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Situational Awareness in Distribution Grid Using
Micro-PMU Data: A Machine Learning Approach

Alireza Shahsavari, Student Member, IEEE, Mohammad Farajollahi
Emma M. Stewart, Senior Member, IEEE, Ed Cortez, and Hamed Mohsenian-Rad

Abstract—The recent development of distribution-level pha-
sor measurement units, also known as micro-PMUs, has been
an important step toward achieving situational awareness in
power distribution networks. The challenge however is to trans-
form the large amount of data that is generated by micro-PMUs
to actionable information and then match the information to
use cases with practical value to system operators. This open
problem is addressed in this paper. First, we introduce a novel
data-driven event detection technique to extract events from the
extremely large collection of raw micro-PMU data. Subsequently,
a data-driven event classifier is developed to effectively classify
power quality events. Importantly, we use field expert knowl-
edge and utility records to conduct an extensive data-driven
event labeling. Moreover, certain aspects from event detection
analysis are adopted as additional features to be fed into the
classifier model. In this regard, a multi-class support vector
machine classifier is trained and tested over 15 days of real-
world data from two micro-PMUs on a distribution feeder in
Riverside, CA, USA. In total, we analyze 1.2 billion measure-
ment points and 10,700 events. The effectiveness of the developed
event classifier is compared with prevalent multi-class classifi-
cation methods, including k-nearest neighbor method as well
as decision-tree method. Importantly, two real-world use-cases
are presented for the proposed data analytics tools, includ-
ing remote asset monitoring and distribution-level oscillation
analysis.

Index Terms—Machine learning, distribution synchropha-
sors, situational awareness, event detection, event classification,
big-data.

I. INTRODUCTION

HE PROLIFERATION in distributed energy resources,
Telectric vehicles, and controllable loads has introduced
new and unpredictable sources of disturbance in distribu-
tion networks. This calls for developing new monitoring
systems that can support achieving situational awareness at
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distribution-level; thus, allowing the distribution system oper-
ator to make the best operational decisions in response to such
disturbances.

Traditionally, there have been three major challenges in
achieving situational awareness in power distribution systems.
First is the lack of high resolution measurements. Metering
in distribution systems is often limited to supervisory control
and data acquisition (SCADA) at substations with minutely
reporting intervals. As for smart meters, their report measure-
ments once every 15 minutes or hourly. Second is the lack of
accurate and up-to-date models for most practical distribution
circuits. Third, due to the lower voltage and the larger num-
ber and variety of utility and customer equipment, distribution
systems are subject to a huge number of events on a daily
basis.

The first challenge above has recently been resolved by the
advent of micro-PMUs [1]. A typical micro-PMU is connected
to single- or three-phase distribution circuits to measure GPS
time-referenced magnitudes and phase angles of voltage and
current phasors at 120 readings per second. Since 2015, several
micro-PMUs have been installed at pilot test sites in the state
of California, including some in the city of Riverside [2].

This paper makes use of real-world micro-PMU data from
a feeder in Riverside, CA, see Fig. 1. It seeks to address the
second and the third challenges listed above. Specifically, we
propose a novel model-free situational awareness framework
for power distribution systems to turn micro-PMU data in to
actionable information for tangible use cases. This is done
by introducing a novel data-driven event detection technique
as well as a novel data-driven event classification technique.
Event detection is applied to eight non-linearly dependent data
streams for each micro-PMU, including voltage magnitude,
current magnitude, active power, and reactive power. Event
classification is done by extracting the inherent features of
detected events, and by constructing an algorithm that can
learn from and make predictions of various events. The main
contributions in this paper can be summarized as follows.

1) A novel situational awareness framework is introduced
for power distribution systems using micro-PMU data,
that is model-free; it works by going through a sequence
of event detection, event classification, and event scru-
tinization efforts to transform the large amount of mea-
surement data from micro-PMUs to information that are
useful for distribution system operators.

2) The approach in this paper makes use of field expert
knowledge and utility records in order to conduct an

1949-3053 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. The real-world distribution feeder that is studied in this paper.

extensive data-driven event labeling for micro-PMU
data. The detected events are labeled according to event
zone and event type. As for the event detection phase
prior to event labeling, our approach is comprehensive;
it involves moving windows to help compensate the lack
of information about the start time of each event. It also
involves dynamic window sizes to help compensate the
lack of information about the duration of each event.

3) Different feature selection approaches and different clas-
sification methods are examined and compared, includ-
ing multi-SVM, k-nearest neighbor, and decision-tree,
with considering certain aspects of events from micro-
PMUs, e.g., uneven datasets and features of multi-stream
signals. It is shown that the use of the proposed detec-
tion features, such as detection window and detection
indicator, is critical, regardless of the method of classi-
fication. It is also observed that multi-SVM is a better
classifier compared to k-NN and DT in this particular
application domain, whether or not we use the detection
features.

4) Two important real-world use-cases are proposed and
investigated, namely remote asset monitoring and
distribution-level oscillation analysis. The first use-case
allowed us to measure the internal phase imbalance in
a 900 kVAR capacitor bank as well as a potential mal-
function in its Volt/VAR controller. The second use-case
also allowed us to identify the source location and the
frequency of a class of oscillation events that occur on
the understudy distribution feeder.

The early studies on micro-PMUs focused on innovative
case studies, in [2]-[7]. In [8], a model-based event detection
method is proposed to detect changes in the admittance matrix
of the distribution grid using micro-PMUs data. However,
model-based techniques are often prone to failure due to
lack of model accuracy, particularly in case of detecting
power quality events. Detecting partially-labeled events in
micro-PMU data is proposed in [9]-[12]. However, given the
complexity of distribution systems, it is difficult for utilities
to pre-determine the variety of distribution-level events [13].
Thus, relying on expert knowledge and labeling events at event
detection phase may inevitably result in overlooking some
events. To resolve this issue, we propose a model-free event
detection approach to capture unlabeled data.

In the context of event classification in power distribution
systems, prior studies have classified the various causes of
fault events [14]-[16], and power quality events [17], [18].
However, broadly speaking, the current literature is still limited
when it comes to studying large-scale real-world micro-PMU
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data sets; therefore, the challenges that may arise in prac-
tical event classification problems are yet to be understood
and addressed. Finally, in [19], classifiers are trained to
identify malfunctioned capacitor bank switching and malfunc-
tioned on-load tap-changer switching events using data from
hardware-in-the-loop simulations. The transient signatures of
these malfunctions are derived by simulating different test
systems and test scenarios. In contrast, the labeling in this
paper is done by using real-world data combined with field
knowledge from utility staff and utility event logs.

II. DATA-DRIVEN EVENT DETECTION

Let D; .= [d}, ..., d,]" denote a sequence of measurements
from a micro-PMU, such as current magnitude on one phase,
where n is the number of observation samples in the sequence.
Subscript i is the index of the data sequence within the over-
all micro-PMU data stream. We define MAD; as the median
absolute deviation (MAD) in data sequence D; as follows:

MAD; =y - M[|D; — M[D;]|], ey

where M[ -] and | - | denote median and absolute values. A
typical value for coefficient y is 1.4826 [20]. In this study, we
detect an event within data sequence D; if there exists a data
point k = 1, ..., n for which any of the following holds:

dr <M[D;] — ¢ MAD,
M[D{] + ¢ MAD; < dy, ()

where ¢~ and ¢ denote the threshold to detect overshoot and
undershoot in the data sequence, respectively. Here, M[D;] —
£~MAD; and M[D;] + §*MAD; denote the lower-bound and
the upper-bound margins for data sequence D;, respectively.
We define an indicator function I{-} such that I{D;} = 1, if
the condition in (2) holds for data sequence D;; and I{D;} = 0
otherwise. Note that, the above approach to detect an event in
a micro-PMU data sequence is a statistical anomaly detection
technique which uses the absolute deviation around median
test. Other statistical anomaly detection methods could also
be used, such as the extreme studentized deviate test, or the
standard deviation around mean value test, see [20].

The choice of parameters £~ and ¢T and the size of the
data sequence window n have impact on the performance of
the detection method. While ¢~ and ¢ are often selected
empirically, choosing the right window size n is very chal-
lenging. In fact, we observed that it may not be possible to
detect all events based on only one value for parameter n.

In order to overcome the above challenges, we propose to
use a dynamic window size as well as a moving window such
that we can detect as many events as possible. On one hand,
the dynamic window size can help to compensate the lack of
information about the duration of each event. On the other
hand, the moving window can help to compensate the lack of
information about the start time of each event.

The impact of applying dynamic window sizes and moving
windows is shown in Fig. 2. Here, the entire data stream takes
100 seconds. Three major events can be visually detected, with
start time stamps 1, f, and 3. We can see that different events
have different natures and different lengths. The first event is
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Fig. 3. (a) The percentage of detected events. (b) Computation time.

long lasting. It can be detected either at its step-up edge or at
its step-down edge; or both. The second event includes some
transient oscillations. The third event is a momentary spike.
Fig. 2(a) shows the case where the window size is fixed at
n = 600 micro-PMU samples, i.e., five seconds. Therefore,
in the 100 seconds of data shown in this figure, there exist
20 = 100/5 upper-bound and lower-bound margins of the
form in (2). Only the third event at time #3 is detected in this
case. Fig. 2(b) shows the case where there is a second win-
dow of the same size, a moving window, that is shifted by
300 samples, i.e., half of the window size. Therefore, besides
those 20 upper-bound and lower-bound margins that we saw in
Fig. 2(a), there are additional 20 upper-bound and lower-bound
margins in this figure. Accordingly, for each micro-PMU sam-
ple, there exist two upper-bound margins and two lower-bound
margins in Fig. 2(b). The new upper-bound and lower-bound
margins in Fig. 2(b) can detect the first event at time ;.
Fig. 2(c) shows the windows of n = 120, 360, 600, 840, 1080

samples for their sizes, where each window is also moved by
half of its own size. The window sizes are 1, 3, 5, 7, and
9 seconds, respectively. Note that, for each micro-PMU sam-
ple in this figure, there exist 10 upper-bound margins and 10
lower-bound margins. As it can be seen from this figure, by
applying both moving windows and dynamic window sizes,
we can detect all three events.

Both dynamic window sizes and moving windows are nec-
essary to assure detecting all events. This point is illustrated in
Fig. 3(a). The percentage of correctly identified events versus
the window size are shown in this figure; for both static and
moving window types. The micro-PMU data stream in this
example takes one day and includes 564 events. We can see
that the use of moving window is always more effective than
the use of a static window. No single window size can detect
all events. However, collectively, a combination of different
window sizes and moving windows can detect all 564 events.
Also, Fig. 3(b) shows the computation time corresponding
to static windows and moving windows for different window
sizes. As it can be seen in this figure, in each window size, the
computation time of the moving windows is twice of the static
window. Also, as expected, the computation time decreases as
the detection method is applied to wider window sizes.

III. EVENT LABELING AND FEATURE SELECTION

Given the events that are captured by using the event detec-
tion method in Section II, in this section, we conduct a
comprehensive event labeling and feature selection approach.

A. Two-Layered Event Labeling

One can label power system events based on different
aspects of their characteristics. Here, we seek to label the
events according to event zone and event type.

1) Layer I Labeling Based on Event Zone: In this first layer
of classification, each event can take one of the below labels:

o Class I. Events initiated from upstream of micro-PMU 1,

i.e., at transmission-level or another distribution feeder;

e Class II. Events initiated from downstream of micro-

PMU 2, i.e., at customer location that hosting micro-
PMU 2;

e Class III. Events initiated from somewhere between the

two micro-PMUs across the distribution feeder of interest.
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Fig. 5.

An example for a Class I event is shown in Fig. 4. Class I
events often appear as sustained steps or temporary fluctu-
ations in voltage magnitudes at both feeder-level, seen by
micro-PMU 1, and customer-level, seen by micro-PMU 2.
However, they do not cause any major change in the current
magnitudes. Class I events could be due to transformer, capac-
itor bank, generator, or load switching at sub-transmission or
transmission networks. They could also be due to momentary
faults on another neighbouring distribution feeder, see [2].

An example for a Class II event is shown in Fig. 5. Class II
events often appear as sustained steps or temporary fluctua-
tions in voltage magnitude, current magnitude, active power,
and reactive power at customer level, seen by micro-PMU 2.
Depending on the size of the event, the event signature is
noticeable also in the measurements at the feeder level, seen
by micro-PMU 1. Class II events could be due to load switch-
ing, such as motor and HVAC loads, DER switching, such as
PVs and batteries, among other customer-level causes [3].

An example for a Class III event is shown in Fig. 6. Class III
events often appear as sustained steps or temporary fluctua-
tions in voltage magnitude, current magnitude, active power,
and reactive power at feeder-level, seen by micro-PMU 1. They
may also affect the voltage magnitude at customer-level, seen
by micro-PMU 2. However, they do not have a major impact
on current magnitude, active power, and reactive power at

Time (s) Time (s)

An example Class II event: (a)-(h) are defined the same way as in Fig. 4.

customer-level. Class III events can be due to a wide verity
of causes, such as distribution-level transformer and capaci-
tor bank switching, lateral fuse blowing, primary protection
operation, load switching, DER switching, etc.

2) Layer 2 Labeling Based on Event Type: Each event
can be further labeled based on its type. This can be done
for all events, whether they are in Classes I, II, or IIIL
However, labeling the type of Class I events is not of
interest; because distribution-level PMUs are not intended
to investigate transmission-level events. Labeling the type
of Class II events is not of great interest either; because
the customer that hosts micro-PMU 2 is being monitored
directly. In fact, it is only Class III events that are of
interest to be further classified; because those are the events
that occur across the distribution feeder. Thus, in this sec-
tion, we define a second layer for labeling Class III events,
as follows.

o Class III.A. Capacitor bank switching; see Fig. 6;

o Class III.B. Distribution-level oscillation, see Fig. 7;

o Class III.C. Other events, see Fig. 8.

The above distinction is based on the fact that capacitor
bank switching is an important event in distribution systems
and the subject of several studies [2], [21]. Oscillation events
too are important. There is currently a limited understanding
of the oscillation events within distribution systems [1].
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Fig. 8. An example Class III event, i.e., Class III.C: (a)-(h) are defined the same way as in Fig. 4.

B. Feature Selection

A crucial task in any classification problem that involves
Machine Learning is to choose adequate quantifiable features
that can help distinguish classes. In this paper, we propose the
features in Table I, which consists of three broad categories.

o Single-Stream Features: These are quantifiable proper-

ties that are derived from single data streams D; €
{1, V, P, Q}. They could be obtained by applying the
mean, standard deviation, median, difference, or other

operators to each of such single data streams within the
detected window. In this study, we use standard devia-
tion and absolute difference. Note that, notations d; and
dy, denote the first and the last data samples in D,.

Multi-Stream Features: These are quantities that are
defined for various combinations of two synchronized
data sequences D;, D; € {I,V, P, Q}, whether from the
same micro-PMU or two micro-PMUs. Different opera-
tors could be applied to the data streams. Here, we use
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TABLE I
PROPOSED FEATURES FOR CLASSIFICATION
Feature Feature Description Number

. Statistics std(D;) 8
Single-stream Difference [dy, — di] 8
Multi-stream Correlation corr(D;, D) 28
Detection Detection Window w 1
Detection Indicator {D;} 8

the correlation between any two of the eight available
data sequences to construct the multi-stream features.

o Detection Features: The way that an event is detected
can itself carry useful information to classify the event.
We use the following detection features for classification:
1) the smallest window at which the event was detected,
denoted by w; and 2) the binary detection indicators I{D;}
for D; € {I, V, P, Q}, for both micro-PMUs.

IV. DATA-DRIVEN EVENT CLASSIFICATION

We now use the event labeling and feature selection strate-
gies in Section III to train different types of event classifiers.

A. Binary-SVM Classifier

Consider m events that are detected by using the method
in Section II. We use these events to train an SVM classifier.
For each training event i = 1, ..., m, let X; denote the 53 x 1
vector of extracted features, where 53 =28 +3 x 8+ 1, as in
Table 1. Also, let y; denote the assigned label for event i.

When it comes to binary classification, there are only two
types of labels. We define y; € {—1, 1}, where y; = —1 is the
label for the first class; and y; = 1 is the label for the second
class. Let WI'X + b = 0 denote a separating hyperplane in the
53 x 53 feature space that separates the two classes, where W
is a 53 x 1 coefficients vector, and b is the intercept. The SVM
training problem seeks to find the optimal hyperplane that has
the maximum total distance between the two classes across
the training samples. If the training samples are not linearly
separable, we should add some slack variables so as to turn
the SVM into a soft margin SVM, which is formulated as:

inimize W3 + A o 3a)
minimize 2 |WIl3 + le (3a
subject to y(W'X;+b) > 1—¢, i=1,....m (3b)
§=>0,i=1,....,m, (3¢)

where &; is a slack variable corresponding to training event i. If
y; = —1, then constraint (3b) requires that WIX;+b < —1+&;
and if y; = 1, then constraint (3b) requires that WIX;+b >
1—&;; thus, making W/ X +b = 0 a separating hyperplane with
a soft SVM margin of length 1 — &; on both sides. Parameter
A is a tuning parameter. If the extracted features of a training
event results in a point that falls on the correct side of the
separating hyperplane with respect to the label of the event,
then 0 < &; < 1; otherwise & > 1, see [22], [23].

B. Multi-SVM Classifier

A multi-class classification problem can be decomposed into
several binary classification problems. This can be done by
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using methods such as one-against-one (OvO), one-against-all
(OvA), directed acyclic graph SVM (DAGSVM), and binary
tree of SVM (BTSVM) [22], [23]. In this paper, we use OVA
decomposition. We construct ¢ binary SVM problems, where
¢ is the number of classes. Each binary SVM problem obtains
a separating hyperplane to separate one of the ¢ classes from
the rest of the ¢ — 1 classes. We have ¢ = 3 for both Layer 1
and Layer 2 classification; see Section IV-A. In total, six sets
of separating hyperplanes are trained; three sets for each layer.
Once the training process is complete, the decision on class
prediction for testing event i is made as [22]:

yi = alrg max (W] X; + by). 4)

=1,..., c

In (4), we say that event i is predicted to belong in class /,
which has the largest value of the decision function.

An alternative training separating hyperplanes in the form
of WIT X + b; is to use non-linear classifiers, such as separat-
ing quadratic planes [24]. However, our experimental results
based on real-world data have shown that there is no advan-
tage in using nonlinear classifiers which are computationally
more complex. What matters the most is to choose the right
classification features, i.e., as in Table I, as we will further
discuss in Section V.

C. K-NN and Decision-Tree Classifiers

There are other classifiers that one can consider for this
study. One example is the k-nearest neighbors (k-NN) clas-
sifier [25]. Another example is the decision-tree (DT) clas-
sifier [26]. The k-NN method classifies an unknown sample
based on the known labels of its k-closet, e.g., in the Euclidean
sense, neighbors [25]. As for the DT classifier, a decision
tree is constructed by creating branches as conjunctions of
features as well as leaves as class labels. Then, a test data sam-
ple is classified based on branches conjunctions [26]. These
additional methods are not discussed here in details due to
space limitation. However, detailed performance comparisons
are provided across these methods later in Section V.

D. Metrics to Compare Different Classifiers

First, consider the binary classifiers as in Section IV-B. The
correctness of each classifier can be evaluated by computing
the following four quantities: True Positive (TP), which is the
number of events that are correctly classified to be inside of the
target class; True Negative (TN), which is the number of events
that are correctly classified to be outside of the target class;
False Positive (FP), which is the number of events that are
incorrectly classified to be inside of the target class; and False
Negative (FN), which is the number of events that are incor-
rectly classified to be outside of the target class. Accordingly,
for each binary classifier, we can calculate the following five
standard performance evaluation metrics [27]:

TP
TPR= ——— (3)
TP + FN
FP
FPR= ———, (6)
FP + TN
TP
PPV @)

T TP+ FP’
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FN

- FN+1N’

TP x TN — FP x FN
MCC = )

/(TP + FP)(TP + FN)(TIN + FP)(TN + FN)

where TPR, FPR, PPV, FOR, and MCC stand for the true pos-
itive rate, false positive rate, positive predictive values, false
omission rate, and Matthews correlation coefficient, respec-
tively. It should be noted that, in some machine learning
literature, such as in [27], TPR, PPV, and FPR are also known
as recall, precision, and fall-out metrices, respectively. The
overall accuracy of a binary classifier can be assessed also by
using the following metric:

FOR ®)

-1

(10)

TPR™! + ppV—!
FiScoe = —MMM

2

Next, consider the multi-class classifier, as in Section IV-C.
The recall, precision, and Fiscore for multi-class classifier
can be calculated by using either Macro-averaging or Micro-
averaging [27]. Macro-averaging simply normalizes the sum
of all metrics. Thus, Macro-averaging does not consider the
number of events in each class. Micro-averaging however com-
putes the metrics from sum of TP, TN, FP, and FN values
of all classes. Thus, Micro-averaging takes the frequency of
classes into consideration. Accordingly, one can prove that if
Micro-averaging is used, then recall, precision, and FiScore,
all become equal, as follows:

Zf=1 TP

Recall = - .
> =1 (TP + FN))

(1)

V. CASE STUDIES

The proposed event detection and event classification meth-
ods are applied to data from the two micro-PMUs in Fig. 1,
during 15 days in July 2016. In total, we analyzed 1.2 billion
measurement points, and 10,700 events. Only 1% of the mea-
surements demonstrated any considerable event. Among the
events detected, 1802, 2228, and 6670 events are labeled in
Class I, Class II, and Class III, respectively. Among the 6670
Class III events, 27 events are labeled as Class A and 43 events
are labeled as Class B. The training dataset includes 4.09%
and 4.06% of all Layer I and Layer II data, respectively.

A. Classifier Design: A Preliminary Illustrative Example

In this section, a multi-SVM classifier is designed to sepa-
rate the events in Layer 1. Recall from Sections III and IV that
the resulting three separating hyperplanes are in the 53 x 53
feature space that cannot be visualized. Therefore, in order to
develop an example that is easy to illustrate, we use only the
three most dominant features, out of 53, so as to visualize the
separating hyperplanes in a 3 x 3 space, as shown in Fig. 9. In
this figure, x; is the correlation coefficients between reactive
power of the two micro-PMUSs, x; is the standard deviation of
the current magnitude of micro-PMU 1, and x3 is the standard
deviation of active power at micro-PMU 2. The total number of
training events is 438. We can see that the events are properly
separated across the three classes. For instance, Hyperplane I
separates events corresponding to Class I from the rest of the
events. The overall classifier training accuracy is 91%.
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Fig. 9. Target classes and separating hyperplanes of Layer I in a 3 x 3 feature
space. The circles indicate training data points.

O ClassI
O Classll
O Class Il
Hyperplane I
Hyperplane 11
Hyperplane 111

Fig. 10. Predicted classes of Layer I obtained by the use of the separating
hyperplanes in Fig. 9. The circles indicate test data points.

Next, the above separating hyperplanes are applied to the
test dataset, and the decision on class prediction is made
using (4). Fig. 10 shows the predicted classes across 10262 test
events. The overall classifier testing accuracy is 89%. Thus,
several events in this preliminary example are not predicted in
the right classes, mainly due to not using all 53 features.

B. Classification Results and Impact of Detection Features

In order to demonstrate the importance of features, in this
section, we separately examine the following two cases:

o Case 1: Classification without detection features.

e Case 2: Classification with detection features.

Interestingly, the overall multi-SVM classifier training accu-
racy is 100% in both cases; not shown here. However, when
it comes to using the classifiers to identify the classes for fest
events, the performance is considerably better for Case 2 than
Case 1. The confusion matrices for the multi-SVM, k-NN,
and DT classifiers are shown in Fig. 11, for both Case 1 and
Case 2. Parameter k for the k-NN classifier is set to 3 based on
an exhaustive search. All results are based on the data for test
events. Each confusion matrix shows the recall metric in per-
centage for binary-classifiers as well as overall classification
recall using Micro-averaging.

Tables II to IV show the performance metrics in percentage
for binary classifiers in Layer I. We can make two impor-
tant observations from Fig. 11 and Tables II to IV. First, the
performance is always better in Case 2 compared to Case 1.
In other words, the use of detection features is indeed critical,
regardless of the method of classification. Second, the multi-
SVM classifier outperforms the k-NN classifier and the DT
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Fig. 11. Confusion matrix for test data of Layer I classification, i.e., with

respect to event zone, obtained by various classifiers: (a) multi-SVM classifier,
Case 1; (b) multi-SVM classifier, Case 2; (c) k-NN classifier, Case 1; (d) k-NN
classifier, Case 2; (e) DT classifier, Case I; (f) DT classifier, Case 2.

TABLE II
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE FIRST
BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION

Classifier | Case | TPR FPR PPV FOR | MCC | FiScore
SVM 1 95.23 | 0.66 | 96.63 | 0.95 | 95.12 95.93
2 100 0.09 | 99.53 0 99.72 99.76
K-NN 1 97.23 | 1.31 | 93.73 | 0.54 | 94.59 95.49
2 99.24 [ 0.50 | 97.54 | 0.15 | 98.06 98.38
DT 1 74.60 | 0.55 | 96.46 | 4.89 | 52.35 84.14
2 100 0.02 | 99.88 0 99.93 99.94

classifier in both cases. In other words, the multi-SVM classi-
fier is a better choice in this study, whether or not we use the
detection features.

Based on the above results, for the rest of this paper, we
always include the detection features, i.e., we use Case 2. It
should be noted that the training accuracy of multi-SVM clas-
sifier is 100% in both cases. The results however are not shown
here due to space limitation.

C. Classification Results for Second Layer

Unlike in Section V-A and V-B, where our focus was on
Layer I classification, i.e., with respect to event zone, in this
section, we examine the performance for Layer II classifica-
tion, i.e., with respect to event type. The Layer II events that
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TABLE III
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE
SECOND BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION

Classifier | Case | TPR FPR PPV FOR | MCC F1 Score

SVM 1 97.52 | 0.64 | 97.57 | 0.65 | 96.90 97.54
2 99.71 | 0.02 | 99.90 | 0.07 | 99.76 99.81

NN 1 96.31 | 0.59 | 97.72 | 0.96 | 96.23 97.01
2 98.55 | 0.27 | 9896 | 0.38 | 98.43 98.76

DT 1 88.65 | 039 | 9834 | 291 91.77 93.24

2 97.61 | 0.01 | 99.95 | 0.62 | 98.46 98.77

TABLE IV

PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE
THIRD BINARY-CLASSIFIERS IN LAYER I CLASSIFICATION

Classifier | Case | TPR FPR PPV FOR | MCC | FjScore

SVM 1 99.15 2.07 98.75 1.40 | 97.21 98.95

2 99.92 0.02 99.98 | 0.12 | 99.87 99.95

NN 1 98.45 1.65 98.99 | 2.53 | 96.62 98.72

2 99.40 0.44 99.73 | 097 | 98.86 99.56

DT 1 98.98 | 17.24 | 90.48 1.99 | 85.05 94.54

2 99.96 1.29 99.22 | 0.05 | 98.92 99.59

TABLE V

PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE FIRST
BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION

Classifier | TPR | FPR PPV FOR | MCC F1 Score
SVM 100 | 0.11 | 78.12 0 88.33 87.71
k-NN 100 | 0.04 | 89.28 0 94.46 94.33

DT 0 0 N/A 0.39 N/A N/A

we observed in the real-world micro-PMU data demonstrated a
very uneven distribution across different classes. Only 2 and 4
events out of 271 Class III training events belong to Class III.A
and Class III.B, respectively. Also, only 0.4% and 0.6% of
events in the test dataset are in Class III.A and Class 111.B,
respectively.

Figs. 12(a) and (b) show the confusion matrices corre-
sponding to the training data and the test data for Layer II,
respectively. The recall metric for the binary-classifiers and
multi-class classifier are presented in confusion matrices.
Similarly, Figs. 12(c) and (d) show the confusion matrices of
the k-NN classifier and DT classifier for Layer II events. Due
to space limitation, the confusion matrices are shown only for
the test data. Parameter k for the k-NN classifier is set to 3.

The above results verify the performance of the proposed
classifiers in separating uneven datasets. Also, Tables V to VII
report the performance metrics corresponding to binary-
classifiers of Layer II. From these results, we can conclude that
the performance of the k-NN classifier is slightly better than
the multi-SVM classifier in this particular case; although, there
is a caveat about the k-NN classifier, which we will explain
in the next paragraph. As for the DT classifier, we can see in
the last rows of Tables V to VII that it fails to classify the
events in Class III.A. Such events are incorrectly classified as
Class III-B events.

We saw in the previous paragraph that the k-NN method can
perform slightly better than the multi-SVM method. However,
there is a catch, such performance is highly sensitive to the
choice of parameter k. What was shown earlier was in fact
the best possible result for the k-NN method. To see this, the
impact of parameter k on the overall classification performance
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Fig. 12. Confusion matrix for Layer II classification, i.e., with respect to

classifying event type: (a) multi-SVM classifier, training data; (b) multi-SVM
classifier, test data; (c) k-NN classifier, test data; (d) DT classifier, test data.

TABLE VI
PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE
SECOND BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION

Classifier TPR FPR PPV FOR | MCC F1 Score
SVM 94.87 0.11 84.09 | 0.03 | 89.25 89.15
k-NN 97.43 0.07 88.37 | 0.01 92.74 92.68

DT 100 72.32 | 45.88 0 67.49 62.90
TABLE VII

PERFORMANCE METRIC IN PERCENTAGE CORRESPONDING TO THE
THIRD BINARY-CLASSIFIERS IN LAYER II CLASSIFICATION

TPR | FPR | PPV

SVM 99.77 | 3.12 | 99.96

k-NN 99.88 0 100
DT 99.62 | 4.68 | 99.95

FOR
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Fig. 13.  Error for the k-NN versus parameter k, in classifying Layer II
events: (a) overall classification, (b) classifying Class III.B.

as well as the performance in classifying Class III.B are shown
in Fig. 13(a) and (b), respectively. As it can be seen for both
cases, the minimum error is achieved by setting k = 3. The
results are poor in other choices of k. In particular, the error
in classifying Class III.LB can be very high if parameter k is
not carefully selected; thus, the results for the k-NN method
are not as robust as those for the multi-SVM method.
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Fig. 14. Capacitor bank switch-off events for the first application in
Section V-D: (a) transient current magnitude, (b) duration of transition.

D. First Application: Remote Asset Monitoring

In this section, we scrutinize the Class III.A events that
are obtained by the method in Section V-C to achieve situa-
tional awareness by monitoring the capacitor bank. The cap
bank in this study is rated 900 kVAR. It is switched by a
vacuum circuit breaker (VCB). The VCB is controlled by a
Volt-VAR controller, which switches on and off based on per-
phase low-voltage and high-voltage override thresholds. The
event classification method in Section V-C identified 25 cap
bank switching events out of the total 10,700 events being
examined.

Typically, for a wye-floating capacitor bank, the strategy for
switching-off is to open contacts in two steps; first, opening
one phase at zero-crossing of its current; second, opening the
two other phases at quarter of a cycle later, at 90° relative to
zero-crossing of the first phase [21]. Fig. 6(a) in Section III
shows that there is an overshoot and an undershoot in current
magnitude of phase A and phase B, respectively, while phase
C experiences an ideal switching with no transient in cur-
rent magnitude. Also, in Fig. 6(d), reactive power of phase C
increases due to capacitor bank switching-off on phase C,
while after about 200 msec dead-time, reactive power increases
on phases A and B. Thanks to the event detection approach in
Section II, this issue is further studied across 25 switching-off
events that occurred across two weeks. The results are shown
in Fig. 14. We can confidently conclude that the capacitor bank
switching is ideal during its first step, but there is always about
20% overshoot and undershoot transients in current magnitude
lasting for 100-200 msec during its second step.

The unbalanced or underrating operation of the capaci-
tor bank was also investigated during the two weeks of this
study. Fig. 15 shows the change in reactive power compen-
sation across three phases due to switch-on events. Reactive
power compensation is 288 kVAR on Phase A, 291 kVAR on
Phase B, and 286 kVAR on Phase C. The results are simi-
lar during the switching on events are omitted due to space
limitation.

E. Second Application: Event Source Location Identification

In this section, we scrutinize the Class III.B events that are
obtained by our proposed method in Section V-C to charac-
terize the oscillations on the under-study distribution feeder.
We combine our event detection and classification results with
the event source location identification (ESLI) method in [4]
and [28] to pinpoint the location of each oscillation event. The
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Fig. 16. Oscillation events: (a) zonal voltage discrepancy, (b) frequency.

granularity of location identification is necessarily limited to
8 zones, as marked on Fig. 1, due to the limited number of
micro-PMU installations; see [4] for more details. Note that,
Z1 and Zg are the upstream-level and customer-level zones,
i.e., they correspond to Class I and Class II, respectively.

In total, 43 oscillation events are identified during the two
weeks of this study. For each individual oscillation event, ESLI
calculates the so-called zonal voltage discrepancy AV, for
zones z =1, ..., 8; see [4]. An example for applying ESLI to
one of the oscillation events is shown in Fig. 16(a); where the
location of the event is zone Z7, because it has the smallest
zonal voltage discrepancy. Interestingly, we identified that all
the 43 oscillatory events occurred in zone Z;. By applying the
Fourier analysis, we obtained the frequency of all oscillations
at this location. Their histogram is shown in Fig. 16(b).

VI. CONCLUSION

The goal of this paper was to start from a stream of raw
micro-PMU data and turn them into information for tangi-
ble use cases for power distribution systems. First, a novel
model-free event detection technique is proposed to pick out
valuable portion of data from micro-PMU data streams from
a real-world test site in Riverside, CA. In total, 10,700 events
were detected and examined. Subsequently, a novel data-driven
event labeling technique was combined with different methods
of classification to classify the detected events at two layers.
Interestingly, we concluded that adopting classification fea-
tures from the detection process can considerably improve
the overall classification accuracy. Finally, two real-world uses
cases were investigated, namely for remote asset monitoring
and distribution-level oscillation analysis. The results in this
paper could be of value to utilities and system operators.

This study can be extended to active distribution networks
with higher penetration of DERs. While we expect our
approach to perform well with detecting the increased number
of events that may occur due to the increased number DERs,
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it may not be easy to label all such new events due to the lim-
ited information about the resources and equipment that are
owned and operated by customers.
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