
UC Riverside
UC Riverside Previously Published Works

Title
HALWPE

Permalink
https://escholarship.org/uc/item/6kx6t4x6

ISBN
978-1-4503-4927-7

Authors
O'Neal, Kenneth
Brisk, Philip
Shriver, Emily
et al.

Publication Date
2017-06-18

DOI
10.1145/3061639.3062257

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kx6t4x6
https://escholarship.org/uc/item/6kx6t4x6#author
https://escholarship.org
http://www.cdlib.org/

HALWPE: Hardware-Assisted Light Weight
Performance Estimation for GPUs

Kenneth O’Neal Philip Brisk
Department of Computer Science and Engineering

University of California, Riverside

Emily Shriver Michael Kishinevsky
Strategic CAD Labs

Intel Corporation

ABSTRACT
This paper presents a predictive modeling framework for GPU
performance. The key innovation underlying this approach is that
performance statistics collected from representative workloads
running on current generation GPUs can effectively predict the
performance of next-generation GPUs. This is useful when
simulators are available for the next-generation device, but
simulation times are exorbitant, rendering early design space
exploration of microarchitectural parameters and other features
infeasible. When predicting performance across three Intel GPU
generations (Haswell, Broadwell, Skylake), our models achieved
low out-of-sample-errors ranging from 7.45% to 8.91%, while
running 30,000-45,000 times faster than cycle-accurate simulation.

CCS CONCEPTS
• Hardware -> Electronic Design Automation;

Keywords
GPU, DirectX, Render Pipeline, Predictive Modeling

1. INTRODUCTION
Cycle-accurate simulation run-times for highly-threaded
processors, such as GPUs, are becoming untenable. Industry
simulators serve a dual-purpose of performance simulation and
RTL performance validation, and thus offer greater detail and
higher accuracy at the cost of longer runtimes compared to their
academic counterparts. Ever-increasing simulation times are
prohibitive for early-stage GPU design space exploration when
many perturbations to the design must be considered.
This paper presents Hardware-Assisted Light Weight Performance
Estimation (HALWPE), a methodology that uses existing platform
(host) and machine learning to predict the performance of future
devices under development (targets). Our experiments, which focus
on GPUs, uses as a host the Intel HD 4600 integrated GPU of the
three targets (future-generation GPUs), achieving 7-9% average
out-of-sample-error, while respectively running 30,000-45,000
faster than an industrial cycle-accurate GPU simulator.

To use HALWPE, first we configure the simulator to model a target
design of the next-generation GPU. We then render a small set of
frames of graphics workloads on the target GPU simulator and

record the performance of each frame in terms of cycles-per-frame
(CPF). We render each frame on the commercially-available host
GPU and record profiling features. We then train a suite of
statistical models to predict the CPF of graphics workloads on the
target, given the features obtained from execution on the host.

As shown in Fig. 1, application performance depends on several
factors beyond the architecture itself, including vendor-provided
drivers and APIs such as DirectX and OpenGL. Cross-generation
prediction entails not only changes to the architecture but changes
to the software stack as well. HALWPE enables collection of
performance metrics for model training and inference without the
need for software modifications. HALWPE achieves high accuracy
(7-9% out-of-sample error) and speed, as it runs ~30,000-45,000x
faster than traditional performance simulation in our experiments.

2. MODELING FRAMEWORK
Figs. 2 and 3 illustrate the HALWPE model development flow and
model training and prediction. The Graphics Workload Library
(GWL) refers to our collection of benchmarks, listed in Table 1. The
GWL contains rendering frames from 42 DirectX games and GPU
benchmarking tools spanning the version 9, 10, and 11 APIs. We
collected multiple frames per application and treat each as one
workload. The GWL applications are assembled into one training
set; we apply 10-fold cross validation to estimate out of sample
error. We use a proprietary tool (GfxCapture), to collect single-
frame traces in two formats: HWTraces (DirectX API commands)
executed on our Haswell host GPU, and SWTraces (native GPU
commands) executed on our GPU simulator. Two proprietary
applications, GfxPlayer and GfxProfiler, replay isolated traces to
collect DirectX program metrics and performance counter
measurements, on the Haswell host GPU. To reduce profiling
overhead, we only collect performance counters that can be read in
one pass. Table 2 summarizes these tools.

Figure 1. GPU performance depends on the application,
driver/API commands, and architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
DAC '17, June 18 - 22, 2017, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-4927-7/17/06 $15.00
DOI: http://dx.doi.org/10.1145/3061639.3062257

Figure 2. HALWPE Model Development Flow: (1) Traces are
collected and stored in the GWL. (2) Workloads execute on the
current-generation GPU host, and next-generation simulator.
(3) Performance counter measurements and DirectX program
metrics obtained from the host are used to train a model to
predict the CPF that the GPU simulator would report.

Figure 3. Training (Top): Performance counter measurements
and DirectX program metrics obtained from direct execution
on the GPU host are used to train a model to predict the
performance of a GPU simulator configuration. Prediction
(Bottom): An application runs on the GPU host; the collected
performance counter measurements and DirectX program
metrics are input to the performance model, which predicts the
CPF that the GPU simulator would report for that application.

Our models produce a single value, the expected number of GPU
execution CPF. Training is performed offline and is not included in
the runtime comparison of HALWPE to cycle-accurate simulation,
as the cost of training is amortized over repeated model usage.
In practice, the models are trained on one set of workloads, and then
deployed to estimate the performance of a disjoint second set of
workloads, of arbitrary size. Once a model has been trained, it can
be applied to any 3D rendering workload, including standard
executables, irrespective of its inclusion in the GWL.

3. INTEL GPU ARCHITECTURES
We experimented with HALPWE using three generations of Intel
integrated GPUs (see Table 3). Our host platform is a desktop PC
running a 4-core, 8-thread Intel Core i7-4790k, 16GB of DDR3 @
1666MHz, an Intel HD 4600 Haswell GT2 GPU running at
1250MHz., and a 2TB 7200RPM hard disk. The Broadwell GT2
(Target 1), Broadwell GT3 (Target 2) the Skylake GT3 (Target 3)
are later versions of this GPU for which simulators are available.
Performance of the final machine may improve, even if CPF
increases, e.g., due to higher clock frequencies.

Table 1. The GWL comprises 36 DirectX applications which
collectively render 364 frames.

Table 2. Summary of software tools and libraries used.

Table 3. Device legend. Further details about each device can
be found in Refs. [8-10].

The Slice count is a measure of available parallelism. Each slice
contains a parallel group of sub-slices as well as shared resources
including atomics, L3 cache, shared local memory, and specific
fixed functional units. The sub-slices contain Execution Units
(EUs) and their supporting thread dispatch units, samplers,
instruction cache, and other peripherals. A Broadwell GPU slice
contains 3 parallel sub-slices with 8 EUs each.

To create hardware-assisted model scenarios, we used simulator
configurations that execute a driver reflective of the GPU
generation: version 1 (Haswell GT2), version 2 (Broadwell GT2
single-slice), and version 3 (Broadwell GT3 dual-slice, which we
also use for Skylake GT3). In some situations, compatibility issues
between the architecture and driver caused trace execution to fail
on the GPU host and simulator. In Table 3, the Haswell GPU host
can execute 300 of the available traces, while simulators for the
Broadwell GT2, GT3 and Skylake GT3 can execute 282, 364, and
364 traces respectively. For any host-target prediction scenario
(simulator-based or HALWPE), the number of traces that we use to
build and evaluate the model is the minimum number that both host
and target have the capability to execute.

4. REGRESSION MODELS
HALWPE includes 12 linear and one non-linear regression models,
which are summarized in Fig. 4. For each prediction scenario
reported in this paper, we train all 13 models and select the one that
yields the smallest out-of-sample error as the most accurate. The
choice to use an ensemble of models is driven by the suspicion that
correlations between collected features (DirectX program metrics
and performance counter measurements) and the amount of non-
linearity in the relationship between features and CPF may vary as
the number of generations between host and target GPU changes.

We err on the side of caution by producing several models, each
judiciously chosen to target one of these behaviors. The standard
linear models based on least squares (OLS/NNLS), shown on the
left side of Fig. 4, are useful when the relationship between features
and CPF is linear, and features are non-correlated; using the AIC
and BIC criteria to remove features can simplify the model and help
to avoid overfitting. Linear regularization, shown in the middle,
selects features during model construction, as opposed to removing
features afterward; this helps to mitigate variance and noise on the
prediction curve and can improve model accuracy in many cases.
Random Forest regression, the non-linear model, shown on the
right, captures the presence of non-linear behavior which tends to
become increasingly prevalent as the number of GPU generations
between host and target increases.

Readers unfamiliar with the statistical concepts described in the
following subsections are encouraged to consult Ref. [7] for details;
distinct citations are omitted to conserve space.

4.1 Linear Regression Overview
Let M be the number of workloads and X = [x1, x2, …, xN] be the
set of features, i.e., the values of the performance counters that we
measure for each workload.

Figure 4. The HALWPE suite generates 13 regression models.

A model is a function f that computes a scalar predicted
performance value, 𝑦= f(X). Under a linear model, f has the form:

𝑓 𝑋 = 𝑥&𝛽&(
&)& + 𝛽+, (1)

where β = [β1, β2, …, βN} is a coefficient vector that corresponds to
the features, and β0 is a bias term called the intercept, which serves
as a model adjustment factor.
The error associated with the ith workload is yi – f(Xi), where yi is
the empirically obtained CPF, and f(Xi) the predicted CPF. Given
training data, the generation of a coefficient vector is formulated as
a constrained optimization problem that tries to minimize aggregate
error. The model generation techniques employed by HALPWE
differ in terms of the optimization problem formulation and how it
is refined by post-processing steps (Fig. 4).

4.2 Ordinary Least Squares (OLS)
Given a coefficient vector β, the aggregate error of the training
data set is the Residual Sum of Squares (RSS):

𝑅𝑆𝑆 𝛽 = 	 𝑦/ − 𝑓(𝑋/) 34
/)5 . (2)

Ordinary Least Squares (OLS) computes the coefficient vector β
and intercept β0 that minimizes RSS(β).

4.3 Non-Negative Least Squares (NNLS)
OLS may produce models that estimate negative CPF values for
certain data sets, which is physically impossible. Non-Negative
Least Squares (NNLS) can be applied to ensure that model
estimates cannot be negative. NNLS implicitly removes certain
features from model by setting negative-valued coefficients to zero
and distributing their impact amongst the remaining positive
values. NNLS may degrade model accuracy as it no longer
minimizes RSS(β).

4.4 Feature Selection
OLS and NNLS are full regression models that may use all input
features. Feature selection, which removes feature xj from the
model by setting coefficient βj to zero, can improve prediction
accuracy by sacrificing bias to reduce variance, as well as
interpretation: identifying a subset of features that exhibits the
strongest effect on model accuracy enhances understanding of the
underlying mechanisms.

Forward Stepwise Selection greedily selects coefficient pairs that
achieve the maximal incremental improvement to the model; the
process terminates when adding more features is no longer
beneficial to model prediction accuracy. Backward Stepwise
Selection is similar, but starts with a full regression model and
iteratively removes one feature at a time.

We apply the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) as feature ranking criteria during
stepwise selection. This yields four feature selection methods:
{Forward, Backward}×{AIC, BIC}, which can be applied to either
OLS or NNLS models.

4.5 Linear Regularization Model: Lasso
Lasso is a linear regularization model that constructs a model while
simultaneously selecting features using an RSS penalty term. Lasso
penalizes features in a blanket fashion, unlike step-wise selection,
which is iterative. Lasso selects features via shrinkage, which
reduces “small enough” coefficients to zero, depending on the
value of the regularization term coefficient. We produce two
variants of a Lasso, with and without the NNLS criterion.

4.6 Model Evaluation
We use 10-fold cross validation as a precursor to quantify an
estimate of the usefulness of a trained model in practice. We report
the out-of-sample error (Eout), the mean absolute percentage error
averaged of all ten folds, as our primary measure for model
accuracy; Eout reflects the ability of a model to accurately predict a
response when applied to previously unseen data. We also evaluate
models in terms of their inlier ratios. Given a percentage threshold
T, trace Xi is an inlier if Xi’s absolute relative percentage error
(APE) is less than T. Given T, the inlier ratio (IR) is the percentage
of traces that are inliers. We report 10% and 20% inlier ratios for
each model that we produce, and compare inlier ratios across
varying thresholds.

4.7 Random Forest Regression
Random Forest (RF) regression is a non-linear supervised learning
model in which the prediction is an aggregate of individual
predictions made by a set of regression trees. Due to space
limitations, we cannot describe RF prediction in detail. We
construct our RF using bootstrap aggregation (bagging), applying
feature bagging to reduce correlation among trees. We compute the
out-of-sample error using 10-fold cross-validation, by averaging
the out-of-bag error for each fold. Each regression tree comprises
a random non-overlapping subset of features, while forests tend to
include all features as the number of trees grows large.

5. EXPERIMENTAL METHODOLOGY
We present three hardware-assisted predictive models based on
dynamic performance counter measurements and application/API
profiling from a Haswell GT2 GPU, which provides 577 features.

Scenario1 (282 traces) uses a Haswell GT2 GPU host to predict
the CPF of a simulated Broadwell GT2 GPU.

Scenario2 (300 traces) uses a Haswell GT2 GPU host to predict
the CPF of a simulated Broadwell GT3 GPU.

Scenario3 (300 traces) uses a Haswell GT2 GPU host to predict
the CPF of a simulated Skylake GT3 GPU.

To instrument the host GPU, we attach GfxProfiler directly to the
device context, which is created along with its device when the GPU
renders a frame. The device creates resources and queries the
GPU’s rendering capabilities, while the device context comprises
the GPU’s pipeline and resource states, which generate rendering
commands. GfxProfiler collects three classes of features:
performance counter measurements (via HWTraces), profiled
DirectX API commands (via HWTraces), and hardware queries
(via the device context) which leverage exposed parts of the API.

Workload execution is performed using an unmodified operating
system (OS; Windows 7) and driver. To reduce variability
introduced by the OS, we suppress non-OS background processes
and run traces in full-screen mode. By leaving the OS and driver
unmodified, we eschew control of sleep states. By adjusting BIOS
settings, we can disable deep sleep state RC6 and suppress dynamic
frequency scaling and Turbo Boost. The sources of variation that
remain are competing background tasks, which affect CPU-GPU
communication latency and access to shared resources, along with
the aforementioned sleep states that we cannot control.

We perform outlier detection and elimination to mitigate variation.
We apply the Median Absolute Deviation (MAD) test to identify
runs that exhibit abnormal behavior. We empirically determined a
threshold of ±7 MADs using 10 representative frames, executing
each frame 100 times.

During model construction and evaluation, we execute each frame
100 times on the host GPU using GfxProfiler to collect features.
We remove outliers, i.e., all runs whose CPF values are outside of
the ±7 MAD threshold. The CPF and feature values reported for the
frame are averaged across the remaining inliers. As an example,
Fig. 5 reports the CPF of 100 executions of Witcher 2 Frame 769
normalized to the smallest CPF that we observed. To avoid cold-
start issues, we insert a generic “warmup” frame that is executed
but not profiled. Most executions are within the MAD window,
although some non-negligible variation in CPF is clearly visible.

6. EXPERIMENTAL RESULTS
We generated 13 models for each scenario. For each model, we
report the out-of-sample error, 20% and 10% inlier ratios, the
number of selected features, and the number of available features;
we also report the APE for each workload.

6.1 Hardware-Assisted Models
Tables 4 and 5 respectively report the best-performing non-NNLS
and NNLS models that minimized the out-of-sample error for each
of three scenarios listed above. For Scenario1 and Scenario2,
OLS/Forward/BIC produced the lowest out-of-sample errors:
7.45% and 7.47% respectively. For these two scenarios, models
generated using the Haswell host (20 EUs) were able to predict the
CPF one generation into the future (Broadwell) with small (24 EUs)
and large (48 EUs) increases in parallelism; doubling the number
of EUs did not noticeably degrade prediction accuracy.

Figure 5. CPF variability for Witcher 2 Frame 769 when
executed 100 times; the first execution was an extreme outlier,
due to cold start issues, and was removed. Among the
remaining 99 runs, 7 frames were correctly identified as
outliers and removed using the ±7 MAD threshold.

Table 4. The most accurate non-NNLS models in terms of
minimizing out-of-sample error (Eout) for Scenarios1-3.

Table 5. The most accurate NNLS models in terms of
minimizing out-of-sample error (Eout) for Scenarios1-3.

Fig 6 depicts the observed CPF, predicted CPF, and APE for the
OLS/Forward/BIC models generated for Scenario1 and Scenario2
and the NNLS model generated for Scenario3. Small differences
between predicted and observed CPF for the Scenario1 and
Scenario2 models can be seen by the naked eye; the differences are
more pronounced for Scenario3’s model. The degradation in model
quality is readily apparent between scenarios. All three models
exhibit the largest APEs at the low-CPF end of the spectrum,
although the NNLS model generated for Scenario3 has slightly
more high APEs on the higher end. In contrast, the RF model
generated for Scenario3 has a more uniform distribution of high
APEs across the CPF spectrum. This is similar to distribution of
APEs reported for the RF model in Fig. 6 for Scenario3.

6.2 HALWPE Speedup
Fig. 7 compares the execution time of HALWPE to that of the
simulator configured as a Broadwell GT2, Broadwell GT3, and
Skylake GT3 GPU on the 282 workloads that all three simulator
configurations can execute (Table 3). On average, HALWPE
achieved a speedup of 29,481x over the Broadwell GT2 simulator,
43,643x over the Broadwell GT3 simulator, and 44,214x over the
Skylake GT3 simulator. Compared to cycle-accurate simulators,
predictive models sacrifice accuracy to provide a rapid result. The
execution time of a model on a frame entails running the frame
trace on the host GPU and then generating model using the obtained
features; in most cases, the latter is negligible.
Fig. 8 reports the time to train all 13 HALWPE models --excluding
target simulation time and host GPU execution time to render each
frame once. In addition to rendering, host GPU execution time
includes overhead associated with loading the application,
profiling, and streaming API commands from the trace player. The
longest model training and host GPU execution time was ~2.5
hours for Scenario3. We rendered each frame 100 times, thus
execution time is dominated by the host GPU, not model training.

7. RELATED WORK
GPU simulators [3, 4, 18] run orders of magnitude slower than
native execution [6, 19]. Representative sampling and multi-
threading [12] remain prohibitively slow. Predictive models
sacrifice accuracy but run much faster.

7.1 Predictive Models for CPUs
HALWPE is inspired by predictive models for CPUs based on
performance counter readings and program metrics [11, 13];
however, the selected features are quite different. Using simulator
internals as features can yield higher accuracy than hardware
execution [16], but run at simulator speeds. Cross-architecture/ISA
performance prediction using performance counters has recently
been demonstrated as well [21, 22].

(a)

(b)

(c)

Figure 6. The observed CPF, predicted CPF, and per-workload
APE for OLS/Forward/BIC models generated for Scenario1 (a)
and Scenario2 (b) and the NNLS model generated for Scenario3
(c). Workloads are ordered from left-to-right in non-decreasing
order of observed CPF.

Figure 7. HALWPE speedup over simulators for Broadwell
GT2/GT3 and Skylake GT3 GPUs using the 280 workloads
common to all three simulators (Table 3). Frames are ordered
by increasing Skylake GT3 speedup. Average speedups were
29,481x for Broadwell GT2, 43,643x for Broadwell GT3, and
44,214x for Skylake GT3.

Figure 8. Model training and host GPU execution time for the
three scenarios.

7.2 Predictive Models for GPUs
GPU models have been able to accurately predict performance and
power consumption for the devices on which they were trained [2,
5, 15, 17]; however, cross-generation prediction has not yet been
achieved. One recent model can predict application performance
and power consumption across a variety of GPU configurations
with three degrees of freedom (frequency, parallelism, and memory
bandwidth) using performance counter measurements [19]. The
model was limited to a current-generation GPU, and required
extensive firmware modifications, whereas HALWPE, does not
modify the firmware and can use production drivers.

Prior work on single-generation predictive performance and power
models for ATI GPUs based on random forest regression [20]
shares many principle similarities with our work. Of particular
interest is a technique to rank model features in order of their
impact on predicted performance and/or power, which we intend to
integrate into HALWPE in the future.
XAPP [1] uses CPU performance counter measurements to predict
which portions of a program will reap the greatest benefit from
GPU acceleration; in contrast, HALWPE focuses on early-stage
GPU architectural design space exploration and early performance
feedback for graphics software development.

8. CONCLUSION AND FUTURE WORK
HALWPE has established the feasibility of cross-generation GPU
CPF prediction using performance counter readings, DirectX
metrics, and hardware queries. HALWPE achieved an out-of-
sample error rate of 8.91% when predicting across two GPU
architecture generations, which include extra parallelism,
microarchitecture changes, and driver upgrades. Compared to
cycle-accurate simulation, HALWPE achieved a speedup of
44,214x compared to a cycle-accurate simulator for this specific
prediction scenario. Predictive modeling can aid early-stage
microarchitecture design space exploration, and may be able to help
with identification of performance bottlenecks; however, it must be
applied with care.

Several open questions remain: (1) It is unclear if HALWPE can
predict energy consumption with equal effectiveness. (2) It would
be nice to be able to reuse a model trained for one target to predict
the CPF of a similar target; criteria for model reuse and retraining
would be beneficial. (3) HALWPE was applied to GPUs using
frame rendering workloads from games; it is uncertain if the
approach generalizes to GPGPUs with greater workload diversity.

ACKNOWLEDGMENT
This work was support in part by NSF Award #1528181.

REFERENCES
[1] N. Ardalani, et al., "Cross-architecture performance prediction

(XAPP) using CPU to predict GPU performance" in Proc. Int. Symp.
Microarchitecture (MICRO-48), 2015, pp 725-737.

[2] P. E. Bailey, et al., “Adaptive configuration selection for power-
constrained heterogeneous systems,” in Proc. Int. Conf. on Par. Proc.
(ICPP), 2014, pp. 371-380.

[3] A. Bakhoda, et al., “Analyzing CUDA workloads using a detailed
GPU simulator,” in Proc. Int. Symp. Perf. Analysis of Systems and
Software (ISPASS), 2009, pp. 163-174.

[4] V.M. del Barrio, et al., “ATILLA: a cycle-accurate execution drive
simulator for modern GPU architectures” in Proc. Int. Symp. Perf.
Analysis of Systems and Software, (ISPASS), 2006, pp. 231-241.

[5] J. Chen, et al., “Tree structured analysis on GPU Power study” in Proc.
Int. Conf. Computer Design (ICCD), 2011, pp. 57-64.

[6] A. Gutierrez, et al., “Sources of error in full-system simulation,” in
Proc. of the Int. Symp. Perf. Analysis of Systems and Software
(ISPASS), 2014, pp. 13-22.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, New York, 2001.

[8] Intel Corporation, “The Compute Architecture of Intel Processor
Graphics Gen7.5.” [Online]. Available: https://goo.gl/5HZ54v

[9] Intel Corporation, “The Compute Architecture of Intel Processor
Graphics Gen8.” [Online]. Available: https://goo.gl/TnpAGc

[10] Intel Corporation, “The Compute Architecture of Intel Processor
Graphics Gen9.” [Online]. Available: https://goo.gl/RMmUc6

[11] 	E. Ipek, et al., “Efficiently Exploring architectural design spaces via
predictive modeling,” in Proc. Int. Conf. Arch. Support for Prog.
Languages and Operating Systems (ASPLOS), 2006, pp. 195-206.

[12] W. Jia, K. Shaw, and M. Martonosi, “Starchart: hardware and software
optimization using recursive partitioning regression trees,” in Proc.
Int. Conf. Parallel Architectures and Compilation Techniques
(PACT), 2013, pp. 257-268.

[13] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,”
in Proc. Int. Conf. Arch. Support for Prog. Languages and Operating
Systems (ASPLOS), 2006, pp. 185-194.

[14] S. Lee and W. W. Ro, “Parallel GPU architecture simulation
framework exploiting work allocation unit parallelism,” in Proc. Int.
Symp. Perf. Anal. Systems and Software (ISPASS), 2013, 107-117.

[15] X. Ma, et al., “Statistical power consumption analysis and modeling
for GPU-based computing,” in Proc. ACM SOSP Workshop on Power
Aware Computing and Systems (HotPower), 2009.

[16] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Machine learning
models to predict performance of computer system design
alternatives” in Proc. Int. Conf. Par. Proc. (ICPP), 2008, pp. 495-502.

[17] S. Song, et al., “A simplified and accurate model of power-
performance efficiency on emergent GPU architectures”, in Proc. Int.
Symp. Parallel & Distributed Proc. (IPDPS), 2013. pp. 673-686.

[18] R. Ubal, et al., “Multi2Sim: a simulation framework for CPU-GPU
computing,” in Proc. Int. Conf. Parallel Architectures and
Compilation Techniques (PACT), 2012, pp. 335-344.

[19] G. Wu, et al. “GPGPU performance and power estimation using
machine learning” in Proc. Int. Symp. High Perf. Comp. Arch.
(HPCA), 2015, pp. 564-576.

[20] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power
analysis of ATI GPU: a statistical approach,” in Proc. Int. Conf.
Networking, Architecture and Storage (NAS), 2011, pp. 149-158.

[21] X. Zheng, L.K. John, and A. Gerstlauer, "Accurate phase-level cross-
platform power and performance estimation" in Proc. Design
Automation Conf. (DAC), 2016, article no. 4.

[22] X. Zheng, et al., "Learning-based analytical cross-platform
performance prediction" in Proc. Int. Conf. Embedded Computer Sys.,
Arch., Modeling and Simulation (SAMOS), 2015, pp. 52-59.

