UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning from Instruction: A Knowledge-level Capability within a Unified Theory of
Cognition

Permalink

bttgs:QescholarshiQ.orggucgitem46k24x93;|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Authors
Huffman, Scott B.
Miller, Craig S.
Laird, John E.

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6kz4x93r
https://escholarship.org
http://www.cdlib.org/

Learning from Instruction: A knowledge-level capability
within a unified theory of cognition

Scott B. Huffman and Craig S. Miller and John E. Laird
Artificial Intelligence Laboratory
The University of Michigan
Ann Arbor, Michigan 48109-2110
huffman@engin.umich.edu

Abstract

How does working within a unified theory of cog-
nition — an architecture — provide useful constraint
when modeling large timescale tasks, where per-
formance is primarily determined by knowledge,
rather than the architecture’s basic mechanisms?
We present a methodology for extracting the con-
straint that comes from the architecture, by de-
riving a set of architectural entailments which af-
ford certain model properties over others. The
methodology allows us to factor the effect that
various architectural properties have on a model.
We demonstrate the methodology with a case
study: a model of learning procedures from nat-
ural language instructions, Instructo-Soar, within
the Soar architecture.

Introduction

When constructing a model of human behavior, one is
confronted with a multitude of design decisions. Over
the course of Allen Newell’s career, a resounding theme
was the useful constraint a unified theory of cognition
(UTC) offers in designing cognitive models. A UTC,
as embodied in the form of an architecture, posits a
set of mechanisms capable of supporting intelligent be-
havior. By constructing a model within a UTC, we
restrict ourselves to designs consistent with the archi-
tecture’s properties. This constraint is useful because
it produces models based on principles that are glob-
ally motivated by a broad range of cognitive behavior
and phenomena. Since models are based on a consis-
tent cet of underlying mechanisms, modeling within a
UTC also facilitates the integration of models to cover
a larger range of behavior.

The constraint provided by a UTC is most evident
for tasks at low timescales. For these tasks, behavior is
strongly determined by the architecture itself. This is
because there is not enough time for more than a small
number of applications of the architecture’s primitive
mechanisms. However, as the timescale increases, to
the level of minutes or hours for task performance, be-
havior is determined more and more by an intelligent

114

agent’s knowledge. This is Newell’s intendedly ratio-
nal band [Newell, 1990], in which the agent moves to-
wards approximating a pure knowledge-level system.
The large timescale allows the agent to retrieve, com-
pose, and apply relevant knowledge to reach its goals
within the current task environment. Because of the
distance in timescales between the knowledge level and
an architecture’s primitive mechanisms, it is less evi-
dent how a UTC constrains the design of models for
behavior at these higher timescales. The question then
is, “What constraints does a UTC offer in designing a
model of knowledge-level behavior?” and “How can we
reap these constraints?”

We focus our attack on this question by considering
knowledge-level capabilities (KLC’s). These are capa-
bilities that an agent can apply on many different tasks,
that occur over large timescales (minutes or longer),
and whose performance is primarily determined by the
agent’s knowledge. Examples include planning, experi-
mentation in the environment, complex analogical rea-
soning, and learning from instruction. These are not
primitive architectural capabilities, because their prop-
erties are determined by not only the architecture and
the task, but also the agent’s knowledge.

In this paper, we present a methodology for devel-
oping KLC models within the confines of a UTC. The
methodology utilizes architectural entailments derived
from the architecture’s basic mechanisms and proper-
ties. The UTC’s entailments, together with the con-
straints of performance required by the task, and hu-
man behavior, powerfully guide the development of a
KLC model. We illustrate the methodology with a case
study, detailing a particular KLC (the learning of pro-
cedures from natural language instructions) within a
particular UTC (Soar). The case study demonstrates
the types of constraints that can be derived from a
UTC, and how they lead to KLC model properties.

A Methodology for KLC modeling

The methodology of modeling KLC’s within a UTC
allows for constraint from three sources: (1) functional
and agency constraints on task performance, (2) archi-
tectural entailments, and (3) human behavioral data.

mailto:hufFman@engin.umich.edu

We describe each of these in turn.

Constraints on task performance

In addition to simply being able to perform the tasks
associated with a KLC, building models within a UTC
adds two additional constraints on how performance
can be modeled: agenthood and functionality.

Firstly, a KLC must be defined with an eye towards
future integration into a complete cognitive agent.
This view rules out models that violate the general
requirements of agenthood; for instance, that an agent
be continually receptive to its environment, even while
performing complex cognitive tasks.

Secondly, elements of the model should not exist
simply to mimic human behavioral data. Rather, ev-
ery element should contribute to the agent’s perfor-
mance; that is, the model should be functional. Non-
functionalities represent technological limitations of
the brain. Since such non-functionalities impact a wide
range of tasks, they should not appear in models of par-
ticular tasks, but should be a part of the architecture.

Architectural entailments

Architectural entailments are ramifications of the com-
bined architectural components that define the UTC.
For example, an architectural entailment might be
whether or not long-term memory is directly exam-
inable. They determine which techniques, structures,
etc., are most “natural” within the architecture. Mod-
els that are most afforded by the entailments are pre-
ferred. As Newell puts it: “There are many ways for
Soar to...do any [intendedly rational] task. A natural
way is one that involves little additional knowledge and
little computational apparatus and indirection...One of
the general arguments for the importance of getting the
architecture right, even though it appears to recede as
the time scale increases, is that doing what is natural
within the architecture will tend to be the way humans
actually do a task.” [Newell, 1990, p. 416-17]

Human behavior data

Ideally, we would like to produce operational models
that reproduce human behavior. Unfortunately, hu-
man data is strongly colored by subjects’ prior knowl-
edge, especially for knowledge-level capabilities. To re-
produce the behavior correctly, a simulation must have
not only the right model of task performance, but also
the right prior knowledge.

One strategy for dealing with prior knowledge ef-
fects is to choose versions of tasks that minimize prior
knowledge. For example, concept learning is often
studied with novel, artificial concepts, problem solv-
ing with puzzles, and memory with nonsense syllables.
However, for broad tasks that require the integration of
various types of knowledge, it can be difficult to obtain
data minimally affected by prior knowledge.

A second strategy for dealing with prior knowledge is
to structure the model so that prior knowledge can be a

115

parameter to the model. A Soar model of cryptarith-
metic [Newell, 1990] provides an extreme example of
this. In this model, the results of subjects’ performance
of particular sub-operations, such as choosing the next
digit to assign to a letter, are taken directly from proto-
col data (i.e., parameterized). Thus, the Soar model re-
produces the search behavior of the subjects in detail,
but does not model how the sub-operators are carried
out once selected. Newell points out that “this allows
us to test the upper levels without the lower levels, the
conceptual advantage being to factor out the influences
of the lower levels by design beforehand, rather than
by analysis from the total simulation record” [Newell,
1990, p. 376]. Within a UTC-based model of a par-
ticular task, parameters should be at the knowledge
level, involving the presence (or absence) of knowledge.
Other types of parameters, affecting the application of
knowledge by the architecture, are at the architectural
level, and should affect all tasks.

Soar’s architectural entailments
Soar’s entailments derive from its basic properties.

Basic properties of Soar

Following Newell [1990, p. 160], we can describe Soar
as having six basic properties:

1. Problem spaces represent all tasks.

2. Productions for long-term memory. All long-
term knowledge is stored in associative productions,
including search control, operator application knowl-
edge, and semantic and episodic knowledge.

3. Attribute/value representation. All declarative
structures in working memory are represented as at-
tribute/values.

4. Preference-based decision procedure. Pro-
ductions produce symbolic preferences for working
memory elements, including problem spaces, states,
operators, and substructures of these objects. The
decision procedure interprets the preferences to se-
lect appropriate values for working memory.

5. Impasse-based automatic subgoaling. Subgoals
are created automatically in response to the inability
to make progress on a problem.

6. Chunking based learning. Chunking produces a
new production whenever a result is created during
processing in a subgoal. The new production, or
chunk, summarizes the result of processing within
the subgoal; in future executions of related tasks,
chunks will fire, avoiding the subgoal.

Entailments of Soar

Starting from Newell’s characterization of Soar [1990,
pp. 227-30], we have created a list of Soar’s entail-
ments, broken into four categories: behavior, knowl-
edge, long-term memory, and learning. This is not
an exhaustive list, but includes entailments that affect
our case study of the next section. Numbers in brack-
ets after each entry indicate the properties of Soar (in

the list above) that the entailment derives from. The
dependencies are shown graphically in Figure 1.

¢ Behavior.

1. Goal oriented. Soar creates its own goals whenever
it does not know how to proceed [1,5].

2. Interrupt driven. All productions are being
matched continuously, and bring to bear what-
ever knowledge is appropriate to the current sit-
uation. The preference-based decision process al-
lows knowledge to indicate that a more important
course of action than the current course should be
followed. Impasse-driven subgoals based on the
old course of action are terminated when an alter-
native course of action is selected. (2,4,5].

3. Serial application of discrete, deliberate operators.
A single operator is selected and applied at a time
within each goal. [1,4]

4. Continual shift to recognitional (impasse-free)
performance. Whenever an impasse is resolved,
chunks are learned that allow the impasse to be
avoided in the future. These chunks implement
recognitional performance — they simply recognize
the situation and act appropriately, without re-
quiring further deliberation (i.e. subgoals). [5,6]

¢ Knowledge.

5. All knowledge is related to problem-space struc-
tures: problem spaces, states, and operators. [1)

6. Use of an indefinitely large body of knowledge.
Soar can use large amounts of knowledge because
of the structuring of knowledge as individual pro-
ductions, and the factoring of that knowledge into
multiple problem spaces. [1,2]

7. Ability to detect a lack of knowledge. Impasses
are detected architecturally, and indicate a lack of
knowledge to make a decision. (4,5]

¢ Long-term memory.

8. Associative, recognitional long-term memory.
Productions form an associative long-term mem-
ory. Knowledge is recalled only when appropriate
retrieval cues appear in working memory. [2]

9. Impenetrable long-term memory. The produc-
tions in long-term memory cannot be examined by
the agent, for instance by being tested by other
productions. Thus, the agent is not fully aware
of what is in its long-term memory; access is only
gained through working memory retrieval cues. [2]

e Learning.

10. Learning determined by performance. The chunks
that are learned are directly dependent on the pro-
cessing that takes place in a subgoal to produce a
result. In particular, the generality (transferabil-
ity) of chunks is dependent on the generality of
the problem solving in the subgoal. [5,6]

116

11. Learning based on prior knowledge. Since learning
is dependent on performance, and performance is
dependent on the agent’s existing knowledge, it
follows that what is learned depends critically on
the agent’s preexisting knowledge. [5,6]

Impenetrable learning process. The chunking pro-
cess is impenetrable to the agent; it cannot learn

to alter its architectural learning process.! (6]

Monotonic learning. Productions are never re-
moved from long-term memory; once learned,
chunks cannot be forgotten. However, their ef-
fects can be overridden by other chunks to recover
from incorrect learning [Laird, 1988). (2,4,6]

Routine learning. Chunking is part of the rou-
tine performance of the agent, rather than a spe-
cial process that is deliberately invoked by the
agent. Thus, the decision to learn is not under the
agent’s control (except indirectly as the agent de-
cides when to return results from subgoals). [5,6]

12.

13.

14.

Instructo-Soar: A case study
To demonstrate the methodology of UTC-based KLC

model building, we present a case study. We concen-
trate on the effect of architectural entailments, since
that constraint is unique to UTC-based modeling. The
KLC is the learning of procedures from interactive, sit-
uated natural language instructions. Interactive means
that the student requests instruction when it is needed,
situated means that the student is within the task
domain, attempting to perform tasks, during the in-
struction episode. The model is embodied in a sys-
tem, Instructo-Soar, which has been described else-
where [Huffman and Laird, 1993]. Instructions are
given to Instructo-Soar in natural language sentences,
requested whenever there is an impasse in task perfor-
mance. The system can learn completely new proce-
dures, learning both the goal concept (what it means
to successfully perform the procedure) and how to per-
form the procedure. The system also learns to extend
known procedures to new situations. This is a KLC
because the task takes on the order of minutes, and a
subject’s knowledge - of natural language, of the task
domain, of the mapping between them, and of learning
strategies — primarily determines performance.
Although situated, interactive instruction has been
shown to be highly effective [Bloom, 1984], there have
not been many studies of learning effects during this
type of instruction. Most studies of instruction have
either focussed on broad instructional strategies, or on
the effect of linguistic form of individual instructions
(see [Bovair and Kieras, 1990; Singley and Anderson,
1989] for reviews). It has been shown that subjects

"However, since learning is dependent on performance
and knowledge, chunking can form the basis for many dif-
ferent learning strategies (e.g., induction, analogical learn-
ing, abstraction, etc.). These strategies are essentially
KLC’s that are mediated by knowledge and can be learned.

Architectural Properties of Soar

Architectural Entailments of Soar

Model properties of Instructo-Soar

Goal oriented

Interactive instruction requesis I

Interrupt driven

Serial discrete operators

in LT™M]I

'
effortful reconstruction of recall | |

Continual shift 1o recognition

=

4 All knowledge is problem-space related

high specificiry

factored representation | :

Use of large of knowledge |

Ability to detect lack of knowledge L lockucpequencng |,
Associative, rocopnitional LTM

belLTM /S 1« Formof final leaming i

Leaming d ined by performance |I

Learning based on prior knowledge operator-based organization] |

ble learmning process

state ¢

iy],
]

generality I \

aulomaticity

Increasing task knowledge I

Figure 1: How the entailments of Soar arise and affect a KLC model.

learn better when they have more prior knowledge of
the domain [Kieras and Bovair, 1984], which our model
predicts. Also, subjects learning from worked-out ex-
amples learn more general knowledge when they at-
tempt to explain each step of the example (the self-
explanation effect [Chi et al., 1989]). Although not
interactive instructions, the worked-out examples pro-
vide a similar kind of information to the student.

The Instructo-Soar model exhibits two stages of
learning behavior in learning a new procedure. Initial
learning is rote and episodic in nature, and exhibits
low transfer. Later executions result in high trans-
fer, general learning, based on an explanation process.
Whenever the agent is given an instruction (or recalls
one it was given in the past), it attempts to explain
to itself why that instruction leads to achievement of
its current goals. This explanation takes the form of
an internal simulation of the instructed action — the
agent asks “What would happen if I did that?” If this
internal simulation results in successful goal achieve-
ment (or failure if the instruction is to avoid an action),
then Instructo-Soar can learn a general rule capturing
the key conditions under which the instructed action
applies. A similar “learning by (simulated) doing” pro-
cess applies when the agent is given an instruction that
applies in a hypothetical situation; for instance, a con-
ditional, such as “If the light is on, push the button.”
In such cases, the agent first creates a hypothetical
state (e.g., one with the light on), and then simulates
the instructed action, attempting to understand why
it leads to achieving the agent’s goals.

Next, we examine each of the major properties of the
model and indicate how they derive from architectural
entailments. The goal is to show how the entailments
have impacted the model, thus revealing the effect of
developing the model within Soar, our UTC.

117

Interactive instruction requests.

The agent asks for instruction whenever its available
knowledge is insufficient to reach its goals. It can do
this because it is goal oriented (entailment 1), and can
detect its lack of knowledge (entailment 7).

Form of initial, episodic instruction
learning.

As a side effect of natural language comprehension
when initially reading the instructions for a new pro-
cedure, the agent learns a set of chunks which provides
an episodic memory of the instructions. This memory
has the following characteristics:

e Long term memory. The episode is encoded as
a set of productions in Soar’s long term memory
(entailment 8). Thus, instruction sequences are re-
membered without an unrealistic load on short term
memory, and instructions are not forgotten (entail-
ment 13).

¢ Recognitional memory; effortful reconstruc-
tion for recall. The episode is encoded as a set of
recognition rules, in which the features of the instruc-
tion to be recalled make up the condilions, rather
than the actions, of each chunk. Recognition is the
basic form of long-term memory (entailment 8), and
processing impasses results in recognitional learning
(entailment 4); here as a side-effect of natural lan-
guage comprehension (entailment 14). The chunks
are recognitional rather than recall rules, because
the conditions in chunks are dependent on the be-
havior in the subgoal they are produced from (entail-
ment 10); and in this case, the behavior (language
comprehension referent resolution) is dependent on
the semantic features of the instruction. To recall
parts of the instruction episode, the system must
deliberately reconstruct features of the episode, to
be recognized by these rules. This i1s because the

agent cannot simply inspect the contents of long-
term memory (entailment 9); it must be accessed by
placing recall cues in working memory.

e High Specificity. Each instruction is indexed by
the exact goal it applies to (e.g., picking up the
red block rb1); similarly, the exact instruction given
is encoded (e.g., moving to the yellow table yt1).
Learning is based on performance (entailment 10),
and here the performance includes referring to the
goal and instruction features. Using this perfor-
mance, however, was not constrained by entailments
but by task performance demands.

e Factored representation. There are separate
recognition chunks for each semantic feature of each
instruction. The chunks are learned for the purpose
of resolving future natural language referents, and
this requires independent access to each feature (e.g.,
after reading “the red block”, you may read “the red
one” and need to recover the referent from only its
color feature). This behavior requires a set of in-
dividual feature chunks because long-term memory
cannot be examined (entailment 9); thus, we cannot
simply memorize a monolithic semantic structure.

e Lock-step sequencing. Instructions are sequenced
by being chained one to the next, instead of indexed
by the situations they should apply in. Learning is
performance based (entailment 10), and the perfor-
mance of reading the instructions does not depend
on the instructed action’s situations of applicability.

Experiential, situated learning method.

By internally simulating instructed actions, the agent
learns general rules that propose the actions directly
when they will allow a goal to be reached. This expe-
riential learning method is afforded because learning
is based on performance (entailment 10) and is im-
pacted by prior knowledge (entailment 11). Thus the
“natural” way for a Soar system to learn about task
performance is to perform the task itself (thus mak-
ing maximal use of the task domain knowledge it al-
ready has) — here, internally, in case the task cannot
be completed. There are alternatives; for example, rea-
soning directly in the space of possible condition sets
about the conditions under which instructed actions
might apply. However, any such method would re-
quire adding additional knowledge to Soar (about con-
ditions, condition sets, how to search that space, etc.).
In addition, it would be difficult to learn chunks with
exactly the desired conditions, since the chunking pro-
cess is impenetrable (entailment 12) — an agent cannot
simply say “now I’ll add a chunk to my memory with
the following conditions and actions.”

Form of final, general learning.

The experiential, situated learning method allows
Instructo-Soar to learn the procedure in a general form.
For example, when learning to pick up a block, the

118

agent learns to move to the table the block is sitting
on, if not currently docked at that table. This learning
both generalizes the initial instruction (the color of the
table was specified in the instruction) and specializes
it (by adding the condition that the block be on the ta-
ble, which was not indicated in the instruction). This
final learning has the following characteristics:

¢ Long term memory. Rules implementing a pro-
cedure are encoded as productions (entailment 8).

¢ Operator-based organization. Actions and pro-
cedures are encoded as individual operators; the
agent learns when to select these operators, how to
achieve them, and how to recognize their achieve-
ment (entailments 3 and 6).

¢ State conditionality. Each operator proposal rule
is directly conditional on relevant features of the cur-
rent world state. This is because learning is deter-
mined by performance (entailment 10); here, an in-
ternal performance of the instructed operator from a
particular state. The implementation displays reac-
tivity, since if the world state unexpectedly changes,
rules proposing the next operator to perform will
match or mismatch accordingly (entailment 2).

e Generality. The features in each proposal rule are
only those required for successfully reaching the goal.
This is because learning is determined by perfor-
mance (entailment 10) — here, goal achievement -
and prior knowledge (entailment 11) — here, knowl-
edge of how to simulate the basic operators.

e Automaticity. The learned rules move the system
to recognitional performance (entailment 4). No ef-
fort is required to recall instructed operators, as it
is for the rote initial learning.

Monotonically increasing task knowledge

There is no structural limit on the amount of task
knowledge the agent can acquire from instruction (en-
tailment 6). No forgetting or symbol-level interference
will occur; that is, the learning of new productions will
not overwrite old ones (entailment 13). Interference
may occur at the knowledge level; productions may
bring conflicting knowledge to bear on the task. This
indicates that there is an actual conflict in the agent’s
knowledge (e.g., perhaps the instructor has given in-
structions that conflict).

Analyzing the UTC’s effect

Figure 1 summarizes the relationship between the
properties of Soar, the entailments they give rise to,
and properties of the Instructo-Soar model. In essence,
this figure factors the effects of each UTC property
and entailment on the model. It gives a detailed an-
swer to the question of how the use of the UTC affects
the model. In addition, we can now make arguments
about what effect changing individual properties of the
architecture may have on the model.

Entailments provide an intermediate level of gran-
ularity to compare architectures at. Where another

architecture’s entailments differ, the figure indicates
which model properties are affected. For instance,
ACT* [Anderson, 1983] has a declarative long-term
memory in addition to a production memory. This en-
tails a fully penetrable, non-associative memory, that
could be used to store instructions as they are read.
From our analysis, the associative and impenetrable
nature of Soar’s long-term memory affects Instructo-
Soar’s form of initial, episodic learning in three ways:
(1) the episode is in long-term memory, (2) it requires
reconstruction for recall, and (3) it is encoded in mul-
tiple productions that factor the instruction features.
In ACT*, (1) the episode could still be in long-term
memory, but now in declarative, non-associative mem-
ory, (2) no reconstruction would be required for recall,
but rather a search of declarative memory, and (3) the
representation would not be factored into separate as-
sociative pieces; rather, any feature could be retrieved
by searching declarative memory.

Model predictions

Thus far, we have described the model’s properties in
terms dependent on the model’s data structures and
processes. However, in order to evaluate the model as
a testable hypothesis, behavioral predictions must be
described independent of the model and architecture.
Based on its properties, Instructo-Soar makes a num-
ber of testable predictions:

e Initial learning of a new procedure is rote and
episodic. Thus: (1) the procedure can only be per-
formed in situations very similar to the original sit-
uation it was taught in (low transfer); (2) subjects
will have difficulty performing the procedure start-
ing from any state other than the initial state (i.e.
they can’t start in the middle very well), and (3)
performance is slow.

o Learning a general form of a new procedure takes
multiple (internal or external) executions of the pro-
cedure. Thus: (4) the amount of transfer — the abil-
ity to perform the procedure in novel situations -
increases with the number of executions, until the
maximum transfer level is reached; (5) the execu-
tion time decreases with the number of executions.
Empirically, we have found that this execution time
decrease displays the power law of practice [Huffman
and Laird, 1993]. After some number of executions,
the procedure is fully generalized. At this point,
(6) performance is automatic (recognitional); thus,
performance will be fast; (7) subjects will exhibit
the Einstellung effect; and (8) subjects will be able
to execute the procedure equally well starting from
any of the intermediate states along the path of the
instructed action sequence.

e General learning is the result of a deliberate explana-
tion process, applied to each individual instruction,
using prior domain knowledge (here, knowledge of
basic operators’ effects). Thus, self-explanation [Chi

119

et al., 1989] improves both (9) performance time and
(10) transfer - subjects who do not attempt such
explanations will achieve only low-transfer; and (11)
the amount and quality of transfer achieved depends
on the amount and quality of prior domain knowl-
edge of the subject — subjects with minimal domain
knowledge will achieve only low-transfer learning.

These predictions seem broadly consistent with what
is known about instructional learning, but more exper-
iments are needed to fully evaluate them.

Conclusion

Unified theories of cognition specify the underlying
architecture of cognition, which most directly affects
behavior at smaller timescales. However, even for
knowledge-level capabilities, developing models within
the context of a UTC can provide a large amount of
useful constraint in model design decisions. The con-
straint is provided by the behavioral entailments of the
architecture, which indicate the natural way to per-
form the task within the architecture. In this paper we
have presented a case study of a methodology for KLC
modeling, in which a set of entailments for the Soar ar-
chitecture were derived from its basic properties. We
have shown how these entailments have affected devel-
opment of a KLC model, Instructo-Soar, that learns
procedures from natural language instruction.

References

[Anderson, 1983] John R. Anderson. The Architecture
of Cognition. Harvard Univ. Press, 1983.

[Bloom, 1984] Benjamin S. Bloom. The 2 sigma prob-
lem: The search for methods of group instruction
as effective as one-to-one tutoring. Fducational Re-
searcher, 13(6):4-16, 1984.

[Bovair and Kieras, 1990] S. Bovair and D. Kieras. To-
ward a model of acquiring procedures from text. In
Barr et al, editors, Handbook of Reading Research,
Volume II. Longman, 1990.

[Chi et al., 1989] M. T. H. Chi, M. Bassok, M. W.
Lewis, P. Reimann, and R. Glaser. Self-
explanations: How students study and use exam-
ples in learning to solve problems. Cognitive Sci.,
13:145-182, 1989.

[Huffman and Laird, 1993] S. Huffman and J. Laird.
Learning procedures from interactive natural lan-
guage instructions. In Machine Learning: Proceed-
ings of the Tenth International Conference. 1993.

[Kieras and Bovair, 1984] D. Kieras and S. Bovair.
The role of a mental model in learning to operate
a device. Cognitive Science, 8:255-273, 1984.

[Laird, 1988] John E. Laird. Recovery from incorrect
knowledge in Soar. In AAAI-88, 1988.

[Newell, 1990] Allen Newell. Unified Theories of Cog-
nition. Harvard Univ. Press, 1990.

[Singley and Anderson, 1989] M. Singley and J. An-
derson. The transfer of cognitive skill. Harvard Univ.
Press, 1989.

	cogsci_1993_114-119

