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ABSTRACT OF THE THESIS 

 

Quantitative Analysis of Human Facial Expression: Moving Towards The Creation of a 

Virtual Patient 

by  

          Sungah Lee  

Master of Science in Oral Biology 

University of California Los Angeles, 2017  

Professor Won Moon, Co-Chair  

Professor Sotirios Tetradis, Co-Chair  

 

Background: Recent introduction of three dimensional facial images allows us to have access to 

more information than ever before, creating the potential for more accurate facial evaluation. In 

orthodontic diagnostics and treatment planning, facial soft tissue analysis has been broadly 

recognized as a critical factor leading to successful orthodontic treatment outcomes. Even though 

facial soft tissue is by nature dynamic data and facial expressions are the dynamic movement of 

these facial soft tissue, 2D static photos have been used in facial analysis in orthodontics. Our 

overall objective is to develop an innovative method to quantifies the dynamic movements of soft 

tissue in 3D during facial expressions, which could further not only orthodontics field but also 

other health care fields.  

Methods: Dynamic system to quantify 3D facial soft tissue movement was explored through 

investigation into physics and mathematical modeling. 3dMD facial images of 29 participants at 
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five different time points (T1, T2, T3, T4, T5) during smiling were collected from starting of each 

facial expression till the end. Smiling patterns were classified and only homogenous samples were 

finally included. 3D meshes were processed for vertex correspondence, and 28 landmarks were 

tracked. Data analyses were performed via MATLAB. Average smiling faces at five different time 

points were generated. Average displacement vectors between each time point were computed, 

producing the average smiling movement trajectories. Statistical p values of all landmarks in three-

dimension were computed to show the significance level of displacement. Color-coded 

displacement vector p maps were generated for movement of each landmark over the 5 time 

points.  

Results: 3D meshes of 10 participants at five different time points (T1, T2, T3, T4, T5) while 

smiling were finally included in our study. 28 landmarks were quantitatively tracked and 

analyzed. Average smiling faces at five time points, average displacement vectors between 

each time point, and statistical p values of all landmarks in 3D were generated. Average 

movement trajectory while smiling was generated. Corner of lip showed maximum 

displacement of 6.42 mm (p<~ 0.01) in upward and outward directions. Statistically Significant 

displacements were shown at most landmarks of oral regions (p<0.05) rather than landmarks of 

nasal, eye, or eyebrow regions between each time point.  

 Conclusion:  This is the first study to demonstrate that dynamic 3D movements of facial 

expressions can be quantitatively tracked and analyzed, offering an added dimension to the 

diagnosis and treatment planning of patients.  This new approach which can allow us to analyze 

patients’ facial expressions in three dimension would shift the diagnostic paradigms currently used 

in craniofacial analysis, that is, 2D static facial analysis, towards an ever progressive direction, that 

is, dynamic 3D facial expression analysis.
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 Introduction 

When it comes to expressing emotions, members of widely different cultures have much 

in common. If people from various countries see a happy, smiling face of a person, they usually 

agree in their interpretation. They also tend to concur over surprise, sadness, anger, fear, disgust, 

contempt, and joy. Ekman classified facial expression patterns into 6 different categories 

(Anger, Fear, Surprise, Disgust, Happiness, Sadness) [1]. Today, the smile is easily the most 

recognized facial expression, used to convey a sense of compassion and understanding. The 

smile may well be the corner stone of social interaction, and many researches have classified 

smiling patterns in different ways.  

According to Rubin, there are three smiling styles: “Mona Lisa” smile, “Canine” smile, 

and “Full Denture” smile. It is known that “Mona Lisa” smile is the most common style, seen in 

approximately 67% of the population. In this smile, the corners of the mouth are first pulled up 

and outward, followed by the levators of the upper lip contracting to show the upper teeth. The 

“Canine” smile, also called as “cuspid” smile is found in 31% of the population. The shape of 

the lips are commonly visualized as a diamond. This smile pattern is identified by the 

dominance of the levator labii superioris. They contract first, exposing the cuspid teeth, then the 

corners of the mouth contract to pull the lips upward and outward. The “Full Denture” smile, 

also called as “complex” smile characterizes 2% of the population. In this smile, the levators of 

the upper lip, the levators of the corners of the mouth, and the depressors of the lower lip 

contract simultaneously, showing all the upper and lower teeth concurrently [2]. In addition, 

according to Philips, there are four stages (Stage I, Stage II, Stage III, and Stage IV) and five 

types of smiles based on where dental and/or periodontal tissues are displayed in the smile zone 

[3].  
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It is also known that facial expression has important effects on a person’s life, being 

critical in social interaction. In addition, human emotions are known to be recognized by 

analyzing facial expressions. There have been many researches regarding how to analyze smile, 

the most recognized facial expression. There has been a software application developed by MIT 

Media Lab., which can analyze our own smile and compare it with others and even can tell 

whether the smile captured is showing happiness or the result of frustration [4][5].  

Since the fact that human emotions could be read via analysis of facial expression 

patterns, people in marketing field have shown great interest in this field because they recognize 

that emotion drives brand loyalty and purchase decisions. However, traditional way of 

measuring emotional response such as surveys and focus groups has created a gap by requiring 

viewers to think about and say how they feel. Even though neuroscience provides insight into 

how the mind works, it typically requires expensive and bulky equipment and lab type settings 

which limit the use. However, companies like Affectiva, a start-up company spun out of the 

MIT Media Lab., have been working on a software called Affedex that trains computers to 

recognize human emotions based on their facial expressions. Affedex reads facial expressions to 

measure the emotional connection people have with advertising, brands, and media [5].  

Interestingly, children with repaired cleft lip are known to have abnormal nasolabial 

movements. For example, children with repaired unilateral cleft lip do not have symmetrical 

nasolabial movements. They exhibit abnormal puckering patterns and the cleft side rises when 

they smile. Given the important effects that facial expression has on a person’s life, if we could 

document the patterns of facial expression in patients with repaired cleft lip, this analysis would 

help clinicians to modify primary labial repair. In addition, in facial paralysis reconstruction, it is 

necessary to understand the facial movements during normal smile, that is, the direction and  
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extent of movement because techniques of facial paralysis reconstruction which apply forces to 

the mouth mimic the vectors of movement on the patients’ normal side. However, dynamic 

mimetic motions are difficult to assess. Even though there have been quite a few studies 

regarding smiling patterns, those were using “static” measurement techniques [6][7][8].  

Facial soft tissue analysis has evolved over time. There have been advances in analyzing 

facial soft tissue with the latest advancements in technology such as three dimensional (3D) 

photographic imaging, creating the potential for more comprehensive facial evaluation. 

However, up to this point, current evaluation of facial expression such as smile, which is the 

dynamic movement of 3D facial soft tissue, relies largely on subjective visual evaluation and 2D 

point to point static distance from 2D static photos, not giving an accurate information about the 

patients’ facial expression patterns [6][7][8]. To our knowledge, there have been no studies 

investigating in how to quantitatively analyze the dynamic movements of soft tissue in three 

dimension during facial expressions.  

The immediate objectives of this project strive to develop the method which can quantify 

the dynamic 3D movements of soft tissues while facial expressions are being made. This 

research will open the door to the 3D dynamic analysis, where changes in facial 3D soft tissues 

could be quantitatively tracked and analyzed over time during facial expressions.  

Accomplishing our goal would result in the first new approach for dealing with the 

dynamic movements of soft tissues in 3D, adding another dimension to the facial analysis in the 

health care field. Application of this new technology would allow dynamic soft tissue movement 

(facial expressions) diagnostics for treatment planning in various health care specialties (i.e. 

orthodontics, oral/maxillofacial and plastic surgery). Completion of this dynamic facial 

expression analysis in 3D would dramatically change the diagnostic paradigms currently used in 
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craniofacial analysis, that is, 2D static facial analysis, towards a totally new and progressive 

direction, that is, dynamic 3D facial expression analysis.   

 

Overall Objectives and Specific Aims 

 

2D static photos have been used in facial analysis in orthodontics. Our overall objective 

is to develop an innovative method to quantifies the dynamic movement of soft tissue in 3D 

during facial expressions, which could further not only orthodontics field but also other health 

care fields. This new approach can offer an added dimension to the diagnosis and treatment 

planning of patients.  

In orthodontics diagnostics and treatment planning, facial soft tissue analysis has been 

broadly recognized as a critical factor, leading to successful orthodontic treatment outcomes. 

However, facial soft tissue is by nature dynamic data, and facial expression is the dynamic 

movement of these facial soft tissue. Therefore, it is important to know how to deal with 

dynamic movement of the facial soft tissue, which has never done before.  

With the advances of three-dimensional photography systems (i.e. 3dMD), three-

dimensional facial photographs of patients in orthodontic practice has become available. Research 

has demonstrated that three-dimensional imaging modalities have increased accuracy compared to 

traditional imaging modalities, trying to develop new analyses which could allow their application 

in clinical use [1] [2]. However, up to this point, this valuable 3dMD data couldn’t be well 

utilized due to the lack of the method to analyze.  

Current evaluation of facial expression relies largely on subjective visual evaluation and 

2D point to point static distance from 2D static photos, not giving an accurate information about 

the patients’ facial expression patterns. To our knowledge, there have been no studies 
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investigating in how to quantitatively analyze the dynamic movements of soft tissue in three 

dimension during facial expressions [6].  

Therefore, one of our immediate goal is to use our orthodontic department’s 3dMD 

Imaging System to quantify dynamic movement of 3D facial soft tissues. Ultimately, this 

research project will contribute to the creation of a dynamic three-dimensional movement 

trajectory of facial expressions and establishment of a new method to quantitatively track and 

analyze the changes in soft tissues in 3D while facial expressions are being made. Overall, this 

study seeks to advance static 2D facial analysis into dynamic 3D facial expression analysis by 

aiming to:  

1.   Find mathematical models to describe moving objects (motion), and find a set of 

functions to quantify the movement of landmarks. Link and sync the sets of 

functions as one entity.  

2.   Find a method to process 3D dynamic data in an organized and efficient way, 

develop a protocol to quantitatively track and analyze the dynamic movement of 

all landmarks in 3D between each time point.   

3.   Average 3dMD face models at each time point, yielding the average landmarks at 

each time point, then compute average displacement vectors between each time 

point.  

4.   Develop a new approach to compute p values in 3D, yielding color-coded 

displacement vector p maps between each time point.  

5.   Visualize dynamically the average smiling movement trajectory.  
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Accomplishing our goal would result in the first new approach for dealing with the 

dynamic movements of soft tissues in 3D, adding another dimension to the facial analysis in the 

health care field. Application of this new technology would allow dynamic soft tissue movement 

(facial expressions) diagnostics for treatment planning in various health care specialties (i.e. 

orthodontics, oral/maxillofacial and plastic surgery). Completion of this dynamic facial 

expression analysis in 3D would dramatically change the diagnostic paradigms currently used in 

craniofacial analysis, that is, 2D static facial analysis, towards a totally new and progressive 

direction, that is, dynamic 3D facial expression analysis.   

 

Background / Significance 

 

 

It is known that facial expression has important effects on a person’s life, being critical in 

social interaction. Today, the smile is easily the most recognized facial expression, used to convey 

a sense of compassion and understanding. Considering the fact that facial expressions have critical 

roles in social interaction, there have been many researches regarding how to analyze smile, 

resulting in many applications in various fields [2][3].  Not only facial expressions are critical in 

social interaction, but also by analyzing facial expression patterns, we can recognize human 

emotions. For example, there has been a software application developed by MIT Media Lab., 

which can analyze our own smile and compare it with others, and can tell whether the smile is 

showing happiness or the result of frustration [4] (Figure 1).  
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Figure 1: (Adapted from Hoque et al. [4]) Four participants, each smiling while being in either 

a (i) frustrated or (ii) delighted state. Can you tell which smile is which state? (a), (d), (f), (h) 

are taken from instances of frustration; (b), (c), (e), (g) are from instances of delight. 

 

 

Quantitative analysis of facial expressions can have a tremendous influence in health care 

field. For example, to successfully reconstruct smile in the patients with facial paralysis, an 

understanding of the facial movements during a normal smile is necessary. Techniques of facial 

paralysis reconstruction apply forces to the mouth and these forces mimic the vectors of movement 

on the patients’ normal side, allowing a symmetrical smile reconstruction [6][7][8]. Given the 

important effects that facial expression has on a person’s life, if we could quantitatively analyze the 

patterns of facial expression in patients, this analysis would help clinicians in diagnosis and 

treatment planning, improving patient care tremendously. Highly precise quantitative surface 
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deformation information is invaluable when clinicians are striving to achieve natural facial 

expressions when treating patients with various conditions such as cleft lip and palate and also 

other clinical settings, such as facial reanimation in the patients with facial paralysis mentioned 

above. However, there have been technical challenges regarding assessing dynamic motions. 

Current evaluation of facial expression relies largely on subjective visual evaluation and 2D point 

to point static distance from 2D static photos, not giving an accurate information about the 

patients’ facial expression patterns, and there has been no studies investigating how to deal with 

dynamic motions of facial soft tissues [6][7][8] (Figure 2). 

 

                             

Figure 2: (Adapted from Hadlock et al. [6]) 2D Photograph illustrating 7 relevant distances 

which were measured in 2D in facial paralysis. Horizontal black lines indicate height of these 

landmarks on the healthy side, and solid red lines indicate their position on the paralyzed side. 

The vertical lines represent facial midline based on bisection of the inter-pupillary line in black 

and the actual center of the philtrum in red. 
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Advances in medical imaging open nowadays new perspectives for the improvement of the 

computer assisted surgery planning (CAS), where main goal is to simulate physical interactions 

with virtual bodies. Realistic simulation of soft issue deformations under the impact of external 

forces is of crucial importance. In cranio-, dento-maxillofacial surgery, there is a great demand for 

efficient computer assisted methods, which could enable flexible, accurate, and robust simulations 

of surgical interventions on virtual patients, including the realistic prediction of their postoperative 

appearance. Here, soft tissue and facial expressions’ modeling have become very critical in 

creating more realistic virtual patients [9] (Figure 3).  

 

 

   a)                                                                         b) 
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    c) 

 

Figure 3: (Adapted from Gladilin. [9]) Soft Tissue Prediction in the CAS Planning (a) A patient 

with congenital mandibular hypoplasia (b) simulation of mandible distraction (c) resulting soft 

tissue deformation induced by the stepwise rearrangement of bone structures with maximal 

boundary displacements of: (a) 0.6 cm, (b) 1.2cm, (c) 1.6cm, (d) 2.0cm, (e) 2.6cm 

 

Orthodontics is a specialty where facial aesthetics has been analyzed with many different 

ways using Andrew’s Goal Anterior-Limit Line (GALL) [10], the ideal smile arc analyzed by 

Sarver [11], or the Facial Anthropometric Measurements cited by Proffit [12], pursuing 

improvement in facial aesthetics of patients. However, until recently, two-dimensional imaging 
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such as cephalometric analysis and 2D static photos have been used in facial analysis [13][14]. 

However, this conventional 2D method has limitations since 2D methods are utilized to analyze 3D 

complexities [15] [16].  

Three dimensional facial photographic imaging was introduced to orthodontics during the 

early years of the millennium, allowing visualization of bony anatomy and even more facial soft 

tissues. Studies have clearly shown that three dimensional imaging modalities have increased 

accuracy over traditional two-dimensional imaging modalities [18] [19].  To more accurately 

assess the soft tissues in the paranasal, zygomatic, cheek, and other facial areas, three-

dimensional imaging methods such as 3D computerized tomography (CT) and 3D facial scan 

images (3D-FSI) are needed [17] [20]. However, most current methods in analyzing 3D 

photographic images rely on subjective visual evaluation or 2D static linear and angular 

measures between various points to assess facial aesthetics (Figure 4).  

 

 

Figure 4: (Adapted from Nam-Kug Kim et al. [21]) Three-dimensional computed tomography 
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grid projected on facial soft tissue demonstrating use of point to point measurements. 

 

Now, with the advances of three dimensional imaging modalities, the orthodontic 

profession can access to much more information in three dimensions than ever before, and 

utilizing this valuable information and applying these advancements in imaging towards patient 

care are necessary. Facial soft tissue analysis has been broadly recognized as a critical factor, 

leading to successful orthodontic treatment outcomes. However, facial soft tissue is by nature 

dynamic data, and facial expression is the dynamic movement of these facial soft tissue. 

Therefore, it is very important to know how to deal with dynamic movement of the facial soft 

tissue in three dimension, which has never done before.  

 

Up to this point, this invaluable 3dMD data couldn’t be utilized due to the lack of the 

method to analyze dynamic movement of the soft tissues in the 3D facial soft tissue images. 

Current evaluation of facial expression relies largely on subjective visual evaluation and 2D point 

to point static distance from 2D static photos, not giving an accurate information about the 

patients’ facial expression patterns [6][7][8]. To our knowledge, there have been no studies 

investigating in how to quantitatively analyze the dynamic movements of soft tissue in three 

dimension during facial expressions. Therefore, one of our immediate goal is to use the 

orthodontic department’s 3dMD Imaging System to quantify dynamic movement of facial soft 

tissues in three dimension.  

 

Ultimately, this research project will contribute to the creation of a dynamic three-

dimensional movement trajectory of facial facial expressions and establishment of a new method 
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to quantitatively track and analyze the changes in soft tissues in 3D while facial expressions are 

being made. Accomplishing our goal would result in the first new approach for dealing with the 

dynamic movements of soft tissues in 3D, adding another dimension to the facial analysis in the 

health care field. Application of this new technology would allow dynamic soft tissue movement 

(facial expressions) diagnostics for treatment planning in various health care specialties (i.e. 

orthodontics, oral/maxillofacial and plastic surgery). Once the dynamic facial expression analysis 

in 3D is completed, this would dramatically change the diagnostic paradigms currently used in 

craniofacial analysis (2D static facial analysis) towards a totally new and progressive direction 

(3D facial expression analysis). Potential applications would be 1) generation of normative facial 

expression patterns across various strata, 2) quantification of treatment effect on facial expression 

pattern by comparing the average 4D models between T1 and T2, 3) comparison of facial 

expression patterns between patients with cleft lip/palate and a normative facial expression 

patterns, and 4) virtual patient creation (currently, we are confined to surface level(shell); by 

adding muscle mechanics inside soft tissue shell, we can create virtual soft tissue movement and 

predict those deformations of soft tissue)  

 

 Preliminary Studies 

 

This investigation is the first approach in dealing with the dynamic movements of soft 

tissues in 3D, which will add another dimension to the facial analysis in various health care 

specialties. There have been no previous studies investigating in dynamic movement analysis.  
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The most relevant preliminary study relating to this current project was the 

investigation which further developed the collaboration between the UCLA Section of 

Orthodontics and the Laboratory of Neurologic Imaging (LONA) at UCLA in order to create a 

true 3-dimenstional analysis of the human face in 2014: Quantitative Analysis of 3-

Dimensional Facial Soft Tissue Photographic Images: Technical Methods and Clinical 

Application. This project was stimulated by the project funded by the AAOF to map the surface 

of the human skull in 2012: Craniofacial Surface Mapping: Moving Toward a 3-Dimensional 

Normative Model of the Human Skull. In the static analysis of facial soft tissue in 2014, certain 

methodologies from the 2012 craniofacial surface mapping project centered on surface 

mapping were used as a guideline applicable to the analysis of facial soft tissues [22] (Figure 

5).  

 

 

Figure 5: (Adapted from R. McComb. [22]) Diagram illustrating the workflow involved in 

progressing from a single skull to 3D averages and distance 

maps 
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In the previous 2014 study in averaging the human facial soft tissue, static facial soft 

tissue was averaged, rather than looking at dynamic movements of soft tissues in 3D. The 

ultimate goal of this project is to develop a new method that has not been investigated before 

in quantitatively analyzing movement of soft tissues while facial expression is being made, 

which will open a new door into 3D dynamic facial expression analysis.   

 

Materials and Methods 

 

On a broad level, the project can be divided into five parts, summarized below, and described in 

more detail in this section: 

 

1.  Development of dynamic system (via. mathematical modeling)  

2.  Data Collection  

a.  3dMD Imaging Protocol  

b.  Facial Expression Taking Protocol   

c.  Collection of 3D face models at five different time points (T1,T2,T3,T4,T5) while 

facial expression is being made  

3.  Data Processing  

a.  Classification of smiling patterns / Generation of homogenous samples  

b.  Vertex correspondence of 3D meshes  

c.  Landmarking  

4.   Average and creation of displacement vectors in MATLAB 

a.  Average samples at five different time points  
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b.  Computation of displacement vectors between each time point  

5.  Statistical Analysis in MATLAB & Dynamic Visualization  

a.  Computation of p values in 3 dimension at all landmarks  

b.  Creation of color-coded displacement vector p maps between each time point 

with p values in 3D  

c.  Dynamic visualization of averaged smiling movement trajectory   

 

 

I.   Development of Dynamic System (via. mathematical modeling)  

 

The main purpose of this project is to develop a method that quantifies the dynamic 

movements of soft tissue in three dimension while smiling is made. Facial soft tissue can be 

thought of as a whole entity comprised of infinite numbers of points on the epidermis, that is, 

superficial points on the facial surface, which is by nature dynamic, which moves over time. 

During facial expressions, those points on the facial surface move but at the different rate [9][23] 

(Figure 6).   
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Figure 6: (Adapted from Gladilin [9]) A typical cross-section of facial tissue  

 

 

Then, how can we describe dynamic movement of moving objects in mathematical 

functions? Objects can be largely classified into two kinds: 1) inanimate object 2) deformable 

object (facial soft tissue). In inanimate objects, all the points move equal amount. However, in 

deformable objects which were my interest in this research project (facial soft tissue), all the 

points are not moving at the same rate or amount [23]. Most points which move during facial 

expression are usually those points around eyes, nose, and lips. Therefore, it makes sense to look 

at landmarks, which are easy to recognize. In this research project, landmarks will be 

quantitatively tracked.  

 

If objects move from one point in one plane to the other point in another plane, then it can 

be described by the mathematical function phi [9] (Figure 7).  
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Figure 7: (Adapted from Gladilin [9]) 3D domain deformation (here, the deformation gradient 

𝛻∅ in matrix)  

 

 

Moving objects can be described as either 1) trajectories and/or 2) equations of motions. 

Modern tracking technology like GPS, cell phone, and even sensor networks are being heavily 

used, and spatio-temporal data generated by mobile devices (trajectories of moving objects) 

provide characteristic of space and time. There have been researches trying to discover chasing 

behavior in moving object trajectories. This can help analyze where something happened and 

when it happened. These trajectory data can express different behaviors through space and time 

such as move faster, change direction, stand still, and repeat the same route, and this concept of 

trajectory can be applied in my research project [24][25][26][27] (Figure 8) .  
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Figure 8: (Adapted from Siqueira and Bogorny [25]) Two trajectories with candidate chasing 

with the definition of trajectory below  

 

Together with the trajectory, mathematical equations of motions to describe movements are 

to be used. In physics and mathematics, equations of motions have been used to describe moving 

objects. Let  𝒙 𝒕 = (𝒙𝟏 𝒕 , … , 𝒙𝒏 𝒕 ) denote the location of a point particle in Rn at time t. The 

velocity of the particle at time t is given by 𝒗 𝒕 = 	
  𝒙 𝒕 = 	
   𝒅
𝒅𝒕
𝒙 𝒕 . By Newton’s Second Law, 

the motion is fully described once we know the force 𝑭(𝒕) acting on the particle. The motion is 

described by the unique solution of the differential equation of motion shown below.  

 

in which m denotes the mass of particle and 𝒙 𝒕𝟎 = 	
  𝒙𝟎 and 𝒗 𝒕𝟎 = 	
  𝒗𝟎 are initial conditions 

[24][30][31]. In this study, 𝑭(𝒕) is the force from underlying muscles and m is the mass of those 

landmarks, which can be assumed as massless point particles.   

 

There are also different mathematical equations which can describe different types of 

motions of moving objects (Figure 9).  
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Figure 9: Different mathematical equations to describe different types of movement trajectories 

of moving objects (𝑟 𝑥, 𝑦, 𝑧, 𝑡 , 𝑟 𝑟, 𝜃, 𝑧, 𝑡 , 𝑟(𝑟, 𝜙, 𝜃, 𝑡)) 

 

  Let’s go back to the physics of motion again [24][30][31][32][33]. Again, the motion is described 

by the unique solution of the differential equation of motion  

  

(here, m denotes the mass of particle, 𝒙 𝒕𝟎 = 	
  𝒙𝟎 and 𝒗 𝒕𝟎 = 	
  𝒗𝟎 are initial conditions)  

 

Higher-order differential equations can always be transformed into first-order ones by adding 

variables. Therefore, the second-order equation above is equivalent to the first-order equation 

shown below.  

 

Solution for the equations above describe the motion of moving objects. Some equations can be 

solved analytically. However, this is not always the case, and often needs to rely on numerical 

integration techniques to obtain some information about the solution [32]. Commonly used 

methods include Euler’s method and higher-order (adaptive) Runge-Kutta methods.  
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Since 𝑭(𝒕) (force from muscle) is unknown and point objects (landmarks) are massless, 

another approach needs to be used and in my research what is known as physically based 

modeling in computer graphics is used.  

 

In physically based modeling [29],  

𝒙 = 𝒇(𝒙, 𝒕) 

where, 𝒇 is known function (i.e. something we can evaluate given x and t), 𝒙	
  is the state of the 

system, and 𝒙 is 𝒙’s time derivative. Typically, 𝒙 and 𝒙 are vectors. This ordinary differential 

equation (ODE) shown above is the principal equation, describing the behavior of the dynamic 

system. In an initial value problem (IVP), we are given 𝒙 𝒕𝟎 = 	
  𝒙𝟎  at some starting time 𝒕𝟎, and 

wish to follow 𝒙 over time thereafter.  If we are given initial point, then we can follow 𝒙 overtime 

thereafter by using the main equation. Here, we could get rid of mass and force which are unknown 

in our situation.  

 

Derivative function 𝒇 defines a vector field on the plane (Figure 10(a)) and the vector at 𝒙 

is the velocity that the moving point must have if it ever moves through 𝒙. Thinking of 𝒇 as 

driving force from point to point, like an ocean current. Wherever we initially deposit p, the 

“current” at that point will seize it. Where p is carried depends on where we initially drop it, but 

once dropped, all future motion is determined by 𝒇. The trajectory swept out by p through 𝒇 

forms an integral curve of the vector field [29] (Figure 10(b)). 
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(a)                                                                     (b)  

 

Figure 10: (Adapted from Andrew Witkin and David Baraff [29]) (a) The derivative function 

f(x,t). defines a vector field (b) An initial value problem. Starting from a point 𝒙𝟎, move with 

the velocity specified by the vector field 

 

 

As far as solutions to this derivative function, there can be two different kinds of solutions: 

1) symbolic solution 2) numerical solutions. Standard introductory differential equation focuses 

on symbolic solutions, where the functional form for the unknown function is to be guessed. 

However, in numerical solution method, discrete time steps starting with the initial value 𝒙 𝒕𝟎  

are taken, and the derivative function 𝒇(𝒙, 𝒕) is used to calculate an approximate change in 𝒙	
  (∆𝒙) 

over a time interval ∆𝒕, and new value is obtained by incrementing 𝒙 by ∆𝒙. 

 

There are different methods to find the solution for the ODE such as Euler’s method, 

Taylor Series, Midpoint method, and Runge-Kutta method. Among different methods, Euler’s 

method is the simplest even though it could be less accurate. At the beginning the vector 𝒇 is 

evaluated and then scaled by ∆𝒕	
  (𝒐𝒓	
  𝒉)	
  (time duration or a stepsize parameter). Let our initial 
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value for 𝒙 be denoted by 𝒙 𝒕𝟎 = 	
  𝒙𝟎 and our estimate of 𝒙 at a later time 𝒕𝟎 + 𝒉	
  by 𝒙(𝒕𝟎 + 𝒉), 

where 𝒉 is a stepsize parameter. Euler’s method simply computes 𝒙(𝒕𝟎 + 𝒉) by taking a step in 

the derivative direction.  

 

In Euler’s method, instead of the real integral curve, p follows a polygonal path, each leg of 

which is determined by evaluating the vector f at the beginning, and scaling by h (Figure 11(a)) 

[29]. There are several problems in this method. Bigger time duration results in bigger errors. 

Consider the case of a function whose integral curves are concentric circles. A point p governed 

by 𝒇 is supposed to orbit forever on whichever circle it started on. Instead, with each Euler step, p 

will move on a straight line to a circle of larger radius, so that its path will follow an outward 

spiral. Shrinking the stepsize will slow the rate of this outward drift, but never eliminate it (Figure 

11(b)). Instability is another problem of this method. It is known that too large step-size could 

make the system unstable [29].  

 

(a)                                                                            (b)  

                                

Figure 11: (Adapted from Andrew Witkin and David Baraff [29]) (a) An initial value problem. 

Starting from a point 𝑥?, move with the velocity specified by the vector field (b) Inaccuracy: 

Error turns x(t) from a circle into the spiral of your choice.  
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To improve on Euler’s method, Taylor series including higher-order derivatives can be 

used. Taylor series:  

 

Assuming 𝒙(𝒕) is smooth, we can express its value at the end of the step as an infinite sum 

involving the value and derivatives at the beginning. As can be seen above, we get the Euler 

update formula by truncating the series, discarding all but the first two terms on the right hand 

side. This means that Euler’s method would be correct only if all derivatives beyond the first were 

zero, i.e. if 𝒙(𝒕) were linear. The error term, the difference between the Euler step and the full, 

un-truncated Taylor series, is dominated by the leading term, (𝒉𝟐 𝟐)𝒙(𝒕𝟎). Consequently, we can 

describe the error as 𝑶(𝒉𝟐) (read “Order h squared”). If the derivative function is linear, then 

Euler’s method can provide quite accurate solution with simplicity.  

In midpoint method, we truncates all but the first three terms, that is, one additional term 

will stay, resulting in less error compared to Euler’s method. That is, if we were able to evaluate 𝒙 

as well as 𝒙, we could achieve 𝑶(𝒉𝟑) accuracy instead of 𝑶(𝒉𝟐) simply retaining one additional 

term in the truncated Taylor series:  

 

 We don’t have to stop with an error of 𝑶(𝒉𝟑). By evaluating 𝒇 a few more times, we can 

eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a 

method called Runge-Kutta of order 4 and has an error per step of 𝑶 𝒉𝟓 . The Midpoint method 

could be called Runge-Kutta of order 2. We won’t derive the fourth order Runge-Kutta method, 
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but the formula for computing 𝒙(𝒕𝟎 + 𝒉) is listed below: 

 

In addition, time duration or step-size h (which could be fixed or adaptive) in every method 

has an impact on the outcome. Whenever we can make h large without incurring too much error, 

we should change time duration. When h has to be reduced to avoid excessive error, we want to 

adapt time duration as well. This is the idea of adaptive stepsizing: varying h over the course of 

solving the ODE [29].  

Based on the pros and cons of the methods, Euler’s method was applied in our project.  

Derivative function 𝒙 = 𝒇 𝒙, 𝒕 = 	
   𝒙 𝒕D∆𝒕 E𝒙(𝒕)
∆𝒕

 is the function we are interested in this project. 

Since step size ∆𝒕 ≈ 𝒉	
  is pre-determined, displacement vector between each time point will be 

computed in our project.  

The trajectory of a moving point can be modeled by a function of time, represented by the 

real line ℝ, to the n-dimensional space ℝ𝒏. A function from ℝ to ℝ𝒏 is linear if it has the form 

𝒙 = 𝒂𝒕 + 𝒃 where 𝒂, 𝒃 are vectors in ℝ𝒏; A function is piecewise linear if it consists of a finite 

number of linear pieces, i.e., if it has the form  
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where 𝒕𝟏(𝒊) ≤ 	
   𝒕𝟎(𝒊D𝟏) for all 𝒊 = 𝟏,… , 𝒌	
   𝟐𝟗 . 

 

II.   Data Collection  

 

1.   3dMD Imaging Protocol 

 

Soft tissue is by nature dynamic and changes significantly depending on acquisition methods, 

yielding a range of data. Therefore, formulating a method of standardizing image acquisition is 

important. The following is the protocol which can obtain consistent 3D photographic images. 

 

a.   3dMD Room Setup 

 

A rectangular room with dimensions of 2.09m x 2.94m at the department of Orthodontics was 

used for our 3dMD system. A virtual 1:1 scale model based on actual measurements was 

generated of the room and equipment which represent an accurate ratio. To visualize the set up 

necessary for the 3dMD system, a 3D animation and modeling software called HoudiniTM  by 

Side Effects Software Incorporated was used (Figure 12). 
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Figure 12: Custom modeled set-up for UCLA Orthodontic Department 3dMD System 

 

b.   Natural Head Posture (NHP)  

 

Since Natural head posture (NHP) has been shown to be clinically reproducible, NHP was 

adopted for this study [34] [35] [36]. Having subjects sitting on the adjustable chair, they were 

instructed to look into a mirror at front with horizontal and vertical lines marked. They were 

instructed to level their eyes to the horizontal line and align the midline of their face with the 

vertical line. The seating height was also adjusted to achieve natural head posture if necessary. 

Right before the 3dMD images were taken, subjects were instructed to swallow hard and to keep 

their jaws relaxed. Each image acquisition time duration was 1.5 ms [37]. To measure the 

reliability of a particular imaging system, a previous study published in the AJO-DO used a laser 

system at different time points, and (Figure 13) shows the positioning we pursue to achieve 

consistent NPH throughout our study [38]. 
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Figure 13: (Adapted from H. K. Chung [38]) Reproducible patient positioning method for 

Natural Head Position 

 

 

c.   System Calibration 

 

In order to maintain consistent orientation and positioning across time points, a calibration plate 

and tripod were used each morning before daily image acquisitions for calibrating the camera 

system /software in images in our investigations. 

 

2.   Facial Expression Taking Protocol  

 

Since this study is developing the protocol to quantity dynamic movement of soft tissues in 3D 

for the first time, cleanness and homogeneity of samples are critical to validate the novel 

methodology. Therefore, facial expressions templates (Figure 15, Figure 16) were provided 

before they came to take facial expressions and asked them to practice to generate homogenous 
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facial expressions [42][43][44].  

On the day of taking 3dMDs, templates of facial expressions were provided to remind them. 

3dMDs were taken when participants were ready, asking them to make facial expression very 

slowly. 3dMD photos were taken from starting of facial expression till the end at five different 

time points, i.e., T1,T2, T3, T4, T5 while facial expression was being made. The following is how 

the time points should be captured [39][40][41]. (Figure 14) is an example of 3D dynamic data 

sequence.   

 

    T1: Neutral/Resting 

    T2: Mid-way through smile/frown/etc. 

    T3: Complete smile/frown/etc. 

    T4: Mid-way back to resting position 

    T5: Neutral/Resting 

 

 

 

Figure 14: (Adapted from Taleb Alashkar et al. [39]) Equally-spaced 3D frames of a sample 

dynamic facial sequence conveying a happiness 

expression. 
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Even though smiling patterns will be our main interest in our project, seven different facial 

expressions were recorded 1) smile, 2) surprise, 3) sadness, 4) anger, 5) fear, 6) disgust, 7) 

contempt for future use once this dynamic system is developed.  

 

 

 

 

Figure 15: Templates of facial expressions which were given to the participants of this study/ 

The Seven Universal Facial Expressions of Emotion [44] 
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Figure 16: Templates of facial expressions which were given to the participants of this study/ 

Basic assumptions of Ekman’s facial action coding system illustrated using the face of Tim 

Roth, the actor portraying Dr. Cal Lightman in Lie to Me – a tv drama employing FACS to 

solving crimes [42][43][45] 
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3.   Collection of 3D face models at five different time points while facial expression is 

being made  

 

 A standard protocol for consistent image acquisition in using the 3dMD system is required. 

The protocol which was used in Dr. Nanda’s study [59] was used in our study to obtain consistent 

3dMD images of individual subjects while facial expression is being made. 3dMD system (3dMD, 

Atlanta, Ga) is known as a structured light system which combines stereo- photogrammetry and the 

structured light technique. This system uses a multi- camera configuration where three cameras 

(one color camera, two infrared cameras) are used to capture photorealistic face models. 3dMD 

facial images which contain from ears to under the chin can be obtained in 1.5 ms with the highest 

resolution. Participants were recruited and 3dMDs of the participants were collected following 

facial expression taking protocol above. The following is one demonstration of five frontal views 

of 3dMDs taken from 3dMD Imaging System at five different time points (Figure 17).  

 

 

Figure 17: Demonstration of five frontal views taken from 3dMD Imaging System at five 

different time points (from left, T1,T2, T3, T4, T5)  
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III.   Data Processing  

 

1.   Classification of smiling patterns (4 groups) / Generation of homogenous samples 

based on inclusion criteria  

 

3dMDs of participants while smiling was studied, and the classification criteria was set 

based on those. Smiling expressions of all participants were classified into four different groups 

based on the curvature of upper lip’s inner line (group1: negative curvature, group 2: zero 

curvature & flat, group 3: positive curvature, and group 4: lips closed) (Figure 19).  For reference, 

curvature is defined as a two-dimensional property of a curve and describes how bent a curve is at 

a particular point on the curve i.e. how much the curve deviates from a straight line at this point 

[46] (Figure 18).  

 

 

Figure 18: Sign convention for curvature attributes. The grey arrows represent vectors, which 

are normal to the surface. Where these vectors are parallel on flat or planar dipping surfaces, 

the curvature is zero. Where the vectors diverge over anticlines, the curvature is defined as 

positive and where they converge over synclines, the curvature is defined as negative.  
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Figure 19: Examples of classified smiling patterns. From left, 3dMD frontal views of group 1, 

group2, group3, and group 4 smiling patterns  

 

2.   Vertex correspondence of 3D meshes  

 

Establishing vertex correspondence between 3D meshes is important in studying dynamic 

movement of facial soft tissues. By establishing correspondence between vertices in one mesh and 

vertices in the other mesh, we can track the vertex motion. This has been quite challenging 

[47][48][49][50]. Registration refers to the alignment of two or more surfaces so that they overlay 

each other in 3D space. There are many methods such as surface-based registration (whole surfaces 

or selected regions) and registration via manually selected points. In my project, this was 

established through 3dMD surface registration (whole surfaces) method and minimizing root mean 

square (RMS) errors, which were obtained between each time point and between each individual.  

 

3.   Landmarking  

 

As mentioned above, in deformable objects (facial soft tissues), all the points are not moving at the 

same rate or amount [9][23]. Most points which move during facial expressions are usually points 

around eyes, nose, and lips. Therefore, it makes sense to look at landmarks, which are easy to 
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recognize. These landmarks can be applied to triangular mesh later. In this research project, 28 

landmarks were quantitatively tracked, and these were chosen in 4 major sub-regions where most 

of movements occur while facial expressions are being made (Oral region: 10 landmarks, Nasal 

region: 4 landmarks, Eye region: 8 landmarks, and Eyebrow region: 6 landmarks). These sub-

regions were chosen based on the responsible major muscle groups in face. Dr. Ekman and Dr. 

Friesen developed Facial Action Coding Systems (FACS) in 1978 based on facial muscle change 

to characterize facial actions which constitute a facial expression. FACS encodes the movement of 

specific facial muscles called Action Units (AUs), which reflect distinct momentary changes in 

facial appearance [53][54][55][56] (Figure 20). Landmarking refers to placing landmarks on a 

subject. Landmarking was performed for all the included 3dMD data, generating landmarking files 

which were imported into MATLAB for data analysis. The landmarks used were shown below 

(Figure 21, Table 1,2,3,4).  

 

 

Figure 20: (Adapted from Clemente [58]) Muscles of the face which contribute facial 

expressions  
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Figure 21: Illustration of one participant 3dMD face model at T1( frontal view) showing all 28 

landmarks used in this project placed.   

 

Landmarks in 3dMD Landmarks # in MATLAB  

a 1 Right mouth corner 

b 2 Right upper lip 

c 3 Upper lip center 

d 4 Left upper lip 

e 5 Left mouth corner 

f 6 Inner upper lip 

g 7 Inner lower lip 

h 8 Right lower lip 
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i 9 Lower lip center 

j 10 Left lower lip 

 

Table 1: 10 Landmarks used around the mouth (oral region)  

 

Landmarks in 3dMD Landmarks # in MATLAB  

k 11 Right alar base 

l 12 Sub-nasale 

m 13 Left alar base 

r 18 Glabella 

 

Table 2: 4 Landmarks used around the nose (nasal region)  

 

 

Landmarks in 3dMD Landmarks # in MATLAB  

n 14 Right outer eye corner 

o 15 Right upper eye center 

p 16 Right inner eye corner 

q 17 Right lower eye center 

s 19 Left inner eye corner 

t 20 Left upper eye center 

u 21 Left outer eye corner 

v 22 Left lower eye center 
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Table 3: 8 Landmarks used around the eyes (eye region)  

 

 

Landmarks in 3dMD Landmarks # in MATLAB  

w 23 Right outer eyebrow 

x 24 Right eyebrow center 

y 25 Right inner eyebrow 

z 26 Left inner eyebrow 

0 27 Left eyebrow center 

1 28 Left outer eyebrow 

 

Table 4: 6 Landmarks used around the eyebrows (eyebrow region)  

 

IV.   Average and creation of displacement vectors in MATLAB  

 

1.   Average samples at five different time points 

 

To compute the average smiling face model at each different time point, once landmarking 

process was complete, those 3dMD files were imported into MATLAB for quantification. Vector 

representation of all landmarks were done and averaging functions were programmed along with 

statistical functions to produce standard deviations and ranges in MATLAB. Each landmark has 

corresponding x,y,z coordinate on a Cartesian coordinate. Each averaged landmark has not only 

mean values of those x, y, z coordinates but also has a specific standard variation, representing 

statistical point.  
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2.   Computation of displacement vectors between each time point  

 

Having computed the average smiling face models at each time point T1, T2, T3, T4, and T5, the 

displacement vectors between each time point, i.e., between T1 and T2, T2 and T3, T3 and T4, T4 

and T5 were computed in MATLAB, producing the average displacement vectors for smiling 

movement. In the displacement vector maps, each averaged point will have directional vectors 

where the length of the vector can represent the magnitude of displacement, arrow of the vector 

shows the direction of the displacement, and the color of the vector will indicate the significance 

level of the movement of the landmark.  

 

V.   Statistical Analysis in MATLAB & Dynamic Visualization   

 

1.   Computation of p values at all landmarks in 3 dimension 

 

Since each averaged landmark at each time point is a statistical point which has a mean, standard 

deviation, and statistical p value, not only displacement vectors but also statistical p values of all 

landmarks need to be computed to see if which landmarks and when those landmarks have shown 

significant level of displacement during smiling movement. Previously, p values were computed in 

each x, y, z axis separately. However, this method could not give accurate information since even 

though displacement along each axis does not show significant movement, total displacement in 3 

dimension could show significant movement [59]. For more accurate computations of p values in 

three dimensions, a new approach was developed by switching the coordinate system from the 

Cartesian coordinate to Spherical coordinate where distributive radii of all landmarks at each 
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different time point were used as random variables. Based on this new approach, p values in three 

dimensions of all landmarks between each time point were computed via. paired sample t-test at 

the 5% significance level (𝛼 = 0.05).	
   

 

2.   Creation of color-coded displacement vector maps between each time point with p 

values in 3D of all landmarks  

 

P values of all landmarks were classified into three different groups and color-coded based on the 

significance level (𝛼 = 0.05) between each time point: severely significant (p <0.01, red), 

significant (0.05<p<0.01, yellow), and insignificant (p>0.05, blue). Then, color-coded 

displacement vector maps (p maps) between each time point were generated.  

 

3.   Dynamic visualization of averaged smiling movement representation   

 

For visualization of the averaged smiling movement from T1 through T5 while smiling is being 

made, average landmarks at each different time point were tracked and trajectories were visualized 

dynamically by creating a continuous animation of the average smiling motion representation over 

time from T1 through T5.  

 

Results  

 

A.   Data Collection   
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In total, 29 Participants were recruited at the UCLA Orthodontics Clinic. 3dMDs of all 29 

participants were taken from starting of facial expression till the end at five different time 

points, i.e., T1, T2, T3, T4, T5 while smiling was being made (T1: Neutral/Resting, T2: Mid-way 

through smile/frown/etc., T3: Complete smile/frown/etc., T4: Mid-way back to resting 

position, T5: Neutral/Resting). Even though smiling patterns were our main interest in our 

project, seven different facial expressions were recorded 1) smile, 2) surprise, 3) sadness, 4) 

anger, 5) fear, 6) disgust, 7) contempt for future use.  

 

The following table shows the demographics of the 29 participants.  

Total sample number n = 29 

Gender  Female(16) Male(13)  

Ethnicity  Korean(18), Chinese(7), Indian(1), Hispanic(1), Persian(1) Caucasian(1)  

Korean (18): Female(8), Male(10) 

Chinese (7): Female(5), Male(2)  

Others (4): Female(3), Male(1)  

Age  23 yrs 9 months ~ 43 yrs 2 months 

 

Table 5: Demographics of the initial 29 participants for our study  

 

 

B.   Data Processing  

 

3dMD face models of all participants while smiling was classified into four different groups 

based on the curvature of upper lip’s inner line (group1: negative curvature, group 2: zero 
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curvature & flat, group 3: positive curvature, and group 4: lips closed) (Figure 22). 18 participants 

were in group 1, 9 participants were in group 2, 1 participant in group 3, and 1 participant in group 

4. Since most of the participants were in group 1, group 1 was initially included for data analysis. 

Vertex correspondence between 3d meshes between individual and time point was performed via 

surface-based registration method and minimizing root mean square (RMS) errors, which were 

obtained between each time point and between each participant. Based on the RMS errors, 10 

participants were finally included in our analysis (Figure 23).  

 

 

 

Figure 22: Examples of classified smiling patterns. From left, 3dMD frontal views of group 1, 

group2, group3, and group 4 smiling patterns (Repeat of Figure 19 - Here for visual purposes).  
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Figure 23: 10 individual 3dMD samples finally included in our analysis to create average 

smiling movement representation at five different time points, i.e., T1, T2, T3, T4, T5 from starting 

of facial expression till the end while smiling is being made. From left, T1, T2, T3, T4, T5 (Only 

frontal views are shown in this figure)  
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Since all the points on the face do not move at the same rate or amount while facial expression is 

being made and it is known that most points which move during facial expression are usually 

points around eyes, nose, and lips, 28 recognizable landmarks were determined to be used in our 

project (Oral region: 10 landmarks, Nasal region: 4 landmarks, Eye region: 8 landmarks, and 

Eyebrow region: 6 landmarks) (Figure 24). Landmarking was performed for the finally included 

samples, generating landmarking files which were imported into MATLAB for data analysis.   

 

Figure 24: Illustration of one participant 3dMD face model at T1 (frontal view) showing all 28 

landmarks used in this project placed (Repeat of Figure 21 - Here for visual purposes). 

 

C.    3D facial landmark average at five different time point (T1, T2, T3, T4, and T5) while 

smiling is being made  

The finally included 10 participants’ 3dMD facial models at 5 different time points were loaded 

into the MATLAB after being in vertex correspondence and landmarking process for 

quantification. Vector representations of all landmarks were conducted, and averaging functions 

were programmed along with statistical functions in MATLAB. The average landmarks of 10 
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participants at five different time point from the beginning of the smiling till the end were 

generated. The following shows the averaged landmarks at each different time point while smiling 

was being made (Figure 25, 26, 27, 28, 29). Here, each point is the statistical point with the mean, 

standard deviation, and the range.  

 

 

 

  

 

Figure 25: landmark average of 10 individual samples at time point T1 while smiling 

movement was being made: “The Average smiling face model at T1”  
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Figure 26: landmark average of 10 individual samples at time point T2 while smiling 

movement was being made: “The Average smiling face model at T2”  

  

Figure 27: landmark average of 10 individual samples at time point T3 while smiling 

movement was being made: “The Average smiling face model at T3”  

 

 

Figure 28: landmark average of 10 individual samples at time point T4 while smiling 

movement was being made: “The Average smiling face model at T4”  
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Figure 29: landmark average of 10 individual samples at time point T5 while smiling 

movement was being made: “The Average smiling face model at T5”  

 

 

D.   Computation of average displacement vectors and p values in three dimension & 

generation of color-coded displacement maps (p maps) during smiling movement 

between each time point  

 

After development of the average smiling face models of the final 10 samples over five 

different time points, average displacement vectors were computed between each time point. 

All averaged landmarks are statistical points, and therefore not only displacement vectors 

themselves but also statistical p values were needed to be carefully investigated to see if which 

landmarks showed significant levels of movement during smiling facial expression and 

between which time point significant levels of movements occurred on those landmarks.  
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For more accurate computations of p values in three dimensions, a new approach has been 

developed by switching the coordinate system from the Cartesian coordinate to Spherical 

coordinate where distributive radii of all landmarks at each different time point in are used as 

random variables in this new system. Based on this new approach, new p values in three 

dimensions of all landmarks between each time point were computed via. paired sample t-test 

at the 5% significance level (𝛼 = 0.05).  

 

After computing p values of all landmarks in three dimension between each time point, 

colorized displacement vector p maps were generated, where threshold values were set to 

classify the significance level of displacement occurred at each landmark between each time 

point. The color schematic that we chose to represent significance in displacement was as 

follows: red represents severely significant displacement (p <0.01); yellow represents 

significant displacement (0.05<p<0.01); blue represents insignificant displacement (p>0.05).  

 

Having computed average displacement vectors and p values in 3D, color-coded displacement 

vector maps (p maps) between each time point were generated (Figure 30,31,32,33). In the 

color-coded displacement vector p maps, each averaged point will have directional vector 

where the length of the vector represents the magnitude of displacement, arrow of the vector 

shows the direction of the displacement, and the color of the vector will indicate the 

significance level of the movement of the landmark.  

 

Corner of lip showed maximum displacement of 6.42 mm (p<~ 0.01) in upward and outward 

directions. Statistically significantly displacements were shown at oral region mostly (p<0.05) 

than nasal, eye, or eyebrow regions.  
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     (a) 

 

 

 

 

(b)                                                                          (c) 
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Figure 30: (a) Color-coded average displacement vector p map between T1 and T2 with 

average smiling face model at T1 shown (b)(c) average smiling face models at T1 and T2 are 

shown with color-coded avg. p map, showing smiling trajectory between T1 and T2 (T1: solid 

line, T2: dashed line) (Severely significant (p<0.01, red), significant (0.05<p<0.01, yellow), 

and insignificant (p>0.05, blue).  

 

 

       (a) 
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(b)                                                                             (c)                  

  

 

Figure 31: (a) Color-coded average displacement vector p map between T2 and T3 with 

average smiling face model at T2 shown (b)(c) average smiling face models at T2 and T3 are 

shown with color-coded avg. p map, showing smiling trajectory between T2 and T3 (T2: dashed 

line, T3: dashdot line) (Severely significant (p<0.01, red), significant (0.05<p<0.01, yellow), 

and insignificant (p>0.05, blue).  
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 (a) 

 

 

 

 

     (b)                                                                            (c) 
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Figure 32: (a) Color-coded average displacement vector p map between T3 and T4 with 

average smiling face model at T3 shown (b)(c) average smiling face models at T3 and T4 are 

shown with color-coded avg. p map, showing smiling trajectory between T3 and T4 (T3: dashdot 

line, T4: dotted line) (Severely significant (p<0.01, red), significant (0.05<p<0.01, yellow), and 

insignificant (p>0.05, blue).  

 

  (a) 
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(b)                                                                          (c) 

  

 

Figure 33: (a) Color-coded average displacement vector p map between T4 and T5 with 

average smiling face model at T4 shown (b)(c) average smiling face models at T4 and T5 are 

shown with color-coded avg. p map, showing smiling trajectory between T4 and T5 (T4: dotted 

line, T5: dashdotdot line) (Severely significant (p<0.01, red), significant (0.05<p<0.01, 

yellow), and insignificant (p>0.05, blue).  
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Figure 34: Average smiling face model at each time point T1,T2,T3,T4, and T5 was shown 

simultaneously to show trajectories of smiling movement (Animation of the average smiling 

movement trajectories over time will be presented during thesis defense) (Here, the average 

smiling face model at T1 in black, T2 in blue, T3 in red, T4 in magenta, and T5 in cyan).  

 

Discussion 

 

A)  Clinical Applications  

 

Our goal of this project was to successfully develop the method which could quantify the dynamic 

3D movements of soft tissues while facial expressions are being made, opening a new door to the 

3D dynamic analysis, seeking to advance static 3D imaging analysis into dynamic 3D movement 

analysis, adding another dimension to the diagnosis and treatment planning of patients  



 57 

 

3dMD 3D facial models were taken of subjects from starting of facial expression till the end at five 

different time points, i.e., T1, T2, T3, T4, T5 while facial expression was being made (T1: 

Neutral/Resting, T2: Mid-way through smile/frown/etc., T3: Complete smile/frown/etc., T4: Mid-

way back to resting position, T5: Neutral/Resting). Since our investigation is the development of 

the 3D dynamic analysis protocol for the first time, formulations of homogenous facial expression 

samples were needed, resulting in classification of facial expression patterns. Homogenous 3dMD 

face models were aligned via establishment of vertex correspondence, and the landmarking process 

was complete.  

 

We could successfully develop the averaging smiling face models at five different time points. 

After development of the average smiling face models from the final 10 samples over five different 

time points, average displacement vectors were computed between different time point, i.e., 

between T1 and T2, T2 and T3, T3 and T4, T4 and T5 in MATLAB, producing the average 

displacement for smiling movement. A new approach was developed to compute more accurate p 

values in 3 dimensions, by switching the coordinate system from the Cartesian coordinate to 

Spherical coordinate where distributive radii of all landmarks at each different time point were 

used as random variables in this new system.  

  

Then, color-coded displacement vector p maps between each time point were generated, which 

could demonstrate the movements of each landmark but also how significant the movement of each 

landmark was by color-coding based on new p values in 3d dimensions. Therefore, magnitudes, 

directions, and significance of displacements of each landmark between each time point could be 
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quantitatively tracked and analyzed. Corner of lip showed maximum displacement of 6.42 mm 

(p<~ 0.01) in upward and outward directions. Statistically significantly displacements were shown 

at oral region mostly (p<0.05) than nasal, eye, or eyebrow regions.  

 

To our knowledge, there have been no studies investigating in how to quantitatively analyze the 

dynamic movements of soft tissue in three dimension during various facial expressions. This is the 

first study to demonstrate that dynamic 3D movements of facial expressions can be quantitatively 

tracked and analyzed. This first new approach can offer an added dimension to the diagnosis and 

treatment planning of patients in the health care field.  

 

Application of this new method would allow dynamic soft tissue movement (facial expressions) 

diagnostics for treatment planning in various health care specialties (i.e. orthodontics, 

oral/maxillofacial and plastic surgery). This would dramatically change the diagnostic paradigms 

currently used in craniofacial analysis (2D static facial analysis) towards a totally new and 

progressive direction. 

 

Potential applications would be 1) generation of normative facial expression patterns across 

various strata, 2) quantification of treatment effect on facial expression pattern by comparing the 

average 4D models between T1 and T2, 3) comparison of facial expression patterns between 

patients with cleft lip/palate and a normative facial expression patterns, and 4) virtual patient 

creation (currently, we are confined to surface level(shell); by adding muscle mechanics inside soft 

tissue shell, we can create virtual soft tissue movement and predict those deformations of soft 

tissue)  



 59 

 

B)   Limitations  

 

Currently available system in UCLA orthodontics clinic is 3dMD which can not reduce time 

duration (step-size) below 5 seconds, and this could limit our dynamic analysis. More ideally, if we 

can capture 3dMD face models with very small step-size, then this will reduce errors in Euler’s 

method used in this research. It is also known that too large step-size could make the system 

unstable. There is a better method to improve system by varying step-size over the course of 

analysis. Whenever we can make step-size large without incurring too much error, we should do 

so, and when step-size has to be reduced to avoid excessive error, we want to do that also. 

However, in my project, step-size could not be adjusted over time due to the limitations of the 

3dMD system we have.  

 

C)  Conclusions/Future directions   

 

This project is the first study to demonstrate that dynamic 3D movements of facial expressions can 

be quantitatively tracked and analyzed. This will allow for the total paradigm shift from the 2D 

static facial analysis which has been used in health care system especially in our orthodontics field 

into 3D dynamic facial analysis.  

               

Nowadays, advances in medial imaging open new perspectives for the improvement of patient 

diagnosis and treatment planning where biomechanical modeling of soft tissue and facial 
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expressions are necessary. One example is computer assisted surgery planning (CAS). In CAS, 

generation of the virtual model of a patient which can allow simulation of physical interactions 

with virtual bodies is important. Once the virtual model of a patient is generated, various case 

scenarios of the surgical impact and their outcomes can be extensively studied. Here, realistic 

simulation of soft tissue deformations under the impact of external forces is very important, and 

realistic prediction of the patient’s post-operative appearance is an important feature of the 

planning system giving the surgeon unique feedback already during the planning stage [9].  

 

However, challenges are complexity of soft tissue behavior. Most importantly, for the simulation 

of individual facial expressions, a correct biomechanical model of contracting muscles and their 

interaction with remaining facial tissue is needed.  

 

In my research project, we were looing at the superficial points on the epidermis (facial surface), 

however, to fully understand the movement of those points, investigating the underlying structures 

below those points especially muscles are needed which are driving forces for the movements of 

those facial points. In building biomechanical models of contracting muscles, a model with a few 

dynamic parameters that emulate the primary characteristics is needed. Muscle themselves are 

grouped together to perform specific tasks. With all the muscle forms it is evident that they have a 

highly complex three-dimensional structure endowed with viscous, elastics and other mechanical 

properties that result in the displacement of the skin. Elasticity of the skin varies with age; young 

skin has a higher elasticity than older flesh and this factor should be accommodated in the muscle 

model [9]. Once biomechanical models of contracting muscles are built, then these can be 

combined with my quantitative analysis of the dynamic movements of facial soft tissue in 3D 

during facial expressions, moving towards the creation of a virtual patient. 
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