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Abstract

We consider supersymmetric extensions of the standard model in which the usual R or matter parity gets 
replaced by another R or non-R discrete symmetry that explains the observed longevity of the nucleon and 
solves the μ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of 
deriving the maximal Z(R)

N
symmetry that satisfies a given set of constraints. We identify R parity violat-

ing (RPV) and conserving models that are consistent with precision gauge unification and also comment 
on their compatibility with a unified gauge symmetry such as the Pati–Salam group. Finally, we provide 
a counter-example to the statement found in the recent literature that the lepton number violating RPV 
scenarios must have μ term and the bilinear κLHu operator of comparable magnitude.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Low-energy supersymmetry is still one of the most attractive schemes for physics beyond the 
standard model (SM). One of the striking features of supersymmetry is that it leads to precision 
gauge unification in the minimal supersymmetric extension of the SM, the MSSM. Supersym-
metry allows for the stabilization of the electroweak scale against the grand unification scale, 
MGUT, where the gauge couplings unify. The non-observation of the superpartners so far at the 
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Large Hadron Collider (LHC) [1,2] has placed significant constraints on the minimal supersym-
metric models that have been generally considered. R parity violation (RPV) turns out to be an 
interesting alternative [3–8] to consider beyond the minimal models, since it may explain why 
the superpartners have not been seen at the LHC (see e.g. [9] for a recent analysis). On the other 
hand, in the presence of R parity violation, one should explain non-observation of nucleon decay 
thus far [10]. To achieve these two goals simultaneously requires, naturally, additional symme-
tries, with discrete symmetries being a plausible option. Alternatives include invoking minimal 
flavor violation [11,12].

R symmetries play a special role in this context, since the order parameter for R symmetry 
breaking is the gravitino mass m3/2.1 Thus, without having to go into details of supersymmetry 
breaking, it is possible to estimate the amount by which discrete R symmetries are broken. In 
turn, this enables one to make statements about the coefficients of the effective operators that 
arise through R symmetry breaking. Such effective operators will be suppressed by powers of the 
ratio of gravitino mass and the fundamental scale, m3/2/Λ. In general, (discrete) R symmetries 
are broken by the vacuum expectation value (VEV) of some “hidden sector” superpotential, 
which carries R charge 2qθ , where qθ denotes the R charge of the superspace coordinate θ , and 
possibly by further operators. This allows for the possibility of residual non-R ZM symmetries, 
in particular for qθ > 1 [14]. In light of arguments from quantum gravity [15], we will focus on 
gauged discrete symmetries.

In a recent analysis, Dreiner, Hanussek and Luhn (DHL) [16] analyzed discrete R symme-
tries of the type described above. In their work, the R charge of the superspace coordinate θ
was restricted to 1. Further, DHL [16] allowed for the Green–Schwarz (GS) mechanism [17]
to cancel the anomalies, and required that the couplings of the GS axion a to the various field 
strengths of the (MS)SM be universal. On the other hand, as pointed out in [18], universality of 
the anomaly coefficients is, strictly speaking, not a consistency condition, even though one may 
impose it in order not to spoil precision gauge unification [13]. Precision gauge unification may 
also be preserved, for example, if the scalar partner of the axion a has an expectation value that 
is much smaller than the axion decay constant fa , or by an accidental cancellation of unrelated 
effects [19].

The purpose of this work is to complete and to extend the analysis of DHL [16] by

• allowing the superspace coordinate θ to have an R charge that differs from 1;
• allowing for a GS cancellation of discrete anomalies with non-universal couplings of a;
• identifying redundant symmetries in DHL [16];
• presenting a novel method allowing one to systematically identify the maximal symmetry 

compatible with given selection criteria.

Moreover, we will also comment on R parity conserving scenarios.
In our analysis, we consider both R and non-R Abelian discrete symmetries, and impose that

1. The nucleon is sufficiently long-lived, i.e. that the dangerous operators are either forbidden 
by a residual ZM symmetry or sufficiently suppressed by appropriate powers of m3/2/Λ. 

1 Recall that R parity is actually not an R symmetry. Rather, it is equivalent to matter parity (see e.g. [13] for a 
discussion).
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Here, Λ is the cutoff scale which we take to be the Planck scale MP unless stated otherwise. 
We will also discuss settings with a lower cutoff scale.

2. The discrete symmetry forbids the μ term at the perturbative level.

Further, we demonstrate additional features that were absent from DHL [16] including

• the compatibility of charges with (partial) unification, specifically whether the matter charges 
commute with the Pati–Salam group GPS = SU(4) × SU(2)L × SU(2)R

2;
• a natural suppression of the neutrino masses either through the Weinberg operator or from 

supersymmetry breaking, thus yielding light Dirac neutrinos.

This paper is organized as follows. In Section 2, we present a novel method for classify-
ing discrete symmetries. We comment on anomaly cancellation, provide a recipe for identifying 
and eliminating equivalent symmetries, and comment on the limitations of our analysis. In Sec-
tion 3, we illustrate our methods by presenting models obtained for anomaly-universal as well 
as non-universal scenarios while considering both R parity violation and conservation. Section 4
contains our conclusions.

2. Classification

2.1. Goals of our classification

In the MSSM, the renormalizable superpotential terms consistent with the SM gauge symme-
try are

Wren = μHuHd + Yu
fgQf UgHu + Yd

fgQf DgHd + Y e
fgLf EgHd

+ κf Lf Hu + λfghLf LgEh + λ′fghLf QgDh + λ′′fghUf DgDh, (2.1)

where the first line denotes the usual couplings of the MSSM, while the second line contains 
the so-called R parity violating terms. In what follows, we will suppress the flavor indices f , 
g and h. We will further assume that there is no flavor dependence of the discrete charges, i.e. 
q

f
Q = qQ for all f and so on.

At the non-renormalizable level, additional B and L violating operators need to be considered 
(cf. e.g. [16,21–23])

O1 = [QQQL]F , O2 = [UUDE]F ,

O3 = [QQQHd ]F , O4 = [QUEHd ]F ,

O5 = [LHuLHu]F , O6 = [LHuHdHu]F ,

O7 = [
UD†E

]
D

, O8 = [
H †

uHdE
]
D

,

O9 = [
QUL†]

D
, O10 = [

QQD†]
D

, (2.2)

as well as operators of even higher dimensions.

2 We do not consider compatibility of matter charges with SU(5) or SO(10) in the case of RPV. This is because, if 
UDD is allowed, so is automatically LLE, and vice versa. See [20] for a discussion of R parity violation in settings with 
GUT relations.
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We will discuss settings with renormalizable baryon number violation (�B), renormalizable 
lepton number violation (�L) as well as “non-perturbative” B and L violation, which appears 
only after the “hidden sector” superpotential acquires its VEV. We will further comment on 
settings with R parity conservation. To constrain overly rapid proton decay, renormalizable �B
operators must be forbidden in the case of the RPV setting with renormalizable �L, and vice 
versa for the RPV setting with renormalizable �B. Since not all of the above higher-dimensional 
operators shown in Eq. (2.2) are independent (see [16,21,23]), only a subset of such terms need 
to be considered to account for all the phenomenological constraints. In RPV setups with either 
renormalizable �B or renormalizable �L, one needs only to examine the existence condition for the 
Weinberg operator O5 [24] for neutrino mass generation.

We consider different classes of models based on Abelian discrete R or non-R symmetries, 
Z

(R)
N , with properties specified below. We distinguish between Z(R)

N symmetries that are anomaly-
free in the traditional sense and symmetries in which the anomalies are canceled by a non-trivial 
(discrete) Green–Schwarz (GS) mechanism [17]. In the second case, we discriminate between 
universal and non-universal couplings of the GS axion to the various field strengths of the stan-
dard model gauge group GSM = SU(3)C × SU(2)L × U(1)Y .

To sum up, we search for, both in the anomaly-universal case and in the anomaly non-universal 
case, classes of models that have the following respective properties:

(1) R parity conservation;
(2) renormalizable RPV with �L and the existence of O5 at the perturbative level;
(3) renormalizable RPV with �B and the existence of O5 at the perturbative level;
(4) “non-perturbative” �L and �B .

2.2. Equivalent discrete symmetries

In order to avoid an unnecessary double-counting of symmetry patterns, we provide a recipe 
that allows to identify and eliminate equivalent symmetries.3 This can be achieved by avoiding 
the following redundancies in the definition of the discrete Z(R)

N charges:

Common divisors: If the order N and all charges have a common divisor M , then the Z(R)
N is 

equivalent to a Z(R)
N/M with all charges divided by M .

Non-trivial centers: In the presence of an SU(M) gauge factor, acting with the center of SU(M), 
ZSU(M) � ZM , is always a symmetry. Thus, in the context of the standard model gauge 
symmetry, we can apply
• The non-trivial elements of the center ZSU(3)C � Z3, which acts as diag(ω, ω, ω) with 

ω = e2π i/3 or e4π i/3 on the triplets. Hence, if 3 divides the order N , i.e. if N = 3 ·N ′, 
with N ′ ∈ N, this allows us to shift the charges according to (qQ, qU , qD) → (qQ +
N ′ · ν, qU − N ′ · ν, qD − N ′ · ν) with ν ∈ Z.

• The non-trivial center of SU(2), ZSU(2) � Z2. That is, equivalent charges are obtained 
by multiplying all doublets by −1, or adding N/2 to the doublet charges, if the order 
N is even.

3 One possible, “brute force” way of doing this consists of comparing the Hilbert bases for the Kähler potential and 
superpotential of the two candidate symmetries. However, this turns out to be often impractical.
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We note that in the settings compatible with SU(5) unification there is a “fake” Z5

which is nothing but the non-trivial center of SU(5) [25,26].
Hypercharge shift: One may add integral multiples of hypercharge (normalized to integer 

charges), arriving at an equivalent charge assignment. The freedom of performing the 
hypercharge shift and modding out the non-trivial centers of SU(3)C and SU(2)L are 
not independent.

Coprime factors: Multiplying all charges by a factor f that is coprime to the order N , i.e. 
gcd(f, N) = 1, leads to the same symmetry. Based on this, one can show that all non-R
symmetries of a given order in Tables 2 and 3 in DHL [16] are equivalent. That is, rather 
than having 2, 3, 2, 3 or 2 non-R symmetries for orders 5, 7, 8, 9 or 10, respectively, 
there is only one non-R symmetry for each order in Table 2. Similar statements apply to 
the non-R symmetries of Table 3. We list the truly inequivalent symmetries in Table D.1
and Table D.2.

The last statement also implies that for R symmetries of prime order, one only needs to con-
sider the cases qθ = 0 (which corresponds to a non-R symmetry) or qθ = 1. This follows from 
the fact that the linear congruence

qθ · f = 1 modN (2.3)

has, according to the discussion in Appendix A, a non-trivial solution with a non-trivial f that 
is coprime to N . More generally, for a given order N , one has to scan only the values of qθ

that divide N , since any other qθ �= 0 can be rescaled to 1. Further, the case qθ = N/2 for 
even N should not be considered. This is because the transformation under which θ → −θ and 
all fermions being mapped to minus themselves is a symmetry of any supersymmetric theory. 
Consequently, imposing such a transformation as a symmetry does not forbid any couplings.

2.3. Systematic search for Z(R)
N symmetries

Very often in model building one encounters the situation in which one wishes to forbid cer-
tain operators, such as some of the Oi in (2.2), by an appropriate discrete symmetry. In most 
approaches, the desired symmetries and charges were found by a scan. In what follows, we will 
discuss a method to systematically construct ZN symmetries which allow for certain desired 
operators and forbid other undesired operators.

Suppose we have nc constraints, which correspond to nc conditions of the type

nq∑
j=1

aij qj = 0 modN ∀1 ≤ i ≤ nc (2.4)

on the nq charges qj . Here we concentrate first on the case with constraints of the equality form. 
Constraints in the form of inequalities will be discussed later. There are two questions to be ad-
dressed: whether the conditions can be solved in a non-trivial way, and, if continuous symmetries 
are not available, what is the maximal meaningful ZN symmetry that one can impose that fulfills 
the constraints. As we shall see, using the Smith normal form, which has been shown [26,27]
to be an important tool in other applications of discrete symmetries in physics, one can find the 
maximal order N of the corresponding meaningful symmetry.
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Let us start by clarifying what we mean by a “meaningful” symmetry. Consider a field φ
transforming under a ZN symmetry with ZN charge q , i.e.

φ
ZN
−→ e2π iq/Nφ. (2.5)

The task is now to find a “meaningful” order N and charge q in the one-dimensional version 
of (2.4), i.e. in the constraint equation

a · q = 0 modN. (2.6)

We may rephrase this as the problem of finding the maximal meaningful symmetry ZN and 
charge q , such that the operator φa is ZN invariant. The order N is a priori unknown. However, 
it is evident that N = a with q = 1. If we were to choose N < a, then for any integer q which 
satisfies (2.6), there would be a power a′ such that φa′

is ZN invariant. That is, in addition to the 
operator φa , there will be additional operator(s) φa′

with a′ < a allowed by the ZN symmetry. 
Hence, we should have started from (2.6) with a replaced by a′. On the other hand, choosing 
N > a does not add anything useful, but will require solutions to have q �= 1. That is, we would 
have a redundancy and not a “meaningful” symmetry.

Let us now look at a situation where there is another field with charge ̃q, fulfilling

ã · q̃ = 0 modN. (2.7)

Using analogous arguments as above, it is straightforward to convince oneself that the maximal 
meaningful order is then N = a · ã/ gcd(a, ̃a).

These statements are almost trivial and can be straightforwardly generalized to multiple condi-
tions of the type of (2.6). A slightly more interesting situation arises when the constraints involve 
more than one charge at the same time, as in (2.4). The strategy of the subsequent discussion will 
be to transform these equations into constraints on linear combinations of charges which are all 
of the form (2.6).

Let us now discuss in detail how this works. We start out by considering equalities of the type

qQ + qU + qHu − 2qθ = 0 modN, (2.8)

a condition for the u-type Yukawa coupling to be allowed. Apart from the charges, the order N
of the discrete symmetry is, as before, unknown.

We can rewrite the conditions of this type as

A · q = 0 modN, (2.9)

where q denote the vector of the nq charges and A is an integer matrix. If A does not have full 
rank, then there is at least one U(1) which one can impose in order to satisfy the conditions. The 
U(1) charges are given by the entries of (one of) the vector(s) in the kernel of A. In this case, 
one can impose an arbitrary ZN which is a subgroup of such a U(1). We therefore specialize 
here on the case where nc ≥ nq and A has full rank, such that there is no U(1) which one may 
impose. Note that A is not necessarily a square matrix, i.e. we also allow for more constraints 
than variables, nc > nq . A can be brought to the so-called Smith normal form,4

U · A · V = D, (2.10)

4 A mathematica package to compute the Smith normal form for integer matrices can be found at 
http://library.wolfram.com/infocenter/MathSource/6621/.

http://library.wolfram.com/infocenter/MathSource/6621/
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where U and V are unimodular nc ×nc and nq ×nq matrices, respectively.5 D is also an integer 
matrix and diagonal (but not necessarily square),

D =

⎛
⎜⎜⎜⎝

d1
. . .

dnq

0(nc−nq)×nq

⎞
⎟⎟⎟⎠ , (2.11)

and the diagonal elements satisfy di |di+1, i.e. the ith element divides the (i + 1)th element. It is 
also possible that di≥n0 = 0 for some n0 ≤ nq . If D has maximal rank, and if it was not for the 
modulo N , then the matrix equation (2.9) has only the trivial solution. However, if we only ask 
the conditions to be fulfilled modulo N , then the last non-trivial element dnq defines the maximal 
order of a meaningful ZN symmetry, i.e. N = dnq , under which the conditions encoded by (2.9)
can hold for non-trivial q . This can be seen by first noting that, for U and V being invertible, 
(2.9) is equivalent to

U · A · q = D · V −1 · q = 0 modN. (2.12)

This implies that there exists a linear combination of charges with integer coefficients that sum 
up to dnq = N . We see immediately that rank(D modN) = dim(A) − 1.

The constraint equation is now brought to the diagonal form in the “charge basis” q ′ = V −1 ·q
that are linear combinations of qi’s with integer coefficients,

V −1 · q =

⎛
⎜⎜⎜⎝

k1
dnq

d1
...

knq

dnq

dnq

⎞
⎟⎟⎟⎠ . (2.13)

The possibly inequivalent charges are thus given by

q = V ·

⎛
⎜⎜⎜⎝

k1
dnq

d1
...

knq

dnq

dnq

⎞
⎟⎟⎟⎠ . (2.14)

If we shift the charges qi by integral multiples of N , the r.h.s. of (2.13) will shift by integral 
multiples of gcd((V −1)i1, . . . , (V

−1)inq ) · N with N = dnq . Such shifts of the charges will ob-
viously lead to the same ZN symmetry. However, since V −1 is unimodular, gcd((V −1)i1, . . . ,

(V −1)inq ) = 1 for all i, and we can take ki to lie only between 1 and di . We thus obtain the 

charges for the maximal meaningful symmetry Z(R)
N=dnq

with the desired properties.

We note that there exist more symmetries that fulfill the conditions. Specifically, these ad-
ditional symmetries can be obtained by dividing the order dnq by one of its divisors δi . Then, 
(2.9) will still be fulfilled modulo N ′ = dnq /δi . However, not all of these symmetries possess all 
of the properties that ZN might have.

5 Recall that unimodular matrices are integer matrices with determinant ±1. The inverses of such matrices are also 
integer.
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If there are inequalities, such as

3qQ + qL − 2qθ = p �= 0 modN, (2.15)

all one has to do is to add

3qQ + qL − 2qθ − p = 0 modN (2.16)

to the equation, regard p as an extra charge, and project on solutions which give p �= 0
(mod N). This will not lead to any new constraints. Therefore, one can just scan the symme-
tries obtained from the imposed equalities and explore the possible p values.

One can also determine the order M in the inhomogeneous equation

A · q = b modM (2.17)

with some nc-dimensional vector b. After bringing A to Smith normal form and multiplying 
Eq. (2.17) with U from the left, we obtain

D · q ′ = b′ modM (2.18)

with

b′ = U · b and q ′ = V −1 · q. (2.19)

If nc > nq , b′ can have non-trivial entries at the positions nq + 1, . . . , nc. Then, a solution is only 
possible if M divides b′

nq+1, . . . , b
′
nc

. Hence, we see that the maximal meaningful order may even 
be even more constrained for inhomogeneous equations. An application of our methods will be 
discussed in Section 3.4.3.

In conclusion, we have looked at symmetries that fulfill certain constraint equations. We have 
focused on systems in which the constraint equations do not allow for continuous or U(1) so-
lutions. We have then shown that the maximal meaningful order of ZN symmetries compatible 
with the constraints can be read off from the Smith normal form (2.10) of the matrix encoding 
the constraint equations, and is given by the last diagonal element dnq (cf. Eq. (2.11)).

2.4. Anomaly (non-)universality

As mentioned, anomalies for discrete symmetries can be canceled by a discrete version of the 
Green–Schwarz (GS) mechanism [17]. This, however, may destroy the beautiful picture of the 
MSSM gauge coupling unification if the anomalies are not universal, i.e. if the GS axion couples 
with different coefficients to the various field strength terms of the SM gauge group factors.

We start out by discussing anomaly (non-)universality. For a U(1)(R) symmetry, the relevant 
anomaly coefficients are 

A3 = 1

2

∑
f

[
2q

f
Q + q

f

U
+ q

f

D
− 4qθ

] + 3qθ

= 3

2
[2qQ + qU + qD] − 3qθ , (2.20a)

A2 = 1

2

[
qHu + qHd

− 2qθ +
∑
f

(
3q

f
Q + q

f
L − 4qθ

)] + 2qθ

= 1 [
qHu + qHd

+ 3(3qQ + qL)
] − 5qθ , (2.20b)
2
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A1 = 1

2

[
qHu + qHd

− 2qθ + 1

3

∑
i

(
q

f
Q + 8q

f

U
+ 2q

f

D
+ 3q

f
L + 6q

f

E
− 20qθ

)]
Y 2

L

= 3

10
[qHu + qHd

+ qQ + 8qU + 2qD + 3qL + 6qE − 22qθ ]. (2.20c)

In the second line of each equation we switched to family-independent charges. qθ denotes the 
charge of the superspace coordinate θ , i.e. qθ = 0 for a non-R symmetry. YL controls the nor-
malization of hypercharge, i.e. Y 2

L = 3/5 if U(1)Y is part of a unified SU(5) symmetry.
By imposing the existence of the Yukawa couplings we can eliminate the charges of the U , D

and E fields, 

qU ≡ −qQ − qHu + 2qθ , (2.21a)

qD ≡ −qQ − qHd
+ 2qθ , (2.21b)

qE ≡ −qL − qHd
+ 2qθ . (2.21c)

where ‘≡’ means ‘equal modulo N ’. After eliminating qU , qD and qE via (2.21), the anomaly 
coefficients (2.20) become 

A3 = −3

2
(qHu + qHd

− 2qθ ), (2.22a)

A2 = 1

2

[
qHu + qHd

+ 3(qL + 3qQ) − 10qθ

]
, (2.22b)

A1 = − 3

10

[
7(qHu + qHd

) + 3(qL + 3qQ) − 10qθ

]
. (2.22c)

By allowing for different couplings of the axion a to the field strengths of SU(3)C, SU(2)L and 
U(1)Y , it is always possible to cancel the anomalies with the Green–Schwarz mechanism [18,
19]. However, if one is to preserve gauge coupling unification in a natural way, the anomalies 
need to be universal, i.e.

A3 = A2 = A1. (2.23)

For a discrete ZR
N symmetry, the coefficients in (2.20) are only defined up to modulo

η =
{

N/2 if N is even,

N if N is odd.
(2.24)

The anomaly universality condition (2.23) then boils down to

A3 ≡ A2 ≡ A1, (2.25)

where now ‘≡’ means modulo η.
Let us note that in DHL [16] the anomaly universality condition has been taken to be A3 ≡ A2. 

However, it is crucial to include the anomaly coefficient due to U(1)Y , the AU(1)Y −U(1)Y −Z
R
N

, 

particularly when addressing compatibility with gauge coupling unification. Therefore, we will 
employ in the first part of our analysis the universality condition (2.25).

The discrete anomaly universality conditions can be rewritten as 

A3 − A2 = −2qHd
− 2qHu − 3

2
qL − 9

2
qQ + 8qθ ≡ 0, (2.26a)

A3 − A1 = 3
(2qHd

+ 2qHu + 3qL + 9qQ) ≡ 0. (2.26b)

10
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It is interesting to note that the second universality condition does not distinguish between R and 
non-R symmetries, since it is independent of qθ . By using the freedom of shifting qHu and qL by 
integral multiples of the order N , we can shift the l.h.s. of (2.26a) by integral multiples of N/2
and the l.h.s. of (2.26b) by integral multiples of 3N/10. These equations then become equivalent 
to the so-called linear congruences (see Appendix A) 

Nx = 2(A3 − A2) modN, (2.27a)

3Nx = 10(A3 − A1) mod 10N. (2.27b)

Since gcd(N, N) = gcd(3N, 10N) = N , one obtains the constraints 

2(A3 − A2) = −4qHd
− 4qHu − 3qL − 9qQ + 16qθ

!= 0 modN, (2.28a)

10(A3 − A1) = 3(2qHd
+ 2qHu + 3qL + 9qQ)

!= 0 modN. (2.28b)

These constraints are now of the same type as the conditions for operators in the superpotential 
or Kähler potential to be allowed.

In addition to the GS anomaly cancellation, we shall comment on conditions for anomaly 
cancellation in the traditional sense, i.e. A3 ≡ A2 ≡ A1 ≡ 0. This condition is equivalent to 
demanding anomaly universality and A3 ≡ 0. Consequently,

2A3 = −3(qHu + qHd
− 2qθ )

!= 0 modN. (2.29)

Thus, an anomaly-free symmetry can only forbid the μ term under certain conditions. For N = 3, 
the condition is trivially fulfilled. If 3 divides N , then the solutions are given by (qHu + qHd

−
2qθ ) ∈ N

3 · {0, 1, 2}. As an example of the latter case, consider an SU(5) compatible ZR
6 symmetry 

of [28]. With the field charges of (qHu, qHd
, qθ ) = (4, 0, 1), condition (2.29) is satisfied while the 

μ term is forbidden.

2.5. Limitations of analysis

While our aim is to provide a general analysis of discrete symmetries of the MSSM with the 
properties discussed above, we note that our approach is not without limitations. In particular, if 
there exist additional states at lower energies, one can have effective operators which appear to 
have a total R charge different from the one of the superpotential and which are endowed with 
large coefficients.

As an example, consider the MSSM with a ZR
4 symmetry in which the dangerous opera-

tor UUDE arise in the Kähler potential with a highly suppressed coefficient of m3/2/M
3
P . This 

is based on the model which will be specified in Table 3.1 and assumes that the operator results 
from integrating out heavy state(s) in the UV theory.

On the other hand, adding a color triplet X and an anti-triplet X, both with R charge 0, we 
obtain additional allowed terms

�W = m3/2XX + DEX + UUX, (2.30)

where we omitted the coefficients. After integrating out X and X we get

�Weff = 1
UUDE, (2.31)
m3/2
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which is a dangerous proton decay operator with a large coefficient. On the other hand, the 
UUDE operator has R charge 0, i.e. according to our previous arguments we expect it to be 
suppressed. To clarify this point, we note that this operator is still ZR

4 covariant since we can 
write (2.31) as [28,29]

�Weff = eβSUUDE, (2.32)

where S is the superfield that contains the axion and β is a coefficient. Note that this effective 
term has the opposite sign in the exponential than the usual instanton contributions.

Our analysis thus only applies if there are no extra states below the fundamental scale Λ. 
Similar conclusions arise in the recently proposed models of “dynamical R parity violation” [30].

3. Models

3.1. Examples of maximal meaningful symmetries

First, as a cross-check of the algorithm, we have confirmed the maximal meaningful order 
of a ZR

N symmetry in the MSSM that allows Yukawa couplings and the Weinberg operator O5, 
which is in agreement with previous analyses. Specifically, the maximal meaningful order

(i) for matter field charges satisfying SU(5) relations is 24 [14,28];
(ii) for matter field charges satisfying SO(10) relations is 4 [14,29].

An explicit example for how the algorithm works can be found in Appendix B.
As another illustration, we consider symmetries compatible with Pati–Salam partial unifica-

tion. We demand the existence of the Yukawa couplings as well as the Weinberg operator. Starting 
with the Pati–Salam charge relations

qQ = qL and qU = qD = qE, (3.1)

the maximal symmetry order is found to be 60. One of the inequivalent charge assignments for a 
Z

R
60 symmetry is given by 

qθ = 1, qHu = qHd
= 59 ≡ −1, (3.2a)

qQ = qL = 2, qU = qD = qE = 1. (3.2b)

The μ term is forbidden; however, unlike in the case of the SO(10) and SU(5) compatible sym-
metries discussed above, it does not appear at linear order in m3/2.

3.2. Pati–Salam compatible settings

In contrast to SU(5) and SO(10), the Pati–Salam (PS) partial unification [31] can be rec-
onciled more easily with RPV. We note that the Pati–Salam group evades the no-go theorems 
for R symmetries in four-dimensional GUT models [32]. RPV models with an underlying PS 
symmetry have not been extensively studied, a gap which we aim to fill.

Specifically, we consider 4D Pati–Salam models with GPS = SU(4) ×SU(2)L ×SU(2)R spon-
taneously broken to GSM by the VEV of a D-flat combination of (4, 1, 2) ⊕(4, 1, 2) Higgses with 
R charge 0. This VEV may then explain the effective coupling UDD or LLE. In addition, we 
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would need Higgses in the (6, 1, 1) and (1, 1, 1) representations with R charge 2. Pati–Salam 
models of this type have been derived from the heterotic string [33].

We note that since the PS group does not fully unify into a single gauge group, one can allow 
for different couplings of the GS axion to the different SM gauge factors. In other words, PS does 
no lead to anomaly universality, which is consistent with the fact that the PS symmetry does not 
imply gauge coupling unification.

Let us now have a look at RPV models which are compatible with PS. As a first example, we 
show that

PS compatibility
allow UDD

forbid LHu

⎫⎬
⎭ � Weinberg operator is forbidden. (3.3)

Starting with the PS compatibility, which implies

qQ = qL, qU = qD = qE, and qHu = qHd
, (3.4)

one can now write down the conditions for the UDD operator being allowed and the LHu term 
being forbidden,

−3qHu − 3qL + 4qθ = 0 modN (UDD), (3.5)

qHu + qL − 2qθ �= 0 modN (LHu). (3.6)

Here we have taken into account the conditions for the existence of the Yukawa couplings by the 
means of (2.21). This leads to

2qHu + 2qL − 2qθ �= 0 modN, (3.7)

which forbids the Weinberg operator. This result may be interpreted as the statement that PS 
compatible �B RPV models tend to favor Dirac neutrino masses.

3.3. Scenarios with anomaly universality

3.3.1. Effective R parity conservation (RPCeff)
We start by looking at scenarios which effectively preserve R parity, in which the usual R

parity violating operators are forbidden. However, we do not explicitly impose R parity. For 
our search, we forbid dimension 4 and 5 RPV operators in the superpotential, as well as the 
perturbative level μ term. This leads to the following criteria

RPCeff �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2qHd
+ qHu + 3qQ − 4qθ �= 0 modN (UDD),

qL − qHd
�= 0 modN (LLE),

qHu + qHd
− 2qθ �= 0 modN (HuHd),

qL + qHu − 2qθ �= 0 modN (LHu),

2qHd
+ 2qHu + qL + 3qQ − 6qθ �= 0 modN (UUDE),

3qQ + qL − 2qθ �= 0 modN (QQQL),

3qQ + qHd
− 2qθ �= 0 modN (QQQHd).

(3.8)

With the various dimension 5 operators being related (see Section 2.1), prohibiting the 
QQQHd term also automatically forbids O10. Similarly, forbidding LHu implies the absence 
of the operators O4, O7, O8 and O9. Additionally, we will discuss whether a given solution is 
compatible with the type I seesaw mechanism, i.e. if it satisfies
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Table 3.1
Anomaly-universal R parity conserving symmetry ZR

4 .

Field Q U D L E Hu Hd θ

Z
R
4 1 1 1 1 1 0 0 1

Table 3.2
Anomaly-universal effective R parity conserving symmetry ZR

12.

Field Q U D L E Hu Hd θ

Z
R
12 4 4 0 0 4 6 10 1

2qL + 2qHu − 2qθ = 0 modN (LHuLHu). (3.9)

The minimal (GS) anomaly-universal solution which satisfies conditions (3.8) is a ZR
4 sym-

metry whose charge assignment is specified in Table 3.1 and Hilbert basis [34] provided in 
Appendix E.1. We see that this symmetry does indeed contain R parity, as there is a residual 
Z2 after R symmetry breaking.

This ZR
4 is nothing but the well-known ZR

4 symmetry [35], which was found to be the unique 
anomaly-free ZR

N solution that commutes with SO(10) [28,29]. We note, however, that [29] ob-
tained this symmetry by imposing criteria different from ours.6 The Weinberg operator as well 
as the Giudice–Masiero mechanism [36] for generating an effective μ term are both compatible 
with this symmetry.

Interestingly, there exist solutions which ensure R parity conservation before SUSY breaking, 
but do not contain an actual R parity. A ZR

12 symmetry with the charges given in Table 3.2 is of 
this type. The R parity violating operators get induced after the “hidden sector” superpotential 
acquires its VEV, and appear thus with coefficients that are given by (high) powers of m3/2/MP. 
One thus obtains a Froggatt–Nielsen-like [37] suppression of these operators.

3.3.2. B violation at the renormalizable level
For the case of baryon number violating RPV setting, we impose the existence of the UDD

operator, and, at the same time, the absence of the LLE term. Following DHL [16], the full set 
of phenomenological constraints can be specified as

�B RPV �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2qHd
+ qHu + 3qQ − 4qθ = 0 modN (UDD),

qL − qHd
�= 0 modN (LLE),

qHu + qHd
− 2qθ �= 0 modN (HuHd),

qL + qHu − 2qθ �= 0 modN (LHu),

3qQ + qL − 2qθ �= 0 modN (QQQL).

(3.10)

Additionally, we will require that the LHuHdHu term be absent.7 This results in

6 The analysis of [29] imposed compatibility with SO(10), GS anomaly cancellation, absence of the μ term before R
symmetry breaking, existence of the Yukawa couplings and the presence of the Weinberg operator. On the other hand, 
we have obtained this result by extending the analyses of [21,23] to allow for the Green–Schwarz mechanism, Yukawa 
couplings and by forbidding the relevant dimension 4 and 5 RPV operators as well as the μ term in the superpotential.

7 If the �L operator LHuHdHu is allowed, its combination with the �B term UDD could result in a fast proton decay. 
DHL [16] argue that, since the relevant UDD coupling contributing to such process is λ′′

112, which is already strongly 
bounded by the experiment [8,38,39], the LHuHdHu operator needs not be explicitly forbidden. However, we will take 
on a more conservative position, and impose its absence.
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Table 3.3
Anomaly-universal �B RPV symmetry ̃ZR

8 .

Field Q U D L E Hu Hd θ

Z̃
R
8 4 6 6 4 6 0 0 1

qL + qHd
+ 2qHu − 2qθ �= 0 modN (LHuHdHu). (3.11)

A complete list of unique (GS) anomaly-universal solutions up to order 12, satisfying the con-
straints of (3.10) and (3.11), can be found in Table C.1 in Appendix C. This set contains a Z̃R

8
symmetry with the charge assignment of Table 3.3. This Z̃R

8 symmetry is not only compatible 
with the Pati–Salam group, but also allows for the Giudice–Masiero mechanism to be imple-
mented.

3.3.3. L violation at the renormalizable level
Similarly, we can identify (GS) anomaly-universal symmetries which violate lepton number 

at the renormalizable level and satisfy the appropriate phenomenological constraints. However, 
a straightforward argument [20] appears to demonstrate that all such symmetries are disfavored. 
Let us review this in more detail.

The argument of [20] follows from the observation that if the Yukawa couplings, the μ term 
as well as any of the trilinear leptonic RPV couplings are allowed in the (perturbative) super-
potential, so will be the κLHu term. This leads to the expectation that μ ∼ κ . In more detail, 
equation 9 of [20] states that

qL + qHu = qQ + qL + qD + qμ = 2qL + qE + qμ, (3.12)

where qμ = qHu + qHd
− 2qθ and the Yukawa conditions (2.21) have been used. This implies 

that, if the μ term is allowed, which implies that qμ = 0, the charges of LHu, QLD and LLE

coincide. Therefore, all these symmetries are simultaneously allowed or forbidden by the sym-
metry. On the other hand, if we demand that QLD and/or LLE appear at the renormalizable 
level, i.e. qQ + qL + qD = 2qθ and/or 2qL + qE = 2qθ , then qL + qHu = qHu + qHd

such that 
one expects μ and κ to be of comparable orders.

Furthermore, suppose that the μ term originates from the Kähler potential, while the trilinear 
leptonic RPV couplings are allowed in the (perturbative) superpotential, i.e. before R symmetry 
breaking, as in the previous case. The same line of reasoning as above shows that κLHu will 
also be effectively generated with the size μ ∼ κ , leading again to the same conclusion. Since 
the above argument applies to all �L RPV models which have lepton number violating couplings 
present before R symmetry breaking, these scenarios are disfavored and we shall not consider 
them further. Because neutrino mass generation from the bilinear �L term is a popular mecha-
nism in RPV settings (e.g. [4,40–42]), the above conclusion argument may be interpreted as a 
problematic feature on a large class of models.

Let us comment, however, that the argument of [20] is limited in the following sense. The 
central assumption of the argument is that lepton number violating couplings are present in the 
superpotential before R symmetry breaking. In contrast, if we require that both the μ as well 
as the �L RPV terms arise only after R symmetry breaking, the conclusion that any model with 
lepton number violation must have μ ∼ κ can be evaded. We will demonstrate this with an 
explicit example in Section 3.4.3, where the operators arise with different powers of m3/2/MP, 
thus leading to very different sizes of μ and κ .
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Table 3.4
Anomaly non-universal R parity conserving symmetry ZR

8 .

Field Q U D L E Hu Hd θ

Z
R
8 1 1 1 1 1 0 0 1

Table 3.5
Anomaly non-universal �B RPV symmetry ̃ZR

4 .

Field Q U D L E Hu Hd θ

Z̃
R
4 0 2 2 1 1 0 0 1

3.4. Settings with anomaly non-universality

As already mentioned, the Green–Schwarz anomaly cancellation may be satisfied without 
requiring universality, if the GS axion couples differently to each MSSM field strengths [13,18]. 
Although this may spoil precision gauge unification, dropping universality constraint leads to 
new solutions. Such scenarios are not compatible with either SU(5) or SO(10). However, as 
will be shown below, there exist solutions based on the Pati–Salam group with non-universal 
anomalies.

3.4.1. Effective R parity conservation
Abandoning anomaly universality, the lowest order solution which satisfies the constraints of 

(3.8) and is compatible with the Pati–Salam group is a ZR
8 symmetry with the charge given in 

Table 3.4. Clearly, after R symmetry breaking, there is a residual Z4 symmetry which contains 
matter parity as a subgroup.

3.4.2. B violation at renormalizable level
Imposing the phenomenological constraints of (3.10) and (3.11) but allowing for anomaly 

coefficients to be non-universal, the minimal solution with baryon number violation is a Z̃R
4

symmetry with the charge assignment of Table 3.5. This solution allows for the Giudice–Masiero 
mechanism as well as the Weinberg operator. However, in contrast to the ZR

8 symmetry in the 
anomaly-universal case discussed in Section 3.3.2, it does not commute with Pati–Salam.

3.4.3. “Non-perturbative” B and L violation
Another interesting scenario is a setup where R parity violation appears after R symmetry 

breaking. However, as we shall prove, there are no phenomenologically viable anomaly-universal 
“non-perturbative” RPV symmetries.

Let us impose anomaly universality (2.28) as well as “non-perturbative” B and L violation. 
The latter condition amounts to the requirement that the total charges of LLE and UDD are 0. 
Since the number of variables is larger than the number of independent equations, we can impose 
a U(1) symmetry to satisfy all the constraints. Using the homogeneous version of the method 
developed in Section 2.3, we obtain a single U(1) solution which has qθ = 0, a continuous non-R
symmetry. However, as pointed out in [14], to forbid the μ term, one needs an R symmetry with 
qθ �= 0. Thus, we will look for discrete R symmetries, subject to the constraints 
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Table 3.6
Anomaly non-universal “non-perturbative” �B and �L symmetry ZR

3 .

Field Q U D L E Hu Hd θ

Z
R
3 1 1 1 1 1 0 0 1

−4qHd
− 4qHu − 3qL − 9qQ + 16qθ = 0 modN, (3.13a)

6qHd
+ 6qHu + 9(qL + 3qQ) = 0 modN, (3.13b)

−qHd
+ qL + 2qθ = 0 modN (LLE), (3.13c)

−2qHd
− qHu − 3qQ + 6qθ = 0 modN (UDD). (3.13d)

Instead of treating qθ as an extra variable, we can treat it as a constant, and thus make use of the 
inhomogeneous variant of the method of Section 2.3. Thus, one can rewrite (3.13) as

A · q = b modN (3.14)

with

A =

⎛
⎜⎜⎝

−4 −4 −3 −9
6 6 9 27

−1 0 1 0
−2 −1 0 −3

⎞
⎟⎟⎠ , q =

⎛
⎜⎜⎝

qHd

qHu

qL

qQ

⎞
⎟⎟⎠ and b = qθ ·

⎛
⎜⎜⎝

−16
0

−2
−6

⎞
⎟⎟⎠ . (3.15)

Bringing A to the Smith normal form, D = U · A · V , we can rewrite (3.14) as

Dq ′ = b′ modN with q ′ = V −1q and b′ = Ub, (3.16)

where

D = diag(1,1,1,0) and b′ = (2qθ ,2qθ ,0,−24qθ ). (3.17)

Clearly, the last equation 0 · q ′
4 = −24qθ modN has only a solution if N is a divisor of 24. We 

therefore conclude that the order of a discrete R symmetry that is consistent with our constraints 
has to divide 24. The charges are then subject to the constraints 

qHd
− qL = 2qθ modN, (3.18a)

qHu + 2qL + 3qQ = 2qθ modN, (3.18b)

qL + 3qQ = 0 modN. (3.18c)

Subtracting the last equation from the next-to-last one, we see that

qHu + qL = 2qθ modN. (3.19)

From this we see that all such symmetries allow for the κHuL term in the superpotential, and 
are, therefore, phenomenologically not viable. We have hence proved that phenomenologically 
viable, anomaly-universal discrete R symmetries that give rise to “non-perturbative” B and L
violation do not exist.

On the other hand, abandoning the anomaly universality condition allows us to construct such 
models. For instance, a simple ZR

3 symmetry can give rise to scenarios with “non-perturbative” 
B and L violation. The charge assignment for ZR can be found in Table 3.6 and the Hilbert basis 
3
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in Appendix E.2. If we assume that the ZR
3 breaking is controlled by the gravitino mass m3/2, we 

obtain effective RPV operators of the form

W RPV
eff ⊃ m3/2

MP
LLE + m3/2

MP
QLD + m3/2

MP
UDD. (3.20)

For m3/2 ∼ TeV, this implies that the couplings λ, λ′ and λ′′ are of the order 10−15. In addition, 
there might exist further flavor suppression for the couplings of the lighter generations. The LHu

term is suppressed by m2
3/2/MP, while the μ term is of the order m3/2. We have thus obtained 

a scenario with (sufficiently suppressed) lepton number violation that provides, in some sense, 
a counter-example to the statement in [20] that in such scenarios κ ∼ μ. Further, QQQL as 
well as UUDE are suppressed even further by m2

3/2/M
3
P . Even though the charges in this case 

commute with SO(10), precision gauge coupling unification might be regarded as an accident in 
this setting, as discussed in Section 2.4.

Even with R parity preserved at the perturbative level, because of the presence of the “non-
perturbative” RPV, a sizable proton decay rate may still exist. Namely, the combination of LQD

and UDD operators will lead to the usual p → e+π0 proton decay channel. In our model, the 
relevant RPV couplings are predicted to be λ′ ∼ λ′′ ∼ 10−15, which leads to an estimate on 
their combined strength λ′ · λ′′ to be of order of 10−30. This is value is to be compared to the 
experimental limit of λ′ · λ′′ � 10−27 [43].

We thus have provide a simple symmetry that gives rise to hierarchically small R parity viola-
tion. The LSP will be unstable. However, the gravitino will still be a good dark matter candidate, 
as its decay rate will go like m5

3/2/M
4
P , where the Planck suppression originates both from the fact 

that the gravitino interacts only gravitationally and that the various λ couplings go like m3/2/MP. 
A complete survey of the phenomenology of this scenario is beyond the scope of the present 
analysis.

4. Summary

The huge ratio between the GUT and electroweak scales allows us to give compelling ar-
guments for the observed longevity of the nucleon which is somewhat hard to understand in 
extensions of the SM with low cut-off, where higher-dimensional baryon and lepton number 
violating operators are not very much suppressed. The traditional approach in supersymmetric 
model building is to invoke matter or R parity [44], amended by baryon triality [21,23]. More 
recently, a ZR

4 symmetry [29,35], which also solves the μ problem [28,29], has been proposed. 
These symmetries remain the simplest options to explain the longevity of the proton in super-
symmetric extensions of the SM.

On the other hand, nature might have taken a different route, and the B or L symmetries may 
be violated. In this study, we have explored discrete R symmetries which explain a sufficient 
suppression of nucleon decay operators. In settings with such symmetries, R parity violation is 
related to supersymmetry breaking, i.e. RPV couplings are suppressed by appropriate powers of 
m3/2/Λ. In the course of our work, we completed and extended the analysis of DHL [16] sur-
veying viable RPV symmetries of the MSSM. We found that in some cases the symmetries are 
incompatible with the Weinberg operator such that Dirac neutrino masses appear to be favored. 
We allowed for qθ ∈ N as well as symmetries with non-universal anomalies. We identified re-
dundant symmetries in DHL [16] and found some new solutions. The most “appealing” solution 
that emerges for a given set of assumptions is depicted in Figs. 1 and 2. Further, we have devel-
oped a novel algorithm based on the Smith normal form, which allows to identify the maximal 
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Fig. 1. Summary of our results. We present the simplest discrete R symmetries with universal anomalies and the specified 
properties. The symbol “–” indicates the absence of a solution.

Fig. 2. Summary of our results. We present the simplest discrete R symmetries with non-universal anomalies and the 
specified properties. The symbol “–” indicates the absence of a solution.

meaningful symmetry for a given set of constraints. We also specified the conditions for a given 
set of symmetries to be equivalent.

We have also identified a simple ZR
3 symmetry that ensures R parity conservation before su-

persymmetry breaking. The coefficients of the R parity violating operators are consequently 
suppressed by the small ratio m3/2/MP. This symmetry provides us, in some sense, with a 
counter-example to the statement in the recent literature that in lepton number violating sce-
narios, the μ term and the bilinear κLHu must be of comparable magnitude.
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Appendix A. Basic facts on congruences

In general, the linear congruence

ax = b modM (A.1)

has solutions if and only if b is divisible by gcd(M, a), in which case there are gcd(M, a) solu-
tions modulo M . Further, it is true that if

a = b modN and c = d modN (A.2)

then 

a + c = b + d modN, (A.3a)

a · c = b · d modN. (A.3b)

Appendix B. Example of systematic search for ZZZ(R)
N

In this example, we will impose anomaly universality, existence of the UDD term, as well as 
Pati–Salam compatibility qL = qQ and the GM condition qHu + qHd

= 0 modN . After imposing 
these conditions, we are left with the two charges {qi} = {qQ, qθ }.

The conditions are then encoded in the matrix equation

A · q = 0 modN with A =
⎛
⎝ 12 −16

0 48
−6 8

⎞
⎠ . (B.1)

The Smith normal form of A is then given by the matrices

D =
⎛
⎝ 2 0

0 144
0 0

⎞
⎠ , U =

⎛
⎝ 0 0 −1

0 1 −24
1 0 2

⎞
⎠ and V =

( −1 4
−1 3

)
. (B.2)

We see that the maximal meaningful ZN symmetry has N = 144. The corresponding charges are 
given by 

qQ = −72 · k1 + 4 · k2 mod 144, (B.3a)

qθ = −72 · k1 + 3 · k2 mod 144, (B.3b)

where k1 ∈ {1, 2} and k2 ∈ {1, . . . ,144}. However, as discussed in Section 2.2, many different 
ki lead to physically equivalent symmetries. The resulting inequivalent symmetries, with the μ
term forbidden, are shown in Table B.1.
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Table B.1
Z

R
N

symmetries with renormalizable UDD, matter charges that commute with PS and the Higgs charges which fulfill 
the GM condition qHu + qHd

= 0 modN .

N qQ qŪ qD̄ qL qĒ qHu qHd
qθ

4 0 2 2 0 2 0 0 1
8 4 6 6 4 6 0 0 1
9 1 5 5 1 5 0 0 3

12 4 2 2 4 2 0 0 3
16 4 6 6 4 6 8 8 1
18 1 14 14 1 14 9 9 3
24 4 2 2 4 2 0 0 3
36 4 2 2 4 2 0 0 3
48 4 2 2 4 2 0 0 3
72 4 2 2 4 2 0 0 3

144 4 2 2 4 2 0 0 3

Appendix C. ZZZ(R)
N symmetries of B violating settings

Here we list the Z(R)
N≤12 inequivalent symmetries of settings with renormalizable �B.

Table C.1
Anomaly-universal �B symmetries up to order 12. We specify the residual symmetry after the breaking of the R symmetry, 
and show in the W column if the Weinberg operator LHuLHu(O5) is allowed. The last column indicates whether or not 
a non-trivial GS mechanism is at work.

Symmetry Residual symmetry W GS

N Q U D L E Hu Hd θ N ′ Q U D L E Hu Hd

5 2 2 0 2 0 3 0 1 – – �
6 1 2 5 1 5 3 0 0 6 1 2 5 1 5 3 0 – �
6 1 0 1 3 5 1 0 1 2 1 0 1 1 1 1 0 � �
6 1 4 3 3 1 5 0 2 2 1 0 1 1 1 1 0 � �
8 4 6 6 4 6 0 0 1 – – �
9 1 2 8 1 8 6 0 0 9 1 2 8 1 8 6 0 – –
9 1 5 5 1 5 0 0 3 3 1 2 2 1 2 0 0 – –

10 2 2 0 2 0 8 0 1 – – �
10 7 2 5 7 5 3 0 1 2 1 0 1 1 1 1 0 – �
12 2 2 0 2 0 10 0 1 – – –
12 0 10 2 4 10 4 0 1 – – �
12 0 10 2 8 6 4 0 1 – – �
12 2 2 0 10 4 10 0 1 – – –
12 0 6 6 4 2 0 0 3 3 0 0 0 2 1 0 0 – �

Appendix D. RPV symmetries of DHL

In what follows, we list and comment on the non-redundant symmetries found by DHL [16]. 
We explicitly state whether these allow for a Giudice–Masiero mechanism, i.e. if qHu + qH = 0
d
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modN . We further specify the order N ′
W of the residual symmetry that is left after the “hidden 

sector” superpotential acquires a VEV.8

D.1. B violating settings

Table D.1
Z

(R)
N≤12 symmetries for B violating settings. Compatibility with the Weinberg operator (W) and LHuHdHu (O6) are 

indicated. We specify if anomalies (A) vanish (0), are GS universal (U), or fulfill neither of these conditions (–).

N θ p n m N ′
W W O6 GM Q U D L E Hu Hd A

5 0 1 3 1 5 – � – 0 4 3 1 2 1 2 –
5 1 3 4 0 – – – – 0 0 1 3 3 2 1 U

6 0 1 3 0 6 – – – 0 0 3 2 1 0 3 U

6 1 3 3 2 2 � – – 0 4 5 0 5 4 3 U

7 0 1 3 6 7 – – – 0 1 3 3 0 6 4 –
7 1 1 3 1 – – – � 0 6 5 3 2 3 4 –
7 1 2 6 0 – � – – 0 0 1 6 2 2 1 –
7 1 5 1 4 – – – – 0 3 3 1 2 6 6 –
8 0 1 3 6 8 – – – 0 2 3 4 7 6 5 –
8 1 1 3 0 2 – – – 0 0 5 4 1 2 5 –
8 1 4 4 2 – – – � 0 6 6 0 6 4 4 U

8 1 6 2 6 – – – – 0 2 4 0 4 0 6 –
9 0 1 3 6 9 – – – 0 3 3 5 7 6 6 0
9 1 1 3 8 – – – – 0 1 5 5 0 1 6 –
9 1 2 6 5 – – – – 0 4 8 1 7 7 3 –
9 1 3 0 2 – � – – 0 7 2 6 5 4 0 –
9 1 5 6 5 – – – – 0 4 8 7 1 7 3 –
9 1 6 0 2 – – � – 0 7 2 3 8 4 0 –
9 1 7 3 8 – – – – 0 1 5 8 6 1 6 –

10 0 1 3 6 10 – – – 0 4 3 6 7 6 7 –
10 0 2 6 2 5 – � – 0 8 6 2 4 2 4 –
10 1 1 3 8 2 � – – 0 2 5 6 9 0 7 –
10 1 3 9 0 2 – – – 0 0 1 8 3 2 1 U

10 1 5 5 2 2 – – – 0 8 7 0 7 4 5 –
10 1 8 4 0 – – – – 0 0 6 8 8 2 6 U

D.2. L violating settings

Table D.2
Z

(R)
N≤12 symmetries for L violating settings. The columns have the same meaning as in Table D.1.

N θ p n m N ′
W W O2 GM Q U D L E Hu Hd A

3 1 2 0 1 – � � – 0 2 1 1 0 0 1 0
4 1 1 3 1 2 � � – 0 3 2 0 2 3 0 –
5 0 1 3 2 5 – – – 0 3 4 1 3 2 1 –
5 1 3 4 3 – – – – 0 2 4 3 1 0 3 U

5 1 4 2 0 – � � – 0 0 3 4 4 2 4 –

8 Note that in DHL [16] different residual symmetries are discussed. The charge of the supersymmetry breaking spurion 
is adjusted in such a way that the μ term can be generated through the Giudice–Masiero mechanism. However, in addition 
to the breaking of the symmetry by the F term VEV, there will always be the breaking due to expectation value of the 
“hidden sector” superpotential.
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Table D.2 (continued)

N θ p n m N ′
W W O2 GM Q U D L E Hu Hd A

6 0 1 3 1 6 � – – 0 5 4 2 2 1 2 U

6 1 2 0 4 – � � – 0 2 4 4 0 0 4 0
6 1 3 3 5 2 � – – 0 1 2 0 2 1 0 U

6 1 5 3 1 2 � � – 0 5 4 4 0 3 4 U

7 0 1 3 0 7 – – – 0 0 4 3 1 0 3 –
7 1 1 3 2 – – – � 0 5 6 3 3 4 3 –
7 1 2 6 2 – – – – 0 5 3 6 4 4 6 –
7 1 5 1 2 – – – – 0 5 1 1 0 4 1 –
7 1 6 4 2 – � � – 0 5 5 4 1 4 4 U

8 0 1 3 7 8 – – – 0 1 4 4 0 7 4 –
8 1 1 3 1 2 – – – 0 7 6 4 2 3 4 –
8 1 3 1 7 2 � � – 0 1 6 4 2 1 4 –
8 1 4 4 6 – – – � 0 2 2 0 2 0 0 U

8 1 6 2 4 – – – – 0 4 2 0 2 6 0 –
9 0 1 3 7 9 – – – 0 2 4 5 8 7 5 0
9 1 1 3 0 – – – – 0 0 6 5 1 2 5 –
9 1 2 6 7 – � – – 0 2 1 1 0 0 1 –
9 1 3 0 5 – – – – 0 4 5 6 8 7 6 –
9 1 5 6 1 – � – – 0 8 4 7 6 3 7 –
9 1 6 0 8 – – – – 0 1 8 3 5 1 3 –
9 1 7 3 6 – – – – 0 3 3 8 4 8 8 –
9 1 8 6 4 – � � – 0 5 7 4 3 6 4 –

10 0 1 3 7 10 – – – 0 3 4 6 8 7 6 –
10 1 1 3 9 2 – – – 0 1 6 6 0 1 6 –
10 1 3 9 3 2 – – – 0 7 4 8 6 5 8 U

10 1 4 2 0 – � � – 0 0 8 4 4 2 4 –
10 1 5 5 7 2 – – – 0 3 2 0 2 9 0 –
10 1 8 4 8 – – – – 0 2 4 8 6 0 8 U

10 1 9 7 5 2 � � – 0 5 8 4 4 7 4 –

Appendix E. Hilbert bases

The Hilbert basis method [34] allows us to construct a complete basis for the gauge invariant 
monomials Mi of fields appearing in the superpotential. In the presence of R symmetries, the Mi

decompose into homogeneous and inhomogeneous monomials, where allowed superpotential 
terms are of the form

W ⊃ Minhom ·
∏
i

M ni

hom,i . (E.1)

Below, we provide the lowest order Hilbert bases for two discrete R symmetries.

E.1. R parity conserving ZR
4

Inhomogeneous terms:

(LEHd), (QDHd), (QUHu), (LLHuHu), (EEHdHdHdHd),

(UUDDDD), (UDDLLE), (QUDDDL), (LLLLEE),

(QDLLLE), (QQDDLL), (QUUDDEHd), (QQQQDLHd),
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(QQQLLEHd), (UUULEEHu), (DDDLLLHu), (QQQQULHu),

(UUUEEEHdHd), (QQUUEEHdHd), (UDDDDDHdHd),

(QQQQUEHdHd), (QQQQQQHdHd), (QUUDDLHuHu),

(QQQLLLHuHu), (UUUDDDHuHu).

Homogeneous terms:

(HuHd), (UUDE), (QULE), (QQUD), (QQQL),

(DDDLHd), (UDDLHu), (LLLEHu), (QDLLHu),

(LLEEHdHd), (QDLEHdHd), (QQDDHdHd), (UDDEHdHd),

(QULEHuHd), (QQUDHuHd), (QQQLHuHd), (QQUUHuHu),

(UUUEHuHu), (QUEEHdHdHd), (QQQEHdHdHd),

(LLLEHuHuHd), (QDLLHuHuHd), (QULLHuHuHu),

(QQQLHuHuHdHd), (LLLLHuHuHuHu).

E.2. Non-perturbative RPV ZR
3

Inhomogeneous terms:

(LEHd), (QUHu), (QDHd), (LLHuHu), (QQQQU),

(QQQLLHu), (QQUUE), (QQQLEHdHd), (QULLEHu),

(QQUDLHu), (UUUEE), (DDDLL), (QQQQQQLL),

(QQQLLHuHuHd), (UUDLEHu), (QUUDDHu), (QQQQULLE),

(QQQQQUDL), (DDDLLHuHd), (QQUULLEE),

(QQQQUUDD), (QQQUUDLE), (QQQLLLLEHu).

Homogeneous terms:

(HuHd), (QQQHd), (LLE), (QDL), (QUEHd), (UDD),

(LLEHuHd), (QQQHuHdHd), (QULHuHu), (QDLHuHd),

(LLLHuHuHu), (DDDHdHd), (UUDHuHu), (QQQLLEHd),

(QQQQULHu), (QQQQDLHd), (QQQLLLHuHu), (QULLEEHd),

(QQUULEHu), (QQQUUDHu), (QQQUDDHd), (QQUDLEHd).
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