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Empirical comparison of travel time estimation methods

Xiaoyan Zhang, John Rice and Peter Bickel

Department of Statistics, University of California at Berkeley

September 3, 1999

Abstract

In this paper, we conduct an empirical comparison of travel time estimation meth-

ods based on single-loop detector data. The methods of concern are the regression

method based on an intuitive stochastic model as proposed by Petty et al. in [7], and

the conventional method of using an identity relating speed, 
ow and occupancy with

the assumption of a common vehicle length. The analysis is tailored to �t in the lim-

itations imposed by available �eld data sets. We also introduce several variations of

the regression method and give examples which suggest directions for future work to

further improve the regression method.

The comparison is composed of three interrelated parts, each with a di�erent focus:

local comparison (concerning a single link of freeway), comparison of estimated section

travel times over a prolonged stretch of freeway with multiple links and a visualized

approach which enables investigation of performance patterns in time and space of the

estimation methods.

1 Introduction

The travel time is an important variable in transportation engineering. It is a good opera-

tional measure of e�ectiveness of transportation systems and can be used to detect incidents

and quantify congestion. Accurate travel time information is crucial in many advanced

traveler information system (ATIS) functions. In recent years, many methods have been

proposed in order to acquire reliable travel time information.

Some of the methods strive to measure travel times directly using vehicle reidenti�cation

technology ([2, 6, 1]). These methods generally require video cameras or other special-

purpose equipments. In [1], Coifman proposed a methodology which can match a portion of

vehicles using vehicle length measurements, but the method still requires double-loop speed

measurements.
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The single-loop detector is widely present in existing freeway infrastructure due to its rela-

tively low cost and maturity of technology used. It is thus desirable to understand methods

which estimate travel times using single-loop data only. In this paper we conduct a thorough

empirical comparison of two such methods: the regression method proposed by Petty et al.

in [7] and the conventional method of estimating speed, thus travel time, using a classical

identity relating 
ow, occupancy and speed with the assumption of a common vehicle length.

The analysis is based on two �eld data sets. One is the I-880 data set (see [8]) which is a

comprehensive database containing double-loop data over a prolonged freeway section on

many days. The other data set used is the SR-24 data set (see [9]) which has highly selected

short periods of loop data accompanied by ground truth from simultaneous vehicle data.

The I-880 data also has loop-independent travel time information from probe vehicles. We

devise comparison strategies which endeavor to reveal characteristic performance patterns

of the estimation methods when applied under many di�erent conditions, within the limits

imposed by available data. We also incorporate some extensions to the regression method

in our comparison.

Although we present competing estimation methods here, it is not our intention to advocate

the usage of one method over the other. We hope, by understanding the strengths and

weaknesses of each method, to shed light upon the directions to be followed to improve the

methods.

The rest of the paper is organized as follows: we introduce the data sets used in the analysis in

x2. Each of sections 3 through 5 emphasizes a di�erent aspect of the comparison. Speci�cally,

we introduce the extensions to the regression method and compare the results concerning

a single pair of loops in x3. In x4 we consider the situation of applying the methods over

a multi-link freeway section and compare section travel times derived from each method on

many days. We then take a visualized approach to investigate characteristic patterns of the

methods in time and space in x5. We conclude with some discussions in x6.
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2 Data

We used two �eld data sets in our analysis: the I-880 data collected for the Freeway Service

Patrol Evaluation project ([11]); and the SR-24 data for testing a vehicle matching algo-

rithm from loop signatures ([9]). Details about the data sets are introduced in x2.1 and x2.2

respectively.

The major part of our analysis is based on the I-880 data set. It is a comprehensive database

on freeway operating conditions and incidents. In addition to high resolution double-trap

loop detector data, it also includes probe vehicle data and incident information. This dataset

turns out to be quite suitable for this analysis for a number of reasons. First, it is sizeable

in both time and space with many interesting tra�c patterns arising. This lends latitude

to our analysis and allows us to investigate the behavior of the regression method under a

wide variety of road conditions. Moreover, the relatively accurate double-loop speed esti-

mate and the probe vehicle travel times can be used as benchmarks in our comparisons. The

probe vehicle data is important to our analysis since it provides additional loop-independent

tra�c information and is the only source of actual observation of individual vehicle travel

times as opposed to point measurements from loop detector. Last, the accompanying inci-

dent database contains information on road conditions enabling us to better interpret results.

The SR-24 data is much smaller in scale. It contains two batches of data on a single study

link. Each batch has less than 20 minutes of data. The �rst batch is composed of free 
ow

tra�c while the other is of heavy congestion. This data set, although limited, is accompanied

by simultaneously collected video data from which vehicle matches between upstream and

downstream observations can be derived. This provides us with the ground truth needed to

investigate the goodness of estimated travel time distribution by the regression method, a

task which we had not been able to do in depth with the I-880 data.

2.1 I-880 Data

The I-880 data were collected on a heavily-used stretch on interstate freeway I-880 near Hay-

ward, California. The test site was approximately 6 miles long. In this region, the freeway

has four to �ve lanes with a high-occupancy vehicle (HOV) lane at left. The northbound

direction has 18 detector stations; there are 17 stations in the southbound direction. See

Figure 1 for a map of the test site. In the data collection period, there were also probe

vehicles driven around the study section during peak hours. We mainly used data collected

on 20 consecutive weekdays from Feb. 22 to March. 19, 1993 to conduct our analysis. [8]

describes the data collection e�ort in detail.
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Figure 1: Schematic map of the I-880 test site. The diamond sign denotes the HOV lane.
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Loop data

Loop detectors were placed approximately 1=3 miles apart on each lane. Flows, occupancies

and speeds at one second resolution were collected from 5am to 10am and then again from

2pm to 7pm on each weekday. The compressed data for each day is approximately 8 Mbytes.

As observed elsewhere, data quality was an issue. We occasionally missed data for one or

two loops for an entire day. Other than that, the most perplexing problems we encountered

were the unsynchronized clocks at all detectors and wrong lane labels for a few detectors.

We devised data-driven methods to deal with these problems (see [3]). For no obvious

reasons, we were unable to �nd the proper time o�sets needed to synchronize detector clocks

at some loops for four consecutive weekdays from February 16 to February 19, 1993. We

only used data from the remaining 20 days from February 22 to March 19, 1993 whenever

unsynchronized clock may be an issue.

Probe data

Throughout the experiment period, up to four probe vehicles were instructed to drive around

the study section at approximately 7 minute headway during peak hours (roughly 6:30am to

9:30am and 3:30pm to 6:30pm). The probe vehicles were equipped with instruments which

recorded their trajectories. One can derive travel times over an arbitrary stretch of freeway

from these trajectories. The probe vehicles provide the only chance of actually observing

travel times. Travel times from loop detector data are based on point measurements of

macroscopic tra�c conditions. However, the design of the data collection process deter-

mines that the resulting data is subject to in
uences of individual behaviors on the part

of probe vehicle drivers and restrictions such as limited availability of one or more probe

vehicles on some days.

We observe large 
uctuations of the number of probe runs on each half day as shown by the

histograms in Figure 2.1. Note that the variability is larger for trips in afternoons to both

directions. In the mornings, there were more probe vehicle runs during the last 14 days from

March 2nd to 19th, 1993. Within any half day, the actual headways still vary considerably.

The number of runs for each half day ranged from merely 4 runs to more than 20. We have

a total of 855 runs in mornings and 740 runs in afternoons for both directions.

The actual vehicle headways within a study period of three peak hours still vary considerably,

even on a \good" day with relatively more runs. (See Figure 3.) Moreover, occasional erratic

driver behavior can mar the data, as illustrated by Figure 4. There the driver actually pulled

over to the shoulder for some time before continuing on the trip. The implications of these

issues will be discussed where appropriate.
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Figure 2: Histograms of the number of probe runs on each of the 24 weekdays from February

16 to March 19, 1993. Left panels are for north bound mornings and afternoons. Right

panels for south bound trips. Note that the bottom right panel has a di�erent vertical scale.
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Figure 3: Probe vehicle tracks on a \good"

day with 20 runs. Y-axis is location. Tra�c

travels upward.

Figure 4: An erratic probe vehicle track is

highlighted by the thick dash line.

Incident data

The incident database was constructed on the basis of reports submitted by probe vehi-

cle drivers on incidents they encountered. For obvious reasons, there may be unreported

incidents and reported incident duration could be inaccurate. There were typically many in-

cidents recorded each day. Many of them, such as ticketing events, had no noticeable impacts

on tra�c. We mainly used the database to con�rm presence of incidents when suspected.

2.2 SR-24 Data

The SR-24 data were collected to test a vehicle matching algorithm based on signatures

from loop detectors. The data consists of signature waveforms of circuit readings and si-

multaneous video data. We were attracted to this data set mainly because ground truth

empirical distribution of link travel times can be derived from the accompanied video data,

and because the waveforms can be reduced to 
ows and occupancies comparable to outputs

of usual single loop detectors. [9] described the data collection e�ort in detail.

The test data was obtained from a �eld site on the westbound SR-24 freeway in Lafayatte,

California in December, 1996. Two stations 1.2 miles apart were instrumented with both en-

hanced double-trap loop detectors and video cameras. Loop detectors produced one circuit

reading every 0:013 seconds. The reduced loop detector data contains vehicle waveform at

the upstream and downstream detectors together with arrival time, lane position, speed and

estimated e�ective length (vehicle length plus detector size). Synchronized video data were

collected simultaneously. Vehicles in the video were matched manually to get the ground

truth vehicle match. Altogether we had 15 minutes of data with 830 vehicles under free 
ow
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Figure 5: Overlaid loop signatures at upstream and downstream detectors of the same

vehicle. Solid line is the upstream signature; dash line the downstream.

conditions on December 6, 1996 and less than 10 minutes of data from a heavy-congested

period with around 920 vehicles on December 12, 1996.

Figure 5 shows overlaid waveforms of the same vehicle at the upstream and downstream

stations. These raw waveforms are not suitable for our analysis. We derived time-stamped

vectors of 
ows and occupancies for each lane at one second resolution in order to be consis-

tent with the I-880 loop data set. The waveforms are reduced as follows: the 
ow(veh/second)

at the second in which a waveform starts (i.e. the second at which a vehicle arrives at the

detector) is imputed to be one; the occupancy(% of time for which the detector is \on") is

computed by dividing the number of positive readings within the second by 77, which is the

approximate number of outputs when sampling at 0:013 second interval.
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3 Local travel time estimation

This section is concerned with comparison at a local scale. In x3.1 we brie
y introduce

the single-loop based estimation methods involved in the comparison. To avoid reproducing

conclusions in [7], the comparison is largely between the method introduced there and some

of its variants. The comparison is carried out in two aspects: as travel time estimator and as

travel time distribution estimator. The section is concluded with discussions of the reasons

of the methods' di�culties in dealing with congestion.

3.1 Basic Methods

In this section, we introduce the travel time estimation methods involved in the comparison.

As mentioned before, this article is devoted to an in-depth performance evaluation of the link

travel travel time estimation method proposed by Petty et al. In doing so we compare it with

a frequently used estimator which utilizes a theoretical relationship involving speeds, 
ows

and occupancies, assuming a common vehicle length constant, as well as with benchmarks

such as double-trap speeds or ground truth measurements from video data (in the SR-24

dataset) when available. For convenience of narration, we will use the regression method

and the CVL (common-vehicle-length) method to refer to the two estimation methods later.

Since the CVL method is incorporated in the regression method, the section is organized

as follows. We start by introducing the CVL method. We then reiterate the methodology

of the regression method. We go on to present some possible extensions of the regression

method in e�orts to improve accuracy.

3.1.1 The common-vehicle-length(CVL) method

In the absence of double-trap detectors, speed is often calculated on the basis of 
ow and

occupancy:

speed = 
ow=(occupancy � g) (1)

where g is assumed to be a constant to convert occupancy to density and is related to the

average e�ective vehicle length (vehicle length plus detector size). The method is sensitive to

the value of g. In practice, g is usually calibrated during light tra�c conditions by imposing

a value for free-
ow speed. The reliability of the method lies in the validity of assuming g to
be constant over major portions of operating condition. Hall and Persaud ([5]) investigated

the assumption and presented results suggesting that g might be prone to a systematic bias

with respect to occupancy.

3.1.2 The regression method

Petty et al. ([7]) proposed an accurate estimation method based on a simple stochastic

model. Crudely, the model assumes that for a given brief interval of time, vehicles arriving
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at an upstream detector "choose" their travel times to the downstream detector at random

from a common probability distribution. This distribution is then estimated by comparing

the cumulative downstream arrival process, in a single lane for now, to its conditional ex-

pectation given the upstream arrival process. In doing so the CVL method is used to derive

the �t window, which is the assumed support of the distribution to be estimated.

More rigorously, we consider arrival processes at a pair of immediately adjacent detector

stations. We assume that the arrivals are exchangeable (thus not distinguishing passenger

cars and trucks, for instance)1. Let X(t) be the cumulative arrivals and xt be the 
ow count

at the upstream detector; similarly, Y (t) and yt for the downstream one. For simplicity we

take that xt and yt be measured every one second2. We have

dX(t) = xtdt =
X
i

�(t� �i)dt (2)

dY (t) = ytdt =
X
j

�(t� �j � �j)dt (3)

where �i's and �j's are upstream arrival times and travel times respectively. The model pos-

tulates that conditioning on all upstream events, �j 's are exchangeable and have a common

distribution independent of j and �j's, for TB � �j � TF . The assumption excludes such

situations as a change of tra�c regimes during [Tb; TF ].

Let f(�) denote the common marginal travel time density under the conditions. It can be

argued that, under realistic conditions

E[dY (t)jX] =

tZ
�1

X
j

�(t� �j � �j)f(�j)d�jdt

=
X
j

f(t� �j)dt

=< f; x >t dt

(4)

where < f; x > is the discrete convolution between fs = f(s) and xt. Relate the above

equation to (3). We see that f(�) can be estimated by the choice which minimizes the

discrepancy between < f; x > and yt, according to some criterion like least squared error.

Assuming that f(�) has support [a; b] (the �t window), we have

f̂s = min�1
TF+aX
t=TB+b

�
yt �

bX
s=a

xt�sfs
�2

(5)

1This assumption is necessary for loop detector datasets with no vehicle signature information, which

basically include all datasets with aggregation level in the order of 1 second or more.
2c.f. [7] for applying the method to data with measurement interval other than one second.
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Equation (5) reminds one of linear regression, which is why it has been called the regression

method. Actually, the method has been implemented using the nonnegative linear regression

package in MATLAB to conform to f̂s � 0.

As established in [7], we use a �x-width adaptive �t window [a; b] which centers at the travel

time estimate based on (1) with a suitable g. The width of the �t window is taken to be 30

seconds in the examples unless otherwise speci�ed. We generally take the result based on a

300 second data window [TB; TF ] centered at t as estimated travel time for upstream arrival

time t.

Mean, median or mode? The methodology above describes a procedure for estimating

the travel time distribution in the assumed model. Having determined such an estimate, the

question remains as to which summary statistic to use to estimate the quantity of practical

interest | the link travel time. The common choices are: the mean, the median and the

mode. The authors of [7] chose the mode over the mean, arguing that the former is less

sensitive to the choice of the �t window than the latter. However, the mode is quite sensi-

tive to the inherent variability associated with simultaneous estimation of large number of

parameters. We decided to settle on using the median as the travel time estimator. Our

experiences with the I-880 dataset suggest that the median is, at least to say, not worse than

the mode in this scenario.

3.1.3 Some extensions of the regression method

The regression method aims to estimate the travel time distribution under the hypothetical

model formulated earlier. The extensions to the method described here endeavor to improve

the estimated distribution without modi�cation of the model. We delay the discussion about

validity of this hypothetical model until later.

B-splines The number of parameters to be estimated in the regression method is deter-

mined by the �t window. One would want to use a su�ciently large �t window to re
ect a

wide range of driver behaviors. However, the large number of parameters could undermine

the reliability of the resulted density estimate. We can bring down the number of parameters

by imposing some parametric or semi-parametric forms on the travel time distribution. In

particular, we choose to use second order B-spline (piecewise linear) approximation (see [4]).

Speci�cally, we dictate that the estimated travel time distribution f(�) be of the following

form:

f(s) =

NspX
i=0

ai �Bi(s) (6)
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where Bi(�)'s are second order B-spline basis functions as shown in Figure 6. fs is then

estimated by f̂s =
PNsp

i=0 âi �Bi(s) where

â = min�1
fa:ai�0g

TF+aX
t=TB+b

�
yt �

bX
s=a

xt�s
X
i=0

NspaiBi(s)
�2

The resulted f̂s is then normalized to have area equal to one.

The B-spline approximation is indeed a non-full-rank linear mapping of the original param-

eter space. When Nsp = b � a where [a; b] is the �t window, the estimate is exactly the

same as that from the original regression method. The more interesting situation is when

Nsp is considerably smaller than the number of parameters under the original regression

method. The B-spline approximation amounts to a variation diminishing approximation of

the original estimate. We expect the estimated distribution to be increasingly smooth with

decreasing NSP . Since it is but only an approximation, it is not expected to succeed where

the original method fails. As will be demonstrated in examples later, the regression method

enhanced with B-spline approximation does not lose much, if any, to the original method in

terms of accuracy in estimated travel times when a suitable Nsp is used.

Exponential smoothing The idea of applying exponential smoothing to the regression

method is motivated by the fact that estimation at a certain time point does not take
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advantage of prior estimated travel time distribution even though it is reasonable to assume

travel time distribution evolves gradually rather than abruptly. Let f̂ i be the estimated

travel time distribution at time point ti, where t0; t1; t2; : : : are assumed to be evenly spaced

for simplicity. The distribution estimates f̂
E

i 's from the exponential smoothing version of

the method are:

f̂
E

0 = f̂ 0

f̂
E

1 = �f̂ 1 + (1 � �)f̂
E

0

: : :

f̂
E

i = �f̂ i + (1 � �)f̂
E

i�1

(7)

The parameter � decides the importance of the estimate at current time point. � = 1 cor-

responds to the original regression method. Since congested conditions are more volatile, it

is sensible to use larger � values under such conditions.

The idea is also inspired in part by the poor performance of the estimated travel time

distribution from the regression method during congested times, as we found when dealing

with the I-880 dataset. We suspect that the di�culty may be due to lack of homogeneity

in the batch of data used for estimation. We hope that we can improve the estimates by

combining exponential smoothing with a smaller data window.

3.2 Examples

Since Petty et al. already conducted careful comparison of the regression method and the

CVL method at a local scale, the examples here concentrate on comparing the original re-

gression method with its variations. The examples are organized as follows: x3.2.1 compares

the original regression method with its modi�cations in terms of accuracy of travel time

estimates based on the I-880 data, using travel times from the double-loop speed as bench-

mark. In x3.2.2 we discuss the e�ect of Nsp on estimated travel time distribution and present

results which may be the basis of a rule-of-thumb for selecting the number of B-splines to be

used in B-spline approximation. We use the SR-24 data set in this part of the comparison.

Finally we present examples illustrating the di�culty of the regression method in dealing

with heavy congestion condition.

3.2.1 Link travel time estimation

B-spline approximation In x3.1.3 we noted that the B-spline approximation is able to

cut down the number of parameters in the original regression method dramatically. The ex-

tension would not be an improvement if the accuracy of the travel time estimates was inferior.
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Figure 7: Link travel time estimated by B-spline extension. Solid line shows double-loop

estimates, dash line is the estimate using Nsp = 12, the dotted line is the original regression

method estimate.

In Figure 7 we compare the estimates from both the original regression method and the

B-spline approximation with Nsp = 12. In this example we focus on two loop detectors 1360

feet apart in the I-880 dataset. It takes 15 seconds to traverse the link at 60 mph. We use

a data window of jTB � TF j = 300 seconds. The �t window has a width of 30 seconds and

is centered at the travel time estimate given by the CVL method with 1=g = 22:6 ft. The

double-loop travel time estimate is computed by taking the average of speeds at upstream

and downstream detector to be the navigation speed through the entire link. In this �gure,

the dashed line and the dotted line overlaps over a large portion of time, showing that using

Nsp = 12 does not deteriorate estimation accuracy. Both of the estimated travel times

correspond to the double-loop travel times fairly well even during periods of considerable

congestion.
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Exponential smoothing Figure 8 contrasts the link travel time estimates using exponen-

tial smoothing with � = 0:4 and the original method (� = 1). Comparatively, the result with

exponential smoothing shows more variation under free 
ow conditions. Given the smaller

data window used by this method, the result is expectable. Since the variation in estimated

travel times is small in scale (mostly within 1 second), this does not su�ce as strong negative

evidence. However, note how the dashes line slight lags behind the other two lines, most

obvious when the travel time decreases rapidly. This suggests that the smoothing coe�-

cient selected is already too small. We do not have evidence that exponential smoothing

consistently improves the original regression method. We do not pursue further along this

line.

3.2.2 Estimation of travel time distribution

E�ect of the number of B-splines Here we concentrate on comparing the original

regression method with B-spline enhanced versions with respect to estimated travel time

distribution. The B-spline extension to the regression method poses a question about se-

lection of Nsp, the number of B-splines to be used. The situation is similar in spirit to the

bandwidth selection in kernel density estimation. By using fewer B-splines, one conceptually

gains in terms of variance reduction but incurs larger bias.

In the I-880 dataset, we only have travel times induced from double-loop speeds as proxy for

ground truth. Under light tra�c, the empirical distributions of travel times derived from the

upstream detector and the downstream one correspond to each other fairly well, but this is

not the case under even moderate congestion. We adhere to Nsp = 12 for the I-880 dataset

more or less arbitrarily.

We do have ground truth travel times from video data in the SR-24 dataset. It gives us

the opportunity to observe the e�ect of Nsp in terms of goodness of estimated distribution.

Figure 9 shows estimated distributions with di�erent values for Nsp. We note that the orig-

inal regression travel time distribution estimate is quite bumpy with many spurious peaks.

B-spline approximation e�ectively restricts the number of peaks and hence smoothes the re-

sulted distribution estimate. The plots show that the smoothed estimates track the majority

of mass fairly well.

The top left panel in Figure 9 shows L1 distances between the estimated distribution and

the ground truth. The dashed horizontal line is the L1-distance between the regression

distribution estimate and the empirical ground truth. Curiously, there is a minimum around

Nsp = 4. We looked at a few other examples. The minimums all occurred in the region

Nsp = 3 through Nsp = 6. The existence of a consistent region of minimums suggests

intrinsic degree of freedom for the underlying travel time distribution. It raises serious hopes

for parsimonious parametric models or mixture models. The B-spline estimate is itself a

mixture.
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estimates, dash line is the estimate with exponential smoothing coe�cient � = 0:4 using 120
second data window; the dotted line is the original regression method with estimate with

300 second data window. Both of estimated travel times use B-spline approximation with

Nsp = 12.
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Figure 9: E�ect of Nsp. Top left panel: L1 distances between f̂s and the ground truth fs
versus number of splines used; top right: solid line is the estimated distribution using the

original regression method, dash line is the ground truth from video data; bottom left and

right are for Nsp = 4 and Nsp = 12 respectively. The data used is the SR-24 data. The time

period of the data is around noon and there was no congestion. Recall that the link is 1:2
mile long.
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Figure 10: Estimated travel time distribution during congestion. The method used is the

regression method with Nsp = 12. Note that it takes 72 seconds to traverse the 1:2 mile link

at 60 mph.

3.2.3 Di�culty with the method during congestion

Figure 9 shows that the estimated travel time distribution during free 
ow condition after

appropriate B-spline approximation is reasonable. We cannot say the same for estimates

under heavy congestion. Figure 10 shows estimated travel time distribution using B-spline

enhanced regression method at two time points approximately 5 minutes apart during a

period of heavy congestion. Note that the �t window has to be enlarged to 50 seconds from

30 seconds used in previous examples so that the support of the ground truth empirical dis-

tribution is covered for both of the estimation points. The estimated travel time distribution

assigns signi�cant portion of mass in regions where none exists. The resulted travel time

estimator is also far from satisfactory accordingly. The regression method fails in this case.

3.3 Discussion

Via the comparison in this section, we �nd that the B-spline approximation is a favorable

addition to the original regression method which basically behaves as well as the regression

method in terms of estimated travel times, and e�ectively improves the estimated distribu-

tion by ruling out some false peaks. (We will take the regression method to be implicitly

using B-spline approximation from now on.)

However, the B-spline approximation is not a remedy for the di�culty during congestion

(see Figure 10). More fundamental changes the method may be necessary to improve its

behavior during congestion.
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3.3.1 Validity for the underlying model of the regression method

The regression method and its extensions introduced so far are all based on a crude model

which clearly can not be assumed to hold even approximately under heavy congestion. The

di�culties we encountered with these methods prompted us to think that the model might

be too primitive to accommodate the heterogeneity of tra�c in some cases. Figure 11 plots

travel times versus upstream arrival times for periods of free 
ow and congestion. It is clear

to see that although the assumption could be taken to hold approximately under free 
ow,

it clearly fails during heavy congestion in that one cannot �nd a practical data window in

which it can be assumed that travel times of vehicles arrived within the window can taken

to be exchangeable. It is also suggested in [1] that during congestion vehicles travel more

in platoons as a result of mutual in
uence imposed by increased volume and limited road

capacity. Changes to the model to accommodate such platoon behavior may be needed to

improve the regression method.
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Figure 11: Travel times versus arrival times based on the SR-24 data. Top panel is for free


ow situation; bottom panel for congested period. Note that Y-axis limits are di�erent.
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4 Comparison of estimated section travel times

In this section, we address the issue of estimating travel times over a prolonged multi-link

freeway stretch, i.e. section travel times. Information on section travel times over alternative

routes is essential in route guidance systems. The section travel time is also a readily un-

derstandable gauge of tra�c system performance. However, direct measurement of section

travel times is generally expensive to get and often requires special-purpose hardware. The

analysis described later compares the section travel time estimates based on two single-loop

based methods | the regression method and the CVL method. These empirical results may

bene�t those who need to estimate section travel times using single-loop detector data only.

Our analysis is based on the I-880 data. In the particular context, the section travel time is

considered to be the amount of time needed to traverse the entire stretch of the test site in

either north or south bound direction 3. As already mentioned, this �eld data set contains

both double-loop speeds and probe vehicle trajectories. Both of them act as proxies for

benchmarks in our comparison in the absence of ground truth.

The section is organized as follows: We explain how to obtain section travel times from each

of the four sources: probe vehicles, double-loop speeds, the regression method and the CVL

method in x4.1. We then discuss the imperfections of the �rst two as source of ground truth

and the comparison strategy we devised in light of the situation. Empirical results are then

presented.

4.1 Obtaining section travel times

For the I-880 data, there are four sources to get section travel time information | probe

vehicles and three loop-dependent means: double-loop speeds, the regression method and the

CVL method. It is straightforward to compute section travel times from the probe vehicle

trajectories by simply taking the di�erence between time stamps at the beginning and end

of the trip. For the latter three, section travel times are derived in a similar fashion from

hypothetical trajectories constructed with link travel time estimates. x4.1.1 describes the

process of constructing a hypothetical trajectory from link travel times. We cover obtaining

link travel time estimates in x4.1.2.

4.1.1 Hypothetical trajectory

We consider a K-link freeway stretch with detectors located at x0; x1; : : : ; xK. A trajectory

is de�ned by f(xi; ti); i = 0; : : : ;Kg where ti is the time at which a (hypothetical) vehicle

passes location xi. The section travel time departing at t0 is thus tK � t0. Denote the

3Due to missing loop data, we were only able to get travel times covering a large part of the test site. See

x4.3.1 for detail.
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estimated link travel times for the k-th link at time t to be Tk(t) for k = 1; : : : ;K. The

hypothetical trajectory based on collection of these estimates is constructed as follows:

t1 = t0 + T1(t0)

tk = tk�1 + Tk(tk�1); for k = 2; : : :K:

4.1.2 Link travel time estimation

Here we describe how to construct link travel time estimate at time t using double-loop

speeds, the regression method and the CVL method, respectively. For all three methods,

the estimate is based on batch of data measured within a time window. We refer to this

window as the data window. We use a 300-second data window centering at t throughout
the analysis in this section.

There are slightly di�erent ways to construct link travel time estimates for each of the three

methods. For example, for the double-loop speeds and the CVL method, one can choose to

compute the travel time using the average of speed measurements from both the upstream

and downstream detectors, instead of using only the upstream speeds (our procedure). One

can also choose to use di�erent values for parameters (such as the number of B-splines Nsp)

involved in the regression method. We chose the particular form of implementation largely

arbitrarily. We believe that the results would not change in essence with di�erent implemen-

tations or parameter settings.

For now, we only used data from a single lane to estimate travel times for all three methods.

The lane we used is lane 3 which is the third lane from the left and is the outer middle lane

for major part of the I-880 test site. Loop data from middle lanes are usually easier to work

with 4.

Double-loop speeds: For the double-loop speed, the link travel time is computed by

assuming that the vehicle traverses the link at the average upstream speed, where the average

is taken over speed measurements within the data window at the upstream detector.

The regression method: x3.1.2 describes the methodology of the regression method.

We use the B-spline extension with NSP = 12 for this part of the analysis. The center of the

�t window is estimated using (1) with data from both the upstream and the downstream

detector.

4The innermost and outermost lanes are usually avoided in studying tra�c patterns because: the inner-

most lane is usually occupied by faster vehicles, the outermost lane is connected with the on/o� ramps and

experiences frequent changes in tra�c volume caused by merging/leaving vehicles.
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The CVL method: For the CVL method, equation (1) is used to get a speed estimate.

The flow and occupancy in the equation are taken to be the corresponding average within

the data window at both the upstream and the downstream detectors. The link travel time

is computed accordingly. The common vehicle length constant 1=g is taken to be 22:6 feet.

The same constant is also used in the regression method in computing the �t window. The

resulted link travel time estimate is generally di�erent from the center of the �t window in

the regression method, since the latter uses data from both detectors.

4.2 Benchmarks

The object of our analysis is to compare the performances of the regression method and the

CVL method as section travel time estimators. We have reasons to believe that the perfor-

mances of the two estimators depend on tra�c condition. Therefore, an ideal benchmark

should provide ground truth section travel times under all tra�c conditions in the scope of

the comparison.

Before further discussion of benchmarks to be used in the comparison later, it is necessary

to clarify our notion of ground truth section travel times. The section travel time of a given

vehicle is unambiguously the time elapsed between the vehicle entry and exit of the section

studied. Travel times from probe vehicle data are direct measurements of section travel times

for the few probe vehicles. In practice, one is generally interested in some measure of \av-

erage" travel times such as the mean or median travel time for all vehicles passing through

the section within a suitable time period. Hence the ground truth can only be acquired

by tracing all vehicles throughout the study section for a prolonged time period, which is

generally too di�cult to accomplish in the real world. A more realistic alternative is to trace

a su�ciently large (random) sample of vehicles via vehicle reidenti�cation mechanisms, such

as video tracking or using vehicles equipped with transponders.

For the I-880 data set, the only choices we have are section travel times derived from probe

vehicle data and double-loop speeds.

4.2.1 Probe vehicle travel times

The probe vehicle data provides a sparse sample of direct measurement of vehicle travel

times for our purpose. It is also arguable that this sample could be biased in the sense that

probe vehicle drivers were consistently more or less aggressive than typical drivers. The lat-

ter assertion sounds more re
ective of the actual situation given the fact that probe vehicle

drivers had the additional responsibility to relay incident information they encountered on

the way. To check this, we examined the scatter plot of probe vehicle speed when passing a

loop detector station versus the speed measured by the corresponding double-loop detector.

The plot is shown in Figure 12. The solid line is the 45 degree line. Note that the majority

of the points is below the line. This is evidence supporting that probe vehicles tend to be
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Figure 12: Probe vehicle speeds versus the double-loop speeds. The X-axis represents the

double-loop speed. The plot is based on 357 points of the north bound runs in the morning of

March 11, 1993. The double-loop speed plotted is the average speed of measurements within

30 seconds of the time of passing of the probe vehicle. The diagonal line is the 45-degree

line.

slower than the general tra�c5.

Another source of sampling bias for the probe vehicle section travel times is caused by the

limited number of available vehicles. As mentioned earlier, there were only a �xed number

of probe vehicles available for driving around the test site loop as any time. The number

of runs these vehicles could make is smaller when it took longer to go around the loop as

in congested periods. This poses a dilemma since tra�c conditions in congestion are more

volatile than those in free 
ow, and one needs more points to characterize tra�c in congestion

5Careful reader may notice that there are a few points on the vertical axis in Figure 12. This is normal

since we only used data from a single lane in computing the double-loop speed in the plot. If there is no

vehicle passing in that lane within 30 seconds of the moment of passing for a probe vehicle, the corresponding

double-loop speed will be zero.
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rather than less.

4.2.2 Section travel times from double-loop speeds

Double-loop speeds are point measurements. One implicitly assumes that vehicle speed

remains constant in computing travel times from them. This works �ne in free 
ow situation,

but is more questionable in congestion when the tra�c is highly volatile and actual speeds

change quickly. We do not have means to rigorously quantity the bias induced as such for

the I-880 data. It is reasonable to assume that the bias is small in magnitude relative to the

inherent variability of a single observation as provided by probe vehicle data.

4.3 Comparison

As already mentioned, the goal of the comparison is to discover performance characteristics

of two single-loop based travel time estimation methods | the regression method and the

CVL method | in estimating section travel times. The comparison is based on the I-880

data set. In this particular data set, the only two choices of benchmarks for section travel

time comparison are both 
awed. The probe vehicle travel times are sparse, subject to sam-

pling biases and occasional vagaries of the drivers. On the other hand, we do not have much

information about the accuracy of the other benchmark | travel times from double-loop

speeds, except that its accuracy varies with tra�c conditions too. Keeping the above points

in mind, we propose a point-by-point comparison in which travel times associated with each

probe vehicle run are computed using both of the single-loop estimation methods and the

other benchmark | the double-loop speeds. We then focus on studying the estimation

errors relative to both of the benchmarks (di�erences between estimated and benchmark

travel times) in relation to the trip inception time, an explanatory variable which we take to

be indicative of historical tra�c conditions. The comparison remains exploratory in nature

as a combined result of restrictions imposed by available data and limited knowledge of the

complex tra�c dynamics.

We introduce notation for section travel times involved in the comparison: INCT denotes

the trip inception time; TT with suitable subscript represents the section travel time from

the respective source; namely, TTprobe for probe vehicle travel times, TTdbl for double loop
travel times, TTreg for regression method estimated travel times and TTCVL for those using

the common vehicle length method.

Preparation of travel times data and some preliminary analysis of the two benchmarks are

described in x4.3.1. After that, we present descriptive statistics of estimation errors in

x4.3.2. The last part of the comparison is a test which compares the percentage of coverage

for estimation intervals based on each of the estimation method. This is discussed in x4.3.3.
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4.3.1 Setup and preliminary analysis of benchmarks

The task of compiling travel times is complicated by data quality problems. For now, we

focus on data collected in mornings only. Frequently detailed results are only presented for

the north-bound tra�c. All loop-based results are computed using data for lane 3.

We describe procedures to construct hypothetical vehicle trajectories in resemblance to the

observed probe vehicle trajectories in x4.1. Corresponding hypothetical trajectories are com-

puted for each probe vehicle covering the full stretch of the test site using all three loop-based

methods (double-loop speeds, the regression method and the CVL method, namely.). Oc-

casionally, we missed data of one or more types (
ow/occupancy/speed) from some of the

loops. For this reason, we were not able to estimate the hypothetical tracks for the entire

trip for a few days. For consistency, we restricted the comparison to travel times for the

freeway stretch for which trajectories from all four methods are computable. For the north

bound/AM data, the stretch is about 5 mile long from loop 5 to loop 3. For the south

bound/AM, it is around 5:4 miles from loop 3 to loop 56. The section travel times we discuss

later are for these freeway sections unless otherwise speci�ed.

Figure 13 and Figure 14 plot probe vehicle travel times for the north/south bound trips for

all 20 days. Note how the plots for north bound trips on 3/10/1993 and south bound on

3/3/1993 stand out. There were severe incidents on those two days and the tra�c patterns

were vastly di�erent in nature from the other days. For this reason, we excluded those two

days from the analysis later. One can also pick up occasional stray probe vehicles from these

plots. For example, the �rst observation on north bound 3/17/1993 and the largest one on

south bound 3/11/93 look more like results of individual decisions than prevailing tra�c

conditions. The e�ect of these stray observations is twofold. First it somewhat compromises

the role of probe vehicle data as source of benchmark travel time information. On the other

hand, this is not entirely negative since it mirrors real-world situations. The probe data can

be used as test data to check performances of estimation intervals (see x4.3.3) exactly for

this reason.

Figure 13 and Figure 14 also show that probe vehicle travel times on a single day generally

forms a rather smooth line. This indicates that there is strong correlation between consecu-

tive probe vehicle runs.

We are interested in how the section travel time is related to when the trip is started, i.e.

the trip inception time over many days. We devise a type of plot to depict the relationship.

Some examples are shown in Figure 15. This type of plot is constructed in the following

way. For a certain collection of travel times on many days (for example, the top left panel

plots TTprobe for northbound trips on mornings.), we �rst divide the range of trip inception

times into small non-overlapping intervals. The travel times data are then binned according

6cf. Figure 1. The loop detectors are not numbered sequentially.
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Figure 13: North bound probe vehicle runs on mornings of 20 week days.
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Figure 14: South bound probe vehicle runs on mornings of 20 week days.
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to their trip inception times. We then plot summary statistics of data in each bin against

the center of the bin. Speci�cally, we plot the median and the �rst and third quantiles. We

can get a sense of how the center and the median of each bin change with INCT from this

type of plot. Similar plots can also be constructed for di�erences between travel times from

di�erent sources as in the two bottom panels in Figure 15.

In Figure 15, the thick line is the median, the two thinner ragged lines are the �rst and third

quantiles respectively. The ends of the vertical lines depict the minimumand maximumtravel

times. The number at the lower end of the lines are the number of observations in each bin.

Note that these numbers directly a�ect the accuracy of the summary statistics of the corre-

sponding bin. When this number is relatively small, a few extreme observed/estimated travel

times can dominate the summary statistics. One should keep this in mind when observing

this type of plot.

Figure 15 plots benchmark travel times and their di�erences for both directions. The two

panels in the top row are for TTprobe. We can observe distinct tra�c patterns in both di-

rections from them. The north bound/AM trip is far more congested than the opposite

direction with serious congestion in the period from 7AM to 9AM. For both directions, we

are not surprised to �nd that variability in travel times is larger during heavy tra�c. Panels

in the middle row show plots for TTdbl. They recon�rm the tra�c patterns observed in the

probe vehicle travel times plots. The transition of TTdbl with time appears to be somewhat

smoother than TTprobe. This is easier to observe in the south bound plots and in late morning

portion of the north bound ones. Variability of TTdbl also appears to be smaller than that of

TTprobe for the south bound tra�c. The distinction between the benchmarks is more clearly

observed in the bottom panels of Figure 15 which plot TTprobe � TTdbl. For both directions,

the median probe vehicle travel time is almost consistently larger than that of the double

loop travel times. This concurs with our previous conclusion indicating that probe drivers

tend to be conservative. Looking at the two bottom panels individually, variability in the

di�erence does not appear to change obviously with the trip inception time. However, the

south bound plot displays slightly lesser variability in TTprobe � TTdbl, indicating that vari-
ability of the di�erence is also loosely related to tra�c conditions. Summary statistics for

TTprobe � TTdbl is tabulated in Table 1. We notice that the di�erence between two bench-

marks is more signi�cant for the south bound trips. This is understandable considering that

conservativeness of probe drivers is more distinguishable under lighter tra�c which has more

presence in the south bound tra�c.

Summarizing the previous discussion, we draw the following conclusions:

1. The probe vehicle travel times is conservative. The bias is larger under free 
ow

conditions.

2. The individual probe vehicle runs are not mutually independent. Not only consecutive

runs are strongly correlated, but also runs departing around roughly the same time on
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Figure 15: Benchmark travel times. Left panels are travel times from probe vehicles, double loop

speeds and their di�erences for north bound runs. Right panels for south bound. The thick line is

the median. Two thinner ragged lines are the �rst and third quantiles respectively. Vertical lines

depict maximums and minimums. The number at the lower end of the vertical lines are the number

of observations used to compute the summary statistics.



mean SD median interquartile range

North/AM 8.5 34.2 7 27

South/AM 23.5 33.1 19 21

Table 1: Summary statistics for TTprobe � TTdbl. The unit for all entries is second. The

second column is the standard deviation. The last column is the interquartile range which

is the di�erence between the third and �rst quartiles.

di�erent days are also related.

3. For the I-880 data set, the south bound tra�c in the morning displays less activity

than the opposite direction.

4. Variability in benchmarks are in
uenced by tra�c conditions. In particular, TTdbl
demonstrate smaller variation during free 
ow conditions compared to TTprobe. It also
implies that the comparison results later can not be taken out of the context determined

by the data used.

4.3.2 Descriptive statistics of estimation errors

We now compare the estimation errors of the regression method and the CVL method rel-

ative to the double loop travel time. The motivation for using the double loop travel time

instead of the probe vehicle travel time as the basis for this part of the comparison is that

intuitively TTdbl is less prone to unpredictable randomness introduced by active involvement

in the data collection process. The observations in x4.3.1 also suggests that TTdbl is more

stable than TTprobe. We also use TTprobe � TTdbl as reference sometimes.

Figure 16 plots TTreg � TTdbl and TTCVL � TTdbl with respect to the trip inception time

INCT in the same way that was used in Figure 15. Panels in the middle row of Figure 15

are reproduced in the top row here to ease cross-referencing tra�c conditions. Again plots

for the northbound trips are in the left column, those for the south bound in the right.

We notice that the plots for the estimation error of the regression method display similar fea-

tures for both of the directions. Namely, the median error holds roughly constant throughout

the morning; the wider range of variation in errors (indicated by longer vertical lines in the

plots) are associated with wider range of variation in TTdbl. It is interesting to see that the

regression method appears to successfully correct the bias associated with the CVL method,

taking account of the close relationship between the two methods.

We can not say the same thing for the error of the CVL method displayed in the two bottom

panels. The plots reveal signi�cant and di�erent trends with INCT for the two directions.

In both directions, the overall trend for the CVL error is to increase as INCT approaches

late morning. For the north bound, the median CVL error jumps from negligible to 40 sec-

onds around 8AM which is roughly when the tra�c reaches peak of congestion historically.
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Figure 16: Estimation errors relative to the double loop travel times. Left panels are for

the north bound trips, right panel south bound. In each column of plots, the �rst one is

for TTdbl replicating the corresponding middle panel in Figure 15; the second and third are

for estimation errors of TTreg and TTCVL relative to TTdbl. The thick line is the median.

Two thinner ragged lines are the �rst and third quantiles respectively. Vertical lines depict

maximums and minimums. The number at the lower end of the vertical lines are the number

of observations used to compute the summary statistics.



For the south bound tra�c, the median error starts to increase shortly after 7AM and the

trend is sustained until the end of the available data. By then, the median error reaches

25 seconds. Note that the south bound tra�c heads toward minor congestion also around

7AM, as illustrated in the top right panel.

Table 2 presents summary statistics for all estimation errors relative to TTdbl. The errors in
the south bound direction demonstrate lesser variability than their north bound counterpart.

This can also be inferred from the plots in Figure 16.

mean SD median interquartile range

North/AM TTreg � TTdbl -3.4 18.9 -6 16

TTCVL � TTdbl 19.5 28.5 15 33

TTprobe � TTdbl 8.5 34.2 7 27

South/AM TTreg � TTdbl -2.5 15.2 -5 13

TTCVL � TTdbl 7.5 23.1 4 24

TTprobe � TTdbl 23.5 33.1 19 21

Table 2: Summary statistics for estimation errors of the regression method and the CVL

method relative to the double loop travel time. The unit for all entries is second. The second

column is the standard deviation. The last column is the interquartile range which is the

di�erence between the third and �rst quartiles.

The descriptive statistics of estimation errors for the two single-loop based methods manifests

that the performance of both estimators are tied in with tra�c conditions. For the regression

method, larger variability in estimation error can be traced back to heavier tra�c conditions.

The e�ect of tra�c conditions are the CVL method is harder to summarize. We attempt to

establish the missing link in x4.4. We �nd that the regression method travel time corresponds

to the double loop benchmark very well, with error margin well under 10% most of the time.

The CVL method also works well under free 
ow and light congestion.

4.3.3 A test

For further investigation, we propose a mock test which attempts to assess the loss of ap-

plying either of the single-loop based estimation method to get section travel times in a

real-world situation. The test is designed as follows: For each value of trip inception time

INCT , we estimate the section travel time to be cTT . We construct an estimation interval

based on cTT with 10% margin of error attached, i.e. the interval is [0:9cTT; 1:1cTT ]. The

index of goodness p is the percentage that the interval covers the observed probe vehicle

travel time TTprobe associated with the corresponding INCT .

The test originates from the idea that a reasonable measure of usability of a section travel

time estimation method in many practical application is the probability that the travel time
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for a random selected vehicle is in close neighborhood of the estimator. The design of the

test implies that the probe vehicle is treated as randomly selected from the vehicle popula-

tion departing the trip start at INCT , which is certainly not the case. However, since the

probe vehicle runs were indeed conducted independent of loop detector data, the test is still

applicable.

As already mentioned, we use a very crude estimation interval which centers at the section

travel time estimate with 10% margin of error. The only justi�cation for using this interval

is that accuracy within 10% is satisfactory for many applications (including dynamic route

planning, automatic incident detection etc.) requiring real-time section travel time informa-

tion, as suggested in [12]. Alternative intervals could be used as well.

We apply the test to all three loop-based methods. The result for the double loop travel time

is used as reference. Figure 17 shows the percentage of coverage p against INCT for the

north and south bound data. Overall p for TTdbl stays near or above 0:8 in both directions

and is better than either TTreg or TTCVL most of the time. For the north bound, TTreg
works slightly better during the time frame of historical congestion. In the right panel of

Figure 17, the percentage of coverage for TTCVL embarks on a increasing trend right af-

ter 7AM until it dominates that of TTreg and even TTdbl. The time frame again reminds

us of historical congestion time period for the south bound. Summarily, the plots deliver

con
icting messages about the two single-loop based methods, with TTreg preferable for the
north bound tra�c and TTCVL for the south. Comparing the mean percentage of coverage

in either direction (presented in Table 3) suggests the same conclusion.

It should be noted that the accuracy of the percentage of coverage plotted in Figure 17 is tied

in with the number of the observations used to compute them, which is in turn determined

by how many probe vehicle runs originated in the corresponding time slots. In particular,

the �rst point in both of the panels in Figure 17 are based on 2 and 5 points respectively.

Those values for p are unreliable since a few erratic probe runs had huge in
uence on the

resulted percentage of coverage. We presented the number of observations for each time slot

as the small typeface numbers along the ragged lines in Figure 17. It is worthwhile to pay

attention to them when examining the �gure.

The conclusion is contrary to our expectation, since the descriptive statistics of errors seem

to suggest that TTreg is no worse than TTCVL even in the south bound direction. A plausible

explanation may be that the upward trend of estimation error for TTCVL (see the bottom

left panel in Figure 16) works in favor of the CVL method since TTprobe tends to bias in the

same direction relative to TTdbl (See the bottom panels in Figure 15 which shows that TTprobe
is generally larger than TTdbl. The bias is more clearly observed in the bottom right panel

showing the south bound tra�c.). It will be interesting to look at results using adjusted

probe vehicle travel times as test data where the adjustment is made to diminish the inherent

bias of TTprobe. We delay further discussion of the results to x4.4.
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Figure 17: p: the percentage of coverage versus the trip inception time. Left panel is for the

north bound. Right the south. The numbers in the plots are the number of observations

used to compute p for results at the corresponding trip inception time.

p(%) TTdbl TTreg TTCVL
North 85 78 73

South 80 69 75

Table 3: The mean percentage of coverage over all data.
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4.4 Discussion

From the various analyses in this section, it is our conclusion that the regression method

work satisfactorily as section travel time estimator in the particular setting of the I-880 data.

Its performance during congestion is less reliable than that under lighter tra�c. Its error

relative to the double loop travel time is constant and small on average. The results for the

CVL method are less predictable with complex relation with tra�c conditions and maybe

other factors. We have more con�dence to extend the regression method to other roadway

network than the CVL method.

The comparison analysis above produced some intriguing results. We attempt to suggest

possible explanation for some of them in x4.4.1. In x4.4.2, we look at how estimation errors

are distributed over links. The results presented later are usually only based on data on

a single day. The assertions made upon them can only be taken as heuristics rather than

rigorous arguments.

4.4.1 The constant 1=g?

We observe some peculiarities of the CVL estimator in the comparison earlier; particularly,

the distinct trends displayed by its error relative to TTdbl (see x4.3.2) and the percentage

of coverage of probe vehicle travel times by estimation intervals in x4.3.3. Somehow, these

results can be loosely tied to the prevailing historical tra�c conditions. It is plausible that

the tra�c condition induces drifts in the common vehicle length constant 1=g and thus con-

tribute to the results aforementioned. An alternative (or complementary) explanation of

drifting in 1=g is that vehicle population may change with time.

We compute the \true" common vehicle length constant by plugging the measured double

loop speeds into equation (1) and solve for 1=g. Denote the vehicle length constant computed

this way by Ldbl. That is,

Ldbl = double-loop speed�
occupancy


ow
(8)

Let L � 0 = 1=g0 = 22:611 ft. be the constant we used in the analysis. Note that the esti-

mated CVL speed is proportional to the constant L0, from (1). Thus, TTcvl underestimates

TTdbl when L0 is greater than the \true" constant Ldbl. The results are plotted in Figure 18

together with some reproduction of related results for the CVL estimator. The horizontal

lines in the plots indicate the L0 = 22:611 ft.. Note that the thin lines (which plot Ldbl were

computed using one half day of data only, while the thick lines are based on data from many

days.

In the left panel of Figure 18, we compare the trend of Ldbl with that of the median CVL

error relative to TTdbl for the north bound data. The CVL estimator starts to overestimate

considerably when Ldbl goes above the value used in the estimation.
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For the south bound data displayed in the right panel, we plot Ldbl with p (the percentage of
coverage of probe travel times) for the CVL based interval. We observe that the two ragged

lines do not start to increase at the same time: Ldbl starts to increase between 7:30 and 8:00,

while p begins the increasing trend about half an hour earlier. In interpreting the results,

recall the following: �rst, TTprobe tends to bias upward relative to TTdbl; second, the bias is
greater during free 
ow. The result for the south bound data is then easier to understand.

When the tra�c heads into moderate congestion at around 7:00 (see the top right panel of

Figure 16), p starts to increase since the test data TTprobe is less biased relative to TTdbl during
congestion, and thus increasingly more likely to be in the neighborhood of the CVL estimate.

Also note that the range of Ldbl is roughly within 20% for either direction. This suggests

that with careful calibration of 1=g, the CVL method is capable of delivering reasonable

travel time estimates for many practical applications. Calibrating 1=g separately for each

direction and lane may be necessary.

The above results give tentative explanation of the peculiar results we saw before. In par-

ticular, the drift in 1=g is partly accountable. However, the drift in 1=g itself is the synergy

e�ect of tra�c conditions, vehicle population and many other factors. Further investigation

is needed to understand the complex interplay between all related factors.

4.4.2 Distribution of estimation errors over links

As have been mentioned, the section travel time induced from each source are essentially

sum of link travel times. It is interesting to investigate how each constituent link travel time

estimate contributes to the total section travel time error; in particular, whether the error

in the resulted section travel time estimate is dispersed over all links or there exist one or

more ill-conditioned links which consistently dominate the resulted error.

The question can be answered by plotting errors in estimated link travel times versus link

numbers as shown in Figure 19. We observe that errors in link travel times are localized for

both the regression method and the CVL method. For both of the methods, major part of

the estimation error in the resulted section travel times come from link 2 (loop 15 to 17)

through link 4 (loop 4 to loop 13)7. The correspondence between the two methods is not

surprising considering the close relationship between them.

We o�er some heuristics as to why both of the methods tend to behave badly around the

area encompassing link 2 and link 4. The �rst notable fact is that link 2 and link 4 more

or less border the region where recurrent congestion occurs in the test site (see examples

in [13]). It is also worth of mentioning that those two links happen to be the two longest

links at 3360 feet and 3900 feet respectively, more than doubling the average length of the

remaining links. Consulting the map (Figure 1), we also observe that the freeway goes from

7Data for loop 12 is missing for this day.
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5 lanes to 4 lanes in link 2, and that the exit to west bound SR-92 is right before the end of

link 48. The above points all suggest comparatively more complex nature of the tra�c 
ow

around the problematic region, which could be the reason that both of the single-loop based

methods fail.

8Westbound SR-92 leads to the San Mateo bridge which is an important transbay channel.
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Figure 18: Variability in the common vehicle length constant 1=g. Left panel is for north

bound tra�c, right panel for the south bound. In both panels, the thin ragged lines plot

Ldbl in (8), the horizontal line is the default value L0 = 22:611 ft: used in the analysis. Ldbl

were computed using data collected in the morning of 3/11/1993. The thick line in each

panel is relative to the top-right coordinate system. In the left panel, it is the median CVL

estimation error relative to TTdbl (replication of the thick line in the bottom left panel in

Figure 16). In the right panel it plots the percentage of coverage for the CVL estimator

(replication of the dash line in the right panel of Figure 17).
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Figure 19: Estimation error in link travel times versus link number. Left panel is for the

regression method, right the CVL method. The X-axis the link number, the Y-axis is the

corresponding estimation error for the corresponding link relative to the double loop speeds

induced travel time. Link travel times are computed in the procedure outlined in x4.1.2.

The plots are based on north bound tracks for the morning of 3/11/1993. Each of the line

in the plots corresponds to one hypothetical track associated with a particular probe run.
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5 Visualization

A thorough comparison of travel time estimation methods necessarily involves examining

results under a variety of tra�c conditions collectively to discover patterns in the behavior

of the estimators. The ability to easily convey relevant information is essential. Here we

propose a visualization approach to address the issue.

In [13] we presented a visualization technique for loop detector data. We pointed out that

the technique is not restricted to measured data only. Here we present examples where the

technique is applied to estimated speeds and functions of their errors relative to the double

loop measured ones. We illustrate, via one set of examples based on one half day, how the

technique can be used in the comparison scenario. As one will observe later, the visualiza-

tion highlights previously unclear or unobservable patterns in the behavior of the estimation

methods.

5.1 The technique

In a nutshell, the technique is applicable to data de�ned on an uneven grid in the space-time

plane. Let U(xi; tj) represent the data value associated with time tj and location xi. U(xi; tj)
may be unavailable for some (xi; tj) pairs. The technique visualizes measurement values by

mapping U(xi; tj) to a colored pixel at (xi; tj), where the pixel color encodes data value. A

color image is generated after interpolation and/or smoothing. Color pattern of the image

is the visual cue for changes in U(xi; tj).

The technique is readily applicable to speeds measured by the double-loop detectors or es-

timated by the CVL method, which are point quantities. For the regression method, we

impute the speed derived from the link travel time estimate to be located at the mid-point

of the corresponding link.

In the examples to be presented, we produced speed estimates using each of the two single-

loop based methods every two minutes for the duration of available data. The double-loop

speed measurements were aggregated to the same level. The (aggregated) data were then

smoothed along the time axis and interpolated along the space axis before visualization.

The interpolation step handles missing data problems and the technicality that the regres-

sion method estimated speeds were de�ned on di�erent locations than the other two sources

of speeds.

In addition to applying the technique directly to estimated speeds, we display visualizations

of functions of estimation errors which are the di�erences between estimated speeds and the

double-loop speeds. Visualizations of selected functions of estimation errors further reveal

hidden patterns characteristic of the corresponding estimator. We �nd that visualizations of
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absolute logarithm of relative errors and the sign of the errors are particularly informative

and suitable to gray scale presentations.

5.2 An example

Here we illustrate the application of the visualization technique in comparing travel time

estimation methods via a set of examples. These examples are based on the north bound

data from lane 3 collected on the morning of 3/11/1993 in the I-880 data set. There was

signi�cant non-accident induced congestion during the peak tra�c hours on that day. We

think the set of examples can be taken as typical of a busy urban freeway to some extent.

Many of the �ndings also apply to other examples we have examined.

The top left panel in Figure 20 shows the visualization for the double-loop speeds. Conges-

tion registers as dark blobs on the image. The most conspicuous congestion happened near

the southern end of the test site around 8AM. Note that the most signi�cant congestion

is shown as a roughly tip-down triangular shape in the image, manifesting that the con-

gestion propagated against tra�c direction and started to dissipate from the upstream. As

mentioned in [13], the triangular shape is common for many congestions for the I-880 data set.

The two bottom panels in Figure 20 exhibit visualizations for estimated speeds from the

regression method and the CVL method. In both of the panels, we �nd dark blobs in rough

correspondence with those in the double-loop visualization, signaling that both of the es-

timation procedure captures prominent changes in tra�c conditions. Closer examination

reveals that in the image for the regression method, the contour of the dark region in the

bottom takes a more rectangular shape compared with the other images. The dark region

also appears to be somewhat larger. These observations indicates that the regression method

tends to underestimate speeds (hence overestimate travel times) when the prevailing tra�c

regime changes from free-
ow congestion or vice versa. We can also observe obscure hori-

zontal stripes of various shades in the bottom panels, implying that there are system biases

related to locations for both of the methods.

For a closer look, we visualize functions of the estimation errors of each of the two methods,

in particular the absolute values of the di�erence in logarithm between estimator and bench-

mark (absolute logarithm relative error) and the sign of the estimation error. We visualize

these two functions of estimation errors instead of the errors themselves mainly because of

the limitation imposed by gray scale images which render conspicuous features in the visu-

alizations for the estimation errors obscure.

Figure 21 displays visualizations for the absolute logarithm of the relative estimation errors.

In the two images, lighter shades signal smaller estimation errors relative to the double-loop

benchmark and the darkest shade approximately corresponds to error margin over 10%. We

notice that the striping e�ect observable in visualizations of the estimated speeds are even
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Figure 20: Visualization of estimated speeds. Top left panel: double-loop speeds; bottom

left: the regression method estimated speeds; bottom right: CVL estimated speeds. Tra�c

goes upward. Time period is 5AM to 10AM. The left hand side Y-axis labels show the

locations of loop detector. The right hand side ones are the distances in miles relative to the

start of the trip.
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Figure 21: Absolute logarithm relative errors. Left panel is for the regression method, right

the CVL method.

more prominent here. The locations of the horizontal stripes in the two panels do not line

up exactly, which could be the result that the regression method estimated speeds using a

di�erent grid. In the image for the regression method, the shape of the signature of the

longest lasting congestion is still quite distinguishable as the area enclosed by clear-cut dark

regions. We observe higher volatility in the image for the CVL method demonstrated by

mingled shades. We also observe that the CVL method grows more prone to larger errors

towards late morning at a few locations.

To observe the direction of biases associated with the estimation methods, we visualize the

signs of estimation errors in Figure 22. The left panel emphasizes that the regression method

is subject to signi�cant underestimation of speeds (overestimation of travel times) around

the region of considerable congestion. We also strengthen our previous observation about

the CVL method by concluding that it has a tendency to overestimate speeds as time goes

towards late morning. There are also a few identi�able locations where the CVL method

consistently overestimates speeds.

5.3 Discussion

To summarize our observations with the visualization approach, we �nd in terms of travel

time estimation: for the regression method, proneness to overestimate around the region

of congestion; for the CVL method, a temporal trend to overestimate and relatively higher

level of volatility compared to the regression method. For both of the methods, we observe

location-speci�c biases.

Keeping the scope of the visualization comparison in mind, we relate our �ndings with ob-

servations previously made. The �ndings in this section rea�rms previous discussion that

estimation errors at a few locations can account for most of the error in travel times over a
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Figure 22: Signs of estimation errors. Left panel: the regression method; right:the CVL

method. Black is associated with positive values while white signals negativity.

prolonged section of freeway. The localized temporal trend associated with the CVL method

are consistent with previous conclusions on similar trend with the errors in section travel

time estimates over many days, indicating that the observation made here on the basis of

one day's data might not be isolated.

We observe location-speci�c biases for both of the methods throughout the duration of avail-

able data. It is a bit far-fetched to attribute this observation entirely to consistent variations

in tra�c conditions per se. It is tempting to conjecture instead, that it is the result of some

location-speci�c features (such as pavement or loop con�guration and calibration) which af-

fects the common vehicle length constant 1=g and hence both of the estimation methods. For

the regression method, inexact clock synchronization might also contribute to the striping

e�ect.

For the regression method, it is possible that the pattern may be partially explained by the

construction procedure of the regression method speeds estimates, aside from the inherent

di�culty in handling congestion. Note that the speed estimated by the regression method

uses information from both the upstream and downstream detector while the other two

sources of speeds only use the upstream data. As have been observed, the duration of

congestion is shorter towards the upstream direction. It is likely that speeds at upstream

detectors are actually faster than downstream. Hence the regression method estimated

speeds tends to bias upward around the region of congestion.
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6 Conclusions

In this paper, we employed various techniques to conduct a thorough empirical comparison

of two single-loop based travel time estimation methods | the regression method and the

common vehicle length (CVL) method. We have demonstrated, via examples, that the re-

gression method is more stable in performance and does not rely heavily on the choice of

the common vehicle length constant. It is very accurate under free 
ow conditions. For the

CVL method, its accuracy is completely tied in with the choice of the common vehicle length

constant. Its performance varies considerably with the tra�c condition, location and other

identi�able factors.

As noted elsewhere ([5]), we have observed drift in the common vehicle length constant.

Examples based on limited data suggest that changes in the prevailing tra�c condition may

be one of the contributing factors. Variations in this assumed constant are responsible for

the intriguing patterns demonstrated by the CVL method. Although the regression method

is also a�ected, the in
uence is much less and is negligible during free 
ow.

For many practical purposes, travel times estimated using either of the methods are good

enough. In this case, the decision on which method to use is largely driven by considera-

tion of infrastructure requirements. For example, the regression method is generally only

applicable to high resolution (1 second resolution is preferable) loop data. The CVL method

does not have this constraint. On the other hand, applying the CVL method with a single

imputed value for the common vehicle length constant could be problematic with system

biases concentrated in some or all lanes for one direction. Detailed calibration is called upon

to avoid this. The calibration procedure for the regression method is much more simpler.

Another advantage of the regression method is that it actually estimates the travel time

distribution instead of a point estimate of the travel time. The travel time distribution it-

self might be of interest in some settings. More importantly, understanding the travel time

distribution is directly linked to building models for travel time prediction.

We have also proposed some extensions to the regression method based on the same stochas-

tic model. In particular, the B-spline approximation signi�cantly reduces the number of

parameters without the penalty of inferior performance. Examples have also shown that

di�culties of the regression method in dealing with congestion may be caused by a overly

simpli�ed model. A new approach to improve the regression method could involve signi�cant

modi�cation of the underlying model. This is also the direction of future research.
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