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ABSTRACT
Several therapeutic monoclonal antibodies (mAbs), 
including those targeting epidermal growth factor receptor, 
human epidermal growth factor receptor 2 (HER2), and 
CD20, mediate fragment crystallizable gamma receptor 
(FcγR)–dependent activities as part of their mechanism 
of action. These activities include induction of antibody-
dependent cellular cytotoxicity (ADCC) and antibody-
dependent cellular phagocytosis (ADCP), which are innate 
immune mechanisms of cancer cell elimination. FcγRs 
are distinguished by their affinity for the Fc fragment, cell 
distribution, and type of immune response they induce. 
Activating FcγRIIIa (CD16A) on natural killer cells plays 
a crucial role in mediating ADCC, and activating FcγRIIa 
(CD32A) and FcγRIIIa on macrophages are important for 
mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa 
generate variants that bind to the Fc portion of antibodies 
with different affinities. This results in differential FcγR-
mediated activities associated with differential therapeutic 
outcomes across multiple clinical settings, from early 
stage to metastatic disease, in patients with HER2+ breast 
cancer treated with the anti-HER2 mAb trastuzumab. 
Trastuzumab has, nonetheless, revolutionized HER2+ 
breast cancer treatment, and several HER2-directed mAbs 
have been developed using Fc glyco-engineering or Fc 
protein-engineering to enhance FcγR-mediated functions. 
An example of an approved anti-HER2 Fc-engineered 
chimeric mAb is margetuximab, which targets the same 
epitope as trastuzumab, but features five amino acid 
substitutions in the IgG 1 Fc domain that were deliberately 
introduced to increase binding to activating FcγRIIIa 
and decrease binding to inhibitory FcγRIIb (CD32B). 
Margetuximab enhances Fc-dependent ADCC in vitro 
more potently than the combination of pertuzumab 
(another approved mAb directed against an alternate HER2 
epitope) and trastuzumab. Margetuximab administration 
also enhances HER2-specific B cell and T cell–mediated 
responses ex vivo in samples from patients treated with 
prior lines of HER2 antibody-based therapies. Stemming 
from these observations, a worthwhile future goal in 
the treatment of HER2+ breast cancer is to promote 
combinatorial approaches that better eradicate HER2+ 
cancer cells via enhanced immunological mechanisms.

INTRODUCTION
Trastuzumab, a humanized human epidermal 
growth factor receptor 2 (HER2)-directed 
monoclonal antibody (mAb), increases disease-
free survival (DFS) and overall survival (OS) in 
early stage HER2-overexpressing/amplified 

breast cancer and improves progression-free 
survival (PFS) and OS in metastatic HER2-
positive (HER2+) disease.1 2 Trastuzumab was 
the first humanized mAb approved for cancer 
treatment and the first biologic agent approved 
for treatment of breast cancer. Since its initial 
regulatory approval in 1998, it is estimated 
that trastuzumab has been given to more than 
2.5 million women worldwide and is on the 
WHO’s list of essential medicines. Trastuzumab 
has revolutionized therapy of   HER2+ breast 
cancer.1 2 Both non-immune and immune-
mediated mechanisms account for trastu-
zumab’s clinical activity. Non-immune-related 
mechanisms result directly from binding of 
antibody fragment antigen-binding (Fab) 
domains to HER2 receptors on the tumor 
cell surface, causing perturbation of HER2-
signaling and resulting in antiproliferative 
effects.2 Immune-related mechanisms result 
from engagement of fragment crystallizable 
(Fc) domains of tumor cell-bound antibodies 
with Fc receptors (FcRs) expressed by immune 
cells. FcRs mediate cross talk between innate 
and adaptive immune responses and display 
polymorphic variants that exhibit different acti-
vation properties (figure 1).3–8

Fcγ receptors
FcRs are expressed on immune cells and 
bind the Fc portion of immunoglobulin.9 10 
Fcγ receptors (FcγRs), the largest group of 
FcRs, bind IgG and comprise several subtypes 
(figure 2).9–33 Low-affinity FcγRs, with binding 
affinities ranging from 30 nM to 1000 nM, are 
important mediators of antibody functions in 
vivo, including antibody-dependent cellular 
cytotoxicity (ADCC), antibody-dependent 
cellular phagocytosis (ADCP), and induction 
of cytokines and chemokines.11 Under phys-
iologic conditions, low-affinity FcγR binding 
is a function of avidity that occurs via multi-
merization in immune complexes or by cell 
opsonization.11 Low-affinity FcγRs include two 
activating receptors, FcγRIIIa (CD16A) and 
FcγRIIa (CD32A), as well as the sole inhibi-
tory receptor, FcγRIIb (CD32B).34 Activating 
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FcγRs signal via their immunoreceptor tyrosine-based 
activation motifs.9 34 The inhibitory FcγR contains an 
immunoreceptor tyrosine-based inhibition motif that 
counters cell activation when inhibitory and activating 
receptors become co-engaged.9 34

Monocytes, macrophages, and dendritic cells express 
both low-affinity activating FcγRs and the inhibitory FcγR, 

with antibody-mediated activation of these innate immune 
cells influenced by the FcγR activating/inhibitory ratio.10 
Monocytes, macrophages, and dendritic cells also express 
FcγRI, a high-affinity receptor that binds monomeric 
uncomplexed IgG molecules.11 FcγRI saturation by endoge-
nous circulating IgGs in vivo may attenuate its role in medi-
ating antibody function.35 Other circulating blood cells 
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Figure 1  Mechanism of action of anti-HER2 mAbs: antiproliferative effects and immune activation. ADCC, antibody-dependent 
cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; FcγR, fragment crystallizable gamma receptor; HER2, 
human epidermal growth factor receptor 2; mAb, monoclonal antibody; MHC II, major histocompatibility complex class II; NK, 
natural killer; TAA, tumor-associated antigen. The red X in the left panel indicates inhibition.

Figure 2  FcγRs differ in their function, cell distribution, immune response, signaling motifs, and affinity for IgG molecules. 
aDendritic cells internalize Ag:Ab immune complexes and present Ag to T cells. bCD32B is expressed on NK cells in ~3% 
of humans due to an FCGR2C-FCGR3B gene deletion that links the FCGR2C promoter to the FCGR2B coding sequence. 
cCD32C is expressed in ~20% of humans due to an unequal crossover of FCGR2A and FCGR2B genes. dSame ECD as CD16A 
but lacks intracellular signaling motifs. ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular 
phagocytosis; ECD, extracellular domain; FcγR, fragment crystallizable gamma receptor; GPI, glycophosphatidylinositol; ITAM, 
immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibition motif; NK, natural killer; NKT, 
natural killer T cell.
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generally express more limited repertoires of FcγRs.11 36 
Natural killer (NK) cells mainly express FcγRIIIa.11 36 NK 
cells and monocytes may also express FcγRIIc (CD32C); 
however, the gene for this receptor is polymorphic at a site 
that determines a premature stop codon in one of its exons; 
hence, translation yields a functional activating FcγR in only 
a minority (~20%) of humans.17 22 An even smaller subset 
(~3%) of humans have NK cells that also express FcγRIIb, 
the inhibitory receptor, due to a chromosomal deletion 
that juxtaposes the promoter of the gene for FcγRIIc with 
the coding sequences for FcγRIIb.16 37 Neutrophils express 
high levels of FcγRIIIb (CD16B), a glycosylphosphatidyl-
inositol–linked receptor that lacks intracellular signaling 
motifs and likely serves as a decoy receptor.32 Neutrophils 
also express FcγRI, FcγRIIa, and low levels of FcγRIIIa.30 
Platelets express FcγRIIa.38 B cells mainly express inhibitory 
receptor FcγRIIb,11 where it counters activation mediated 
by the B cell receptor. B cells may also express FcγRIIc, 
but only in a minority (~20%) of humans.27 36 While naïve 
T cells do not express FcγRs, subsets of activated CD4+ T 
cells may express FcγRIIIa, FcγRIIa, and FcγRIIb,39 40 and 
subsets of activated memory CD8+ T cells may express 
FcγRIIb.41 CD56+ (neural cell adhesion molecule) subsets 
of CD3+ T cells express FcγRs and are capable of mediating 
ADCC, such as NK T cells expressing FcγRIIIa and γδ T 
cells expressing FcγRIIa and FcγRIIIa.24 These small subsets 
of FcγR-expressing T cells potentially could influence the 
linkage between innate and adaptive immunity. Inhibitory 
receptor FcγRIIb is also expressed at high levels in non-
immune cells, such as endothelial and some stromal cells, 
where it functions as a scavenger receptor and mediates 
clearance of small immune complexes.42

FcγR polymorphisms
Numerous polymorphisms and allelic variations have 
been identified for FcγRs.10 43 FcγRIIa and FcγRIIIa allelic 
polymorphisms generate variants that bind to IgG Fc 

with different affinities correlating with relative ADCC 
potency. FcγRIIa 131H (histidine) and FcγRIIIa 158V 
(valine) have a higher affinity for IgG Fc, compared with 
FcγRIIa 131R (arginine) and FcγRIIIa 158F (phenylala-
nine), respectively. FcγRIIb allelic polymorphism gener-
ates variants with altered signaling function. The FcγRIIb 
232T (threonine) signaling variant is unable to associate 
with lipid rafts, resulting in impaired negative regulatory 
activity compared with FcγRIIb 232I (isoleucine). Preva-
lence of these polymorphisms in the general population, 
including healthy subjects and patients with cancer, is 
provided in table 1 and online supplemental table 1.44–73 
FcγRIIIa-158V homozygotes represent ~12% of the popu-
lation, across race.44–64 FcγRIIa-131H homozygotes repre-
sent  ~27% of Caucasians and Blacks44 45 49 50 54–56 58 65–67 
versus ~60% of Asians.48 59 60 62 FcγRIIb-232T homozygotes 
represent ~2% of Caucasians54 56 58 68–70 and ~6% of Asians 
or Blacks.48 68 70–73

ADCC mediated by therapeutic mAbs
ADCC is an Fc-dependent mechanism mediated by innate 
immune cells.11 36 ADCC by NK cells is mediated through 
its FcγRIIIa receptors,28 74 which bind Fc regions of tumor-
bound antibodies to form immunological synapses, trig-
gering secretion of perforins and granzymes that induce 
tumor cell death (figure 3).75 76 Five different granzymes 
have been described in humans: A, B, H, K, and M. Gran-
zyme B induces caspase-dependent apoptosis, whereas 
granzymes A, H, K, and M induce caspase-independent 
cell death.75 76

Diverse therapeutic mAbs, targeting CD20, HER2, and 
epidermal growth factor receptor, are capable of medi-
ating ADCC to eliminate cancer cells.77 Correspondingly, 
rituximab, ofatumumab, veltuzumab, ocrelizumab, trastu-
zumab, and cetuximab have demonstrated ADCC activity 
mediated by human peripheral blood mononuclear cells 
(PBMCs) or NK cells in vitro.3 77–79 ADCC stimulation 

Table 1  Prevalence of polymorphic variants of FcγRIIIa, FcγRIIa, and FcγRIIb, based on available literature

Total number of subjects (N)
Subject 
characteristics

FcγRIIIa-158 (CD16A-158)

VV (high affinity) VF FF (low affinity) V carriers F carriers

n % n % n % n % n %

6961 (across 21 studies)44–64 Healthy; with cancer 846 12% 3110 45% 3005 43% 3956 57 6115 88

Total number of subjects (N)
Subject 
characteristics

FcγRIIa-131 (CD32A-131)

HH (high affinity) HR RR (low affinity) H carriers R carriers

n % n % n % n % n %

4491 (across 11 studies)44 45 49 50 54–56 58 65–67 Caucasians; Blacks 1199 27% 634 14% 1081 24% 1833 41 1715 38

563 (across four studies)48 59 60 62 Asians 337 60% 194 35% 32 6% 531 94 226 40

Total number of subjects (N)
Subject 
characteristics

FcγRIIb-232 (CD32B-232)

II (functional allele) TI
TT (impaired 
allele) I carriers T carriers

n % n % n % n % n %

3390 (across six studies)54 56 58 68–70 Caucasians 2666 79% 669 20% 55 2% 3335 98 724 21

2315 (across seven studies)48 56 68 70–73 Asians; Blacks 1300 56% 868 38% 147 6% 2168 94 1015 44

FcγR, fragment crystallizable gamma receptor.

https://dx.doi.org/10.1136/jitc-2021-003171
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by trastuzumab against HER2+ breast cancer cells was 
demonstrated in ex vivo assays using human PBMCs or 
NK cells from patients with HER2+ breast cancer treated 
with trastuzumab.80 Subsequently, FcγR knockout mouse 
models demonstrated that activating FcγRs mediate in 
vivo antitumor activity of therapeutic antibodies such as 
trastuzumab or rituximab, whereas FcγRIIb inhibits in 
vivo antitumor activity.77 Trastuzumab Fc domain mutants 
engineered to disrupt FcγR binding also attenuate anti-
tumor effects in vivo.77 Interestingly, in vitro ADCC assays 
confirm that the HER2-directed antibody drug conjugate 
ado-trastuzumab emtansine (T-DM1) maintains ADCC 
activity of trastuzumab, which potentially may supplement 
the antitumor activity mediated by its cytotoxic payload.81

Pertuzumab binds independently (ie, without competing 
with trastuzumab) to a distinct epitope on HER2, which over-
laps the dimerization domain; however, it carries the same 
wild-type IgG1 Fc domain as trastuzumab.82 83 Pertuzumab is 

more effective than trastuzumab in inhibiting HER2 dimer 
formation with other HER family members, such as HER3 
or HER1.83 Both pertuzumab and trastuzumab can trigger 
ADCC.83 It is postulated that simultaneous binding of tras-
tuzumab and pertuzumab to HER2 enhances the density 
of FcγR binding sites on HER2+ tumor cells, increasing the 
possibility for NK cell–mediated ADCC and macrophage-
mediated ADCP antitumor responses.74 When the anti-
bodies were combined, a modest additive effect on ADCC 
was reported.83 However, the combination of trastuzumab 
and pertuzumab exhibited strongly enhanced antitumor 
activity in nude mice bearing HER2-overexpressing human 
KPL-4 breast cancer xenografts, which appears to be solely 
attributed to Fc-dependent effects because KPL-4 cells are 
resistant to the direct, antiproliferative effects of trastu-
zumab or pertuzumab.83 In the metastatic (CLEOPATRA)84 
and neoadjuvant (NeoSphere)85 settings of HER2+ breast 
cancer, significantly improved responses were observed 

Figure 3  Classical granzyme/perforin-mediated apoptosis pathway (adapted from Bots and Medema76). Bid, BH3 interacting 
domain death agonist; CAD, caspase-activated DNase; ER, endoplasmic reticulum; FcγR, fragment crystallizable gamma 
receptor; HER2, human epidermal growth factor receptor 2; HMG2,high-mobility group protein 2; ICAD, inhibitor of caspase-
activated DNase; mAb, monoclonal antibody; Mcl-1, myeloid-cell leukemia 1; NK, natural killer; PI-9, proteinase inhibitor 9; 
ROS, reactive oxygen species; tBid, truncated Bid.
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when trastuzumab and pertuzumab were combined. In 
CLEOPATRA, the end-of-study result for median OS was 
57.1 months (95% CI 50 to 72) for trastuzumab + pertu-
zumab + docetaxel compared with 40.8 months (95% CI 36 
to 48) for trastuzumab + docetaxel (HR 0.69; 95% CI 0.58 to 
0.82).84 In NeoSphere, the 5-year DFS result was 84% (95% 
CI 72% to 91%) for trastuzumab + pertuzumab + docetaxel 
compared with 81% (95% CI 72% to 88%) for pertuzumab 
+ docetaxel (HR 0.60; 95% CI 0.28 to 1.27).85

Improved clinical responses are observed when trastu-
zumab or trastuzumab + pertuzumab therapy is combined 
with taxane-based chemotherapy.2 85 Taxanes are micro-
tubule assembly inhibitors that disrupt cell division, but 
they can also exert effects on the immune system by 
inducing immunogenic cell death and triggering immu-
nostimulatory stress responses.86 For example, trastu-
zumab + taxane treatment of patients with HER2+ breast 
cancer has been shown to increase NKG2D expression on 
circulating NK cells and enhance trastuzumab-mediated 
ADCC measured ex vivo.87 NKG2D is a key receptor for 
NK cell activation that recognizes ligands (MHC class I 
chain-related A or B (MICA or MICB) proteins or UL-16 
binding proteins), which can be induced on breast tumor 
cells after taxane treatment.

Immunoglobulin Fc region glycosylation can signifi-
cantly affect receptor binding and ADCC activity. Hence, 
robust quality management systems are important to 
ensure process and product consistency when manufac-
turing such mAbs and their biosimilars.88 High levels of 
fucosylated glycans in the Fc region of some trastuzumab 
lots were found to be associated with reduced binding 
of trastuzumab’s Fc region to FcγRIIIa, which led to 
decreased ADCC activity.88 These commercial reference 
lots of originator trastuzumab were used in the control 
arm of the phase III neoadjuvant trial of the Samsung 
trastuzumab biosimilar SB3 in patients with HER2+ early 
breast cancer.89 Higher event-free survival rates in the SB3 
versus control arm were attributed to altered lots of tras-
tuzumab used in the trial, underscoring the importance 
of Fc-dependent mechanisms, including ADCC, in clin-
ical outcome.89 High levels of Fc region mannose glycans 
observed in other lots of trastuzumab were found to cause 
increased binding of trastuzumab Fc to FcγRIIIa, which 
led to an increase in ADCC activity.88

Fc-mediated activities of the antibody-drug conju-
gates (ADC) T-DM1, DS-8201a (or fam-trastuzumab 
deruxtecan-nxki), and SYD985 (or vic-trastuzumab 
duocarmazine), do not appear to be altered compared 
with the unconjugated parental antibody, since in vitro 
ADCC mediated by these ADCs was comparable to uncon-
jugated trastuzumab.81 90 91

Strategies to enhance ADCC activity of therapeutic mAbs
Diverse mAbs targeting various antigens have been devel-
oped using Fc glyco-engineering or Fc protein-engineering.92 
Antibody Fc glyco-engineering specifically improves 
FcγRIIIa binding affinity, which can enhance ADCC.93 94 As 
an example, obinutuzumab is a CD20-directed mAb that 

binds to a distinct but overlapping epitope compared 
with rituximab and has an afucosylated Fc domain that 
allows ADCC to be mediated more effectively in vitro than 
rituximab;93 obinutuzumab is approved for treatment of 
patients with chronic lymphocytic leukemia or follicular 
lymphoma. Compared with trastuzumab, afucosylated tras-
tuzumab enhanced ADCC mediated by human NK cells in 
vitro, delayed tumor progression in xenograft models of 
HER2-amplified breast cancer in immune-deficient mice 
transgenic for human FcγRIIIa-158F (the weaker binding 
variant), and improved antitumor responses in patients 
with solid tumors.95 96

Fc protein-engineering represents another strategy to 
enhance ADCC activity. For example, margetuximab, 
approved for HER2+ metastatic breast cancer (MBC), 
is an Fc-engineered anti-HER2 mAb that targets the 
same epitope as trastuzumab.97 Five amino acid substi-
tutions in the IgG1 Fc domain (L235V/F243L/R292P/
Y300L/P396L) led to increased binding to activating 
FcγRIIIa, but also decreased binding to inhibitory 
FcγRIIb.97 98 Margetuximab mediated enhanced ADCC in 
vitro compared with trastuzumab. In a xenograft model 
of HER2-amplified breast cancer in immune-deficient 
mice transgenic for human FcγRIIIa-158F, margetuximab 
exhibited greater antitumor activity than an otherwise 
identical variant with a wild-type IgG1 Fc domain.97 98

Editing of the glycocalyx, a thick coat of proteins and 
carbohydrates on the outer surface of tumor cells, with 
an antibody-enzyme conjugate that selectively removes 
sialic acids also improves ADCC.99 A trastuzumab-
sialidase conjugate desialylated tumor cells in an HER2-
dependent manner and this led to enhanced ADCC in 
vitro.99 Another approach to enhance ADCC is combina-
tion therapy; for example, treatment with trastuzumab 
and lapatinib increased ADCC in vitro by stabilizing the 
display of cell surface HER2.55 100 101 Lastly, a bispecific 
tribody ([HER2]2×CD16) that comprises two HER2-
specific single chain fragment variable domains fused to 
a Fab specific for the extracellular domain of FcγRIIIa 
was shown to mediate in vitro ADCC of HER2-expressing 
tumor cells more efficiently than trastuzumab.102

ADCP mediated by therapeutic mAbs
ADCP, which is mediated by phagocytic cells such as macro-
phages, monocytes, or neutrophils, is another important 
Fc-mediated mechanism of action of antibodies that target 
HER2+ tumors. Macrophages express all classes of FcγRs. 
Tumor-associated macrophages (TAM) from primary 
human breast tumors have been shown to promote 
tumor progression, and increased TAM infiltration often 
correlates with poor progression.103 Nevertheless, TAMs 
express elevated levels of activating receptors FcγRIIa and 
FcγRIIIa and retain the ability to phagocytose tumor cells 
in an antibody-dependent manner.104 In vitro studies of 
trastuzumab-mediated ADCP of HER2-overexpressing 
tumor cells demonstrate that FcγRIIIA has greater influ-
ence than FcγRIIa.105 Breast cancer xenograft studies in 
mice, in which macrophages are depleted by treatment 
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with clodronate liposomes, demonstrate that the antitumor 
activity of trastuzumab depends on macrophage recruit-
ment in the tumor tissues.21 Combination of trastuzumab 
and pertuzumab, presumably owing to increased avidity of 
binding to macrophage FcγRs, elevates ADCP potency in 
vitro compared with the individual antibodies.105

Strategies to enhance ADCP
The glyco-engineered Fc version of trastuzumab with 
enhanced FcγRIIIa binding affinity mediates ADCP in 
vitro better than wild-type trastuzumab.106 Variants with 
Fc domains engineered for increased affinity for acti-
vating FcγRIIa have enhanced ability to mediate ADCP 
but surprisingly, variants with altered binding affinity to 
inhibitory FcγRIIb have little effect on ADCP.107 CD47 
is an antiphagocytic ‘don’t eat me’ signal that is highly 
expressed in many cancers, including breast cancer, which 
functions to suppress phagocytosis through binding to 
and triggering signaling of macrophage SIRPα.108 Combi-
nation of trastuzumab and a CD47-blocking antibody 
(MIAP410) enhanced ADCP in vitro, and in immuno-
competent mice bearing HER2+ tumors, the combination 
improved antitumor responses and prolonged survival 
due to expansion and activation of TAMs and emer-
gence of a hyperphagocytic macrophage population.109 
In another study, combination of trastuzumab with an 
anti-CD47 mAb (magrolimab: Hu5F9-G4) enhanced 
ADCP in vitro and improved inhibition of HER2+ xeno-
graft growth in vivo, such that inhibition of tumor growth 
persisted even after treatment discontinuation. Signifi-
cantly increased susceptibility to ADCP was also observed 
in vitro against HER2+ breast cancer cell lines selected 
for tolerance to trastuzumab-mediated ADCC (yet 
retained cell surface HER2 expression levels).110 It will 
be interesting to discover whether margetuximab may 
further enforce ADCP mechanisms with magrolimab, as 
compared with trastuzumab. Future clinical translation 
of combinatorial therapeutic approaches targeting HER2 
and CD47 are warranted. Other promising approaches to 
improve ADCP against HER2-overexpressing tumor cells 
include combining trastuzumab with B7-H4 blockade111 
or combining trastuzumab with a histone deacetylase 
inhibitor, such as vorinostat or valproic acid.112

FcγR polymorphisms are associated with the clinical outcome 
of HER2+ breast cancer after trastuzumab in the neoadjuvant, 
adjuvant, and metastatic settings
FcγRIIIa and FcγRIIa polymorphism effects on breast 
cancer clinical outcomes have been studied in multiple 
settings (table 2).

The neoadjuvant randomized phase II CHER-LOB 
trial evaluated preoperative chemotherapy plus trastu-
zumab (Arm A) or lapatinib (Arm B) or trastuzumab 
and lapatinib (Arm C) in 121 patients with operable 
HER2+ breast cancer.55 Combined chemotherapy plus 
trastuzumab and lapatinib (Arm C) provided a statisti-
cally significant improvement in pathologic complete 
response (pCR) rate in the whole-study population.55 

Efficacy analysis by FcγRIIIa-158 genotype in 73 
patients from the CHER-LOB study showed that pCR 
rate improvement on chemotherapy plus trastuzumab 
and lapatinib was restricted to FcγRIIIa-158V carriers 
(pCR rate in Arm C vs A: 67% vs 27%, p=0.043; Arm 
C vs B: 67% vs 22%, p=0.012). By contrast, FcγRIIIa-
158F homozygotes had no significant improvement in 
pCR rate on chemotherapy plus trastuzumab and lapa-
tinib (pCR rate in Arm C vs A: 42% vs 25%, p=0.642; 
Arm C vs B: 42% vs 50%, p=0.737).55 Separately, a 
small prospective study with 15 patients with early stage 
HER2+ breast cancer showed that FcγRIIa-131H homo-
zygotes had higher pCR on trastuzumab-based neoad-
juvant chemotherapy (71% (5/7)), compared with 
FcγRIIa-131R carriers (0% (0/8); p=0.015).59 Another 
small prospective study with 26 patients with HER2+ 
ductal breast cancer treated with trastuzumab-based 
neoadjuvant chemotherapy, found that among the 12 
patients who achieved pCR, half were FcγRIIa-131R 
homozygotes (50% (6/12)), while the other half were 
either FcγRIIa-131H homozygotes (25% (3/12)) or 
FcγRIIa-131H/R heterozygotes (25% (3/12)), showing 
a statistically significant association between FcγRIIa-
131R homozygous genotype and pCR (p=0.012).113 No 
association was detected for the FcγRIIIa-158 polymor-
phism (p=0.590).113

The adjuvant randomized phase III NSABP B-31 trial 
demonstrated that addition of trastuzumab to postoper-
ative chemotherapy improves outcomes after surgically 
resected HER2+ breast cancer.114 Retrospective analysis of 
1156 patients from this study found that adjuvant chemo-
therapy plus trastuzumab provided greater DFS benefit 
in FcγRIIIa-158V carriers (HR 0.31; 95% CI 0.22 to 0.43; 
p<0.001), compared with FcγRIIIa-158F homozygotes (HR 
0.71; 95% CI 0.51 to 1.01; p=0.05).45 Of note, large retro-
spective analyses of over 1000 patients enrolled in the phase 
III BCIRG-006 trial or the phase III NCCTG-N9831 study 
found no correlation between FcγRIIIa or FcγRIIa polymor-
phisms and outcome (DFS) with adjuvant trastuzumab in 
early breast cancer.46 56 The analysis on patients from the 
NCCTG-N9831 trial found a statistically significant treat-
ment interaction between the FcγRIIb polymorphism (I/I 
vs T carriers) and treatment arms (p=0.03), with FcγRIIb-
232I homozygotes treated with adjuvant trastuzumab 
having a better DFS than those treated with chemotherapy 
alone (p<0.0001).56 Both studies had sampling biases that 
may have reduced power to detect genotype-treatment 
interaction. In BCIRG-006, the subset of genotyped patients 
did not show significant benefit from trastuzumab, unlike 
the effect seen in the overall BCIRG-006 population. Also, 
FcγRIIIa-158 genotype frequencies significantly deviated 
from Hardy-Weinberg equilibrium. By contrast, genotyped 
patients in the NCCTG-N9831 study had substantially better 
DFS than the entire NCCTG-N9831 population. A subgroup 
analysis conducted on 132 patients enrolled in the phase III 
UNICANCER-PACS04 trial treated with adjuvant chemo-
therapy followed by trastuzumab found that FcγRIIa-131H 
carriers had a significantly higher 5-year event-free survival 
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rate (90%), compared with FcγRIIa-131H homozygotes 
(70%; p=0.0278); whereas, clinical outcome was not associ-
ated with FcγRIIIa-158 polymorphism.115

A retrospective analysis of 54 patients with HER2+ MBC 
receiving trastuzumab plus taxane revealed that FcγRIIIa-
158V homozygotes experienced an improvement in 
PFS, objective response rate (ORR), and ex vivo ADCC 
activity, compared with FcγRIIIa-158F carriers (median 
PFS: V/V—not reached, F carriers—12.9 months 
(p=0.0035), F/V—15.0 months (p=0.008), F/F—11.1 
months (p=0.005); ORR: V/V—82%, F carriers—40%, 
F/V—42%, F/F—35%, p=0.03; normalized ADCC: V/V 
vs F carrier, p=0.04).54 Finally, the randomized phase III 
SOPHIA trial (NCT02492711) investigated margetux-
imab versus trastuzumab, each combined with physician’s 
choice chemotherapy in 536 patients with MBC after at 
least two prior anti-HER2 therapies. In SOPHIA, treat-
ment with margetuximab and chemotherapy improved 
independently assessed PFS over control in the whole-
study population.58 Efficacy analysis by FcγRIIIa-158 allele 
expression in 506 genotyped patients from the SOPHIA 
study showed that PFS benefit of margetuximab over tras-
tuzumab was increased in FcγRIIIa-158F carriers (median 
PFS: 6.9 months vs 5.1 months; HR 0.68; 95% CI 0.52 to 
0.90; p=0.005).58 Conversely, no margetuximab benefit 
over trastuzumab was seen in FcγRIIIa-158V homozygotes 
(HR 1.78; 95% CI 0.87 to 3.62; p=0.110).58 In the SOPHIA 
trial, no association of FcγRIIa-131 genotypes with benefit 
was observed for margetuximab, whose engineering did 
not increase binding to FcγRIIa.58 Of note, there also 
was no association between margetuximab benefit and 
FcγRIIb-232 genotypes; however, this signaling polymor-
phism does not affect IgG1 Fc binding, with margetux-
imab demonstrating reduced binding to either variant.58 
Importantly, Fc domain engineering to enhance immune 
effector function was shown to be clinically feasible in 
SOPHIA. Based on a recent press release, the SOPHIA 
final OS analysis for the intent-to-treat population did 
not demonstrate a statistically significant advantage in 
the margetuximab group compared with the trastuzumab 
group, while a numerical OS advantage was observed in 
the subgroup of patients homozygous for the FcγRIIIa-
158F low-affinity allele. In this trial, similar safety profiles 
between the margetuximab and trastuzumab treatment 
groups were observed, with infusion-related reactions 
more common in the margetuximab group.58 Finally, 
in the SOPHIA safety database, the adverse event ‘left 
ventricular cardiac dysfunction’ (all instances of which 
were asymptomatic and reversible) occurred in seven 
patients (3%) in each treatment group.58

FcγRIIa gene polymorphisms show more limited influ-
ence on outcomes, relative to FcγRIIIa. In a small prospec-
tive study of 35 patients with HER2+ MBC treated with 
trastuzumab, FcγRIIa-131H homozygotes experienced 
higher ORR and longer PFS compared with FcγRIIa-
131R carriers (ORR: H/H—40%, R carriers—10%, 
p=0.043, Fisher’s exact test; median PFS: 9.2 months vs 

3.5 months, p=0.034).59 Similarly, FcγRIIa-131H homo-
zygotes had superior PFS compared with FcγRIIa-131R 
carriers (HR 0.36; 95% CI 0.16 to 0.82; p=0.02) in a retro-
spective analysis conducted on 42 patients with meta-
static gastric cancer (GC) treated with trastuzumab and 
chemotherapy.62

FcγRIIIa polymorphism effects on clinical outcomes 
are also seen in other mAb-treated cancers. Rituximab 
and cetuximab have been assessed across studies in 
lymphoma and chronic lymphocytic leukemia (ritux-
imab), colorectal cancer, and head and neck cancers 
(cetuximab).116 Analyses of rituximab studies did not 
show statistically different PFS based on FcγR genotype, 
and analyses of cetuximab studies were inconsistent.116

Association of FcγR genotypes with the clinical activity 
of immunomodulatory antibodies that target molecules 
expressed by immune cells also has been investigated, 
although studies in patients with breast cancer have not 
been reported in the literature yet. Antibodies targeting 
programmed cell death protein 1 (PD-1) are most 
commonly IgG4 isotype or IgG1 isotype engineered for 
debilitated FcγR binding; these Fc domains are selected 
for their minimal interaction with FcγRs to focus the 
antibody effects on blocking PD-1 binding to its ligands, 
programmed cell death ligand 1 (PD-L1) and PD-L2, and 
avoiding Fc-mediated deletion of tumor-reactive PD-1-
expressing T cells.117 Indeed, anti-PD-1 mAbs with IgG1 
isotype are substantially less effective than those with 
IgG4 isotype.118 Thus, FcγR genotypes are irrelevant for 
anti-PD-1 mAbs, which is supported by the lack of asso-
ciation between FcγRIIIa polymorphism in patients with 
advanced melanoma treated with pembrolizumab or 
nivolumab, both of which are IgG4 isotype.119 By contrast, 
the activity of anti-PD-L1 mAbs may be enhanced by the 
IgG1 isotype. Studies in mouse models demonstrated 
that antitumor activity mediated by PD-L1 mAbs was 
enhanced by engagement of activating FcγRs and that 
this effect correlated with elimination of monocytes and 
modulation of myeloid cells within the tumor microen-
vironment.118 However, analysis of FcγRIIa and FcγRIIIa 
polymorphisms showed no impact on PFS in the recent 
JAVELIN study of avelumab, an anti-PD-L1 antibody of 
IgG1 isotype, in patients with renal cell carcinoma.120 
Fc-mediated effects also contribute to the activity of mAbs 
targeting cytotoxic T lymphocyte–associated antigen-4. 
Studies in mouse models demonstrate that the antitumor 
activity of ipilimumab (IgG1 isotype) is associated with 
depletion of intratumoral regulatory T (Treg) cells and 
increases in the CD8+ to Treg cell ratio.119 A meta-analysis 
of patients with advanced melanoma treated with ipilim-
umab revealed significantly higher response rates among 
FcγRIIIa-158V carriers with high insertion-deletion muta-
tions (p=0.016) or high neoantigen burden (p=0.043) 
compared with FcγRIIIa-158F homozygotes.119 Signifi-
cantly longer OS was also found in FcγRIIIa-158V carriers 
with high neoantigen burden (p=0.014) compared with 
FcγRIIIa-158F homozygotes.119 The same meta-analysis 
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did not find a correlation between FcγRIIa-H131R poly-
morphisms and response rates or OS.

Promotion of adaptive immunity by FcγRs
FcγRs can play a role in adaptive immune responses.36 121 
Innate immune activation is known to contribute to T 
cell–mediated adaptive antitumor responses.36 ADCC by 
activated NK cells or ADCP by macrophages or other 
immune cells cause tumor cell lysis, releasing tumor 
antigens that can be taken up and displayed on antigen-
presenting cells to prime adaptive, T cell–mediated anti-
tumor responses.9 121 Activated NK cell cytokines facilitate 
macrophage and dendritic cell activation that in turn 
stimulates cytotoxic T cell migration to the intratumoral 
space.74 121 ADCC and ADCP induced by treatment with 
antitumor mAbs generates antibody:tumor antigen 
immune complexes.29 FcγR-dependent mechanisms 
contribute to the uptake and processing of these immune 
complexes by antigen-presenting cells, thus facilitating 
tumor antigen presentation to T cells, resulting in T cell 
memory responses and long-term antitumor vaccinal 
effects.29 Trastuzumab was found to increase HER2 
antigen uptake by dendritic cells via an FcγR-mediated 
mechanism.4 Specifically, increased HER2 antigen 
uptake resulted in cross-presentation of the E75 peptide, 
the immunodominant epitope derived from the HER2 
protein, by dendritic cells, and this triggered priming of 
an antitumor immune response with increased antigen-
specific cytotoxic T cell generation.4

Innate and adaptive immune systems cooperate in 
patients with breast cancer after trastuzumab therapy.6 7 122 
In a phase II study of neoadjuvant chemotherapy plus 
trastuzumab in patients with HER2+ breast cancer, those 
achieving a pCR had increased activated NK cell percent-
ages and multiepitopic, polyfunctional (including HER2-
specific) antitumor T cell responses.122 Patients in the 
N9831 clinical trial who received adjuvant chemotherapy 
plus trastuzumab had higher post-treatment endoge-
nous polyclonal anti-HER2 antibodies relative to those 
who received adjuvant chemotherapy alone.7 These data 
support that trastuzumab therapy could promote an 
adaptive immune response that in turn generates addi-
tional patient-derived anti-HER2 antibodies. Importantly, 
higher post-treatment anti-HER2 antibodies were associ-
ated with improved DFS.7 Similarly, analysis of patients 
with HER2+ MBC from two phase II trials (N0337 and 
N983252) revealed that trastuzumab-containing therapy 
led to generation of anti-HER2 antibodies that associated 
with improved PFS.6

Fc-engineered margetuximab was also associated with 
enhanced HER2-specific adaptive immune responses 
in patients with HER2+ breast, gastric, or other cancers 
treated with prior lines of HER2 antibody therapy.123–125 
In these patients, post-treatment blood samples exhibited 
increased T cell clonality together with greatly increased 
frequencies of HER2-specific T cells and increased levels 
of HER2-specific antibodies compared with pretreat-
ment samples.124 125 Similarly, increased frequencies of 

HER2-specific T cells were observed in blood samples of 
patients with HER2+ GC in response to treatment with 
margetuximab and pembrolizumab.123

Mechanism of action of margetuximab, an Fc-engineered 
anti-HER2 mAb
The Fab portion of margetuximab shares HER2 
specificity of trastuzumab, whereas the Fc portion is 
engineered.97 98 While trastuzumab is humanized, 
margetuximab is chimeric, comprising variable domains 
from the murine trastuzumab precursor and human 
IgG1 constant (Fc) domains.97 98 Direct (Fc-independent) 
properties of margetuximab are similar to those of tras-
tuzumab; consequently, margetuximab and trastuzumab 
have similar binding affinity to HER2 protein and HER2+ 
cells, and antiproliferative activities of margetuximab 
and trastuzumab towards HER2+ tumor cells are similar 
(figure 1).82 Moreover, direct activity of both drugs can be 
improved by combination with pertuzumab, which binds 
to a different HER2 epitope.82 Fc-dependent properties 
of margetuximab, however, are enhanced compared 
with those of trastuzumab: margetuximab has higher 
binding affinity for both stronger-binding 158V and 
weaker-binding 158F allotypes of activating FcγRIIIa and 
decreased binding affinity for the inhibitory FcγRIIb.97 98 
Notably, margetuximab binds FcγRIIIa-158F with higher 
affinity than trastuzumab binds FcγRIIIa-158V.82 97 98

Margetuximab mediates ADCC more potently than 
trastuzumab in vitro97 98 and ex vivo126 across all FcγRIIIa 
genotypes.82 Correspondingly, margetuximab promotes 
greater NK cell activation and expansion/proliferation 
in vitro than does trastuzumab.82 Margetuximab also 
mediates ADCC in vitro with greater potency than pertu-
zumab.82 Moreover, margetuximab, with or without pertu-
zumab, mediates ADCC in vitro with greater potency than 
trastuzumab with pertuzumab.82 127

There are no direct comparisons of adaptive immune 
responses associated with margetuximab versus those 
associated with trastuzumab and pertuzumab. Based on 
comparisons across different independent studies that 
used comparable assay methods, increases in circulating 
HER2-specific antibody levels (mediated by B cells) were 
found in 42%–69% of trastuzumab-treated patients6 7 and 
in 94% of margetuximab-treated patients.125 Increases 
in T cell–mediated responses were found in 50%–78% 
of trastuzumab-treated patients8 and in 98% of 
margetuximab-treated patients.125

Combinations of anti-HER2 antibodies with checkpoint 
inhibitors or co-stimulators
Breast cancer has been traditionally considered poorly 
immunogenic, being characterized by relatively low tumor 
mutation burden. Nevertheless, recent evidence has 
revealed high tumor-infiltrating lymphocytes and PD-L1 
expression in tumor-infiltrating lymphocytes and breast 
cancer cells in a considerable proportion of patients with 
HER2+ breast cancer.128 Moreover, trastuzumab has been 
shown to upregulate expression of PD-L1 in HER2+ breast 
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cancer cells in the presence of immune effector cells,129 
which may limit the extent of trastuzumab-mediated anti-
tumor activity, since upregulation of the PD-1/PD-L1 
pathway leads to immune evasion. In the NeoSphere trial 
testing neoadjuvant HER2-directed therapies in patients 
with early stage HER2+ breast cancer, higher mRNA 
expression of PD-1/PD-L1 in tumor tissue samples was 
associated with lower probability of pCR in the pertu-
zumab + trastuzumab + docetaxel arm.101

Based on these findings, numerous clinical trials eval-
uating combinations of anti-HER2 mAbs with check-
point inhibitors are underway, with the goal of leveraging 
engagement of both innate and adaptive immunity. In the 
phase II portion of the PANACEA study, trastuzumab plus 
pembrolizumab (anti-PD-1, IgG4 isotype) showed 15% 
ORR in patients with PD-L1-positive, trastuzumab-resistant, 
advanced HER2+ breast cancer, but there were no objec-
tive responses among the PD-L1-negative patients.130 In the 
Canadian Cancer Trials Group IND.229 phase Ib trial, tras-
tuzumab plus durvalumab (anti-PD-1, IgG1 isotype engi-
neered for reduced FcγR binding) failed to demonstrate any 
responses in patients with HER2+, PD-L1-negative MBC.131 
The combination of anti-HER2 therapy with checkpoint 
inhibitors has proven successful in patients with advanced 
HER2+ gastric or gastroesophageal junction adenocarci-
noma (GEA).123 132 Based on the first interim results of the 
KEYNOTE-811 study, showing a 74% ORR in the pembroli-
zumab arm versus 52% in the placebo arm, the US Food 
and Drug Administration granted accelerated approval of 
pembrolizumab in combination with trastuzumab and fluo-
ropyrimidine and platinum-based chemotherapy as first-line 
therapy for patients with HER2+ advanced GEA.132 A phase 
II study of margetuximab plus pembrolizumab in previously 
treated patients with advanced or metastatic HER2+ GEA 
showed encouraging antitumor activity, particularly in the 
subgroup of HER2 immunohistochemistry 3+ and PD-L1-
positive patients, with 44% ORR and 72% disease control 
rate.123 Furthermore, preliminary results of margetuximab 
plus tebotelimab (a bispecific anti-PD-1 × anti-lymphocyte-
activating gene-3 dual-affinity re-targeting molecule) in a 
phase I study in patients with relapsed or refractory HER2+ 
tumors show an encouraging 21% ORR.133 134

A phase II/III study (MAHOGANY) is underway to 
investigate margetuximab plus checkpoint inhibitors 
with or without chemotherapy in the first-line setting 
for patients with HER2+ GEA.135 An ongoing neoadju-
vant investigator-sponsored phase II trial (MARGOT) is 
comparing margetuximab plus pertuzumab plus chemo-
therapy to trastuzumab plus pertuzumab plus chemo-
therapy in FcγRIIIa-158F carriers with stage II/III HER2+ 
breast cancer. In this setting, the hypothesis of a superior 
efficacy in the margetuximab arm may be tested by using 
clinical end points (eg, pCR) as well as molecular and 
immune end points (eg, tumor-infiltrating lymphocyte 
rate, immune phenotype, natural anti-HER2 antibodies, 
or immune gene expression profiling).

FcγRIIb expressed by immune effector cells serves as a 
checkpoint molecule based on its strong inhibitory effect 

on tumor targeting antibodies, which was unambiguously 
demonstrated in studies comparing the antitumor activity 
of trastuzumab in HER2+ tumor-bearing mice that were 
wild-type or genetically deleted for FcγRIIb.77 Adding 
to the complexity, there is preclinical evidence that for 
some agonistic anticancer antibodies, such as anti-DR5, 
anti-CD40, anti-CD137, and anti-OX40, cross-linking 
by FcγRIIb is necessary to successfully elicit antitumor 
responses.36 117 In addition, FcγRIIb expressed on tumor 
cells can contribute to resistance to tumor-targeting 
antibodies by facilitating internalization of tumor anti-
gens.136 Targeted blockade of FcγRIIb may help over-
come resistance and boost activity of clinically validated 
and emerging antibodies in cancer immunotherapy.36 
Antibodies specific to human FcγRIIb (which do not react 
with the FcγRIIa) have been isolated137 138 and shown to 
be capable of blocking the inhibitory effect of FcγRIIb.137 
Early stage clinical trials are ongoing to evaluate FcγRIIb-
blocking antibody BI-1206 as a single agent and combined 
with rituximab or pembrolizumab in B cell malignancy.36

CD137 (4-1BB) is an activation-induced costimula-
tory molecule that is expressed on activated T cells, NK 
cells, dendritic cells, eosinophils, mast cells, endothe-
lial cells, and some tumor cells.139 Ligation of CD137 by 
agonistic antibodies provides a costimulatory signal in 
multiple immune cell subsets, including enhancement 
of ADCC and ADCP.140 For example, an anti-CD137 mAb 
enhances trastuzumab-induced, NK-mediated ADCC 
against pancreatic cancer cell lines, even with relatively 
low amounts of HER2 expression.141 A phase I clinical 
study (NCT01307267) tested the CD137 agonist mAb 
utomilumab in combination with rituximab in patients 
with relapsed/refractory follicular lymphoma and other 
CD20+ non-Hodgkin’s lymphomas.142 The study demon-
strated anecdotal clinical activity and a favorable safety 
profile.142 Although the utomilumab sponsor recently 
deprioritized its further development in solid tumors, an 
investigator-initiated phase IB/II clinical trial of utomi-
lumab plus either trastuzumab or T-DM1 in refractory 
HER2+ MBC is ongoing and has not yet reported results 
(NCT03364348). Whether or not this trial, or future 
investigation of margetuximab combined with a CD137 
agonist, could renew interest in this approach remains to 
be explored. Another approach, consisting of a bispecific 
trivalent HER2×CD137×CD137 construct, could be useful 
to further assess the validity of the combinatorial strategy 
of CD137 agonism plus HER2 blockade.143

Future directions
The anti-HER2 mAb landscape continues to evolve, with 
several approved trastuzumab biosimilars, a recently 
approved novel anti-HER2 ADC (DS-8201a, trastuzumab 
deruxtecan),144 and another (SYD985)145 in late-stage 
clinical trials. Equally notable are recent approvals of 
anti-HER2 tyrosine kinase inhibitors tucatinib and nera-
tinib. In addition, there are HER2-bispecific mAbs in 
phase II clinical trials. Zanidatamab (or ZW25; binding 
the two distinct HER2 epitopes targeted by trastuzumab 
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and pertuzumab)146 is being tested in phase II studies (in 
HER2+/HR+ advanced breast cancer, in HER2+ advanced 
GEA, and in advanced HER2+ biliary tract cancers). Also, 
zenocutuzumab (or MCLA-128; targeting both HER2 and 
HER3)147 is being tested in a phase II study in patients 
with MBC with either HER2+ tumors or with estrogen 
receptor+/low HER2 expression.

Novel chimeric antigen receptor-T cells have also 
been developed to engage the Fc domain of tumor-
specific mAbs. In particular, an innovative construct 
(antibody-coupled T cell receptor) has been designed 
with FcγRIIIa-158V extracellular domain, CD8 hinge and 
transmembrane domains, and 4-1BB and CD3ζ intracel-
lular signaling domains.148 When these engineered T cells 
are transferred back into patients, they can be directed 
against HER2+ tumors by co-administering anti-HER2 
mAbs with functional Fc domains, such as trastuzumab.

Additional bispecific anti-HER2 mAbs are in preclin-
ical development. HER2(Per)-S-Fab, developed by 
linking the pertuzumab Fab to an anti-FcγRIIIa single-
domain antibody, showed potent cytotoxicity against 
HER2+ tumor cells in vitro and tumor growth inhibition 
in vivo.149 HER2-BsAb, designed for bivalent binding to 
HER2 (same specificity as trastuzumab) and monovalent 
binding to CD3, includes a silenced Fc domain to reduce 
risk of cytokine release syndrome.150 HER2-BsAb is able to 
redirect T cells against established tumors and has exhib-
ited increased antitumor activity versus trastuzumab both 
in vitro and in vivo.150

Conclusions
We have reviewed that FcγR-dependent activity is an 
important contributor to the mechanism of action of 
antitumor therapeutic mAbs, as demonstrated by (1) 
Differential antitumor responses based on patterns of 
Fc domain glycosylation (whether deliberate or acci-
dental) that impact on FcγR binding, (2) Influence of 
FcγR genotypes on clinical response to trastuzumab in 
HER2+ breast cancer, and (3) Fc-domain engineering 
to enhance binding to activating FcγRIIIa and attenuate 
binding to inhibitory FcγRIIb. Fc domain engineering 
has been shown to be clinically feasible and active in the 
case of margetuximab,58 leading to US Food and Drug 
Administration approval (the first for an Fc-engineered 
antibody) in patients with HER2+ MBC who have received 
two or more prior anti-HER2 regimens, with at least one 
for metastatic disease.
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