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Abstract
Background: Investigation of global clustering patterns across regions is very important in spatial data analysis. 
Moran's I is a widely used spatial statistic for detecting global spatial patterns such as an east-west trend or an unusually 
large cluster. Here, we intend to improve Moran's I for evaluating global clustering patterns by including the weight 
function in the variance, introducing a population density (PD) weight function in the statistics, and conducting Monte 
Carlo simulation for testing. We compare our modified Moran's I with Oden's I*pop for simulated data with 
homogeneous populations. The proposed method is applied to a census tract data set.

Methods: We present a modified version of Moran's I which includes information about the strength of the 
neighboring association when estimating the variance for the statistic. We provide a power analysis on Moran's I, a 
modified version of Moran's I, and I*pop in a simulation study. Data were simulated under two common spatial 
correlation scenarios of local and global clustering.

Results: For simulated data with a large cluster pattern, the modified Moran's I has the highest power (43.4%) 
compared to Moran's I (39.9%) and I*pop (12.4%) when the adjacent weight function is used with 5%, 10%, 15%, 20%, or 
30% of the total population as the geographic range for the cluster.

For two global clustering patterns, the modified Moran's I (power > 25.3%) performed better than both Moran's I (>
24.6%) and I*pop (> 7.9%) with the adjacent weight function. With the population density weight function, all methods
performed equally well.

In the real data example, all statistics indicate the existence of a global clustering pattern in a leukemia data set. The
modified Moran's I has the lowest p-value (.0014) followed by Moran's I (.0156) and I*pop (.011).

Conclusions: Our power analysis and simulation study show that the modified Moran's I achieved higher power than 
Moran's I and I*pop for evaluating global and local clustering patterns on geographic data with homogeneous 
populations. The inclusion of the PD weight function which in turn redefines the neighbors seems to have a large 
impact on the power of detecting global clustering patterns. Our methods to improve the original version of Moran's I 
for homogeneous populations can also be extended to some alternative versions of Moran's I methods developed for 
heterogeneous populations.

Background
Global indices of spatial autocorrelation have been used
to evaluate the degree to which similar observations tend
to occur near each other [1-4]. Spatial autocorrelation
among disease counts or incidence proportions may
reflect real association between cases due to infection, or
perceived association based on a spatial aggregation of
similar values. Moran's I [5] is a widely used global index

that measures the similarity for values in neighboring
places from an overall mean value and reflects a spatially
weighted form of Pearson's correlation coefficient. The
traditional calculation of Moran's I for disease cases does
not account for population heterogeneity, so that, its
application to disease rates or proportions may result in
indication of spatial correlation that is completely due to
the spatial proximity of population sizes, but not due to
the similarity among the disease rates. Several alternative
versions of Moran's I have been proposed to account for
heterogeneous populations, for example by Oden [6],
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Waldhor [7], Walter [2], Assuncao and Reis [8], and
Waller et al. [9].

In this article, we intend to improve the original version
of Moran's I [5] that tests the similarity of numbers (e.g.,
cases) in neighboring geographic units, by doing the fol-
lowing: incorporating a weight function in the variance
computation, introducing the population density (PD)
weight function, and conducting Monte Carlo simulation
for testing global clustering pattern. The weight function
is not only included in the differences of the geographic
unit's cases (e.g., county cases) from the overall mean, but
also in the calculation of the variance. We also expand the
definition of neighbors to a broader concept in the con-
struction of Moran's I (e.g., all geographic units included
in a pre-specified geographic range will be considered to
be neighbors of the geographic unit in the center). Statis-
tical inference is conducted assuming a null hypothesis of
constant risk instead of a normal distribution for the sta-
tistic. The proposed approaches for improving the origi-
nal Moran's I can also be applied to some alternative
Moran's I methods developed for heterogeneous popula-
tion data, such as the rate version of Moran's I and the
normalized Moran's I [10].

A simulation study is performed to evaluate the power
of both Moran's I and modified Moran's I for data gener-
ated with varying local and global clustering patterns.
The statistic I*pop is also selected to be evaluated in the
simulation study because I*pop was developed specifically
to improve the original Moran's I for heterogeneous pop-
ulation data, and I*pop achieved better power than
Moran's I as discussed in Jackson et al. [11]. We also com-
pared these statistics with a traditional weight function
definition that assigns a 0/1 to each neighboring location,
representing a non-neighbor/neighbor and expanding the
weight function definition that includes more informa-
tion such as the population density of the surrounding
neighbors [3].

The outline of this article is as follows: We describe the
original Moran's I and construct the Modified Moran's I.
We also describe Oden's I*pop. An extensive simulation
study was carried out to compare the power of these sta-
tistics in identifying the global spatial heterogeneity. We
illustrate the application of the methods using leukemia
incidence data at the census tract-level from upstate New
York. Results and a discussion conclude this article.

Methods
Observations and Locations
Define yi as the number of cases and ni as the population
at risk at geographic unit i where i = 1, ..., N with N being
the total number of geographic units (e.g. census tracts or
counties). Let wij be the weight assigned to the pair of

geographic units i and j (i ≠ j), which reflects the strength
of the relationship between geographic units i and j.

Moran's I
Moran's I [5] is defined as

where , . We note

that yi are counts, however, alternative versions of

Moran's I use continuous values. The weight in equation

(1) is commonly defined based on adjacent neighbors

(Adj) and is written as

The weight wij in Moran's I and its extensions are usu-
ally defined as in equation (2) (neighbor matrix). How-
ever, the weight function, wij, can be defined in many
other ways (see Song and Kulldorff [12] and Griffith [13]).

Let

Then, we can rewrite Moran's I as

The value of I usually ranges between -1 and 1 and the

expected value is . However, the range of I

depends on the values of the weight function [3]. Positive

values of I are associated with strong geographic patterns

of spatial clustering, negative values of I are associated

with a regular pattern, and a value close to zero repre-
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sents complete spatial randomness. Note that areas with

different population sizes were given the same weight (0

or 1) in Moran's I. The measure yi is the geographic unit's

count, which does not include the geographic unit's pop-

ulation information. If a dataset has spatial correlations

or clustering patterns due to the heterogeneous popula-

tion sizes, the original Moran's I using counts will identify

the clustering pattern which may be due to the spatial

similarity of the population and not the spatial clustering

pattern as desired.

Modified Moran's I

In the definition of Moran's I (3), we notice that the

weight is included in the numerator syy,w, but not in the

denominator . However, the "neighbors" who contrib-

ute more to the differences, , should also contrib-

ute more to their variation. Therefore, we proposed a

Modified Moran's I, which is defined as

where  in (1) is modified to depend on the weights

wij as

Thus, when wij are non-zero constants (homogeneous

weights),  and Iw = I, since

The weights in  are taken to depend on the obser-

vations yi and yj, (inhomogeneous weights). Substituting

 in (4), the Modified Moran's I is expressed as

Note that . Therefore, Iw ≤ I if the

term, . Since Iw depends on the choice of

the weight function, its mathematical properties such as

moments and asymptotic distribution can possibly be

obtained using the functional central limit theorem for

sums of weighted random variables; however, we have

not explored these issues here. The range of Iw may be

outside the interval [-1,1]. The expected value of the

modified Moran's I depends on the weight function and

the distribution of Iw is not tractable, therefore, we use

Monte Carlo simulation procedure to obtain the empiri-

cal distribution for statistical inferences.
We consider here another common weight function

called, the population density adjusted exponential weight
(PD) [12], that allows for sparsely populated areas to
include a larger geographic region to be incorporated in
the weights than densely populated areas. Then, the scale
of the spatial clustering can be adjusted based on the pop-
ulation density. This weight function is given by

where dij is the distance between geographic units i and

j,  and mi = max{j:uj(i) ≤ λ}. The population den-

sity across geographic unit i and its j nearest neighbors is

defined as uj(i). In this case, uj(i) represents the total popu-

lation count of the larger region comprised of geographic
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unit i and all of its neighbors j. The parameter λ is chosen

by the user and allows the user to view the population

density as a measure of spatial clustering, where large

(small) λ is more sensitive to larger (smaller) clustering

patterns. We define the parameter λ to be 50% of total

population in this study, where we wanted a significant

amount of neighbors included in the analysis. Note that ki

will be larger in areas that are sparsely populated (allow-

ing for greater distances to be incorporated in the weight

function) and smaller in areas that are densely populated

(allowing smaller distances to be incorporated in the

weight function). Therefore, the population density of the

geographic region is incorporated in this weight function.
Note that since both Syy,w and Sy,w depend on the

weights, Wij, Iw is more sensitive to the variability in the
weights than I. And, there is more variability in the
weights Adj in (2) as compared to the weights PD in (5).

Oden's I*pop

As discussed in the introduction, I*pop was developed as
an alternative or Moran's I specifically for data with het-
erogeneous population. As an alternative version of
Moran's I, Oden [6] derived the statistics I*pop to test for
global spatial autocorrelation adjusting for population
heterogeneity. His statistic is defined as

where , vi = ni/n+, vj = nj/n+, ei = yi/y+, ej = yj/

y+, and . Oden noted that symmetry is

not required for I*pop and wii ≠ 0 (but can be fixed at any

specified value). In order to capture the variability pres-

ent in a region, Oden includes the first term in the

numerator which is used to model the spatial variation in

a manner similar to the conventional chi-squared test for

heterogeneity of rates.

Power study
To compare the performance of modified Moran's I with
Moran's I, we performed a power analysis using a simula-
tion study. The yi is defined as the number of cases in our
study; however, it can also be taken as rates or normalized
cases. We used a homogenous population of ni = 5,000 for
i = 1 to 3,109 for each of the 3,109 regions that repre-
sented the counties of the U.S. (resulting in a total popu-
lation of n+ = 15,545,000.) We simulated regional count
data sets under the null hypothesis of constant relative
risk

where (y1, y2, ..., y3109) are regional counts generated
from the multinomial distribution. The total number of
cases y+ here is always the same as the total number of
cases in the corresponding data simulated under the
alternative hypothesis.

We simulated regional count data sets under the alter-
native hypothesis

where , ri is the relative risk at geographic

unit i, which is not constant under the alternative hypoth-

esis. The various value used for ri are based on the type of

spatial pattern simulated as described in the following

sections.

Local cluster pattern
First we selected Columbia County located in GA as the
center of the cluster. Then using homogenous popula-
tions of 5,000 for each of the 3,109 counties of the U.S.
(resulting in a total population of 15,545,000), we created
a cluster that contained 5% of the total population cen-
tered at Columbia County. The relative risk for this clus-
ter was 1.5 (with all other counties not included in the
cluster having a relative risk of 1.) We repeated these
steps to create clusters that contained 10%, 15%, 20% and
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Figure 1 Cluster pattern. Simulated spatial clusters representing 5% (A), 10% (B), 15% (C), 20% (D), and 30% (E) of the total population.

30% of the total population. Figure 1 shows the simulated
clusters.

Our power study is based on homogeneous populations
in order to reduce any confounding effects that occur
when using heterogeneous populations with varying rela-
tive risk. Waller et al. [9] state there is an impact of local
geography (in particular, population density) on power

comparisons between statistical tests of spatial pattern.
Therefore we study homogenous populations in the sim-
ulation study to remove the effect of the population.

Global spiral clustering pattern
To simulate data that represent a large global clustering
pattern, we used the following method. First we located a
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county in the center of the U.S. (Scott County KS). Then
we included as the central cluster a set of counties (with
Scott County as the center) that included 2% of the total
population (recall that each county has a homogenous
population of 5,000.) The relative risk for this central
cluster is 1.5. Then, we decreased the relative risk gradu-
ally around the central cluster until the smallest risk is 1.
The risk was gradually decreased in 100 equal intervals
from 1.5 to 1. Figure 2A shows the simulated pattern
divided into 9 groups for a simplified visualization.

Global linear clustering pattern
The final pattern simulated is a west-east trend with a lin-
ear increasing function. We simulated a minimum rela-
tive risk of 1 on the west coast and a maximum relative
risk of 1.5 on the east coast. The monotone increasing
function is defined as

where a is an integer from 0-99. The longitudinal coor-
dinates of the continental United States ranges from -
124.161 to -67.623. We divided this large interval into 100
sub-intervals of equal length where each interval corre-
sponds to a value of a. Figure 2B shows the simulated data
set.

Calculating power
We used Monte Carlo simulation methods to assess the
power of rejecting the null hypothesis by simulating
10,000 data sets using the multinomial distribution
defined in equation (7) under the hypothesis of equal rel-
ative risk. The statistics (Moran's I, Modified Moran's I,
and I*pop) obtained from the simulated null data are used
to construct the empirical distribution of the statistics.
The 95th percentile for each of the statistics is defined as
the critical value.

Then, Moran's I, Modified Moran's I, and I*pop were cal-
culated for each of the 1000 data sets simulated under the
alternative hypothesis using the multinomial distribution
defined in equation (8) with the clustering pattern shown
in Figures 1 and 2. Power is calculated as the percentage
of values out of the 1000 replicated data sets that exceed
the critical point obtained from data under the null
hypothesis.

Results
Our power analysis and simulation study shows that the
Modified Moran's I achieved higher power than Moran's I
and I*pop for evaluating the global and local clustering pat-
terns on geographic data with homogeneous populations.
All results are provided in Table 1.

Results for the local cluster pattern
We experimented with cluster patterns that contained
between 5% to 30% of the total population. We found that

the larger the percent of the population within the cluster,
the greater the power for all methods. Modified Moran's I
has a higher power for all local cluster patterns. When the
Adj weight function is used with 5% of the total popula-
tion, we find that Modified Moran's I has a power of
43.4%, which is higher than the power for both the
Moran's I (39.9%) and I*pop (12.4%). The same is true
when for patterns with single cluster including 10%, 15%,
20%, and 30% of the total population. When the cluster
reached 30% of the population, we obtained the highest
power of 99.9% for Modified Moran's I, 99.8% for the
Moran's I and 74.5% for I*pop.

When the PD weight function is used for cluster with
5% of the population we obtained powers of 67.3, 67.1,
and 59.7% for Modified Moran's I, Moran's I and I*pop,
respectively. Modified Moran's I performed slightly better
in this scenario and similar for cluster with 10% of the
population. When clusters with 15%, 20%, and 30% of the
total population were used, all methods with the PD
weight function performed equally with a power of 100%
since the spatial pattern is very strong.

The statistics with the PD weight function obtained
higher powers (compared to the Adj weight function) in
all cases in our simulation study. Recall that the PD
weight function incorporates a larger number of spatial
neighbors compared to the Adj weight function; there-
fore, it includes more information for global clustering
evaluation and has better powers for global spatial pat-
terns. In general, there is no "best" definition of weights
and weights can be based on distances or on other influ-
ences (e.g., how far a location is away from a contami-
nated water source)[14]. For a spatial analysis, weight
functions are often chosen to have a spatial scale equiva-
lent in size to the hypothesized cluster [15].

Results for the global spiral clustering pattern
For the global clustering pattern (as shown in Figure 2A),
Modified Moran's I (power = 25.3%) performed better
than both Moran's I (24.6%) and I*pop (7.9%) with the Adj
weight function. With the PD weight function, all meth-
ods performed equally well with a power very close to
100%.

Results for the global monotone clustering pattern
Finally for the monotone pattern simulated as shown in
Figure 2B, Modified Moran's I yielded the highest power
of 27.0% compared to 24.3% for Moran's I and 7.4% for
I*pop for the Adj weight function. For the PD weight func-
tion, Modified Moran's I had a power of 99.6% which is
equal to the power of Moran's I and I*pop.

Application
For illustration, we consider the New York leukemia data
set introduced by Turnbull et al. [16] and presented in
Waller and Gotway [3] and Jackson and Waller [4]. The
data include the number of cases of leukemia and the

r ai = +.005 1 (9)
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population at risk for a region consisting of eight counties
(Broome, Cayuga, Chenango, Cortland, Madison, Onon-
daga, Tioga, and Tompkins) in upstate New York for the
years 1978-1982. The data are collected at the census
tract-level and are presented as rates at the census tract-

level in Figure 3 (with raw rates on the left and smoothed
rates using the 10 nearest neighbors on the right) and
include a total of 592 reported cases of leukemia among
1,057,673 people at risk. The mean population per census
tract is 1,339 with a standard deviation of 1,144. It is diffi-

Figure 2 Global pattern. Simulated global spiral (A) and linear (B) spatial clustering patterns.
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cult to observe any global clustering trend in the raw rate
map. Therefore we generated a smoothed map (Figure 3
right) using headbang [17] with the nearest neighbor
parameter set at 10, which basically maps the average of
the rates over the 10 nearest neighbors instead of the
original rate for a particular tract. The smoothed map
reveals a possible global trend with lower rates in the
northern part of the region and higher rates in the south-
ern part of the 8 county regions.

Using the New York leukemia data set, we obtained p-
values for Moran's I, Modified Moran's I and I*pop with the
PD weight function. We find that Modified Moran's I has
the lowest p-value (.0014) followed by Moran's I (.0156)
and I*pop (.011). All three methods detected a global trend
in this data (with significance level of α = 0.05), however,
Modified Moran's I had the most significant p-value. This
result is consistent with the finding from Waller and Got-
way [3] that there exist global clustering pattern in the
Leukemia rates in upstate New York.

Discussion and Conclusion
In conclusion, we improved the original Moran's I, and
conducted a simulation study to evaluate the perfor-
mance of the proposed method. We considered various
simulated regional patterns in data that involved local
cluster patterns and global clustering patterns. The five
local cluster patterns used formed a single cluster in the
eastern part of the U.S with either 5%, 10%, 15%, 20%, or
30% of the population included in the cluster with a rela-
tive risk to all other regions of 1.5. The two global pat-
terns involved simulating a west to east linear trend, and a
pattern resembling a cluster in the center with 2% of pop-
ulation with the spatial correlation slowly decreasing
until you reach the east and west coast with a relative risk
of 1.5. We also applied the proposed method to a census

tract dataset, which has a more homogeneous population
than state or county level data (however, census tract data
still has heterogeneous population [18].) The proposed
approach for improving the original Moran's I (for homo-
geneous population data) can be applied to the rate ver-
sion and the normalized version of Moran's I, which may
be more suitable for analyzing data with heterogeneous
populations. Future research may be conducted to
explore the performance of those methods for data with
heterogeneous populations. Similar idea can also be
applied to local indicators of spatial association (LISA)
[19] for cluster detection in future work.

Modified Moran's I with the adjacent weight function
(Adj) achieved higher power for the simulated local and
global cluster patterns than Moran's I, and the modified
Moran's I with PD has similar performance compared
with Moran's I. We compared the modified Moran's I
with I*pop as well, since the latter I*pop was developed to be
an alternative of the original Moran's I for data with het-
erogeneous populations. However, I*pop does not always
perform well on homogeneously populated data as shown
in our simulation study.

For the local clustering patterns, the power for Modi-
fied Moran's I increased as the percentage of the popula-
tion included in the cluster (cluster size) increased for
both weight functions. For the global clustering patterns,
modified Moran's I achieved higher power than both of
the other statistics. The power for the global patterns are
lower than for the local cluster patterns, since the spatial
size of the area with the largest relative risk (1.5) is much
larger in the local cluster patterns compared to the global
patterns. There are other issues that affect power of iden-
tifying a global clustering pattern. For example, Lindsey
[20] states that there are problems with building models
based on nearest neighbors due to edge effects. We evalu-

Table 1: Powers (%) for Modified Moran's I, Moran's I, and I*pop for local and global spatial patterns with population density 
(PD) and adjacent (Adj) weight function.

Modified Moran's I Modified Moran's I Moran's I Moran's I I*
pop I*

pop

Adj PD Adj PD Adj PD

Percent of population in cluster

Local 5 43.4 67.3 39.9 67.1 12.4 59.7

10 80.3 99.3 76.7 99.4 27.8 99.2

15 96.7 100 94.9 100 46.5 100

20 99.2 100 98.6 100 61.8 100

30 99.9 100 99.8 100 74.5 100

Global Spiral 25.3 99.9 24.6 99.9 7.9 99.6

Linear 27.0 99.6 24.3 99.6 7.4 99.0
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ate the effect of the cluster size in the simulation study,
but not the edge effect. A cluster on the edge may lead to
a lower power of identifying the clustering pattern.

Note that there is no inflated type 1 error since the pro-
posed test is for a global clustering pattern evaluation
(not for cluster detection) and Monte Carlo procedure is
used for statistical inference. The type I error, which
reflects the chance of the method identifying a spatial
pattern when there is none, is controlled at the alpha level
(0.05). Also, when there is a spatial pattern, the proposed
Moran's I can identify the pattern with reasonable power
as shown in the simulation study.

It turns out that the weight function played a large role
in the method performance. The adjacent weight func-
tion only has two values (0 for a non-adjacent-neighbor
and 1 for an adjacent neighbor). If the weight is 0 for a
pair geographic units i and j, the difference between the
geographic unit i and j is not evaluated in the formulation
of the statistics (e.g. Moran's I and Ipop). Since the number
of adjacent neighbors for all the counties in the continen-
tal U.S. ranges from 0-14 (see Jackson et al. 2009), there is
only a limited number of pairs of geographic units that
are evaluated in the statistics when the Adj weight func-
tion is used. The PD weight function considers both geo-

graphic unit population information and the geographic
distance of cell i and j. A higher weight is given to pairs
with a shorter distance. The parameter λ in the PD func-
tion is chosen by the user and allows the user to view the
population as a measure of spatial clustering, where large
(small) λ is more sensitive to larger (smaller) clustering
pattern. In this paper, we used λ as 50% of the total popu-
lation, which allows for a large number of geographic
neighbors for evaluation. For global clustering patterns
(e.g. spiral or linear), many geographical units have a spa-
tial correlation even if the distance between them is large
and they are not adjacent. Therefore, the PD function
with a large λ (i.e. which evaluates many geographic
units) performs much better than the adjacent weight
function.

Note that only different versions of Moran's I and I*pop
were compared in this paper because the major purpose
was to explore a way to improve Moran's I. We included
I*pop for comparison because I*pop has not been studied by
many (see Jackson et al. [11]), and it has been well known
as an alternative method for Moran's I developed for data
with heterogeneous populations. We did not include
other methods, such as Tango's MEET [12], for global
clustering evaluation in the comparison. Tango's MEET

Figure 3 Application. Raw (left) and smoothed (right) rates of leukemia by census tract in eight counties of upstate New York from 1978-1982.
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[12] has been shown to be the most powerful method for
identifying global clustering patterns (see Jackson et al
[11], Song and Kulldorff [21], and Huang et al. [10]).
However, with the PD weight function, Moran's I and
I*pop may perform as well as Tango's MEET. This issue will
be explored further in future work.

Few spatial studies exist that explore data with homoge-
nous populations. Spatial studies with homogenous pop-
ulations allow for stronger power studies since
confounding effects due to heterogeneous populations
are removed [9]. For example, when performing a spatial
study in California (with counties as the geographic unit),
spatial statistics tend to detect clusters where there are
two counties with large populations in close proximity
(e.g., Los Angeles county and San Bernardino county).
Counts or rates from areas with small populations are
more unstable than those with large populations and they
can be masked by areas with large populations[22,23].
Also, for most applied studies involving real data,
researchers are more interested in the pattern of the
response variable (e.g. disease rate) rather than the popu-
lation pattern [15,24,25]. Therefore, collecting and ana-
lyzing data with well defined regions (homogeneously
populated) will be very useful.
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