carefully you will earn a non-negligible amount of 
money in cash (Euros) at the end of the experiment. During the experiment, your earnings will be 
accounted in ECU (Experimental Currency Units). Individual payments will remain private, as 
nobody will know the other participants’ payments. Any communication among you is strictly 
forbidden and will result in an immediate exclusion from the Experiment. 
 
1.- The experiment consists of 40 periods, and there are 20 participants, including yourself. The 
participants will remain the same throughout the experiment. At each period, you and each of the 
remaining nineteen participants will be assigned one position of the following NETWORK. The 
positions in the network are numbered from 1 to 20. 

 
2.- In the network, a link is represented by a line (connection) between two positions. For 
example, position 16 has four links: it is linked to positions 6, 7, 15 and 19 (but it is not linked 
to the remaining positions). 
 
Note that there are four classes of positions in the network, identified by different colors.  
 
-­‐ There are eight yellow positions: Those positions with one link (1, 2, 3, 6, 9, 10, 12 and 14).  

 
-­‐ There are six green positions: Those positions with two links (7, 8, 13, 15, 17 and 18).  

 
-­‐ There are four blue positions: Those positions with three links (5, 11, 19 and 20).  

 
-­‐ There are two red positions: Those positions with four links (4 and 16).  
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3.- At each period, you (and the other participants) are randomly assigned by the computer to a 
position from 1 to 20 in the network, all of them being equally likely. The assignment process 
is random: At each period, you are equally likely to be located in each of the 20 positions of the 
network.  
 
 
3.- At each period, you will only be informed of the color of your position, that is, you will 
know how many links your assigned position has: 1 link (yellow), 2 links (green), 3 links (blue) 
or 4 links (red). However, you will not be informed of which is your exact position.  
 
For example, if at a particular period you are informed that your position has 3 links (blue), then 
you know that you can be in position 5, 11, 19 or 20, and that you can be in any of them with the 
same probability. Note that, in such a case, you also know that you cannot be in yellow, green or 
red positions. 
Your earnings of the period can only be affected by your decisions and the decisions of those 
participants located in positions that are linked to yours, as specified below. 
 
4.- At each period, knowing the selected network and your position, you will be asked to make a 
choice: to be ACTIVE or INACTIVE (the other participants are asked to make the same 
choice). Your payoff of the period will depend on your choice and on the choices of those 
participants located in positions linked to yours. If you choose to be INACTIVE, your period 
payoff is 50 ECU. If you choose to be ACTIVE, your period payoff is calculated as follows: 
First, add 100 ECU per participant linked to you that also chooses to be ACTIVE; then, divide 
the result by 3. Hence, 
 

 
• If you choose to be ACTIVE your period payoff can be: 

Ø 𝟏𝟑𝟑,𝟑𝟑 ECU if 4 participants linked to you choose to be ACTIVE 
!""  !!""!!""!!""

!
, or 

Ø 𝟏𝟎𝟎,𝟎𝟎 ECU if 3 participants linked to you choose to be ACTIVE 
!""!!""!!""

!
, or 

Ø 𝟔𝟔,𝟔𝟔  ECU if 2 participants linked to you choose to be ACTIVE !""!!""
!

, or 

Ø 𝟑𝟑,𝟑𝟑 ECU if 1 participants linked to you choose to be ACTIVE !""
!

, or 
 
Ø 𝟎,𝟎𝟎 ECU if no participant linked to you choose to be ACTIVE. 

 
• If you choose to be INACTIVE your period payoff is 𝟓𝟎,𝟎𝟎 ECU for sure. 
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5.- At the end of every period, you will get information about current and past periods. The 
information consists of: 
- Your position in the network. 
- Your choice (ACTIVE or INACTIVE). 
- The number of participants linked to you that chose to be ACTIVE. 
- Your (period) payoff. 
 
6.- Payoffs. At the end of the experiment, you will be paid the earnings that you achieved in 4 
periods, that will be randomly selected across the 40 periods of play (all periods selected with the 
same probability). These earnings are transformed to cash at the exchange rate of 20 ECU = 1 €. 
In addition, just by showing up, you will also be paid a fee of 5 €. 
 
	
  




