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HALWPE: Hardware-Assisted Light Weight  
Performance Estimation for GPUs 
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ABSTRACT 
This paper presents a predictive modeling framework for GPU 
performance. The key innovation underlying this approach is that 
performance statistics collected from representative workloads 
running on current generation GPUs can effectively predict the 
performance of next-generation GPUs. This is useful when 
simulators are available for the next-generation device, but 
simulation times are exorbitant, rendering early design space 
exploration of microarchitectural parameters and other features 
infeasible. When predicting performance across three Intel GPU 
generations (Haswell, Broadwell, Skylake), our models achieved 
low out-of-sample-errors ranging from 7.45% to 8.91%, while 
running 30,000-45,000 times faster than cycle-accurate simulation. 
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1. INTRODUCTION 
Cycle-accurate simulation run-times for highly-threaded 
processors, such as GPUs, are becoming untenable. Industry 
simulators serve a dual-purpose of performance simulation and 
RTL performance validation, and thus offer greater detail and 
higher accuracy at the cost of longer runtimes compared to their 
academic counterparts. Ever-increasing simulation times are 
prohibitive for early-stage GPU design space exploration when 
many perturbations to the design must be considered. 
This paper presents Hardware-Assisted Light Weight Performance 
Estimation (HALWPE), a methodology that uses existing platform 
(host) and machine learning to predict the performance of future 
devices under development (targets). Our experiments, which focus 
on GPUs, uses as a host the Intel HD 4600 integrated GPU of the 
three targets (future-generation GPUs), achieving 7-9% average 
out-of-sample-error, while respectively running 30,000-45,000 
faster than an industrial cycle-accurate GPU simulator.  

To use HALWPE, first we configure the simulator to model a target 
design of the next-generation GPU. We then render a small set of 
frames of graphics workloads on the target GPU simulator and 

record the performance of each frame in terms of cycles-per-frame 
(CPF). We render each frame on the commercially-available host 
GPU and record profiling features. We then train a suite of 
statistical models to predict the CPF of graphics workloads on the 
target, given the features obtained from execution on the host.  

As shown in Fig. 1, application performance depends on several 
factors beyond the architecture itself, including vendor-provided 
drivers and APIs such as DirectX and OpenGL. Cross-generation 
prediction entails not only changes to the architecture but changes 
to the software stack as well. HALWPE enables collection of 
performance metrics for model training and inference without the 
need for software modifications. HALWPE achieves high accuracy 
(7-9% out-of-sample error) and speed, as it runs ~30,000-45,000x 
faster than traditional performance simulation in our experiments.  

2. MODELING FRAMEWORK 
Figs. 2 and 3 illustrate the HALWPE model development flow and 
model training and prediction. The Graphics Workload Library 
(GWL) refers to our collection of benchmarks, listed in Table 1. The 
GWL contains rendering frames from 42 DirectX games and GPU 
benchmarking tools spanning the version 9, 10, and 11 APIs. We 
collected multiple frames per application and treat each as one 
workload. The GWL applications are assembled into one training 
set; we apply 10-fold cross validation to estimate out of sample 
error. We use a proprietary tool (GfxCapture), to collect single-
frame traces in two formats: HWTraces (DirectX API commands) 
executed on our Haswell host GPU, and SWTraces (native GPU 
commands) executed on our GPU simulator. Two proprietary 
applications, GfxPlayer and GfxProfiler, replay isolated traces to 
collect DirectX program metrics and performance counter 
measurements, on the Haswell host GPU. To reduce profiling 
overhead, we only collect performance counters that can be read in 
one pass. Table 2 summarizes these tools. 
 

 

Figure 1. GPU performance depends on the application, 
driver/API commands, and architecture. 
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Figure 2. HALWPE Model Development Flow: (1) Traces are 
collected and stored in the GWL. (2) Workloads execute on the 
current-generation GPU host, and next-generation simulator. 
(3) Performance counter measurements and DirectX program 
metrics obtained from the host are used to train a model to 
predict the CPF that the GPU simulator would report. 

 
Figure 3. Training (Top): Performance counter measurements 
and DirectX program metrics obtained from direct execution 
on the GPU host are used to train a model to predict the 
performance of a GPU simulator configuration. Prediction 
(Bottom): An application runs on the GPU host; the collected 
performance counter measurements and DirectX program 
metrics are input to the performance model, which predicts the 
CPF that the GPU simulator would report for that application.   

Our models produce a single value, the expected number of GPU 
execution CPF. Training is performed offline and is not included in 
the runtime comparison of HALWPE to cycle-accurate simulation, 
as the cost of training is amortized over repeated model usage. 
In practice, the models are trained on one set of workloads, and then 
deployed to estimate the performance of a disjoint second set of 
workloads, of arbitrary size. Once a model has been trained, it can 
be applied to any 3D rendering workload, including standard 
executables, irrespective of its inclusion in the GWL.  

3. INTEL GPU ARCHITECTURES 
We experimented with HALPWE using three generations of Intel 
integrated GPUs (see Table 3). Our host platform is a desktop PC 
running a 4-core, 8-thread Intel Core i7-4790k, 16GB of DDR3 @ 
1666MHz, an Intel HD 4600 Haswell GT2 GPU running at 
1250MHz., and a 2TB 7200RPM hard disk. The Broadwell GT2 
(Target 1), Broadwell GT3 (Target 2) the Skylake GT3 (Target 3) 
are later versions of this GPU for which simulators are available. 
Performance of the final machine may improve, even if CPF 
increases, e.g., due to higher clock frequencies. 

Table 1. The GWL comprises 36 DirectX applications which 
collectively render 364 frames.  

 

Table 2. Summary of software tools and libraries used. 

 



Table 3. Device legend. Further details about each device can 
be found in Refs. [8-10]. 

 
The Slice count is a measure of available parallelism. Each slice 
contains a parallel group of sub-slices as well as shared resources 
including atomics, L3 cache, shared local memory, and specific 
fixed functional units. The sub-slices contain Execution Units 
(EUs) and their supporting thread dispatch units, samplers, 
instruction cache, and other peripherals. A Broadwell GPU slice 
contains 3 parallel sub-slices with 8 EUs each.  

To create hardware-assisted model scenarios, we used simulator 
configurations that execute a driver reflective of the GPU 
generation: version 1 (Haswell GT2), version 2 (Broadwell GT2 
single-slice), and version 3 (Broadwell GT3 dual-slice, which we 
also use for Skylake GT3). In some situations, compatibility issues 
between the architecture and driver caused trace execution to fail 
on the GPU host and simulator. In Table 3, the Haswell GPU host 
can execute 300 of the available traces, while simulators for the 
Broadwell GT2, GT3 and Skylake GT3 can execute 282, 364, and 
364 traces respectively. For any host-target prediction scenario 
(simulator-based or HALWPE), the number of traces that we use to 
build and evaluate the model is the minimum number that both host 
and target have the capability to execute.  

4. REGRESSION MODELS 
HALWPE includes 12 linear and one non-linear regression models, 
which are summarized in Fig. 4. For each prediction scenario 
reported in this paper, we train all 13 models and select the one that 
yields the smallest out-of-sample error as the most accurate. The 
choice to use an ensemble of models is driven by the suspicion that 
correlations between collected features (DirectX program metrics 
and performance counter measurements) and the amount of non-
linearity in the relationship between features and CPF may vary as 
the number of generations between host and target GPU changes.  

We err on the side of caution by producing several models, each 
judiciously chosen to target one of these behaviors. The standard 
linear models based on least squares (OLS/NNLS), shown on the 
left side of Fig. 4, are useful when the relationship between features 
and CPF is linear, and features are non-correlated; using the AIC 
and BIC criteria to remove features can simplify the model and help 
to avoid overfitting. Linear regularization, shown in the middle, 
selects features during model construction, as opposed to removing 
features afterward; this helps to mitigate variance and noise on the 
prediction curve and can improve model accuracy in many cases. 
Random Forest regression, the non-linear model, shown on the 
right, captures the presence of non-linear behavior which tends to 
become increasingly prevalent as the number of GPU generations 
between host and target increases. 

Readers unfamiliar with the statistical concepts described in the 
following subsections are encouraged to consult Ref. [7] for details; 
distinct citations are omitted to conserve space. 

4.1 Linear Regression Overview 
Let M be the number of workloads and X = [x1, x2, …, xN] be the 
set of features, i.e., the values of the performance counters that we 
measure for each workload.  

 
Figure 4. The HALWPE suite generates 13 regression models.  

A model is a function f that computes a scalar predicted 
performance value, 𝑦= f(X). Under a linear model, f has the form: 

𝑓 𝑋 = 𝑥&𝛽&(
&)& + 𝛽+,    (1) 

where β = [β1, β2, …, βN} is a coefficient vector that corresponds to 
the features, and β0 is a bias term called the intercept, which serves 
as a model adjustment factor.  
The error associated with the ith workload is yi – f(Xi), where yi is 
the empirically obtained CPF, and f(Xi) the predicted CPF. Given 
training data, the generation of a coefficient vector is formulated as 
a constrained optimization problem that tries to minimize aggregate 
error. The model generation techniques employed by HALPWE 
differ in terms of the optimization problem formulation and how it 
is refined by post-processing steps (Fig. 4). 

4.2 Ordinary Least Squares (OLS) 
Given a coefficient vector β, the aggregate error of the training 
data set is the Residual Sum of Squares (RSS): 

𝑅𝑆𝑆 𝛽 = 	 𝑦/ − 𝑓(𝑋/) 34
/)5 .   (2) 

Ordinary Least Squares (OLS) computes the coefficient vector β 
and intercept β0 that minimizes RSS(β). 

4.3 Non-Negative Least Squares (NNLS) 
OLS may produce models that estimate negative CPF values for 
certain data sets, which is physically impossible. Non-Negative 
Least Squares (NNLS) can be applied to ensure that model 
estimates cannot be negative. NNLS implicitly removes certain 
features from model by setting negative-valued coefficients to zero 
and distributing their impact amongst the remaining positive 
values. NNLS may degrade model accuracy as it no longer 
minimizes RSS(β). 

4.4 Feature Selection 
OLS and NNLS are full regression models that may use all input 
features. Feature selection, which removes feature xj from the 
model by setting coefficient βj to zero, can improve prediction 
accuracy by sacrificing bias to reduce variance, as well as 
interpretation: identifying a subset of features that exhibits the 
strongest effect on model accuracy enhances understanding of the 
underlying mechanisms.         

Forward Stepwise Selection greedily selects coefficient pairs that 
achieve the maximal incremental improvement to the model; the 
process terminates when adding more features is no longer 
beneficial to model prediction accuracy. Backward Stepwise 
Selection is similar, but starts with a full regression model and 
iteratively removes one feature at a time.  



We apply the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) as feature ranking criteria during 
stepwise selection. This yields four feature selection methods: 
{Forward, Backward}×{AIC, BIC}, which can be applied to either 
OLS or NNLS models.   

4.5 Linear Regularization Model: Lasso 
Lasso is a linear regularization model that constructs a model while 
simultaneously selecting features using an RSS penalty term. Lasso 
penalizes features in a blanket fashion, unlike step-wise selection, 
which is iterative. Lasso selects features via shrinkage, which 
reduces “small enough” coefficients to zero, depending on the 
value of the regularization term coefficient. We produce two 
variants of a Lasso, with and without the NNLS criterion.  

4.6 Model Evaluation 
We use 10-fold cross validation as a precursor to quantify an 
estimate of the usefulness of a trained model in practice. We report 
the out-of-sample error (Eout), the mean absolute percentage error 
averaged of all ten folds, as our primary measure for model 
accuracy; Eout reflects the ability of a model to accurately predict a 
response when applied to previously unseen data. We also evaluate 
models in terms of their inlier ratios. Given a percentage threshold 
T, trace Xi is an inlier if Xi’s absolute relative percentage error 
(APE) is less than T. Given T, the inlier ratio (IR) is the percentage 
of traces that are inliers. We report 10% and 20% inlier ratios for 
each model that we produce, and compare inlier ratios across 
varying thresholds.  

4.7 Random Forest Regression 
Random Forest (RF) regression is a non-linear supervised learning 
model in which the prediction is an aggregate of individual 
predictions made by a set of regression trees. Due to space 
limitations, we cannot describe RF prediction in detail. We 
construct our RF using bootstrap aggregation (bagging), applying 
feature bagging to reduce correlation among trees. We compute the 
out-of-sample error using 10-fold cross-validation, by averaging 
the out-of-bag error for each fold. Each regression tree comprises 
a random non-overlapping subset of features, while forests tend to 
include all features as the number of trees grows large.  

5. EXPERIMENTAL METHODOLOGY  
We present three hardware-assisted predictive models based on 
dynamic performance counter measurements and application/API 
profiling from a Haswell GT2 GPU, which provides 577 features.  

Scenario1 (282 traces) uses a Haswell GT2 GPU host to predict 
the CPF of a simulated Broadwell GT2 GPU.  

Scenario2 (300 traces) uses a Haswell GT2 GPU host to predict 
the CPF of a simulated Broadwell GT3 GPU.  

Scenario3 (300 traces) uses a Haswell GT2 GPU host to predict 
the CPF of a simulated Skylake GT3 GPU. 

To instrument the host GPU, we attach GfxProfiler directly to the 
device context, which is created along with its device when the GPU 
renders a frame. The device creates resources and queries the 
GPU’s rendering capabilities, while the device context comprises 
the GPU’s pipeline and resource states, which generate rendering 
commands. GfxProfiler collects three classes of features: 
performance counter measurements (via HWTraces), profiled 
DirectX API commands (via HWTraces), and hardware queries 
(via the device context) which leverage exposed parts of the API. 

Workload execution is performed using an unmodified operating 
system (OS; Windows 7) and driver. To reduce variability 
introduced by the OS, we suppress non-OS background processes 
and run traces in full-screen mode. By leaving the OS and driver 
unmodified, we eschew control of sleep states. By adjusting BIOS 
settings, we can disable deep sleep state RC6 and suppress dynamic 
frequency scaling and Turbo Boost. The sources of variation that 
remain are competing background tasks, which affect CPU-GPU 
communication latency and access to shared resources, along with 
the aforementioned sleep states that we cannot control.  

We perform outlier detection and elimination to mitigate variation. 
We apply the Median Absolute Deviation (MAD) test to identify 
runs that exhibit abnormal behavior. We empirically determined a 
threshold of ±7 MADs using 10 representative frames, executing 
each frame 100 times.  

During model construction and evaluation, we execute each frame 
100 times on the host GPU using GfxProfiler to collect features. 
We remove outliers, i.e., all runs whose CPF values are outside of 
the ±7 MAD threshold. The CPF and feature values reported for the 
frame are averaged across the remaining inliers. As an example, 
Fig. 5 reports the CPF of 100 executions of Witcher 2 Frame 769 
normalized to the smallest CPF that we observed. To avoid cold-
start issues, we insert a generic “warmup” frame that is executed 
but not profiled. Most executions are within the MAD window, 
although some non-negligible variation in CPF is clearly visible.   

6. EXPERIMENTAL RESULTS 
We generated 13 models for each scenario. For each model, we 
report the out-of-sample error, 20% and 10% inlier ratios, the 
number of selected features, and the number of available features; 
we also report the APE for each workload.  

6.1 Hardware-Assisted Models 
Tables 4 and 5 respectively report the best-performing non-NNLS 
and NNLS models that minimized the out-of-sample error for each 
of three scenarios listed above. For Scenario1 and Scenario2, 
OLS/Forward/BIC produced the lowest out-of-sample errors: 
7.45% and 7.47% respectively. For these two scenarios, models 
generated using the Haswell host (20 EUs) were able to predict the 
CPF one generation into the future (Broadwell) with small (24 EUs) 
and large (48 EUs) increases in parallelism; doubling the number 
of EUs did not noticeably degrade prediction accuracy.  

 
Figure 5. CPF variability for Witcher 2 Frame 769 when 
executed 100 times; the first execution was an extreme outlier, 
due to cold start issues, and was removed. Among the 
remaining 99 runs, 7 frames were correctly identified as 
outliers and removed using the ±7 MAD threshold. 



Table 4. The most accurate non-NNLS models in terms of 
minimizing out-of-sample error (Eout) for Scenarios1-3. 

 
Table 5. The most accurate NNLS models in terms of 
minimizing out-of-sample error (Eout) for Scenarios1-3. 

 
Fig 6 depicts the observed CPF, predicted CPF, and APE for the 
OLS/Forward/BIC models generated for Scenario1 and Scenario2 
and the NNLS model generated for Scenario3. Small differences 
between predicted and observed CPF for the Scenario1 and 
Scenario2 models can be seen by the naked eye; the differences are 
more pronounced for Scenario3’s model. The degradation in model 
quality is readily apparent between scenarios. All three models 
exhibit the largest APEs at the low-CPF end of the spectrum, 
although the NNLS model generated for Scenario3 has slightly 
more high APEs on the higher end. In contrast, the RF model 
generated for Scenario3 has a more uniform distribution of high 
APEs across the CPF spectrum. This is similar to distribution of 
APEs reported for the RF model in Fig. 6 for Scenario3.  

6.2 HALWPE Speedup 
Fig. 7 compares the execution time of HALWPE to that of the 
simulator configured as a Broadwell GT2, Broadwell GT3, and 
Skylake GT3 GPU on the 282 workloads that all three simulator 
configurations can execute (Table 3). On average, HALWPE 
achieved a speedup of 29,481x over the Broadwell GT2 simulator, 
43,643x over the Broadwell GT3 simulator, and 44,214x over the 
Skylake GT3 simulator. Compared to cycle-accurate simulators, 
predictive models sacrifice accuracy to provide a rapid result. The 
execution time of a model on a frame entails running the frame 
trace on the host GPU and then generating model using the obtained 
features; in most cases, the latter is negligible. 
Fig. 8 reports the time to train all 13 HALWPE models --excluding 
target simulation time and host GPU execution time to render each 
frame once. In addition to rendering, host GPU execution time 
includes overhead associated with loading the application, 
profiling, and streaming API commands from the trace player. The 
longest model training and host GPU execution time was ~2.5 
hours for Scenario3. We rendered each frame 100 times, thus 
execution time is dominated by the host GPU, not model training. 

7. RELATED WORK 
GPU simulators [3, 4, 18] run orders of magnitude slower than 
native execution [6, 19]. Representative sampling and multi-
threading [12] remain prohibitively slow. Predictive models 
sacrifice accuracy but run much faster.   

7.1 Predictive Models for CPUs 
HALWPE is inspired by predictive models for CPUs based on 
performance counter readings and program metrics [11, 13]; 
however, the selected features are quite different. Using simulator 
internals as features can yield higher accuracy than hardware 
execution [16], but run at simulator speeds. Cross-architecture/ISA 
performance prediction using performance counters has recently 
been demonstrated as well [21, 22].  

 
(a) 

 
(b) 

 
(c) 

 
Figure 6. The observed CPF, predicted CPF, and per-workload 
APE for OLS/Forward/BIC models generated for Scenario1 (a) 
and Scenario2 (b) and the NNLS model generated for Scenario3 
(c). Workloads are ordered from left-to-right in non-decreasing 
order of observed CPF. 

 
Figure 7. HALWPE speedup over simulators for Broadwell 
GT2/GT3 and Skylake GT3 GPUs using the 280 workloads 
common to all three simulators (Table 3). Frames are ordered 
by increasing Skylake GT3 speedup. Average speedups were 
29,481x for Broadwell GT2, 43,643x for Broadwell GT3, and 
44,214x for Skylake GT3.  



 

Figure 8. Model training and host GPU execution time for the 
three scenarios.  

7.2 Predictive Models for GPUs 
GPU models have been able to accurately predict performance and 
power consumption for the devices on which they were trained [2, 
5, 15, 17]; however, cross-generation prediction has not yet been 
achieved. One recent model can predict application performance 
and power consumption across a variety of GPU configurations 
with three degrees of freedom (frequency, parallelism, and memory 
bandwidth) using performance counter measurements [19]. The 
model was limited to a current-generation GPU, and required 
extensive firmware modifications, whereas HALWPE, does not 
modify the firmware and can use production drivers.  

Prior work on single-generation predictive performance and power 
models for ATI GPUs based on random forest regression [20] 
shares many principle similarities with our work. Of particular 
interest is a technique to rank model features in order of their 
impact on predicted performance and/or power, which we intend to 
integrate into HALWPE in the future. 
XAPP [1] uses CPU performance counter measurements to predict 
which portions of a program will reap the greatest benefit from 
GPU acceleration; in contrast, HALWPE focuses on early-stage 
GPU architectural design space exploration and early performance 
feedback for graphics software development.    

8. CONCLUSION AND FUTURE WORK 
HALWPE has established the feasibility of cross-generation GPU 
CPF prediction using performance counter readings, DirectX 
metrics, and hardware queries. HALWPE achieved an out-of-
sample error rate of 8.91% when predicting across two GPU 
architecture generations, which include extra parallelism, 
microarchitecture changes, and driver upgrades. Compared to 
cycle-accurate simulation, HALWPE achieved a speedup of 
44,214x compared to a cycle-accurate simulator for this specific 
prediction scenario. Predictive modeling can aid early-stage 
microarchitecture design space exploration, and may be able to help 
with identification of performance bottlenecks; however, it must be 
applied with care.  

Several open questions remain: (1) It is unclear if HALWPE can 
predict energy consumption with equal effectiveness. (2) It would 
be nice to be able to reuse a model trained for one target to predict 
the CPF of a similar target; criteria for model reuse and retraining 
would be beneficial. (3) HALWPE was applied to GPUs using 
frame rendering workloads from games; it is uncertain if the 
approach generalizes to GPGPUs with greater workload diversity. 
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