
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Expanding the Reach of Fuzz Testing

Permalink
https://escholarship.org/uc/item/6kq6047x

Author
Lemieux, Caroline

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kq6047x
https://escholarship.org
http://www.cdlib.org/

Expanding the Reach of Fuzz Testing

by

Caroline Lemieux

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Professor Ion Stoica

Assistant Professor Peng Ding

Spring 2021

Expanding the Reach of Fuzz Testing

Copyright 2021
by

Caroline Lemieux

1

Abstract

Expanding the Reach of Fuzz Testing

by

Caroline Lemieux

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

Software bugs remain pervasive in modern software systems. As software becomes increasingly
intertwined in all aspects of our lives, the consequences of these bugs become increasingly
severe. Since the mid-2010s, several important security vulnerabilities have emerged from
basic correctness bugs in software. Modern fuzz testing or fuzzing tools have greatly helped
reduce the consequences of these bugs. These fuzzing tools can automatically find inputs
revealing bugs in large-scale software. Arming developers with these tools allows them to
find bugs more rapidly, before they have significant security impacts.

However, even the most sophisticated modern fuzzing algorithms remain restricted in the
software quality problems they solve. Most of the bugs they find automatically are memory
mismanagement issues typical of C/C++ programs—like out-of-bounds array reads—and
most of these bugs lie in the shallower parsing stages of programs. Further, in spite of the
impressive search algorithms underlying modern fuzzing tools, they have only really been
applied to this test-input generation problem. This thesis presents several algorithms which
adapt fuzzing to new testing domains, and even looks at applying these algorithms to the
problem of program synthesis. Taken as a whole, these algorithms provide a view of the
promise of modern fuzzing algorithms, and how to alter these algorithms to solve diverse
software quality problems.

This thesis finds that three key components of modern fuzzing algorithms must be extended
in order to solve broader software quality problems. First, this thesis presents a generalized
notion of feedback-directed fuzzing, which can be used to automatically find different types
of bugs, including algorithmic complexity bugs, extreme memory allocations, and to target
recently-modified code. Second, this thesis explores how well-structured mutations are key to
enabling mutational fuzzers to explore deeper program states, and find bugs beyond those in
parsers. Finally, this thesis shows that viewing random input generators as a specification of
a search space, and adjusting the sampling distribution of these generators automatically,
enables effective blackbox validity fuzzing and program synthesis for large APIs.

i

To my grandfather, who asked not if, but where, I would do my PhD.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Coverage-Guided Fuzzing . 2

1.1.1 Drawback: Fixed Testing Goal . 3
1.1.2 Drawback: Malformed Inputs . 4

1.2 Generator-Based Fuzzing . 5
1.2.1 Drawback: Coupling of Distribution and Search Space 6

2 Background and Related Work 7
2.1 American Fuzzy Lop (AFL) . 7
2.2 Random and Mutational Fuzzers . 9
2.3 Coverage-Guided Fuzzers . 10
2.4 Specialized Feedback-Directed Fuzzers . 13
2.5 Structure-Aware and Generator-Based Fuzzers 14
2.6 Other Approaches to Automated Testing . 16

I Generalized Feedback-Directed Fuzzing 19

3 PerfFuzz: Multi-Objective Performance Fuzzing 20
3.1 Motivation . 21
3.2 The PerfFuzz Algorithm . 24
3.3 Implementation . 27
3.4 Evaluation . 28

3.4.1 Comparison with SlowFuzz . 29
3.4.2 Comparison with Coverage-Guided Fuzzing 33
3.4.3 Impact of Staleness . 35
3.4.4 Case Studies . 37

iii

3.5 Discussion . 39

4 FuzzFactory: A Framework for Specialized Fuzzers 40
4.1 Motivation . 41

4.1.1 Waypoints . 42
4.2 The FuzzFactory Framework . 43

4.2.1 Domain-Specific Feedback . 44
4.2.2 Waypoints . 44
4.2.3 Composing Domains . 46
4.2.4 Algorithm for Domain-Specific Fuzzing 46
4.2.5 Proof of Monotonicity of Aggregation 47

4.3 Implementation . 49
4.4 Evaluation . 50

4.4.1 mem: Exacerbating Memory Allocations 51
4.4.2 cmp: Smoothing Hard Comparisons 53
4.4.3 diff: Incremental Fuzzing . 54
4.4.4 Composing Multiple Domains . 56

4.5 Discussion . 58

II Structured Mutations 59

5 FairFuzz: Mutation Masking for Deeper Coverage 60
5.1 Motivation . 61

5.1.1 Overview of FairFuzz . 63
5.2 The FairFuzz Algorithm . 64

5.2.1 Mutation Masking . 64
5.2.2 Targeting Rare Branches . 66
5.2.3 Trimming Inputs for Testing Targets 68

5.3 Evaluation . 68
5.3.1 Coverage Compared to Prior Techniques 69
5.3.2 Crashing Compared to Prior Techniques 73
5.3.3 Can Masking Effectively Target Branches? 74

5.4 Discussion . 75

6 Zest: Using Generators for Higher-Level Mutations 77
6.1 Motivation . 78
6.2 The Zest Technique . 80

6.2.1 Parametric Generators . 80
6.2.2 Feedback-Directed Parameter Search 82

6.3 Implementation . 84
6.4 Evaluation . 85

iv

6.4.1 Coverage of Semantic Analysis Classes 87
6.4.2 Bugs in the Semantic Analysis Classes 88

6.5 Discussion . 91

III Distribution Tuning of Generators 92

7 RLCheck: Valid Inputs via Reinforcement Learning 93
7.1 Motivation . 94
7.2 Problem Definition . 96
7.3 The RLCheck Algorithm . 98

7.3.1 Reinforcement Learning . 98
7.3.2 RLCheck : MCC with Diversity Reward 100
7.3.3 State Abstraction . 101

7.4 Evaluation . 104
7.4.1 Generating Diverse Valid Inputs . 106
7.4.2 Covering Different Valid Behaviors 108
7.4.3 Bug-Finding Ability . 109
7.4.4 Greybox Information . 110

7.5 Discussion . 112

8 AutoPandas: Generator-Based Program Synthesis 114
8.1 Motivation . 115
8.2 The AutoPandas Technique . 118
8.3 Implementation . 122

8.3.1 Query Encoding . 123
8.3.2 Operator-Specific Graph Neural Network Models 124
8.3.3 Training Neural-Backed Generators for Pandas 127

8.4 Evaluation . 129
8.4.1 Training and Setup . 129
8.4.2 Performance on Real-World Benchmarks 129
8.4.3 Analysis of Neural Network Models 131

8.5 Discussion . 133

9 Conclusion 135

Bibliography 138

v

List of Figures

1.1 Generator of expressions in a simple calculator language. 5

3.1 Extract from a C program that counts the frequency of words in an input string. 21
3.2 PerfFuzz vs. SlowFuzz on macro-benchmarks: maximum path length and

maximum hot spot found throughout the duration of the 6-hour fuzzing runs.
Lines and bands show averages and 95% confidence intervals across 20 repetitions;
higher is better. 31

3.3 PerfFuzz vs. SlowFuzz on micro-benchmarks: maximum path length found with
given time budget, for varying input sizes; higher is better. 32

3.4 PerfFuzz vs. AFL: Time evolution of the maximum hot spot through the 6-hour
runs. Lines and bands show averages and 95% confidence intervals across 20
repetitions. Higher is better. 34

3.5 Distribution of maximum execution counts across CFG edges found by PerfFuzz
and AFL after 6-hour runs. For each edge, the median over 20 runs is plotted. . 35

3.6 Impact of staleness on maximum path length found through time. Lines and
bands show averages and 95% confidence intervals across 20 repetitions; higher is
better. 36

3.7 Snippet from pngrutil.c showing hot spots which can only be exercised by inputs
with distinct features. 38

4.1 A motivating example for the FuzzFactory framework. 42
4.2 API for domain-specific fuzzing in pseudocode. 49
4.3 Maximum amount of dynamic memory allocated (in KB) due to inputs generated

by baseline (afl) and domain-specific fuzzing application (mem). Higher is better. 51
4.4 Branch coverage, as achieved by inputs generated by baseline (afl-zero) and

domain-specific fuzzing application (cmp-zero). The suffix zero indicates that
seed inputs were simply strings of zeros. Higher is better. 52

4.5 Motivating post-diff basic block transitions as DSF for incremental fuzzing. . . . 54
4.6 Relative (compared to AFL) coverage of basic block transitions after five minutes

of incremental fuzzing with the domain-specific diff front-end. 56

vi

4.7 Evaluation of composing cmp and mem into the cmp-mem domain. Bars show the
maximum dynamic memory allocated—in MB on the left and in GB on the
right—at a single program location. Higher is better. 57

5.1 Code fragment based off the libxml file parser.c showing many nested if state-
ments that must be satisfied to explore erroneous behavior. 62

5.2 Preventing AFL from mutating the <!ATTLIST part of this input increases the
probability of generating <!ATTLIST ID by at least 6×. 63

5.3 Number of basic block transitions (AFL branches) covered by different AFL
techniques averaged over 20 runs (bands represent 95% C.I.s). 69

5.4 Number of benchmarks on which each technique has the lead in coverage at each
hour. A benchmark is counted for multiple techniques if two techniques are tied
for the lead. 71

5.5 Time to find first crash for each run of the different techniques. Each point
represents the time to first crash for a single run. 74

6.1 A test driver exercising the runModel function. 78
6.2 A simplified XML document generator. 79
6.3 Percent coverage of all branches in semantic analysis stage of the benchmark

programs. Lines designate means and shaded regions 95% confidence intervals. . 87

7.1 Test driver and generator for generator-based fuzzing. generate_tree generates a
random binary tree, and test_insert tests whether inserting a given integer into
a given tree preserves the binary search tree property. random.Select(D) returns
a random value from D. 95

7.2 A partially-generated binary tree (left) and its corresponding choice sequence
arranged by influence (right). 102

7.3 Pseudo-code for a binary tree generator which follows guide and builds a tree-based
state abstraction. 103

7.4 Number of (unique) valid inputs generated, by state abstraction. “Random” is a
no-RL baseline. 104

7.5 Distribution of unique valid tree sizes, by state abstraction. “Random” is a no-RL
baseline. 104

7.6 Percent of total generated inputs which are diverse valids (i.e. have different
traces). Higher is better. 106

7.7 Number of diverse valid inputs (i.e. inputs with different traces) generated by
each technique. Higher is better. 107

7.8 Number of branches covered by valid inputs. Higher is better. 109
7.9 Number of diverse valid inputs generated by each technique. Higher is better. . 111
7.10 Number of branches covered by valid inputs generated by each technique. Higher

is better. 112

8.1 A DataFrame input-output example. 115

vii

8.2 A procedure to find the arguments to the pandas function pivot that turn
input_df into output_df. 116

8.3 A generator of all valid arguments to the pivot function from the pandas API.
Select(D,c,i) returns a single element from the domain D. 117

8.4 Generator-Based Enumerative Synthesis Engine. 119
8.5 A Simplified Program Candidate Generator for pandas Programs. 120
8.6 Graph encoding of the query passed to the first Select call in Figure 8.3, on the

I/O example from Figure 8.1. 125
8.7 Operator-specific neural network architectures. 126
8.8 Smart Model Accuracies on Function Prediction Task, compared to a Random

Baseline. Per-sequence Top-k accuracies provided. Color gives accuracy; darker
is better. The color point (x, y) gives the top-x accuracy for sequence with ID y.
Sequence IDs are sorted based on top-1 accuracy of the smart model. 132

8.9 Per-operator Top-k accuracies. Color gives accuracy; darker is better. The color
point (x, y) gives the top-x accuracy for operator with ID y. Operator IDs are
sorted based on top-1 accuracy of the smart model. 132

viii

List of Tables

3.1 A snapshot of the output of PerfFuzz after one 6-hour run on libpng. For each
of 3 favored inputs, the table shows the top 3 CFG edges—represented by start
and end line numbers—by their execution count. 37

5.1 Number of runs producing an input with the given sequence in 24 hours. 72
5.2 Average % of mutated inputs hitting target branch for one queueing cycle. . . . 75

6.1 Description of benchmarks with prefixes of class/package names corresponding to
syntactic and semantic analyses. 86

6.2 The 10 new bugs found in the semantic analysis stages of benchmark programs.
Zest, AFL, and QuickCheck (QC) are evaluated on the mean time to find (MTF)
each bug across the 20 3-hour experiments as well as their reliability, which is the
percentage of the 20 experiments in which the bug was triggered at least once.
For each bug, the circled tool is statistically significantly more effective at finding
the bug than uncircled tools. 89

7.1 Mean time to find (MTF) and Reliability (Rel.)—the percentage of runs on which
the bug was found—for bugs found by each technique during our experiments.
Bugs are deduplicated by benchmark and exception type. Dash “-” indicates bug
was not found. 110

8.1 List of Available Choice Operators . 121
8.2 Performance on Real-World Benchmarks between AutoPandas (AP) and our

baseline (BL). Dashes (-) indicate timeouts by the technique. 130

ix

Acknowledgments

While I was in the process of writing this dissertation, I was told that the ultimate product
of my Ph.D. is not my dissertation, but the researcher and person I have become. Accordingly,
I must thank all those who formed me both as a researcher and person over the course of my
doctoral studies. Finishing a Ph.D. during the 2020-21 academic year was certainly strange,
thanks in no small part to the COVID-19 pandemic which forced me to work from home
from March 2020 onwards. Suffice to say, I could not have done it without all these folks.

First, I must thank my advisor Koushik Sen. When I visited Berkeley in 2016, I did not
think it was where I would end up pursuing my Ph.D. studies—I didn’t have any connections
to the Computer Science department there before applying. But, sitting in Koushik’s office
as he explained concolic execution to me and told me about this new exciting AFL tool, I
saw a research agenda pop up in front of my eyes. So, I came to Berkeley to accomplish it.
Koushik helped me throughout my Ph.D. in honing my technical skills—the projects I start
now I would not have dared starting in 2016—as well as my research communication skills. I
have always appreciated the confidence he has put in me as a researcher, especially at times
when I was unsure of myself; thank you, Koushik.

I must also extend thanks to the folks who integrated me into the Computer Science
community at UBC, without whom I would never have gotten to Berkeley. First, Gregor
Kiczales, who encouraged me to apply for a TAship after seeing me answer questions in a
class he subbed. He and Meghan Allen helped further integrate me into the CPSC 110 TA
community. Thank you to Ivan Beschastnikh, who sent me an email in early 2014 asking me
if I was interested in a research opportunity; this led to the Texada project. I grew a lot as a
researcher and communicator under his mentorship. Also thanks to Ron Garcia, who further
integrated me into research and exposed me to the field of Programming Languages.1 Finally,
thank you to Gail Murphy and Elisa Baniassad, who kept in touch with me throughout the
Ph.D. and encouraged me in my academic career.

Many other professors have helped form me as a researcher, integrated me into the
computer science community, opened up career opportunities, and given me advice through
various different roadblocks: Ion Stoica, Yuriy Brun, Andreas Zeller, Claire Le Goues,
Yves Le Traon, David Patterson, Alvin Cheung, Sarah Chasins, Marcel Böhme and Abhik
Roydchoudhury, amongst others. My 2018 internship at Google helped me better understand
the impact of my work and broaden my research horizons. I am thankful for my mentors and
team members there, who helped me both during my internship as well as with advice over
the rest of my career: Stefan Bucur, László Szekeres, Franjo Ivančić, Domagoj Babic, Wei
Wang, Tim King, Markus Kusano.

This dissertation contains several works conducted jointly with my collaborators at
Berkeley, who deserve extra gratitude. Rohan Padhye and I first started working together
in Fall 2017 on a project to build a tool that found performance bugs in Java programs; I
led the implementation on the half that became PerfFuzz (Chapter 3), and he led the

1And also, gave me the piece of advice with which I opened these acknowledgments.

x

implementation on the half that became Zest (Chapter 6). We wrote both the papers together.
He led the implementation of the FuzzFactory (Chapter 4) framework as well—I built
the incremental fuzzing application and helped with writing the paper, proofs, etc. My
collaborations with Rohan were not only productive, but also great fun, and revealed to me
the importance of collaborators in my research style.

I worked with Sameer Reddy while he was an undergraduate at Berkeley; I posed him the
validity guidance problem statement given in Chapter 7, and he ran with it from there. We
decided to turn the project into a paper after his initial tech report showed good results. I
then led the paper writing, with Rohan Padhye helping with the writing and positioning of
the paper. I also want to thank my other undergraduate collaborators at Berkeley: Purva
Gupta, Sicheng Liang, Jonathan Shi, and Neil Kulkarni. They not only conducted great
work, but also taught me a lot about mentorship.

I am thankful to have had the opportunity to have worked with Rohan Bavishi on the
AutoPandas project (Chapter 8). He led the implementation of the project; I helped with
some abstraction components, but primarily as a brainstorming sounding board and with
paper writing. Rohan and I have continued to collaborate, even through the COVID-19
pandemic; I am continually impressed my his work ethic and the inventiveness of his work.
Having a colleague to brainstorm ideas with and to commiserate with through this very
strange year has been immensely valuable, and I am thankful for his friendship.

It takes a village of graduate students to build a graduate student. I am certain I will
miss some names, but I might as well try. I want to thank my office mates, who brought
entertainment and company to my day-to-day work in the lab: Kevin Läufer, Wontae Choi,
Liang Gong, Rafael Dutra, Alex Reinking, Ben Mehne, Ed Younis, Giulia Giudi, Alok
Tripathy. Thanks also to my broader lab mates throughout the Programming Systems group
at Berkeley, some of whom I had the joy to meet in person, others who I mostly met with
through Zoom: Andrew Head, Rolando Garcia, Justin Lubin, Gabriel Matute, Justin Wong,
Matthew Milano, Gilbert Bernstein, Lisa Rennels.

The first semester of my Ph.D. was one of the most fun social times in my life, thanks
to several other students in my cohort, some of whom I have mentioned, but also including
Michael Chang, Stephanie Wang, Tyler Westenbroek, Jeremy Warner, Laura Brinker, Stanley
Smith, and others. Rent conditions in Berkeley necessitate having several roommates, and
over the years I lived with Erin Grant, Esther Rolf, Victoria Cheng, Carolyn Chen, Amanda
McLaughlin, Olivia Ashmoore, Rachel Chen and Phillip Sanvictores. Though there are ups
and downs in any roommate relationship, I have learned so much from these folks and made
some long-lasting friendships along the way; thanks to all of you.

I must give special thanks to Benjamin Brock for his companionship throughout our PhD
journeys. I have learned and grown a lot over these five years, and Ben has been by my side
throughout. I am thankful that he helped me push my comfort zone a little in traveling, and
shared some lovely trips with him. Good timing, given the pandemic that would soon hit us
and keep us in Berkeley indefinitely! I think the thing I am most thankful for—beyond the
patient support he provided me when I consistently freaked out before every single one of
my job interviews—is the joy and levity he brings to my life. Apparently many folks stop

xi

laughing once they turn 23 (according to some studies in the book Humour, Seriously), but
that is certainly not what I have experienced; I have Ben to thank for that.

Last but not least, I am thankful for my family. My paternal grandfather was an academic,
and perhaps unsurprisingly as a result, much of my family is. I know this gave me a big leg
up in academia, and am thankful for my privilege. Though I am also thankful for the family
members out of academia, who help keep me grounded (and bring a bit more spice to family
gatherings—can you imagine how boring it is to be around academics all the time?).

But the biggest thanks go out to my parents. I would not be here without them for very
fundamental existence reasons, of course, but also more directly. My parents never really
pushed me to get good grades in school or to enroll in a whole bunch of extra curricular
activities, something which surprised folks seeing my GPA. But I think they modeled the
important things for me in their work ethic, in their prioritization of family activities, in
helping me ponder about what really made me happy.2 I am so thankful to have had my
mother as a role model as a woman in a highly technical field; knowing her made me know
that I, too, belonged as a woman in a highly technical field. Though things are not perfect,
they have gotten better since she was a graduate student, and I am very grateful for that.

My parents have always been just a phone call away—I cannot estimate how many hours
I’ve spent talking to them throughout my graduate studies—and have given me such valuable
advice at all the little frustration points in my graduate studies. I could write so much more
about how thankful I am for them, how blessed and privileged I have been to have been born
their child, but we should start talking about fuzz testing soon, so in close, let me just say:
merci infiniment.

2When I was 10 or so, I was very frustrated playing some video game on the PlayStation2. My mom,
seeing this, asked me why I was “playing” a video game if it just made me annoyed. That little throw-away
comment deeply stuck with me, and I still find myself returning to this advice in my day-to-day life.

1

Chapter 1

Introduction

Software bugs remain pervasive in modern software systems. As software becomes increasingly
intertwined in all aspects of our lives, the consequences of these bugs become increasingly
severe. For instance, in the last few years, several important security vulnerabilities have
emerged from basic correctness bugs in software [101, 155, 89].

Though not all bugs cause important security vulnerabilities, their overall cost remains
high: one estimate puts the cost of dealing with software failures and defects in the United
States alone in 2018 at nearly USD$1,540,000,000 [108].

This dissertation explores methods to help developers improve the quality of software
before bugs ship into productions and incur these costs. The particular focus is on fuzz testing
or fuzzing tools. These tools automatically find bug-inducing inputs in programs; inputs x
that, when run on a program p, cause the program to crash.

Access to such tools greatly helps reduce the time to find and fix bugs, and thus, reduces
the impact of these bugs. As a concrete example, consider a case study of the OpenSSL
library [73]. In 2012, a bug was introduced into the library which allowed an attacker to read
memory from a server that did not belong to them [144]. This bug, later named Heartbleed,
was only discovered in 2014. By that time, it had spread widely, and was exploited to great
cost. For instance, it enabled the leak of millions of patient records from the U.S.’s second
largest hospital chain [76]. It also forced the Canada Revenue Agency website to shut down
for several days [116], but not before over 900 Social Insurance Numbers were leaked from
the agency’s website [143].

By contrast, nearly 4 years later, another bug was introduced into OpenSSL. This bug
could have allowed an attacker to execute arbitrary code, and was judged as much more
severe than Heartbleed [145]. However, there are no widely publicized costs associated with
this bug, CVE-2016-6309. This may be in large part because it was discovered one day after
its introduction by a modern fuzz testing tool, honggfuzz [174].

The term fuzz testing dates back to Miller et al.’s seminal work from 1990 [135], but has
re-emerged as an area of interest following the appearance of the pioneering AFL [185] around
2014. Fuzz testing tools assume the following program setting. There is a program p which
runs on some input x. For the purposes of this dissertation, differences in the behavior of p

CHAPTER 1. INTRODUCTION 2

on different executions should be entirely explained by differences in the input x. That is, the
program should be deterministic, single-threaded, and relatively fast-running. In the classical
fuzzing domain, the input x is typically a file—modelled as a sequence of bytes—processed
by the program p, but it can also be a more general data structure.

Fuzzing tools then repeatedly run the program p on inputs x that are generated via a
variety of random search procedures, until an input x∗ is found which induces a bug in p.
Typically, these tools identify the presence of a bug via universal correctness oracles — if
the program crashes or exits earlier due to an assertion error. The pure random fuzzing
introduced by Miller et al. [135] simply created the inputs x by sampling random sequences
of bytes, but modern fuzzing algorithms are much more sophisticated in their input creation
methodology. Many modern fuzzing algorithms rely on detailed program feedback to guide
the generation of inputs (Chapters 3, 4, 5, 6) or rely on user-provided information about
input structure to make the search more targeted (Chapters 6, 7, 8).

Overall, this dissertation presents several methods to make fuzz testing tools more widely
applicable and easy-to-use. This dissertation is divided into three main parts, each of which
identifies a different key component of modern fuzzing algorithms, and how to generalize
this component for different fuzzing goals: new bug domains, deeper program exploration,
and applications beyond testing. Chapter 2 provides a discussion of related work, including
detailed background of a particular coverage-guided fuzzing algorithm, AFL. The rest of this
introduction describes the two modern fuzzing algorithms studied in this dissertation, and
the key drawbacks addressed in each subsequent part of the dissertation.

1.1 Coverage-Guided Fuzzing
In the mid-2010s, coverage-guided fuzzing (CGF) emerged as one of the most effective tech-
niques for fuzzing real-world software. Pioneered by AFL [185], CGF has been implemented
in several other popular tools including libFuzzer [167] and honggfuzz [174].

Like random fuzzing [135, 133]—which sends many random inputs to the program under
test—CGF works by executing a test program with a large number of inputs generated via
random search. However, instead of generating totally random inputs from scratch, CGF
mutates inputs from a set of saved inputs to derive new inputs. Algorithm 1 walks through
the high-level algorithm shared by most implementations of CGF.

The CGF algorithm takes an input an instrumented program (p) and a set of user-provided
seed inputs (S0). Again, typically this program accepts as input a byte-sequence (either via a
file or standard input), and thus, each input in S0 is modelled as a sequence of bytes.

CGF maintains two global states: (1) S, a set of saved inputs to be mutated by the
algorithm, and (2) totalCoverage,which tracks the cumulative coverage of the program on
the inputs in S. The instrumented test program p returns the coverage achieved by the
input it is executed on. The forms of coverage most commonly used by CGF are branch
coverage, basic block coverage, or basic block transition coverage. S is initialized to the set of

CHAPTER 1. INTRODUCTION 3

Algorithm 1 The generic coverage-guided fuzzing algorithm.
Input: an instrumented test program p, a set of initial seed inputs S0

Output: a corpus of automatically generated inputs S
1: S ← S0

2: totalCoverage ← initCoverage(S0)
3: repeat . Main fuzzing loop
4: for input in S do
5: with probability fuzzProb(input) do
6: for 1 ≤ i ≤ numChildren(input) do
7: input ′ ← mutate(input) . Generate new test input input′
8: coverage ← execute(p, input ′) . Run test with input′
9: if coverage 6⊆ totalCoverage then
10: S ← S ∪ {input ′} . Save input ′ if it covers new code
11: totalCoverage ← totalCoverage ∪ coverage

12: until given time budget expires
13: return S

user-provided seed inputs (Line 1) and totalCoverage is initialized to the coverage achieved
by those user-provided seed inputs (Line 2).

The main coverage-guided fuzzing loop goes over each input input in the set of inputs
S. With some probability determined by an implementation-specific heuristic function
fuzzProb, CGF decides whether to mutate the input input or not (Line 5). If input is
selected for mutation, CGF decides on how many mutant inputs to generate from input via
another heuristic function numChildren (Line 6).

Then, numChildren(input) times, CGF randomly mutates input to generate a mutant
input′. A random mutation typically involve choosing a random set of bytes in the inputs
and performing a mutation operation there, like: bit flipping, byte flipping, incrementing and
decrementing integer values, or replacing bytes with “interesting” integer values (0, MAX_INT).
CGF executes the program with the newly generated input and collects the coverage of the
input in the temporary variable coverage (Line 8). If the observed coverage contains some
previously-unseen coverage points (Line 9), the new input input ′ is saved to the set of inputs
S (Line 10). This input′ can now be mutated during a future iteration of the fuzzing loop.
The process repeats until the time budget expires.

1.1.1 Drawback: Fixed Testing Goal

Coverage-guided fuzzing tools were conceived as catch-all security auditing tools, to automat-
ically find input-dependent crashes in the program under test. For this broad testing goal,
where the location of a bug is unknown, increased coverage is a reasonable testing signal
under which to save inputs. The logic is that this encourages broad exploration of paths

CHAPTER 1. INTRODUCTION 4

through the program, and that exercising all paths in a program should reveal any bugs in
the program.

However, not all bugs are uniformly distributed throughout the program under test, and
furthermore, certain bugs are not revealed by branch coverage alone. For instance, a security
auditor may know that bugs in a particular program component are likely to be more severe,
and want to direct input generation to exercise that component. Or, if an input causes a
negative data value to flow into the argument of a memory allocation, the program under
test may use an unreasonable amount of memory, even if the coverage of the program under
test is not abnormal for that input.

Unfortunately, the notion of interesting inputs being those that increase branch coverage is
generally quite tightly integrated into coverage-guided fuzzing tools, and so, these testing goals
cannot be achieved. Chapters 3 and 4 address this drawback directly. Chapter 3 introduces a
multi-objective feedback-directed fuzzing algorithm and shows that this algorithm can be
used to effectively find inputs with pathological performance behavior. Chapter 4 further
generalizes this feedback-directed fuzzing algorithm, and introduces a framework that allows
for easier customization of the testing goal.

1.1.2 Drawback: Malformed Inputs

Part of the success of random testing methods, including random fuzzing, comes from the
fact that these methods produce inputs outside of the input space the software developer
has reasoned about. As such, random testing quickly reveals the program’s behavior in
exceptional—and often buggy—circumstances.

Coverage-guided fuzzing builds on this intuition as well, with a twist. By generating
inputs via small mutations to existing inputs, it can better ensure that the inputs still get to
some interesting program state (by relying on reasonable inputs to start with), while still
exploring corner cases (revealed via the small mutations of the input). This means that the
inputs generated by CGF find deeper corner cases in input validation than an approach that
relies on purely random sequences of characters as input.

However, the byte-level mutations applied by CGF are still likely to generate inputs that
are, overall, malformed. This is great to stress test parsers, but means that it is very difficult
for coverage-guided fuzzing to consistently generate inputs that pass the validation checks of
a program and explore its core logic. Chapters 5 and 6 address this drawback. In particular,
Chapter 5 describes a mutation masking approach that enables CGF to explore the program
under test more deeply without any additional input from the user. Chapter 6 presents an
approach that can explore the core logic of programs even better, but relies on a user-written
generator to perform high-level mutations during coverage-guided fuzzing.

CHAPTER 1. INTRODUCTION 5

1 # Generate a (possibly negated) integer as a string
2 def generate_unexpr ():
3 val = str(random.integer ())
4 if random.boolean ():
5 val += "-" + val
6 return val
7

8 # Generate a binary expression
9 def generate_binexpr ():

10 lhs = generate_expr ()
11 op = random.choice (["-", "+", "/", "*"])
12 rhs = generate_expr ()
13 return lhs + op + rhs
14

15 # Generate a (possibly parenthesized) expression
16 def generate_expr ():
17 if random.boolean ():
18 expr = generate_binexpr ()
19 else:
20 expr = generate_unexpr ()
21 if random.boolean ():
22 expr = "(" + expr + ")"
23 return expr

Figure 1.1: Generator of expressions in a simple calculator language.

1.2 Generator-Based Fuzzing
Coverage-guided fuzzing relies heavily on feedback from the programs’s execution in its input
generation strategy because it has so little information about the structure of inputs to
the program under test. When information about input structure is available, the input
generation strategy can be made much more effective.

This is the key of the effectiveness of generator-based fuzzing (also called property-based
testing [58]). The core idea is to create new inputs by repeatedly calling a (typically, user-
written) generator. This generator is a non-deterministic function, which, each time it is
called, returns a random input in a given search space. An example generator is given in
Figure 1.1: each time generate_expr is called, it returns an input in a simple calculator
language, e.g. “14”, “(3) + 119”, or “(87+1230-(467/234*2))”.

Given a generator like that in Figure 1.1, the fuzzing process is quite straightforward.
Given a program p, repeatedly call the generator to generate an input x. As in coverage-guided
fuzzing, run p on x to observe whether x induces a bug (i.e., a crash or assertion failure).

CHAPTER 1. INTRODUCTION 6

While the generator in Figure 1.1 still generates byte-sequence inputs, one can easily
write similar generators for data structures. The term property-based testing, introduced by
QuickCheck for Haskell [58], is used to refer to generator-based fuzzing in a more unit testing
context. There, the program p(x) takes in inputs of a type X and should encode a property
P (x)⇒ Q(x) to be tested. For some types X , a generator can be derived automatically from
the type definition. By generating many inputs x ∈ X and running them through p, the
developer can approximately check that the property ∀x, P (x)⇒ Q(x) holds.

1.2.1 Drawback: Coupling of Distribution and Search Space

The key drawback of generator-based fuzzing emerges when the domain of the generator does
not closely match the space of “interesting” inputs for the program under test. In particular,
if the program encodes a property P (x) ⇒ Q(x), and very few inputs x generated by the
generator satisfy P (x), then most of the runs of the program under test are simply validating
the case in which the property is vacuously true.

For example, for the generator of expression in Figure 1.1, suppose the developer wants
to validate that in the presence of a division by zero, an exception is thrown before the
evaluation of a division by zero. So P (x) is true for inputs x which contain a division by zero.
But many of the inputs sampled from the generator in Figure 1.1 will not include division by
zero. The developer could spend some time tuning the generator in Figure 1.1 to increase
the probability of generating inputs with a division by zero, for example, by forcing more
generation of division expressions with the denominator as the integer literal 0.

Requiring the developer to conduct this tuning comes with its own set of challenges.
First, of course, tuning a generator so that most of the inputs x it generates satisfies P (x)
is a significantly more complex task than writing a simple generator of inputs. Second, as
a human tries to tune the generator to a smaller input space, they may prune the space
of inputs generated unnecessarily. There are many ways to write an expression that has a
division by zero, e.g. “4/(6-3*2)”. If the developer did the simple “add more divisions by 0”
tuning described above, they may prevent the generation of such expressions. The problem
gets worse as the input space becomes more complex, e.g. inputs in a programming language.

The core problem here is that a generator is a specification of a search space (the domain of
inputs x which can be generated by some path through the generator) paired with a probability
distribution over that search space (the probability of any particular path being taken through
the generator). If we could simply adjust the probability distribution from which inputs
are drawn, we could automatically adapt a generic generator to a particular P (x) without
requiring the user to think about distributions. Chapter 6 discusses a method to increase the
number of valid inputs generated by indirectly adjusting these probability distributions via
coverage-guided fuzzing. Chapter 7 presents a reinforcement learning approach to tune these
distributions more directly. Finally, Chapter 8 shows how this same abstraction—splitting
the generator of elements from the distribution from which those elements are drawn—can
be used for program synthesis.

7

Chapter 2

Background and Related Work

In this section, we first provide additional background on AFL [185], and then discuss the
numerous fuzz testing and input-generation tools related to the work in this dissertation.

The discussion of related work focuses on those which are the most pertinent to this
work in this dissertation. Some survey papers provide additional context. Valentin et
al. present a unified model of fuzzing—blackbox, greybox and whitebox—, as well as a
genealogy of significant fuzzers up to 2019 [127]. The model of coverage-guided fuzzing in
this dissertation is less overarching, but instead focuses on the core components that must be
altered for different testing goals. Godefroid’s 2020 review overview the field at a higher-level,
highlighting the differences between different branches of fuzzing, rather than unifying them
in a single model [79]. Klees et al. discuss some of the common issues in evaluating different
fuzzers, and how to build more consistent baselines [106].

2.1 American Fuzzy Lop (AFL)
American Fuzzy Lop, or AFL [185], was the first tool to introduce the coverage-guided fuzzing
algorithm, which we discussed previously.

A number of the algorithms presented in this dissertation (Chapters 3, 4, 5) are imple-
mented directly on top of AFL. For context of the implementation details of these algorithms,
we detail the way in which AFL implements the abstract coverage-guided fuzzing algorithm
introduced in Algorithm 1. The main implementation-specific points are: (1) how coverage
is gathered, (2) how inputs are selected for mutation (fuzzProb in Line 5), (3) how many
mutants are produced (Line 6), and (4) how mutations are performed (Line 7).

AFL Coverage Calculation The notion of coverage collected by AFL (coverage in Line 8
of Algorithm 1) while the program under test executes, and its use in the fuzzing loop, is one
of AFL’s key innovations.

In order to collect coverage information efficiently, AFL inserts instrumentation into the
program under test. To track coverage, it first associates each basic block with a random

CHAPTER 2. BACKGROUND AND RELATED WORK 8

number via compile-time instrumentation. The random number is treated as the unique
ID of the basic block. The basic block IDs are then used to generate unique IDs for the
transitions between pairs of basic blocks. In particular, for a transition from basic block A to
B, AFL uses the IDs of each basic block—ID(A) and ID(B), respectively—to define the ID
of the transition, ID(A→ B), as follows:

ID(A→ B)
def
= (ID(A)� 1)⊕ ID(B).

Where ⊕ designates bitwise exclusive or (xor). Right-shifting (�) the basic block ID of the
transition start block (A) ensures that the transition from A to B has a different ID from
the transition from B to A. In this dissertation, in particular in Chapter 5, we associate the
notion of basic block transition with that of a branch in the program, unless stated otherwise.

The coverage of the program under test on a given input is collected as a set of pairs
of the form (branch ID, branch hits). If a (branch ID, branch hits) pair is present in the
coverage set, it denotes that during the execution of the program on the input, the branch
with ID branch ID was exercised branch hits number of times. The branch hits are simplified
into one of 8 buckets: hit 1 time, 2 times, 3 times, 4–7 times, 8–15 times, 16–31 times, 32–127
times, or 128–255 times. AFL calls this set of pairs the “path” of an input. AFL says that an
input achieves new coverage if it discovers a new (branch ID, branch hits) pair.

Choosing which input to mutate. In Line 5 of Algorithm 1, an input is selected from
the set of saved inputs for mutation with a probability fuzzProb. To compute this, AFL
first determines a set of favored inputs. AFL assigns a fuzzProb of 100% to favored inputs
that have not yet been mutated, and 1% to non-favored or already-mutated inputs. If the
set of favored inputs is empty, it relaxes this a little, assigning 25% chance of mutating not
already-mutated inputs, and a 5% chance of mutating already-mutated inputs.

The notion of favored input is crucial in this computation. AFL creates this set in a
greedy manner. For each branch ID that has been covered, it finds the input with the smallest
product of execution time and input length. This input is the winner for that branch ID.
AFL assigns a winner as favored if it also covers a branch ID that had not been seen in the
previous fuzzing iteration.

Choosing the number of mutants and mutating inputs. In the abstract CGF al-
gorithm we separated the process of choosing the number of mutants to produce (Line 6)
from the mutation process (Line 7). In AFL, these components are tightly intertwined.
AFL’s mutation strategies assume the input to the program under test is a sequence of bytes,
and can be treated as such during mutation. AFL mutates inputs in two main stages: the
deterministic stages and the havoc stage.

All the deterministic mutation stages operate by traversing the input under mutation and
applying a mutation at each position in this input. These mutations include bit flipping,
byte flipping, arithmetic increment and decrement of integer values, replacing of bytes with
“interesting” integer values (0, MAX_INT), etc. The number of mutated inputs produced in each

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Algorithm 2 “Havoc” mutations in AFL.
1: procedure mutateHavoc(Prog, input)
2: numMutations ← randomBetween(1,256)
3: newinput← input
4: for 0 ≤ i <numMutations do
5: mutation ← randomMutationType
6: position ← randomBetween(0, |newinput|)
7: newinput ← mutate(newinput, mutation, position)

of these stages is governed by the length of the input being mutated. So, if the deterministic
mutation stages are not skipped, part of numChildren is simply a linear function of the
input length.

On the other hand, the havoc stage works by applying a sequence of random mutations
to the input being mutated to produce a new input. Algorithm 2 shows this process. Several
mutations are repeatedly applied to the original input (Line 7) before running it through the
program. The type of mutation that can be applied includes all the mutations that can be
applied in the deterministic stages.

The number of total havoc-mutated inputs to be produced is determined by a performance
score, which is the non-input-length dependent part of numChildren. This performance
score is higher for inputs with (a) faster execution times, (b) higher average coverage, (c)
which have been more recently added to the saved input set, and (d) which have been
discovered “deeper” in the fuzzing process (a mutant of a seed input has depth 1, a mutant of
that mutant has depth 2, etc.).

Finally, AFL also includes a crossover-like mutation phase (called splicing) which combines
sequences of the parent input with sequences of other saved inputs. None of algorithms
discussed in this dissertation alter this stage of mutation.

Trimming Inputs Not illustrated in Algorithm 1 is an additional trimming stage before
inputs are mutated. For additional efficiency, inputs are trimmed with an approximate
delta-debugging method [191], which tries to reduce the size of inputs as much as possible
while ensuring they cover the same “path” (the set of (branch ID, branch hits) pairs).

2.2 Random and Mutational Fuzzers
The term fuzz was introduced by Miller et al.’s seminal work on randomized testing of UNIX
utilities [135]. After observing that random characters caused by rain on dial-up phone
lines could cause remote command-line utilities to crash, Miller et al. developed the fuzz
tool. This tool stress-tests command line utilities by repeatedly sending random sequences
of characters as input to these utilities. This original work also included the ptyjig tool,
essentially a generator-based fuzzer for interactive utilities.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

This study found that numerous popular utilities—including bc, emacs, ftp telnet, and
vi—could be crashed with inputs generated by this pure random fuzzing. The study was
revisited five years later [136], and though fewer UNIX utilities could be caused to crash
with this random fuzzing, many of the bugs were still present, and more than half of X-
Window utilities could be crashed with the process. Subsequent studies on Windows NT
GUI applications [72] and Mac OS utilities and GUI applications [134] found similar results.
Finally, a 2020 study found that this method was still effective at finding crashes, showing
the persistent prevalence of pointer and array-related bugs in C/C++ code [133].

A step more sophisticated than these pure random fuzzers are mutational fuzzers, which
generate inputs by mutating some seed inputs, but without the genetic-algorithm-like loop
introduced by AFL. Traditional blackbox mutational fuzzers such as zzuf [95] mutate user-
provided seed inputs according to a mutation ratio, which may need to be adjusted to the
program under test. BFF [100] and SymFuzz [53] adapt this parameter automatically. BFF
measures the crash density—the proportion of generated inputs that cause crashes—for
different mutation ratios, and adjusts the mutation ratio accordingly. SymFuzz conducts the
heavier duty strategy of input-bit dependence inference to adapt the mutation ratio to the
program under test.

Radamsa is a modern mutational fuzzer which has found numerous CVEs in sophisticated
software components such as Chrome, Mozilla Firefox, Adobe Reader and CISCO WebVPN
[29]. One of its appeals is its very simple command line interface, which is in part due to
its black-box nature. Unlike traditional mutational fuzzers, it has some sophistication in its
mutation techniques, i.e. it can recognize parts of inputs that look like numbers and mutate
them as numbers rather than treating them as random bytes.

2.3 Coverage-Guided Fuzzers
Coverage-guided fuzzing piqued the interest of the practitioner and academic community
after the publication of some impressive results on the part of AFL, which we have already
discussed extensively. Particularly impressive results include the automatic discovery of
JPEG structure [187] and the shellshock bug [186].

Several other industrial coverage-guided fuzzers were built after this. First is libFuzzer [167],
integrated into the LLVM-based clang compiler [113] toolchain. The underlying input-
generation method is fairly similar to AFL; a notable difference is that only one mutant is
generated per parent (i.e. numChildren in Line 6 of Algorithm 1 always returns 1) and
that the search terminates after the discovery of any crash. Unlike AFL, which operates by
repeatedly calling a compiled external program under test, libFuzzer is in-process, meaning it
repeatedly runs a single test driver function. This test driver takes in a sequence of bytes and
the length of that sequence as input. In order to run libFuzzer properly, the test driver should
be side-effect free, not leak memory, etc., so that it can be invoked hundreds of thousands of
time. Unlike AFL whose feedback instrumentation is fixed, libFuzzer provides hooks that
allow users to inject extra instrumentation at basic blocks and comparison operations.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Another notable coverage-guided fuzzer is honggfuzz [174]. It supports the same test driver
abstraction as libFuzzer. The distinguishing feature of honggfuzz is its high-performance
aspect: it supports multi-process and multi-threaded fuzzing out-of-the-box, as opposed to
requiring the launch of multiple fuzzing runs. It is the fuzzer that found the notable critical
security vulnerability in OpenSSL mentioned in the introduction [145].

AFLFast [46] is the seminal work on improving coverage-guided fuzzing in academia.
It presents a Markov Chain model of the fuzzing process, and the hypothesis that inputs
which exercise low-frequency paths —coverage sets exercised by very few fuzzer-generated
inputs—are more likely to produce inputs finding new coverage in the program under test. It
built from this model several improvements to the numChildren, that caused relatively
larger emphasis on the havoc mutation stages of inputs exercising rare paths. This led to large
increases in coverage and decreases in time to reveal bugs compared to AFL, and inspired
improvements of some of AFL’s default heuristics [188].

VUzzer [161] adds several smarter data-flow and control-flow analyses to the coverage-
guided fuzzing process. In a pre-fuzzing static analysis stage, VUzzer identifies basic blocks
containing error handling code, in order to de-prioritize them during fuzzing, as well as deeply
nested basic blocks, in order to prioritize them during fuzzing. VUzzer also uses taint analysis
to improve its mutation strategies, for example to determine which input bytes are used in
direct comparisons, as well as the values they are directly compared against. Thus it can
more easily get through “hard” comparisons, as discussed in Chapter 4. VUzzer re-implements
the whole coverage-guided fuzzing loop rather than building on top of e.g. AFL or libFuzzer.

Steelix [117] is another coverage-guided fuzzer built on top of AFL, whose goal is to
better get through hard comparisons. It relies on extra instrumentation to detect whether
progress is made in a multi-byte equality comparison, i.e. one byte matches in a multi-byte
comparison. When it notices this, it runs an adaptive mutation phase, exhaustively checking
all byte values for the adjacent bytes to the matched byte, and continuing this process until
no more adjacent bytes can be made to match. This is similar to the cmp fuzzer discussed in
Section 4.4.2, but with more targeted mutations. pFuzzer [129] leverages unsatisfied byte-level
comparisons in order to extract the byte that must be present at the last position of an input
to get through the comparison, especially well-suited to fuzzing recursive descent parsers.

Angora [54] also improves on AFL using taint-tracking and a gradient descent methodology.
It uses the LLVM instrumentation framework to track which input bytes flow into different
path constraints, and in order to try and get through those constraints, restricts its mutations
accordingly. Angora treats each predicate in a path constraint as a blackbox function f(x)
over the part of the input x that flows into the predicate. It slightly modifies the x and, with
the results of this mutant, uses the finite difference method to approximate the gradient of
f(x) to guide its search. In addition to this, Angora also tries to infer the type of different
byte sequences (i.e. are these four bytes used as an integer). And, instead of simply looking
at increased branch coverage as AFL does, it adds a notion of context : the coverage point
includes not only the branch, but also a hash of the call stack when that branch was taken.

Matryoshka [55] adopts some of Angora’s taint-tracking and gradient-descent strategies,
but targets the generation of inputs that satisfy highly-nested conditional statements. Given

CHAPTER 2. BACKGROUND AND RELATED WORK 12

a target condition, it first identifies the set of conditions that dominate it, as well as the
data flow of input bytes to these conditions. Then it uses a variety of mutation masking
procedures, and combining inputs that satisfy individual conditions, to create inputs that
satisfy the highly-nested condition.

MOPT [126] alters the order in which different AFL mutation stages are applied, and
whether they are applied at all. In particular, it allows for the scheduling of each different
deterministic mutation stage, as well as the havoc and splicing (crossover) stage. It models
each of these mutation stages as a particle moving in a probability space. Then it uses
Particle Swarm Optimization to try and maximize the efficiency of mutation, i.e. keep the
mutation stages which resulted in most inputs with new coverage.

RedQueen [32] uses a more lightweight approach to get through hard branches. It
identifies correspondences between the input and the program state by simple equality; are
there data strings in the program that are exact subsequences of the input. It instruments
comparison operators to get this data for direct equality conditions. It can then patch the
corresponding input data to get through the equality conditions. It uses a similar approach
to get through checksums: first by identifying computations that look like checksums, and
patching inputs with the checksum-computed values.

ProFuzzer [183] aims to recover some structural information from seed inputs in order to
improve the performance of fuzzing. For each byte in the seed inputs, it generate mutants
with each different possible value of the byte. Based on the changes in coverage caused by
the mutation, it determines a category for the byte, e.g.: is it a constant, is it used in a loop
count, is it an offset, a size. Then it groups together sequential bytes of the same category,
and performs more relevant mutations based on the category.

Entropic [44] leverages the model of software testing as species discovery [43] to improve
the heuristics, in particular fuzzProb in Line 5 of Algorithm 1, of libFuzzer. It introduces
the notion of local Shannon’s Entropy for a seed t — essentially a score of how likely mutants
of t are to discover new branches. Then, fuzzProb is proportional to a Bayesian estimator
of this entropy metric, over low-frequency branches. Due to consistent improvements in
coverage achieved and reductions in time to expose bugs, this implementation of fuzzProb
was incorporated into mainstream libFuzzer.

AFL++ [71] has been developed to integrate many of the innovations discussed above
into one single fuzzer. It includes AFLFast’s energy schedules, RedQueen’s input-to-state
replacement, MOPT’s mutation scheduling, amongst others. It also provides an API to more
easily customize the underlying fuzzer’s input generation strategies. As of September 2020, it
was the fuzzer with the highest overall score as per Google’s FuzzBench project [175].

An alternative to a single mega-fuzzer is to combine multiple fuzzers in parallel. EnFuzz [55]
found that an ensemble fuzzer that shared saved inputs between multiple different fuzzers
generally achieved higher coverage and bug-finding ability compared to the sum of its parts.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.4 Specialized Feedback-Directed Fuzzers
As will be discussed in Chapter 4, there has been interest in using the high-level coverage-
guided fuzzing algorithm for different specialized use cases beyond general increased coverage
of command-line utilities.

AFLGo [45] is a directed fuzzing tool, which aims to generate inputs hitting a set of
targets, each of which is a line in a file. It uses call graphs obtained from whole-program
static analysis to compute the distances of between basic blocks, and gives positive feedback
to inputs that reduce this distance. Wüstholz and Christakis propose a directed fuzzing tool
for smart contracts, Bran [180]. Instead of conducting a whole-program static analysis, it
conducts online static analysis to determine the smallest no-target-ahead prefix of an input’s
path—assuming that input does not exercise the target. It uses information about the rarity
of these prefixes to influence numChildren, and emphasize the mutation of inputs which
have a rare no-target-ahead path.

Ijon [31] allows security analysts to insert feedback statements into the program under
test, much like the approach described in Chapter 4. The feedback statements are at a
different level, however. They allow the developer to increment/decrement/maximize feedback
keys, as in Chapter 4, but also to enable and disable coverage feedback in different parts of
the program, and also provide an explicit notion of state feedback.

SlowFuzz [157], built on top of libFuzzer, aims to find inputs showing algorithmic com-
plexity vulnerabilities. The main idea is to create inputs with longer path lengths through
the program by saving inputs with longer path lengths, and adapting the mutation strategy
to locations that result in longer paths. Chapter 3 contrasts this approach with PerfFuzz.

Nezha is a differential fuzzing tool [156] which fuzzes multiple programs at the same
time on one input and tries to maximize the difference in their behavior on that input. In
particular, Nezha introduces the concept of δ-diversity and uses this to force the generation
of inputs showing different behaviors in the program under test. It prioritizes the inputs
which have radically different paths through the programs compared to their parents, as well
as the outputs. This allows for faster discovery of inputs which illustrate semantic differences
between the programs—most likely bugs. DifFuzz [140] also looks at running multiple
versions of a program on a same input, but in order to find side-channel vulnerabilities.
Essentially, the input being mutated consists of a public input as well as two distinct secrets.
Then DifFuzz prioritizes inputs which increase the difference in execution cost between the
runs of the program under the two secrets.

Memlock [178] aims to find memory consumption crashes, vulnerabilities, and memory
leaks. It uses an approach similar to that described in Chapter 3 to accomplish this, but
it instruments memory allocation and deallocation statements in order to build a perfmap
mapping allocations locations to the amount of memory allocated there. MemFuzz [61] saves
inputs that read/write new values to input-dependent memory addresses; this allows it to
find new bugs compared to AFL.

Lauefer et al. [109] use validity feedback in order to fuzz circuits that have constrained
interfaces. This validity feedback is similar to that described in Chapter 6. Harvey [179]

CHAPTER 2. BACKGROUND AND RELATED WORK 14

is a greybox fuzzer optimized for smart contracts. It adds feedback that guides it through
conditional statements, by translating conditional statements to linear expressions and trying
to minimize those expressions. It also detects branches that require more than one transaction,
and uses this bound the transaction sequences it explores. When exploring sequences of length
more than 1, it only prioritizes increased coverage of the last transaction in the sequence.

Bugariu et al. build a fuzzer to test implementations of abstract domains [49] by building
specialized oracles for static analysis bugs. Each of these oracles is encoded as a test-driver,
which also encodes the generation of inputs in a given abstract interpretation domain. A
coverage-guided backend controls the generation of these inputs. In some ways, this can be
seen as a specialized guided generator-based fuzzer, although the inputs are captured as a
sequence of operations in the abstract interpretation domain.

2.5 Structure-Aware and Generator-Based Fuzzers
There is a rich history of randomized testing methods that leverage specifications of input
structure in order to generate inputs. At some level, most of these fall under the abstraction
of generator-based fuzzing, but there are many different branches of generator-based fuzzing,
and ways to utilize structural information in the production of inputs.

Generator-based fuzzing, also called property-based testing, which was discussed in the
introduction, was first popularized by QuickCheck [58]. It allows users to quickly check
a property of the form P (x) ⇒ Q(x) over a domain of inputs X . In particular, given
a user-defined test driver implementing P (x) ⇒ Q(x) with a generator of inputs x ∈ X ,
QuickCheck will execute P (x)⇒ Q(x) on many inputs x. This gives an approximate check
of ∀x ∈ X , P (x)⇒ Q(x). The method has grown in popularity thanks to implementations
in many different languages [14, 13, 18, 19, 151], including prominent languages such as
Python [15], JavaScript [16], and Java [98].

UDITA [78] allows developers to write random input generators in a QuickCheck-like
language. UDITA then performs bounded-exhaustive enumeration of the paths through the
generators, along with several optimizations. Targeted property-testing [123, 124] guides input
generators used in property testing towards a user-specified fitness value using techniques such
as hill climbing and simulated annealing. GödelTest [67] attempts to satisfy user-specified
properties on inputs. It performs a meta-heuristic search for stochastic models that are used
to sample random inputs from a generator, similar to the guides discussed in Part III.

One problem with traditional property-based testing is when few of the generator-generated
inputs satisfy P (x). One way to solve this problem is to do whitebox analysis [81, 47, 78] of the
generator and/or the implementations of P (x) and Q(x). A constraint solver can be used to
generate inputs x ∈ X that are guaranteed to satisfy P (x), which also exercise different code
paths within the implementation of Q(x) [164]. Another approach is to collect code coverage
during test execution [112]. This information can be used in an evolutionary algorithm to
generate inputs that are likely satisfy P (x), while optimizing to increase code coverage through

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Q(x). Chapter 6 presents a similar code-coverage-based approach; a blackbox approach is
discussed in Chapter 7.

Grammar-based fuzzing [130, 170, 62, 40] techniques rely on context-free grammar speci-
fications to generate structured inputs. Godefroid et al. [80] use grammars to build symbolic
constraints at the level of grammar elements, resulting in much higher coverage of the programs
under test than regular symbolic execution (discussed in the next subsection). LangFuzz [97]
generates random programs using a grammar and by recombining code fragments from a
codebase, a mixture of generational and mutational fuzzing. The PEACH fuzzer [17] allows
for more effective fuzzing of programs expecting structured inputs by randomly sampling
inputs according to complex models of common file formats.

CSmith [181] generates random C programs for differential testing of C compilers. The
generator of these programs is highly optimized to prevent the generation of C programs
with undefined behavior, though it requires heavy duty dynamic checks to prevent all unsafe
programs from being generated. YARPGen [122], yet another random generator of C and C++
programs, does not rely on these dynamic checks. It carefully separates variables into different
categories (read-only, write-only, read-write). Then it interleaves a type-checking static
analysis with the generation process. This analysis is bottom-up, identifying sub-expressions
with undefined behavior and mutating them to remove the undefined behavior.

Sulley [28] and BooFuzz [154] allow users to effectively fuzz protocols, based on speci-
fications of those protocols. These specifications must be user-provided. LZFuzz [48] tries
to automatically learn some of the structure of inputs for unknown protocols. It uses an
adapted compression algorithm to identify blocks in the inputs, and leverages this learned
structure for fuzzing.

Several approaches have also looked at leveraging input structures to improve the perfor-
mance of coverage-guided fuzzing. For instance, libprotobuf-mutator [168] extracts high-level
mutation operations from protocol buffer specifications of inputs. AFLSmart [158] uses
PEACH specifications of inputs to get higher-level mutation operators, as well as validity
feedback to guide CGF to generating inputs that fully parse.

Superion [176] uses grammars to enhance the mutation strategies of AFL—including a
LangFuzz-like strategy—and add a structured trimming (i.e. minimization) phase that works
on the AST level. Nautilus [30] also enhances coverage-guided fuzzing with grammars. It
leverages the grammar to (1) generate inputs from scratch which cover diverse aspects of the
grammar; (2) minimize inputs; (3) mutate inputs at the AST level. It introduces 4 different
AST-based mutation strategies as well as retaining some AFL mutations on the leaves.

Another direction is to learn some version of the input structure, rather than assume the
user provides a specification of input structure. LZFuzz [48], which we already discussed, does
this for network protocols. GRIMOIRE [41] learns something close to a context-free grammar
while fuzzing inputs. Essentially it learns a single-level hierarchy grammar, by figuring
out which parts of the input can be modified while still maintaining the newly-discovered
branch which made the input interesting to save. DIFUZE [63] infers device driver interfaces
from a running kernel to bootstrap subsequent structured fuzzing. Learn&Fuzz [83] uses a
sequence-to-sequence model to learn PDF objects, then leverages this model to generate new

CHAPTER 2. BACKGROUND AND RELATED WORK 16

PDF documents with different objects. Interestingly, this model-based approach resulted in
lower overall coverage, likely due to AFL’s coverage of error states.

There are also some recent works that focus more on the grammar learning rather than
fuzzing. Glade [37] uses an iterative approach and repeated calls to an oracle to learn a
context-free grammar for a set of inputs. The first phase of this learning generalizes each
input as a regular expression; a second phase merges learned substructures of the regular
expression. The learned grammars are not meant to be human-readable, but can be used to
sample inputs for fuzzing.

Others approaches use whitebox or greybox information about the program under test to
learn grammars. Lin et al.’s work examines execution traces in order to reconstruct program
input grammars [120, 119]. Autogram [99] tracks input flows into variables, and uses
this dataflow information to learn a well-labeled grammar. Mimid [87] goes a step further,
tracking the control-flow nodes in which input characters are accessed. It directly maps this
control-flow structure to the grammar structure, and takes advantage of function names in
order to sensibly label nonterminals.

2.6 Other Approaches to Automated Testing
The core idea behind symbolic execution [59, 104] is to generate inputs by reasoning about
the path constraints of the program under test. A path constraint is the conjunction of logical
constraints that must be satisfied for an input to follow a certain path through a program.
Advances in SMT solvers have made these methods viable in practice [65, 36, 66].

Traditionally the term symbolic execution is used to refer to methods that collect the
whole set of path constraints at the same time. KLEE is the classic example of such a
symbolic execution engine [51]. KLEE works by analyzing the execution of inputs at the
LLVM bytecode level. Each time it hits a branch statement, it adds the two alternative paths
to the state space of the program. To explore the state space efficiently, it uses either random
sampling of paths, or tries to explore paths that are more likely to result in increased coverage.
One of the big problems with this full exploration is that the space of path constraints grows
exponentially in the number of branches; this is called the path explosion problem.

Concolic execution or dynamic symbolic execution [165, 81] works slightly differently. It
starts with a concrete input and runs it through the program, collecting the constraint of the
path it follows. Then it flips the last branch in that path which has not been fully explored,
and generates an input that solves that path constraint. If all branches are flipped eventually,
this will ensure full coverage of the program under test. Nonetheless, it still suffers from the
aforementioned path explosion problem. MultiSE [166] uses an alternative representation of
the search space—value summaries—that enables it to incrementally merge the state space,
alleviating some of these problems.

The term whitebox fuzzing [82] generally refers to input-generation techniques that utilize
constraint solving to generate inputs, but explore the path constraint space in a more random
manner. SAGE [82] is the most well-known whitebox fuzzer. As in concolic execution, it

CHAPTER 2. BACKGROUND AND RELATED WORK 17

starts with a concrete path through the program. However, instead of just flipping the last
constraint in the path, it tries to flip each constraint individually, generating a new child
input for each constraint. Ideally, this process would be repeated for the child inputs, but
this too explodes the search space. So SAGE uses the heuristic of prioritizing the expansion
of child inputs which result in the largest increase in basic block coverage.

Mayhem’s [52] goal is to find exploitable bugs in program binaries. It switches between
a concrete executor client and a symbolic execution server to generate inputs exposing
potentially exploitable bugs. The concrete execution side performs dynamic taint tracking,
and when it finds a branch condition or jump target which is tainted, it switches control
to the symbolic execution side. The idea is that if a jump target is tainted by the input, it
could potentially be used maliciously by an attacker to cause a jump to unverified code. The
symbolic execution engine then tries to determine whether the branches sent to it from the
concrete executor are feasible. In addition to checking path constraints, Mayhem also keeps
track of an exploitability formula when hitting tainted jump conditions. If this formula is
satisfiable, then the input satisfying it will be an exploit, a distinctive feature of Mayhem.

There has been a recent resurgence of interest in building more scalable symbolic execution
engines from the security community. SymCC [159] is a drop-in replacement to the clang or
clang++ compiler, which builds concolic execution into the binary. The concept is similar to
that in CUTE [165]; during compilation, instructions are added to the binary which, when
executed, build up the symbolic constraints. The important point is that this reasoning
about building up symbolic path expressions is only conducted at compile time, as opposed
to interpreter-based symbolic executors [56, 169]. SymQEMU [160] achieves similar benefits,
but without requiring access to the source code of the program under test. They use the
Tiny Code Generator (TCG) component of QEMU [39] to do this. In regular QEMU, this
component translates the binary to TCG operations before compiling them to the target
machine code. During this process, SymQEMU also adds TCG operations that will, when
executed, build up the symbolic constraints.

The key advantage of the constraint solver based techniques is that they can easily get
through “hard” constraints, a key problem for coverage-guided mutational fuzzers. Several
works have looked at integrating symbolic execution and coverage-guided mutational fuzzing
to get the best of both worlds. Driller [172] runs coverage-guided fuzzing until it gets “stuck”
in certain component, i.e. has not discovered new branches in a certain function for a while.
At this point, it invokes concolic execution on the saved inputs for that component. In only
tries to flip constraints that have not been previously exercised by a saved input. Munch [142]
also orchestrates symbolic execution (KLEE) and AFL. It can run in two hybrid modes. If
seed inputs are available, it runs the FS hybrid mode: run AFL for some time, then use KLEE
to generate inputs that reach function not reached by AFL. It saves some of the symbolic
execution effort by excluding paths to functions explored by AFL already. Otherwise, it
runs the SF hybrid mode: start by generating seed inputs via symbolic execution, then run
fuzzing.

Before describing QSym [184], Yun et al. evaluate the actual performance costs of hybrid
(symbolic + coverage-guided) fuzzing. They find that the path explosion problem is not the

CHAPTER 2. BACKGROUND AND RELATED WORK 18

only bottleneck to performance. In particular, (1) they help reduce the cost of emulation by
writing a concolic executor at the x86 instruction level rather than the LLVM IR level; (2)
they get rid of some snapshotting since the goal is to use concolic execution to get through
a given hard branch; and (3) they reduce the cost of constraint solving by only trying to
flip the target branch, rather than trying to keep an exact path prefix. This resulted in the
discovery of new bugs in software that had been heavily fuzzed by coverage-guided fuzzing.

Another approach to smarter fuzzing is to find locations in seed inputs related to likely
crash locations in the program and focus mutation there. BuzzFuzz [77] starts from a set
of seed inputs and runs them through the program. It conducts dynamic taint tracking to
figure out which bytes of the input flow into dangerous locations—e.g. the input of a malloc
call. Then it creates mutant inputs by setting those bytes to extremal values. Similarly,
TaintScope [177] tracks which bytes flow to security-sensitive operations and focuses mutations
on these bytes. In addition, it automatically identifies checksums in the program under test,
and bypasses these during fuzzing. If an interesting input is found which bypasses these
checksums, it uses dynamic symbolic execution to repair the checksum.

Dowser [92] focuses on finding inputs which cause buffer overflows. It identifies locations
in the program where buffer overflows may occur, in particular, loops containing pointer
dereferences. It then conducts taint-tracking to determine which bytes flow to these target
locations. Then it conducts partial dynamic symbolic execution, treating only those bytes
that flow to the target locations as symbolic.

While coverage-guided fuzz testing emerged from the security community, the idea of
using genetic algorithms for testing has been long explored in the software engineering
community [137, 107]. The field of search-based software testing [131, 91, 90, 182] uses
optimization techniques such as hill climbing and genetic algorithms to generate inputs that
optimize some observable fitness function. These techniques work well when the fitness curve
is smooth with respect to changes in the input.

For instance, Sapienz [128] automatically creates test suites for Android applications. It
uses proper multi-objective search (i.e. Pareto optimal [93]) to maximize code coverage and
number of crashes found while reducing the length of interaction sequences in the test suite.
Since the whole test suite is being evolved at a time, the maximization of code coverage is a
reasonable approach; coverage-guided fuzzing tools like AFL operate on the single test-case
level, and thus must rely on the novelty search approach of saving inputs that find new
coverage. Sapienz uses several mutation operators specialized to the Android domain in order
to optimize the search.

Finally, another direction in automated testing is to automatically create test cases rather
than inputs to a test driver. Randoop [147] and EvoSuite [74] automatically produce JUnit
tests for a particular class by incrementally trying and combining sequences of method
invocations on the component classes. During the generation of sequence of calls, both
Randoop and EvoSuite take some form of feedback into account. For instance, Randoop
avoids extending call sequences that led to exceptions. EvoSuite uses a genetic algorithm to
evolve a test suite using code coverage as a fitness function.

19

Part I

Generalized Feedback-Directed Fuzzing

20

Chapter 3

PerfFuzz: Multi-Objective Performance
Fuzzing

Coverage-guided fuzzing tools such as AFL and libFuzzer find a variety of bugs in software.
They particularly excel at exposing memory management issues in C/C++, or bugs that can
be exposed by the clang sanitizers [21, 22, 23, 24].

This chapter presents a fuzzing algorithm, PerfFuzz, that finds inputs exposing a
different type of software issue: performance problems. On top of being difficult to detect and
fix [103], performance problems can lead to security vulnerabilities. An algorithmic complexity
vulnerability [64, 1, 2, 4, 5, 20] can be leveraged by an attacker to cause denial-of-service
(DoS) attacks on a deployed service [3].

There exist a number of techniques to help developers diagnose and fix performance
performance problems [88, 139, 34, 141, 171], but almost all of these techniques require the
execution of the program on test inputs. Traditional sources for such inputs include (1)
specially hand-crafted performance tests [141, 138], (2) standardized benchmark suites [34, 35,
60], (3) inputs that are commonly encountered in normal program usage (sometimes called
representative workloads) [84, 190], or (4) inputs sent by users experiencing performance
problems [171]. However, these test inputs may either not expose performance problems, or
only be obtainable after some damage has already.

PerfFuzz’s goal is to automatically find inputs exposing performance problems, enabling
developers to diagnose and fix these problems before the deployment of software. In particular,
PerfFuzz aims to automatically find what we call pathological inputs. Pathological inputs
are those inputs which exhibit worst-case algorithmic complexity in different components of
the program. For example, a program may use data structures such as hash tables and sorting
algorithms such as quicksort. Pathological inputs would be those which, when executed, lead
to many collisions in the hash table or many swaps in the sorting routine. Such pathological
inputs can be identified as those which, given a fixed input length, maximize the execution
count of a particular program component.

In this chapter, we first motivate the algorithm behind PerfFuzz: a fuzzing algorithm
to perform multi-objective maximization. Then we present a formal description of the

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 21

1 // Hash -map entry; also a linked list
2 // node , to resolve hash collisions
3 typedef struct entry_t {
4 char* key;
5 int value;
6 struct entry_t* next;
7 } entry;
8
9 // Table of hash -map entries.

10 const int TABLE_SIZE = 1001;
11 entry* hashtable[TABLE_SIZE] = {0};
12
13 // Computes a hash value for a word.
14 unsigned int compute_hash(char* str) {
15 unsigned int hash = 0;
16 for (char* p = str; *p!='\0'; p++) {
17 hash = 31 * hash + (*p);
18 }
19 return hash % TABLE_SIZE;
20 }

21 // Increments word count in the hash -map
22 void add_word(char* word) {
23 // access the appropriate bucket
24 int bucket = compute_hash(word);
25 entry* e = hashtable[bucket];
26
27 // find matching entry
28 while (e != NULL) {
29 if (strcmp(e->key , word) == 0) {
30 // increment count
31 e->value ++;
32 return;
33 } else {
34 // traverse linked list
35 e = e->next;
36 }
37 }
38 // If no entry found , create one
39 hashtable[bucket] = new_entry(word ,
40 1, hashtable[bucket]);
41 }

Figure 3.1: Extract from a C program that counts the frequency of words in an input string.

algorithm, highlighting the differences between PerfFuzz and traditional coverage-guided
fuzzing. While the formal algorithm works on an abstract notion of “performance feedback”,
we implement the algorithm with a focus on finding pathological inputs. We find that the
implementation performs better than single-objective performance fuzzing and coverage-
guided fuzzing in terms of finding pathological inputs and algorithmic complexity issues.

The next chapter revisits the more general algorithm, and provides a framework to enable
users to utilize it to achieve their own domain-specific testing goals.

3.1 Motivation
The C program in Figure 3.1 is a simplified version of wf [6], a simple word frequency counting
tool packaged in the Fedora 27 RPM repository. The main program driver (omitted for
brevity) splits its input string into words at whitespaces and counts how many times each word
occurs in the input. To map words to integer counts, the program uses a simple hashtable
(defined at Line 11) with a fixed number of buckets. Each bucket is a linked list of entries
holding counts for distinct words that hash to the same bucket. As each word is scanned
from the input, the program invokes the add_word function (Lines 22–41). This function first
computes a hash value for that word—implemented in compute_hash (Lines 14–20)—and
then attempts to find an entry for that word (Lines 28–37). If such an entry is found, its
count is incremented (Line 31). Otherwise, a new entry is created with a count of 1 (Line 39).

When this program is run on inputs consisting of English text, the program does not
exhibit any performance bottlenecks. This is because English text usually contains words

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 22

of short length (about 5 characters on average) and the number of distinct words is not
very large (less than 10,000 in a typical novel). However, there are at least two performance
bottlenecks that can be exposed by pathological inputs.

First, if the input contains very long words (e.g., nucleic acid sequences, a common
genomics application), the program will spend most of its time in the compute_hash function.
This is because the compute_hash function iterates over each character in the word irrespective
of its length. For most applications, it is sufficient to compute a hash based on a bounded
subset of the input, such as a prefix of up to 10 characters.

Second, if the input contains many distinct words (e.g., e-mail addresses from a server
log), the frequency of hash collisions in the fixed-size hashtable increases dramatically. In this
case, the program spends most of its time in the function add_word, traversing the linked
list of entries in the loop at lines 28–37. In the worst-case, the run-time of wf increases
quadratically with the number of words. This bottleneck can be alleviated by replacing the
linked list with a balanced binary search tree whenever the number of entries in a bucket
becomes very large.

With access to inputs illustrating these bottlenecks, a developer could run the program
through a standard profiling tool such as GProf [88] or Valgrind [139] and identify where the
program spends most of its time. Most of the time, unfortunately, a developer does not have
access to such inputs—but PerfFuzz can help.

The goal of PerfFuzz is to automatically generate inputs showing a variety of performance
behaviors in the program under test. In particular, it aims to generate a set of inputs, each
of which maximize the execution count of different edges in the control-flow graph (CFG) of
a program. PerfFuzz accomplishes this via a feedback-directed fuzzing loop, similar to the
coverage-guided fuzzing introduced in Section 1.1. It works, essentially as follows:

1. Initialize a set of inputs, called the parent inputs, with some given seed inputs.

2. Pick a parent input that maximizes the execution count for some CFG edge.

3. From the chosen parent input, generate many more inputs, called child inputs, by
performing one or more random mutations.

4. For each child input, run the test program and collect execution counts for each CFG
edge. If the child executes some edge more times than any other input seen so far (i.e.,
it maximizes the execution count for that edge), then add it to the set of parent inputs.

5. Repeat from step 2 until a time limit is reached.

To provide some intuition for why this algorithm works, consider running the PerfFuzz
algorithm for the word frequency counting program wf shown in Figure 3.1.

Suppose we start with the seed input “the quick brown fox jumps over the lazy dog”.
This input does not have any special characteristics that exhibit worst-case complexity. All
of the 8 distinct words in this input map to distinct buckets in the hashtable, and none are

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 23

very long. PerfFuzz first runs the program with this input and collects data about which
CFG edges were executed. For example, the function add_word is invoked 8 times, whereas
the true branch of the condition on Line 29 is executed only once to increment the count for
the word “the”.

In step 2, PerfFuzz picks this input and mutates it several times. Consider, the result
of a few different mutations:

M1. The character at position 18 is changed from o to i, yielding the string “the quick
brown fix jumps over the lazy dog”. Running the program with this input does
not increase the execution count for any CFG edge. Therefore, this input is discarded.
This is the most common outcome of mutation.

M2. The character at position 7 (the i in quick) is replaced with a space, yielding the
string “the qu ck brown fox jumps over the lazy dog”. This operation increases
the number of words, so running wf with this input leads to an additional execution of
the function add_word. As no previous input has executed the CFG edge that invokes
this function 10 or more times, the input is saved for subsequent fuzzing.

M3. The character at position 16 (the space between brown and fox) is replaced with an
underscore, yielding the string “the quick brown_fox jumps over the lazy dog”. The
words brown_fox and dog have the same hash value of 545, causing a collision-resolving
linked-list traversal at line 35. As this branch is executed for the first time, this input
is also saved.

As in coverage-guided fuzzing, saved inputs are added to the parent set, and a new parent
input is selected for mutation. Saved inputs that maximize the execution count of at least one
CFG edge are favored ; that is, they are picked as parents for fuzzing with higher probability.
A favored input will cease to be favored when new inputs are found with higher execution
counts for the same edge. The number of favored inputs at any time is much smaller than
the number of CFG edges in the program due to correlations between various edges in the
program—the same favored input may maximize the execution counts of correlated edges.

Most mutated inputs will not increase execution counts. However, executing a program
with a single input is a very fast operation, even in the presence of lightweight instrumentation
for collecting profiling data. So, PerfFuzz can make steady progress in a reasonable amount
of time. For example, with our experimental setup, wf can be executed more than 6,000 times
per second on average. Thus in one hour, PerfFuzz can go through over 20 million inputs.

After a predefined time budget expires, PerfFuzz outputs the current favored program
inputs and the execution counts for the CFG edges that they maximize (see Table 3.1 for an
example). For the running example, PerfFuzz outputs strings including

tvÇ1PFEj??A4A+v!^?^AE!§^?MPttò8dg80ÿ(8mrÿÿÿÿ,

a single long word, which maximizes the execution count of Line 17 in compute_hash; and

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 24

t t t t i nv t X t 1 9 t l t l t t t t t,

a string containing many short words which exercises repeated executions of the function
add_word(); and

t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t,

which contains many words that hash to the same bucket as the word "t", exposing the
worst-case complexity due to repeated traversals of a long linked list. Section 3.4.1.2 includes
a detailed report on the results of running PerfFuzz on wf-0.41.

An important feature of PerfFuzz is that it saves mutated inputs if they maximize the
execution count for any CFG edge, even if the mutation reduces the total execution path
length. For instance, the mutation M3 actually reduces the total number of words, resulting
in a smaller path length, but is nonetheless saved because it increases the hit counts of the
linked-list traversal edges.

This is in contrast to previous tools which use a greedy approach and consider only
increases in total path length [157]. This feature helps PerfFuzz find inputs exercising
worst-case behavior even when the performance response of the program is non-convex. The
hash collision example illustrates such non-convexity: a first hash collision decreases the path
length, but the path length will become much longer in the presence of multiple collisions.
Our empirical evaluation supports the importance of this multi-objective approach.

3.2 The PerfFuzz Algorithm
We now describe the PerfFuzz technique formally. Algorithm 3 outlines the high-level
input generation strategy. The high-level algorithm is based on the coverage-guided fuzzing
algorithm; the grey boxes highlight the key additions to Algorithm 1.

The goal of PerfFuzz is to generate inputs which achieve high performance values
associated with some program components. To generate inputs exhibiting high computational
complexity, we take the program components to be CFG edges and the values to be their
execution counts. The PerfFuzz algorithm can be easily adapted to maximize a variety of
values for different program components: the number of bytes allocated at malloc statements,
the number of cache misses or page faults at memory load/store instructions, the number of
I/O operations across system components, etc. Chapter 4 shows this concretely.

PerfFuzz is given a program, p, and a set of initial seed inputs (S0). These seed inputs
are used to initialize a set of parent inputs, denoted S (Line 1). Inputs in set S form the base
from which new inputs are generated via mutation.

PerfFuzz then considers each input from the set S (Line 4) and probabilistically decides
whether or not to select that input for mutational fuzzing (Line 5). The selection probability
fuzzProb is high for an input that is currently favored (maximizes a performance value,
detailed in Definition 5) and low otherwise.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 25

Algorithm 3 The PerfFuzz algorithm; differences from the coverage-guided fuzzing
algorithm are highlighted in grey.
Inputs: program p, set of initial seed inputs S0

1: S ← S0

2: totalCoverage ← initCoverage(S0)
3: repeat . begin a cycle
4: for input in S do
5: with probability fuzzProb(input) do
6: for 1 ≤ i ≤ numChildren(p, input) do
7: input′ ← mutate(input)
8: coverage, perfmapinput′ ← Execute(p, input′)
9: if coverage 6⊆ totalCoverage then
10: S ← S ∪ {i ′}
11: totalCoverage← totalCoverage ∪ coverage
12: if hasNewMax(input′, perfmapinput′) then
13: S ← S ∪ {i ′}

14: until given time budget expires

Each time a parent input is chosen for fuzzing, PerfFuzz determines a number of new
child inputs to generate (Line 6). It generates these children by mutating the chosen parent
input (Line 7). PerfFuzz then executes the program under test with every newly generated
child input (Line 8). During the execution, PerfFuzz collects feedback which includes code
coverage information (e.g., which CFG edges were executed) as well as values associated with
the program components of interest (e.g., how many times each CFG edge was executed). If
an execution results in new code coverage (newCov) or if it maximizes the value for some
component (newMax), then the corresponding input is added to the set of parent inputs
for future fuzzing (Line 10, Line 13). Saving inputs which explore new coverage is key to
exploring different program behavior when the (program component, performance value) pairs
to be maximized are not simply CFG edges and their hit counts.

Once PerfFuzz completes a full cycle through the set S, it simply repeats this process
until a given time budget expires (Line 14).

We now define a series of concepts that are required to precisely describe what it means for
an input to maximize a value associated with a program component (i.e., satisfy hasNewMax)
and for an input to be favored and thus selected for fuzzing (fuzzProb).

Definition 1. A performance map is a function perfmap : K → V , where K is a set of keys
corresponding to program components and V is a set of ordered values (≤) corresponding to
performance values at these components.

Given a K and V , perfmapi is the performance map derived from the execution of input i
on program p. As outlined earlier, the sets K and V have deliberately been left abstract to

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 26

make the algorithm flexible to different (program component, performance value) pairs.

Definition 2. The cumulative maximum map at time step t is a function cumulmax t : K → V .
It maps each program component to the maximum performance value observed for that
component across all inputs generated up to time t. Precisely, if It is the cumulative set of
inputs executed up to time step t, then:

∀k ∈ K : cumulmax t(k) = max
i∈It

perfmapi(k).

The first key to the PerfFuzz algorithm is saving inputs which achieve a new maximum
compared to previously observed values (Line 13). In terms of cumulmax , an input has a
new maximum if:

Definition 3. The function hasNewMax will return true for a newly generated input i at
time step t if the following condition holds:

∃k ∈ K s.t. perfmapi(k) > cumulmax t(k).

The second key to the PerfFuzz algorithm is the selection of inputs from S to mutate.
To define fuzzProb, the input selection probability, we first define the concept of favoring.

Definition 4. An input i maximizes a performance value for some component k if and only
if its performance profile registers the maximum value observed for that component so far:

maximizest(i, k)⇔ perfmapi(k) = cumulmax t(k).

Definition 5. An input i is favored for fuzzing at time step t if and only if it maximizes a
performance value for some component:

favoredt(i)⇔ ∃k ∈ K s. t. maximizest(i, k)

The favoring mechanism is a heuristic that allows PerfFuzz to prioritize fuzzing those
inputs that maximize the performance value of some program component. The intuition
behind this is that these inputs contain some characteristics that lead to expensive resource
usage in some program components. Thus, new inputs derived from them may be more likely
to contain the same characteristics.

In addition, we would like to make sure that inputs do not remain favored if they maximize
some key k whose value is unlikely to increase; for example, a CFG edge at the start of main
that can only be executed once by an input. We characterize this via staleness.

Definition 6. Let Pt be the list of parent inputs that have been selected for mutation as of
time t. The staleness of a key k at time t is defined as

stalenesst(k) = |{ß ∈ Pt : perfmapi(k) = cumulmax t(k)}| .

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 27

That is, the staleness of a key k increments any time an input maximizing its current
cumulmax value has been selected as parent for mutation, but none of its mutants increase
the value at k. After a mutant i′ with perfmapi′(k) > cumulmax t(k) is found, the staleness of
k is 0. On the other hand, for a key that is executed once in every execution of an input, its
staleness at time t will be the total number of inputs that have been selected as parents for
mutation in Line 5. We use this to compute staleness score for inputs:

Definition 7. The staleness score of an input i at time t is defined as follows. Let Ki be the
k ∈ K such that perfmapi(k) > 0. Then:

staleness_scoret(i) =
mink∈Ki

stalenesst(k)−mink∈K stalenesst(k)

maxk∈K stalenesst(k)

The intuition behind this score is that an input which only maximizes the value for the
most stale key k will have a staleness score near 1; one maximizing a not-stale key k will
have a staleness score near 0. However, if all keys k are somewhat stale, any input exercising
a key k with minimum staleness will also have staleness score of zero.

Finally, we can define the probability that an input will be selected as a parent for fuzzing:

Definition 8. The selection probability of an input i at time t is:

fuzzProbt(i) =

{
1− σ · staleness_scoret(i) if favoredt(i)
α · (1− σ · staleness_scoret(i)) otherwise

.

That is, favored inputs with staleness score of 0 are always selected, and inputs with a
higher staleness score are less likely to be selected for mutation. α is the base probability of
selecting a non-favored input, and stale inputs are similarly de-prioritized. In our experiments
we use α = 0.01 and σ = 0.8. In our evaluation of the impact of staleness, we will compare
this to the selection α = 0.01 and σ = 0; on our benchmarks, the impact of staleness on our
results is mixed.

3.3 Implementation
PerfFuzz is built on top of American Fuzzy Lop (AFL) [185], and inherits many of its
implementation details. Notably, the number of child inputs to produce (Line 6 in Algorithm 3,
the mutations performed (Line 7 in Algorithm 3), and the notion of new coverage (Line 9 of
Algorithm 3) are borrowed directly from AFL. In our evaluation, we enable only the “havoc”
mutation stages of AFL. Refer to Section 2.1 for a detailed discussion.

Note that although the hit count of a CFG edge/branch is considered in AFL’s notion of
coverage (Section 2.1), an input that achieves new coverage may not have a new maximum
and vice versa. For example, let e represent a CFG edge. An input hitting e 10 times when e
has only been hit 20 times by previously generated inputs achieves new coverage but not a
new maximum. On the other hand, an input hitting e 190 times when e has already been hit
130 times achieves a new maximum but not new coverage.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 28

Performance map In the implementation evaluated in the chapter, the performance map
sent back to the program has K = E ∪ {total} and V = N, where E is the program’s set of
CFG edges and total is an additional key. For an input i, for each e ∈ E , perfmapi(e) is the
total number of times the program executes e when run on input i, and perfmapi(total) =∑

e∈E perfmapi(e). The purpose of the total key is to save inputs which have high total path
length.

To produce this performance map, we simply augmented AFL’s LLVM-mode instru-
mentation, which inserts the coverage instrumentation described above into LLVM IR. Our
augmented instrumentation still creates the usual coverage map, whose keys are in E and
whose values are their 8-bit hit counts. Additionally, our augmented instrumentation creates
the performance map outlined above, with values as 32-bit integers.

3.4 Evaluation
In our evaluation of PerfFuzz, we seek to answer the following research questions:

RQ1. How does PerfFuzz compare to single-objective complexity fuzzing techniques such
as SlowFuzz [157]?

RQ2. Is PerfFuzz more effective at finding pathological inputs than fuzzing techniques
guided only by coverage?

RQ3. How does staleness impact the performance of PerfFuzz?

RQ4. Does the multi-dimensional objective of PerfFuzz help find a range of inputs that
exercise distinct hot spots?

We chose four real-world C programs as benchmarks for our main evaluation: (1)
libpng-1.6.34, (2) libjpeg-turbo-1.5.3, (3) zlib-1.2.11, and (4) libxml2-2.9.7. We
chose these benchmarks as they are (a) common benchmarks in the coverage-guided fuzzing
literature (b) fairly large—from 9k LoC for zlib and 30k LoC for libpng and libjpeg, to
70k LoC for libxml—and (c) had readily-available drivers for libFuzzer, an LLVM-based
fuzzing tool [167]. The availability of good libFuzzer drivers was key to being able to fairly
compare PerfFuzz to SlowFuzz [157] in Section 3.4.1. While AFL-based tools need only a
program that accepts standard input or an input-file name, libFuzzer-based tools rely on a
specialized driver that directly takes in a byte array, does not depend on global state, and
never exits on any input. Creating drivers with this second characteristic from command-line
programs is especially tricky. The particular drivers we chose (from the OSS-fuzz project [26])
exercised the PNG read function, the JPEG decompression function, the ZLIB decompression
function, and the XML read-from-memory function.

For each of these benchmarks, we ran PerfFuzz and SlowFuzz for 6 hours on a maximum
file size of 500 bytes. AFL ships with sample seed inputs in formats including PNG, JPEG,
GZIP and XML; we simply used the same inputs as seeds for our evaluation. We chose the

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 29

maximum size of 500 bytes as it was an upper bound on all the seeds that we considered. As
PerfFuzz and SlowFuzz are non-deterministic algorithms, we repeated each 6-hour run 20
times to account for variability in the results.

For our evaluation on discovering worst-case algorithmic complexity as a function of
varying input sizes (Section 3.4.1.2), we used three micro-benchmarks: (1) insertion sort
(because it was provided as the default example in the SlowFuzz repository), (2) matching
an input string to a URL regex [50] using the PCRE library, and (3) wf-0.41 [6], a simple
word-frequency counting tool found in the Fedora Linux repository.

To evaluate PerfFuzz against other techniques, we measure one or both of the maximum
path length and the maximum hot spot, where appropriate. More precisely, if E is the set of
CFG edges in the program under test, and It is the set of inputs generated by a fuzzing tool
up to time t, then:

Definition 9. The maximum path length is the longest execution path across all inputs
generated so far.

max. path length = max
i∈It

∑
e∈E

perfmapi(e).

Definition 10. The maximum hot spot is the highest execution count observed for any CFG
edge across all inputs generated so far.

max. hot spot = max
i∈It

max
e∈E

perfmapi(e).

These two values allow us to get a grasp of the overall computational time complexity of
generated inputs (the path length) as well as whether it is driven by a particular program
component (the hot spot) without having to look at the entire distribution of execution
counts of CFG edges, which is not practical to do over time.

3.4.1 Comparison with SlowFuzz

SlowFuzz [157] is a fuzz testing tool whose main goal is to produce inputs triggering algorithmic
complexity vulnerabilities. Like PerfFuzz, SlowFuzz is also an input-format agnostic fuzzing
tool for C/C++ programs; therefore, we believe it is the most closely related work to practically
compare against.

The objective of SlowFuzz is one-dimensional: to maximize the total execution path length
for a program. As such, it serves as an important candidate for evaluating the coverage-guided
multi-objective maximization of PerfFuzz against a traditional single-objective technique.

There are two other main algorithmic differences between SlowFuzz and PerfFuzz.
First, PerfFuzz produces many (typically at least thousands, often tens of thousands) of
inputs from one chosen parent input (Line 6 of Algorithm 1). SlowFuzz instead produces one
mutant for each parent. This reduces the importance of selecting inputs to fuzz. Thus, while
PerfFuzz prioritizes inputs to fuzz using the concept of favored inputs (Line 5 of Algorithm
1), SlowFuzz randomly selects a parent input to fuzz. Second, PerfFuzz applies AFL’s

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 30

havoc mutations (as detailed in Section 3.3) to the input. SlowFuzz learns which mutations
were successful in producing slow inputs in the past, and applies these more often.

Finally, SlowFuzz is built on top of on libFuzzer [167], an LLVM-based fuzzing tool.
In practice, libFuzzer is faster than AFL, running more inputs through the program per
second; therefore, SlowFuzz usually produces more inputs than PerfFuzz in the same time
span. Nonetheless, in our evaluation, we run both PerfFuzz and SlowFuzz for the same
amount of time.

We compare PerfFuzz with SlowFuzz on two fronts. First, we evaluate PerfFuzz and
SlowFuzz on their ability to maximize total execution path lengths as well as the maximum
hot spot on the four macro-benchmarks described above. Second, we compare the ability of
PerfFuzz and SlowFuzz to find inputs that demonstrate worst-case algorithmic complexity
in micro-benchmarks which are known to have worst-case quadratic complexity.

In all runs of SlowFuzz, we used the arguments provided in the example directory, except
that we used the “hybrid” mutation selection strategy. This was the strategy used in SlowFuzz’s
own evaluation [157], and we found that it performed best on a selection of micro-benchmarks
in our initial experiments.

3.4.1.1 Maximizing Execution Counts

Figure 3.2 shows the progress made by PerfFuzz and SlowFuzz during 6-hour runs in
maximizing total path length (on the left) and the maximum hot spot (on the right). The
lines in the plot represent average values over 20 repeated 6-hour runs, while the shaded
areas represent 95% confidence intervals, calculated with Student’s t-distribution.

It is clear from Figure 3.2 that PerfFuzz consistently finds inputs that are significantly
worse-performing than SlowFuzz’s by both the evaluated metrics—the maximum path lengths
found by PerfFuzz are 1.9×–24.7× higher and the maximum hot spots are 5×–69× higher.
This is in spite of the fact that SlowFuzz produces more inputs in each of this 6-hour runs
(from 1.7× more for libxml2 to 17.7× more for libjpeg-turbo).

The results show that not only is PerfFuzz better than SlowFuzz at finding hot spots,
for which the PerfFuzz algorithm is tailored, but that PerfFuzz is superior to SlowFuzz
even for finding inputs that maximize total path length, for which SlowFuzz is tailored.
Intuitively, we believe that this is because the total path length is not a convex function
of input characteristics; a greedy approach to maximizing total path length is likely to get
stuck in local maxima. In contrast, PerfFuzz saves newly generated inputs even if the total
path length is lower than the maximum found so far, as long as there is an increase in the
execution count for some CFG edge. Thus, the multi-dimensional objective of PerfFuzz
allows it to perform better global maximization of total path lengths.

3.4.1.2 Algorithmic Complexity Vulnerabilities

SlowFuzz was designed to find algorithmic complexity vulnerabilities, where programs exhibit
worst-case behavior that is asymptotically worse than their average-case behavior. Such

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 31

0 2 4 6
Time (hrs)

0k

1000k

2000k

3000k

4000k

5000k
M

ax
im

um
 P

at
h

Le
ng

th

PerfFuzz
SlowFuzz

(a) libpng - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(b) libpng - max. hot spot

0 2 4 6
Time (hrs)

0k

500k

1000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(c) libxml2 - max. path length

0 2 4 6
Time (hrs)

0k

100k

200k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(d) libxml2 - max. hot spot

0 2 4 6
Time (hrs)

0k

2000k

4000k

6000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(e) libjpeg - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(f) libjpeg - max. hot spot

0 2 4 6
Time (hrs)

0k

10k

20k

30k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(g) zlib - max. path length

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(h) zlib - max. hot spot

Figure 3.2: PerfFuzz vs. SlowFuzz on macro-benchmarks: maximum path length and
maximum hot spot found throughout the duration of the 6-hour fuzzing runs. Lines and
bands show averages and 95% confidence intervals across 20 repetitions; higher is better.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 32

10 20 30 40 50 60
Max Input Length (bytes)

0

1000

2000

3000

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(a) Insertion Sort

10 20 30 40 50 60
Max Input Length (bytes)

100k

200k

300k

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(b) PCRE URL regex

10 20 30 40 50 60
Max Input Length (bytes)

100

200

300

400

500

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(c) wf

Figure 3.3: PerfFuzz vs. SlowFuzz on micro-benchmarks: maximum path length found
with given time budget, for varying input sizes; higher is better.

programs pose a security risk if they process untrusted inputs: an attacker can send carefully
crafted inputs that exercise worst-case complexity and exhaust the victim’s computational
resources, resulting in a Denial-of-Service (DoS) attack [64]. We now show that PerfFuzz
also addresses this use case, and in fact out-performs SlowFuzz in some cases.

We considered three micro-benchmarks: (1) insertion sort on an array of 8-bit integers,
which is the only benchmark provided in the SlowFuzz repository, (2) matching an input
string against a regular expression to validate URLs using the PCRE library, and (3) wf-0.41,
the word-frequency counting program from the Fedora Linux repository. These benchmarks
are very similar to those used to evaluate SlowFuzz. Each of these micro-benchmarks have
an average-case run-time complexity that is linear in the size of the input, and a worst-case
complexity that is quadratic.

For each of these benchmarks, we varied the upper bound on the input size between 10
and 60 bytes with 10-byte intervals. We then ran each tool on the micro-benchmarks for
a fixed duration: 10 minutes for insertion sort and 60 minutes for PCRE and wf. In all
cases, we provided a single input seed: a sequence of zero-valued bytes of maximum length
for insertion sort and PCRE (these represent trivial base cases), and (truncations of) the
string “the quick brown fox jumps over the lazy dog” for wf, as it leads to average-case
performance. For each input length, we performed 20 runs to account for variability. Finally,
we measured the maximum path length observed over all the inputs produced in these runs.

Figure 3.3 shows the results of these runs: points plot the average maximum path length,
while lines show 95% confidence intervals.

For insertion sort, for all input lengths, PerfFuzz found a significantly (at 95% confidence)
longer maximum path length, but as Figure 3.3a shows, the difference is minimal for small
input lengths. For input lengths 10 and 20, PerfFuzz consistently found the worst-case—a
reverse-sorted list—while SlowFuzz had non-zero variance in its results. Figure 3.3a also
shows that for larger input sizes, PerfFuzz finds lists that require more comparisons to sort
than SlowFuzz. Overall, both tools discover the worst-case quadratic time complexity for
this benchmark.

However, in Figure 3.3b we see a major difference between the worst-case inputs found

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 33

by PerfFuzz and SlowFuzz on the PCRE URL benchmark. PerfFuzz finds inputs that
lead to worst-case quadratic complexity, while SlowFuzz finds only a slight super-linear curve.
An example of an input found by PerfFuzz that had maximum path length in one of the
50-byte runs was:

fhftp://ftp://ftp://ftp://f.m.m.m.m.m.m.m.m.m.m.

This is remarkable because the seed input was an empty string and PerfFuzz was not
provided any knowledge of the syntax of URLs. On the other hand, SlowFuzz has difficulty in
automatically discovering substrings such as ftp in the input string. We suspect that this is
because of its one-dimensional objective function, which does not allow it to make incremental
progress in the regex matching algorithm unless there is an increase in total path length.
Additionally, Figure 3.3b shows that there is much more variance in SlowFuzz’s performance
(see large confidence intervals for length 50 and 60) on this benchmark, indicating that any
such progress likely relies on a sequence of improbable random mutations.

wf is a much harder benchmark, as the worst-case behavior is only triggered when distinct
words in the input string map to the same hash-table bucket (ref. Section 3.1). Figure 3.3c
shows that PerfFuzz clearly finds inputs closer to worst-case time complexity in the given
time budget. We noticed that in nearly all runs (i.e., 19 of the 20 runs for 60-byte inputs),
PerfFuzz produced inputs with a very peculiar structure: first a few distinct words with the
same hash code, then a single 1-letter word repeated multiple times. For example, PerfFuzz
generated this input in one of its runs:

t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t

What is amazing about this input is how precisely it exercises worst-case complexity. First, a
small word is inserted into some hash bucket. Then, the next few words have the exact same
hash code and are inserted at the front of the linked list in that bucket; the first word is now
the last node in this linked list. Finally, the repeated occurrences of the first word cause wf
to traverse the entire linked list multiple times. The worst inputs produced by SlowFuzz
had some hash collisions, but still had several different hash codes and no traversal-stressing
structure like the input above.

Overall, we see that in the same time constraints, PerfFuzz is able to find inputs with
significantly longer paths than SlowFuzz, and can out-perform SlowFuzz in discovering inputs
exercising near worst-case algorithmic complexity.

3.4.2 Comparison with Coverage-Guided Fuzzing

With the insight that PerfFuzz’s efficacy is in part due to its multi-objective. coverage-
guided progress, we ask whether PerfFuzz performs better than just AFL off-the-shelf. To
evaluate this aspect, we ran AFL on our four C macro-benchmarks. Like PerfFuzz, AFL
was configured to use only havoc mutations (-d option), because this configuration has been

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 34

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(a) libpng

0 2 4 6
Time (hrs)

0k

50k

100k

150k

200k

250k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(b) libxml2

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(c) libjpeg

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(d) zlib

Figure 3.4: PerfFuzz vs. AFL: Time evolution of the maximum hot spot through the 6-hour
runs. Lines and bands show averages and 95% confidence intervals across 20 repetitions.
Higher is better.

shown to result in faster program coverage [188]. This experiment tests the value-add of
PerfFuzz’s performance maps and maximizing-input favoring heuristics.

We begin by looking at the evolution of the maximum hot spot found by each technique
through time, shown in Figure 3.4. For the libpng, libjpeg-turbo, and zlib benchmarks
(Figures 3.4a, 3.4c, 3.4d), we see that PerfFuzz rapidly finds a hot spot with a significantly
higher execution count. For the libxml2 benchmark (Figure 3.4b), AFL initially finds a hot
spot with higher execution count, but quickly plateaus. On the other hand, PerfFuzz finds a
hot spot with over 2× higher execution count after 6 hours. Overall, Figure 3.4 demonstrates
that PerfFuzz’s performance-map feedback has a significant effect on its ability to generate
pathological inputs, exercising hot spots with 2×–18× higher execution counts.

Figure 3.4 shows only the execution counts for the maximum hot spot, as this is easy to
visualize through time. However, we were curious as to whether the maximum execution
counts found by PerfFuzz are significantly higher than those found by AFL over all hot
spots in the program. Figure 3.5 provides this information.

In particular, Figure 3.5 shows the maximum execution count per CFG edge found by each
technique at the end of the 6 hour runs. We plot the median of this measure across the 20

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 35

0 50 100 150 200
CFG Edge

0k

500k

1000k

1500k
M

ax
im

um
 E

xe
cu

tio
n

Co
un

t
PerfFuzz
AFL

(a) libpng

0 10 20 30 40
CFG Edge

0k

100k

200k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(b) libxml2

0 100 200 300
CFG Edge

0k

500k

1000k

1500k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(c) libjpeg-turbo

0 20 40 60
CFG Edge

0k

5k

10k

15k

20k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(d) zlib

Figure 3.5: Distribution of maximum execution counts across CFG edges found by PerfFuzz
and AFL after 6-hour runs. For each edge, the median over 20 runs is plotted.

repeated runs. For clarity, we sort the CFG edges by the counts achieved by PerfFuzz and
truncate the data to show only those edges with execution counts within 2 orders of magnitude
of the maximum hot spot found by PerfFuzz. The omitted tails of the distributions are
indistinguishable. Figure 3.5 confirms that PerfFuzz’s gains are not limited to only the
maximum hot spot in the program. Across the four benchmarks, there are 453 of the plotted
edges which PerfFuzz-generated inputs exercise over 2× more times than AFL-generated
inputs, and 238 edges which PerfFuzz-generated inputs exercise over 10× more times.

3.4.3 Impact of Staleness

In Section 3.2, we described the notion of staleness, which allowed us to de-prioritize inputs
for mutation if the performance values they maximize have not been increased in several
fuzzing iterations. Note that although the ISSTA’18 paper on PerfFuzz [114] does not
describe staleness, all the experiments in that paper were run with this staleness criterion
enabled. In this section, we evaluate the impact of this staleness criterion for input selection
on a subset of our micro (Insertion Sort, PCRE URL) and macro (libpng, zlib) benchmarks.

On these benchmarks, we ran PerfFuzz with the default staleness discount factor

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 36

0.00 0.05 0.10 0.15
Time (hrs)

1k

2k

3k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
No Staleness

(a) Insertion Sort

0.0 0.2 0.4 0.6 0.8 1.0
Time (hrs)

100k

200k

300k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
No Staleness

(b) PCRE URL

0 2 4 6
Time (hrs)

0k

2000k

4000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
No Staleness

(c) libpng

0 2 4 6
Time (hrs)

10k

20k

30k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
No Staleness

(d) zlib

Figure 3.6: Impact of staleness on maximum path length found through time. Lines and
bands show averages and 95% confidence intervals across 20 repetitions; higher is better.

σ = 0.8 (a favored input with maximum staleness is selected for mutation 20% of the time)
as well as σ = 0 (a favored input is always selected for mutation, regardless of its staleness).
In particular, Figure 3.6 shows the maximum path length of PerfFuzz-generated inputs
through time for σ = 0.8 (labeled “PerfFuzz”) and σ = 0 (labeled “No Staleness”). Again,
we ran each configuration 20 times, plotting the means and 95% confidence intervals of
maximum path length through time in Figure 3.6.

The results in Figure 3.6 are mixed, and suggest in general that this staleness criterion
has minimum impact. On the insertion sort and libpng benchmarks, the performance of the
two configurations is nearly identical. On PCRE URL, σ = 0.8 has a slight edge; on zlib,
σ = 0 has a slightly larger edge; in both cases, the 95% confidence intervals overlap.

Due to the minimal impact and the increased complexity the notion of staleness brings,
we suggest that the simplified version of the algorithm, without staleness, be adopted in most
cases; see the ISSTA’18 paper for a simplified description [114]. However, if in some contexts,
the algorithm consistently prioritizes inputs for mutation with uninteresting performance
characteristics, this concept of staleness may have a greater impact.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 37

Table 3.1: A snapshot of the output of PerfFuzz after one 6-hour run on libpng. For each
of 3 favored inputs, the table shows the top 3 CFG edges—represented by start and end line
numbers—by their execution count.

Input #9189 Input #10520 Input #10944

Exec. count CFG edge Exec. count CFG edge Exec. count CFG edge

2,071,824 pngrutil.c:3715->3715 289,536 pngrutil.c:3842->3842 225,489 pngread.c:387->396
274,212 pngrutil.c:3715->3712 144,536 pngrutil.c:3416->3419 225,489 pngread.c:405->456
274,178 pngrutil.c:3712->3715 144,536 pngrutil.c:3419->3404 225,489 pngread.c:456->459

3.4.4 Case Studies

PerfFuzz is designed to generate inputs that demonstrate pathological behavior in programs
across different program components (in this evaluation, CFG edges). We saw that the inputs
generated by PerfFuzz exercised close-to worst-case algorithmic complexity on micro-
benchmarks. We decided to manually analyze the inputs generated by PerfFuzz—in a
single run each—on the four macro-benchmarks to see where the hot spots were located and
how different input characteristics affected these hot spots.

At the end of each run, PerfFuzz outputs its set of favored inputs—those that maximize
the execution count of at least one CFG edge—as well as the execution counts for each CFG
edge that it maximizes. Table 3.1 shows an example of this output: it is a snippet from the
results obtained from one run of PerfFuzz on the libpng benchmark, showing the top 3
CFG edges by execution count for the top 3 favored inputs.

libpng From Table 3.1, we can directly look at the source code locations to see which
features each input exercises. This alone already highlights different hot spots in the code. For
illustration, we look at a snippet from pngrutil.c in Figure 3.7, which shows an excerpt from
a function that performs PNG interlacing. The argument row_info contains data parsed from
the input file. This snippet of code shows two distinct hot spots—sets of input-dependent
nested loops—guarded by a switch on an input characteristic. Therefore, these hot spots
can only be exercised by distinct inputs. As illustrated in Table 3.1, input #9189 maximizes
the number of executions of the inner loop when pixel depth is 1 (Line 3715 of Figure 3.7),
corresponding to a monochrome image. Input #10520, on the other hand, maximizes
executions of the inner loop for a pixel depth of 4 (Line 3842 of Figure 3.7), corresponding
to an image segment with 16 color-palette entries. Other inputs stress completely different
parts of the code. For example, input #10944 from Table 3.1 maximizes execution counts
for CFG edges in a loop whose bounds are proportional to the height of the PNG image, as
declared in the PNG header: each iteration processes one row of pixels at a time.

From a quick glance at just three favored inputs, we can see that PerfFuzz has enabled
us to discover some of the key features which have an effect on the performance of parsing a
PNG image independent of the file size, such as the image’s geometric dimensions and color
depths declared in the header. We repeat this exercise for the other benchmarks, but omit
the actual outputs and code snippets for brevity.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 38

void png_do_read_interlace(png_row_infop row_info , ...) {
...
switch (row_info -> pixel_depth) {

case 1:
{

for (i = 0; i < row_info ->width; i++)
3715: for (j = 0; j < jstop; j++)

...
}
...
case 4:
{

for (i = 0; i < row_info ->width; i++)
3842: for (j = 0; j < jstop; j++)

...
}

}
}

Figure 3.7: Snippet from pngrutil.c showing hot spots which can only be exercised by
inputs with distinct features.

libjpeg-turbo In the libjpeg benchmark, we saw a similar distribution of inputs where
the hot spots were related to JPEG image properties. For example, one input’s hot spot
was in processing for an image with 4 : 4 : 0 chroma sub-sampling; the input also had a
huge number of columns. Other inputs stressed various points in the arithmetic decoding
algorithms. PerfFuzz discovered inputs that stressed processing for both one-pass and
multi-pass images.

zlib Compared to image formats, the functionality of the zlib decompressor is relatively
straightforward. This was reflected by the fact that there were very few edges exercised a
huge number of times (fewer “hot spots”). Nonetheless, PerfFuzz discovered an input with
a compression factor of nearly 126×, whose processing lead to a long execution path.

libxml The inputs produced by PerfFuzz for the libxml2 benchmark revealed what
appears to be quadratic complexity in the parsing process. The largest hot spot was the
traversal of the characters of a string in a string-duplication function. For a 500 byte input,
there were 226,512 iterations of this loop. By running the input, it was quickly apparent that
the source of this quadratic complexity came from repeatedly printing out the context of
errors in the input. Naturally, inputs generated by random mutation are not well-formed
XML files. In fact, these inputs had so many errors that they caused the same work—printing
the error context—to be done over and over again. PerfFuzz also stressed error handling
code that repeatedly traversed the input backwards to check whether a parent tag had a
given name-space; essentially, PerfFuzz learned to produce errors deep in the XML tree,
causing pathological behavior.

CHAPTER 3. PERFFUZZ: MULTI-OBJECTIVE PERFORMANCE FUZZING 39

These case studies indicate that PerfFuzz uncovers non-trivial hot spots. The inputs
generated for libxml2 also reveal potential inefficiencies in the program performance. Overall,
this analysis suggests that PerfFuzz successfully produces inputs that stress various program
functionalities, and may be useful by themselves or as references for creating performance
tests on these benchmarks.

3.5 Discussion
Like many other input generation techniques founded in a genetic algorithm-style model,
PerfFuzz relies solely on heuristics to produce inputs that achieve its testing goal, which is
to exercise pathological program behaviors. In combination with the fact that PerfFuzz is
a dynamic technique, this means that PerfFuzz is not guaranteed to find all performance
bottlenecks in a program or the absolute worst-case behavior for each performance bottleneck
it discovers. This is common over most algorithms in this dissertation.

This chapter focused on discovering bottlenecks due to increase in computational complex-
ity; therefore, PerfFuzz measures execution counts of CFG edges instead of total running
time. This helps ensure that the measurements are accurate and deterministic, but also
means that the identified bottlenecks may not be the points in which the program spends the
most time. This gap could be mitigated by using a different cost model for CFG edges, i.e.
to find bottlenecks due to other factors such as I/O operations. The next chapter presents a
framework that more easily allows for the creation of a different cost model.

Finally, we believe that the reason that PerfFuzz outperforms greedy techniques such
as SlowFuzz is that its multi-objective approach can overcome local maxima in a non-convex
performance space. Although we have anecdotal evidence to back this intuition, such as the
observations with the wf tool described in Section 3.1, we have not mapped the performance
spaces of our benchmarks to measure their convexity. Nonetheless, our results suggest that
changing the feedback used to save inputs is key to finding different types of bugs. We explore
this further in the next chapter.

40

Chapter 4

FuzzFactory: A Framework for
Specialized Fuzzers

The last chapter introduced PerfFuzz, which, by adding a notion of performance feedback
to the coverage-guided fuzzing algorithm, was able to consistently find performance issues in
programs. While the algorithm presented was generic over (program component, performance
value) feedback maps, the PerfFuzz implementation only produced (control flow graph edge,
hit count) maps. A natural question here is whether there are other performance domains
to which the core PerfFuzz algorithm—fuzzing aiming to maximize multiple performance
objectives at a time—is applicable.

At the same time, we have seen researchers add other notions of “feedback” to the
coverage-guided fuzzing algorithm in order to target various other testing goals. For instance,
specialized fuzzers have been built for the purposes of directed testing [45], differential
testing [156], finding algorithmic complexity vulnerabilities [157], discovering side-channel
attacks [140], finding memory usage bugs [178], generating valid inputs [149, 158, 109], and
getting through magic byte comparisons [110, 161, 117].

This observation brings about a further question: is there actually an even more general
version of PerfFuzz’s multi-objective fuzzing that could cover all these different fuzzing
domains? This is exactly what is addressed in this chapter on FuzzFactory.

FuzzFactory is a framework for implementing domain-specific fuzzing applications. At a
high level, the term domain-specific fuzzer here means a specialized fuzzer whose goal is more
precise than the general code-coverage-increase goal of coverage-guided fuzzing. The fuzzers
mentioned above with the goals of discovering side-channel attacks, complexity vulnerabilities,
memory usage bugs, etc., are instances of domain specific fuzzers.

There are two key parts to the FuzzFactory framework. First is a generalized domain-
specific fuzzing algorithm, which effectively extends the PerfFuzz algorithm. The key
insight from the PerfFuzz algorithm is that, in order to find inputs showing the worst-
case algorithmic complexity in a program, PerfFuzz had to save several intermediate
inputs. In particular, it saved inputs which maximized the performance value for some
key (Algorithm 3, Line 13)–in particular, increased the hit counts of some CFG edge. In

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 41

FuzzFactory we generalize this notion of intermediate input to the notion of waypoints,
inspired by the corresponding term in the field of navigation. These waypoints give the
fuzzing algorithm steps towards a domain-specific goal. We also prove some notion of fuzzing
“progress” (Theorem 1), which also applies to the PerfFuzz algorithm.

Second, FuzzFactory provides an interface that allows users—either the developers
of a domain-specific fuzzing application or a tester with detailed knowledge of their fuzzing
application—to more easily craft these domain-specific feedback maps. This interface consists
of an API, which, when called, implicitly defines the notion of a waypoint input. These
API calls form the domain d, which in turn defines the predicate is_waypoint(i,S, d). This
predicate is_waypoint(i,S, d) answers: given the domain d, should a newly generated input
i be saved to the set of saved inputs S?

FuzzFactory enables development of domain-specific fuzzing applications without
requiring changes to the underlying search algorithm. This enables the rapid prototyping
of domain-specific fuzzers. This chapter discusses a domain-specific fuzzing application
for exacerbating memory allocations, smoothing hard comparisons, and targeting recently
changed code. The OOPSLA’19 paper on FuzzFactory [150] discusses three additional
domain-specific fuzzing applications beyond these.

In addition, a key advantage of FuzzFactory is that domain-specific feedback is
naturally composable. Combining domain-specific fuzzing applications for exacerbating
memory allocations and for smoothing hard comparisons produced a composite application
that performs better than each of its constituents. The composite application automatically
generates ZIP bombs and PNG bombs: tiny inputs that lead to dynamic allocations of 4GB
in libarchive and 2GB in libpng respectively.

4.1 Motivation
Consider the sample test program in Figure 4.1a. The function Test takes as input two

16-bit integers, a and b. Suppose we perform CGF (Algorithm 1) on this test program. Let
us assume that we start with the seed input : a=0x0000, b=0x0000. The seed input does not
satisfy the condition at Line 2. The CGF algorithm randomly mutates this seed input and
executes the test program on the mutated inputs, looking for new code coverage.

Figure 4.1b depicts in grey boxes a series of sample inputs which may be saved by CGF,
starting with the initial seed input i1 in an yellow box. A solid arrow between two inputs, say
i and i′, indicates that the input i is mutated to generate i′. After some attempts, CGF may
mutate the value of a in i1 to a value such as 0x0020, which satisfies the condition at Line 2.
Since such an input executes new code, it gets saved to S. In Figure 4.1b, this is input i2.

Small, byte-level mutations enable CGF to subsequently generate inputs that satisfy the
branch condition at Line 3 and Line 4 of Figure 4.1a. Figure 4.1b shows the corresponding
inputs in our example: i3 and i4. This is because there are many possible solutions that
satisfy the comparisons a > 0x1000 and b >= 0x0123; we call these soft comparisons.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 42

1 void* Test(int16_t a, int16_t b) {
2 if (a % 3 == 2) {
3 if (a > 0x1000) {
4 if (b >= 0x0123) {
5 if (a == b) {
6 abort ();
7 } else {
8 return malloc(a);
9 }

10 }
11 }
12 }
13 }

(a) Sample function in the test program.
Parameters a and b are the test inputs.

Seed

Target

New coverage

Waypoint
(mem)

Waypoint
(cmp)

Legend:
a=0x0000, b=0x0000

a=0x0020, b=0x0000

a=0x1220, b=0x0000

a=0x1220, b=0xF020

a=0x1220, b=0xF000

a=0x1220, b=0xF220

a=0x1220, b=0x1220

a=0xF320, b=0xF000

a=0xFF20, b=0xF000

a=0xFFFE, b=0xF000

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

(b) Sample fuzzed inputs starting with initial seed
a = 0, b = 0. Arrows indicate mutations.

Figure 4.1: A motivating example for the FuzzFactory framework.

However, it is much more difficult for CGF to generate inputs to satisfy comparisons like
a == b at Line 5; we call these hard comparisons. Random byte-level mutations on inputs
i1–i4 are unlikely to produce an input where a == b. Therefore, the code at Line 6 will likely
not be exercised in a reasonable amount of time using conventional CGF.

Now, consider another test objective, where we would like to generate inputs that maximize
the amount of memory that is dynamically allocated via malloc. This objective is useful
for generating stress tests or to discover potential out-of-memory related bugs. The CGF
algorithm enables us to generate inputs that invoke malloc statement at Line 8, such as i4.
However, this input only allocates 0x1220 bytes (i.e., just over 4KB) of memory. Although
random mutations on this input are likely to generate inputs that allocate larger amount
of memory, CGF will never save these because they have the same coverage as i4. Thus, it
is unlikely that CGF will discover the maximum memory-allocating input in a reasonable
amount of time.

4.1.1 Waypoints

We can overcome both these challenges—satisfying the comparison at Line 5 and increasing the
amount of memory allocated at the statement in Line 8— if we save some useful intermediate
inputs to S regardless of whether they increase code coverage. Then, random mutations
on these intermediate inputs may produce inputs achieving our test objectives. We call
these intermediate inputs waypoints. The notion of saving inputs that maximize performance
values, from the previous chapter, is one such notion of waypoints.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 43

To overcome hard comparisons like a == b, we save intermediate inputs if they maximize
the number of common bits between a and b. Let us call this strategy cmp. The blue boxes in
Figure 4.1b show inputs that may be saved to S when using the cmp strategy for waypoints.
In such a strategy, the inputs i5 and i6 are saved to S even though they do not achieve new
code coverage. Now, input i6 can easily be mutated to input i7, which satisfies a == b. Thus,
we easily discover an input that triggers abort at Line 6 of Figure 4.1a.

Similarly, to achieve the objective of maximizing memory allocation, we save waypoints
that allocate more memory at a given call to malloc than any other input in S. Figure 4.1b
shows sample waypoints i8 and i9 that may be saved with this mem strategy. The dotted arrow
from i9 to i10 indicates that, after several such waypoints, random mutations will eventually
lead us to generating input i10. This input causes the test program to allocate the maximum
possible memory at Line 8, which is almost 64KB.

Now, consider a change to the condition at Line 4 of Figure 4.1a. Instead of an inequality,
suppose the condition is b == 0x0123. To generate inputs that invoke malloc at Line 8,
we first need to overcome a hard comparison of b with 0x0123. We can combine the two
strategies for saving waypoints as follows: save a new input i if either it increases the number
of common bits between operands of hard comparisons or if it increases the amount of memory
allocated at some call to malloc. In Section 4.4.4, we demonstrate how a combination of
these strategies allows us to automatically generate PNG bombs and ZIP bombs, i.e. tiny
inputs that allocate 2–4 GB of memory, when fuzzing libpng and libarchive respectively.

4.2 The FuzzFactory Framework
In the conventional CGF algorithm, the decision of whether to save an input is defined in
terms of the dynamic behavior of the program on the input i. Specifically, if the coverage
of the program on the input i includes a coverage point that is not present in the coverage
cumulatively attained by the program on the inputs in S, then CGF deems i as interesting
and saves it to S. The decision is based on a specific kind of feedback (i.e. coverage) from
the execution of the program on i. The feedback is directly related to the goal of CGF, which
is to increase the coverage of the program.

As we saw in the previous section, and in Chapter 3, coverage guidance alone is not
sufficient to achieving domain-specific fuzzing goals. FuzzFactory enables users to prototype
fuzzers that target domain-specific goals, by specifying: (1) the feedback to collect from the
execution of the program on any input, and (2) how to use this feedback to determine if the
input should be considered a waypoint.

We first describe the domain-specific feedback mechanism which allows users to specify the
domain-specific feedback they want from an execution. We then explain how this feedback is
used to define is_waypoint . We also describe how to compose such domain-specific feedback.
Finally, we describe the multi-objective fuzzing algorithm, a generalization of Algorithm 3,
which takes this feedback into account

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 44

4.2.1 Domain-Specific Feedback

FuzzFactory provides a mechanism for users to specify a domain and to collect custom
domain-specific feedback (DSF) from the execution of the program under test. A domain-
specific feedback (DSF) is a map of the form dsf i : K → V , where i is a program input, K
is a set of keys (e.g. program locations) and V is a set of values (usually a measurement of
something we want to optimize). The map is populated by executing the program under test
on input i.

As an example, if we are interested in generating inputs on which the program execution
increases memory allocation, then dsf i is a map from L to N, where L is the set of program
locations where a memory allocation function (e.g. malloc) is called, and N is the set of
natural numbers. dsf i(k) represents the total amount of memory in bytes that is allocated at
program location k during the execution of the program on the test input i.

In general, the user specifies a domain as a tuple of the form d = (K,V,A, a0,�) where K
is a set of keys, V is a set of values, A is a set of aggregation values, a0 is an initial aggregation
value, and � : A× V → A is a reducer function. We explain the meaning of A, a0, and � in
a user-defined domain in the next subsection. The user specifies how to update the map dsf i
during an execution of the test program on input i by inserting appropriate instrumentation
in the test program—the API calls that can be inserted are given in Section 4.3.

4.2.2 Waypoints

FuzzFactory uses the dsf i map from the execution of the test program on input i in
order to determine if i needs to be saved. In particular, it aggregates the domain-specific
feedback collected from the executions of multiple test inputs into a value that belongs to the
user-defined set A. To compute this aggregate value, the user provides an initial aggregate
value a0 ∈ A and a reducer function � : A×V → A as part of the domain. A reducer function
must satisfy the following properties for any a ∈ A and any v, v′ ∈ V :

a� v � v = a� v (4.1)
a� v � v′ = a� v′ � v (4.2)

These rules imply idempotence and application-order insensitivity, respectively, in the second
operand. For the memory-allocation domain dmem both V and A are the set of natural
numbers N. The initial aggregate value a0 = 0, and � is the max operation on natural
numbers. We can therefore define dmem = (L,N,N, 0,max). Property 4.1 is satisfied be-
cause max(max(a, v), v) = max(a, v) for any a, v ∈ N. Property 4.2 is satisfied because
max(max(a, v), v′) = max(max(a, v′), v) for any a, v, v′ ∈ N. The properties help ensure that
the every saved waypoint contributes towards domain-specific progress; see Theorem 1. Note
that these properties are not statically verified by FuzzFactory; it is the responsibility of
the user to ensure that their chosen reducer function satisfies Properties 4.1 and 4.2.

In general, let dsf i be the DSF map populated during the execution of program p with
i. For a given set of inputs S = {i1, i2, . . . , in}, we define the aggregated domain-specific

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 45

feedback value A(S, k, d) for the domain d and for key k ∈ K as follows:

A(S, k, d)
def
= a0 � dsf i1(k) � dsf i2(k) � . . .� dsf in(k), where d = (K,V,A, a0,�) (4.3)

Due to the Properties 4.1 and 4.2, the value of A(S, k, d) is uniquely defined; the choice of
ordering i1, . . . , in does not matter.

For the memory-allocation domain, the aggregated feedback value A(S, k, dmem) represents
the maximum amount of memory allocated at program location k ∈ L across all inputs in S.
For this domain, we would like to save an input i to set S if the execution on i causes more
memory allocation at some program location k than that of any of the allocations observed
at k during the execution of the inputs in S.

In FuzzFactory, we define the predicate is_waypoint(i,S, d) as follows:

is_waypoint(i,S, d)
def
= ∃k ∈ K : A(S, k, d) 6= A(S ∪ {i}, k, d), where d = (K,V,A, a0,�)

(4.4)
The definition implies that we will save input i if the execution on the input results in a
change in the aggregated domain-specific feedback value for some key.

Note that, in order to decide if an input i should be considered a waypoint, we only check
if the total aggregation changes; i.e., whether A(S, k, d) 6= A(S ∪ {i}, k, d). However an
important consequence of Properties 4.1 and 4.2 is that this change is always in a direction
that implies some sort of domain-specific progress, denoted by a partial order � on A. In
other words, the function A is monotonic in its first argument with respect to partial order �.
For example, in the memory allocation domain dmem : if A(S, k, dmem) 6= A(S ∪ {i}, k, dmem)
for some program location k ∈ L, this means that the memory allocated at k during the
execution of i is more than the memory allocated at k by any other input in S. The partial
order in this example is simply the total ordering on natural numbers: ≤. More generally, we
can state the following theorem:

Theorem 1 (Monotonicity of Aggregation). A domain d = (K,V,A, a0,�) whose reducer
function � satisfies properties 4.1 and 4.2 imposes a partial order � on A such that the
function A is monotonic in its first argument with respect to �. That is, the following always
holds for any such domain d, any key k ∈ K, and for some binary relation � on A:

S1 ⊆ S2 ⇒ A(S1, k, d) � A(S2, k, d)

The interested reader can find the proof of this theorem in Section 4.2.5.

Corollary 1. An input i is considered a waypoint iff the aggregated domain-specific feedback
strictly makes progress for some key k, without sacrificing progress for any other key. Thus:

is_waypoint(i,S, d)⇔(∀k ∈ K : A(S, k, d) � A(S ∪ {i}, k, d))

∧(∃k ∈ K : A(S, k, d) ≺ A(S ∪ {i}, k, d))

where a ≺ b⇔ a � b ∧ a 6= b

Proof. Follows from the definition of is_waypoint in Eq. 4.4 and Theorem 1.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 46

Algorithm 4 The domain-specific fuzzing algorithm. The grey boxes indicate additions to
the standard coverage-guided fuzzing algorithm in Algorithm 1.
Input: an instrumented test program p, a set of initial seed inputs S0, a set of domain-specific

feedback D
Output: a corpus of automatically generated inputs S
1: S ← S0

2: totalCoverage ← initCoverage(S0)
3: repeat . Main fuzzing loop
4: for input in S do
5: with probability fuzzProb(input) do
6: for 1 ≤ i ≤ numChildren(p, input) do
7: input ′ ← mutate(input)

8: coverage, dsf 1
input′ , . . . , dsf

|D|
input′ ← execute(p, input ′)

9: if coverage 6⊆ totalCoverage then
10: S ← S ∪ {input ′}
11: totalCoverage← totalCoverage ∪ coverage
12: if is_waypoint(input′,S, D) then
13: S ← S ∪ {input ′}

14: until given time budget expires
15: return S

4.2.3 Composing Domains

FuzzFactory allows the user to naturally compose multiple domains for a program under
test. This enables fuzzing to target multiple goals simultaneously.

Assume that the user has specified a set of domains D, where d = (K,V,A, a0,�) for
each d ∈ D. Then we extend the definition of the predicate is_waypoint to D as follows:

is_waypoint(i,S, D)
def
=

∨
d∈D

is_waypoint(i,S, d) (4.5)

meaning is_waypoint(i,S, D) is true for a set of domains D if and only if is_waypoint(i,S, d)
is true for some domain d ∈ D. We save the input i in S if is_waypoint(i,S, D) is true. Note
that Corollary 1 naturally extends to a composition of multiple domains: is_waypoint(i,S, D)
implies strict progress in at least one key in at least one domain d ∈ D.

4.2.4 Algorithm for Domain-Specific Fuzzing

Algorithm 4 describes the domain-specific fuzzing algorithm implemented in FuzzFactory.
Overall, observe that Algorithm 4 is a generalization of Algorithm 3 from the previous chapter.
Again, the extensions to the conventional coverage-guided fuzzing algorithm (Algorithm 1) are

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 47

marked with grey background. The extension is quite straightforward: during the execution
of the program p on an input i′, the algorithm not only collects coverage, but also collects
domain-specific feedback maps dsf 1

i′ , . . . , dsf
|D|
i′ for each domain in D. It then uses those

maps in the call to is_waypoint(i′,S, D) to determine if the new input i′ should be added to
the set of saved inputs S.

In addition, fuzzProb is modified to select inputs for mutation if they have the most
recent aggregate value for some key in one of the domains in D. If the aggregation function is
maximization, this corresponds to the notion of favoring from Chapter 3. This is because
the newest maximized value is the maximum value seen so far. Since � is a partial order, for
some other reducers � (e.g. set union), this may not be the optimal notion of favoring.

4.2.5 Proof of Monotonicity of Aggregation

In order to prove Theorem 1, we first need to demonstrate a few lemmas.

Lemma 1 (No ping-pong). Given a reducer function � : A×V → A satisfying Properties 4.1
and 4.2, then ∀a ∈ A and any n ≥ 0 terms v1, . . . , vn ∈ V , if a� v1 � . . .� vn = a, then:

∀0 ≤ k ≤ n : a� v1 � . . .� vk = a

In other words, if we start with aggregate value a and then apply n reductions, and if the
final result is also the value a, then the result of all the intermediate reductions must also
be a. This lemma states that aggregate values cannot oscillate between distinct values (i.e.
ping-pong).

Proof. For n = 0, the lemma is trivially true. For n > 0, we prove the lemma by contradiction:
given that a � v1 � . . . � vn = a, assume that there exists some k, where 1 ≤ k ≤ n, such
that a 6= a� v1 � . . .� vk. In this inequality, we can substitute the value of a on both sides
with the equivalent a� v1 � . . .� vn, to get:

a� v1 � . . .� vn 6= a� v1 � . . .� vn � v1 � . . .� vk

By applying Property 4.2 on the right-hand, we can rearrange terms:

a� v1 � . . .� vn 6= a� v1 � v1 � v2 � v2 � . . .� vk � vk � vk+1 � vk+2 � . . .� vn

Then ,by Property 4.1 on the right-hand side we remove the redundant terms:

a� v1 � . . .� vn 6= a� v1 � . . .� vn

This is a contradiction; therefore, no such k can exist.

Definition 11 (Progress). If � : A × V → A is a reducer function, then we can define a
binary relation � on A called progress as follows:

a � b⇔ ∃ v1, . . . , vn ∈ V, where n ≥ 0, such that a� v1 � . . .� vn = b

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 48

Lemma 2 (Reflexivity of progress). If � : A × V → A is a reducer function and � is its
progress relation, then ∀a ∈ A : a � a.

Proof. Straightforward from Definition 11 with n = 0.

Lemma 3 (Transitivity of progress). If � : A× V → A is a reducer function and � is its
progress relation, then ∀a, b, c ∈ A : a � b ∧ b � c⇒ a � c.

Proof. If a � b and if b � c, then by Definition 11 there exist some terms u1, . . . , um ∈ V and
v1, . . . , vn ∈ V for m,n ≥ 0 such that:

a� u1 � . . .� um = b (4.6)

b� v1 � . . .� vn = c (4.7)

Substituting the b on the LHS of Equation 4.7 with the LHS of Equation 4.6, we can write:

a� u1 � . . .� um � v1 � . . .� vn = c (4.8)

Which, by Definition 11, means a � c.

Lemma 4 (Anti-symmetry of progress). If � : A× V → A is a reducer function and � is
its progress relation, then a � b ∧ b � a⇒ a = b.

Proof. If a � b and if b � a then by Definition 11 there exist some terms u1, . . . , um ∈ V and
v1, . . . , vn ∈ V for m,n ≥ 0 such that:

a� u1 � . . .� um = b (4.9)

b� v1 � . . .� vn = a. (4.10)

Substituting the b on the LHS of Equation 4.10 with the LHS of Equation 4.9, we can write:

a� u1 � . . .� um � v1 � . . .� vn = a.

By Lemma 1, all intermediate aggregates must be equal to a, in particular:

a� u1 � . . .� um = a

Plugging this result into the LHS of Equation 4.9, we get a = b.

Proof of Theorem 1. Let � be the progress relation for the reducer �. From Lemmas 2, 3,
and 4, it follows that this relation is a partial order. Now, let S1 ⊆ S2. From the definition of
A in Equation 4.3, we can write:

A(S2, k, d) = A(S1, k, d) � v1 � . . . vn

where {v1, . . . , vn} = S2 \ S1. From Definition 11, this implies that A(S1, k, d) � A(S2, k, d);
that is, A is monotonic in its first argument with respect to �.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 49

type dsf_t; /* Domain -specific feedback map */

/* Register a new domain. To be invoked once during initialization. */
dsf_t new_domain(int key_size , function reduce , int a_0);

/* Updates to the DSF map. To be invoked during test execution. */
int dsf_get(dsf_t dsf , int k); // return dsf[k]
void dsf_set(dsf_t dsf , int k, int v); // dsf[k] = v
void dsf_increment(dsf_t dsf , int k, int v); // dsf[k] = dsf[k] + v
void dsf_union(dsf_t dsf , int k, int v); // dsf[k] = dsf[k] | v
void dsf_maximize(dsf_t dsf , int k, int v); // dsf[k] = max(dsf[k], v)

Figure 4.2: API for domain-specific fuzzing in pseudocode.

4.3 Implementation
We implemented the core FuzzFactory algorithm (Algorithm 4) as an extension to
AFL [185], and inherits many of its implementation details (as in Section 3.3).

To create domain specific fuzzing maps dsf i used in this algorithm, the program under
test calls some FuzzFactory API functions that manipulate the values in dsf i. In the
applications, we created LLVM instrumentation passes that automatically add instrumentation
to populate these dsf i maps in a structured way. We describe the details of these passes in the
corresponding subsections of Section 4.4. However, test programs can also be instrumented
using any other tool, such as Intel’s Pin [125]. In fact, domain-specific fuzzing applications
can also be implemented by manually editing test programs to add code that calls the
FuzzFactory API.

Figure 4.2 outlines the API provided by FuzzFactory. The type dsf_t defines the
type of a domain-specific map. In our implementation, the keys and values are always 32-bit
unsigned integers. However, users can specify the size of the DSF map; that is, the number
of keys that it will contain.

The API function new_domain registers a new domain whose key set K contains key_size
keys. The arguments reduce and a_0 provide the reducer functions (of type int x int ->
int) and the initial aggregate value respectively. For applications where K is a set of program
locations L (Sections 4.4.1, 4.4.2), we use key_size of 216 and assign 16-bit pseudorandom
numbers to basic block locations, similar to AFL. For the incremental fuzzing applications
(Section 4.4.3), where K = L×L, we use a hash function to combine two basic block locations
into a single integer-valued key. The sets V and A are defined implicitly by the usage of DSF
maps and the implementation of the reduce function.

The function new_domain returns a handle to the DSF map, which is then used in
subsequent APIs listed in Figure 4.2, such as dsf_increment. Calls to the new_domain are
inserted at test program startup, before any tests are executed. It is up to the user to ensure
that the provided reducer function satisfies properties 4.1 and 4.2, which in turn guarantee

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 50

monotonic aggregation (Theorem 1). API functions that start with ‘dsf_’ manipulate the
DSF map. The argument key must be in the range [0, key_size).

4.4 Evaluation
We demonstrate the applicability of FuzzFactory by instantiating some domain-specific
fuzzing applications. For each application, we describe the goals, the instrumentation used
to create it, and evaluate its value. This dissertation highlights three of the domain-specific
fuzzing applications described in the OOPSLA’19 paper on FuzzFactory [150], in increasing
order of complexity:

1. mem: An application for generating inputs that maximize dynamic memory allocations.

2. cmp: A domain for smoothing hard comparisons. Although a lot of prior work address
this application, our particular solution strategy is novel.

3. diff: A novel application for incremental fuzzing after code changes in a test program.

For each application, we evaluate the following research question: “Does FuzzFactory help
achieve domain-specific fuzzing goals, without modifying the underlying search algorithm? ”.
FuzzFactory is implemented as an extension to AFL, and inherits its mutation and search
heuristics. For each application domain, we thus compare the results of domain-specific
fuzzing with the baseline: conventional coverage-guided fuzzing using AFL. Naturally, the
metrics on which we perform this comparison vary depending on the domain.

Composition A key advantage of FuzzFactory is that it enables us to naturally compose
multiple domain-specific fuzzing applications with no extra effort. In Section 4.4.4, we describe
a composition of cmp and mem that smooths hard comparisons in order to exacerbate memory
allocations. Remarkably, we find that such a composition can perform better than just the
sum of its parts.

Implementation Traditionally, implementing each such domain would require non-trivial
effort in modifying a fuzzing tool such as AFL to achieve a domain-specific objective. With
FuzzFactory, implementing the mem, cmp, and diff domains required only 29, 355, and
146 lines of C++ code. These implementations basically consist of creating the LLVM passes
that insert calls to the FuzzFactory API in order to create the domain-specific feedback
maps for each problem.

Experimental Evaluation For our experiments, we use six benchmark programs from the
Google fuzzing test suite [86]. This suite contains specific historical versions of programs that
have been thoroughly fuzzed using the OSS-Fuzz infrastructure [85]. The six benchmarks
we use include: (1) libpng-1.2.56, (2) libarchive-2017-01-04, (3) libjpeg-turbo-07-2017,

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 51

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0.0

4,882

9,765

14,648

19,531
M

ax
im

um
 M

em
or

y
Al

lo
ca

te
d

(K
B) afl

mem

Figure 4.3: Maximum amount of dynamic memory allocated (in KB) due to inputs generated
by baseline (afl) and domain-specific fuzzing application (mem). Higher is better.

(4) libxml2-v2.9.2, (5) vorbis-2017-12-11, and (6) boringssl-2016-02-12.1 The benchmarks
are written in C or C++. Benchmarks (1)–(4) were chosen because they are commonly used
in the fuzzing literature [114, 115, 153, 54, 55, 158]. Benchmarks vorbis and boringssl were
chosen because they expect markedly different input formats.

All experiments were run on Amazon AWS ‘c5.18xlarge’ instances. Each experiment was
repeated 12 times to account for variability in the randomized algorithms. Unless otherwise
stated, our fuzzing experiments used the initial seed inputs provided in the benchmark suite,
limited input sizes to at most 10KB during fuzzing, and were run for 24 hours at a time.

4.4.1 mem: Exacerbating Memory Allocations

First, we describe mem, a application whose goal is to generate inputs that exacerbate memory
allocations. There are several use cases for such a fuzzer: discovering the maximum amount of
memory the program under test may dynamically allocate for a given size input, discovering
inputs that could lead to bugs related to out-of-memory conditions, or generating a corpus of
memory-stress tests for benchmarking purposes.

For this memory allocation domain, we have K = L, V = N, A = N, a0 = 0, a � v =
max(a, v). That is, the keys are program locations, and the values are the positive integers,
which are aggregated with max. We instrument the test program with calls to dsf_increment
so that whenever it allocates new memory using malloc or calloc at program location k, we
increment the value of dsf (k) by the number of bytes allocated. At the end of test execution,
the value of dsf (k) contains the total number of bytes allocated at program location k for all
such locations k.

1For boringssl, we use the target fuzz/server.cc, which fuzzes the server side of the TLS handshake
protocol, instead of the default fuzz/privkey.cc, which fuzzes the parsing of private key files.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 52

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0

1000

2000

3000

4000
Br

an
ch

es
 C

ov
er

ed
afl-zero
cmp-zero

Figure 4.4: Branch coverage, as achieved by inputs generated by baseline (afl-zero) and
domain-specific fuzzing application (cmp-zero). The suffix zero indicates that seed inputs
were simply strings of zeros. Higher is better.

Experimental evaluation Figure 4.3 shows the results of our experiments with this
application on our benchmark programs. We evaluate the domain-specific fuzzing application
(mem) as well as the baseline (afl) on the maximum amount of dynamic memory allocated by
generated inputs after the 24-hour fuzzing runs. The plots show means and standard errors
of this metric across 12 repetitions.

The benchmark libxml did not seem to perform any input-dependent dynamic memory
allocations. On the benchmarks vorbis, libpng, libjpeg-turbo and boringssl, our domain-
specific fuzzing application generated inputs that allocate 1.5×–120× more memory. For
libpng our application generated input PNG images whose metadata specified the maximum
allowable image dimensions–as per the validation rules hard-coded in the test driver—of 2
million pixels. Even though such PNG files themselves were only about 1KB in size, their
processing required over 24MB of dynamically allocated memory. In Section 4.4.4, we discuss
a composite domain-specific fuzzing application that generates PNG images of dimensions
smaller than one thousand pixels, but whose processing required over 2GB of dynamic memory
allocation from libpng.

Note that the mem application was not effective on libarchive. This is the only benchmark
in our suite where the initial seed input leads to an early exit due to a validation error.
Further, libarchive contains many “hard” comparisons, like checksum checks. Thus, it is
difficult for the fuzzer to get into code where potentially data-controlled memory allocations
lie. We will see in Section 4.4.4 that adding feedback to get through these hard comparisons
can help us find memory allocation bugs on this benchmark.

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 53

4.4.2 cmp: Smoothing Hard Comparisons

We next describe a novel solution to a well-known problem, that of hard comparisons. Recall
the motivating example in Figure 4.1, which required generating inputs a and b that were
equal to each other. For CGF, similar obstacles arise when encountering operations such as
strncmp, memcmp, and switch-case statements. The problem of hard comparisons has been
addressed by several researchers in the past [110, 172, 161, 117, 153, 184]. Common solutions
to this problem include, but are not limited to: (1) starting with seed inputs that already
satisfy most of the complex invariants, (2) mining magic constants—such as 0x0123—from
the test program and then randomly inserting these values as part of the mutation process, (3)
transforming the test program to “unroll” an n-byte comparison into a sequence of branches
performing 1-byte comparisons, and (4) performing sophisticated static analysis, dynamic
taint analysis, or symbolic execution to identify and overcome hard comparisons. Some
solutions, such as statically mining magic constants or unrolling multi-byte comparisons, do
not work with hard comparisons of variable-length arguments, e.g. memcmp(a, b, n), where
all operands are derived from the program input.

Using FuzzFactory, we build a solution that does not rely on the domain knowledge in
seed inputs or on expensive symbolic analysis. Instead, we simply instrument all comparison
operations in the program, treating locations of these comparisons as our dsf keys (K = L),
and keeping track of the number of bits in common between the two operands being compared
as the value (V = N). The feedback is aggregated using the max reduce operator, with a0 = 0
as usual. Therefore, a newly generated input will be saved as a waypoint if it maximizes the
number of bits that match at any hard-comparison operation in the program under test.

At each comparison location that effectively performs an operation a == b, we add a call
to dsf_set with the value bits_in_common(a, b). In addition to integer equality, we also
instrument string comparisons and switch-case statements. The inserted code populates
the DSF map entries corresponding to their program location with the maximum observed
count of common bits between their operands.

Experimental evaluation Figure 4.4 contains the results of our experiments with this
application on the benchmark programs. For this experiment alone, we do not use the initial
seed inputs provided in the benchmark suite, but instead seed all fuzzers with an input
containing a string of zeros. We do this so that we can study how hard comparisons can
be overcome without relying on program-specific knowledge embedded in the seeds. This
experiment also simulates a scenario where one wishes to fuzz a program that has an unknown
input format, and therefore has no seed inputs available. We evaluate the domain-specific
fuzzing application (cmp-zero) as well as the baseline (afl-zero) on the branch coverage
(as computed by gcov) achieved by inputs after the 24 hour fuzzing runs. The suffixes zero
indicate that these experiments did not use meaningful seed inputs. The plots show means
and standard errors of branch coverage across 12 repetitions.

From the figure, we see that cmp-zero achieves higher code coverage than the baseline
in four benchmarks: vorbis, libarchive, libpng, and boringssl. Manual investigation

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 54

1 int foo(int a, int b) {
2 int d = a;
3 if ((a + b) % 2) {
4 - d = 2 * a;
4 + d = 2 - a;
5 }
6 if (a % 3 && a > 0) {
7 return b/d;
8 } else {
9 return 0;

10 }
11 }

(a) Program with a diff: the * in
Line 4 is modified to a -.

Input Execution Path

i1 : a=3,b=4 〈2, 4〉, �, 〈4, 6〉, 〈6, 9〉
i2 : a=4,b=4 〈2, 6〉, 〈6, 7〉
i3 : a=4,b=3 〈2, 4〉 �, 〈4, 6〉, 〈6, 7〉

(b) Inputs and their execution paths through the program
in Figure 4.5. 〈x, y〉 designates an executed basic block
transition between x and y, and � the hitting of a diff. 〈x, y〉
highlights the first time an input exercises 〈x, y〉 after hitting
the diff during execution.

Figure 4.5: Motivating post-diff basic block transitions as DSF for incremental fuzzing.

revealed that these programs expected their inputs to either contain magic values or to satisfy
strict invariants that required hard comparisons. On vorbis, the cmp front-end achieved 5×
more code coverage. On libpng, the baseline (afl-zero) performed particularly poorly, since
the PNG image format requires an 8-byte magic value at the beginning of every input file;
the test program exits early if this magic value is not found. The cmp front-end effortlessly
surpassed this hard comparison and was able to cover over 100× more branches. On libxml
and libjpeg-turbo, the cmp front-end does not appear to be useful. In these benchmarks,
we did not find any input-dependent hard comparisons between operands larger than two
bytes in size. Thus, the baseline approach was sufficient.

4.4.3 diff: Incremental Fuzzing

Fuzzing tools are run for many hours or days in order to find bugs in stable versions of
complex software. However, if a developer makes a change to such software, there is no
straightforward way for them to quickly fuzz test their changes. They could use the test
corpus generated by the long-running fuzzing session on the previous version of the software
as a regression test suite, but those inputs may not exercise code paths affected by the
changes to the software. They could also start a new fuzzing session with the previously
generated corpus of inputs as the initial seeds. However, they have no way to communicate to
the fuzzing engine that it should focus on the code paths affected the changes to the software.
Directed fuzzing tools such as AFLGo [45] address this application, but can require several
hours of static analysis to pre-compute distances to target program locations2.

To this end, we propose and implement a domain-specific fuzzing application for incre-
mental fuzzing. The goal of this application is to guide fuzzing towards quickly discovering
interesting code paths that visit the lines of code that have just been modified. We refer to

2https://github.com/aflgo/aflgo/issues/21

https://github.com/aflgo/aflgo/issues/21

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 55

the set of modified lines of code as the diff. To measure the variety of paths executed by the
inputs, we will focus on basic block transitions (BBTs) rather than basic blocks alone. This
notion of basic block transition is identical to the notion used by AFL (ref. Chapter 2).

Consider the example program given in Figure 4.5a. This program performs a division at
Line 7. In the original program, the divisor d was always a multiple of the input a, so the
division at Line 7 was always safe. Unfortunately, the new change to the program, which
switches 2 * a to 2 - a in Line 4, makes a division by zero possible. Figure 4.5b shows
some inputs and the execution paths they take through this program. The execution path is
represented as the sequence of BBTs executed by the input. We use 〈x, y〉 to represent the
transition from the basic block starting at line x to the basic block starting at line y. We
represent the execution of a diff-affected basic block with the symbol �.

Consider the three inputs in Figure 4.5b. Input i1 (a=3,b=4) exercises the diff, but not the
division at Line 7. Input i2 (a=4,b=4) exercises the division at Line 7, but not the diff at Line
4. Notice that input i3 (a=4,b=3) does not exercise new BBTs compared to inputs i1 and i2,
so regular coverage-guided fuzzing would not save it. However, input i3 is the first to exercise
the true branch leading to Line 7 after having hit the diff. We call the BBTs executed after
hitting the diff as post-diff BBTs ; the newly exercised post-diff BBTs are highlighted in blue
in Figure 4.5b. Since input i3 covers a new post-diff BBT, it is interesting in an incremental
fuzzing setting because it exercises a new code path affected by the change in the diff. In
fact, it is only one mutation away from a=2, b=3, which would trigger a division by zero.

Our FuzzFactory application, diff, ensures that input such as i3 are saved as waypoints.
It does so by populating the DSF map with the number of times each BBT is executed after
the diff code has been executed (i.e., it must keep track of the BBTs after the �). For example,
for input i1, the DSF map is {〈4, 6〉 7→ 1, 〈6, 9〉 7→ 1}. For input i2, the DSF map is {} because
input i2 does not hit the diff. Finally, for input i3, the DSF map is {〈4, 6〉 7→ 1, 〈6, 7〉 7→ 1}.

Since we keep track of basic block transitions rather than simply basic blocks, K = L×L.
To better approximate paths, the DSF map collects order-of-magnitude aggregation of BBT
execution counts. Thus, A = 2N, a0 = ∅, and the reducer function is a� v = a∪ log2(v). The
instrumentation adopts AFL’s BBT tracking logic, described in Section 2.1.

To make sure that we only track post-diff BBTs, the instrumentation also defines a new
global variable hits_diff in the test program. This variable is set to false at the test
entry point. At each basic block, the instrumentation adds a check to see whether the basic
block is within_diff —that is, the basic block was added or modified in the code change of
interest—and sets hits_diff to true if that is the case. Then, the DSF for the BBT 〈p, c〉 is
only incremented (with a call the function dsf_increment) if hits_diff is true, effectively
counting only post-diff BBTs.

Experimental evaluation To simulate the incremental fuzzing environment on our bench-
marks without cherry-picking diffs, we perform the following procedure. For each benchmark,
we randomly choose the set of saved inputs from one of our 24-hour runs of AFL as the new
starting set of test inputs, S0. To find a relevant code change, we then advance the code

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 56

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0.5

1.0

2.0
Re

la
tiv

e
Po

st
-d

iff
 B

BT
s

Co
ve

re
d afl

diff

Figure 4.6: Relative (compared to AFL) coverage of basic block transitions after five minutes
of incremental fuzzing with the domain-specific diff front-end.

repository by one git commit until we find a diff that (1) affects code in the main test driver,
and (2) is exercised by at least one input in S0. We keep advancing through the commit
history, and accumulate the diffs, until such a diff is found, or until the most recent commit.

To evaluate utility in a continuous integration environment, we run the tools for five
minutes each. Since we are interested in evaluating the power of the tools to generate inputs
with high code coverage downstream from the diff, we evaluate the coverage achieved by any
input AFL generated that hit the diff in the five minute run.

Figure 4.6 contains the results of our 5-minute incremental fuzzing evaluation. The figure
plots means and standard errors of the number of post-diff BBTs hit by all generated inputs,
relative to the baseline afl. We plot the coverage achieved by our domain-specific fuzzing
application, called diff, relative to afl. For libpng and libjpeg-turbo, the diffs yielded by
our procedure were hit by all inputs in the starting corpus, and for vorbis, no inputs in the
seed corpus initially hit the diff. This resulted in very large diffs. As expected for such large
diffs, diff and afl were equally successful at finding a variety of post-diff behaviors on these
benchmarks. For libarchive and boringssl, only a few inputs hit the initial diff, and the
diff was not very large. These more closely mirrored the incremental changes motivated by
our techniques. For these benchmarks, the FuzzFactory domain-specific fuzzing application
diff achieves 2.5-3× more coverage downstream from the diff than afl.

4.4.4 Composing Multiple Domains

Due to the clean separation between domain-specific feedback maps and the underlying fuzzing
algorithm, we can easily compose multiple domain-specific fuzzing applications in the same
test program binary. Composing two domain-specific fuzzing applications requires no more
than incorporating the instrumentation associated with each domain. In our implementation,

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 57

vorbis libxml2 libjpeg boringssl
0.0

1.9

3.8

5.7

7.6

9.5

11.4

13.4

15.3

M
ax

im
um

 M
em

or
y

Al
lo

ca
te

d
(M

B)

afl
mem
cmp
cmp-mem

libarchive libpng
0.0

0.9

1.9

2.8

3.7

M
ax

im
um

 M
em

or
y

Al
lo

ca
te

d
(G

B)

afl
mem
cmp
cmp-mem

Benchmarks

Figure 4.7: Evaluation of composing cmp and mem into the cmp-mem domain. Bars show the
maximum dynamic memory allocated—in MB on the left and in GB on the right—at a single
program location. Higher is better.

this is as simple as setting compile-time flags for each domain. Each domain’s associated
instrumentation only updates its own DSF map. Similarly, our domain-specific fuzzing
algorithm aggregates feedback from each registered domain independently (ref. Algorithm 4).

Figure 4.7 shows the results of our experiments with a composite application that smooths
hard comparisons (ref. Section 4.4.2) and maximize dynamic memory allocations (ref.
Section 4.4.1). The goal of this experiment is to maximize memory allocation in the test
programs, while also smoothing hard comparisons which may be required to exercise hard-
to-reach program branches. This experiment used the initial seed inputs that ship with the
benchmark suite. We compare the composite domain (cmp-mem) with the baseline (afl) as
well each independent application (cmp and mem). Note the difference in y-axis between the
four benchmarks on the left-hand-side (maximum value listed is 15.3 MB) and right-hand-side
(maximum value listed is 3.7 GB) of Figure 4.7.

In four benchmarks, the cmp-mem composition is able to generate inputs that allocate more
memory those those generated by cmp or mem individually. That is, the composite application
performs better than the sum of its parts. In particular, the combined cmp-mem application
was able to generate inputs that allocate the maximum memory possible with libarchive
and libpng—4GB and 2GB respectively.

For libarchive, this result is remarkable because the mem domain itself performed much
worse than the afl baseline, due to the fact that the initial seed inputs were invalid (ref.
Section 4.4.1). However, when combined with the application that smooths hard comparisons,
we were able to quickly generate valid ZIP archives and eventually generated a ZIP bomb:
a small input that when decompressed leads to excessive memory allocation. Similarly,
in libpng, the cmp-mem application was able to generate a PNG bomb. Unlike the most

CHAPTER 4. FUZZFACTORY: A FRAMEWORK FOR SPECIALIZED FUZZERS 58

memory-allocating input discovered by mem alone, which was an image that declared very
large geometric dimensions in its metadata (ref. Section 4.4.1), the PNG bomb generated by
cmp-mem relies on compressed data. This input demonstrates that simply capping an image’s
geometric dimensions is not sufficient for limiting memory usage.

Memory leak discovery Our experiments with cmp-mem led to the discovery of a memory
leak in libarchive. Since the benchmark suite used in our experiments contains old, historical
versions of heavily fuzzed software, we expected to only find previously known bugs, if any. To
our surprise, we not only found memory leaks in the January 2017 snapshot of libarchive,
but also in the latest (March 2019) version of libarchive, using inputs generated while
fuzzing the old version. The project developer fixed the bug after we reported it.

4.5 Discussion
FuzzFactory allows developers and researchers to control the process of fuzz testing by
defining a strategy to selectively save intermediate inputs. However, it does not provide any
explicit hooks into various other search heuristics used in the CGF algorithm, such as the
mutation operators or seed selection strategies. In principle, it should be possible to port
general-purpose heuristics such as those used in AFLFast [46] or FairFuzz [115] to work
with any of the various domain-specific fuzzing applications described herein. The main
contribution of this chapter is the separation of concerns between the fuzzing algorithm and
the choice of feedback from the instrumented program under test.

In theory, a basic increase in code coverage can itself be considered a domain-specific
feedback. That is, we could define a domain d where is_waypoint(i,S, d) is satisfied when
input i leads to the execution of code that is not covered by any input in S. However, in
Algorithm 4, we always save an input if it increases code coverage, instead of modeling this
criteria through yet another domain. In practice, we found that an increase in code coverage
is useful for all domains, since it leads to discovering new program behavior. To put it
another way, we always compose every custom domain with a default code coverage domain.
FuzzFactory allows users to disable this default domain via an environment variable.

Since the completion of the experiments for the OOPSLA’19 paper on FuzzFactory [150],
even more specialized fuzzers that fit our abstraction of waypoints have appeared: e.g. (1)
Coppik et al. [61] save inputs that read/write new values to input-dependent memory
addresses, and (2) Nilizadeh et al. [140] discover side-channel vulnerabilities by saving inputs
whose execution paths maximally differ from a reference path. The continued appearance
of these domain-specific fuzzers strengthens the key result from both this chapter and the
last. By adding feedback that expands the notion of “interesting input” in coverage-guided
fuzzing, we can consistently find specialized bugs whose appearance is not captured by branch
coverage alone.

59

Part II

Structured Mutations

60

Chapter 5

FairFuzz: Mutation Masking for Deeper
Coverage

The last part presented two projects, PerfFuzz and FuzzFactory, which changed the
feedback component of coverage-guided fuzzing in order to achieve diverse testing goals.
However, both of those projects did not touch another important aspect of coverage-guided
fuzzing: the mutations used to create inputs. This part—Chapters 5 and 6—explores the
impact of mutations on the effectiveness of coverage-guided fuzzing in more detail.

As mentioned in the introduction, AFL and other coverage-guided fuzzing (CGF) algo-
rithms create new inputs by performing byte-level mutations on existing, saved inputs. For
programs expecting highly structured inputs—like a compiler or an XML linter—rather than
binary file formats, this can result in many malformed inputs which are unable to explore
the program very deeply. Overall, this limits the overall coverage achieved by CGF to the
parsing or input validation stages of the program under test.

In Section 4.4.2 of Chapter 4, we saw the cmp approach to getting deeper program
coverage. Effectively, this approach gave breadcrumbs to the fuzzer for making progress
through so-called hard comparisons. These hard comparisons, sometimes called magic byte
comparisons, are ones that rely on a subsequence or function of the input being exactly equal
to a given value. Many works have tried to modify CGF to increase the probability of getting
through these types of magic bytes comparisons [46, 161, 117, 54].

The cmp approach increases the probability of generating inputs which satisfy these
conditions, and thus, increase the coverage of the program under test. However, it still relies
on getting lucky with random mutations: the approach does not alter the mutation strategy,
but simply saves inputs if, by luck, a mutant gets further through the comparison. This
process could be much more effective by targeting the mutations in a manner that does not
ruin the program exploration progress made by the parent input.

This chapter presents a lightweight technique, called FairFuzz, which helps increase the
coverage of the program under test by targeting mutations in such a manner. This technique
requires no extra instrumentation beyond regular CGF instrumentation, preserving CGF’s
ease-of-use. While the focus of FairFuzz is on branch coverage, a similar concept could be

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 61

used to target other kinds of coverage and testing objectives, including the cmp feedback.
FairFuzz works in two main steps. First, it identifies the program branches that are

rarely hit by previously generated inputs. We call such branches rare branches. These rare
branches guard under-explored functionalities of the program. By generating more random
inputs hitting these rare branches, FairFuzz greatly increases the coverage of the parts of
the code guarded by them.

Second, FairFuzz uses a novel lightweight mutation technique to increase the probability
of hitting these rare branches. The mutation strategy is based on the observation that
certain parts of an input already hitting a rare branch are crucial to satisfy the conditions
necessary to hit that branch. Therefore, to generate more inputs hitting the rare branch
via mutation, the parts of the input that are crucial for hitting the branch should not be
mutated. FairFuzz identifies these crucial parts of the input by performing a number of
small mutation experiments. Later, in test input generation, it avoids mutating these crucial
parts of the input. This mutation strategy is orthogonal to approaches that to help CGF
pass magic byte comparisons (like the cmp approach mentioned above), and can be combined
with them to increase code coverage even further.

We begin with an overview of the FairFuzz algorithm, by studying a particular example
on which its core innovation brings benefits.

5.1 Motivation
FairFuzz is built on top of American Fuzzy Lop (AFL) [185], a popular coverage-guided fuzz
tester. As discussed in Chapter 2, AFL uses coverage feedback to guide its input generation,
saving inputs which cover new edges in the control flow graph of the program under test.

While AFL’s search strategy is guided by coverage, AFL often fails to cover some important
functionalities of the program under test. And, if a program region is not covered, there is
no way AFL can find bugs or crashes in that region.

Consider the code fragment shown in Figure 5.1. It is adapted from the parser.c file
used in libxml2’s xmllint utility. We ran AFL on this benchmark 20 times, each time for
24 hours. Only in one of these 24-hour runs did AFL produce an input passing Line 1. Even
then, AFL failed to explore the contents of any of the if statements in Lines 6-30. As such,
it failed to explore the large quantity of code after Line 31 (mostly omitted in Figure 5.1).
Since this code is not even covered, then AFL simply cannot find any bugs in it.

The key reason AFL is unable to produce inputs covering any of this code—even after
discovering an input containing <!ATTLIST—is that AFL mutates inputs paying no attention
to which byte values are required to cover particular parts of the program. For example, after
having produced the input <!ATTLIST BD, AFL will not prioritize mutation of the bytes after
<!ATTLIST. Instead, it is as likely to produce the mutants <!CATLIST BD, <!!ATTLIST BD, or
???!ATTLIST BD as it is to produce <!ATTLIST ID. However, to explore the code in Figure 5.1,
once AFL discovers <!ATTLIST BD, it should not mutate the <!ATTLIST part of this input.
To see why, suppose that the production of an input like <!ATTLIST ID—with the token

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 62

1 if (CMP9(ptr ,'<','!','A','T','T','L','I','S','T')) {
2 ptr += 9;
3 /* some processing code omitted */
4 while ((ptr != '>') && (ptr != EOF)){
5 int type = 0;
6 if (CMP5(ptr ,'C', 'D', 'A', 'T', 'A')){
7 ptr += 5;
8 type = XML_ATTRIBUTE_CDATA;
9 } else if (CMP6(ptr ,'I', 'D', 'R', 'E', 'F', 'S')){

10 ptr += 6;
11 type = XML_ATTRIBUTE_IDREFS \;
12 } else if (CMP5(ptr ,'I', 'D', 'R', 'E', 'F')){
13 ptr += 5;
14 type = XML_ATTRIBUTE_IDREF;
15 } else if ((ptr == 'I') && ((ptr +1)== 'D')){
16 ptr += 2;
17 type = XML_ATTRIBUTE_ID;
18 } else if (CMP6(ptr ,'E','N','T','I','T','Y')){
19 ptr += 6;
20 type = XML_ATTRIBUTE_ENTITY;
21 } else if (CMP8(ptr ,'E','N','T','I','T','I','E','S')){
22 ptr += 8;
23 type = XML_ATTRIBUTE_ENTITIES;
24 } else if (CMP8(ptr ,'N','M','T','O','K','E','N','S')){
25 ptr += 8;
26 type = XML_ATTRIBUTE_NMTOKENS;
27 } else if (CMP7(ptr ,'N','M','T','O','K','E','N')){
28 ptr += 7;
29 type = XML_ATTRIBUTE_NMTOKEN;
30 }
31 if (type == 0) {ptr ++; break ;}
32
33 /* more omitted code */
34
35 if (CMP9(ptr ,'#','R','E','Q','U','I','R','E','D')) {
36 ptr += 9;
37 default_decl = XML_ATTRIBUTE_REQUIRED;
38 }
39 if (CMP8(ptr ,'#','I','M','P','L','I','E','D')) {
40 ptr += 8;
41 default_decl = XML_ATTRIBUTE_IMPLIED;
42 }
43 if (CMP6(ptr ,'#','F','I','X','E','D')) {
44 ptr += 6;
45 default_decl = XML_ATTRIBUTE_FIXED;
46 if (! IS_BLANK_CH(ptr)) {
47 xmlFatalErrorMsg("Space required after '#FIXED'");
48 }
49 }
50 ptr ++;
51 }
52 }

Figure 5.1: Code fragment based off the libxml file parser.c showing many nested if
statements that must be satisfied to explore erroneous behavior.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 63

Figure 5.2: Preventing AFL from mutating the <!ATTLIST part of this input increases the
probability of generating <!ATTLIST ID by at least 6×.

“ID”—is required to pass the processing code omitted in Line 3 of Figure 5.1. Preventing the
modification of <!ATTLIST increases AFL’s probability of generating <!ATTLIST ID by at
least 6×. Figure 5.2 illustrates how restricting mutations to only the last two characters of
the input yields to a smaller space of mutants to explore, and thus, a higher probability of
discovering an input that gets deeper into the program.

5.1.1 Overview of FairFuzz

FairFuzz is a two-pronged approach that addresses this concern and can be smoothly
integrated into AFL or other coverage-guided fuzzers. It works as follows.

The first part of FairFuzz is the identification of statements like the if statement in
Line 1 of Figure 5.1, which potentially guard large unvisited regions of code. For this, we
utilize the observation that such statements are usually hit by very few of AFL’s generated
inputs (i.e. they are rare), and can thus be easily identified by keeping the track of the
number of inputs which hit each branch. Intuitively, the code guarded by a branch hit by
few inputs is much less likely to have been thoroughly explored than the code guarded by a
branch hit by a huge percentage of generated inputs.

Having identified these rare branches as targets, FairFuzz modifies the input mutation
strategy in order to keep the condition of the rare branch satisfied. Specifically, it uses a
deterministic mutation phase to approximately determine the parts of the input that cannot
be mutated in order to hit the rare branch. The subsequent mutation stages are not allowed
to mutate these crucial parts of the input. This significantly increases the probability of
generating new inputs that hit the rare branch, increasing the probability of exploring the
code guarded by the branch, and thus, exploring the program under test more deeply. While
FairFuzz uses this mutation masking strategy to target rare branches, the mutation masking
is general and can be applied to other testing targets.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 64

Algorithm 5 The FairFuzz algorithm. Differences from regular coverage-guided fuzzing
are highlighted in gray.
Input: an instrumented test program p, a set of initial seed inputs S0

Output: a corpus of automatically generated inputs S
1: S ← S0

2: totalCoverage ← initCoverage(S0)
3: repeat
4: for input in S do
5: with probability fuzzProb(input) do

6: target ← getRarestBranch(input)

7: mask ← computeMask(p, input, target)

8: for 1 ≤ i ≤ numChildren(input ,mask) do

9: input ′ ← mutateWithMask(input ,mask)
10: coverage ← execute(p, input ′)
11: if coverage 6⊆ totalCoverage then
12: S ← S ∪ {input ′}
13: totalCoverage ← totalCoverage ∪ coverage

14: until given time budget expires
15: return S

5.2 The FairFuzz Algorithm
Algorithm 5 outlines the FairFuzz algorithm and how it differs from the coverage-guided
fuzzing algorithm (Algorithm 1). The essential differences are that inputs are selected based
on whether or not they hit a rare branch (Line 5), then a mutation mask is computed for the
rarest branch hit by the selected input (Lines 6, 7), and the mutation mask is used to filter
and bias mutations towards the target branch (Lines 8, 9). Notice that unlike the changes to
the coverage-guided fuzzing algorithm studied in Part I, there is no change to the feedback
used to judge interesting inputs (Lines 10-13).

We begin with an abstract treatment of the mutation masking technique.

5.2.1 Mutation Masking

In this section we introduce the mutation mask for a given input, x, and a given testing
target, T . We say satisfies(x, T) is true if input x satisfies T .

Definition 12. A mutation is a tuple (c,m), where m is the number of bytes impacted by
the mutation and c is one of the following mutation categories:

O: overwrites m bytes starting at position k with some values,

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 65

I: inserts some sequence of m bytes at position k,

D: deletes m bytes starting at position k.

To fully specify mutations with c ∈ {O, I}, we must also specify the values to be inserted.
Given an input x, a mutation µ = (c,m), and a position 0 ≤ i < |x| −m, let mutate(x, µ, i)
denote the input produced by applying mutation µ on x at position i.

Definition 13. The mutation mask for an input x and a testing target T is a function
maskx,T : N → P({O, I,D}) which takes a position i in the input x and returns a subset of
{O, I,D}. We say that a mutation category c ∈ maskx,T (i) if satisfies(mutate(x, (c, 1), i), T)
is true. That is, if c is in the set maskx,T (i), then after applying a mutation of category c at
position i on x, the resulting input will satisfy the target T .

Intuitively, the mutation mask specifies whether the input produced from mutating x at
position i will (likely) reach the testing target. With this mask, given a mutation µ = (c,m)
at position k, we can compute

okToMutate(maskx,T , µ, k) =
k+m−1∧
i=k

c ∈ maskx,T (i).

We describe the algorithm to compute maskx,T (i) in Section 5.2.2.2.

5.2.1.1 Biasing Mutation with the Mutation Mask

FairFuzz uses okToMutate(maskx,T , µ, k) to bias mutations towards the testing target.
As discussed in Section 2.1, there are two main stages in AFL’s mutation algorithm.

Biasing mutations with the mask is done a somewhat differently in both of these stages.
First, in the deterministic mutation stages, any mutation µ which does not satisfy

okToMutate is simply skipped. That is, FairFuzz simply does not apply that mutation to
the parent input. For a given mutation type µ and position i, the mutant x′ = mutate(x, µ, i)
is generated only if okToMutate(maskx,T , µ, i) is true. This has the effect of reducing the
number of mutants created in the deterministic mutation stages, thereby reducing the number
of children inputs created from the parent inputs (Line 8 of Algorithm 5).

Second, recall that in the havoc stage, mutants are created by choosing a random mutation
and random position at which to apply it. FairFuzz selects the random mutation µ = (c,m)
as AFL does (Algorithm 2, Line 5). However, instead of selecting the position at random
between 0 and |newinput| − m − 1 Algorithm 2, Line 6, FairFuzz chooses the position
randomly from the subset of ok-to-mutate positions. Precisely, it replaces that line with a
call to randomOkToMutate(maskx,T , µ) , defined as:

sampleUniform({i ∈ [0, |x| −m− 1] : okToMutate(maskx,T , µ, i)}).

If the set of ok-to-mutate positions is empty, FairFuzz skips the mutation and chooses a
new µ = (c,m) at the next iteration of the havoc mutation loop (Algorithm 2, Line 4).

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 66

5.2.2 Targeting Rare Branches

So far we have kept the testing target abstract. Now, we concretize it by elaborating the
definition of rare branches and giving the concrete algorithm which FairFuzz uses to compute
the mutation mask for rare branches.

5.2.2.1 Selecting Inputs to Mutate

To bias input generation towards rare branches, FairFuzz selects only inputs that hit rare
branches for mutation. First, we formalize the concept of a rare branch.

Definition 14. We say that an input x hits a branch b, denoted hits(x, b), if the execution
of the program on x exercises the branch b at least once.

The hit count of a branch is the number of produced inputs i which have exercised the
branch. More formally,

Definition 15. Let I be the set of all inputs produced by fuzzing so far. The hit count of
branch b is

numHits[b] = |{x ∈ I : hits(x, b)}|.

To establish numHits , FairFuzz runs one round of the coverage-guided fuzzing loop on
the seed input with no masking.

A natural idea is to designate the n branches hit by the fewest inputs as rare, or the
branches hit by less than p percent of inputs to be rare. After some initial experiments, we
rejected these methods as (a) they can fail to capture what it means to be rare (e.g. if n = 5
and the two rarest branches are hit by 20 and 15,000 inputs, both would be “rare”), and (b)
these thresholds need to be modified for different benchmarks. Instead, we define a rare
branch as one whose hit count is smaller than a dynamic rarity cutoff as follows. Let B be
the set of all branches in the program.

Definition 16. Let Bv = {b ∈ B : numHits[b] > 0}. A rare branch is a branch b such that

numHits[b] ≤ rarity_cutoff

where
rarity_cutoff = 2i such that 2i−1 < min

b′∈Bv

(numHits[b′]) ≤ 2i.

For example, if the branch hit by the fewest inputs has been hit by 17 inputs, any branch
hit by ≤ 25 inputs is rare.

To determine whether an inputs hits a rare branch, FairFuzz computes the rarest branch
hit by the input:

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 67

Algorithm 6 Computing the mutation mask in FairFuzz.
1: procedure computeMask(p, input, branch)
2: mask ← initWithEmptySet(|input|)
3: for 0 ≤ i < |input| do
4: inputO ← mutate(input, flipByte, i)
5: if branch ∈ branchesHitBy(p, inputO) then
6: mask[i]← mask[i] ∪ {O}
7: inputI ← mutate(input, addRandomByte, i)
8: if branch ∈ branchesHitBy(p, inputI) then
9: mask[i]← mask[i] ∪ {I}
10: inputD ← mutate(input, deleteByte, i)
11: if branch ∈ branchesHitBy(p, inputD) then
12: mask[i]← mask[i] ∪ {D}

return mask

Definition 17. Let branches(x) = {b ∈ B : hits(x, b)}. Then the rarest branch hit by input
x is the branch b∗ such that

b∗ = arg min
b∈branches(x)

numHits[b].

Then, FairFuzz selects only inputs whose rarest branch is a rare branch for mutation.
That is, fuzzProb(x) in Line 5 of Algorithm 5 is 1 if the rarest branch b∗ hit by input x is
rare (i.e. is ≤ rarity_cutoff), and 0 otherwise.

5.2.2.2 Computation of the Mutation Mask

Algorithm 6 outlines how FairFuzz computes maskx,b for a given input x and rare branch b.
This algorithm could be easily adapted to other testing targets by replacing hits(xc, b) with
satisfies(xc, T). The algorithm works as follows.

For each position i in the x, FairFuzz produces the mutants xO by flipping the byte at
position i (Line 4 of Algorithm 6), xI by adding a random byte at position i (Line 7), and
xD by deleting the byte at position i (Line 10). Then, for each xc, FairFuzz determines
whether hits(xc, b) by running xc through the program (captured in branchesHitBy on
Lines 5, 8, 11). Finally, if xc hits b, FairFuzz notes the position i as overwritable (O),
insertable (I), or deletable (D), respectively (Lines 6, 9, 12). While the calculation is illustrated
as separate from the deterministic mutation stages in Algorithm 5, the two are integrated in
the implementation. Since the mask computation adds only two new deterministic mutation
types to AFL (byte-flipping is a default mutation type), the computation adds negligible
overhead to stock AFL.

Of course, this computation of O ∈ maskx,b(i) and I ∈ maskx,b(i) is approximate—
FairFuzz doesn’t check whether every value overwritten or inserted results in b being hit.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 68

Unfortunately, trying all possible values to insert or write is too expensive and produces
too many redundant inputs. Empirically we find this approximation produces an effective
mutation mask (see Section 5.3.3).

5.2.3 Trimming Inputs for Testing Targets

AFL’s efficiency depends on large part on its ability to quickly produce and modify inputs [189].
Thus, it is important to make sure the deterministic mutation stage—and in FairFuzz,
mutation mask computation—is efficient. Since the runtime of the computation is linear
in the length of the selected input, FairFuzz needs to keep the length of the inputs in
the queue short. AFL has two techniques for keeping inputs short: (1) prioritizing short
inputs when selecting inputs for mutation and (2) trimming (an efficient approximation of
delta-debugging [191]) the parent input before mutating it. This trimming is omitted from
Algorithms 1 and 5 for clarity. Trimming attempts to minimize the input to mutate with the
constraint that the minimized input hits the same path (set of (branch ID, branch hits)) as
the unminimized one. However, this constraint is not good enough for reducing the length of
inputs when very long inputs are chosen. FairFuzz may do this since it selects inputs based
only on whether they hit a rare branch. We found that we can make inputs shorter in spite
of this if we relax the trimming constraint. In particular, we relax the constraint to require
that the minimized input hits only the target branch of the original input, instead of the
same path as the original input. Similar relaxation could be done for other testing targets.
We refer to FairFuzz with this relaxed constraint as FairFuzz with trimming.

5.3 Evaluation
FairFuzz is implemented as an open source tool built on top of AFL. The implementation
adds around 600 lines of C code to the file containing AFL’s core implementation.

We evaluated FairFuzz on 9 different real-world benchmarks. We selected these from
those favored for evaluation by the AFL creator (djpeg from libjpeg-turbo-1.5.1, and readpng
from libpng-1.6.29), those used in AFLFast’s evaluation (tcpdump -nr from tcpdump-4.9.0;
and nm, objdump -d, readelf -a, and c++filt from GNU binutils-2.28) and a few benchmarks
with more complex input grammars in which AFL has previously found vulnerabilities (mutool
draw from mupdf-1.9, and xmllint from libxml2-2.94). Since some of these input formats
had AFL dictionaries and some did not, we ran all the evaluation without dictionaries to
level out the playing field. In each case we seeded the fuzzing run with the inputs in the
corresponding AFL testcases directories (except c++filt, which was seeded with the input
“_Z1fv\n”); for PNG we used only not_kitty.png.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 69

(a) tcpdump (b) readelf (c) nm

(d) objdump (e) c++filt (f) xmllint

(g) mutool draw (h) djpeg (i) readpng

Figure 5.3: Number of basic block transitions (AFL branches) covered by different AFL
techniques averaged over 20 runs (bands represent 95% C.I.s).

5.3.1 Coverage Compared to Prior Techniques

In this section of evaluation we compare three popular versions of AFL against FairFuzz,
all based off of AFL version 2.40b.

1. “AFL” is the vanilla AFL available from AFL’s website.

2. “FidgetyAFL” [188] is AFL run without deterministic mutations.

3. “AFLFast.new” [42] is AFLFast run without deterministic stage and with the cut-off-
exponential exploration strategy.

We ran FairFuzz with input trimming for the testing target and omitting all deterministic
stages except those necessary to compute the mutation mask.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 70

We ran each technique for 24 hours (on a single core) on each benchmark. We repeated
each 24 hour experiment 20 times for each benchmark. We ran our experiments for 24 hours
as the fuzzing process does not have a defined end-time and this is a runtime used in prior
work [46, 172, 161, 117]. We repeated our experiments 20 times because fuzz testing is an
inherently non-deterministic process, and so is its performance.

All machines ran Ubuntu 16.04. We ran mutool, djpeg and readpng on a machine with
four 2.27 GHz Intel(R) Xeon(R) E7- 4860 processors (40 cores) with 264GB of RAM; we
ran c++filt on a machine with four 2.27 GHz Intel(R) Xeon(R) X7560 processors (32 cores)
with 264GB of RAM; we ran objdump and nm on a machine with four 2.40GHz Intel(R)
Xeon(R) E5-4640 processors (32 cores) and 264GB of RAM; and we ran readelf, xmllint,
and tcpdump on two machines, each with a single 3.00 GHz AMD Ryzen 7 1700 processor
and 16 GB of RAM. We ran instances of the same AFL technique in at the same time (1×20
runs for mutool, djpeg and readpng, 2×10 runs for c++filt, objdump, and nm, and 5×4 runs
for readelf, c++filt, and tcpdump), and different techniques in sequence.

5.3.1.1 Overall Branch Coverage Achieved

We begin by analyzing coverage achieved by different techniques through time. The main
metric we report is basic block transitions covered, which is close to the notion of branch
coverage used in real-world software testing.

Figure 5.3 plots, for each benchmark and technique, the average number of branches
covered over all 20 runs at each time point (dark central line) and 95% confidence intervals
in branches covered at each time point (shaded region around line) over the 20 runs for each
benchmark. For the confidence intervals we assume Student’s t distribution.

From Figure 5.3, we see that that on all benchmarks except c++filt, FairFuzz achieves
the upper bound in branch coverage, generally showing the most rapid increase in coverage
at the beginning of execution.

Note that while FairFuzz keeps a sizeable lead on the xmllint benchmark (Figure 5.3f),
it does so with wide variability. Closer analysis reveals that one run of FairFuzz on xmllint
was buggy, and no inputs were selected for mutation—this run covered no more than 6160
branches. However, FairFuzz had two runs on xmllint covering an exceptional 7969 and
10990 branches, respectively.

Figure 5.4, shows, at every hour, for how many benchmarks each technique has the lead
in coverage. By lead we mean its average coverage is above the confidence intervals of the
other techniques, and no other technique’s average lies within its confidence interval. We
say two techniques are tied if one’s average lies within the confidence interval of the other.
If techniques tie for the lead, the benchmark is counted for both techniques in Figure 5.4,
which is why the number of benchmarks at each hour may add up to more than 9. This
figure shows that FairFuzz quickly achieves a lead in coverage on nearly all benchmarks
and is not surpassed in coverage by the other techniques in our time limits.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 71

Figure 5.4: Number of benchmarks on which each technique has the lead in coverage at each
hour. A benchmark is counted for multiple techniques if two techniques are tied for the lead.

5.3.1.2 Detailed Analysis of Coverage Differences.

Figure 5.3 shows there are three benchmarks (c++filt, tcpdump, and xmllint) on which one
technique achieves a statistically significant lead in AFL’s branch coverage after 24 hours
(with AFLFast.new leading on c++filt and FairFuzz on the other two). A natural question
is what these increases corresponded to at the source code level.

Since AFL saves all inputs that achieve new program coverage to disk, we can replicate
what program coverage was achieved in each run by replaying these saved inputs through
the programs under test. Since each benchmark was run 20 times, we take the union (over
each technique) of saved inputs for all 20 runs. We ran the union of the inputs for each
technique through their corresponding programs and then ran lcov on the results to reveal
coverage differences. Using the union is a generous approach, revealing only which regions
are uncoverable by the different techniques over all the 20 runs.

xmllint The bulk of the coverage gains on xmllint were in the main parser.c file. The key
trend in increased coverage appears to be FairFuzz’s increased ability to discover keywords.

For example, both AFL and FairFuzz have higher source code coverage than FidgetyAFL
and AFLFast.new as they discovered the patterns <!DOCTYPE and <!ATTLIST in at least one
run. However, FairFuzz also produced inputs satisfying all the other conditionals illustrated
in Figure 5.1, which meant discovering all the keywords used in the comparisons. The
produced inputs included:

<!DOCTYPET@[<!ATTLIST?D T NMTOKENS
<!DOCTYPE?[<!ATTLIST D T ENTITY

<!DOCTYPE\[<!ATTLISTíD T ID #REQUIREDˆ@ˆP

We believe the mutation masking technique is directly responsible for the discovery of
these. Consider the <!ATTLIST block covered by the inputs above, whose code is outlined in
in Figure 5.1. While both AFL and FairFuzz had a run discovering the sequence <!ATTLIST,

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 72

Table 5.1: Number of runs producing an input with the given sequence in 24 hours.

Technique

Sequence AFL FidgetyAFL AFLFast.new FairFuzz

<!A 7 15 18 17
<!AT 1 2 3 11
<!ATT 1 0 0 1

of all the saved inputs for AFL in that run, only 0.4% of them (18) visited Line 2 of Figure 5.1,
resulting in 18 hits of the line. In contrast, 12.3% (1169) of the saved inputs produced by
FairFuzz in the run where it discovered <!ATTLIST visited Line 2 of Figure 5.1, resulting
2124 hits of the line. With two orders of magnitude more hits of this line, it is obvious
that FairFuzz was better able to explore the code in Figure 5.1. The orders of magnitude
difference is likely due to the mutation mask.

To confirm the effect, we also look at the number of runs which produced subsequences of
<!ATTLIST. This is illustrated in Table 5.1. The decrease in the number of runs discovering
<!AT from the number of runs discovering <!A in this table shows the mutation mask in action,
with 11 of FairFuzz’ runs discovering <!AT, compared to 1, 2, and 3 for AFLFast.new,
FidgetyAFL, and AFLFast.new, respectively.

Finally, as may be clear from the example inputs above, although FairFuzz discovered
more keywords, the inputs it produced were not necessarily more well-formed. Nonetheless,
these inputs allowed the FairFuzz to explore more of the program’s fault modes. This
is reflected in the coverage of a large case statement differentiating 57 error messages in
parser.c. Both FidgetyAFL and AFLFast.new cover only 22 of these cases, AFL covers 33,
and FairFuzz covers 39.

tcpdump Like xmllint, tcpdump has extensive nested structure. Coverage for tcpdump
differs a bit for all four techniques over a variety of different files, but the biggest gains for
FairFuzz are in three files printing certain packet types (print-forces.c, print-llc.c,
and print-snmp.c).

The coverage gains in these files suggest FairFuzz is better able to automatically detect
sequences in the inputs necessary to increase program coverage. For example, unlike the
other three techniques, FairFuzz was able to create files that have legal ForCES (RFC
5810) packet length. FairFuzz was also able to create IEEE 802.2 Logical Link Control
(LLC) packets with the organizationally unique identifier (OUI) corresponding to RFC 2684,
and subsequently explore the many subtypes of this OUI. Finally, in the Simple Network
Management Protocol parser, FairFuzz was able to create inputs corresponding to Trap
PDUs, as well as some inputs with a correct SNMPv3 user-based security message header.

We note these gains in coverage seem less impressive than those of FairFuzz on xmllint,
even though the performance in Figure 5.3 looks similar. This appears to be because

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 73

FairFuzz gets consistently higher coverage of tcpdump instead of covering parts of the
program wholly uncoverable by the other techniques. We can see this by looking at the
number of branches covered by at least one of the 20 runs (the union over the runs) and the
number of branches covered at least once in all the 20 runs (the intersection over the runs).
For tcpdump, FairFuzz has a consistent increase in the intersection of coverage (FairFuzz’s
contains 11,293 branches compared to AFLFast.new’s 10,724), but a smaller gain in the union
(FairFuzz’s is 16,129, while AFLFast.new’s is 15,929). On the other hand, the intersection
of coverage for xmllint is virtually the same for all techniques except stock AFL (5,876 for
FidgetyAFL, 5,778 for AFLFast.new and 5,884 for FairFuzz, maybe because of the buggy
run mentioned in Section 5.3.1.1), but FairFuzz’s union of coverage (11,681) contains over
4,000 more branches than that of AFLFast.new (7,222).

c++filt The differences in terms of source code coverage between techniques were much
more minimal for c++filt than for tcpdump or xmllint. For example, FairFuzz covers 3
lines in cp-demangle.c that AFLFast.new does not, related to demangling binary components
when the operator has a certain opcode. On the other hand, AFLFast.new covers a branch
where xmalloc_failed(INT_MAX) is called when a length bound comparison fails, while
FairFuzz fails to produce an input long enough to violate the length bound. FairFuzz
also fails to cover a branch in cxxfilt.c taken when the length of input read into c++filt
surpasses the length of the input buffer allocated to store it.

FairFuzz’s inability to produce very long inputs may be related to the second round of
trimming FairFuzz does. Or, it could be because c++filt has highly recursive structure, so
full branch coverage is not as good a exploration heuristic for this program. A testing target
other than hitting rare branches may be better suited for programs like c++filt.

The pattern which emerges from this analysis is that FairFuzz is better able to automati-
cally discover input constraints and keywords—special sequences, packet lengths, organization
codes—and target exploration to inputs which satisfy these constraints than the other tech-
niques. It is likely the targeting of rare branches shines the most in the tcpdump and xmllint
benchmarks since these programs are structured with many nested constraints, which the
other techniques are unable to properly explore over the time budget (and perhaps even
longer) without extreme luck.

5.3.2 Crashing Compared to Prior Techniques

While FairFuzz’s goal is to target deeper program coverage by targeting rare branches, it is
natural to examine whether this goal has an effect on finding bugs, or crashes, in the program
under test. Crash finding is hard to evaluate in practice, due to the sparsity of natural bugs
and the effort required to properly deduplicate crashes. Of the 9 benchmarks we tested on,
crashes were only found on c++filt and readelf. We did not do in-depth deduplication of
these crashes, instead comparing the techniques on time to first crash.

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 74

(a) readelf (b) cxxfilt

Figure 5.5: Time to find first crash for each run of the different techniques. Each point
represents the time to first crash for a single run.

Figure 5.5 shows the time to find the first crash for each of the techniques on each of the
20 24-hour runs. FairFuzz seems to find crashes a bit earlier on readelf than the other
techniques, but much later on the c++filt benchmark. This contrast also appears when
looking at the percent of runs finding crashes for each benchmark. On readelf, both AFL
and FidgetyAFL find crashes in 50% of runs while AFLFast.new and FairFuzz find crashes
in 75% of runs. On c++filt, however, FidgetyAFL and AFLFast.new find crashes in 100%
of the runs, AFL in 85% of them, and FairFuzz in only 25%.

Given that some of the lines missed by FairFuzz in c++filt were about buffer length
(refer to the previous section), input length may have been factor in this performance
discrepancy. Many of the crashing inputs found by AFLFast.new and FidgetyAFL were very
long, more than 20KB, with one crashing input generated by AFLFast.new being 130KB
long. Crashing inputs of this length were found in only one of the five FairFuzz runs which
found crashes in c++filt. Thus, a key factor in FairFuzz’s poor performance on crash
finding on this c++filt may be that the method does not encourage the creation of huge
inputs. It is also possible that the structure of c++filt may be better suited to a path-based
exploration strategy (like that of AFL/FidgetyAFL and AFLFast.new) than a branch-based
one. For example, demangling function argument types is done in a loop, so FairFuzz is
less likely to prioritize many new function arguments than path-based prioritization does.
Overall, the results here are inconclusive: FairFuzz may improve crash exposure in some
cases (readelf), but does not when the crashes are most easily exposed by large inputs.

5.3.3 Can Masking Effectively Target Branches?

The final point of FairFuzz’s evaluation is whether the mutation mask strategy effectively
biases mutation towards the testing target. In FairFuzz, the target was hitting the same
rare branch as the parent input. We conducted the following experiment on a subset of our
benchmarks to evaluate the effect of the mask.

We added a shadow mode to FairFuzz. When running in shadow mode, every time an
input is selected for mutation, FairFuzz first performs all mutations without the influence

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 75

Table 5.2: Average % of mutated inputs hitting target branch for one queueing cycle.

(a) Cycle without trimming.

Det. mask Det. plain Hav. mask Hav. plain

xmllint 92.8% 46.5% 31.8% 6.6%
tcpdump 99.0% 74.0% 34.2% 9.3%
c++filt 97.6% 64.1% 41.4% 14.4%
readelf 99.7% 82.7% 57.7% 14.9%
readpng 99.1% 34.6% 24.3% 2.4%
objdump 99.2% 70.2% 42.4% 9.0%

(b) Cycle with trimming.

Det. mask Det. plain Hav. mask Hav. plain

xmllint 90.3% 22.9% 32.8% 2.9%
tcpdump 98.7% 72.8% 36.1% 9.0%
c++filt 96.6% 14.8% 34.4% 1.1%
readelf 99.7% 78.2% 55.5% 11.4%
readpng 97.8% 39.0% 24.0% 2.4%
objdump 99.2% 66.7% 46.2% 7.6%

of the mutation mask (the shadow run). Then, for the same input, FairFuzz performs all
mutations again, using the mutation mask filtering and bias.

This shadow run allows us to compute the difference between the percentage of generated
inputs hitting the target with and without the mutation mask for each parent input. Since
some target branches may be easier to hit than others, this gives us a better idea of how
effective the masking technique is in general. In our experiments, we ran FairFuzz with the
shadow run on a subset of our benchmarks. For each benchmark we ran a cycle with target
branch trimming and one without.

Table 5.2 presents the target branch hit percentages for the deterministic and havoc
stages. These percentages are the averages—over all inputs selected for mutation in the first
queueing cycle—of the percentage of children inputs hitting the target.

Overall, Table 5.2 shows that the mutation mask largely increases the percentage of
mutated inputs hitting the target branch. The hit percentages for the deterministic stage are
strikingly high. This is not unexpected because in the deterministic stage the mutation mask
simply prevents mutations at locations likely to violate the target branch. Thus, the gain
percentage of inputs hitting the target branch in the havoc stage is most impressive. In spite
of the use of the mutation mask in the havoc stage being heuristic, we consistently see the
use of the mutation mask causing a 3×-10× increase in the percentage of inputs hitting the
target branch. As for trimming, it appears that extra trimming reduces the number of inputs
hitting the target branch when the mutation mask is disabled but has minimal effect when
the mutation mask is enabled.

5.4 Discussion
While FairFuzz was evaluated with a variety of input formats accomplishing different
tasks, the results in terms of increased coverage may not generalize to other programs. Re-
evaluations of FairFuzz have found that it indeed achieves higher branch coverage on some
benchmarks, but not universally across all benchmarks [55]. However, those same evaluations
have found that FairFuzz finds an increased number of bugs compared to baseline AFL.

The foremost limitation of using rare branches as a testing target in FairFuzz is the fact

CHAPTER 5. FAIRFUZZ: MUTATION MASKING FOR DEEPER COVERAGE 76

that branches that are never hit by any fuzzer-generated or seed input cannot be targeted by
this method. So, it confers little benefits to discovering a single long magic number when
progress towards matching the magic number does not result in new coverage. The FairFuzz
mutation masking algorithm could be used in conjunction with methods targeting the magic
number issue [161, 117, 172] to build a more effective fuzzer.

Nonetheless, this chapter demonstrates how modifying the mutation strategy of a fuzzer
is key to enabling deeper exploration of the program. The effect would likely be more
powerful used in conjunction with a feedback strategy that gives intermediate rewards for
some increased depth of exploration, like the cmp feedback module described in Chapter 4.
However, as can be seen in the inputs examined in this chapter, FairFuzz is still limited in
the space of inputs it can explore. It finds inputs getting through rare branches, but they may
not be well-formed in the end. The next chapter looks at how bringing in a more structured
input mutation strategy truly enables fuzzing to explore programs beyond the parser.

77

Chapter 6

Zest: Using Generators for Higher-Level
Mutations

The last chapter showed evidence of how powerful mutations which preserve some input
structure can be, especially with respect to increasing the overall coverage of the program
under test. However, the technique presented in FairFuzz, though lightweight and flexible,
still suffers from some of the drawbacks of classical coverage-guided fuzzing. The inputs
it creates via byte-level mutations remain more well-suited to stress-testing the parsing or
syntactic analysis stages of programs.

Programs under test which expect highly structured inputs often consist of both a syntactic
analysis stage, which parses raw input, and a semantic analysis stage, which conducts checks
on the parsed input and executes the core logic of the program. If the structural constraints
which must be satisfied to pass the syntactic analysis stage are easily ruined by byte-level
mutations—e.g., tags matching in an XML document—then classical coverage-guided fuzzing
will struggle to explore the semantic analysis stage of the program under test.

Another popular form of fuzzing, generator-based fuzzing, can overcome this drawback.
Generator-based fuzzing, discussed in the introduction, relies on a hand-written input genera-
tor, which can be called repeatedly in order to create inputs. If the domain of inputs returned
by the generator closely matches the space of all semantically valid inputs to the program
under test, then generator-based fuzzing is very effective at exploring the behavior of the
program under test [181, 122]. The problem is that oftentimes, the domain of inputs returned
by the generator is not so well-tuned to the program under test, and so, sampling inputs from
the generator will not effectively explore the semantic analysis stage of the test program.

Part III explores how to overcome this drawback of generator-based fuzzing in more
detail. This chapter focuses on a more targeted problem: whether input generators, and
the structure they encode, can be used to perform higher-level mutations in coverage-guided
fuzzing. Further, this chapter explores whether these higher-level mutations can then be used
to better explore the semantic analysis stage of programs. The approach discussed in this
chapter, Zest, shows the answer to both of these questions is the affirmative.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 78

1 void testProgram(String xml) {
2 Model model = readModel(xml);
3 assume(model != null); // validity
4 assert(runModel(model) == success);
5 }
6 private Model readModel(String input) {
7 try {
8 return ModelReader.readModel(input);
9 } catch (XMLParseException e) {
10 return null; // syntax error
11 } catch (ModelException e) {
12 return null; // semantic error
13 }
14 }

Figure 6.1: A test driver exercising the runModel function.

6.1 Motivation
Suppose a developer of the Maven [9] build system wants to fuzz test the core functionality
that turns Maven build files into models, the runModel function. Figure 6.1 shows a test
harness for this function, called in Line 4. The testProgram function accepts as input a
string, which is parsed as a Maven document in the call to ModelReader.readModel in Line 8.
ModelReader.readModel does the main work of turning the input string into a model, unless
the input is syntactically invalid XML (Line 10) or a semantically invalid Maven file (Line 12).
The assumption at Line 3 exits early, but without error, if the input was syntactically or
semantically invalid and did not parse into a model. If the input passes the assumption, then
the main runModel function is finally called parsed model (Line 4).

Now, the developer could simply use the testProgram as the program under test for a
coverage-guided fuzzer. Unfortunately, most of the inputs generated by coverage-guided
fuzzing will never get past the syntactic validity check in Line 10, resulting instead in inputs
that look like: <a b>acTa>. Thus, although testProgram is being invoked repeatedly by
the fuzzer, few inputs will ever get to Line 4, and so, runModel will barely be covered. This
does not help the developer who wants to test the inner workings of runModel.

Another option is for the developer to use generator-based fuzzing. Since a Maven
document is a type of XML document, they could use the generator of XML documents in
Figure 6.2 to generate inputs for testProgram.

At a high level, this generator works as follows. When generate() is called, the generator
uses the Java standard library XML DOM API to generate a random XML document.
It constructs the root element of the document by invoking genElement (Line 3). Then,
genElement uses repeated calls to methods of random to generate the element’s tag name
(Line 9), any embedded text (Lines 17, 18, and in genString), and the number of children
(Line 12); it recursively calls genElement to generate each child node. Finally, the XMLDocument
object is converted to a string before generate() returns.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 79

1 class XMLGenerator {
2 public String generate(Random random) {
3 XMLElement root = genElement(random , 1);
4 XMLDocument doc = new XMLDocument(root);
5 return doc.toString ();
6 }
7 private XMLElement genElement(Random random , int depth) {
8 // Generate element with random name
9 String name = genString(random);
10 XMLElement node = new XMLElement(name);
11 if (depth < MAX_DEPTH) { // Ensures termination
12 int n = random.nextInt(MAX_CHILDREN);
13 for (int i = 0; i < n; i++) {
14 node.appendChild(genElement(random , depth +1));
15 }
16 }
17 if (random.nextBool ()) { // Maybe insert text inside element
18 node.addText(genString(random));
19 }
20 return node;
21 }
22 private String genString(Random random) {
23 // Generate string of random length and characters
24 int len = random.nextInt(1, MAX_STRLEN);
25 String str = "";
26 for (int i = 0; i < len; i++) {
27 str += random.nextChar ();
28 }
29 return str;
30 }
31 }

Figure 6.2: A simplified XML document generator.

While such a generator is easy for the developer to write, it will, unfortunately, not help
them in their quest to test the runModel function! In fact, when running generator-based
fuzzing with the generator in Figure 6.2 and the test harness testProgram in Figure 6.1, only
0.09% of the generated inputs make it through to the assumption in Line 3, this time because
most of the inputs are semantically invalid (i.e., get to Line 12).

To get better results, the developer could sit down and write a specialized generator for
Maven documents, whose output is more likely to get through the assumption in Line 3.
Unfortunately, the effort required to write such a specialized generator can be quite significant,
and may discourage developers from using generator-based fuzzing. Luckily, the approach
proposed in the chapter, Zest, is able to use even a basic generator, like that in Figure 6.1,
to effectively generate inputs which are both syntactically and semantically valid, and thus,
explore the behavior of the runModel function.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 80

6.2 The Zest Technique
Zest has two key algorithmic components. First, Zest leverages input generators to conduct
higher-level structural mutations on inputs by converting a random-input generator into an
equivalent deterministic parametric generator. Second, Zest uses a validity-guided parameter
search to guide the input search towards inputs that are not only syntactically, but also
semantically, valid. At its core, this search augments the CGF algorithm by keeping track of
the code coverage achieved by valid inputs.

6.2.1 Parametric Generators

Consider a particular execution of the generator in Figure 6.2, focusing on the calls to nextInt,
nextBool, and nextChar. The following sequence of calls will be our running example:

Call → result Context

random.nextInt(1, MAX_STRLEN)→ 3 Root: name length (Line 24)
random.nextChar()→ ‘f’ Root: name[0] (Line 27)
random.nextChar()→ ‘o’ Root: name[1] (Line 27)
random.nextChar()→ ‘o’ Root: name[2] (Line 27)
random.nextInt(MAX_CHILDREN)→ 2 Root: # children (Line 12)
random.nextInt(1, MAX_STRLEN)→ 3 Child 1: name length (Line 24)
random.nextChar()→ ‘b’ Child 1: name[0] (Line 27)
random.nextChar()→ ‘a’ Child 1: name[1] (Line 27)
random.nextChar()→ ‘r’ Child 1: name[2] (Line 27)
random.nextInt(MAX_CHILDREN)→ 0 Child 1: # children (Line 12)
random.nextBool()→ True Child 1: embed text? (Line 17)
random.nextInt(1, MAX_STRLEN)→ 2 Child 1: text length (Line 24)
random.nextChar()→ ‘H’ Child 1: text[0] (Line 27)
random.nextChar()→ ‘i’ Child 1: text[1] (Line 27)
random.nextInt(1, MAX_STRLEN)→ 3 Child 2: name length (Line 24)
random.nextChar()→ ‘b’ Child 2: name[0] (Line 27)
random.nextChar()→ ‘a’ Child 2: name[1] (Line 27)
random.nextChar()→ ‘z’ Child 2: name[2] (Line 27)
random.nextInt(MAX_CHILDREN)→ 0 Child 2: # children (Line 12)
random.nextBool()→ False Child 2: embed text? (Line 17)
random.nextBool()→ False Root: embed text? (Line 17)

The XML document produced when the generator makes this sequence of calls looks like:

x1 = <foo><bar>Hi</bar><baz /></foo>.

In order to produce random typed values, the implementations of random.nextInt,
random.nextChar, and random.nextBool rely on a pseudo-random source of untyped bits.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 81

We call these untyped bits parameters. The parameter sequence for the example above,
annotated with the calls which consume the parameters, is:

σ1 = 0000 0010︸ ︷︷ ︸
nextInt(1,...)→3

0110 0110︸ ︷︷ ︸
nextChar()→‘f’

. . . 0000 0000︸ ︷︷ ︸
nextBool()→False

.

For example, here the function random.nextInt(a, b) consumes eight bit parameters as a
byte, n, and returns n% (b− a) + a as a typed integer. For simplicity of presentation, we
show each random.nextXYZ function consuming the same number of parameters, but they
can consume different numbers of parameters.

We can now define a parametric generator. A parametric generator is a function that
takes a sequence of untyped parameters such as σ1—the parameter sequence—and produces a
structured input, such as the XML document x1. A parametric generator can be implemented
by simply replacing the underlying implementation of Random to consult not a pseudo-random
source of bits, but instead, a fixed sequence of bits provided as the parameters.

While this is a very simple change, making generators deterministic and explicitly depen-
dent on a fixed parameter sequence enables us to make the following two key observations:

1. Every untyped parameter sequence corresponds to a syntactically valid input—assuming
the generator only produces syntactically valid inputs.

2. Bit-level mutations on untyped parameter sequences correspond to high-level structural
mutations in the space of syntactically valid inputs.

Observation (1) is true by construction. The random.nextXYZ functions are implemented to
produce correctly-typed values no matter what bits the pseudo-random source–or in our case,
the parameters—provide. Every sequence of untyped parameter bits correspond to some
execution path through the generator, and therefore every parameter sequence maps to a
syntactically valid input.

To illustrate observation (2), consider the following parameter sequence, σ2, produced by
mutating just a few bits of σ1:

σ2 = 0000 0010 0101 0111︸ ︷︷ ︸
nextChar()→‘W’

. . . 0000 0000.

As indicated by the annotation, all this parameter-sequence mutation does is change the
value returned by the second call to random.nextChar() in our running example from ‘f’ to
‘W’. So the generator produces the following test-input:

x2 = <Woo><bar>Hi</bar><baz /></Woo>.

Notice that this generated input is still syntactically valid, with “Woo” appearing both
in the start and end tag delimiters. This is because the XML generator uses an internal
DOM tree representation that is only serialized after the entire tree is generated. We get

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 82

this syntactic-validity-preserving structural mutation for free, by construction, and without
modifying the underlying generators.

Mutating the parameter sequence can also result in more drastic high-level mutations.
Suppose that σ1 is mutated to influence the first call to random.nextInt(MAX_CHILDREN) as
follows:

σ3 = 0000 0010 . . . 0000 0001︸ ︷︷ ︸
nextInt(MAX_CHILDREN)→1

. . . 0000 0000.

Then the root node in the generated input will have only one child:

x3 = <foo><bar>Hi</bar>�</foo>

(� designates the absence of <baz />). Since the remaining values in the untyped parameter
sequence are the same, the first child node in x3—<bar>Hi</bar>—is identical to the one in
x1. The parametric generator thus enables a structured mutation in the DOM tree —here,
deleting a sub-tree—by simply changing a few values in the parameter sequence. Note that
this change results in fewer random.nextXYZ calls by the generator; the unused parameters
in the tail of the parameter sequence will simply be ignored by the parametric generator.

As a final example, suppose σ1 is mutated as follows:

σ4 = 0000 0011 . . . 0000 0001︸ ︷︷ ︸
nextBool()→True

0000 0000︸ ︷︷ ︸
nextInt(1,...)→1

.

Notice that after this mutation, the last 8 parameters are consumed by nextInt instead of
by nextBool (ref. σ1). But, note that nextInt still returns a valid typed value even though
the parameters were originally consumed by nextBool.

At the input level, this modifies the call sequence so that the decision to embed text
in the second child of the document becomes True. Then, the last parameters are used by
nextInt to choose an embedded text length of 1 character. However, to generate the content
of the embedded text, the generator needs more parameter values than σ4 contains. Zest
deals with this by appending pseudo-random values to the end of the parameter sequence on
demand. It uses a fixed random seed to maintain determinism. For example, suppose the
sequence is extended as:

σ′4 = 0000 . . . 0001 0000 0000 0100 1100︸ ︷︷ ︸
nextChar()→‘H’

0000 0000︸ ︷︷ ︸
nextBool()→False

Then the parametric generator would produce the test-input:

x4 = <foo><bar>Hi</bar><baz>H</baz></foo>.

6.2.2 Feedback-Directed Parameter Search

Algorithm 7 shows the Zest algorithm, which guides parametric generators to produce inputs
that get deeper into the semantic analysis stage of programs using validity-guided parameter

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 83

Algorithm 7 The Zest algorithm, pairing parametric generators with validity-guided pa-
rameter search. Additions to Algorithm 1 highlighted in grey.
Input: program p, generator q
Output: a corpus of automatically generated test inputs
1: S ← {random }

2: g ← makeParametric(q)

3: totalCoverage←initCoverage(g(S))

4: validCoverage←initCoverage({g(s)|s ∈ S ∧ p(g(s)).result = Valid})
5: repeat
6: for param in S do
7: with probability fuzzProb(param) do
8: for 1 ≤ i ≤ numChildren(param) do
9: candidate ← mutate(param, S)
10: input← g(candidate)
11: coverage, result ← Execute(p, input)
12: if coverage 6⊆ totalCoverage then
13: S ← S ∪ {candidate}
14: totalCoverage← totalCoverage ∪ coverage
15: if result = Valid and coverage 6⊆ validCoverage then
16: S ← S ∪ {candidate}
17: validCoverage← validCoverage ∪ coverage

18: until given time budget expires
19: return g(S)

search. Zest builds on Algorithm 1, but acts on parameter sequences rather than the raw
inputs to the program and keeps track of the coverage achieved by semantically valid inputs.
Again, the differences between Algorithms 7 and 1 are highlighted in grey.

Like Algorithm 1, Zest is provided a program under test p. Unlike Algorithm 1 which
assumes seed inputs, the set of parameter sequences is initialized with a random sequence
(Line 1). Additionally, Zest is provided a generator q, which it automatically converts to a
parametric generator g (Line 2). In an abuse of notation, we use g(S) to designate the set of
inputs generated by running g over the parameter sequences in S, i.e. g(S) = {g(s) : s ∈ S}.

Along with totalCoverage, which maintains the set of coverage points in p covered by all
inputs in g(S), Zest also maintains validCoverage, the set of coverage points covered by the
(semantically) valid inputs in g(S). This is initialized at Line 4.

New parameter sequences are generated using standard CGF mutations at Line 9; see
Section 6.3 for details. New inputs are generated by running the sequences through the
parametric generator (Line 10). The program p is then executed on each input. During the
execution, in addition to code-coverage and failure feedback, the algorithm records in the

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 84

variable result whether the input is valid or not. An input is considered invalid if it leads to
a violation of any assumption in the test harness (e.g. Line 3 in Figure 6.1), which is how we
capture application-specific semantic validity. More generally, the exit code of the program
under test can be used to determine validity.

As in Algorithm 1, a newly generated parameter sequence is added to the set S at
Lines 12–14 of Algorithm 7 if the corresponding input produces new code coverage. Further,
if the corresponding input is valid and covers a coverage point that has not been exercised
by any previous valid input, then Zest adds the parameter sequence to S and updates the
cumulative valid coverage variable validCoverage at Lines 15–17. Adding these new-coverage
valid parameter sequences to S ensures Zest keeps mutating valid inputs that exercise core
program functionality. This should bias the search towards generating even more valid inputs,
and in turn, increase code coverage in the semantic analysis stage.

6.3 Implementation
Zest is implemented on top of the open-source JQF platform [148], which provides a framework
for specifying algorithms for feedback-directed fuzz testing of Java programs. JQF dynamically
instruments Java classes in the program under test using the ASM bytecode-manipulation
framework [146] via a javaagent. The instrumentation allows JQF to observe code coverage
events, e.g. the execution of program branches and invocation of virtual method calls.

Fuzzing “guidances” can plug into JQF to provide inputs and register callbacks for listening
to code coverage events. JQF includes the guidances AFLGuidance and NoGuidance, which we
use in our evaluation in Section 6.4. AFLGuidance uses a proxy program to exchange program
inputs and coverage feedback with the external AFL tool; the overhead of this inter-process
communication is a negligible fraction of the test execution time. NoGuidance randomly
samples inputs from junit-quickcheck [98] generators without using coverage feedback. We
implement ZestGuidance in JQF, which biases these generators using Algorithm 7.

junit-quickcheck provides a high-level API for making random choices in the generators,
such as generating random integers or selecting random items from a collection. All these
methods indirectly rely on the underlying JDK method java.util.Random.next(int bits),
which returns bits from a pseudo-random stream. Zest replaces this pseudo-random stream
with a stored parameter sequence, which it extends on-demand.

Since java.util.Random polls byte-sized chunks from its underlying stream of pseudo-
random bits, Zest performs mutations on the parameter sequences (Algorithm 7, Line 9) at
the byte-level. The basic mutation procedure is as follows: (1) choose a random number m of
mutations to perform sequentially on the original sequence, (2) for each mutation, choose a
random length ` of bytes to mutate and an offset k at which to perform the mutation, and
(3) replace the bytes from positions [k, k + `) with ` randomly chosen bytes. The random
numbers m and ` are chosen from a geometric distribution, which mostly provides small
values without imposing an upper bound. We set the mean of this distribution to 4, since
4-byte ints are the most commonly requested random value.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 85

6.4 Evaluation
We evaluate Zest by measuring its effectiveness in testing the semantic analysis stages
of five benchmark programs. We compare Zest with two baseline techniques: AFL and
junit-quickcheck, referred to as simply QuickCheck. AFL is known to excel in exercising
the syntax analysis stage via coverage-guided fuzzing of raw input strings. We use version
2.52b, skipping the deterministic mutation stages. QuickCheck uses the same generators as
Zest but only performs random sampling, without any feedback from the programs under
test. Specifically, we evaluate the three techniques on two fronts: (1) the amount of code
coverage achieved in the semantic analysis stage after a fixed amount of time, and (2) their
effectiveness in triggering bugs in the semantic analysis stage.

Benchmarks The evaluation uses following Java benchmarks as test program:

1. Apache Maven [9] (99k LoC): The test reads a pom.xml file and converts it into an
internal Model structure. An input is valid if it is a valid XML document conforming
to the POM schema.

2. Apache Ant [7] (223k LoC): Similar to Maven, this test reads a build.xml file and
populates a Project object. An input is considered valid if it is a valid XML document
and if it conforms to the schema expected by Ant.

3. Google Closure [10] (247k LoC) statically optimizes JavaScript code. The test driver
invokes the Compiler.compile() on the input with the SIMPLE_OPTIMIZATIONS flag,
which enables constant folding, function inlining, dead-code removal, etc.. An input is
valid if Closure returns without error.

4. Mozilla Rhino [11] (89k LoC) compiles JavaScript to Java bytecode. The test driver
calls Context.compileString(). An input is valid if Rhino returns a compiled script.

5. Apache’s Bytecode Engineering Library (BCEL) [8] (61k LoC) provides an API to
parse, verify and manipulate Java bytecode. Our test driver takes as input a .class
file and uses the Verifier API to perform 3-pass verification of the class file according
to the Java 8 specification [121]. An input is valid if BCEL finds no errors up to Pass
3A verification.

Experimental Setup We make the following design decisions in our experiments.
Duration: We run each test-generation experiment for 3 hours. Researchers have used

various timeouts to evaluate random test generation tools, from 2 minutes [147, 75] to 24
hours [46, 106]. We chose 3 hours as a middle ground. Our experiments justify this choice, as
we found that semantic coverage plateaued after 2 hours in almost all experiments. Specifically,
the number of semantic branches covered by Zest increased by less than 1% in the last hour
of the runs.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 86

Table 6.1: Description of benchmarks with prefixes of class/package names corresponding to
syntactic and semantic analyses.

Name Version Syntax Analysis Classes Semantic Analysis Classes

Maven 3.5.2 org/codehaus/plexus/util/xml org/apache/maven/model
Ant 1.10.2 com/sun/org/apache/xerces org/apache/tools/ant
Closure v20180204 com/google/javascript/jscomp/parsing com/google/javascript/jscomp/[A-Z]
Rhino 1.7.8 org/mozilla/javascript/Parser org/mozilla/javascript/(optimizer|CodeGenerator)
BCEL 6.2 org/apache/bcel/classfile org/apache/bcel/verifier

Repetitions : Due to the non-deterministic nature of random testing, the results may vary
across multiple repetitions of each experiment. We therefore run each experiment 20 times
and report statistics across the 20 repetitions.

Seeds and Dictionaries : To bootstrap AFL, we need to provide some initial seed inputs.
There is no single best strategy for selecting initial seeds [162].

Researchers have found success using varying strategies ranging from large seed corpora
to single empty files [106]. In our evaluation, we provide AFL one valid seed input per
benchmark that covers various domain-specific semantic features. For example, in the Closure
and Rhino benchmarks, we use the entire React.JS library [12] as a seed.

We also provide AFL with dictionaries of benchmark-specific strings (e.g. keywords, tag
names) to inject into inputs during mutation. The generator-based tools Zest and QuickCheck
do not rely on meaningful seeds.

Generators : Zest and QuickCheck use hand-written input generators. For Maven and Ant,
we use an XML document generator similar to Figure 6.2, of around 150 lines of Java code.
It generates strings for tags and attributes by randomly choosing strings from a list of string
literals scraped from class files in Maven and Ant. For Closure and Rhino, we use a generator
for a subset of JavaScript that contains about 300 lines of Java code. The generator produces
strings that are syntactically valid JavaScript programs. Finally, the BCEL generator (~500
LoC) uses the BCEL API to generate JavaClass objects with randomly generated fields,
attributes and methods with randomly generated bytecode instructions. All generators were
written by Rohan Padhye in less than two hours each. Although these generators produce
syntactically valid inputs, no effort was made to produce semantically valid inputs; doing so
can be a complex and tedious task [181].

All experiments are conducted on a machine with Intel(R) Core(TM) i7-5930K 3.50GHz
CPU and 16GB of RAM running Ubuntu 18.04.

Syntax and Semantic Analysis Stages in Benchmarks Zest is specifically designed
to exercise the semantic analysis stages of programs. To evaluate Zest’s effectiveness in this
regard, we manually identify the components of our benchmark programs which correspond
to syntax and semantic analysis stages. Table 6.1 lists prefix patterns that we match on the
fully-qualified names of classes in our benchmarks to classify them in either stage. Section 6.4.1

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 87

0 1 2 3
Time (hrs)

0

5

10

15

%
 S

em
an

tic
 B

ra
nc

he
s

Co
ve

re
d

Zest
AFL
QuickCheck

(a) maven

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hrs)

0

1

2

3

%
 S

em
an

tic
 B

ra
nc

he
s

Co
ve

re
d

Zest
AFL
QuickCheck

(b) ant

0 1 2 3
Time (hrs)

0

5

10

15

%
 S

em
an

tic
 B

ra
nc

he
s

Co
ve

re
d

Zest
AFL
QuickCheck

(c) closure

0 1 2 3
Time (hrs)

0

10

20

30

%
 S

em
an

tic
 B

ra
nc

he
s

Co
ve

re
d

Zest
AFL
QuickCheck

(d) rhino

0 1 2 3
Time (hrs)

0

5

10

15

20

%
 S

em
an

tic
 B

ra
nc

he
s

Co
ve

re
d

Zest
AFL
QuickCheck

(e) bcel

Figure 6.3: Percent coverage of all branches in semantic analysis stage of the benchmark
programs. Lines designate means and shaded regions 95% confidence intervals.

evaluates the code coverage achieved within the classes identified as belonging to the semantic
analysis stage. Section 6.4.2 evaluates the bug-finding capabilities of each technique for bugs
that arise in the semantic analysis classes. Section 6.5 discusses some findings in the syntax
analysis classes, whose testing is outside the scope of Zest.

6.4.1 Coverage of Semantic Analysis Classes

Instead of relying on our own instrumentation, we use a third party tool, the widely used
Eclemma-JaCoCo [96] library, for measuring code coverage in our Java benchmarks. Specifi-
cally, we measure branch coverage within the semantic analysis classes from Table 6.1; we
refer to these branches as semantic branches for short.

To approximate the coverage of the semantic branches covered via the selected test drivers,
we report the percentage of total semantic branches covered. Note, however, that this is
a conservative, i.e. low, estimate. This is because the total number of semantic branches
includes some branches not reachable from the test driver. We make this approximation
as it is not feasible to statically determine the number of branches reachable from a given
entry point, especially in the presence of virtual method dispatch. We expect the percent of
semantic branches reachable from our test drivers to be much lower than 100%; therefore,

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 88

the relative differences between coverage are more important than the absolute percentages.
Figure 6.3 plots the semantic branch coverage achieved by each of Zest, AFL, and

QuickCheck on the five benchmark programs across the 3-hour-long runs. In the plots, solid
lines designate means and shaded areas designate 95% confidence intervals across the 20
repetitions. Interestingly, the variance in coverage is quite low for all techniques except
QuickCheck. Since AFL is initialized with valid seed inputs, its initial coverage is non-zero;
nonetheless, it is quickly overtaken by Zest, usually within the first 5 minutes.

Zest significantly outperforms baseline techniques in exercising branches within the
semantic analysis stage, achieving statistically significant increases for all benchmarks. Zest
covers as much as 2.81× as many semantic branches covered by the best baseline technique
for Maven (Figure 6.3a). When looking at our JavaScript benchmarks, we see that Zest’s
advantage over QuickCheck is more slight in Rhino (Figure 6.3b) than in Closure (Figure 6.3c).
This may be because Closure, which performs a variety of static code optimizations on
JavaScript programs, has many input-dependent paths. Rhino, on the other hand, directly
compiles valid JavaScript to JVM bytecode, and thus has fewer input-dependent paths for
Zest to discover through feedback-driven parameter search.

Note that in some benchmarks AFL has an edge in coverage over QuickCheck (Fig-
ure 6.3a, 6.3b, 6.3e), and vice-versa (Figure 6.3c, 6.3d). For BCEL, this may be because the
input format is a compact syntax, on which AFL excels. The difference between the XML
and JavaScript benchmarks may be related to the ability of randomly-sampled inputs from
the generator to achieve broad coverage. It is much more likely for a random syntactically
valid JavaScript program to be semantically valid than a random syntactically valid XML
document to be a valid POM file, for example. The fact that Zest dominates the baselines in
all these cases suggests that it is more robust to generator quality than QuickCheck.

6.4.2 Bugs in the Semantic Analysis Classes

Each of Zest, AFL, and QuickCheck keep track of generated inputs which cause test failures.
Ideally, for any given input, the test program should either process it successfully or reject the
input as invalid using a documented mechanism, such as throwing a checked ParseException
on syntax errors. Test failures correspond either to assertion violations or to undocumented
run-time exceptions being thrown during test execution, such as a NullPointerException.
Test failures can occur during the processing of either valid or invalid inputs; the latter can
lead to failures within the syntax or semantic analysis stages themselves.

Across all our experiments, the various fuzzing techniques generated over 95,000 failing
inputs that correspond to over 3,000 unique stack traces. We manually triaged these failures
by filtering them based on exception type, message text, and source location, resulting in a
corpus of what we believe are 20 unique bugs. Further, we classify each bug as syntactic or
semantic, depending on whether the corresponding exception was raised within the syntactic
or semantic analysis classes, respectively (ref. Table 6.1). Of the 20 unique bugs we found,
10 were syntactic and 10 were semantic.

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 89

Table 6.2: The 10 new bugs found in the semantic analysis stages of benchmark programs.
Zest, AFL, and QuickCheck (QC) are evaluated on the mean time to find (MTF) each bug
across the 20 3-hour experiments as well as their reliability, which is the percentage of the 20
experiments in which the bug was triggered at least once. For each bug, the circled tool is
statistically significantly more effective at finding the bug than uncircled tools.

Bug ID Exception Tool Mean Time to Find (shorter is better) Reliability

ant B IllegalStateException
Zest (99.45 sec) 100%
AFL (6369.5 sec) 10%
QC (1208.0 sec) 10%

closure C NullPointerException
Zest (8.8 sec) 100%
AFL (5496.25 sec) 20%
QC (8.8 sec) 100%

closure D RuntimeException
Zest (460.42 sec) 60%
AFL 7 0%
QC 7 0%

closure U IllegalStateException
Zest (534.0 sec) 5%
AFL 7 0%
QC 7 0%

rhino G IllegalStateException
Zest (8.25 sec) 100%
AFL (5343.0 sec) 20%
QC (9.65 sec) 100%

rhino F NullPointerException
Zest (18.6 sec) 100%
AFL 7 0%
QC (9.85 sec) 100%

rhino H ClassCastException
Zest (245.18 sec) 85%
AFL 7 0%
QC (362.43 sec) 35%

rhino J VerifyError
Zest (94.75 sec) 100%
AFL 7 0%
QC (229.5 sec) 80%

bcel O ClassFormatException
Zest (19.5 sec) 100%
AFL (5.85 sec) 100%
QC (142.1 sec) 100%

bcel N AssertionViolatedException
Zest (19.32 sec) 95%
AFL (1082.22 sec) 90%
QC (15.0 sec) 5%

We evaluate Zest on semantic bug discovery. Table 6.2 enumerates the 10 semantic bugs
found across our benchmark programs. Each bug has a unique ID—represented as a circled
letter—for ease of discussion. The table also lists the type of exception thrown for each bug.
To evaluate the effectiveness of each of the three techniques in discovering these bugs, we
use two metrics. First, we are interested in knowing whether a given technique reliably finds
the bug across repeated experiments. We define reliability as the percentage of the 20 runs

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 90

(of 3-hours each) in which a given technique finds a particular bug at least once. Second,
we measure the mean time to find (MTF) the first input that triggers the given bug, across
the repetitions in which it was found. Naturally, a shorter MTF is desirable. For each bug,
we circle the name of the technique that is the most effective in finding that bug: has the
highest reliability, or if there is a tie in reliability, then the shortest MTF.

The table indicates that Zest is the most effective technique in finding 8 of the 10 bugs;
in the remaining two cases (F and O), Zest still finds the bugs with 100% reliability and
in less than 20 seconds on average. In fact, Zest finds all the 10 semantic bugs in at most
10 minutes on average; 7 are found within the first 2 minutes on average. In contrast, AFL
requires more than one hour to find 3 of the bugs (B , C , G), and does not find the other
5 within the 3-hour time limit. This is likely because AFL’s mutation strategy results in
much fewer inputs that reach the semantic analysis stage. QuickCheck discovers 8 of the 10
semantic bugs, but since it relies on random sampling alone, its reliability is often low. For
example, QuickCheck discovers B only 10% of the time, and N only 5% of the time; Zest
discovers them 100% and 95% of the time, respectively. Overall, Zest is clearly the most
effective technique in discovering bugs in the semantic analysis classes of our benchmarks.

Case studies In Ant, B is triggered when the input build.xml document contains both
an <augment> element and a <target> element inside the root <project> element, but when
the <augment> element is missing an id attribute. This incomplete semantic check leads to
an IllegalStateException for a component down the pipeline which tries to configure an
Ant task. Following our bug report, this issue has been fixed starting Ant version 1.10.6.

In Rhino, J is triggered by a semantically valid input. Rhino successfully validates the
input JavaScript program and then compiles it to Java bytecode. However, the compiled
bytecode is corrupted, which results in a VerifyError being generated by the JVM. AFL
does not find this bug at all. The Rhino developers confirmed the bug.

In Closure, C is an NPE that is triggered in its dead-code elimination pass when handling
arrow functions that reference undeclared variables, such as "x => y". The generator-based
techniques always find this bug and within just 8.8 seconds on average, while AFL requires
more than 90 minutes and only finds it in 20% of the runs. The Closure developers fixed this
issue after our report.

D is a bug in Closure’s semantic analysis of variable declarations. The bug is triggered
when a new variable is declared after a break statement. Although everything right after
a break statement is unreachable code, variable declarations in JavaScript are hoisted and
thus cannot be removed. Zest is the only technique that finds this bug, with inputs like:

while ((l_0)){
while ((l_0)){
if ((l_0)) { break;;var l_0;continue }
{ break;var l_0 }

}
}

CHAPTER 6. ZEST: USING GENERATORS FOR HIGHER-LEVEL MUTATIONS 91

U was the most elusive bug that we encountered. Zest is the only technique that finds it
and it does so in only one of the 20 runs. An exception is triggered by the following input:

((o_0) => (((o_0) *= (o_0))
< ((i_1) &= ((o_0)((((undefined)[(((i_1, o_0, a_2) => {

if ((i_1)) { throw ((false).o_0) }
})((y_3)))])((new (null)((true))))))))))

The issue is perhaps rooted in Closure’s attempt to evaluate undefined[undefined](...) at
compile time. The developers acknowledged the bug. These complex examples demonstrate
both the power of Zest’s generators, which reduce the search space to syntactically valid
inputs, as well as the effectiveness of its validity-guided parameter search.

6.5 Discussion
Zest and plain generator-based fuzzing tools such as QuickCheck make use of generators in
order to synthesize inputs that are syntactically valid by construction. By design, these tools
do not exercise code paths corresponding to parse errors in the syntax analysis stage. In
contrast, AFL performs mutations directly on raw input strings. Byte-level mutations on raw
inputs usually lead to inputs that do not parse. Consequently, AFL spends most of its time
testing error paths within the syntax analysis stages.

In our experiments, AFL achieved the highest coverage within the syntax analysis classes
of our benchmarks, 1.1×-1.6× higher than Zest’s syntax analysis coverage. Further, AFL
discovered 10 syntactic bugs in addition to the bugs enumerated in Table 6.1: 3 in Maven, 6
in BCEL, and 1 in Rhino. These bugs were triggered by syntactically invalid inputs, which
Zest and QuickCheck do not produce.

This is a notable contrast between Zest and FairFuzz, the latter of which still generates
syntactically invalid inputs, as discussed in Chapter 5. One approach to taking the best of
both worlds would be to mainly conduct Zest’s mutation strategy, but occasionally perform
the byte-level mutation strategy in order to explore the syntactic analysis stages of programs.

Overall, this result, paired with the results from Chapter 5, further highlights the key
observation of Part II: more structured input mutations are required to explore the so-called
“deeper” stages of programs, which often contain the core logic of the program under test.
This chapter also introduced the notion guided generator-based fuzzing: Zest is effectively
generator-based fuzzing guided by coverage and validity. The next and final part of this
dissertation dives deeper into the power of guided generator-based fuzzing, and its applicability
to search problems beyond testing.

92

Part III

Distribution Tuning of Generators

93

Chapter 7

RLCheck: Valid Inputs via
Reinforcement Learning

Chapter 6 illustrated how integrating generator-based and coverage-guided fuzzing enabled
better coverage of program under test’s core logic. From the lens of coverage-guided fuzzing,
bringing in the input generator enabled higher-level mutations, and thus, broader exploration.

However, there is another lens from which to view Zest: that of guided generator-based
fuzzing. Generator-based fuzzing, also called property-based testing, is a popular approach
to validate the core logic of the program. Unlike generic coverage-guided fuzzing, which is
typically used to validate that a program does not violate universal program correctness oracles
(e.g., no array-out-of-bounds reads), generator-based fuzzing is typically used to validate a
particular logical property of the program under test, i.e. that ∀x ∈ X : P (x)⇒ Q(x).

Recall from the introduction that using a generator-based fuzzer requires two main steps.
First, the user needs to write a parameterized test driver, i.e., the programmatic representation
of P (x)⇒ Q(x). Second, the user needs to specify the generator for x ∈ X . A generator for
X is a non-deterministic program returning inputs x ∈ X .

For this testing to be effective, the generator must produce a diverse set of inputs x ∈ X
satisfying the validity constraint P (x). This gives rise to a central conflict in generator-based
fuzzing [111]. On the one hand, a simple generator is easier for the user to write, but not
necessarily effective. On the other hand, a generator that produces diverse valid inputs is
good for testing, but very tedious to write. Further, generators specialized to a particular
validity function P (x) cannot be reused to test other properties on X with different validity
constraints, say P ′(x). We thus want to solve the following problem: given a generator G of
inputs x ∈ X and a validity function P (x), automatically guide the generator to produce a
variety of inputs x satisfying P (x).

In the previous chapter, we saw an approach that utilized coverage-guided fuzzing with
additional semantic validity feedback to create more inputs x satisfying P (x). In this
chapter, we look at the problem with a more fine-grained approach. First, we formalize
the problem of guiding the random choices made by a generator for effective testing as the
diversifying guidance problem. Second, we notice that the diversifying guidance problem

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 94

is similar to problems solved by reinforcement learning: given a sequence of prior choices
(state), what is the next choice (action) that the generator should make, in order to maximize
the probability of generating a new x satisfying P (x) (get high reward)? We thus explore
whether reinforcement learning can solve the diversifying guidance problem. We present an
on-policy table-based approach, RLCheck [163], which adapts its choices on-the-fly during
testing time to quickly produce a diversity of inputs x satisfying P (x).

7.1 Motivation
Let us first consider a concrete example that illustrates the problem solved by RLCheck .

The test driver in Figure 7.1, test_insert (Line 13), takes a binary tree tree and an
integer to_add as input. If tree is a binary search tree (Line 14), the driver inserts to_add
into tree (Line 15) and asserts that tree is still a binary search tree after the insert (Line 16).
The assume at Line 14 terminates the test silently if tree is not a binary search tree. The
assert at Line 16 is violated if tree is not a binary search tree after the insertion. Thus, the
test driver implements P (x)⇒ Q(x) for the validity constraint P (x) =“x is a binary search
tree” and the post-condition Q(x) =“after inserting to_add, x is a binary search tree”—by
raising an assertion failure when P (x)⇒ Q(x) is falsified.

The user must now specify how to generate random inputs for this driver. To do this, they
must write or select a generator, a non-deterministic function that returns a random input of
a given type each time it is executed. Generator-based fuzzing frameworks typically provide
generators for basic types such as primitive types and predefined containers of primitives (e.g.
generate_int in Figure 7.1). If the test function takes a user-defined data structure, such as
the tree in Figure 7.1, Line 13, the user writes their own generator. For many types, writing
a basic generator is fairly straightforward. In Figure 7.1, generate_tree generates a random
binary tree by (1) choosing a value for the root node (Line 4), (2) choosing whether or not to
add a left child (Line 6) and recursively calling generate_tree (Line 7), and (3) choosing
whether or not to add a right child (Line 8) and recursively calling generate_tree (Line 9).
We have deliberately kept this generator simple in order to have a small motivating example.

The user can now run test_insert on many different trees to try and validate P (x)⇒
Q(x). The assume in Line 14 effectively filters out invalid (non-BST) inputs. Unfortunately,
this rejection sampling is not an effective strategy if P (x) is too strict. If the generator has
no knowledge of P (x), it will, first of all, very rarely generate valid inputs. So, in a fixed
time budget, very few valid inputs will be generated. The second issue is that the generator
may not generate very diverse valid inputs. That is, the only valid inputs the generator
has a non-negligible probability of generating may be very small valid inputs; these will not
exercise a variety of behaviors in the code under test. For example, out of 1000 generated
binary trees, the generator in Figure 7.1 only generates 20 binary search trees of size ≥ 3,
and only one binary search tree of size 4 and 5, respectively. Overall, the generator has very
low probability of generating complex valid inputs, which greatly decreases the efficacy of the
generator-based fuzzing.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 95

1 from generators import generate_int
2

3 def generate_tree(depth =0):
4 value = random.Select ([0, 1, ..., 10])
5 tree = BinaryTree(value)
6 if depth < MAX_DEPTH and random.Select ([True, False]):
7 tree.left = generate_tree(depth +1)
8 if depth < MAX_DEPTH and random.Select ([True, False]):
9 tree.right = generate_tree(depth +1)

10 return tree
11

12 @given(tree = generate_tree , to_add = generate_int)
13 def test_insert(tree , to_add):
14 assume(is_BST(tree))
15 BST_insert(tree , to_add)
16 assert(is_BST(tree))

Figure 7.1: Test driver and generator for generator-based fuzzing. generate_tree generates
a random binary tree, and test_insert tests whether inserting a given integer into a given
tree preserves the binary search tree property. random.Select(D) returns a random value
from D.

Fundamentally, the input generated by a generator is governed by the choices taken at
various choice points. For example, in Figure 7.1, at Line 4, the generator makes a choice
of which integer value to put in the current node, and it chooses to make a left or right
child at Lines 6 and 8, respectively. Depending on the prior sequence of choices taken by
the generator, only a subset of the possible choices at a particular choice point may result
in a valid input. For example, if P (x) is the binary search tree invariant, when generating
the right child of a node with value n, the only values for the child node that can result in
a valid BST are those greater than n. While narrowing the choice space in this manner is
straightforward for BSTs, manually encoding these restrictions is tedious and error-prone for
complex real-world validity functions.

Overall, we see that the problem of guiding G to produce many valid inputs boils down
to the problem of narrowing the choice space at each choice point in the generator. We call
this the diversifying guidance problem. We formalize this problem in Section 7.2 and propose
a reinforcement-learning-based solution in Section 7.3.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 96

7.2 Problem Definition
In generator-based fuzzing, a generator G is a non-deterministic program returning elements
of a given space X . For example, in Figure 7.1, X is the set of binary trees of depth up to
MAX_DEPTH with nodes having integer values between 0–10, inclusive.

In particular, a generator G’s non-determinism is entirely controlled by the values at
returned at different choice points in the generator. A choice point p is a tuple (`, C) where
` ∈ L is a program location and C ⊆ C is a finite domain of choices. For example, there are
three choice points in the generator in Figure 7.1:

• (Line 4, [0, 1, ..., 10]): the choice of node value;

• (Line 6, [True, False]): whether to generate a left child; and

• (Line 8, [True, False]): whether to generate a right child.

During execution, each time the generator reaches a choice point (`, C), it makes a choice
c ∈ C. Every execution of the generator, and thus, every value produced by the generator,
corresponds to a sequence of choices made at these choice points, say c1, c2, . . . , cn.

For example, the execution through generate_tree in Figure 7.1 which produces the tree

2

1 3

corresponds to the following sequence of choices c1, c2, . . . c9:

Choice Index Choice Taken Choice Point

c1 2 (Line 4, [0, 1, ..., 10])
c2 True (Line 6, [True, False])
c3 1 (Line 4, [0, 1, ..., 10])
c4 False (Line 6, [True, False])
c5 False (Line 8, [True, False])
c6 True (Line 8, [True, False])
c7 3 (Line 4, [0, 1, ..., 10])
c8 False (Line 6, [True, False])
c9 False (Line 8, [True, False])

As the generator executes, each time it reaches a choice point p = (`, C), it will have
already made some choices c1, c2, . . . ck. Traditional random generators, like the one in
Figure 7.1, will simply choose a random c ∈ C at choice point p regardless of the prefix of
choices c1, c2, . . . ck.

Going back to our running example, suppose the generator has reached the choice point
choosing the value of the left child of 2, i.e. choosing what to put in the ? in this tree:

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 97

2

?

That is, the generator has made the choices [c1 =2, c2 =True], and must now choose a value
from 0−10 at the choice point in Line 4. The generator is equally likely to pick any number
in this range. Since only 2 of the 11 numbers from 0−10 are smaller than 2, it has at most
an 18% chance of producing a valid BST.

To increase the probability of generating valid inputs, the choice at this point should
be made not randomly, but according to a guide. In particular, according to a guide which
restricts the choice space to only those choices which can result in a binary search tree. First,
we formalize the concept making choices according to a guide.

Definition 18 (Following a Guide). We say that a generator G follows a guide γ : C∗ × P ×
N → C if: during its tth execution, given a sequence of past choices σ = c1, c2, . . . , ck, and
the current choice point p = (`, C), the generator G makes the choice γ(σ, p, t).

Suppose we have a validity function ν : X → {True, False} which maps elements output
by the generator to their validity. For example, is_BST is a validity function for the generator
in Figure 7.1. The validity guidance problem is the problem of finding a guide that leads the
generator to produce valid elements of X :

Definition 19 (Validity Guidance Problem). Let G be a generator producing elements in
space X . Let ν : X → {True, False} be a validity function. The validity guidance problem is
the problem of creating a guide γ such that:

if G follows γ, then ν(x) = True for any x ∈ X generated by G.

Note that a solution to the validity guidance problem is not necessarily useful for testing.
In particular, the guide γ could simply hard-code a particular sequence of choices through the
generator which results in a valid element x ∈ X . Instead, we want to generate valid inputs
with diverse characteristics. For example, we may want to generate unique valid inputs, or
valid inputs of different lengths, or valid inputs that exercise different execution paths in the
test program. We use the notation ξ(x) to denote an input’s characteristic of interest, such
as identity, length, or code coverage.

Definition 20 (diversifying guidance problem). Let G be a generator producing elements in
space X . Let ν : X → {True, False} be a validity function and ξ be a characteristic function.
The diversifying guidance problem is the problem of creating a guide γ such that:

if G follows γ and XT ⊆ X is the set of inputs generated by G after T executions,
|{ξ(x) : x ∈ XT ∧ ν(x)}| is maximized.

If ξ is the identity function, then a solution to the diversifying guidance problem is a
guide which maximizes the number of unique valid inputs generated.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 98

7.3 The RLCheck Algorithm
In this section we describe RLCheck , which solves the diversifying guidance problem by
using reinforcement learning to guide the choices. We begin with background on Monte
Carlo Control [173], and then describe how Monte Carlo Control can be used to solve the
diversifying guidance problem.

7.3.1 Reinforcement Learning

We first define a version of the problem solved by reinforcement learning which is relevant to
our task at hand. We use a slightly nontraditional notation for consistency with the previous
and next sections. What we call choices are typically called actions, and what we call a
learner is typically called an agent.

We assume an learner in some environment. The learner can perceive the state s of the
environment, where s is in some set of states S. At the first point in time, the learner is at
an initial state s0 ∈ S. At each point in time, the learner can make a choice c ∈ C which
will bring it to some new state s′ ∈ S. Eventually, the agent gets into some terminal state
sterm ∈ S, indicating the end of an episode. An episode is the sequence of (state, choice) pairs
made from the beginning of time up to the terminal state, i.e.:

e = (s0, c0), (s1, c1), . . . (sT , cT),

where the choice cT in state sT brings the learner to the terminal state sterm. Finally, we
assume we are given a reward r for a given episode e. A larger reward is better.

The problem to solve is the following. Given a state space S, choices C, and reward r,
find a policy π which maximizes the expected reward to the learner. That is, find a π such
that if the learner, at each state s ∈ S, makes the choice c = π(s), then the expected reward
Eπ,e[r] from the resulting episode e is maximized.

7.3.1.1 Monte Carlo Control

One approach to solving the policy-learning problem above is by on-policy Monte Carlo
Control [173]. The technique is on-policy because the policy the learner is optimizing is the
same one it is using to control its actions. Thus, a Monte Carlo Control learner L defines
both a policy π, where π(s) outputs a choice c for the given state s, as well as an update
procedure that improves π after each episode.

Algorithm 8 shows pseudocode for a Monte Carlo Control (MCC) learner L. In the
algorithm, we subscript the choice space, state space, and Q and counts with L to emphasize
these are independent for each MCC learner. We will drop the subscript L when talking
about a single learner. The basic idea is as follows.

We are trying to learn a policy π for state space S and choices C. The policy is ε-greedy:
with probability ε it makes random choices (Line 7), otherwise it makes the choices that will
maximize the value function, Q (Line 9).

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 99

Algorithm 8 A Monte Carlo Control learner L. Implements a policy πL and an update
function updateL which updates πL towards the optimal policy after each episode.
Input: choice space CL, state space SL, and εL
1: eL ← [] . initialize episode
2: for (s, c) ∈ SL × CL do
3: countsL[s, c]← 0
4: QL[s, c]← 0

5: procedure π(state s)
6: if uniformRandom() < ε then
7: c← random(C)
8: else
9: c← arg maxc∈CL QL[s, c] . break ties arbitrarily
10: eL ←append(eL, (s, c))
11: return choice
12: procedure update(reward r)
13: T ←len(eL)
14: for 0 ≤ t < T do
15: s, c← eL[t]

16: QL[s, c]← r+QL[s,c]·(countsL[s,c])
countsL[s,c]+1

. update avg. reward
17: countsL[s, c]← countsL[s, c] + 1

eL ← []

The value function Q[s, c] models the expected reward at the end of the episode from
the choice c in state s. It is initialized to 0 for each (s, c) pair (Line 4), so the first episode
follows a totally random policy. Q[s, c] is exactly the average rewards seen for each episode e
containing (s, c). Thus, at the end of each episode e, for each (s, c) ∈ e (Line 15), the running
average for the rewards observed with (s, c) is updated to include the new reward r (Line 16).

If the reward function producing r is stationary (i.e., fixed), this update procedure always
improves the policy. That is, if π is the original policy, and π′ is the policy after the update,
the expected reward from a learner following π′ is greater than or equal to the expected
reward from a learner following π. Sutton and Barto [173] provide a proof.

Algorithmic changes We make a few algorithmic changes on top of regular MCC. First,
we update an episode with a single reward r which is distributed to all state action pairs.
This is because, as will be seen in later sections, we only observe rewards at the end of an
episode i.e there are no intermediate rewards provided in our method. Second, we do not
use a discount factor on the reward r. This is because the sequence of choices in an input
generation, do not lend themselves to a natural absolute ordering. We cannot assume later
decisions are more important than earlier ones, which the discount factor implicitly does.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 100

7.3.2 RLCheck : MCC with Diversity Reward

We now return to our problem space of generating inputs with a generator G. Notice that
the guides we defined in Definition 18 have a similar function to the learners in Section 7.3.1:
given some state (σ, p, t), make a choice c.

This leads to the natural idea of implementing a guide as an MCC learner, rewarding
the learner with some r(x) after the generator produces input x. However, note that for the
guide, at each choice point p = (`, C), only a subset of choices C ⊆ C can be taken. Further,
each choice point has a unique task: for example, choosing whether to generate a left child
(Figure 7.3, Line 8) or a right child (Figure 7.3, Line 11). Thus, it is natural to define a
separate learner Lp for each choice point p, and call updateLp once for each learner after
every execution of the generator.

Note that Section 7.2 defined a guide as making choices based on a sequence σ ∈ C∗, while
Section 7.3.1 assumed a finite set of states S. Thus, we need a state abstraction function:

Definition 21 (State Abstraction Function). A state abstraction function A : C∗ → S for a
generator G is a deterministic function mapping an arbitrary-length choice sequence σ to a
finite state space S. A can rely on G to retrieve, for any ci ∈ σ, the choice point p at which
ci was made.

With this, we can define a Monte Carlo Control Guide:

Definition 22 (Monte Carlo Control Guide). Assume a generator G producing inputs in X ,
a state abstraction function A, and a reward function r : X → R. A Monte Carlo Control
Guide γ consists of a set of Monte Carlo control learners, {Lp}. Each learner Lp is associated
with a choice point p = (`, C) in G.

Let π(t)
Lp

be Lp’s policy after t− 1 calls to updateLp (ref. Algorithm 8). Then γ is:

γ(σ, p, t) = π
(t)
Lp

(A(σ)).

Finally, after G produces an input x, the guide γ calls updateLp(r(x)) for each learner Lp.

Now, to use a Monte Carlo Control guide (MCC guide) to solve the diversifying guidance
problem, only (1) the state abstraction function A (ref. Section 7.3.3) and (2) the reward
function r need to be specified. We construct a reward function as follows.

Let ν be the validity function and ξ the characteristic function of interest. If X be the set
of inputs previously generated by G, then let Ξ = {ξ(x′) : x′ ∈ X} be the set of characteristics
of all the previously generated inputs. Then the reward function r is:

r(x) =


Runique if ν(x) ∧ ξ(x) /∈ Ξ

Rvalid if ν(x) ∧ ξ(x) ∈ Ξ

Rinvalid if ¬ν(x)

(7.1)

Our technique, RLCheck , is thus: make a generator G follow an MCC Guide with the
reward function r above.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 101

Note that this reward function is non-stationary, that is, it is not fixed across time. If
X = ∅, then generating any x ∈ X such that ν(x) holds will result in the reward Runique;
re-generating the same x in the next step will only result in the reward Rvalid. This means
the assumptions underlying the classic proof of policy improvement do not hold [173]. Thus,
RLCheck ’s guide is not guaranteed to improve to an optimal policy. Instead, it practices a
form of online learning, adjusting its policy over time.

7.3.3 State Abstraction

A key element in enabling MCC to solve the diversifying guidance problem is the state
abstraction function (Definition 21), which determines the current state given a sequence of
past choices. The choice of A impacts the ability of the MCC guide to learn an effective policy.
On one extreme, if A collapses all sequences into the same abstract state (e.g., A(σ) = 0),
then a learner Lp essentially attempts to find a single best choice c ∈ CLp for choice point p,
regardless of state. On the other extreme, if A is the identity function (i.e., A(σ) = σ), then
the state space is infinite; so for every previously unseen sequence of choices σ, the learner’s
policy is random.

The ideal A is the abstraction function that maximizes expected reward. However,
computing such an A is not tractable, since it requires inverting an arbitrary validity
function ν(x). Instead, we apply the following heuristic: in many input generators, a good
representation for the state Sn after making the nth choice cn is some function of a past
subsequence of choices that influence the choice cn. The meaning of influence depends on
the type of input being generated and the nature of the validity function.

For example, on the left of Figure 7.2 is a partially generated binary tree. On the right
are the choices made in the binary-tree generator (ref. Fig. 7.1) leading to this partial tree
(c1 = 2, c2 = True, c3 = 1, c4 = False, c5 = False, c6 = True), arranged by influence. A
choice in the construction of a child node is influenced by choices constructing its parent.

With this influence heuristic, the best value for the next choice c7, which determines the
value assigned to the right child, should depend on the choice c1 (which decided that the root
node had value 2) and the choice c6 (which made the decision to insert a right child). The
best value for this choice c7 does not necessarily depend on choices c2–c5, which were involved
in the creation of the left sub-tree. Therefore, the state S6, in which the choice c7 is to be
made, can be represented as a sequence [fv(c1), fr(c6)]. Here, fv is a function associated c1’s
choice point (the node-value choice point at Line 4 of Fig. 7.1) and fr is a function associated
with c6’s choice point (the right-child choice point at Line 8 of Fig. 7.1). In Figure 7.2, the
state S6 after applying these functions is [2, R]; we will define the functions fv and fr for
this figure later in this section.

An additional consideration when representing state as a sequence derived from past
choices is that such sequences can become very long. We need to make sure the state space is
finite. Again, a reasonable heuristic is to use a trimmed representation of the sequence, which
incorporates information from up to the last w choices that influence the current choice. w is
a fixed integer that determines the size of a sliding window.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 102

2

1 ?

c1 = 2

c2 = True

c3 = 1

c4 = False c5 = False

c6 = True

c7 =?

S1 = 2

S2 = 2, L

S3 = 2, L, 1 S4 = 2, L, 1

S5 = 2

S6 = 2, R

Figure 7.2: A partially-generated binary tree (left) and its corresponding choice sequence
arranged by influence (right).

We can build a state abstraction function that follows these considerations in the following
manner. First, build a choice abstraction function fp for each choice point p, which maps
each c to an abstract choice. Then, for σ = c1, c2, . . . , cn, build Sn = A(σ) so that:

Sn =

{
∅ if σ = ∅
tailw(Sk :: fp(cn)) for some k < n otherwise,

where :: is the concatenation operator and tailw(s) takes the last w elements of s. Assume cn
was taken at choice point p.

We can build both very basic and very complex state abstractions in this manner.
For example, we can get A(σ) = cn−w+1, . . . , cn−1, cn by taking fp = id for all and choosing

k = n− 1 always. This would be a simple sliding window of the last w choices.
The states S1-S6 that annotate the edges in Figure 7.2 are derived using the choice point

abstraction functions fv(c) = c for the value choice point, fr(c) = R for the right child choice
point, and fl(x) = L for the left child choice point. The k is chosen as k =“largest k < n
which is a choice from the parent node”. While programatically deriving this k from a choice
sequence σ is tedious, it is quite easy to do inline in the generator. The generator Figure 7.3
shows a modified version of the generator from Figure 7.1, which updates an explicit state
value at each to compute exactly this state abstraction function (Lines 6, 8, 11); it also uses
guides to select arbitrary values (Lines 5, 8, 11).

7.3.3.1 Case study

We evaluate the effect the state abstraction function has on the ability of RLCheck to produce
unique valid inputs for the BST example. We evaluate three state abstraction functions:

• Sequence, the sliding window abstraction which retains choices from the sibling nodes,
i.e. A(σ) = cn−w+1, . . . , cn−1, cn.

• Tree L/R, the abstraction function illustrated in Figure 7.2 and implemented in Fig-
ure 7.3.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 103

1 def concat_tail(state , value):
2 return (state + [value])[- WINDOW_SIZE :]
3

4 def gen_tree(state , depth =0):
5 value = guide.Select ([0, ..., 10], state , id=1)
6 state = concat_tail(state , value)
7 tree = BinaryTree(value)
8 if depth < MAX_DEPTH and guide.Select ([True, False], state , id=2):
9 left_state = concat_tail(state , "L")

10 tree.left = gen_tree(left_state , depth +1)
11 if depth < MAX_DEPTH and guide.Select ([True, False], state , id=3):
12 right_state = concat_tail(state , "R")
13 tree.right = gen_tree(right_state , depth +1)
14 return tree

Figure 7.3: Pseudo-code for a binary tree generator which follows guide and builds a
tree-based state abstraction.

• Tree, which chooses k like Tree L/R but has fp = id for all choice points, and thus
produces the same state for the left and right subtree of a node.

For example, taking w = 4 and the choices to be abstracted c1, . . . , c6 from Figure 7.2:
Sequence will give [1, False, False, True], Tree state will give [2, True], and Tree L/R
will give [2, "R"].

We evaluate each of these abstraction techniques for generating BSTs with maximum
depth 4 (i.e., 4 links), with ε = 0.25 and rewards (Eq. 7.1) Rinvalid = −1, Rvalid = 0, and
Runique = 20. We set w = 4 for the abstraction function: since there are at least two elements
in the state for each parent node, this means the learners cannot simply memorize the
decisions for the full depth of the tree.

Results Figures 7.4 and 7.5 show the results for our experiments. In each experiment
we let each technique generate 100,000 trees. The results show the averages and standard
errors over 10 trials. We compare to a baseline, Random, which just runs the generator
from Figure 7.1. Figure 7.4 illustrates that no matter the state abstraction function chosen,
RLCheck generates many more valid and unique valid inputs than the random baseline;
Tree L/R generates 10× more unique valid inputs than random. Within the abstraction
techniques, Tree generates the fewest unique valid inputs. Sequence appears to be better able
to distinguish whether it is generating a left or right child than Tree, probably because the
Tree state is identical for the left and right child choice points.

Tree L/R generates the fewest valid inputs, but the most unique valid inputs, 36% more
than Sequence. These unique valid inputs are also more complex those generated with other

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 104

Random Sequence Tree Tree L/R
State Abstraction Method

0

10000

20000

30000

40000

50000

N
um

be
r o

f G
en

er
at

ed
 In

pu
ts

Valid
Unique Valid

Figure 7.4: Number of (unique) valid inputs
generated, by state abstraction. “Random” is
a no-RL baseline.

2 4 6 8 10
Tree Size

0.01

0.1

1

10

100

1000

U
ni

qu
e

Va
lid

 In
pu

ts
 G

en
er

at
ed

Random
Sequence
Tree
Tree L/R

Figure 7.5: Distribution of unique valid tree
sizes, by state abstraction. “Random” is a no-
RL baseline.

state abstractions. Figure 7.5 shows, for each technique, the average number of unique valid
trees generated of each size. Note the log scale. The tree size is the number of nodes in the
tree. We see that Tree L/R is consistently able to generate orders of magnitude more trees of
sizes > 5 than the other techniques. Since we reward uniqueness, the RLCheck is encouraged
to generate larger trees as it exhausts the space of smaller trees. These results suggest that
Tree L/R has enough information to generate valid trees, and then combine these successes
into more unique valid trees.

Overall, we see that even with a naïve state abstraction function, RLCheck generates
nearly an order of magnitude more unique valid inputs than the random baseline. However,
a well-constructed influence-style state abstraction yields more diverse valid inputs.

7.4 Evaluation
In this section we evaluate how RLCheck , our MCC-based solution to the diversifying guidance
problem, performs. In particular, we focus on the following research questions:

RQ1 Does RLCheck quickly find many diverse valid inputs for real-world benchmarks
compared to state-of-the-art?

RQ2 Does RLCheck find valid inputs covering many different behaviors for real-world
benchmarks?

RQ3 Does RLCheck have better bug-finding capabilities than the baselines?

RQ4 Does adding coverage feedback improve the ability of RLCheck to generate diverse valid
inputs for real-world benchmarks?

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 105

Implementation To answer these research questions, we implemented Algorithm 8 in
Java, and RLCheck on top of the open-source JQF [148] platform. JQF, highlighted in last
chapter’s implementation section, provides a mechanism for customizing input generation for
QuickCheck-style property tests.

Baselines We compare RLCheck to two different methods: (1) junit-quickcheck [98], or
simply QuickCheck, the baseline generator-based testing technique which calls the generator
with a randomized guide; and (2) Zest discussed in Chapter 6. Unlike RLCheck and
QuickCheck, Zest is a greybox technique: it relies on program instrumentation to get code
coverage from each test execution.

Benchmarks We compare the techniques on four Java benchmarks described in the prior
chapter: Apache Ant, Apache Maven, Google Closure Compiler, and Mozilla Rhino. These
benchmarks rely on two generators: Ant and Maven use an XML generator, whereas Closure
and Rhino use a generator for JavaScript ASTs. The validity functions for each of these four
benchmarks is distinct: Ant expects a valid build.xml configuration, Maven expects a valid
pom.xml configuration, the Closure expects an ES6-compliant JavaScript program that can
be optimized, and Rhino expects a JavaScript program that can be statically translated to
Java bytecode. Overall, Ant has the strictest validity function and Rhino has the least strict
validity function.

Design Choices In our main evaluation, we simply use identity as the characteristic
function ξ. Thus, RLCheck simply tries to maximize the number of unique valid inputs.
This allows us to run RLCheck at full speed without instrumentation, and generate more
inputs in a fixed time budget. In Section 7.4.4 we compare this choice to a greybox version
of RLCheck , where ξ(x) takes into account the branch coverage achieved by input x.

We instantiate our reward function (Eq. 7.1) with Runique = 20, Rvalid = 0 and Rinvalid = −1.
This incentivizes RLCheck to prioritize exploration of new unique valid inputs, while penalizing
strategies that lead to producing invalid inputs. Additionally, we set ε = 0.25 in Algorithm 8,
which allows RLCheck to explore at random with reasonably high probability.

We first modified the base generators provided by JQF for XML and JavaScript to
transform choice points with infinite domains to finite domains. These are the generators
we use for evaluation of Zest and QuickCheck. We then built guide-based generators with
the same choice points as these base generators. For the guide-based generators, we built
the state abstraction inline, like it is built in Figure 7.3. For each benchmark, the state
abstraction function is similar to that in Figure 7.3 as it maintains abstractions of the parent
choices. We set w = 5 for the state window size.

Experiments We sought to answer our research questions in a property-based testing
context, where we expect to be able to run the test generator for a short amount of time.
Thus, we chose 5 minutes as a timeout. To account for variability in the results, we ran

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 106

0 1 2 3 4 5
Time (min)

0.0%

5.0%

10.0%

15.0%

20.0%
%

 D
iv

er
se

 V
al

id
QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant (*: at least 1 valid)

0 1 2 3 4 5
Time (min)

0.0%

10.0%

20.0%

30.0%

%
 D

iv
er

se
 V

al
id

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0%

20%

40%

60%

80%

%
 D

iv
er

se
 V

al
id QuickCheck

Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0%

20%

40%

60%

%
 D

iv
er

se
 V

al
id

QuickCheck
Zest
RLCheck

(d) Closure

Figure 7.6: Percent of total generated inputs which are diverse valids (i.e. have different
traces). Higher is better.

10 trials for each technique. The experiments in Section 7.4.1 and 7.4.2 were run on GCP
Compute Engine using a single VM instance with 8vCPUs and 30 GB RAM. The experiments
in Section 7.4.4 were run on a machine with 16GB RAM and an AMD Ryzen 7 1700 CPU.

7.4.1 Generating Diverse Valid Inputs

To answer RQ1, we need to measure whether RLCheck generates a higher number of unique,
valid inputs compared to our baselines. On these large-scale benchmarks, where the test
driver does non-trivial work, simple uniqueness, at the byte or string level, is not the most
relevant measure of input diversity.

What we are interested in is inputs with diverse coverage. So, we measure inputs with
different traces, a commonly-used metric for input coverage diversity in fuzzing literature [189]
(as discussed in Section 2.1, these traces are sometimes called “paths”, but this is a misnomer).
The trace of an input x is a set of pairs (b, c) where b is a branch and c is the number of times
that branches is executed by x, bucketed to base-2 orders of magnitude. Let ξ(x) give the
trace of of x. If x1 takes the path A,B,A, then ξ(x1) = {(A, 2), (B, 1)}. If x2 takes the path

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 107

0 1 2 3 4 5
Time (min)

0

10k

20k

30k
D

iv
er

se
 V

al
id

s
QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant (*: at least 1 valid)

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

D
iv

er
se

 V
al

id
s

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

200k

D
iv

er
se

 V
al

id
s

QuickCheck
Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

D
iv

er
se

 V
al

id
s

QuickCheck
Zest
RLCheck

(d) Closure

Figure 7.7: Number of diverse valid inputs (i.e. inputs with different traces) generated by
each technique. Higher is better.

A,A,A,B, then A is hit the same base-2 order-of-magnitude times, so ξ(x2) = {(A, 2), (B, 1)}.
We call valid inputs with different traces diverse valid inputs.

Figures 7.6 and 7.7 show the results. Figure 7.6 shows, at each time, the percentage of all
generated inputs that are diverse valid inputs. For techniques that are only able to generate
a fixed number of diverse valid inputs, this percentage would steadily decrease over time. In
Figures 7.6c and 7.6d, we see an abrupt decrease at the beginning of fuzzing for Zest and
QuickCheck, and for Closure we see a continuing decrease in the percentage over time for
these techniques. In Figures 7.6b, 7.6c, and 7.6d see that RLCheck quickly converges to a
high percentage of diverse valid inputs being generated, and maintains this until timeout.

RLCheck also generates a large quantity of diverse valid inputs. Figure 7.7 shows the
total number of diverse valid inputs generated by each technique: we see that RLCheck
generates multiple order of magnitude more diverse valid inputs compared to our baselines.
The exception is on Rhino (Figure 7.7), RLCheck only has a 1.4× increase over QuickCheck.
Rhino’s validity function is relatively easy to satisfy: most JavaScript ASTs are considered
valid inputs for translation; therefore, speed is the main factor in generating valid inputs for
this benchmark. Consequently, the blackbox techniques RLCheck and QuickCheck outperform

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 108

the instrumentation-based Zest technique on the Rhino benchmark.
On both metrics, the increase in Ant is less pronounced, and very variable. The variation

in percentage for Ant is quite wide because it is hard to get a first valid input for RLCheck
(and QuickCheck), and in some cases RLCheck did not get this within the five-minute time
budget. For an understanding of the effect on the results, RLCheck* shows the results for
only those runs that find at least one valid input. The mean value for RLCheck* is much
higher, but the high standard errors remain because these runs find the first valid input being
at different times. For such extremely strict validity functions, RLCheck has difficulty finding
a first valid input compared to coverage-guided techniques. This is a limitation of RLCheck :
a good policy can only be found after some valid inputs have been discovered.

For completeness, we also ran longer experiments of 1 hour, to see if Zest or QuickCheck
would catch up to RLCheck . In 1 hour, RLCheck generates between 5-15× more diverse
valid inputs than Zest on all benchmarks and outperforms QuickCheck on all benchmarks.
Furthermore, RLCheck continues to generate a higher percentage of generated diverse valid
inputs after one hour. In particular, the large improvements that are seen in Figures 7.6 are all
maintained at roughly the same rate except for Rhino. In the case of Rhino, Zest improves its
percentage of diverse valid inputs from 40% to 67% after one hour, while RLCheck continues
to generate 78% diverse valid inputs throughout.

RQ1: RLCheck quickly converges to generating a high percentage of diverse valid
inputs, and on most benchmarks generates orders of magnitude more diverse valid
inputs than our baselines.

7.4.2 Covering Different Valid Behaviors

Section 7.4.1 shows that RLCheck generates many more diverse valid inputs than the baselines,
i.e. solves the diversifying guidance problem more effectively. A natural question is whether
the valid inputs generated by each method cover the same set of input behaviors (RQ2). For
this, we can compare the cumulative branch coverage achieved by the valid inputs generated
by each technique.

Figure 7.8 shows the coverage achieved by all valid inputs for each benchmark over time.
The results are much more mixed than those in Section 7.4.1. On the Closure benchmark
(Fig. 7.8d), QuickCheck and RLCheck achieve the same amount of branch coverage by valid
inputs. On Rhino (Fig. 7.8c) QuickCheck dominates slightly. On Maven (Fig. 7.8b), RLCheck
takes an early lead in coverage but Zest’s coverage-guided algorithm surpasses it at timeout.

On Ant (Figure 7.8a), RLCheck appears to perform poorly, but this is mostly an artifact
of RLCheck ’s bad luck in finding a first valid input. Again, for comparison’s sake, RLCheck ∗
shows the results for only those runs that generate valid inputs: we see that RLCheck ’s
branch coverage is slightly above Zest’s on these runs.

The overall clearest trend from Figure 7.8 is that RLCheck ’s branch coverage seems to
quickly peak and then flatten compared to the other techniques. This suggests that our
MCC-based algorithm, while it is exploring diverse valid inputs, may still be tuned too much

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 109

0 1 2 3 4 5
Time (min)

0

1k

2k

3k
Br

an
ch

 C
ov

. b
y

Va
lid

s

QuickCheck
Zest
RLCheck
RLCheck*

(a) Ant

0 1 2 3 4 5
Time (min)

0

200

400

600

800

1k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

4k

5k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

2k

4k

6k

8k

Br
an

ch
 C

ov
. b

y
Va

lid
s

QuickCheck
Zest
RLCheck

(d) Closure

Figure 7.8: Number of branches covered by valid inputs. Higher is better.

towards exploiting the knowledge from the first set of valid inputs it generates. We discuss in
Section 7.5 some possible avenues to explore in terms of the RL algorithm.

RQ2: No method achieves the highest branch coverage on all benchmarks.
RLCheck ’s plateauing branch coverage suggests that it may be learning to generate
diverse inputs with similar features rather than discovering new behavior.

7.4.3 Bug-Finding Ability

In answering RQ1, we established that RLCheck was able to generate orders-of-magnitude
more diverse valid inputs. A natural question is whether RLCheck also has an increased
ability to find bugs.

During our evaluation runs, the techniques found a subset of the bugs described in the
previous chapter. Table 7.1 lists, for each bug that was discovered during our evaluation runs,
the mean time to find (MTF) and reliability (percent of runs on which the bug was found)
for each method. Bugs are deduplicated, as in Chapter 6, by exception type.

We see that on the Ant, where RLCheck found 1000× more diverse valid inputs than
QuickCheck, it found bug (#1) 4× faster and 5× more often than QuickCheck. It was also

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 110

Table 7.1: Mean time to find (MTF) and Reliability (Rel.)—the percentage of runs on which
the bug was found—for bugs found by each technique during our experiments. Bugs are
deduplicated by benchmark and exception type. Dash “-” indicates bug was not found.

RLCheck QuickCheck Zest

Bug ID MTF Rel. MTF Rel. MTF Rel.

Ant, (#1) 41s 50% 178s 10% 123s 90%
Closure, (#2) 1s 100% 1.2s 100% 23s 60%
Rhino, (#3) 95s 90% 62s 70% 276s 10%
Rhino, (#4) 11s 100% 1s 100% 30s 100%
Rhino, (#5) - - 3s 100% 80s 100%
Rhino, (#6) - - 96s 20% - -

faster than Zest. On Closure, where RLCheck found 60× more diverse valid inputs than Zest,
it was also 20× faster at finding fault (#2). In contrast, on Rhino, RLCheck only found 1.4×
more unique valid inputs than QuickCheck. In fact, as shown in Figure 7.6c, over 30% of
generator-generated inputs already satisfied the validity function. Thus, on this benchmark,
the plain generator-based approach (QuickCheck) had the best fault discovery of the three
methods. This benchmark is representative of situations where the generator is already fairly
well-tuned for the validity function of the program under test. While the results are too
sparse to be conclusive, we can make the following observation:

RQ3: Order-of-magnitude increases in input diversity seem to relate to better bug
discovery; on the benchmark where RLCheck did not reach orders-of-magnitude
increases, its ability to discover bugs was worse than the baseline.

7.4.4 Greybox Information

Given that RLCheck is able to attain its objective as defined by the diversifying guidance
problem (Section 7.4.1)—generating large numbers of unique valid inputs—, but does not
achieve the highest branch coverage over all benchmarks (Section 7.4.2), a natural question
is to ask whether choosing a different ξ, one that is coverage-aware, could help increase the
diversity of behaviors discovered. This is what we seek to answer in RQ4.

For this experiment, we re-ran RLCheck both blackbox, i.e. with ξbb = id, and with
greybox information, using ξgb(x) = “the set of all branches covered by the input x”. Thus,
Greybox RLCheck is rewarded when it discovers a valid input that covers a distinct set of
branches compared to all generated inputs. Note that this does not reward the guide more
for generating an input which covers a wholly-uncovered branch, compared to an input that
covers a new combination of already-seen branches. Again, we ran each method for 10 trials,
timing out at 5 minutes.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 111

0 1 2 3 4 5
Time (min)

0

10k

20k

30k
D

iv
er

se
 V

al
id

s
Blackbox RLCheck
Greybox RLCheck

(a) Ant

0 1 2 3 4 5
Time (min)

0

50k

100k

150k

200k

D
iv

er
se

 V
al

id
s

Blackbox RLCheck
Greybox RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

100k

200k

300k

D
iv

er
se

 V
al

id
s

Blackbox RLCheck
Greybox RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

0

100k

200k

300k

D
iv

er
se

 V
al

id
s

Blackbox RLCheck
Greybox RLCheck

(d) Closure

Figure 7.9: Number of diverse valid inputs generated by each technique. Higher is better.

Figures 7.9 shows the number of diverse valid inputs generated the the blackbox and
greybox versions of RLCheck , and Figure 7.10 shows the branch coverage by valid inputs for
these two versions. We see universally across all benchmarks and both metrics that Blackbox
RLCheck outperforms Greybox RLCheck . This suggests that the slowdown incurred by
instrumentation is not worth the increased information RLCheck gets in the greybox setting.
The difference is less striking for branch coverage than number of diverse valid inputs
generated, because fewer inputs are required to get the same cumulative branch coverage.

We see much lower variation in Ant in this experiment because on all 10 runs, Blackbox
RLCheck was able to generate at least one valid input for Ant. We chose random seeds at
random in both experiments, so this is simply a quirk of experimentation.

RQ4: Adding greybox feedback to the characteristic function ξ causes a large
slowdown, but no huge gains in number of valid inputs or coverage achieved. Overall,
RLCheck performs best as a black-box technique.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 112

0 1 2 3 4 5
Time (min)

0

1k

2k

3k
Br

an
ch

 C
ov

. b
y

Va
lid

s

Blackbox RLCheck
Greybox RLCheck

(a) Ant

0 1 2 3 4 5
Time (min)

0

200

400

600

800

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(b) Maven

0 1 2 3 4 5
Time (min)

0

1k

2k

3k

4k

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(c) Rhino

0 1 2 3 4 5
Time (min)

2k

4k

6k

8k

Br
an

ch
 C

ov
. b

y
Va

lid
s

Blackbox RLCheck
Greybox RLCheck

(d) Closure

Figure 7.10: Number of branches covered by valid inputs generated by each technique. Higher
is better.

7.5 Discussion
Tabular methods such as ours do not scale well for large choice or state spaces. If S and
C denote state and choice space sizes, the Monte Carlo control algorithm requires O(SC)
space and O(C) time to evaluate the policy function π. This is because all the algorithmic
decision-making is backed by a large Q-table with S×C entries. Because of these constraints
we had to restrict our state and choice spaces. For example, in our JavaScript generator,
when selecting integer values, we restricted our choice space to be in range from 0 to 10
rather than a larger range like between 0 and 100. Function approximation methods, such as
replacing the Q-table with a neural network, may be necessary for dealing with larger, more
complex, state and choice spaces.

In Section 7.4.1 we saw that RLCheck had difficulty generating a first valid input for very
strict validity functions (Ant). This limitation could be overcome by allowing RLCheck to be
bootstrapped, i.e. given a sequence of choices that produces a valid input at the beginning of
testing. This choice sequence could be user-provided, as long as there exists a relatively short
sequence of choices resulting in a valid input.

CHAPTER 7. RLCHECK: VALID INPUTS VIA REINFORCEMENT LEARNING 113

In Section 7.4.2 we observed that the branch coverage achieved by RLCheck -generated
valid inputs tends to quickly plateau, even for benchmarks where the other methods could
achieve higher branch coverage (Figs 7.8b, 7.8c). This suggests that even with a high ε,
Monte Carlo Control may still be too exploitative for the diversifying guidance problem. One
approach to increase exploration would be to allow the learners to “forget” old episodes so
choices made early in the testing session that are not necessary to input validity do not persist
throughout the session. Curiosity-based approaches, which strongly encourage exploration
and avoid revisiting states [152], may also be applicable.

Overall, what we saw from this chapter is the great potential of general guided generator-
based fuzzing. In particular, the casting of the problem as the diversifying guidance problem—
rather than simply viewing guided generator-based fuzzing at the byte-parameter level—opens
the door to more complex distribution-tuning approaches. The next chapter introduces a very
different distribution-tuning approach, which brings generator-based search to the program
synthesis domain.

114

Chapter 8

AutoPandas: Generator-Based Program
Synthesis

All the previous chapters of this dissertation have focused on solving the same fundamental
search problem: how to find, in a large search space of inputs, interesting inputs to a program
under test. The previous chapter tackled the problem of generating more valid inputs by
cleanly separating the generator, which encodes domain knowledge about the search space,
from the guide, which controls the sampling from the generator.

This abstraction brings about the question: are there other search problems that could be
solved with a smartly guided generator-based search? One particular search problem emerges
as well-suited to this framework: that of synthesizing programs in a complex, real-world API.

Developers nowadays have to contend with a growing number of APIs. Many of these
APIs are very useful to developers, increasing the ease of code re-use. API functions provide
implementations of functionalities that are often more efficient, more correct, or produce
better-looking results than what the developer can implement.

Unfortunately, it can be difficult to learn how to use an API. Many new APIs are wide,
with hundreds of functions, some of which have overlapping semantics. Further, each function
can have tens of arguments governing its behavior. For example, some Python APIs such
as NumPy [94] use the flexible type system to define almost entirely different behavior for
functions based on the type or arguments. The documentation of all of these factors is of
varying quality. Further, modern APIs are frequently updated, so tutorials, blog posts, and
other external resources on the API can quickly fall out of date. All these factors increase
the difficulty of API use.

Oftentimes, however, when trying to use an APIs to conduct data transformation, novice
developers know which transformation they want to perform. The popularity of online help
forums such as StackOverflow has normalized the practice of creating an input-output (I/O)
example that clearly illustrates the transformation. By I/O examples of a transformation,
we mean examples where the input is the data before the transformation (e.g. the string
“Garbledy Goop”), and the output is the desired transformed data (e.g. “Goop, G.”).

With an I/O example, observe that the problem of synthesizing a program in the desired

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 115

(a) An example input DataFrame.
(b) Desired output.

Figure 8.1: A DataFrame input-output example.

API [70, 69, 68] becomes very similar to the testing search problem explored in the prior
chapters of this dissertation. Instead of generating inputs to the program under test until
a generated input crashes the program, the search problem is to generate programs and
run them on the user-provided input until the output of a generated program matches the
user-provided output.

This chapter explores the efficacy of a generator-based program synthesis technique for
the Python pandas API. The program candidate generator encodes expert domain knowledge
about the API to—as much as possible—synthesize programs in the API which are valid. For
example, when producing arguments to a function, the generator should almost never produce
argument combinations which cause the function to immediately error out. Given knowledge
of the API, writing such a candidate program generator is a straightforward—although
perhaps tedious—effort. This means such a generator can be written by any developer who
knows the API, regardless of their familiarity with program synthesis techniques.

However, if the generator takes a long time to generate a p such that p(input) = output,
this simple generator-based search—which just calls the generator until it yields such a
p—becomes impractical. Unlike the testing scenario, where the search process can be run for
hours, in order for a program synthesis tool to be practical, the search process can be run for
minutes at most. So, instead of taking choices in the generator totally randomly, the choices
in the generator will, much like in the previous chapter, be taken with respect to a smart
guide. Ideally, this guide ensures that a generated program which matches the input-output
example appears not too late in the search process.

Before describing the details of this guide, and the process of generator-based program
synthesis, we will introduce a small example that motivates its necessity.

8.1 Motivation
Suppose a developer or data scientist, new to the Python library pandas, needs to use pandas
in order to pre-process data for a statistical or ML pipeline. For example, suppose they need
to transform an expense table, given in Figure 8.1a, into the dataframe in Figure 8.1b.

Suppose first that while the novice does not know pandas, they know some other data
transformation tools. In particular, the novice knows that in Microsoft Excel, they can

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 116

1 def find_pivot_args(input_df: pandas.DataFrame ,
2 output_df: pandas.DataFrame):
3 while True:
4 cur_kwargs = generate_pivot_args(input_df , output_df)
5 cur_out = pandas.DataFrame.pivot(input_df , ** cur_kwargs)
6 if cur_out == output_df:
7 return cur_kwargs

Figure 8.2: A procedure to find the arguments to the pandas function pivot that turn
input_df into output_df.

perform the transformation in Figure 8.1 using the “pivot table” functionality. The novice
also notices that pandas has a pivot function for dataframes, and thinks they can use it.
But, for complex APIs like pandas, there are many arguments for each function, requiring
substantial effort to master even one function. Resources explaining all the complexity of the
API can overwhelm a novice.

Hence, novices often resort to asking experts for help on which arguments to use. Unfor-
tunately, this is not a perfect solution. First, if no expert is around to answer the question,
a novice can get stuck on the problem for a long time. Also, the expert finds themselves
constantly answering a very similar question—what pivot arguments should be used to
get output from input? Answering this question over and over again is not scalable. So
nowadays, if a basic pivot or merge question is asked on pandas StackOverflow, it is not
answered, and simply marked as a duplicate of a master answer diving into the details of these
functions. As of May 2021, these master answers had 927 and 708 duplicates, respectively. 1

Instead of simply redirecting novices to documentation, the API expert can write a
generator that outputs valid argument combinations for pivot on the dataframe df, say
generate_pivot_args(df) (Figure 8.3). The novice can then use generate_pivot_args(df)
to enumerate the argument combinations, and save the one that works for their input-output
example. Figure 8.2 shows pseudo-code to find the correct arguments for pivot, given
the generator generate_pivot_args(df). The code simply calls generate_pivot_args(df)
(Line 4) until it returns an argument combination kwargs which satisfies the I/O example, i.e.,
such that pivot(input_df, **kwargs) == output_df (Line 6). This is essentially generator-
based fuzzing, but instead of finding inputs that cause the program under test to crash, the
search is finding argument combinations that satisfy the input-output example.

To make sure that all the argument combinations returned by generate_pivot_args(df)
are valid, the expert has encoded in the generator basic constraints on the pivot arguments:

1. arg_col should be selected from the list of column names of df, df.columns.
1The current number can be determined with the query at https://data.stackexchange.com/

stackoverflow/query/edit/1024223.

https://data.stackexchange.com/stackoverflow/query/edit/1024223
https://data.stackexchange.com/stackoverflow/query/edit/1024223

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 117

1 @generator
2 def generate_pivot_args(input_df: DataFrame , output_df: DataFrame):
3 context = (input_df , output_df)
4 arg_col = Select(df.columns , context , id=1)
5 arg_idx = Select ({None} | df.columns - {arg_col}, context , id=2)
6 if isinstance(df.index , pandas.MultiIndex) and arg_idx is None:
7 arg_val = None
8 else:
9 arg_val = Select(df.columns - {arg_col , arg_idx}, context , id=3)

10

11 return {'columns ': arg_col , 'index ': arg_idx , 'values ': arg_val}

Figure 8.3: A generator of all valid arguments to the pivot function from the pandas API.
Select(D,c,i) returns a single element from the domain D.

2. arg_idx is either None, or selected from the list of column names of df, except from
the column name used in arg_col (df.columns-{arg_col}).

3. Finally, the arg_val argument should either be (1) selected from the list of column
names except for the ones used in arg_col and arg_idx, or (2) None, in the case where
arg_idx is None and df has a multi-level index.

These constraints are universal for the pivot function, and an expert can straightforwardly
derive them from the documentation.

Figure 8.3 shows the implementation of generate_pivot_args(df). The calls to Select
return a single element from their domains D. Assume first that Select(D,c,i) is the naïve
choice operator, which returns a random element from D. Section 8.2 formalizes the smartly
guided Select and explains the arguments c and i.

Unfortunately, if there are many argument combinations, the basic search in Figure 8.2
may take some time to terminate. The problem gets worse if the exact function to use
is not known. If the novice does not know whether to use pivot, pivot_table, unstack,
etc., they would have to go through the argument combinations for each of these functions.
If generate_pivot_args returns arguments in a totally random order, the correct argu-
ment combination is unlikely to show up early enough to ensure a practical synthesis time.
The problem is exacerbated if sequences of multiple functions are required to perform the
transformation, as the total number of possible argument combinations grows exponentially.

To make generate_pivot_args output the correct argument combination more quickly,
the API expert could replace the calls to Select(D,c,i) with a particular enumeration order
through codeD. The enumeration order would be based on some additional heuristics, e.g.:

1. The values in the column from input_df that is used as arg_col end up being column
names in the output_df. Therefore, the generator should look at the output’s column

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 118

names, and first try to use as arg_col any column from the input that shares values
with the output’s column names.

2. The values in the column from input_df that is used as the arg_val argument end up
in the main data of the table. Hence, the generator should look at the output’s data,
and first try to use as arg_val any column whose values are the same as output’s data
cells. However the values argument also accepts None as a valid argument, in which case
all the remaining column values are used as the main data of the output. Therefore the
generator should take this into account as well.

3. ... (more heuristics omitted)

Designing such heuristics is error-prone. They are not guaranteed to be effective, especially
if the I/O example provided by the user cannot actually be solved with a single call to
pivot. Further, it is much more tedious for the expert to write a generator that uses these
heuristics than it is to write a generator that encodes the basic validity constraints, like that
in Figure 8.3. This is even harder than the problem described in Section 7.1 of Chapter 7:
instead of writing heuristics to generate valid inputs, these heuristics must quickly generate a
program satisfying the input-output example. It is almost as if the developer of a generator
for testing needs to write the heuristics which will quickly result in a bug-finding input.

Instead of requiring a human to write these heuristics, we propose to have the generator
follow a smart guide. For each Select statement, the guide first derives from the context c a
probability distribution p over D. Then, it returns elements d ∈ D in descending order of their
probability p(d). The distribution model is represented by a neural network, learned from
a training set of inputs, programs, and their outputs. Over a validation set of (input_df,
output_df) pairs where output_df = pivot(input_df, **kwargs) for some kwargs, our
smart backend has 99% top-1 accuracy in retrieving the correct kwargs.

In order to synthesize full pandas programs which satisfy an (input_df, output_df)
example, we take a similar approach. We implement a program candidate generator which
outputs straight-line pandas programs that run without error on input_df. This generator
follows a similar smart guide as described above. This generator-based synthesis engine,
AutoPandas, supports 119 pandas functions and can form programs with multiple function
calls. Given the I/O example in Figure 8.1, AutoPandas finds the correct program:

output_df = input_df.pivot(index='Date', columns='Category', values='Expense')

after checking only one program candidate.
In the next section, we formalize this generator-based program synthesis technique, as

well as the smart guides which yield these results.

8.2 The AutoPandas Technique
Figure 8.4 shows the core AutoPandas technique of generator-based synthesis. The engine
consists of two components — (1) a program candidate generator and (2) a checker that checks

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 119

1 def synthesize(input , output , max_len):
2 while (True):
3 candidate = generate_pandas_program(input , output , max_len)
4 if candidate(input) == output:
5 return candidate

Figure 8.4: Generator-Based Enumerative Synthesis Engine.

if the candidate program produces the correct output. The checker is rather straightforward
to implement: we simply execute the program and test the exact match of its output to the
target output. The bulk of the work is done by the program candidate generator.

A program candidate generator is a generator that, given an input-output example,
generates program candidates. Figure 8.5 shows an excerpt of our program candidate
generator for pandas programs. This generator produces straight-line programs, each of
which is a sequence of up to max_len pandas function calls. The program at the end of
Section 8.1 is one such candidate, consisting of a sequence of length 1.

The generator in Figure 8.5 generates candidate programs as follows. First, it picks a
sequence of functions from a list of supported functions (Lines 3-4). Then, for each function
in the sequence, the generator selects the arguments (Lines 10-32), and computes the result
by running the function with the arguments and stores it as an intermediate (e.g. Line 33).
Intermediates are the outputs produced by previous functions in the sequence. These are
essential to allow the generator to generate meaningful multi-function programs, where a
function can operate on the output of a previously applied function. Argument generation is
done on a case-by-case basis depending on the given function. For example, for the function
pivot (Lines 10-21), the generator follows the argument generation logic of Figure 8.3, applies
the function with the selected arguments to a selected input or intermediate df, and stores the
output as an intermediate. The program candidate generator can handle pandas functions
that operate on multiple dataframes, e.g. merge on Lines 23-29, by selecting each dataframe
from the set of input and intermediates (Lines 24-25).

Unlike the generators shown in the previous chapter, the generator in Figure 8.5 has
choice point operators other than Select, which simply outputs a choice from its domain
D. The three additional operators we support are: (1) Subset, (2) OrderedSubset and (3)
Sequence. An informal description of their behavior is provided in Table 8.1. They can be
understood as essentially syntactic sugar around Select, e.g. Subset(D,c,i) is simply a
Select over the possible subsets of D.

More concretely, each operator Op is of the form Op(D, C, id) where D is the domain
passed to the operator; C is the context passed to the operator to control its behavior; and
id is the unique static ID of the operator. The static ID of Op simply identifies each call
to an operator uniquely based on its static program location. It is provided explicitly in
Figure 8.3 for clarity but may be inserted automatically via a static instrumentation pass of

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 120

1 @generator
2 def generate_pandas_program(input , output , max_len):
3 functions = [pivot , drop , merge , ...]
4 function_sequence = Sequence(max_len)(functions ,
5 context =[input ,output],id=1)
6

7 intermediates = []
8 for function in function_sequence:
9 c = [input , *intermediates , output]

10 if function == pivot:
11 df = Select(input + intermediates , context=c, id=2)
12 arg_col = Select(df.columns , context =[df , output], id=3)
13 arg_idx = Select(df.columns - {arg_col}, context =[df , output],
14 id=4)
15

16 if isinstance(df.index , pandas.MultiIndex) and arg_idx is None:
17 arg_val = None
18 else:
19 arg_val = Select(df.columns - {arg_col , arg_idx},
20 context =[df , output], id=5)
21 args = (df, arg_col , arg_idx , arg_val)
22

23 elif function == merge:
24 df1 = Select(input + intermediates , context=c, id=6)
25 df2 = Select(input + intermediates , context=c, id=7)
26 common_cols = set(df1.columns) & set(df2.columns)
27 arg_on = OrderedSubset(common_cols , context =[df1 , df2 , output],
28 id=8)
29 args = (df1 , df2 , arg_on)

30
...

31 # Omitted code: case for each function

32
...

33 intermediates.append(function.run(*args))
34

35 return function_sequence

Figure 8.5: A Simplified Program Candidate Generator for pandas Programs.

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 121

Table 8.1: List of Available Choice Operators

Operator Description

Select(domain) Returns a single item from domain
Subset(domain) Returns an unordered subset, without replacement, of the items in domain
OrderedSubset(domain) Returns an ordered subset, without replacement, of the items in domain
Sequence(len)(domain) Returns an ordered sequence, with replacement, of the items in domain

with a maximum length of len

the generator code. The actual choice domain of the operator, W (Op,D), depends on the
operator, but is consistent with the description in Table 8.1:

W (Op,D) =


D if Op = Select
PowerSet(D) if Op = Subset
∪{Perms(x) | x ∈ PowerSet(D)} if Op = OrderedSubset
{(a1, · · · , ak) | k ≤ l, ai ∈ D} if Op = Sequence(l)

With these concepts in mind, we can again define the notion of a generator following a
guide. This time, let a choice point p = (Op,D, C, id) encode all the information about an
operator call, and let PG be the set of choice points for a generator G, and C the set of all
possible choices.

Definition 23 (Following a Guide). We say that a generator G follows a guide γ : PG →
C∗ × N→ C if: during its tth execution, given a sequence of past choices σ = c1, c2, . . . , ck,
and the current choice point p = (Op,D, C, id), the generator G makes the choice γ(p)(σ, t) ∈
W (Op,D).

The parameter σ is necessary to separate different calls to the same operator in one
generator invocation, and the parameter t distinguishes different invocations of the generator.
We consider three different guides in this chapter:

• Randomized. The simplest case is for the generator to follow a randomized guide,
resulting in the production of random programs. This can be achieved by simply
having the choice operators return a random element from their domains. Essentially,
for the choice point p = (Op,D, C, id), γ(p)(σ, t) simply returns a random element of
W (Op,D).

• Exhaustive (Depth-First). Another option is to have the generator follow an
exhaustive guide, which systematically explores all possible combinations of choices.
In this case, the guide uses the (σ, t) arguments to γ(p)(σ, t) to ensure that the value
chosen from W (Op,D) results in a depth-first exploration of the space of all possible
programs. For example, it will force the generator in Figure 8.3 to first explore all

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 122

possible values of the Select call at Line 9 before moving on to the next possible value
for the Select call at Line 5.

• Smart. Note that neither the randomized nor exhaustive guides utilize the context
C in making choices. The significance of this is the behavior of each choice operator
is independent of the (input_df, output_df) passed to the generator. This is not
suitable for tasks such as the one presented in Section 8.1, where the goal is to quickly
find an argument combination to the pivot function such that when it is called on
input_df, it produces the target output output_df. In this case, we want a smart guide
which biases the generator choices towards the values that have a higher probability of
creating a program satisfying (input_df, output_df).

A smart guide is essentially an exhaustive depth first generator. But, it forces a smart
order of enumeration dependent on the context. For each operator Op(D, C, id), it calls a
function Rank(Op,id)(D, C) which returns the values W (Op,D) in an optimal exploration
order given the context C. Note that the Rank function is sub-scripted by (Op, id),
implying that every operator call can have a separate ranking function.

In the generator in Figure 8.3, the context passed at every operator call is the input and
output dataframe. Therefore given suitable ranking functions Rank(Select,1), Rank(Select,2)

and Rank(Select,3), the generator can be biased toward producing an argument combina-
tion that, when passed to the pivot function along with the input dataframe input_df,
is likely to result in output_df.

The full AutoPandas technique thus consists of the enumerate-and-check loop from
Figure 8.4, with the generator generate_pandas_program following a smart, neural-backed
guide. The OOPSLA’19 paper on AutoPandas gives an alternate formalization of these
guides, and their formal semantics [38].

8.3 Implementation
In AutoPandas, we use neural networks to define the Rank functions used by the smart
guide to control the choices in our program candidate generator. We design a neural network
model for each kind of operator (see Table 8.1). The first time an operator Op is called with
a particular domain D and context C, a query is constructed using D and C. This query is
passed to the neural network model, which returns a probability distribution over W (Op,D),
the domain of choices for the operator. The Rank function then uses this distribution to
reorder the elements in W (Op,D) in the decreasing order of probabilities. The smart guide
uses this ranking to force the operator to return values in an order conditioned on the context.
We now concretely define the query, its encoding, and the neural network architectures for
each operator.

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 123

8.3.1 Query Encoding

The query Q to each neural network model, regardless of the operator, is of the form
Q = (D, C) where D and C are the domain and context passed to the operator.

Encoding this query into a neural-network suitable format poses several challenges. Recall
that the context and the domain passed to operators in the pandas program candidate
generator (Figure 8.5) contain complex structures such as dataframes. Dataframes are 2-D
structures which can contain arbitrary Python objects as primitive elements. Even just
considering strings or numbers, the set of possible primitive elements is infinite. This renders
all common value-to-value map-based encoding techniques popular in machine learning, such
as one-hot encoding, inapplicable. At the same time, the encoding needs to retain enough
information about the context to generalize to unseen queries which may occur when the
synthesis engine is deployed in practice. Therefore, simply abstracting away the exact values
is not viable. In summary, a suitable encoding needs to (1) abstract away only irrelevant
information and (2) be suitably structured for neural processing. To this end, we designed a
graph-based encoding that possesses all these desirable properties.

Graph-Based Encoding. We encode the domain D and the context C as a graph, con-
sisting of nodes, edges between pairs of nodes, and labels on nodes and edges. The overall
rationale is that it is not the concrete values, but rather the relationships amongst values,
that really encode the transformation at hand. That is, relationship edges should be sufficient
for a neural network to learn from. For example, the essence of transformation represented
by Figure 8.1 is that the values of the column ‘Category’ now become the columns of the
pivoted dataframe, with the ‘Date’ column as an index, and the ‘Expense’ as values. The
concrete names are immaterial.

Recall that the domain and context are essentially collections of elements. Therefore, we
first describe how to encode each such element e individually as a graph Ge. Later we describe
the procedure to combine these graphs into a single graph GQ representing the graph-encoding
of the full query Q. Figure 8.6 shows the graph-encoding of the query generated as a result
of the Select call at Line 4 in Figure 8.3 and will be used as a running example.

Encoding Primitives. If the element e is a primitive value (strings, integers, float, lambda,
NaN etc.), its graph encoding Ge contains a single node representing e. This node is assigned
a label based on the data-type of the element as well as the source of the element. The source
of an element indicates whether it is part of the domain, or of one of the input-outputs in
the I/O example, or of one of the intermediates, or none of these.

Encoding DataFrames. If the element e is a dataframe, each cell element in the dataframe
is encoded as a node in the graph Ge. The label of the node includes the type of the element
(string, number, float, lambda, NaN, etc.). The label also includes the source of the dataframe,
i.e. whether the dataframe is part of the domain, input, output, intermediate, or none of

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 124

these. We also add nodes to Ge that represent the schema of the dataframe, by creating a
node for each row index and column name of the dataframe. Finally, we add a representor
node to Ge that represents the whole of the dataframe. The label of this node contains the
type “dataframe” as well as the source of the parent dataframe. Note that this additional
representor node is not created when encoding primitive elements. The node representing
the primitive element itself acts as its representor node.

The graph encoding of a dataframe also contains three kinds of edges to retain the
structure of the dataframe. The first kind is adjacency edges. These are added between each
pair of cell nodes, column name nodes or row index nodes that are adjacent to each other
in the dataframe. We only add adjacency edges in the four cardinal directions. The second
kind is indexing edges, which are added between each column name node (respectively, row
index node) and all the cell nodes that belong to that column (respectively, row). Finally,
the third kind of edge is a representation edge, between the representor node to all the other
nodes corresponding to the contents of the dataframe.

Encoding the Query Q. Finally, to encode Q = (D, C), we construct Ge for each element
in D and C as described above, and create a graph G containing these Ges as sub-graphs.
Additionally, to capture relationships amongst these elements, we add a fourth kind of
edge—equality edges between nodes originating in different Ges such that the elements
they represent are equal. Formally, we add an equality edge between nodes n1 and n2 if
n1 ∈ Gei ∧ n2 ∈ Gej ∧ i 6= j ∧ V (n1) = V (n2) where V is a function that given n, retrieves
the value encoded as n. For representor nodes, V returns the whole element it represents.
For example, for a dataframe, V would return the dataframe itself for the representor node.

Equality edges are key to capturing relationships between the inputs and the output in
the I/O example, as well as the domain D and the I/O example. The neural network then
learns to extract these relationships and uses them to infer the required Rank probability
distribution over W (Op,D).

8.3.2 Operator-Specific Graph Neural Network Models

Given the graph-based encoding GQ of a query Q, we feed it to a graph neural network
model. Each operator has a different model. These models are based on the gated graph
neural network, introduced by Li et al.[118]. We base our model on the implementation by
Microsoft [132, 27]. We first describe the common component of all the neural network models.
Then, we provide an individual description for the neural network model corresponding to
each operator listed in Table 8.1.

The input to all our network models is a undirected graph G = (V, E , X). V and X
characterize the nodes, where V is the set of nodes and X is the embedding X : V → RD.
Effectively, X maps each node to a one-hot encoding of its label of size D, where D is
a hyper-parameter. E contains the edges, where each edge e ∈ E is a 3-tuple (vs, vt, te).

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 125

COL COL COL COL COL

IDX

IDX

IDX

IDX

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

NUM

NUM

NUM

NUM

NUM

NUM

NUM

NUM

COL COL

NUM

NUM

NUM

NUM

IDX

IDX

REP

REP

Input

Output

C1 C2 C3 C4 C5

Domain

Edge Type

Equality

Indexing

Adjacency

Representor

Figure 8.6: Graph encoding of the query passed to the first Select call in Figure 8.3, on the
I/O example from Figure 8.1.

The source and target nodes are vs and vt, respectively. The type te of the edge is one of
Γe ≡ {adjacency, indexing, representor, equality} and is also one-hot encoded.

Each node v is assigned a state vector hv ∈ RD. We initialize the vector to the node
embedding h(0)

v = X (v). The network then propagates information via r rounds of message
passing. During round k (0 ≤ k < r), messages are sent across edges. In particular, for each
edge (vs, vt, te), vs sends the message mvs→vt = fk(h

(k)
vs , te) to vt. Our fk : RD+|Γe| → RD

is a single linear layer. These are parameterized by a weight matrix and a bias vector,
which are learnable parameters. Each node v aggregates its incoming messages into mv =
g({mvs→v | (vs, v, te) ∈ E}) using the aggregator g. In our case, we take g to be the element-
wise mean of the incoming messages. The new node state vector h(k+1)

v for the next round is
then computed as h(k+1)

v = GRU(mv, h
(k)
v) where GRU is the gated recurrent unit [57] with

start state as h(k)
v and input mv. We use r = 3 rounds of message passing, as we noticed

experimentally that further increasing the number of message passing rounds did not increase
validation accuracy.

After message passing is completed, we are left with updated state vectors h(r)
v for each

node v. Now depending on the operator, these node vectors are further processed in different

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 126

……

…

… … …

… …

Softmax

…

…

…

ℎ" ℎ#$
(&) ℎ#(

(&) ℎ#)
(&)

ℎ* ℎ+ ℎ,

𝑝,𝑝+𝑝*

(a) Illustration of the Select model. (b) Illustration of the Subset model.

…

LSTM

…

…

…

…… …

Select Select

LSTM

…

ℎ" ℎ#$
(&) ℎ#(

(&)

𝑜* 𝑜+

𝑝** 𝑝-* 𝑝* …𝑝*+ 𝑝-+term 𝑝+term

(c) Illustration of the OrderedSubset/Sequence
model. The box label “Select” expands to (a).

Figure 8.7: Operator-specific neural network architectures.

ways as described below to obtain the corresponding probability distributions over space of
values defined by the operator (W (Op,D)). A graphical visualization is provided in Figure 8.7

Select : We perform element-wise sum-pooling of the node state vectors h(r)
v into a graph state

vector hG. We now concatenate hG with the node state vectors h(r)
di

of the representor nodes
di for each element in the domain D in the query Q, to obtain vectors hi = hG ◦h(r)

di
. We pass

the his though a multi-layer perceptron with one hidden layer and a one-dimensional output
layer, and apply softmax over the output values for all the elements to produce a probability

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 127

distribution over the domain elements (p1, · · · , pn). For inference, this distribution is returned
as the result, while during training we compute cross-entropy loss w.r.t this distribution and
the correct distribution where pi = 1 for the correct choice i and ∀j 6= i, pj = 0. Figure 8.7a
shows an illustration of the model.

Subset : As in Select, we perform element-wise sum-pooling of the node state vectors and
concatenate it with the state vectors of representor nodes to obtain the vectors hi = hG ◦ h(r)

di
for each element in the domain. However, we now pass the his though a multi-layer percep-
tron with one hidden layer and apply softmax activation on the output layer to obtain a
distribution (pik , pek) over two label classes “include” and “exclude” for each of the domain
element dk individually. Recall that the space of possible outputs for the Subset operator is
the power-set of the domain D. The probability of these labels corresponds to the probability
with which an element is included and excluded from the output set respectively. To compute
the probability distribution, the probability of each possible output set is computed as simply
the product of the “include” probabilities for the elements included in the set and the “exclude”
probabilities for the elements excluded from the set. Again, this distribution is returned as
the result during inference, while during training, loss is computed w.r.t this distribution and
the correct individual distribution of the elements where pik = 1 ∧ pek = 0 if element dk is
present in the correct output, else pik = 0 ∧ pek = 1. Figure 8.7b illustrates the model.

OrderedSubset and Sequence : We perform element-wise sum-pooling of the node state
vectors h(r)

v into a graph state vector hG. We then pass hG to an LSTM that is unrolled for
T + 1 time-steps, where T = |D| for OrderedSubset and T = l for Sequence(l) where l the
max-length parameter passed to Sequence. The extra time-step is to accommodate a terminal
token which we describe later. For each time-step t, the output ot is concatenated with the
node state vectors h(r)

di
of the representor nodes dis for each element in the domain passed to

the operator to obtain vectors hti = ot ◦ h(r)
di
. At time-step t, in a similar fashion as Select, a

probability distribution is then computed over the domain elements plus an arbitrary terminal
token term. The terminal token is used to indicate the end of a sequence/set. Now, to
compute the probability distribution, the probability of each set or sequence (a0, · · · , ak)
where (k ≤ T) is simply the product of probabilities of ai at time-step i and the probability
of the terminal token term at time-step k+ 1. As before, this distribution is directly returned
during inference, while during training, loss is aggregated over individual time-steps; the loss
for a time-step is computed as described in Select. Figure 8.7c illustrates the model.

All the network models are trained with the ADAM optimizer [105] using cross-entropy loss.

8.3.3 Training Neural-Backed Generators for Pandas

A Neural-Backed Generator consists of operators backed by Rank functions that are used
by the smart guide to direct the order of exploration. We implement these Rank functions

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 128

using neural networks, as described in Section 8.3.2. Training each of these networks for each
call to an operator with static ID id requires training data consisting of tuples of the form
Tid = (C,D, c) where c is the correct choice to be made by the operator call with static id
id. Put another way, the neural network behind the operator call at location id is trained to
predict the choice c with the highest probability given the context C and domain D.

Unfortunately, such training data is not available externally as it is highly specific to our
generators. Accordingly, we synthesize our training data automatically, i.e., synthesize a
random tuple containing a context C, domain D, and the target choice c. This is a highly
non-trivial problem, as there are two strong constraints that need to be imposed on C, D,
and c for this tuple to be a useful training data-point. First, the random context, domain,
and choice should be valid. That is, there should exist an execution of the generator for some
input such that the operator call in question receives the random context and domain as
arguments, and makes the same choice. Second, this tuple of context, domain, and choice
should be meaningful, i.e., the choice should lead to progress on the task contained in the
context. In our synthesis setting, this translates to the property that the generator makes
a step towards producing a program that actually produces the output from the input as
passed in the context. We rely on two key insights to solve these problems for our pandas
program candidate generator.

Suppose we have tuples of the form (I,O,P , K) where P is a pandas program such that
P(I) = O i.e. it produces O when executed on inputs I. Also, K is the sequence of choices
made by the operators in the generator such that the generator produces the program P
when it is fed I and O as inputs. Then, it is straight-forward to extract training data tuples
(C,D, c) for each operator call by simply running the generator on I and O and recording the
concrete context C and domain D passed to the operator, and forcing the operator to make
the choice c. These tuples are meaningful by construction, as the operators make choices
that lead to the generation of the program P which turns I into O.

The second insight is that we can obtain these (I,O,P , K) tuples by using the generator
itself. We generate random inputs I (DataFrames), and then run the generator on I using
the randomized guide while recording the choices made as K. The program P returned by
the generator is then run on I to yield O.

The sheer size of APIs such as pandas presents another problem in this data generation
process. The large number of functions yields a huge number of possible sequences of these
functions (Lines 3-4 in Figure 8.5). Even when considering sequences of length ≤ 3, the total
number of sequences possible from the 119 pandas functions we support is around 500,000.
Generating enough examples for all function sequences to cover a satisfactory portion of all
the possible argument combinations is prohibitively expensive and would result in dataset of
enormous size that cannot be processed and learned from in reasonable time.

However, not all sequences actually occur in practice. Users of the API come up with
sequences that are useful in solving real-world examples. So, we mine GitHub and StackOver-
flow to collect the function sequences used in the real-world. We were able to extract around
4,300 sequences from both these sources. Then, while generating the tuples (I,O,P , K)
using randomized semantics, we tweak the semantics of the call to Sequence at Line 4 in

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 129

Figure 8.5 to randomly return sequences from only this mined set of sequences.
We implement this overall technique in a tool called AutoPandas. AutoPandas

consists of 25k lines of Python code, and uses TensorFlow [25] to implement the neural
network models. The code is available at https://github.com/rbavishi/autopandas.

8.4 Evaluation
We first evaluate the feasibility and effectiveness of our technique by evaluating the end-to-end
ability of AutoPandas to synthesize solutions for real-world benchmarks. We then provide
deeper insights into the performance of our neural network models and compare it with two
baselines to demonstrate the usefulness of the models.

8.4.1 Training and Setup

We generated 6 million (input, output, program, generator choices) training tuples (as
described in Section 8.3.3) containing 2 million tuples each for programs consisting of one,
two, and three function calls. Similarly, we generate 300K validation tuples with 100K tuples
each for the three function sequence lengths. From these tuples we extract training and
validation data for the 320 operator calls in our program candidate generator for pandas,
and train their respective models for 10 epochs on four NVIDIA Titan V GPUs. We finished
training all the models in 48 hours. All our synthesis experiments are run on a single 8-core
machine containing Intel i7-7700K 4.20GHz CPUs running Ubuntu 16.04.

8.4.2 Performance on Real-World Benchmarks

We evaluated AutoPandas on 26 benchmarks taken from StackOverflow questions containing
the dataframe tag. We ran AutoPandas with a time-out of 20 minutes. For comparison,
we also implement a baseline version of AutoPandas called Baseline that follows the
exhaustive depth-first guide for all operator calls except the Sequence invocation. The
rationale is that given the size of the search space, it is more meaningful to compare the
performance of the models backing the exploration of function arguments given the same
function sequences.

Table 8.2 shows the results. The column Depth contains the length of the function
sequence used in the official solution for the benchmark. Cand. Explored denotes the number
of candidates both approaches had to check for correctness before arriving at one which
produces the target output. Seq. Explored contains the number of function sequences explored
(by the Sequence call at Line 4 in Figure 8.5), while the Time column contains the time
taken (in seconds) to produce a solution if any.

AutoPandas can solve 17 out of the 26 benchmarks. The Baseline approach solves
only 14. Both approaches tend to miss the 20 minute mark more often on benchmarks with
higher depths, which is expected as the space of possible programs grows exponentially with

https://github.com/rbavishi/autopandas

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 130

Table 8.2: Performance on Real-World Benchmarks between AutoPandas (AP) and our
baseline (BL). Dashes (-) indicate timeouts by the technique.

Benchmark Depth Candidates Explored Sequences Explored Solved Time(s)
AP BL AP BL AP BL AP BL

SO_11881165 1 15 64 1 1 Y Y 0.54 1.46
SO_11941492 1 783 441 8 8 Y Y 12.55 2.38
SO_13647222 1 5 15,696 1 1 Y Y 3.32 53.07
SO_18172851 1 - - - - N N - -
SO_49583055 1 - - - - N N - -
SO_49592930 1 2 4 1 1 Y Y 1.1 1.43
SO_49572546 1 3 4 1 1 Y Y 1.1 1.44
SO_13261175 1 39,537 - 18 - Y N 300.20 -
SO_13793321 1 92 1456 1 1 Y Y 4.16 5.76
SO_14085517 1 10 208 1 1 Y Y 2.24 2.01
SO_11418192 2 158 80 1 1 Y Y 0.71 1.46
SO_49567723 2 1,684,022 - 2 - Y N 753.10 -
SO_13261691 2 65 612 1 1 Y Y 2.96 3.22
SO_13659881 2 2 15 1 1 Y Y 1.38 1.41
SO_13807758 2 711 263 2 2 Y Y 7.21 1.81
SO_34365578 2 - - - - N N - -
SO_10982266 3 - - - - N N - -
SO_11811392 3 - - - - N N - -
SO_49581206 3 - - - - N N - -
SO_12065885 3 924 2072 1 1 Y Y 0.9 4.67
SO_13576164 3 22,966 - 5 - Y N 339.25 -
SO_14023037 3 - - - - N N - -
SO_53762029 3 27 115 1 1 Y Y 1.90 1.50
SO_21982987 3 8385 8278 10 10 Y Y 30.80 13.91
SO_39656670 3 - - - - N N - -
SO_23321300 3 - - - - N N - -

Total 17/26 14/26

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 131

the length of the function sequence being explored. The guided execution of the program
candidate generator enabled by neural networks allows AutoPandas to search this enormous
space in reasonable time.

Even on the benchmarks that are solved by both approaches, the lower numbers in the
Candidates Explored column indicate that our neural-backed program candidate generator
indeed learns to adapt to the synthesis task at hand, generating the solution faster than
the baseline. Finally the number of sequences explored in both approaches is always at
most 10, and often 1, suggesting that the sequence prediction component is quite effective.
The difference in time between the two approaches is relatively smaller than in candidate
numbers, because AutoPandas includes the time taken to query the neural network models
and interpret its results. However we believe this is fundamentally an engineering issue.
Performance could easily be improved by batching queries, parallelizing exploration and
speculative execution of the generator while waiting for results from the models.

Most of the benchmarks on which AutoPandas fails to find a solution involve arithmetic
functions. AutoPandas’s encoding does not capture arithmetic relationships readily, so its
function sequence prediction is not as accurate for these sequences.

8.4.3 Analysis of Neural Network Models

Now we analyze whether the Rank function underlying the smart guides actually ranks
choices in a useful order for synthesis.

8.4.3.1 Function Sequence Prediction Performance

We single out the call to Sequence in our program candidate generator (Line 4 of Figure 8.5)
as it is the component most critical to the performance of the generator, and dissect the
performance of the neural network model backing it; on our synthetic validation dataset in
Figure 8.8. In particular, we measure top-1 to top-10 accuracies on a per-sequence basis.
Recall that these are the sequences mined from GitHub and StackOverflow. Figures 8.8a-
8.8c show the performance of the model when predicting sequences of lengths 1, 2 and 3
respectively. As expected, the performance for shorter sequences is better as the logical
distance between the input and output is lower, and therefore the encoding can capture
sufficient information. Another reason for poorer accuracies at higher lengths is the fact that
for large APIs like pandas functions often have overlapping semantics. Therefore multiple
sequences may produce viable solutions for a given output example. This is reinforced by the
results on real-world benchmarks in Table 8.2. In particular, the numbers in the “Sequences
Explored” column for AutoPandas suggest that the model indeed predicts useful sequences,
even if they don’t match the ground-truth sequence.

Figures 8.8d-8.8f present the expected accuracies of a purely random model on the same
dataset. As expected, the accuracies are almost zero (there is a slight gradient in Figure 8.8d).
The sheer number of possible sequences makes it improbable for a random model to succeed
on this task; even our baseline benefited from the neural model’s predictions.

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 132

(a) Smart, Length-1 (b) Smart, Length-2 (c) Smart, Length-3

(d) Random, Length-1 (e) Random, Length-2 (f) Random, Length-3

Figure 8.8: Smart Model Accuracies on Function Prediction Task, compared to a Random
Baseline. Per-sequence Top-k accuracies provided. Color gives accuracy; darker is better.
The color point (x, y) gives the top-x accuracy for sequence with ID y. Sequence IDs are
sorted based on top-1 accuracy of the smart model.

(a) Smart Model (b) Baseline-Deterministic (c) Baseline-Randomized

Figure 8.9: Per-operator Top-k accuracies. Color gives accuracy; darker is better. The color
point (x, y) gives the top-x accuracy for operator with ID y. Operator IDs are sorted based
on top-1 accuracy of the smart model.

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 133

8.4.3.2 Comparison with Deterministic and Randomized Semantics

We demonstrate the efficacy of the smart guide by comparing the neural network models
with deterministic and randomized baselines. In the deterministic baseline, the guide forces a
certain fixed order of argument exploration (i.e. the exhaustive depth-first guide discussed in
Section 8.2). In the randomized baseline, the guide returns values in a random order. We
expect the smart neural-network-based guide to perform better than both these baselines as
it is utilizing the context to influence its choices. Figure 8.9 shows the results.

We see that while a randomized approach smoothens results compared to the deterministic
approach (ref. Figure 8.9c vs. Figure 8.9b), both still have significant difficulty on certain
operator calls (top-left corners of all graphs). The neural network model performs quite well
in comparison. There are operator calls where all the three approaches perform poorly or all
perform well. The former can be attributed to insufficient information in the context. For
example, if a pandas function supports two modes of operation which can both lead to a
solution, the model may be penalized in terms of argument prediction accuracy, but may not
affect its performance in the actual task. The latter case, where all approaches perform well,
can be mostly attributed to small domains. For example, many pandas functions take an
axis argument that can only take the value 0 or 1, which can be modeled as Select({0,1})
in the generator. Hence the top-2 accuracy of all the approaches will be 100%.

Overall, we see that the neural-backed operators arrive at the correct choice much more
quickly than their randomized or deterministic counter-parts, helping the generator as a
whole to arrive at the solution more efficiently. In fact, the accuracies in Figure 8.9 are quite
high for the neural-backed operators overall. We think this is a very encouraging result, as
the networks are able to learn useful operator-level heuristics from the graph encodings of
domain and context.

The contrast between the overall high accuracies in Figure 8.9 and the accuracies in
Figure 8.8 suggests that the biggest bottleneck is predicting the correct function sequence.
This and the previous observation are reinforced by the columns containing the number of
candidates and function sequences explored in Table 8.2.

8.5 Discussion
Although the results suggest that the AutoPandas system as described works fairly well,
the neural-backed program candidate generator we use is only one of the many possible
generators in a large design space. At a high-level, our generator works by first predicting an
entire sequence of functions, and then exploring the resulting space of argument combinations.
However, predicting entire sequences is prone to error, especially at higher lengths, since
the logical distance between the input and the target output may not allow our graph-
based encoding to capture complete information about the transformation. Another possible
approach is to predict only one function (along with its arguments) at a time, and make the
next decision based on the output of running this function.

CHAPTER 8. AUTOPANDAS: GENERATOR-BASED PROGRAM SYNTHESIS 134

One of the key elements which allows neural-network backed execution of generators is
our graph-based encoding of the domain and context, where relationships between elements
are captured using edges. These edges can be thought of as dependency relationships. When
considering dataframes as in our case, these edges (especially equality edges) capture the
elements of the output that are dependent on certain elements of the input. This presents an
opportunity for additional user interaction—the user, along with the input-output example,
can provide additional help by pointing out the relationships between the cells of the input
and output dataframe, which can be directly captured as edges in our encoding. This may
give better results in cases where equality edges alone cannot distinguish the operation being
performed (e.g., in distinguishing between arithmetic operations).

Overall, in this chapter, we saw that the notion of guided generator-based search has
applications beyond fuzz testing. Much as in the prior chapter, the core of the AutoPandas
technique is to cleanly separate the specification of the search space (the program candidate
generator) from the technique used to sample inputs (the smart, neural network backed
guide). As was shown in Section 8.4.3, the smart guide is very effective at pruning the space
of programs for synthesis. But the results on real-world examples demonstrate there is room
for growth. The key takeaway from Part III is that by separating the generator from its
distribution, we can more efficiently solve search problems like blackbox validity fuzzing
and program synthesis. Chapter 7 and this one open doors to further innovation in the
efficient, automatic, distribution tuning of generators in order to tackle currently difficult
search problems.

135

Chapter 9

Conclusion

This dissertation presented several fuzz testing methodologies, each of which had a particular
goal in the scope of improvements to test-input generation and software quality more broadly.

In Part I, we saw first how a modification of the coverage-guided fuzzing algorithm—
the multi-objective maximization search algorithm performed by PerfFuzz—enabled the
creation of performance regression test suites, and the discovery of algorithmic complexity
bugs. We saw an increased ability to discover known worst-case inputs compared to prior
work, a fuzzing algorithm which used single-objective feedback and tried to bias mutations
towards increasing the objective. But while Chapter 3 presented the PerfFuzz algorithm
in reasonable generality, it only evaluated the algorithm for one performance objective:
maximizing control-flow-graph-edge hit counts.

In Chapter 4, we introduced a reframing of this multi-objective maximization algorithm,
pointing out the key notion of waypoint inputs to guide the fuzzer. This allowed us to
generalize beyond the PerfFuzz algorithm for performance fuzzing to a general algorithm
for feedback-directed—rather than simply coverage-guided—fuzzing. This chapter gave a
better taste of the potential of feedback-directed fuzzing. First, with another performance
fuzzing goal: showing how it could be used to find inputs that use unreasonable amounts
of memory. Second, we saw how it could be used to target fuzzing to particular program
components, e.g. hard comparisons in the code. Third, we saw the algorithm could also
be used to target inputs towards newly-modified code. The FuzzFactory framework also
neatly enabled us to combine these multiple objectives, in order to create truly generalized
feedback-directed fuzzers.

In Part II we shifted away from the feedback component of coverage-guided fuzzing to
examine the impact of mutations on the performance of fuzz testing. In Chapter 5 we presented
a method to automatically identify branches guarding potentially under-explored regions
of code, and target mutations towards these branches. FairFuzz’s mutation targeting
methodology—the mutation mask and its computation—could in fact be used to target
objectives other than hitting a particular branch. We saw that this method was effective
in increasing the coverage achieved by fuzz testing, especially on programs with highly
nested structure. This highlighted the importance of structure-aware mutations in enabling

CHAPTER 9. CONCLUSION 136

deeper program exploration, but did not completely solve the problem of how to derive
structure-aware mutations.

In Chapter 6, we explored the full potential of structure-aware mutations. Instead of
simply filtering out mutations at the byte-level, as in FairFuzz, we leveraged user knowledge
in the form of random-input generators to obtain structure-aware mutations. These random-
input generators can be viewed as a mapping from an infinite sequence of bytes—created
by a pseudo-random source—to a structured input. This view enables us to use byte-level
mutations on the infinite byte sequence in order to obtain mutations that only step through
the space of well-structured inputs. This, along with additional feedback on semantic validity,
enabled the discovery of bugs deep in the semantic processing stages of programs.

In Part III, we took a deeper look at the potential behind random-input generators.
Chapter 7 focused on a very similar problem to that addressed in Chapter 6: the increased
generation of valid inputs from an over-approximate generator. However, Chapter 7 looked
at controlling the behavior of the generator at a different level: instead of modifying an
uninterpretable byte-level parameter sequence, RLCheck sought to create a guide which
tuned the distribution of choices in the generator. We found that an adaptive guide backed
by a reinforcement learning approach (Monte Carlo Control) could effectively narrow the
generation of inputs the the space of valid inputs.

Finally, in Chapter 8, we saw an application domain of these search algorithms beyond
automated test-input generation. Again, we leveraged the framework introduced in Chapter 7:
guiding a generator at the level of “random” choices. We noticed that we could conduct
program synthesis—find programs satisfying a user-provided input-output example—via
essentially generator-based fuzzing, with a modified bug oracle. Instead of the generator
generating program inputs, it generates programs which can be run on the user-provided
input. Instead of tuning the distribution of the generator to a space of valid inputs, we used
graph neural networks to bias it to producing programs satisfying the user specification early
in the generation process.

The key achievement of this dissertation is revealed when taking a step back and looking
at these works as a whole:

Three key components of modern fuzzing algorithms must be extended in order to use
these algorithms to broadly improve software quality. A generalized notion of feedback
enables coverage-guided fuzzers to find new types of bugs; well-structured mutations enable
mutational fuzzers to explore deeper program states; and distribution learning methods
enable the use of generator-based search for validity fuzzing and program synthesis.

This insight enables us to more rapidly adapt fuzzers and fuzz-testing-like search algorithms
to different software quality problems. One direction going forward is to continue looking
for software quality issues that could be solved with these strong search problems. However,
there also remains much work to do around even well-known fuzzing algorithms.

CHAPTER 9. CONCLUSION 137

While these fuzzing algorithms are very effective at finding bugs in programs on which
they can be run, they cannot currently be run on all programs. Typically they assume
the program under test is either a command-line tool taking in a file as input, or require
a specialized side-effect-free test driver to be written. Writing these test drivers is not an
easy task, and may discourage developers from using fuzz testing. Automating the creation
of such drivers is key to bringing fuzz testing into the everyday developer’s toolbox, and
preliminary work shows great potential for impact in this direction [33, 102].

Further, as we saw in Chapters 6 and 7, when input structure information can be obtained,
the efficiency of the fuzzer in exploring program states beyond the parser increases greatly.
However, writing down these specifications of input structure can be another barrier to the
usage of these more effective fuzz testers. Pairing fuzz testing with input structure inference—
and developing input structure inference techniques that scale to real-world scenarios—may
be the next great innovation in fuzz testing.

Finally, this dissertation did not explore what exactly developers should do with all the
bugs with which they are presented. It is possible that some of the bugs fuzz testers find
automatically do not fit the user’s threshold of importance. Exploring of specifications of
bug relevance that can be both understood by human developers and can effectively restrict
the fuzz tester’s search would help us reduce these false positives.

Solving all of these problems is highly non-trivial. However, first steps in these directions
have shown that good solutions to these problems can have even broader impacts on the
amelioration of software quality than the improvement of fuzz testing algorithms alone.

138

Bibliography

[1] CVE-2011-3414. Available from MITRE, 2011.

[2] CVE-2011-4858. Available from MITRE, 2011.

[3] CWE-400: Uncontrolled Resource Consumption. Available from MITRE, 2011. Accessed
Jan 2018.

[4] CVE-2014-5265. Available from MITRE, 2014.

[5] CVE-2017-9804. Available from MITRE, 2017.

[6] wf - Simple word frequency counter, 2017. Accessed Jan 2018.

[7] Apache Ant. https://ant.apache.org, 2018. Accessed August 24, 2018.

[8] Apache Byte Code Engineering Library. https://commons.apache.org/proper/
commons-bcel, 2018. Accessed August 24, 2018.

[9] Apache Maven. https://maven.apache.org, 2018. Accessed August 24, 2018.

[10] Google Closure. https://developers.google.com/closure/compiler, 2018. Accessed
August 24, 2018.

[11] Mozilla Rhino. https://github.com/mozilla/rhino, 2018. Accessed August 24, 2018.

[12] React.JS. https://reactjs.org, 2018. Accessed August 24, 2018.

[13] Eris: Porting of QuickCheck to PHP. https://github.com/giorgiosironi/eris, 2019.
Accessed January 28, 2019.

[14] FsCheck: Random testing for .NET. https://hypothesis.works/, 2019. Accessed
January 28, 2019.

[15] Hypothesis for Python. https://hypothesis.works/, 2019. Accessed January 28,
2019.

[16] JSVerify: Property-based testing for JavaScript. https://github.com/jsverify/
jsverify, 2019. Accessed January 28, 2019.

https://ant.apache.org
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-bcel
https://maven.apache.org
https://developers.google.com/closure/compiler
https://github.com/mozilla/rhino
https://reactjs.org
https://github.com/giorgiosironi/eris
https://hypothesis.works/
https://hypothesis.works/
https://github.com/jsverify/jsverify
https://github.com/jsverify/jsverify

BIBLIOGRAPHY 139

[17] PeachFuzzer. https://www.peach.tech/, 2019. Accessed January 28, 2019.

[18] ScalaCheck: Property-based testing for Scala. https://www.scalacheck.org/, 2019.
Accessed January 28, 2019.

[19] test.check: QuickCheck for Clojure. https://github.com/clojure/test.check, 2019.
Accessed January 28, 2019.

[20] CVE-2020-7212. Available from MITRE, 2020.

[21] Address Sanitizer. https://clang.llvm.org/docs/AddressSanitizer.html, 2021. Ac-
cessed Apr 30, 2021.

[22] Leak Sanitizer. https://clang.llvm.org/docs/LeakSanitizer.html, 2021. Accessed
Apr 30, 2021.

[23] Memory Sanitizer. https://clang.llvm.org/docs/MemorySanitizer.html, 2021. Ac-
cessed Apr 30, 2021.

[24] Undefined Behavior Sanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, 2021. Accessed Apr 30, 2021.

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. Software available from tensorflow.org.

[26] M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and M. Whittaker. Announcing OSS-
Fuzz: Continuous Fuzzing for Open Source Software. https://testing.googleblog.
com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html, 2016.

[27] M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to Represent Programs
with Graphs. In International Conference on Learning Representations, 2018.

[28] P. Amini and A. Portnoy. Sulley. https://github.com/OpenRCE/sulley, 2012. Ac-
cessed August 22nd, 2017.

[29] B. Archer and Drakkey. Radamsa: a general-purpose fuzzer. https://gitlab.com/
akihe/radamsa, 2019. Accessed August 21, 2019.

[30] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert.
Nautilus: Fishing for Deep Bugs with Grammars. In 26th Annual Network and
Distributed System Security Symposium, NDSS ’19, 2019.

https://www.peach.tech/
https://www.scalacheck.org/
https://github.com/clojure/test.check
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://github.com/OpenRCE/sulley
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa

BIBLIOGRAPHY 140

[31] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz. Ijon: Exploring Deep State
Spaces via Fuzzing. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1597–1612, 2020.

[32] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In Symposium on Network and Distributed
System Security, NDSS ’19, 2019.

[33] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux, L. Szekeres,
and W. Wang. FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, page 975–985, New York,
NY, USA, 2019. Association for Computing Machinery.

[34] T. Ball and J. R. Larus. Efficient Path Profiling. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 29, pages 46–57,
Washington, DC, USA, 1996. IEEE Computer Society.

[35] T. Ball, P. Mataga, and M. Sagiv. Edge Profiling Versus Path Profiling: The Showdown.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’98, pages 134–148, New York, NY, USA, 1998. ACM.

[36] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli. CVC4. In Proceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, page 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[37] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Synthesizing Program Input Grammars.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, 2017.

[38] R. Bavishi, C. Lemieux, R. Fox, K. Sen, and I. Stoica. AutoPandas: Neural-Backed
Generators for Program Synthesis. Proc. ACM Program. Lang., 3(OOPSLA), Oct.
2019.

[39] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC ’05, page 41,
USA, 2005. USENIX Association.

[40] M. Beyene and J. H. Andrews. Generating String Test Data for Code Coverage. In
Fifth IEEE International Conference on Software Testing, Verification and Validation,
ICST 2012, Montreal, QC, Canada, April 17-21, 2012, pages 270–279, 2012.

[41] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo, S. Wörner, and
T. Holz. GRIMOIRE: Synthesizing Structure while Fuzzing. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1985–2002, Santa Clara, CA, Aug. 2019.
USENIX Association.

BIBLIOGRAPHY 141

[42] M. Böhme. AFLFast.new. https://groups.google.com/d/msg/afl-users/
1PmKJC-EKZ0/lbzRb8AuAAAJ, 2016. Accessed August 23rd, 2017.

[43] M. Böhme. STADS: Software Testing as Species Discovery. ACM Trans. Softw. Eng.
Methodol., 27(2), June 2018.

[44] M. Böhme, V. J. M. Manès, and S. K. Cha. Boosting Fuzzer Efficiency: An Information
Theoretic Perspective. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 678–689, New York, NY, USA, 2020. Association
for Computing Machinery.

[45] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed Greybox
Fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, 2017.

[46] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based Greybox Fuzzing As
Markov Chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, 2016.

[47] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java
Predicates. In Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’02, pages 123–133, New York, NY, USA, 2002.
ACM.

[48] S. Bratus, A. Hansen, and A. Shubina. LZfuzz: a fast compression-based fuzzer for
poorly documented protocols. Technical report, Department of Computer Science,
Darmouth College, 2008.

[49] A. Bugariu, V. Wüstholz, M. Christakis, and P. Müller. Automatically Testing Imple-
mentations of Numerical Abstract Domains. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, page 768–778,
New York, NY, USA, 2018. Association for Computing Machinery.

[50] M. Bynens. In search of the perfect URL validation regex. https://mathiasbynens.
be/demo/url-regex, 2014.

[51] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of
High-coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, 2008.

[52] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on Binary
Code. In 2012 IEEE Symposium on Security and Privacy, pages 380–394, 2012.

[53] S. K. Cha, M. Woo, and D. Brumley. Program-Adaptive Mutational Fuzzing. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy, SP ’15, 2015.

https://groups.google.com/d/msg/afl-users/1PmKJC-EKZ0/lbzRb8AuAAAJ
https://groups.google.com/d/msg/afl-users/1PmKJC-EKZ0/lbzRb8AuAAAJ
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex

BIBLIOGRAPHY 142

[54] P. Chen and H. Chen. Angora: Efficient Fuzzing by Principled Search. In Proceedings
of the 39th IEEE Symposium on Security and Privacy, 2018.

[55] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su. EnFuzz:
Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), Santa Clara, CA, Aug. 2019. USENIX
Association.

[56] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform for in-Vivo Multi-Path
Analysis of Software Systems. SIGPLAN Not., 46(3):265–278, Mar. 2011.

[57] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder–decoder for sta-
tistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734. Association for
Computational Linguistics, 2014.

[58] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In Proceedings of the 5th ACM SIGPLAN International Conference
on Functional Programming, ICFP, 2000.

[59] L. A. Clarke. A program testing system. In Proc. of the 1976 annual conference, pages
488–491, 1976.

[60] E. Coppa, C. Demetrescu, and I. Finocchi. Input-Sensitive Profiling. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, pages 89–98, New York, NY, USA, 2012. ACM.

[61] N. Coppik, O. Schwahn, and N. Suri. MemFuzz: Using Memory Accesses to Guide
Fuzzing. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST), pages 48–58. IEEE, 2019.

[62] D. Coppit and J. Lian. Yagg: An Easy-to-use Generator for Structured Test Inputs. In
Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, pages 356–359, New York, NY, USA, 2005. ACM.

[63] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna.
DIFUZE: Interface Aware Fuzzing for Kernel Drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages
2123–2138, New York, NY, USA, 2017. ACM.

[64] S. A. Crosby and D. S. Wallach. Denial of Service via Algorithmic Complexity Attacks.
In Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12,
SSYM’03, pages 3–3, Berkeley, CA, USA, 2003. USENIX Association.

BIBLIOGRAPHY 143

[65] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[66] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applica-
tions. Commun. ACM, 54:69–77, Sept. 2011.

[67] R. Feldt and S. Poulding. Finding test data with specific properties via metaheuristic
search. In 2013 IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE), pages 350–359. IEEE, 2013.

[68] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program Synthesis Using Conflict-driven
Learning. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, pages 420–435, New York, NY, USA,
2018. ACM.

[69] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri. Component-based
Synthesis of Table Consolidation and Transformation Tasks from Examples. SIGPLAN
Not., 52(6):422–436, June 2017.

[70] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing Data Structure Transformations
from Input-output Examples. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15, pages 229–239, New
York, NY, USA, 2015. ACM.

[71] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. AFL++ : Combining Incremental
Steps of Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020.

[72] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing. In Proceedings of the 4th Conference on USENIX
Windows Systems Symposium - Volume 4, WSS’00, page 6, USA, 2000. USENIX
Association.

[73] O. S. Foundation. OpenSSL: Cryptography and SSL/TLS Toolkit. https://www.
openssl.org/, 1999. Accessed Apr 30, 2021.

[74] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite Generation for Object-
oriented Software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11, 2011.

[75] G. Fraser and A. Arcuri. A Large-Scale Evaluation of Automated Unit Test Generation
Using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2):8:1–8:42, Dec. 2014.

https://www.openssl.org/
https://www.openssl.org/

BIBLIOGRAPHY 144

[76] S. Frizell. Report: Devastating Heartbleed Flaw Was Used in Hospital Hack. Time,
2014. Accessed Apr 30, 2021.

[77] V. Ganesh, T. Leek, and M. Rinard. Taint-based Directed Whitebox Fuzzing. In
Proceedings of the 31st International Conference on Software Engineering, ICSE ’09,
2009.

[78] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov. Test
generation through programming in UDITA. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, pages 225–234, 2010.

[79] P. Godefroid. Fuzzing: Hack, Art, and Science. Commun. ACM, 63(2):70–76, Jan.
2020.

[80] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based Whitebox Fuzzing. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, 2008.

[81] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, 2005.

[82] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In
Symposium on Network and Distributed System Security, NDSS ’08, 2008.

[83] P. Godefroid, H. Peleg, and R. Singh. Learn & Fuzz: Machine Learning for Input
Fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 50–59, Piscataway, NJ, USA, 2017. IEEE Press.

[84] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. Measuring Empirical Computational
Complexity. In Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE ’07, pages 395–404, New York, NY, USA, 2007. ACM.

[85] Google. Continuous fuzzing of open source software. https://opensource.google.
com/projects/oss-fuzz, 2019. Accessed March 26, 2019.

[86] Google. Set of tests for fuzzing engines. https://github.com/google/
fuzzer-test-suite, 2019. Accessed March 20, 2019.

[87] R. Gopinath, B. Mathis, and A. Zeller. Mining Input Grammars from Dynamic Control
Flow. In Proceedings of the 2019 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, pages 1–12, New York, NY, USA, 2020. Association for Computing
Machinery.

https://opensource.google.com/projects/oss-fuzz
https://opensource.google.com/projects/oss-fuzz
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite

BIBLIOGRAPHY 145

[88] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution
profiler. In ACM Sigplan Notices, volume 17, pages 120–126. ACM, 1982.

[89] J. Graham-Cumming. Incident report on memory leak caused
by Cloudflare parser bug. https://blog.cloudflare.com/
incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/, 2017.
Accessed Apr 30, 2021.

[90] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance problems with
feedback-directed learning software testing. In 2012 34th International Conference on
Software Engineering (ICSE), pages 156–166. IEEE, 2012.

[91] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed test scripts.
In 2009 IEEE 31st International Conference on Software Engineering, pages 408–418.
IEEE, 2009.

[92] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for Overflows:
A Guided Fuzzer to Find Buffer Boundary Violations. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, 2013.

[93] M. Harman. The current state and future of search based software engineering. In
2007 Future of Software Engineering, pages 342–357. IEEE Computer Society, 2007.

[94] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,
Sept. 2020.

[95] S. Hocevar. zzuf. http://caca.zoy.org/wiki/zzuf/, 2007. Accessed August 22nd,
2017.

[96] M. R. Hoffmann, B. Janiczak, and E. Mandrikov. Eclemma-jacoco java code coverage
library, 2011.

[97] C. Holler, K. Herzig, and A. Zeller. Fuzzing with Code Fragments. In Presented as
part of the 21st USENIX Security Symposium (USENIX Security 12), 2012.

[98] P. Holser. junit-quickcheck: Property-based testing, JUnit-style. https://pholser.
github.io/junit-quickcheck, 2014. Accessed January 11, 2019.

[99] M. Höschele and A. Zeller. Mining Input Grammars from Dynamic Taints. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, 2016.

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
http://caca.zoy.org/wiki/zzuf/
https://pholser.github.io/junit-quickcheck
https://pholser.github.io/junit-quickcheck

BIBLIOGRAPHY 146

[100] A. D. Householder and J. M. Foote. Probability-Based Parameter Selection for Black-
Box Fuzz Testing. Technical report, Carnegie Mellon University Software Engineering
Institute, 2012.

[101] S. Inc. Heartbleed. https://heartbleed.com/, 2014. Accessed Apr 30, 2021.

[102] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. FuzzGen: Automatic Fuzzer
Generation. In 29th USENIX Security Symposium (USENIX Security 20), pages
2271–2287. USENIX Association, Aug. 2020.

[103] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and Detecting Real-
world Performance Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages 77–88, New York,
NY, USA, 2012. ACM.

[104] J. C. King. Symbolic execution and program testing. Commun. ACM, 19:385–394, July
1976.

[105] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv e-prints,
Dec. 2014.

[106] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating Fuzz Testing. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 2123–2138, New York, NY, USA, 2018. ACM.

[107] B. Korel. Automated software test data generation. IEEE Transactions on software
engineering, 16(8):870–879, 1990.

[108] H. Krasner. The Cost of Poor Quality Software in the US: A 2018 Report. Technical
report, Consortium for Information & Software Quality, 2018.

[109] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen. RFUZZ: Coverage-directed
Fuzz Testing of RTL on FPGAs. In Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’18, pages 28:1–28:8, New York, NY, USA, 2018. ACM.

[110] LafIntel. Circumventing Fuzzing Roadblocks with Compiler
Transformations. https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/, 2016.
Accessed March 20, 2019.

[111] L. Lampropoulos, D. Gallois-Wong, C. Hriţcu, J. Hughes, B. C. Pierce, and L.-y. Xia.
Beginner’s Luck: A Language for Property-based Generators. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pages 114–129, New York, NY, USA, 2017. ACM.

https://heartbleed.com/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

BIBLIOGRAPHY 147

[112] L. Lampropoulos, M. Hicks, and B. C. Pierce. Coverage Guided, Property Based
Testing. Proc. ACM Program. Lang., 3(OOPSLA), Oct. 2019.

[113] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,
pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[114] C. Lemieux, R. Padhye, K. Sen, and D. Song. PerfFuzz: Automatically Generating
Pathological Inputs. In Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2018, pages 254–265, New York, NY,
USA, 2018. ACM.

[115] C. Lemieux and K. Sen. FairFuzz: A Targeted Mutation Strategy for Increasing
Greybox Fuzz Testing Coverage. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE ’18, 2018.

[116] M. Leung and C. Commisso. Canadians filing taxes late due to ’Heart-
bleed’ bug won’t face penalties: CRA. https://www.ctvnews.ca/canada/
canadians-filing-taxes-late-due-to-heartbleed-bug-won-t-face-penalties-cra-1.
1767727, 2014. Retrieved October 23, 2020.

[117] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu. Steelix: Program-
state Based Binary Fuzzing. In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, 2017.

[118] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated Graph Sequence Neural
Networks. CoRR, abs/1511.05493, 2015.

[119] Z. Lin and X. Zhang. Deriving Input Syntactic Structure from Execution. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, page 83–93, New York, NY, USA, 2008. Association
for Computing Machinery.

[120] Z. Lin, X. Zhang, and D. Xu. Reverse Engineering Input Syntactic Structure from
Program Execution and Its Applications. IEEE Transactions on Software Engineering,
36(5):688–703, 2010.

[121] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

[122] V. Livinskii, D. Babokin, and J. Regehr. Random Testing for C and C++ Compilers
with YARPGen. Proc. ACM Program. Lang., 4(OOPSLA), Nov. 2020.

https://www.ctvnews.ca/canada/canadians-filing-taxes-late-due-to-heartbleed-bug-won-t-face-penalties-cra-1.1767727
https://www.ctvnews.ca/canada/canadians-filing-taxes-late-due-to-heartbleed-bug-won-t-face-penalties-cra-1.1767727
https://www.ctvnews.ca/canada/canadians-filing-taxes-late-due-to-heartbleed-bug-won-t-face-penalties-cra-1.1767727

BIBLIOGRAPHY 148

[123] A. Löscher and K. Sagonas. Targeted Property-based Testing. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2017, pages 46–56, New York, NY, USA, 2017. ACM.

[124] A. Loscher and K. Sagonas. Automating Targeted Property-Based Testing. In 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST), volume 00, pages 70–80, Apr 2018.

[125] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages 190–200, New
York, NY, USA, 2005. ACM.

[126] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah. MOPT: Optimized
Mutation Scheduling for Fuzzers. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1949–1966, Santa Clara, CA, Aug. 2019. USENIX Association.

[127] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo.
Fuzzing: Art, Science, and Engineering. CoRR, abs/1812.00140, 2018.

[128] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-Objective Automated Testing for
Android Applications. In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, page 94–105, New York, NY, USA, 2016. Association
for Computing Machinery.

[129] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele, and A. Zeller. Parser-
Directed Fuzzing. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, page 548–560, New York, NY,
USA, 2019. Association for Computing Machinery.

[130] P. M. Maurer. Generating test data with enhanced context-free grammars. Ieee Software,
7(4):50–55, 1990.

[131] P. McMinn. Search-Based Software Testing: Past, Present and Future. In Proceedings
of the 2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW ’11, pages 153–163, Washington, DC, USA, 2011.
IEEE Computer Society.

[132] Microsoft. Gated Graph Neural Network Samples. https://github.com/Microsoft/gated-
graph-neural-network-samples, 2017. Accessed October 17th, 2018.

[133] B. Miller, M. Zhang, and E. Heymann. The Relevance of Classic Fuzz Testing: Have
We Solved This One? IEEE Transactions on Software Engineering, pages 1–1, 2020.

BIBLIOGRAPHY 149

[134] B. P. Miller, G. Cooksey, and F. Moore. An Empirical Study of the Robustness of MacOS
Applications Using Random Testing. In Proceedings of the 1st International Workshop
on Random Testing, RT ’06, page 46–54, New York, NY, USA, 2006. Association for
Computing Machinery.

[135] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of UNIX
Utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

[136] B. P. Miller, D. Koski, C. Pheow, L. V. Maganty, R. Murthy, A. Natarajan, and
J. Steidl. Fuzz revisited: A re-examination of the reliability of UNIX utilities and
services. Technical report, University of Wisconsin-Madison, 1995.

[137] W. Miller and D. L. Spooner. Automatic generation of floating-point test data. IEEE
Transactions on Software Engineering, 2(3):223, 1976.

[138] G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY, USA,
1979.

[139] N. Nethercote and J. Seward. Valgrind: A program supervision framework. Electronic
notes in theoretical computer science, 89(2):44–66, 2003.

[140] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu. DifFuzz: Differential Fuzzing for Side-
channel Analysis. In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, pages 176–187, Piscataway, NJ, USA, 2019. IEEE Press.

[141] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: Detecting Performance Problems
via Similar Memory-access Patterns. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 562–571, Piscataway, NJ, USA, 2013. IEEE
Press.

[142] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner. Improving Function
Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach.
In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18,
pages 1475–1482, New York, NY, USA, 2018. ACM.

[143] I. Ogrodnki. 900 SINs stolen due to Heartbleed bug:
Canada Revenue Agency. https://globalnews.ca/news/1269168/
900-sin-numbers-stolen-due-to-heartbleed-bug-canada-revenue-agency/,
2014. Retrieved October 23, 2020.

[144] OpenSSL. OpenSSL Security Advisory [07 Apr 2014]. https://www.openssl.org/
news/secadv/20140407.txt, 2014. Retrieved October 23, 2020.

[145] OpenSSL. OpenSSL Security Advisory [26 Sep 2016]. https://www.openssl.org/
news/secadv/20160926.txt, 2016. Retrieved October 23, 2020.

https://globalnews.ca/news/1269168/900-sin-numbers-stolen-due-to-heartbleed-bug-canada-revenue-agency/
https://globalnews.ca/news/1269168/900-sin-numbers-stolen-due-to-heartbleed-bug-canada-revenue-agency/
https://www.openssl.org/news/secadv/20140407.txt
https://www.openssl.org/news/secadv/20140407.txt
https://www.openssl.org/news/secadv/20160926.txt
https://www.openssl.org/news/secadv/20160926.txt

BIBLIOGRAPHY 150

[146] OW2 Consortium. ObjectWeb ASM. https://asm.ow2.io, 2018. Accessed August 21,
2018.

[147] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed Random Testing for Java. In
Companion to the 22nd ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications Companion, OOPSLA ’07, 2007.

[148] R. Padhye, C. Lemieux, and K. Sen. JQF: Coverage-guided Property-based Testing in
Java. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’19, 2019.

[149] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon. Semantic Fuzzing
with Zest. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’19, 2019.

[150] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar. FuzzFactory: Domain-
Specific Fuzzing with Waypoints. Proc. ACM Program. Lang., 3(OOPSLA), Oct.
2019.

[151] M. Papadakis and K. Sagonas. A PropEr Integration of Types and Function Spec-
ifications with Property-based Testing. In Proceedings of the 10th ACM SIGPLAN
Workshop on Erlang, Erlang ’11, pages 39–50, New York, NY, USA, 2011. ACM.

[152] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

[153] H. Peng, Y. Shoshitaishvili, and M. Payer. T-Fuzz: fuzzing by program transformation.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 697–710. IEEE, 2018.

[154] J. Pereyda. BooFuzz. [https://github.com/jtpereyda/boofuzz, 2016. Accessed May
4th, 2020.

[155] N. Perlroth. Security Experts Expect ‘Shellshock’ Software Bug in Bash to Be Significant.
The New York Times, 2014. Accessed Apr 30, 2021.

[156] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. Nezha: Efficient domain-
independent differential testing. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 615–632. IEEE, 2017.

[157] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vulnerabilities. In Proceedings of
the ACM Conference on Computer and Communications Security, 2017.

[158] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury. Smart
Greybox Fuzzing. CoRR, abs/1811.09447, 2018.

https://asm.ow2.io
[https://github.com/jtpereyda/boofuzz

BIBLIOGRAPHY 151

[159] S. Poeplau and A. Francillon. Symbolic execution with SymCC: Don’t interpret,
compile! In 29th USENIX Security Symposium (USENIX Security 20), pages 181–198.
USENIX Association, Aug. 2020.

[160] S. Poeplau and A. Francillon. SymQEMU: Compilation-based symbolic execution for
binaries. In 28th Annual Network and Distributed System Security Symposium, NDSS
’21, 2021.

[161] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. VUzzer: Application-
aware Evolutionary Fuzzing. In Proceedings of the 2017 Network and Distributed System
Security Symposium, NDSS ’17, 2017.

[162] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley.
Optimizing Seed Selection for Fuzzing. In Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC’14, pages 861–875, Berkeley, CA, USA, 2014. USENIX
Association.

[163] S. Reddy, C. Lemieux, R. Padhye, and K. Sen. Quickly Generating Diverse Valid
Test Inputs with Reinforcement Learning. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20, page 1410–1421, New
York, NY, USA, 2020. Association for Computing Machinery.

[164] T. Ringer, D. Grossman, D. Schwartz-Narbonne, and S. Tasiran. A Solver-aided
Language for Test Input Generation. Proc. ACM Program. Lang., 1(OOPSLA):91:1–
91:24, Oct. 2017.

[165] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for C. In
Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, 2005.

[166] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE: Multi-path symbolic execution
using value summaries. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 842–853. ACM, 2015.

[167] K. Serebryany. libFuzzer. http://llvm.org/docs/LibFuzzer.html, 2016. Accessed
August 25th, 2017.

[168] K. Serebryany, V. Buka, and M. Morehouse. Structure-aware fuzzing for Clang and
LLVM with libprotobuf-mutator, 2017.

[169] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SOK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 138–157, 2016.

http://llvm.org/docs/LibFuzzer.html

BIBLIOGRAPHY 152

[170] E. G. Sirer and B. N. Bershad. Using Production Grammars in Software Testing. In
Proceedings of the 2Nd Conference on Domain-specific Languages, DSL ’99, pages 1–13,
New York, NY, USA, 1999. ACM.

[171] L. Song and S. Lu. Statistical Debugging for Real-world Performance Problems. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 561–578, New York, NY, USA,
2014. ACM.

[172] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings of the 2016 Network and Distributed System Security
Symposium, NDSS ’16, 2016.

[173] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, chapter 5,
pages 120–124. MIT Press, 2018.

[174] R. Swiecki. honggfuzz. http://honggfuzz.com/, 2016. Accessed August 7, 2018.

[175] L. Szekeres. FuzzBench: 2020-09-07 Sample Report . https://web.archive.org/web/
20210503193514/https://www.fuzzbench.com/reports/sample/index.html. Ac-
cessed May 3rd, 2021.

[176] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-Aware Greybox Fuzzing.
In 41st International Conference on Software Engineering, ICSE ’19, 2019.

[177] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, 2010.

[178] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie, G. Pu, and T. Liu.
MemLock: Memory Usage Guided Fuzzing. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20, page 765–777, New York,
NY, USA, 2020. Association for Computing Machinery.

[179] V. Wüstholz and M. Christakis. Harvey: A Greybox Fuzzer for Smart Contracts.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, page 1398–1409, New York, NY, USA, 2020. Association for Computing Machinery.

[180] V. Wüstholz and M. Christakis. Targeted Greybox Fuzzing with Static Lookahead
Analysis. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ICSE ’20, page 789–800, New York, NY, USA, 2020. Association for
Computing Machinery.

http://honggfuzz.com/
https://web.archive.org/web/20210503193514/https://www.fuzzbench.com/reports/sample/index.html
https://web.archive.org/web/20210503193514/https://www.fuzzbench.com/reports/sample/index.html

BIBLIOGRAPHY 153

[181] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and Understanding Bugs in C
Compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, 2011.

[182] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings
of the 2007 international symposium on Software testing and analysis, pages 140–150.
ACM, 2007.

[183] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang. ProFuzzer:
On-the-fly Input Type Probing for Better Zero-Day Vulnerability Discovery. In 2019
IEEE Symposium on Security and Privacy (SP), pages 769–786, 2019.

[184] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of the 27th USENIX Conference
on Security Symposium, SEC’18, pages 745–761, Berkeley, CA, USA, 2018. USENIX
Association.

[185] M. Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl, 2014. Accessed
August 18th, 2017.

[186] M. Zalewski. Bash bug: the other two RCEs, or how we chipped away at the original
fix (CVE-2014-6277 and ’78). https://web.archive.org/web/20210428205228/http:
//lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html, 2014.
Accessed May 2, 2020.

[187] M. Zalewski. Pulling JPEGs out of thin air. https://web.
archive.org/web/20210123014427/https://lcamtuf.blogspot.com/2014/11/
pulling-jpegs-out-of-thin-air.html, 2014. Accessed May 2, 2020.

[188] M. Zalewski. FidgetyAFL. https://groups.google.com/d/msg/afl-users/
fOPeb62FZUg/CES5lhznDgAJ, 2016. Accessed August 23rd, 2017.

[189] M. Zalewski. American Fuzzy Lop Technical Details. http://lcamtuf.coredump.cx/
afl/technical_details.txt, 2017. Accessed August 18th, 2017.

[190] D. Zaparanuks and M. Hauswirth. Algorithmic Profiling. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 67–76, New York, NY, USA, 2012. ACM.

[191] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE
Transactions on Software Engineering, 28(2):183–200, 2002.

http://lcamtuf.coredump.cx/afl
https://web.archive.org/web/20210428205228/http://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://web.archive.org/web/20210428205228/http://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://web.archive.org/web/20210123014427/https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://web.archive.org/web/20210123014427/https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://web.archive.org/web/20210123014427/https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Contents
	List of Figures
	List of Tables
	Introduction
	Coverage-Guided Fuzzing
	Drawback: Fixed Testing Goal
	Drawback: Malformed Inputs

	Generator-Based Fuzzing
	Drawback: Coupling of Distribution and Search Space

	Background and Related Work
	American Fuzzy Lop (AFL)
	Random and Mutational Fuzzers
	Coverage-Guided Fuzzers
	Specialized Feedback-Directed Fuzzers
	Structure-Aware and Generator-Based Fuzzers
	Other Approaches to Automated Testing

	Generalized Feedback-Directed Fuzzing
	PerfFuzz: Multi-Objective Performance Fuzzing
	Motivation
	The PerfFuzz Algorithm
	Implementation
	Evaluation
	Comparison with SlowFuzz
	Comparison with Coverage-Guided Fuzzing
	Impact of Staleness
	Case Studies

	Discussion

	FuzzFactory: A Framework for Specialized Fuzzers
	Motivation
	Waypoints

	The FuzzFactory Framework
	Domain-Specific Feedback
	Waypoints
	Composing Domains
	Algorithm for Domain-Specific Fuzzing
	Proof of Monotonicity of Aggregation

	Implementation
	Evaluation
	mem: Exacerbating Memory Allocations
	cmp: Smoothing Hard Comparisons
	diff: Incremental Fuzzing
	Composing Multiple Domains

	Discussion

	Structured Mutations
	FairFuzz: Mutation Masking for Deeper Coverage
	Motivation
	Overview of FairFuzz

	The FairFuzz Algorithm
	Mutation Masking
	Targeting Rare Branches
	Trimming Inputs for Testing Targets

	Evaluation
	Coverage Compared to Prior Techniques
	Crashing Compared to Prior Techniques
	Can Masking Effectively Target Branches?

	Discussion

	Zest: Using Generators for Higher-Level Mutations
	Motivation
	The Zest Technique
	Parametric Generators
	Feedback-Directed Parameter Search

	Implementation
	Evaluation
	Coverage of Semantic Analysis Classes
	Bugs in the Semantic Analysis Classes

	Discussion

	 Distribution Tuning of Generators
	RLCheck: Valid Inputs via Reinforcement Learning
	Motivation
	Problem Definition
	The RLCheck Algorithm
	Reinforcement Learning
	RLCheck: MCC with Diversity Reward
	State Abstraction

	Evaluation
	Generating Diverse Valid Inputs
	Covering Different Valid Behaviors
	Bug-Finding Ability
	Greybox Information

	Discussion

	AutoPandas: Generator-Based Program Synthesis
	Motivation
	The AutoPandas Technique
	Implementation
	Query Encoding
	Operator-Specific Graph Neural Network Models
	Training Neural-Backed Generators for Pandas

	Evaluation
	Training and Setup
	Performance on Real-World Benchmarks
	Analysis of Neural Network Models

	Discussion

	Conclusion
	Bibliography

