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Abstract 

Little research has been conducted to determine the thermal properties and phenomena of 
graphane and fluorographene. A clear understanding of the thermal problems involved is needed, which 
may provide a basis for further research on other material properties. In the present study, molecular 
dynamics simulations were performed to investigate the thermal properties of graphane and 
fluorographene and especially the phenomena involved, including thermal fluctuations and bending 
rigidities. Furthermore, comparisons of thermal properties and the phenomena involved were made 
computationally between pristine and functionalised graphene. The thermal fluctuations and bending 
rigidities were determined at different temperatures. The present study aims to provide a clear 
understanding of the thermal problems involved in hydrogenated and fluorinated graphene. The results 
indicated that while thermally excited ripples spontaneously appear in graphene, fully hydrogenated or 
fluorinated graphene is substantially unrippled due to their very high bending rigidities. There is no 
significant effect of thermal rippling throughout graphane and fluorographene due to their very high 
bending rigidities. However, partially hydrogenated or fluorinated graphene exhibits strong thermal 
fluctuations. Graphene behaves differently from graphane and fluorographene with regard to the 
dependence of bending rigidity on temperature. Furthermore, significant out-of-plane fluctuations may 
occur in partially fluorinated graphene. Thermal fluctuations of graphene are more sensitive to 
temperature than those of graphane and fluorographene. 
Keywords: Thermal rippling; Thermal fluctuations; Bending rigidities; Molecular dynamics; Thermal 

properties; Thermal phenomena 

1. Introduction 

The basic electronic structure of graphene and, as a consequence, its electric properties are very 
peculiar [1, 2]. By applying a gate voltage or using chemical doping by adsorbed atoms and molecules, 
one can create either electron or hole conductivity in graphene that is similar to the conductivity created 
in semiconductors [3, 4]. However, in most semiconductors there are certain energy levels where 
electrons and holes do not have allowed quantum states, and, because electrons and holes cannot 
occupy these levels, for certain gate voltages and types of chemical doping, the semiconductor acts as 
an insulator. Graphene, on the other hand, does not have an insulator state, and conductivity remains 
finite at any doping, including zero doping [5, 6]. Existence of this minimal conductivity for the 
undoped case is a striking difference between graphene and conventional semiconductors [7, 8]. 
Electron and hole states in graphene relevant for charge-carrier transport are similar to the states of 
ultra-relativistic quantum particles. 

The honeycomb lattice of graphene actually consists of two sublattices, designated A and B, such 
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that each atom in sublattice A is surrounded by three atoms of sublattice B and vice versa. This simple 
geometrical arrangement leads to the appearance that the electrons and holes in graphene have an 
unusual degree of internal freedom, usually called pseudospin [9, 10]. In fact, making the analogy more 
complete, pseudospin mimics the spin, or internal angular momentum, of subatomic particles. Within 
this analogy, electrons and holes in graphene play the same role as particles and antiparticles in 
quantum electrodynamics [11, 12]. At the same time, however, the velocity of the electrons and holes is 
less than the speed of light. This makes graphene a test bed for high-energy physics: some quantum 
relativistic effects that are hardly reachable in experiments with subatomic particles using particle 
accelerators have clear analogy in the physics of electrons and holes in graphene, which can be 
measured and studied more easily because of their lower velocity [13, 14]. An example is the Klein 
paradox, in which ultra-relativistic quantum particles, contrary to intuition, penetrate easily through 
very high and broad energy barriers [15, 16]. Thus, graphene provides a bridge between materials 
science and some areas of fundamental physics, such as relativistic quantum mechanics. 

There is another reason why graphene is of special interest to fundamental science: it is the first 
and simplest example of a two-dimensional crystal. This means that a solid material that contains just a 
single layer of atoms arranged in an ordered pattern [17, 18]. Two-dimensional systems are of huge 
interest not only for physics but also for chemistry. In many respects, two-dimensional systems are 
fundamentally different from three-dimensional systems [19, 20]. In particular, due to very strong 
thermal fluctuations of atomic positions that remain correlated at large distances, long-range crystalline 
order cannot exist in two dimensions. Instead, only short-range order exists, and it does so only on 
some finite scale of characteristic length, a caveat that should be noted when graphene is called a 
two-dimensional crystal [21, 22]. For this reason, two-dimensional systems are inherently flexural, 
manifesting strong bending fluctuations, so that they cannot be flat and are always rippled or 
corrugated [23, 24]. Graphene, because of its relative simplicity, can be considered as a model system 
for studying two-dimensional physics and chemistry in general [25, 26]. Other two-dimensional 
crystals besides graphene can be derived by exfoliation from other multilayer crystals or by chemical 
modification of graphene, for example, graphane, hydrogenated graphene, and fluorinated graphene [27, 
28]. Modern electronics are basically two-dimensional in that they use mainly the surface of 
semiconducting materials. Therefore, graphene and other two-dimensional materials are considered 
very promising for many such applications. 

In spite of significant efforts to investigate the structural and electronic properties of hydrogenated 
and fluorinated graphene [29, 30], little research has been conducted to determine their other thermal 
properties and phenomena, for example, thermal rippling. A clear understanding of the thermal 
problems involved is needed, which may provide a basis for further research on other material 
properties [31, 32]. In the present study, molecular dynamics simulations were performed to investigate 
the thermal properties of graphane and fluorographene and especially the phenomena involved, 
including thermal fluctuations and bending rigidities at different temperatures. Furthermore, 
comparisons of thermal properties and the phenomena involved were made computationally between 
pristine and functionalised graphene. The present study aims to provide a clear understanding of the 
thermal problems involved in hydrogenated and fluorinated graphene. Particular emphasis is placed 
upon the thermal rippling of pristine and functionalised graphene at different temperatures. 

2. Molecular dynamics modelling 

Molecular dynamics simulation may calculate a characteristic and a structure of a system by 
simulating a motion of an atom in a system constituted by the atom using a computer and may be an 
important simulation method for evaluating and predicting a structure and characteristic of a substance 
from a microscopic aspect of the substance. In an actual calculation process, to obtain ideal data, it may 
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need to expand the scale of the simulation calculation and extend the simulation time, and thus, the 
simulation calculation may consume considerable time. A temporal step of molecular dynamics 
simulation may be a few femtoseconds, whereas a computer simulation with millions of steps may 
correspond to a few femtoseconds in an actual process and the computational amount may be 
significantly large to reflect an actual macroscopic operation. 

Distinguishable conformations exist, and the chair configuration is the most stable structure 
because of its lowest formation energy. A conformation is any one of the infinite numbers of possible 
spatial arrangements of atoms in a molecule that result from rotation of its constituent groups of atoms 
about single bonds. Different conformations are possible for any molecule in which a single covalent 
bond connects two polyatomic groups, in each of which at least one atom does not lie along the axis of 
the single bond in question. In general, every distinguishable conformation of a molecule represents a 
state of different potential energy because of the operation of attractive or repulsive forces that vary 
with the distances between different parts of the structure. The crystal structure of graphane or 
fluorographene with armchair edges is illustrated schematically in Figure 1 in a chair conformation. In 
the present study, molecular dynamics simulations are performed to investigate the thermal properties 
of the two-dimensional materials and especially the phenomena involved, and their molecules are 
existed in a chair conformation, in which all the carbon-hydrogen or carbon-fluorine bonds are 
disposed in a staggered arrangement. The carbon atoms of graphene, graphane, or fluorographene are 
arranged in a flat, planar structure that is a single atom thick. The hydrogen or fluorine atoms are 
alternately adsorbed above and below the graphene sheet. 

 

Figure 1. Schematic representation of the crystal structure of graphane or fluorographene with armchair 
edges in a chair conformation. Grey spheres represent carbon atoms and white spheres represent 
hydrogen or fluorine atoms. 

For the two-dimensional crystals considered here, the total number of carbon atoms are identical 
to each other. For example, the total number of atoms in graphene is 44,800, and the two-dimensional 
crystal is 34.0 nm in length and in width. For example, the total number of atoms in graphane is 89,600, 
and the two-dimensional crystal is 37.0 nm in length and 36.6 nm in width. In some cases, periodic 
boundary conditions are used in both crystallographic directions. Calculations are performed to resolve 
the problem by a classical molecular-dynamics code LAMMPS. A Nosé-Hoover thermostat is applied 
to equilibrate the system throughout the simulation process. For example, thermostats are applied to the 
two-dimensional crystals to achieve room temperature. Thermostats are then lifted, and the crystals are 
allowed to freely evolve as "active atoms". The temperatures of the crystals deviate from the initial 
value during the relaxation process. Consequently, thermostats are reapplied and then lifted periodically 
until the desired temperature is achieved. The thermal properties of the two-dimensional materials are 
predicted in the canonical ensemble with a time step of 0.2 femtoseconds. The system is equilibrated 
for 5 picoseconds and then the equilibrium length is averaged over time, for example, 2 picoseconds at 
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the specified temperature. The system is modelled by preventing the motion of the terminal atoms on 
the transverse edge of the crystal structure in the thickness direction to describe the thermal contraction 
or expansion of the crystalline solid. The progress is realized by fixing two rows of atoms on opposite 
longitudinal sides in practice, but the motion of the atoms is allowed in the length and width directions 
to relax the system with a thermal contraction or expansion property. 

The amorphous varieties of carbon are based upon microcrystalline forms of graphite [33, 34]. 
The individual layers of carbon in graphite are called graphene, which has been successfully isolated in 
single-layer form [35, 36]. The field of graphene science and technology is relatively new [37, 38]. 
Progress depends not only on the basic science but also on the development of new ways to produce 
graphene on an industrial scale [39, 40]. Methods proposed include the formation of graphene layers by 
burning silicon carbide or by chemical vapour deposition of carbon on the surface of some metals such 
as copper or nickel [41, 42]. These methods will allow the production of samples of graphene that were 
macroscopically large in two dimensions but still atomically thin [43, 44]. A single-walled carbon 
nanotube can be described as a long tube formed by wrapping a single graphene sheet into a cylinder, 
the ends of which are capped by fullerene cages. The fullerene structures, with alternating structures of 
five hexagons adjacent to one pentagon, form the surface with desired curvature to enclose the volume 
[45, 46]. The sidewalls of carbon nanotubes are made of graphene sheets consisting of neighbouring 
hexagonal cells [47, 48]. The thermal properties of the two-dimensional materials and especially the 
phenomena involved are investigated at temperatures up to 1600 K in order to determine the 
contraction-expansion transition temperature and the significant difference in specific heat capacity 
between graphane and fluorographene. The problem of determining the thermodynamic properties at 
very low temperatures is beyond the ability of the second-generation reactive empirical bond order 
potential, for example, due to quantum zero energy. In this context, the ab initio approach is extremely 
effective, for example, the density functional theory. In the ab initio approach, the calculation proceeds 
from first principles and makes no use of imported information. The ab initio approach is intrinsically 
reliable because there can be no certainty that a quantity determined in one context is appropriate to a 
particular molecule. The density functional theory makes it possible to apply the complicated 
mathematics of quantum mechanics to the description and analysis of the chemical bonding between 
atoms. The density functional theory can greatly simplify the computations needed to understand the 
electron bonding between atoms within molecules. The field of graphene science and technology is 
relatively new, and it remains difficult to determine which applications will prove to be the most 
popular. Knowledge of the thermal properties and the phenomena involved over a wide range of 
temperatures may be crucially important to the success in applications in an extreme environment. 

The Fourier transform of the out-of-plane atomic displacement is required to determine the 
height-height correlation function. In particular, the height of each lattice site needs to be defined so 
that the magnitude of height fluctuations can be determined for the two-dimensional materials. 
However, the atomic positions are discontinuous and therefore smooth operation is necessary. The 
problem relates to numerical calculations involving derivatives and different operators on the 
hexagonal lattice. Consequently, the following procedure is carried out. The present study is focused 
mainly upon long-wavelength ripple effects. Accordingly, the height of a lattice site can be calculated 
on the basis of the atomic positions of carbon as follows: 

  , , ,

1 1

2 3i i i a i b i ch z z z z 
 
 

= + + + , (1) 

in which hi is the height of a lattice site, i denotes a carbon atom, z denotes a coordinate variable, and a, 
b, and c denote three nearest neighbours of atom i. The lattice-site height is used to determine the 
Fourier components of the out-of-plane atomic displacement using the wave vectors defined by 
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periodic boundary conditions of the undistorted lattice. 
Fundamentally, there are two different approaches to the heat capacity problem. This problem can 

be solved by numerically calculating the partial derivative of the total energy with respect to the 
temperature. Specifically, a piecewise-polynomial function of temperature can be defined for the 
material property with the help of nonlinear curve fitting schemes, which is essential for formulating 
the physical relationship between the total energy and the temperature. MATLAB and Simulink are 
used to fit curves to the energy data interactively or programmatically. Kelvin is used as the 
temperature unit. The heat capacity varies nonlinearly with temperature, and up to four ranges of 
temperatures are defined. A second-degree polynomial is fitted to the data. Higher-order polynomials 
may cause oscillations, which will lead to a poorer fit to the data. Finally, the heat capacities can be 
calculated with the use of finite difference approximations. 

A different approach can be adopted to the heat capacity problem. The phonon dispersion relations 
with the density of states can serve as an approach to this problem, as described below. The heat 
capacity of the system is stored by its lattice vibrations or phonons and its free conduction electrons 

 ph elC C C= + , (2) 

in which Cph is the contribution from phonons, and Cel is the contribution due to electrons. In the 
present study, the contribution due to electrons is negligible and phonons dominate the heat capacity at 
all practical temperatures. Consequently, the heat capacity of the system can be calculated by 
integrating over the phonon density of states with a convolution factor that reflects the energy and 
occupation of each phonon state 

      
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, (3) 

wherein kB is Boltzmann's constant, also referred to as the Boltzmann constant, p is the polarization, ℏ 
is the reduced Planck's constant, ω is the angular frequency, and D is the phonon density of states. The 
heat capacity described by the above mathematical formula is evaluated separately for each phonon 
mode. At nonzero temperatures, the convolution factor is unity if the frequency is zero. The 
convolution factor decreases smoothly to a value of about 0.1, if ℏω is equal to 6kBT. As a consequence, 
the heat capacity of the material rises with temperature, since more phonon states are occupied. The 
convolution factor is appreciable, for example, greater than 0.1, if ℏω is less than 6kBT. In contrast, if 
ℏω is greater than 6kBT, this factor dampens out the contribution of the phonon density of states to the 
integral of the heat capacity function. The heat capacity, at least at moderate temperatures, cannot be 
calculated analytically, as the phonon density of states is in general a complicated function of frequency. 
Planck's constant is a fundamental physical constant characteristic of the mathematical formulations of 
quantum mechanics, which describes the behaviour of particles and waves on the atomic scale. 
Polarization is a property of certain electromagnetic radiations in which the direction and magnitude of 
the vibrating electric field are related in a specified way. In circular polarization, the electric vector 
rotates about the direction of propagation as the wave progresses. 

The classical or high-temperature limit for the heat capacity expression does not depend upon any 
specific structure of the system, as formulated by the empirical law of Dulong and Petit. More 
specifically, the heat capacity is nearly constant at very high temperatures, approaching the in-plane 
Debye temperature. At sufficiently low temperatures, the contribution from the lowest-frequency 
optical branch is negligible. In this regime, the density of states is dominated by acoustic phonon 
modes, and therefore the heat capacity is entirely determined by the acoustic branches. More 
specifically, the contribution due to optical phonons is negligible if the system is subject to certain 
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temperature conditions 
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where ωo is the frequency of the lowest-energy optical phonon. In such a situation, the heat capacity of 
the system can be calculated using the acoustic-phonon dispersion relations. At low temperatures, the 
heat capacity is typically a power function in which the temperature base is raised to an exponent 
greater than unity. The precise exponent depends upon the dimensionality of the system and the 
detailed phonon dispersion relations. 

The first Brillouin zone that represents the central cell of the reciprocal lattice is illustrated 
schematically in Figure 2 for the two-dimensional materials. A Brillouin zone is defined as a 
Wigner-Seitz primitive cell in the reciprocal lattice. The concept of Brillouin zone is particularly 
important in the consideration of the electronic structure of solids. The first Brillouin zone represents 
the central cell of the reciprocal lattice. It contains all points nearest to the enclosed reciprocal lattice 
point. The boundaries of the first Brillouin zone are determined by planes which are perpendicular to 
the reciprocal lattice vectors pointing from the centre of the cell to the lattice points nearest to the 
origin of the cell at their midpoints. Due to the translational invariance of the lattice the wave functions 
and the energy bands are periodic in the reciprocal space and it is sufficient to consider only the first 
Brillouin zone for band structure calculations. For example, the diamond structure is invariant not only 
under translations, but also under several other symmetry operations such as reflections, rotations, or 
inversion. These symmetry operations are usually denoted as point operations, since they leave at least 
one point of the lattice invariant, which is not the case for translations. The set of all point operations 
for a particular crystal structure forms a group which is denoted as point group. The point group of the 
diamond structure has 48 symmetry elements which are reflected in the symmetry of the first Brillouin 
zone. The point symmetries of the crystal structure are mirrored in the crystal potential, and hence in 
the one-particle Hamiltonian used for band structure calculations. 

 
Figure 2. Schematic representation of the first Brillouin zone that represents the central cell of the 
reciprocal lattice for the two-dimensional materials. 

Elemental carbon exists in several forms, each of which has its own physical characteristics [49, 
50]. Two of its well-defined forms, diamond and graphite, are crystalline in structure, but they differ in 
physical properties because the arrangements of the atoms in their structures are dissimilar [51, 52]. A 
third form, called fullerene, consists of a variety of molecules composed entirely of carbon [53, 54]. 
Spheroidal, closed-cage fullerenes are called buckyballs, and cylindrical fullerenes are called nanotubes 
[55, 56]. Yet another form, called amorphous carbon, has no crystalline structure. The phonon 
dispersion relations along Γ-M direction of the first Brillouin zone are described in Figure 3 for 
graphene with the acoustic and optical modes indicated. The phonon dispersion relations along 
Γ-Μ-Κ-Γ direction of the first Brillouin zone are described in Figure 4 for graphane in a chair 
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conformation. The phonon dispersion relations along Γ-Μ-Κ-Γ direction of the first Brillouin zone are 
described in Figure 5 for fluorographene in a chair conformation. The phonon dispersion relations are 
determined for the two-dimensional materials using Troullier-Martins pseudopotentials and a 
plane-wave basis set. First-principles calculations are carried out at an energy cutoff of roughly 40 
Hartree. The Brillouin zone is sampled using a Monkhorst-Pack k-point mesh of 30 × 30 × 1 for the 
electronic structure. The structures are fully relaxed so that the magnitude of all forces is less than 5 × 
10-5 Hartree per Bohr and the magnitude of all stresses is less than 5 × 10-7 Hartree per cubic Bohr. The 
dynamical properties are determined by applying density-functional perturbation theory, which allows 
for calculations of any phonon frequency without requiring use of a supercell. There exist substantial 
differences in phonon spectrum between the two-dimensional materials. For instance, the 
low-frequency, medium-frequency, and high-frequency groups of phonon branches for graphane are 
clearly separated from each other. In contrast, the frequency groups for fluorographene are 
indistinguishable from each other. In particular, graphene is a two-dimensional system with three 
acoustic branches and three optic branches. At low wave vectors near the centre of the first Brillouin 
zone, two acoustic modes have very high sound velocities and linear dispersions, namely a longitudinal 
mode, with a group velocity of about 21.3 kilometres per second, and an in-plane transverse mode, with 
a group velocity of about 13.6 kilometres per second. Additionally, the third out-of-plane transverse 
mode can be described by an approximately quadratic dispersion relation, where the frequency is equal 
to δq2, with δ being a value of about 6.2 × 10-7 square metres per second. Accordingly, the heat capacity 
of the two-dimensional material from the in-plane modes should yield dependence upon the 
temperature squared, since the phonon density of states is proportional to the frequency. Additionally, 
the heat capacity from the out-of-plane mode should be linear in temperature, as the phonon density of 
states is constant. For an isolated graphene sheet, the behaviour of heat capacity should be linear in 
temperature at very low temperatures when the quadratic out-of-plane acoustic modes dominate, 
followed by a transition to behaviour of temperature squared approximately due to the linear 
longitudinal and transverse acoustic modes and eventually by "flattening" to a constant as the high 
Debye temperature is approached, in the classical limit. 

 

Figure 3. Phonon dispersion relations along Γ-M direction of the first Brillouin zone for graphene with 
the acoustic and optical modes indicated. 



8 

 

Figure 4. Phonon dispersion relations along Γ-Μ-Κ-Γ direction of the first Brillouin zone for graphane 
in a chair conformation. 

 

Figure 5. Phonon dispersion relations along Γ-Μ-Κ-Γ direction of the first Brillouin zone for 
fluorographene in a chair conformation. 

3. Results and discussion 

Hydrogenation is a chemical reaction between molecular hydrogen and an element or compound, 
ordinarily in the presence of a catalyst. The reaction may be one in which hydrogen simply adds to a 
double or triple bond connecting two atoms in the structure of the molecule or one in which the 
addition of hydrogen results in dissociation of the molecule. Typical hydrogenation reactions include 
the reaction of hydrogen and nitrogen to form ammonia and the reaction of hydrogen and carbon 
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monoxide to form methanol or hydrocarbons, depending on the choice of catalyst. The catalysts most 
commonly used for hydrogenation reactions are the metals nickel, platinum, and palladium and their 
oxides. Fluorinated compositions are known to possess many outstanding properties. The range of these 
properties is indicated by the broad range of utilities for fluorinated compositions. It is debatable 
whether or not hydrogenation or fluorination enhances the tendency for buckling and rippling. 
Out-of-plane thermal fluctuations may occur in these two-dimensional materials. However, how large 
the thermal fluctuations need to be determined. 

The effect of temperature on the mean square height fluctuation is illustrated in Figure 6 for 
graphene, graphane, and fluorographene. Out-of-plane thermal fluctuations may occur in the 
two-dimensional materials. A right-Y scale is added to the graph and the graphane and fluorographene's 
data are plotted against this scale, as indicated by the rightwards arrows. A phonon is a unit of 
vibrational energy that arises from oscillating atoms within a crystal. Any solid crystal consists of 
atoms bound into a specific repeating three-dimensional spatial pattern called a lattice. Because the 
atoms behave as if they are connected by tiny springs, their own thermal energy or outside forces make 
the lattice vibrate. This generates mechanical waves that carry heat and sound through the material. A 
packet of these waves can travel throughout the crystal with a definite energy and momentum. As the 
temperature increases from 50 K to 800 K, the mean square height fluctuation is increased from about 
80 nm2 to about 200 nm2 for graphene. For graphane and fluorographene, however, the mean square 
height fluctuation does not vary significantly with temperature, for example, in the range from about 6 
nm2 to about 12 nm2. Therefore, graphane and fluorographene do not develop significant corrugation or 
long-wavelength ripples. The temperature affects the mean square height fluctuation of graphene more 
remarkably than that of graphane and fluorographene. 

 

Figure 6. Effect of temperature on the mean square height fluctuation of graphene, graphane, and 
fluorographene. Out-of-plane thermal fluctuations may occur in the materials. A right-Y scale is added 
to the graph and the graphane and fluorographene's data are plotted against this scale, as indicated by 
the rightwards arrows. 

A material property is an intensive property of a material. A physical property or chemical 
property does not depend on the amount of the material. These quantitative properties may be used as a 
metric by which the benefits of one material versus another can be compared, thereby aiding in 
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materials selection. A material property may also be a function of one or more independent variables, 
for example, temperature. Materials properties often vary to some degree according to the direction in 
the material in which they are measured, a condition referred to as anisotropy. Materials properties that 
relate to different physical phenomena often behave linearly in a given operating range. Modelling 
them as linear functions can significantly simplify the differential constitutive equations that are used to 
describe the property. Equations describing relevant materials properties are often used to predict the 
attributes of a system. The thermodynamic properties of materials are intensive thermodynamic 
parameters which are specific to a given material. The thermal properties of partially hydrogenated or 
fluorinated graphene have attracted much attention [57, 58]. It is necessary to investigate the thermal 
rippling phenomena of the two-dimensional materials in certain situations. 

The effect of hydrogenation or fluorination degree on the mean square height fluctuation of 
graphene at room temperature is illustrated in Figure 7 in which the results obtained for fully 
hydrogenated or fluorinated graphene are also presented. The degree of hydrogenation or fluorination 
can greatly affect the mean square height fluctuation of graphene. As the hydrogenation or fluorination 
degree increases, the mean square height fluctuation of graphene first increases and then decreases. 
Fluorination causes the maximum fluctuation magnitude to become more pronounced. Specifically, 
partially fluorinated graphene is about four times the maximum mean-square height fluctuation of 
partially hydrogenated graphene. More specifically, the maximum mean-square height fluctuation is 
about 0.179 nm2 for partially fluorinated graphene and about 0.048 nm2 for partially hydrogenated 
graphene. In some cases, partially fluorinated graphene is more than five times the mean-square height 
fluctuation of partially hydrogenated graphene. However, hydrogenation or fluorination does not enable 
the maximum mean-square height fluctuation if graphene is half-hydrogenated or half-fluorinated. The 
maximum mean-square height fluctuation will be achieved if the degree of hydrogenation or 
fluorination is about 60 percent. The mean-square height fluctuation tends to become zero if graphene 
is fully hydrogenated or fluorinated. 

 

Figure 7. Effect of hydrogenation or fluorination degree on the mean square height fluctuation of 
graphene at room temperature. The mean square height fluctuations of fully hydrogenated or 
fluorinated graphene are also indicated. 

Graphene provides a bridge between materials science and some areas of fundamental physics. 
The effect of temperature on the bending rigidity is investigated for graphene, graphane, and 
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fluorographene. The bending rigidity is defined as the force couple required to bend a fixed non-rigid 
structure by one unit of curvature, or as the resistance offered by a structure while undergoing bending. 
The bending rigidity of the two-dimensional material is determined by the Young's modulus, Poisson's 
ratio, and cube of the elastic thickness of the material. Young's modulus describes the elastic properties 
of a solid undergoing tension or compression in only one direction. Sometimes referred to as the 
modulus of elasticity, Young's modulus is equal to the longitudinal stress divided by the strain. Young's 
modulus is meaningful only in the range in which the stress is proportional to the strain. Poisson's ratio 
is the ratio of lateral strain to the longitudinal strain. 

The effect of temperature on the bending rigidity is illustrated in Figure 8 for graphene, graphane, 
and fluorographene. For hydrogenated or fluorinated graphene, the amplitudes of intrinsic ripples may 
be reinforced due to the effect of random thermal fluctuations of hydrogen and fluorine atoms. 
Accordingly, the ripple amplitudes may rise and fall rapidly, although the intrinsic ripples of 
hydrogenated or fluorinated graphene are of different amplitude. However, significant corrugation or 
long-wavelength ripples will not be developed if the material is rigid. Specifically, the bending rigidity 
of fully hydrogenated or fluorinated graphene is significantly higher than that of graphene, and 
therefore there are no significant corrugation or long-wavelength ripple effects throughout graphane 
and fluorographene. Interestingly, the temperature affects the bending rigidity of either graphane or 
fluorographene more remarkably than that of graphene. Consequently, the bending rigidity of graphane 
or fluorographene is sensitive to temperature. Additionally, the bending rigidity of graphane or 
fluorographene has negative dependence upon temperature, while the bending rigidity of graphene has 
positive dependence upon temperature. Graphene behaves anomalously with temperature in this respect. 
As the temperature increases from 50 K to 800 K, the bending rigidity is increased from about 1.06 eV 
to about 1.32 eV for graphene, and it is decreased from about 9.76 eV to about 5.58 eV for graphane 
and from about 6.27 eV to about 5.06 eV for fluorographene, respectively. 

 

Figure 8. Bending rigidity of graphene, graphane, and fluorographene at different temperatures. 
Significant corrugation or long-wavelength ripples will not be developed if the material is rigid. A 
right-Y scale is added to the graph and the graphane and fluorographene's data are plotted against this 
scale, as indicated by the rightwards arrows. 

For graphene, the dependence of bending rigidity upon temperature is highly debated in the 
literature [59, 60]. Both negative and positive dependences are determined theoretically, in the range 
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from about 0.85 eV to about 10 eV [61, 62], which is consistent with that predicted here. It is very 
difficult to measure the bending rigidity because of the contribution from extrinsic stiffening from 
in-plane strain or out-of-plane corrugations [59, 60]. However, a recent experimental study has 
demonstrated that the bending rigidity of bilayer graphene increases sightly with temperature [60], as 
presented here for graphene. Over a temperature range from 280 K to 400 K, the bending rigidity of 
bilayer graphene, as measured by experiments, varies from about 3.0 eV to about 3.6 eV [60]. 
Additionally, the bending rigidity of bilayer graphene may be twice that of graphene [63]. Accordingly, 
an estimated bending rigidity in the range from about 1.5 eV to about 1.8 eV can be obtained for 
graphene in the temperature range indicated above. As the temperature increases from 280 K to 400 K, 
the bending rigidity predicted in the present study by the model increases from about 1.17 eV to about 
1.22 eV. Another experimental study has demonstrated that the bending rigidity of graphene is about 
1.30 eV over a temperature range from 110 K to 500 K [64]. Consequently, the predictions are 
substantially in agreement with the measurements. 

There is a need to investigate the other thermal properties of graphane and fluorographene and 
especially the phenomena involved in the thermodynamic and transport processes, for example, 
enthalpy and entropy, under various conditions of temperature and pressure. Enthalpy and entropy are 
extensive properties [65, 66] and thus the magnitudes of these state functions depend upon the amount 
of material in the thermodynamic system. More specifically, it is neither necessary nor convenient to 
determine the absolute values of enthalpy or entropy of graphane and fluorographene [65, 66]. 
Consequently, intensive studies will be carried out to solve the problem related to the thermal properties 
and phenomena of the materials and their interrelations. 

4. Conclusions 

Molecular dynamics was used to investigate the thermal properties of graphane and 
fluorographene and especially the phenomena involved in the thermodynamic process when subjected 
to changes in temperature, including thermal expansion coefficients, heat capacities, thermal 
fluctuations, and bending rigidities, which have profound implications for the development of thermal 
technology at the nanoscale. Additionally, first-principles calculations were carried out to determine the 
structural configurations of the two-dimensional materials. Furthermore, comparisons of thermal 
properties and the phenomena involved were made between pristine and functionalised graphene. The 
main conclusions are summarised as follows: 
 While graphene tends to spontaneous bending and ripple formation, fully hydrogenated or 

fluorinated graphene is substantially unrippled. 
 There is no significant effect of thermal rippling throughout graphane and fluorographene due to 

their very high bending rigidities. 
 Graphene behaves differently from graphane and fluorographene with regard to the dependence of 

bending rigidity on temperature. 
 Thermally excited ripples spontaneously appear in partially hydrogenated or fluorinated graphene 

due to strong out-of-plane fluctuations. 
 Significant thermal fluctuations may occur in partially fluorinated graphene. 
 The temperature affects the thermal fluctuations of graphene more remarkably than those of 

graphane and fluorographene. 
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