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“…if a process of embryonic development is disturbed, it usually returns to normality some 
time before reaching the adult condition. Its trajectory, that is to say, converges not merely 
to the normal end state, but to some earlier point on the path leading towards the steady 

state.  
 

…. 
 

This is well symbolized by the epigenetic landscape. If a ball, running down one of the 
valleys, were pushed partway up the hillside, it might well reach the valley bottom again 

before the slope of the valley flattens out as it reaches the adult steady state.” 
 
 
 
 
 

Conrad H. Waddington 
“The Strategy of Genes” 
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ABSTRACT OF THE THESIS 

Temporal Bioinformatic Analysis of Epigenetics through Histone Modifications  
 

By 
 

Robert Thomas West 
 

Biomedical Engineering, M.S. 
 

 University of California, Irvine, 2019 
 

Professor Timothy Downing, Chair 
 
 
 

Gathering information on DNA activity during development remains problematic as 

DNA regulation continues to periodically change, creating unknown downstream variations 

in final cell heterogeneity. The fluidity and complexity create extreme difficulty and 

impedes understanding of the process of epigenetics. Enormous amounts of modifications 

happen within DNA replication; current research only begins to realize the significance of 

histone modifications, the role they play in mRNA expression and epigenetics of cell fate. 

With approximately 3 billion base pairs13, histone modifications are nearly endless, each 

one can change the regulation of DNA in diverse ways, silencing or enhancing the 

expression of the DNA. With current analyses, such as Chromatin immunoprecipitation 

sequencing (ChIP-Seq), the ability to utilize high-powered computing and differing 

downstream analysis techniques, insightful observations can help realize the complexities 

of epigenetics and reprogramming.  We converted raw ChIP-seq data from Cacchiarelli, et 

al. into heatmaps and developed computing techniques to analyze six histone modifications 

through reprogramming with different sets of transcription factors4. Heatmaps were 

generated and sorted two dissimilar ways for visualization. Some histone modifications 
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depicted their typical roles while we saw some interesting clusters that developed over 

time. We were also able to discover which genes had the biggest peak enrichment 

differential. With insight into how each histone modification acts on the DNA over time and 

how certain promoters change expression, methods for mechanisms and stimulus affecting 

the expression and speed of reprogramming can be determined. This can then lessen 

reprogramming time and further enhance the importance of epigenetics in cell fate.  
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INTRODUCTION 

Reprogramming a mature cell into a pluripotent stem cell has opened many 

opportunities and avenues to study the human developmental process. Studying the 

reverse developmental process through reprogramming has advanced the discoveries of 

differentiation pathways, cellular mechanisms and therapeutic techniques. Those critical 

breakthroughs originated through the factors OCT4/KLF4/c-MYC/SOX2 (OKMS) 

discovered by Shinya Yamanaka. By increasing the expression of those four key 

transcription factors for visualization purposes in Figure 1, a Mouse Embryonic Fibroblast 

(MEF), slowly transforms through different phases of cell state. This happens through 

epigenetic changes to the DNA, silencing genes that maintain cell homeostasis and 

activating genes pushing the cell through waves of reprogramming. 

 
Figure 1: Evolution of cell after OKMS introduction. By introducing OKMS transcription factors, DNA 
activation/repression aspects are altered in a somatic cell over time until induced Pluripotent Stem Cell iPSC 
state is reached. Specific indicators and transition periods of each phase of reprogramming are indicated. iPSC 
cell colonies form during late passage7.  
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To further study the effects of the OKMS transcription factors on cellular expression, 

scientists began scrutinizing chromosome histone modifications, specific cell state markers 

and their silenced or activated epigenetic expression. Environmental influences on cell fate 

and resulting epigenetic state and cell function happens to be a relatively new concept 

compared to the 1D DNA blueprint script. Environment plays a much bigger role on an 

organism’s development and thus a significant role in reprogramming.  

In the study by Cacchiarelli, they discuss cells passing through transient cell states 

during reprogramming and expressing altered epigenetic signatures. They question if those 

transient cell states can be bypassed through unique chemical inhibitors or transcription 

factors4. Cellular stages through reprogramming can be altered and regulated through 

different chromatin states via the chemical inhibition or activation5. Successful 

reprogramming from fibroblasts to an induced pluripotent stem cell colony stands as a 

delicate process and can fail for seemingly insignificant reasons. Figure 2 depicts the cell 

morphologies from human induced Fibroblasts Telomerase, immortalized (hiF-T), cells to 

the distinct iPSC colonies. There are noticeable changes to the cell morphology as well as 

significant losses in the number of cells. Cacchiarelli et al. reprogrammed fibroblasts with a 

DOX-inducible, polycistronic OKMS lentiviral vector, giving rise to an initial hIPSC line. 

Then the cells were differentiated in vitro to a hiF, an hTERT lentivirus was introduced to 

create hiF-T and then reprogrammed again into hIPSC-T. The secondary reprogramming 

displayed more identifiable transient waves as well as more efficiently, with also an 

unlimited expansion potential.   

Many studies are attempting to improve those drastic changes and increase both the 

speed and efficiency in order to save money and time. In order to accomplish this task, we 
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must know what to target. We know the DNA is either silenced or activated based on the 

histone modification and the state of the cells are determined through cell markers. Those 

histones can be modified through transcription factors and by changing the DNA activation 

state, the cell will change. By studying the expression of genes and if a histone modification 

is present, we can determine what to target to affect the speed and efficiency of 

reprogramming.  

 
Figure 2: Stem cell colony formation images A) Bright field images of morphological changes from 
immortalized hiF-Ts to naïve induced pluripotent stem cell-TERTs(niPSC-Ts) for different time points of 
reprogramming cells. B) Time points of bright field images and GFP of OCT4 change from late reprogramming 
cells to niPSC-Ts using doxycyckine (DOX) inducible gene expression of OKMS for “secondary” 
reprogramming. Scale bars, 100 μm41. 

Facilitation through either expression or repression of transcription factors which 

affect histone modifications enhances the efficiency of reprogramming22. In order to 
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accurately determine cause for epigenetic change, profiling of chromatin states before and 

after reprogramming can help identify regulatory genes that dictate the cell state18. 

Induced pluripotent stem cells undergo a series of changes to molecular pathways during 

reprogramming and most of the cell’s distinctiveness form roadblocks in order to maintain 

somatic identity. Pathways, such as the p53 pathway, a central component regulating cell 

cycle preventing cancer, are continually studied to find a way to increase efficiency and 

speed of reprogramming39.  The p53 pathway is commonly knocked down to breach an 

analogous “Stress and senescence” barrier as seen in Figure 3. We are focusing our  

 

Figure 3: Identified cellular barriers that preserve cell homeostasis and their identity. Increased expression 
of the OKMS factors create stress, decrease of normal cell division and stimulate apoptosis.  The chromatin 
environment creates silenced sections of DNA after the first barrier is crossed. This environment of partial 
cell specific expression and partial iPSC expression depend on the OKMS factors because they are not yet self-
expressing the pluripotency factors: the second barrier. Once the DNA histone modifications are poised for 
the expression of pluripotency genes, the second barrier is crossed, and the cells maintain their iPSC state3. 

https://www.sciencedirect.com/science/article/pii/S0092867410010160


 

5 
 

research on certain genes that determine those transient states and ways to potentially 

breakdown or skip those barriers altogether. 

When the OKMS transcription factors are introduced, they specifically bind to target 

sites, change chromatin state and reactivate pluripotency genes to then generate hIPSCs. 

Transcription factors such as Transcriptional Enhancer Factor (TEAD1), Serum Response 

Factor (SRF), the Yes-associated protein (YAP)/Transcriptional coactivator with PDZ-

binding motif (TAZ) and the genes they target affect development and are also affected by 

environmental influences8,21. Additionally, Adhesome binding sites, a combination of 

Adherins and Caherins associated genes, are affected by the environment and change 

during development. Changes in gene expression and their targets effect the epigenetics of 

cells through development and reprogramming, yet the magnitude of their effects and 

when they are most influential is still unclear29, 40, 15. The chromatin state either helps 

activate or suppress transcription factors and create the epigenetic landscape for cell 

identify and morphology. By changing histone modifications, the chromatin state changes, 

from compact to open or vice versa and in turn regulates DNA transcription. Research on 

intermediate states and how to potentially skip those states or guide epigenetics remains 

ongoing and data intensive. Histones can be either methylated or acetylated, depending on 

where the modification occurs determines recruitment of transcriptional machinery or 

repression a model example seen in Figure 4. The histone modifications H3K4me1 

(activation), H3K4me2 (activation), H3K4me3 (activation), H3K27me3 (repression), 

H3K27ac (activation), H3K4me36 (activation) were utilized in our analysis. Each 

modification was also analyzed in the following conditions: from primary BJ foreskin  
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Figure 4: Histone modification model example. Tri-methylated H3K27 and H3K9 are repressive histone 
markers and create a compact chromatin. Tri-methylated H3K4, H3K36 and H3K79 are active histone 
markers and open DNA for transcription. HDMs are histone demethylases. HMTs are histone 
methyltransferases and HATs are histone acetylases. HDACS are histone deacetylases. Top diagram: no 
transcription occurs because of the methylation of repressors. Bottom diagram: transcription occurs because 
of the opposite, chromatin are loosened and transcriptional machinery is recruited30. 

fibroblast hiF-T (day-0), day-5, day-10, day-24 with DOX, day-24 without DOX and hIPSC4. 

Day-10 data for H3k27me3 and H3K36me3 was not available. Figure 5 further illustrates 

transcription factors interacting with a strand of DNA with certain histone modifications 

and changing the state of the chromatin and DNA “openness.” 
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Figure 5: Transcription factor effects on histone modifications and relationship with chromatin 
configurations. A) Transcription factors are introduced, they bind to the DNA and change the chromatin 
environment as well as recruit histone modifiers (HDMS, HMTS, HATS, HDACS). B) A homeostatic specific cell 
identity of closed DNA state on the left and an open environment on the right after transcription factors are 
introduced and initiating reprogramming25.  

ChIP-seq techniques have consistently proven to provide insight into identifying the 

effects of histone modifications and epigenetics of target DNA sites encoding proteins and 

transcription factors. By analyzing and interpreting ChIP-seq data, we can begin to 

understand the chromatin environment and the activated or repressed state of the DNA. 

ChIP-seq data gives information on the presence and quantity of a specific histone 
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modification. Essentially, DNA, associated proteins and chromatin are cross linked, each 

section are sheared into ~500 basepairs, then those cross-linked fragments of the specific 

histone proteins are selectively immunoprecipitated with specific antibodies and then 

those fragments are sequenced to create ChIP-seq data33. ChIP-seq data contains sequences 

from regions specifically or indirectly bound to the antibody or histone protein. We can 

also determine the proximity of histone modification enrichment and location of 

transcription factor binding based on the number of reads relative to the center of a known 

transcription start site. In order to finely tune the data from ChIP-seq and find the most 

accurate information through the noise we perform peak calling. A peak in ChIP-seq data is 

defined as a location where multiple reads of the DNA fragments line up and indicate a 

higher and more reliable indication the histone modification exists. Through analysis of 

this information, the epigenetic state of a cell can be mapped and understood. 

Understanding the chromatin environment allows us to determine if a particular gene set 

helps or hinders passing through a barrier of cellular reprogramming. The process to study 

epigenetic mechanisms and chromatin interactions contains massive amounts of data as 

well as a pipeline of comprehensive analytics.  

From the Cacchiarelli experiment, utilizing only their ChIP-seq data, the initial raw 

FASTQ data for 34 files (each histone modification and each time condition) totaled 46GB 

of data. To put this in perspective, downloading all the files from off the online database at 

a very high rate of 50Mb/s takes approximately 2 hours. As discussed in the Methods 

section, the raw files undergo alignment to the human genome, compressed for quicker 

computations, remove duplicates from Polymerase chain reaction (PCR) for quality, 

conversion to a format with readable and computational information ChIP-seq data for 
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analysis and heatmap generation. Each step of the process differs in time, on average each 

step takes 5-10 minutes depending on the original size due to the number of computations 

required. Approximately 280 GBs of information was produced for analysis from the 

original 46GBs. The result of high throughput ChIP-seq and inclusive analysis of the derived 

information brings to light new discoveries of linkages, directionality, and downstream 

effects which control the epigenetic and developmental process leading to a greater 

understanding of cellular gene expression and causation14, 35. There are a multitude of 

diverse software program techniques and tools to analyze data, selected based on the users 

desired result and goal26.   

ChIP-seq heatmap generation softwares available have problems, they are very 

specific to the creators’ input files, programming language and desired outputs and cannot 

be readily customized. All ChIP-seq heatmap generation software such as Deeptools, 

NGSPLOT, ChAsE, HOMER, Genomation, SeqPlots, EaSeq, additional R Packages and more 

take an input (usually a peak file), utilize their internal functions and output a heatmap 

sorted based only on the number of reads with given parameters across all TSS36. With only 

the ability to sort ChIP-seq data a certain way and only over all TSS, limits the ability to 

innovatively visualize the data differently and discover new relationships. Our goal is to 

create a unique toolchain and analysis of ChIP-seq data for heatmap visualization that can 

be thoroughly customized based on the user. To visualize enrichment of genomic signals 

over specific target regions as well as sort other ChIP-seq heatmaps based on another ChIP-

seq sort we created a pipeline that can be customized and cross-examined between 

different histone modifications and conditions. The unique code and process allows for the 

user to define which ChIP-seq data they wish to sort another ChIP-seq data by to visualize 
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how they compare at the same location in a different condition. Additionally, we create a 

new plot that compares the ChIP-seq peak values temporally during reprogramming, finds 

the overlapping genes and plots those genes of significance. We will utilize data from the 

Cacchiarelli lab to reanalyze and develop new ways to visualize, investigate and understand 

the ChIP-seq data. In addition, we will discuss the specific chosen analytical pipeline 

necessary to achieve heatmap visualizations and plots as well as the ability to re-use and 

customize the process to meet the intent of the user. 

METHODS 

Software and computing 

 Many different tools for any step in the data pipeline process exist as well as diverse 

ways to select certain functions of that tool. Determining the most useful software depends 

upon the user’s desired output or goal as well as comfortability and expertise in the 

language or program. Due to the massive amounts of data generated through distinctive 

histone modifications and time points, we utilized the UCI HPC Cluster in order to store 

files and high-powered computing to analyze the data. As stated earlier, the amount of data 

and the number of computations in order to align genomic data take approximately 5-10 

minutes. From the raw FASTQ file to create one heatmap the process takes 9 steps, as seen 

in Figure 6, and approximately 1 hour and 30 minutes. To access the HPC Cluster, the 

Windows SSH terminal MobaXterm allowed operability from any computer with Cisco 

AnyConnect. HPC Cluster conveniently has installed software with executables, functions 

and libraries that can be loaded through modules. Each HPC can have special nodes or 

versions as well as a specific order of loading different modules for proper version control 
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Figure 6: Data pipeline toolchain. Beginning in the upper left and ending in the lower right. Each box is the 
file, each circle is the software/program used to convert between one file and the next. The trapezoids are 
code and corresponding functions, found in Appendix B for more detail, created to generate the outputs we 
desired.  

and functionality. In our case for RStudio, we accessed qrsh (the interactive node), then 

loaded the module rstudio, followed by the version, R/3.5.1 and finally the initialized the 

application with the command rstudio31. Bismark software can also be used for analysis 

and generation of epigenetic data18.  

Data Acquisition 

 First, in order to derive information from an experiment, ChIP-seq data must be 

generated by sending ChIP data for sequencing from the Illumina platform, receiving a raw 

sequencing data file in FASTQ format. Additionally, and more common for bioinformatic 

analysis, the data associated with a ChIP experiment can be available through a GEO 

accession number. In our case we utilized GSE62777 (GEO Series) and supplementary 

ChIP-seq data, GSE71033, from the Cacchiarelli lab to analyze and visualize epigenetic 

modifications4. The raw data may also be located through accessing a Sequence Read 
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Archive (SRA) associated with the GEO accession repository. Within the SRA are the SRX 

Sequence Read Experiments (SRX) and finally, what we want, the Sequence Read Runs 

(SRR) for the experiments. All the SRR ChIP-seq files were downloaded into a working 

directory within MobaXterm and the HPC Cluster. SRR file numbers were matched to the 

correlating ChIP-seq condition, e.g., GSM1825750 (GEO Sample) with SRR for hiF-

T_P15_H3K4me3_Rep1 to conserve data information with condition. Six histone 

modification conditions, H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K27ac and 

H3K36me3 and six time points, hiF-T, 5-day, 10-day, 24-day with DOX, 24-day without DOX 

and hIPSC, were gathered from the Cacchiarelli data repository. The 10-day time point for 

H3K27me3 and H3K36me3 were not available on the repository and not analyzed.  

Data Processing and Conversion 

 For appropriate and accurate analysis of FASTQ file information the ChIP-seq reads 

are aligned with the human genome, we utilized the hg19 genome release for all analysis 

for continuity and accuracy. The Bowtie 2 tool aligns and sequences the very noisy and  

Table 1: Sample lines of code to convert raw data alignment to the genome in SAM format 

#!/bin/bash 
# fastq to sam 
module load bowtie2 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106001.fastq > hiFT-
T_P15_H3K27ace_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106002.fastq > hiFT-
T_P15_H3K4me1_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106003.fastq > hiFT-
T_P15_H3K4me2_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106004.fastq > hiFT-
T_P15_H3K4me2_Rep2.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106005.fastq > hiFT-
T_P15_H3K4me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106006.fastq > hiFT-
T_P15_H3K27me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106007.fastq > hiFT-
T_P15_H3K36me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106008.fastq > hiFT-
T_P15_INP_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106009.fastq > hIPSC-
T_P10_H3K27ace_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR21060010.fastq > hIPSC-
T_P10_H3K27me3_Rep1.sam 
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unorganized data to the genome through 50-100 characters comparisons, the memory 

footprint is about 3.2 GBs of RAM19. The output of Bowtie 2 is Sequence Alignment Map 

(SAM) formatted files and stores the sequenced data with eleven mandatory fields crucial 

for alignment19.  Once the files are aligned and in SAM format, we sorted the sequencing 

data, removed duplicates and finally converted to a BAM (Binary Alignment Map) file 

through SAM tools. We pipelined each SAM file through the following code, creating 

directories for each modification condition for consistency, ease of access and functionality 

for follow on analysis and visualization. 

Table 2: Sorting SAM format files, removing duplicates from PCR amplification, converting to BAM format, 
finding peak data and converting to a readable BED file. 

 #!/bin/bash 
 #module load samtools 
 #module load homer 
 #module load bedops 
 mkdir -p /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 cd /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 filedir=/pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 samtools view -bS /pub/rtwest/IAD2/ChIP-SeqSamples/${file}.sam > ${filedir}${file}.bam 
samtools sort ${filedir}${file}.bam -o ${filedir}${file}_Sorted.bam 
 
samtools view -b -F 0x400 ${filedir}${file}_Sorted.bam > 
${filedir}${file}_Sorted_PCRDupesRemoved.bam 
samtools index ${filedir}${file}_Sorted_PCRDupesRemoved.bam 
samtools view -h ${filedir}${file}_Sorted_PCRDupesRemoved.bam > 
${filedir}${file}_Sorted_PCRDupesRemoved.sam 
 
#makeTagDirectory and finding peaks for TF, Histone and TSS 
makeTagDirectory $filedir ${filedir}${file}_Sorted_PCRDupesRemoved.sam 
 
findPeaks ${filedir} -style factor -o ${filedir}/${file}_peaks.txt 
 
findPeaks ${filedir} -style histone -o ${filedir}/${file}_regions.txt   
 
findPeaks ${filedir} -style tss -o ${filedir}/${file}_tss.txt 
 
#annotatePeaks 
annotatePeaks.pl ${file}_peaks.txt hg19 > ${file}_AnnotatedPeaks.txt 
annotatePeaks.pl ${file}_regions.txt hg19 -size 6000 -hist 10 -ghist -d ${filedir} > 
${file}_heatmapMatrix.txt 
 
#convert annotated peak files to bed 
pos2bed.pl ${file}_AnnotatedPeaks.txt > ${file}_peak.bed 
pos2bed.pl ${file}_heatmapMatrix.txt > ${file}_heatmap.bed 
pos2bed.pl ${file}_regions.txt > ${file}_regions.bed 
 
#convert to bed 

  sam2bed < ${filedir}${file}_Sorted_PCRDupesRemoved.sam > ${filedir}${file}.bed 
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BAM files are compressed versions of SAM, require less memory to store and can be 

modified and converted faster, saving processing time for each file. PCR duplicates are 

removed, the file is aligned and sorted by mapping location and converted BAM back to 

SAM for follow on conversion to a BED file. BED files were converted utilizing Bedops and 

have the rudimentary required structure of chrom, chromStart and chromEnd features in 

the data, these three data points are the basis for DNA structure. Additionally, we also 

included all the information from the SAM file, name of the file, strand, score, sequence, etc. 

and all the necessary information to create a heatmap of the ChIP-seq data. Heatmaps allow 

an easy way for visualization and examination of large-scale snapshots of certain genomic 

distributions to understand biological activity and state.  

Peak Calling 

 The extreme amount of data that ChIP-seq generates produces noise, making the 

precise area of histone modification obscured. Next-generation sequencing (NGS) 

“produces an unprecedented amount of data. Raw data and images are on the order of 

terabytes per machine run.”28 In order to more accurately predict the binding sites of 

histone modifications, calling peaks of the read count data within the bed file further 

permits an accurate location. Both Homer and MACS2 (Model-based Analysis for ChIP-seq, 

used in pipeline) are customizable software modules that read BED file information. 

Certain parameters within the code, respective to either software, produce an output of 

peak data across the input file of binding-site sequences as seen in Table 3. Homer has 

multiple programs and one, findPeaks, performs peak calling that helps identify regions 

with more sequencing reads in defined parameter regions to output a new file with less 

noise12. MACS2 enhances the spatial resolution of potential binding sites for histones by 
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merging the sequence antibody tag position and orientation of the strand42. Essentially, the 

software models each alignment fragment, compares forward and reverse strands against 

the genome; if there are enriched regions, the software calculates a p-value using a Poisson 

distribution to capture a local bias and identifies a “peak”, allowing a robust identification. 

Specifically, for our commands, “callpeak” to use MACS2 call peaks from alignment results, 

“-t” defines the filename/treatment, “-f” format of the file, “-g” mappable genome size, “-n” 

output file name, “--broad” the parameter to search for the peak. We used broad as the 

MACS2 algorithm utilizes nearby highly enriched regions to determine a legitimate peak or 

not which is better suited for histone modifications because their binding site regions can 

be much wider. MACS2 outputs seven files of different peak information that can be used in 

further downstream analysis and descriptions can be found on their github42. We utilize 

the .xls peak file and broadpeak BED file, each containing chromosome name, start position 

of peak, end position of peak, length of peak region, absolute peak summit position, pileup 

height at peak summit, -log10(pvalue) for the peak summit and a fold enrichment value 

against random Poisson distribution. The broadpeak BED file also has an integer score, fold 

change, and -log10qvalue. These two files are used for further downstream analysis. 

Table 3: MACS2 Peak enrichment generation of excel files for follow on analysis and plotting 

#!/bin/bash 
#module load samtools 
#module load macs2/2.0.10 
cd /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 
filedir=/pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 
macs2 callpeak -t ${file}_Sorted.bam -f BAM -g hs -n ${file} --broad     
 
chmod +x ${file}_peaks.xls 
 
#removing blank space and comments in header 
sed -i '/#/d' ${file}_peaks.xls 
sed -i '/^$/d' ${file}_peaks.xls 
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Computational and Downstream Analysis of Data 

 For most of the analysis, the workflow depends on RStudio version 3.5.1 and various 

packages from Bioconductor. Before visualization of the data, the BED file needs to be 

converted into a Genomic Ranges (GRanges) file with information relative to the genome. 

Understanding the GenomicRanges package from Bioconductor remains vital to 

comprehend and manipulate the data to access and utilize accurate data. During 

conversion to GRanges, the sequences were sorted from Chromosome 1 to Chromosome Y 

for consistency. With the aim to create a Heatmap, we employed RStudio software to 

convert BED files and generated a matrix of the sequence data. We binned each BED file 

and vectorized, then compared the information to the overlaps within the desired region of 

interest. Transcriptional Start Sites TSS are typically used for analysis to see which parts of 

the genome are silenced or activated based on the histone modification. We generated a 

matrix centered plus or minus 3000 base pairs distance around the TSS of binding sites 

similar to ChIPseeker9. Additionally, we compared the GRanges of each modification and 

condition to select known binding motif regions of the TEAD1, SRF, YAP/TAZ transcription 

factor gene targets, the Adhesome genes and Late Embryogenesis genes. To do this, we 

created a custom transcription database from the list of transcripts for each set. The 

YAP/TAZ and TEAD1 list came from Dupont, et al. data, Adhesome and SRF list came from 

Medjkane et. al, the Late Embryogenesis came from Cacchiarelli et. al Supplemental 

Data4,8,21. The list of genes, we used at the Ensemble gene, was uploaded to the mart 

http://uswest.ensembl.org/biomart/martview, filtered for strand, start, end, chr, tx name, 

tx count (score), and tx type then outputted to an .xls format. Specific details to follow for 

http://uswest.ensembl.org/biomart/martview
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the custom transcript database generation can be found in Appendix B, Custom Promoter 

Generator. 

Finally, an analysis of the peak fold change enrichment data changing over time for 

each modification was conducted in order to determine which sets of promoters were most 

affected by histone modification during reprogramming. Only peaks that are present from 

one condition to the next are saved. We compared each modification to the next sequential 

time point modification through conversion to GRanges and utilization of both dplyr and 

fuzzyjoin to compare overlapping sequences with peak data32. Dplyr within the tidyverse 

allows memory efficiencies, grammar simplicities and eases data manipulation due to 

dataframe difficulties within RStudio11. Fuzzyjoin takes data manipulation another step by 

comparing two dataframes and selecting certain matching, or within certain parameters, 

columns or rows and joining the two dataframes together. The parameter aspect is crucial 

as the identified peaks of two broad regions (histone binding) in two timepoint conditions 

that code for a gene can be a hundred DNA base pairs different, yet still be the same gene 

that a histone will bind. This overlap is where the histone modification and epigenetic state 

are the same across time points. The overlaps that we kept for visualization were those 

DNA ranges with the desired peak fold change threshold (defined by the user) as well as 

sensitivity for the number of sequences considered to be an overlap. Once the GRanges 

were combined, they were converted to NCBI format in order to perform a database call 

and select for the desired gene ID names. This can also be manually done through UCSC 

Genome Browser, however time intensive. After the gene names are associated with the 

desired GRanges overlaps, they are then added back to the original GRanges with 
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corresponding peak fold change and enrichment. An example of list of output from one 

comparison result before plotting depicted in Table 4.  

Table 4: Overlapping peak data between day-5 and day-10 in H3K4me3 histone modification. Each column is 
the combination of joining the peak data that had a fold enrichment above 4 and the specific gene represented 
in the start and end sequence with the fold change from the previous (day-5) to the sequential time point 
condition (day-10) 

 

Data Visualization 

 To best view the massive amounts of information ChIP-Seq data provides, heatmaps 

are typically chosen as the most ideal way to view the data across the genome. Heatmaps 

take up to millions of data points, correlates and plots the data as defined on a graph. Mean 

tag counts across the centered promoters of interest were also created to analyze the 

frequency of coverage near the TSS. For each condition, a control hiF-T dataset was sorted 

by number of read counts and then the order of the next heatmap time point conditions (5, 

10, 24 and hIPSC) were based on the hiF-T order for the given histone modification. For 

comparative purposes, the DNA sequence from start to end and ordered by read count 

were generated for each time point and each histone modification.  

As previously described, the modifications with overlapping sequences of the 

sequential time point and their corresponding gene IDs were plotted. The genes that had 

the desired peak fold enrichment change, defined by the user, were compared to the next 

time point and then generated a list for each histone modification from hiF-T to hIPSC. We 
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captured a fold change greater than 3 or less than 0.1 between conditions for significance. 

We set sensitivity for overlaps to 1000 base pairs, the sequence must have 1000 base pairs 

matching within and on either side of the GRanges of interest to obtain an accurate overlap 

of promoter binding. A greater number creates more sensitivity, while a lower number 

allows for more overlaps. For one histone modification, H3K27me3, we set 5 as the overlap 

sensitivity in order to capture any overlap, anything higher did not find any GRange 

overlaps in the hiF-T to 5-day and 24-day plus and minus conditions. The comparison 

perspective between timepoints, start to end, can be switched manually to compare end to 

start, as well as across any time point and across histone modifications; the comparison 

does not have to be sequential. For this visualization and analysis, the plots were 

conducted sequentially, and we manually updated the code in each histone modification for 

consistency and analysis. Utilizing ggplot2, the list of conditions were combined and the 

genes with the highest change from the previous condition were highlighted and we 

plotted those gene names for visualization and further correlation. Integrative Genomics 

Viewer (IGV) can also be utilized for additional visualizations and comparisons. 

RESULTS 

Heatmaps of active chromatin modification depict most ChIP-seq reads 

To visualize and compare histone modifications and epigenetic state across time 

point/conditions during reprogramming we generated heatmaps centered +/- 3000 base 

pairs around all TSS. The profiled histone modifications showed predicted spatial density 

distributions over the TSS. The H3K4 modifications associated with activation displayed 

interesting results. H3K4me3 heatmap, associated with transcriptional initiation, had the 

highest centered average over the TSS as seen in Figure 7. The H3K4me1, associated with 
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cis-regulation and open chromatin were lowest and mean tag count lowered over the 

center of TSS, while the H3K4me2 displayed similarities to the tri-methylation in 

APPENDIX A: Supplemental Figures Figure Set 1 and Figure Set 2. H3K27ac, also associated 

with open chromatin and activation, in Figure Set 4 of Supplemental Figures had similar 

characteristics as the H3K4 modifications, however, there were lower counts around the  

 
Figure 7: H3K4me3 histone modification heatmap centered +/- 3000 basepairs from the Transcription Start 
Sites of all genes on each of the X-axis. From left to right are the conditions and time points for the depicted 
histone modification, the first six are ordered based on chromosome. The middle six are sorted based upon 
the initial hiF-T sorted from least reads to the most. The bottom six are the mean tag count +/- 3000 base 
pairs from the TSS for the corresponding condition. The 5dd condition is most like the hIPSC, the one with the 
highest mean tag count and most of the tags are on the downstream portion of the TSS.   
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center of the TSS.  How a cell defines its cell state and morphology is largely dependent on 

the epigenetics of the cell. The epigenetics are largely dependent on the histone  

 
Figure 8: H3K36me3 histone modification heatmap centered +/- 3000 basepairs from the Transcription Start 
Sites of all genes on each of the X-axis. Day-10 ChIP-seq data was not available from Cacchiarelli, so 3rd 
column is missing. Same layout as Figure 7, conditions from left to right, sorted based on chromosome on the 
top and sorted based on low to high reads of the initial hiF-T in the center row. Very low mean tag count and 
sparse distribution of read counts.  
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modifications of the chromatin which are dependent on the transcription factors currently 

expressed within the cell, an interdependent process. The histone modifications that 

activate and poise the DNA for replication are more prominent during reprogramming. 

The repression H3K27me3, in Figure set 5 of Appendix A, had consistency through each 

time point, slowly raising the mean tag count over the TSS, and the highest repression in 

the hIPSC. The transcriptional elongation modification, H3K36me3, had the lowest overall 

distribution as well as mean tag count over the TSS centers, as seen in Figure 8, hardly any 

histone change occurred during the time course. More elongation means more DNA to RNA 

conversion, the less the elongation the more silenced the genome; with low H3K36me3 

binding, reprogramming has more of an active epigenetic state. 

Custom Motif Binding List similar mean tag counts 

We picked genes and associated genes of TEAD1, YAP/TAZ, SRF, Adhesome and late 

embryogenesis genes because we know they play some role in reacting to a cells 

environment as well as determining cell morphology. For each custom motif binding and 

related gene list, each had a similar mean tag read count across each time point and across 

each modification. A wider distribution of hits for ChIP-seq data also exists when sorted by 

number of reads as compared to sequentially over the genome. Visually, each heatmap for 

the custom motif binding lists, whether sorted by read count or by location in the genome 

had similar spread-out tag read counts. For the Adhesome list of genes, the Mean tag count 

seems to be consistent at about 0.3 throughout reprogramming, the 10 day does have a 

spike for H3K27me3 and H3K4me1. Two sections or bands of the H3K27me3 do appear to 

increase in read count as reprogramming progresses. The SRF promoters heatmaps are 

consistent throughout each time point condition. H3K27me3 again has a band that 
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becomes more prominent throughout reprogramming. TEAD1 gene and its associates had 

relatively very similar heatmaps and mean read tag counts. The 10-day condition also 

appeared to have spacious histone tags throughout with consistent mean tag counts.  

 
Figure 9: H3K27ac histone modification heatmap with YAP/TAZ transcription regulators and their targets 
centered +/- 3000 basepairs from the Transcription Start Sites of those promoters each of the X-axis.. Same 
layout as Figure 7, conditions from left to right, sorted based on chromosome on the top and sorted based on 
low to high reads of the initial hiF-T in the center row. The bottom six have a different y-axis range to account 
for less promoters reads. 5dd condition is again most similar to the hIPSC, with low tag counts and similar 
clustering. 
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YAP/TAZ insignificance during reprogramming 

To identify if YAP/TAZ genes and their related downstream genes had a significant 

change in their epigenetic state during reprogramming we compared the histone 

modifications for each condition and time point. The YAP/TAZ had comparatively similar 

mean tag counts in the course of reprogramming. For H3K27me3, the mean tag count 

increased slightly and the heatmap for hIPSC clustered in certain areas, while none of the 

other conditions had any clustering. As seen in Figure 9, H3K27ac had the most drastic 

change across the heatmaps and mean read tag counts. The 5-day condition heatmap for 

each separate histone modification indicated it to be most similar to the hIPSC. Overall, 

YAP/TAZ genes and downstream regulators had consistent mean tag count across each 

histone modification seen in Figure 10. Consistent mean tag count signifies that YAP/TAZ 

genes do not play a substantial role in the process of reprogramming.  
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Figure 10: YAP/TAZ mean ChIP tag counts of all histone modifications. Custom gene list generation followed 
by mean tag count plot. Each plot is centered +/- 3000 basepairs around the TSS of YAP/TAZ genes and their 
downstream effectors on each of the X-axis. All plots y-axis goes to 0.7, besides H3K4me2 (row 2), the top is 
1.2 read mean tag count, only condition with a higher increase of mean tag count due to merging of data 
replicates. Column 3 is missing in row 5 and 6 because the data was not available from Cacchiarelli. 
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Late Embryogenesis gene epigenetic state similar to hIPSCs 

In order to analyze a potential barrier in reprogramming we identified a set of genes 

provided by Cacchiarelli’s lab and produced heatmaps on for each histone modification. A 

transient wave of gene expression at day-10 in Cacchiarelli’s experiments are genes  

 

Figure 11: H3K4me3 histone modification of Cacchiarelli’s late embryogenesis genes. Heatmap with those 
genes start transcription start sites centered +/- 3000 basepairs of those gene binding motifs on each of the 
X-axis. Same layout as Figure 7, conditions from left to right, sorted based on chromosome on the top and 
sorted based on low to high reads in the center row. 
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typically expressed during late embryogenesis and body patterning4. We utilized the 

custom set of genes provided by their supplemental data to observe the expression for each 

set of histone modifications. The clustering over the TSS of the custom set of genes stayed  

 
Figure 12: H3K27ac histone modification of Cacchiarelli’s late embryogenesis genes. Heatmap with those 
genes start transcription start sites centered +/- 3000 basepairs of those gene binding motifs on each of the 
X-axis. Same layout as Figure 7, conditions from left to right, sorted based on chromosome on the top and 
sorted based on low to high reads in the center row. 
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relatively similar over each histone modification. H3K4me3 comparatively had some late 

increase in enrichment reads over the transcription sites with the largest increase at day-

24 and hIPSC, also downstream of the center point of the TSS. The cluster of genes in the 

center row (sorted by hiF-T) one-third up the heatmap of day-24 increase in number of 

counts and are very prominent in the hIPSC. Without DOX and hIPSC conditions had the 

most similar heatmaps and thus their epigenetic state similarities as well. For each 

heatmap set for Cacchiarelli’s Late Embryogenesis Genes depicted in the Supplemental 

Appendix, the sorted by reads versus not sorted were interestingly analogous, specifically 

the 24-day condition and the hIPSC condition. Clustering of H3K27ac histone modifications 

reads in Figure 12 were downstream of the genome in hiF-T and then shifted to an even 

distribution in hIPSC. The lowest read tag count precedes an abrupt increase in read tag 

counts in day-10 of the gene set. Areas and locations of the chromatin are most alike in day-

24 conditions and the hIPSC, conversely hiF-T, day-5 and day-10 had very little similarities. 

Significant genes with large peak enrichment changes 

   In order to visualize and draw tangible results from the changes between each 

heatmap, the peak enrichment plots provided additional insight. Utilizing the robust peak 

enrichment data provided by MACS2 to identify a drastic change from one condition to the 

next will further narrow the scope of genomic activity. That drastic change represents a 

histone modification binding site that either became more methylated, which then 

activated or repressed the DNA depending on the histone. By comparing the overlaps and 

defining the gene associated with the genome sequence we can identify a gene that has its 

activity changed during reprogramming. We can then create future experiments that 

knockdown or amplify the gene and see if the result improves reprogramming efficiency. 
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The hiF-T conditions across each histone modification had a significant change in peak 

enrichment fold change compared to the day-5. As known, each histone modification 

affects a multitude of varying sets of genes across the time points depending on the cell 

state and function. H3K4me2, H3K4me3, and H3K427ac, associated with activation, have 

significant activity on day-10 of reprogramming. Different comparisons can be utilized, for 

purposes of our analysis we compared the data across time points to see how the peak data 

changed over time to see which genes are affected the most. ChIP data can also be 

compared between individual time points, for example, hiF-T could be directly compared to 

hIPSC to see which ChIP peaks changed the most. Different histone modifications can also 

be compared, a day-5 H3Kme3 can be compared to an H3K27ac day-5. Our interests were 

the temporal changes during the process of reprogramming. Figure 13 illustrates the peak 

enrichment that occurs from one timepoint to the next. If peak enrichment fold exceeded 4, 

the overlap between the two conditions was identified and the gene name was generated 

on the plot for visualization. Multiple genes can populate because the DNA may code for 

multiple transcription factors and their sequences could overlap between the two 

conditions.  
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Figure 13: Scatter plot created from RStudios ggplot2 of the processed and compared peak data across 
conditions for H3K4me3. Peak fold enrichment on the y-axis from peak calling for each condition on the x-
axis. Each gene listed has a fold change greater than 4, hiF-T has a high peak enrichment that changes 
drastically once reprogramming begins. Fewer changes occur towards the end of reprogramming. 

 

H3K27me3 had hardly any significant overlaps or changes throughout reprogramming, 

however, the gene PCSK5 has a high enrichment for hiF-T at day-0. Lower but significant 

enrichment at day-5 and finally a low enrichment for the hIPSC condition depicted in 

Figure 14. Several additional genes, CTSV, NTRK2, CACNA1C (LRG_334) all appear for the 
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hIPSC condition, their repression could be needed in order to maintain stem cell 

pluripotency. 

 
Figure 14: Scatter plot created from RStudios ggplot2 of the processed and compared peak data across 
conditions. Peak fold enrichment on the y-axis from peak calling for each condition on the x-axis. Each gene 
listed has a fold change greater than 4. hiF-T has a high peak enrichment that changes drastically once 
reprogramming begins.  Fewer changes occur towards the end of reprogramming. 

 

Throughout each histone modification for hIPSC, whether an activator or repressor, we 

observed the least amount of peak enrichment. By removal of DOX from day-24 per 

Cacchiarelli’s experiments, an increase in peak enrichment across each modification occurs.  
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Across each histone modification heatmap figure sets, whether a custom set of genes 

or original ChIP-seq data, at day-5 a definitive change occurred. Additionally, some of the 

day-5 conditions location of chromatin read data and mean tag count reflected similarly to 

the hIPSC conditions. A few of the gene sets had low read counts and peak data across each 

histone modification as they most likely do not play a role in reprogramming. A myriad of 

diverse approaches to analyze and interpret the information exist and the ChIP-Seq data 

engendered by Cacchiarelli is one of many labs that generate such data. Their data does 

provide advantageous insight into the phenomena of reprogramming. Through 

visualization, correlation and comparison conclusions can be drawn based on the changes 

between heatmaps and conditions to determine the mechanics of epigenetic control of DNA 

through histone methylation over time during reprogramming. 

 

DISCUSSION 

The dawn of the digital age opened multiple doors for industries, over the years 

Bioengineering and Bioinformatics benefit through the ability to analyze and develop mass 

amounts of data. However, with so much data, only certain aspects can be derived based on 

the desire of the specific researcher’s purpose, leaving a majority of that data unanalyzed 

and discoveries left unknown and hidden. ChIP-seq data has proven to help bring 

understanding one step closer to breaking through the unknown and establishing a 

technique to comprehend epigenetics. Through analysis a significance difference, as 

expected, in the ChIP-Seq data from the hiF-T as compared to the 5-day time point for each 

histone modification exists due to the introduction of OKMS reprogramming factors. By 

introducing OKMS factors, the DNAs immediate epigenetic state changes drastically to 
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account for the introduction of transcription factors. Histones undergo modifications 

unnatural to the current cell morphology, thus a change in ChIP-seq data. Interestingly, the 

5-day timepoint in some cases such as H3K4me3, looked epigenetically closer to the hIPSCs 

heatmaps and mean tag counts than the 24-day time points. We predict this could be 

caused by the influx of hIPSC-like factors that initiate reprogramming before housekeeping 

genes attempt to regulate and keep the cell in their current state. The reprogramming 

factors cause an unnatural disturbance causing the cell to attempt to imitate an epigenetic 

state as if it was a stem cell. By examining each customized promoter and transcription 

factor heatmap, we saw some sections overlap or cluster similarly with another heatmap 

during reprogramming and this relation exposed some key players, yet to be identified, 

existing throughout reprogramming. Further analysis to identify specific genes of those key 

players could potentially be identified by the peak enrichment analysis gene plot and 

experimental testing with knockdowns of those genes. Similarly, some areas have no 

enrichment data in earlier time points; however, an increase of tag counts in certain areas 

appear at day-24 and in hIPSCs or vice-versa, indicating a high amount of tag counts that 

decrease. Depending on the histone modification, the epigenetic state either silences or 

enhances through time. These sections of DNA clearly have an importance in the 

generation of stem cells, epigenetic control and reprogramming. Whether those genes have 

a positive or negative influence, or if they are downstream affects from other genes at play 

requires further analysis. The influences genes have upon one another can also help 

comprehend mechanisms that occur during reprogramming.  

Discovering which genes are enriched during reprogramming based on ChIP-seq 

peak data helps to understand the role a gene plays during the epigenetic process. During 
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analysis, for the H3K27me3 modification, no overlaps were observed between the hiF-T 

condition and day 5 condition as well as between the DOX plus or minus day 24 conditions. 

Between those days and conditions, the heatmaps also displayed low hits over the TSS and 

slowly increased to some general peak for the hIPSCs. In order to observe any gene change, 

the sensitivity in our code needed to be decreased in order to see any overlap of the 

conditions. Two reasons could create the significant differences. One, there may be no 

significant change in ChIP-seq peak data, the conditions could have a very similar 

epigenetic landscape for the H3K27me3, and the modification does not change significantly 

during reprogramming. Conversely, the Genomic Ranges that do change may have a 

significant change, just not in the same range as the previous condition. PCKS5 was one 

gene of significance, between the hiF-T and day-5, which encodes proteases, is widely 

expressed as one of the amino acids that cleaves substrates as well as relates to the nerve 

growth factor process37. The decrease in peak data could account for the unnecessary or 

reduced need for downstream post-translational proteins or complex network of neurons 

in stem cells. Similar instances across each modification were observed in the comparison 

analysis, one or more genes either had an increase or decrease in peak enrichment; these 

genes or sequences could be modified to enhance reprogramming and understand 

epigenetics.   

Interestingly, each custom promoter heatmap maintained a consistent decrease, 

some very slight, mean read peak tag count over time, however for the H3K27me3 

modification, there was a slight increase. Repression of genes that determine cell fate and 

morphology could become more prominent to keep the stem cells from differentiating. 

Perhaps heightening the H3K27me3 modification numbers within the cells could increase 
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the speed and efficiency of generating hIPSCs. Furthermore, over each custom promoter 

heatmap and mean read tag count, the 5-day reflected ChIP data most like the desired 

hIPSC. The 5-day condition could be the initial barrier of homeostasis balance between 

repression and activation before further reprogramming factors push the cell to change 

their epigenetic states closer to induced stem cells. And once they reach the induced 

pluripotency state, their homeostasis reaches another balance. As stated earlier, the hIPSC 

displayed a down-regulated peak enrichment across all histone modifications, indicating an 

epigenetically more silent cell state as a stem cell. Uncovering those specific genes that 

drive the balance could potentially skip the time points in between and go directly to the 

epigenetic state of the hIPSC. 

The Late Embryogenesis gene set provided by the Cacchiarelli Harvard research 

group displays some interesting results. The increase in the H3K27ac read tag counts 

further promotes the existence of an epigenetic barrier at day-10. Once the stem cell 

epigenetic cell state reaches day-10, the increase of the H3K27ac activator indicates an 

increase of late embryogenesis transcription factor production, followed by a sharp 

decrease as the barrier is passed and finally decreases to a low average in hIPSC. 

Remarkably, the H3K4me3 histone modification shows a slow increase in mean tag count. 

As an activator, there are some genes in late embryogenesis that play a role in stem cell 

epigenetics. HOX genes, that play a role, most likely help dictate the epigenetics of the stem 

cell reprogramming. Because of the variability and significance of the gene list a future 

experiment enhancing or knocking down Late Embyogenesis genes could show some 

interesting results.  
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As seen in the H3K4me2 5-day condition, using multiple replicates and merging 

each file may provide better insight to the number, frequency and accuracy of ChIP data. 

This was the only data provided that had a merged replicate which also had a relatively 

high increase in tag read count data, providing more information to utilize for analysis 

across the custom promoter ranges and more genes of interest that had a peak enrichment 

flux at day-5. In addition, because of the abundancy of methods to pre-process BAM/SAM 

and BED files into peak data, certain techniques may overlook aspects of raw data that may 

be desired. Differing software for peak analysis techniques should be conducted, compared 

and then combined for an average for follow on heatmap generation and plotting. The 

complexity of experiments, data generation, analysis and interpretation of the results 

create variability, so an average or consistency would augment results.  

Actively comparing histone modifications and conditions, gene expression and peak 

data can reveal distinct genes that may significantly affect reprogramming. Knockdowns or 

enhancements of those genes can potentially speed up the process of reprogramming as 

well as create a better understanding of epigenetics. Further studies can be generated with 

other GEO accession repositories as well as additional histone modifications. Moreover, 

diverse custom ranges of promoters can be created and then utilized to discover the 

changes in their expression with desired modifications over time. As a result of our 

analyses and visualizations, we hope to further promote and advance gene identity through 

reprogramming. As a result of our coding technique to sort heatmaps by one another, a 

day-0 hiF-T in our case, the process can help researchers compare the broad epigenetic 

state in a new way between two different conditions. In addition, the novelty of generating 

a heatmap by building a list on the selection of a certain set of genes, associated 
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transcription factors and binding motifs instead of all TSS will help narrow the scope of 

understanding the cells behavior epigenetically. Furthermore, with the ability of our code 

to identify specific genes which have a significant peak enrichment from one condition to 

next, can help focus which genes to target next in the experimental process.    

Modern computing does open doors; R Studio is a GNU project, or free software, and 

as an open science platform it can be used by anyone. Because our code examined another 

lab’s data for a general analysis, the code can be re-used for other experiments as well. And 

by way of identifying specific genes, experiments that knockdown or amplify expression 

can be developed to expedite and reduce cost of stem cell production. In addition, the 

specific analysis techniques we created can identify unique mechanisms that could 

potentially help cure genetic diseases by way of silencing or activating the DNA during 

development. The amount of data and the many ways for interpretation from one raw file 

of ChIP-seq remains overwhelming. ChIP-seq data platforms and techniques in 

development are still in infancy and quickly advancing, providing useful tools for analysis, 

but because of the complexity that exists in epigenetics, high power computing and 

visualizations are just beginning to tap into their potential. 
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APPENDIX A: Supplemental Figures 

 
Figure Set 1: H3K4me1 histone modification, custom gene set analyses and peak 
enrichment change plot 
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Figure Set 2: H3K4me2 histone modification, custom gene set analyses and peak 
enrichment change plot 
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Figure Set 3: H3K4me3 histone modification, custom gene set analyses and peak 
enrichment change plot 
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Figure Set 4: H3K27ac histone modification, custom gene set analyses and peak 
enrichment change plot 

 
 
 
 
 
 
 



 

62 
 

 
Adhesome 

 
 
 
 
 
 
 



 

63 
 

 
SRF 

 
 
 
 
 
 
 



 

64 
 

 
TEAD1 

 
 
 
 
 
 
 



 

65 
 

 
Late Embryogenesis 

 

 



 

66 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

67 
 

Figure Set 5: H3K27me3 histone modification, custom gene set analyses and peak 
enrichment change plot 
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Figure Set 6: H3K36me3 histone modification, custom gene set analyses and peak 
enrichment change plot 

 
 
 
 
 
 
 



 

74 
 

 
Adhesome 

 
 
 
 
 
 
 



 

75 
 

 
SRF 

 
 



 

76 
 

TEAD1   

 
 
 
 
 
 
 
 



 

77 
 

YAP/TAZ 

 
 
 
 
 
 
 
 



 

78 
 

Late Embryogenesis 

 
 



 

79 
 

 
 

 
 
 
 
 
 
 
 
 
 



 

80 
 

APPENDIX B: Code  

Pre-processing raw files code 
#!/bin/bash 
# fastq to bam 
module load bowtie2 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106001.fastq > hiFT-
T_P15_H3K27ace_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106002.fastq > hiFT-
T_P15_H3K4me1_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106003.fastq > hiFT-
T_P15_H3K4me2_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106004.fastq > hiFT-
T_P15_H3K4me2_Rep2.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106005.fastq > hiFT-
T_P15_H3K4me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106006.fastq > hiFT-
T_P15_H3K27me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106007.fastq > hiFT-
T_P15_H3K36me3_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106008.fastq > hiFT-
T_P15_INP_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR2106009.fastq > hIPSC-
T_P10_H3K27ace_Rep1.sam 
bowtie2 -p 4 -x /pub/rtwest/hg19 -U /pub/rtwest/IAD2/SRR21060010.fastq > hIPSC-
T_P10_H3K27me3_Rep1.sam 

 
#!/bin/bash 
#module load samtools 
#module load homer 
#module load bedops 
mkdir -p /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
cd /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
filedir=/pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
samtools view -bS /pub/rtwest/IAD2/ChIP-SeqSamples/${file}.sam > ${filedir}${file}.bam 
samtools sort ${filedir}${file}.bam -o ${filedir}${file}_Sorted.bam 
samtools view -b -F 0x400 ${filedir}${file}_Sorted.bam > 
${filedir}${file}_Sorted_PCRDupesRemoved.bam 
samtools index ${filedir}${file}_Sorted_PCRDupesRemoved.bam 
samtools view -h ${filedir}${file}_Sorted_PCRDupesRemoved.bam > 
${filedir}${file}_Sorted_PCRDupesRemoved.sam 
 
#makeTagDirectory and finding peaks for TF, Histone and TSS 
makeTagDirectory $filedir ${filedir}${file}_Sorted_PCRDupesRemoved.sam 
 
findPeaks ${filedir} -style factor -o ${filedir}/${file}_peaks.txt 
 
findPeaks ${filedir} -style histone -o ${filedir}/${file}_regions.txt   
 
findPeaks ${filedir} -style tss -o ${filedir}/${file}_tss.txt 
 
#annotatePeaks 
annotatePeaks.pl ${file}_peaks.txt hg19 > ${file}_AnnotatedPeaks.txt 
annotatePeaks.pl ${file}_regions.txt hg19 -size 6000 -hist 10 -ghist -d ${filedir} > 
${file}_heatmapMatrix.txt 
 
#convert annotated peak files to bed 
pos2bed.pl ${file}_AnnotatedPeaks.txt > ${file}_peak.bed 
pos2bed.pl ${file}_heatmapMatrix.txt > ${file}_heatmap.bed 
pos2bed.pl ${file}_regions.txt > ${file}_regions.bed 
 
#convert to bed 
sam2bed < ${filedir}${file}_Sorted_PCRDupesRemoved.sam > ${filedir}${file}.bed 

  

#!/bin/bash 
#module load samtools 
#module load macs2/2.0.10 
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cd /pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 
filedir=/pub/rtwest/IAD2/ChIP-SeqSamples/_${file}/ 
 
macs2 callpeak -t ${file}_Sorted.bam -f BAM -g hs -n ${file} --broad     
 
chmod +x ${file}_peaks.xls 
 
#removing blank space and comments in header 
sed -i '/#/d' ${file}_peaks.xls 
sed -i '/^$/d' ${file}_peaks.xls 

HeatEnv – RStudios environment to load packages and create fundamental background 
information for running GRanges conversions, Matrix Generation, Heatmap Generation and 
Overlapping Plots 
LoadHeat <- function(){ 
  HeatEnv <<- new.env(parent=globalenv()) 
  HeatEnv <- get("HeatEnv", envir=.GlobalEnv) 
   
  if (!requireNamespace("BiocManager")) 
    install.packages("BiocManager") 
  if (!requireNamespace(c("XML", "RCurl", "GenomicFeatures", "stringi", 
"GenomicRanges", "mgcv", "TxDb.Hsapiens.UCSC.hg19.knownGene", "data.table"))) 
    BiocManager::install(c("XML", "RCurl", "GenomicFeatures", "stringi", 
"GenomicRanges", "mgcv", "TxDb.Hsapiens.UCSC.hg19.knownGene", "data.table", 
suppressUpdates=TRUE)) 
  require(GenomicFeatures) 
  require(gtools) 
  require(TxDb.Hsapiens.UCSC.hg19.knownGene) 
  require(data.table) 
  require(GenomicRanges) 
  require(GenomicAlignments) 
  require(tidyverse) 
  require(dplyr) 
  require(fuzzyjoin) 
  require(ggplot2) 
  require(ggrepel) 
  require(scales) 
  require(EnsDb.Hsapiens.v75) 
  require(org.Hs.eg.db) 
   
  upstream <- 3000 
  assign("upstream", 3000, envir= HeatEnv) 
  downstream <- 3000 
  assign("downstream", 3000, envir= HeatEnv) 
   
  if (exists("upstream", envir=HeatEnv, inherits=FALSE) && 
       exists("downstream", envir=HeatEnv, inherits=FALSE) ) { 
    ups <- HeatEnv[["upstream"]] 
    downs <- HeatEnv[["downstream"]] 
  } 
  if (exists("txdb", envir=HeatEnv, inherits=FALSE)){ 
    txdb <- HeatEnv[["txdb"]] 
  } 
  if (ups == upstream && downs == downstream && 
        exists("tsses", envir=HeatEnv, inherits=FALSE) ){ 
  tsses <- HeatEnv[["tsses"]] 
  } 
 
  txdb <<- TxDb.Hsapiens.UCSC.hg19.knownGene 
  ##the standard Transcription Start Sites of the genome 
  Genes <- genes(txdb) 
  Genes 
  ## get start position based on strand 
  tss <- ifelse(strand(Genes) == "+", start(Genes), end(Genes)) 
  bins <- GRanges(seqnames=seqnames(Genes), 
                  ranges=IRanges(tss-HeatEnv[["downstream"]], 
tss+HeatEnv[["upstream"]]), 
                  strand=strand(Genes)) 
  tsses <- unique(bins) 
  tsses <- sortSeqlevels(tsses) 
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  tsses <- sort(tsses) 
  assign("tsses", tsses, envir=HeatEnv) 
  assign("tsses", tsses, envir=.GlobalEnv) 
  HeatEnv$tsses=tsses 
  return(tsses) 
} 
 
LoadHeat() 
 
Change.Promoter.Window <- function(txdb=NULL, 
                  upstream=3000, 
                  downstream=3000) { 
 
  HeatEnv <- get("HeatEnv", envir=.GlobalEnv) 
 
  if ( exists("upstream", envir=HeatEnv, inherits=FALSE) && 
       exists("downstream", envir=HeatEnv, inherits=FALSE) ) { 
    ups <- HeatEnv[["upstream"]] 
    downs <- HeatEnv[["downstream"]] 
    if (ups == upstream && downs == downstream && 
        exists("tsses", envir=HeatEnv, inherits=FALSE) ){ 
      tsses <- HeatEnv[["tsses"]] 
    } 
  } 
  Genes <- genes(txdb) 
  tss <- ifelse(strand(Genes) == "+", start(Genes), end(Genes)) 
  bins <- GRanges(seqnames=seqnames(Genes), 
                  ranges=IRanges(tss-HeatEnv[["downstream"]], 
tss+HeatEnv[["upstream"]]), 
                  strand=strand(Genes)) 
  tsses <- unique(bins) 
   
  assign("tsses", tsses, envir=HeatEnv) 
  return(tsses) 
} 
 
to_granges 
to_granges <- function(file){ 
  if(is.data.frame(file) == T){ 
    if(length(file) > 6){ 
      file <- file[,-c(7:length(file))] 
    } 
    names <- c(“chr”,”start”,”end”,”id”,”score”,”strand”) 
    mixedsort([order(nchar(file), file)]) 
    names(file) <- names[1:length(names(file))] 
     
    if(“strand” %in% colnames(file)){ 
      file$strand <- gsub(pattern="-+", replacement = “*”, x = file$strand) 
    } 
     
    if(length(file)==3){ 
      granges <- with(file, GRanges(chr, IRanges(start, end))) 
    } else if (length(file)==4) 

{ 
      granges <- with(file, GRanges(chr, IRanges(start, end), id=id)) 
    } else if (length(file)==5) 

{ 
      granges <- with(file, GRanges(chr, IRanges(start, end), id=id, score=score)) 
    } else if (length(file)==6) 

{ 
      granges <- with(file, GRanges(chr, IRanges(start, end), id=id, score=score, 
strand=strand)) 
    } 
     
return(granges) 
     
  } else { 
     
  if(length(file) > 5){ 
  file <- data.frame(fread(file, select = c(1,2,3,4,5), fill=T)) 
  } 
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  file <- data.frame(fread(file, select = c(1,2,3,4,5,6), fill=T)) 
   
  if(length(file) > 6){ 
    file <- file[,-c(7:length(file))] 
  } 
   
  names <- c(“chr”,”start”,”end”,”id”,”score”,”strand”) 
  mixedsort([order(nchar(file), file)]) 
  names(file) <- names[1:length(names(file))] 
 
  if(“strand” %in% colnames(file)){ 
    file$strand <- gsub(pattern="-+", replacement = “*”, x = file$strand) 
  } 
   
  if(length(file)==3){ 
    granges <- with(file, GRanges(chr, IRanges(start, end))) 
  } else if (length(file)==4) 

{ 
    granges <- with(file, GRanges(chr, IRanges(start, end), id=id)) 
  } else if (length(file)==5) 

{ 
    granges <- with(file, GRanges(chr, IRanges(start, end), id=id, score=score)) 
  } else if (length(file)==6) 

{ 
    granges <- with(file, GRanges(chr, IRanges(start, end), id=id, score=score, 
strand=strand)) 
  } 
   
return(granges) 
} 
 
} 
 
 
Matrix Generator 
#' Generate Matrix for plotting 
#'  
#' @param Grangefile, A GRanges object with at a minimum the chr, start and end. 
Typically the output of bed_to_granges 
#' @param tsses, A GRanges object of the start and end of desired segment of DNA 
(promoters) to view overlap of ChIP-Seq file. Standard output of the HeatEnv (and 
corresponding input to this function) are the TSSes of the genome 
#' @return Matrix, matrix from rows Chromosome 1 to Y of ChIP-Seq data frequency 
overlapping with inputted promoters 
#' @examples overlap.matrix <- OverlapMatrix(Grange_file, tsses) 
#'  
OverlapMatrix <- function(Grangefile, tsses) { 
  HeatEnv <- get("HeatEnv", envir=.GlobalEnv) 
   
  ##number of reads that cover each position in the genome and then defining bins 
  coverage <- sortSeqlevels(coverage(Grangefile)) 
  length <- elementNROWS(coverage) 
  width <- GRanges(seqnames=names(length), 
                  IRanges(start=rep(1, length(length)), 
                  end=length)) 
   
  ##setting bin for matrix of the defined Transcription Start Sites 
  tsses <- subsetByOverlaps(tsses, width, type="within", ignore.strand=TRUE) 
  tsses <- tsses[order(seqnames(tsses))] 
   
  ##finding the coverage overlap on each TSS and sorting by chromosome, then combine 
overlaps into Rle (Run length encoded) ranges that overlap 
  chroms <- intersect(names(coverage), unique(as.character(seqnames(tsses)))) 
  chroms <- mixedsort(chroms[order(nchar(chroms), chroms)]) 
  overlaps <- Views(coverage[chroms], as(tsses, "IntegerRangesList")[chroms]) 
   
  ##vectorizing the list of overlaps with the tss bins, and then putting each vector 
into a matrix by row 
  overlap.list <- lapply(overlaps, function(x) t(viewApply(x, as.vector))) 
  overlap.matrix <- do.call("rbind", overlap.list) 
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  ##index of TSS and reorganize as a list of intersecting chromosomes ranges of the 
TSS and create a vector through c()  
  chroms.list <- split(1:length(tsses), as.factor(seqnames(tsses))) 
  intersect <- do.call("c", chroms.list) 
   
  ##creating the list of start and stop of the IRanges in each chromosome from the TSS 
and ordering the matrix based on position of chromosome for consitency 
  rownames(overlap.matrix) <- intersect 
  overlap.matrix <- overlap.matrix[order(intersect),] 
   
  ##ensuring correct orentation of the ChIP-seq data within the matrix and flipping 
minus strand 
  minus.str <- which(as.character(strand(tsses)) == "-") 
  overlap.matrix[minus.str,] <- overlap.matrix[minus.str, ncol(overlap.matrix):1] 
 
  ##create the matrix through summing up each overlap of peak data within TSS window 
  overlap.matrix <- overlap.matrix[rowSums(overlap.matrix)!=0,] 
 
  ## assign("overlap.matrix", overlap.matrix, envir=ChIPseekerEnv) 
  return(overlap.matrix) 
} 
 
 
Custom Promoter Window 
#' Generate custom promoter window for heatmap generation 
#'  
#' @param promoterlist, an .xls, .xlsx, .bed or .csv list of genes/promoters that want 
to be utilized for comparison 
#' @return custom.granges, A GRanges object of the start and end of desired segment of 
DNA (promoters) to view overlap of ChIP-Seq file 
#' @examples CustomTXDB("yaptaz_promoters.xlsx") 
 
CustomTXDB <- function(promoterlist = "") 
{ require(GenomicRanges) 
  HeatEnv$promoterlist <- promoterlist 
  if(grepl("*.xlsx",promoterlist) || grepl("*.xls",promoterlist)){ 
  require(readxl) 
  custompromoters <- read_excel(promoterlist) 
  custompromoters <- custompromoters[, order(names(custompromoters))] 
    if(length(custompromoters) > 7 ){ 
      custompromoters <- custompromoters[,-c(8:length(custompromoters))] 
      setnames(custompromoters, c("chr", "strand", "score", "end", "id", "start", 
"type")) 
      custom_order <- 
custompromoters[order(custompromoters$chr,custompromoters$start), c(1,2,3,4,5,6,7)] 
    } 
    if(length(custompromoters)== 7){ 
       setnames(custompromoters, c("chr", "strand", "score", "end", "id", "start", 
"type")) 
       custom_order <- 
custompromoters[order(custompromoters$chr,custompromoters$start), c(1,2,3,4,5,6,7)] 
    } 
      if(length(custompromoters)== 6){ 
        setnames(custompromoters, c("chr", "strand", "score", "end", "id", "start")) 
        custom_order <- 
custompromoters[order(custompromoters$chr,custompromoters$start), c(1,2,3,4,5,6)] 
    } 
    custom_order <- custom_order[custom_order$chr %in% c((1:22),"X","Y"),] 
    custom_order$strand <- gsub("-1", "-", custom_order$strand)  
    custom_order$strand <- gsub("1", "+", custom_order$strand) 
    custom_order$chr <- paste("chr",custom_order$chr,sep="") 
    
    custom.granges <- makeGRangesFromDataFrame(custom_order, keep.extra.columns = 
TRUE) 
    custom.granges <- sort(custom.granges) 
  } 
    else if(grepl("*.bed",promoterlist)){ 
    custom.granges <- unique(to_granges(promoterlist)) 
    custom.granges <- sortSeqlevels(custom.granges) 
    custom.granges <- sort(custom.granges) 
  } 
    else if(grepl("*.tsv",promoterlist)){ 
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    custompromoters <- read.table(file = promoterlist, sep = '\t', header = TRUE) 
    custom.granges <- makeGRangesFromDataFrame(custompromoters) 
  } 
  assign("custom.granges", custom.granges, envir=HeatEnv) 
  HeatEnv$custom.granges <- custom.granges 
  return(custom.granges) 
} 
 
##load list to http://uswest.ensembl.org/biomart/martview  
##**important** select Ensemble genes 86, Human genes(GRCh38.p12) filters->GENE and 
##paste genes, then Attributes and select for chr/scaffold name, strand, tx start,   
##tx end,tx name,tx count(score),tx type. Please limit to these options for conversion 
purposes 
##click results and output, remove hyperlinks and save accordingly 
 
 
 
Targeted Heatmap ChIP-Seq 
#' Core function to generate Heatmap and Mean Tag Count of Chip-Seq data 
#'  
#' @param Modification, A string of Histone Modification file name (can be a GRange 
file as well) 
#' @param control, A string of Histone Modification file name of control, should match 
the Histone Modification type 
#' @param xlab,, A string, can add custom x label 
#' @param ylab A string, can add custom y label, Mean Tag Count will automatically be 
generated for Mean Tag Count graph 
#' @param orderByReads, if TRUE a control String Modification must be inputed and will 
order the Heatmap the same order as the control number of reads 
#' @param withCustom, if TRUE will only create a heatmap for the defined TSS/promoters 
#' @param set your working directory 
#' @return 2 PDFs a Heatmap of the Modification, sorted from Chromosome 1 to 
Chromosome Y or by number of reads from low to high based on the control or startpoint 
condition of the modification as well as a PDF of the Mean Tag Count over the desired 
TSS/promoter window or the same as previously stated over a customized promoter window 
#' @examples 
#' GenHeat("hIPSC-T_P10_H3K4me1_Rep1_peaks.xls", "hiFT-T_P15_H3K4me3_Rep1_peaks.xls", 
xlab="TSS", ylab="Genome location", T, F) 
#' GenHeat("5dd_DOX_plus_H3K4me2_merged", "hiFT-T_P15_H3K4me2_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
#' GenHeat("5dd_DOX_plus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, T) 
 
GenHeat <- function(Modification, control, xlab="", ylab="",orderByReads = FALSE, 
withCustom = FALSE, WorkDir = "/dfs3/pub/rtwest/IAD2/ChIP-SeqSamples/"){ 
  ##my subfolders where the .bed files are stored 
  setwd(WorkDir) 
   
  ##identifying file type for the desired modification and converting to GRange object 
and creating heatmap matrix, automatically defaults to .bed if no file extension is 
specified 
  if(isS4(Modification)){ 
      overlap.matrix <<- OverlapMatrix(Modification, tsses) 
      Modification <- toString(Modification, width = 12) 
  }else{ 
    if(isFALSE(exists("Grange_file")) || isTRUE(Modification!=HeatEnv$Modification) || 
isFALSE(exists("Modification"))){ 
      if(isTRUE(grepl(".bed", Modification))){ 
      Grange_file <<- to_granges(paste("_",str_remove(Modification, 
".bed"),"/",Modification,sep="")) 
      }else if(isTRUE(grepl(".xls", Modification))){ 
      Grange_file <<- to_granges(paste("_",str_remove(Modification, 
"_peaks.xls"),"/",Modification,sep="")) 
      }else{ 
      file <- paste("_",Modification,"/",Modification,".bed", sep="") 
      Grange_file <<- to_granges(file) 
  } 
  assign("Modification", Modification, envir=HeatEnv) 
  overlap.matrix <<- OverlapMatrix(Grange_file, tsses) 
  } 
  } 
  ##defining control, defaults to .bed if no file extension is specified 
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  if(isTRUE(orderByReads) && (isTRUE(control!=HeatEnv$control) || 
isFALSE(exists("overlap.matrix.hift")) || isFALSE(exists("controlfile")))){ 
    if(isTRUE(grepl(".bed", control))){ 
      controlfile <<- to_granges(paste("_",str_remove(control, 
".bed"),"/",control,sep="")) 
    }else if(isTRUE(grepl(".xls", control))){ 
      controlfile <<- to_granges(paste("_",str_remove(control, 
"_peaks.xls"),"/",control,sep="")) 
    }else{ 
      control_file <- paste("_",control,"/",control,".bed", sep="") 
      controlfile <<- to_granges(control_file) 
    } 
  overlap.matrix.hift <<- OverlapMatrix(controlfile, tsses) 
  assign("overlap.matrix.hift", overlap.matrix.hift, envir=HeatEnv) 
  assign("control", control, envir=HeatEnv)  
  } 
  ##control matrix needed to sort other matrices 
  if(isTRUE(orderByReads) && isFALSE(exists("controlfile"))){ 
    message("Control file for ordering is not defined. Provide desired control (e.g. 
hiFT) file.  
    To define initial control heatmap, Modification and controlfile should be inputted 
and the same histone modification") 
  } 
  ##core function to genearte heatmap PDF and sort as required 
  Heatmap <- function(overlap.matrix, xlim=c(-3000, 3000), xlab="", ylab="", 
title=Modification, orderByReads = F, withCustom=F) { 
    cols <- colorRampPalette(c("white","red"))(100) 
    overlap.matrix <- t(apply(overlap.matrix, 1, function(x) x/max(x))) 
    nrow.hift <<- nrow(get("overlap.matrix.hift", envir=HeatEnv)) 
    nrow.matrix <- nrow(overlap.matrix) 
     
    ##creating a new matrix based on custom TSS/promoter windows defined by user 
    if (isTRUE(withCustom)) { 
      if(isTRUE(exists("custom.granges",HeatEnv))==F){ 
        message("Custom TxDb is not defined. Run Custom_TxDb with desired file") 
      } else { 
        cgr <- HeatEnv$custom.granges 
        tss_custom <- ifelse(strand(cgr) == "+", start(cgr), end(cgr)) 
        bins_custom <- GRanges(seqnames=seqnames(cgr), 
                               ranges=IRanges(tss_custom-3000, tss_custom+3000), 
                               strand=strand(cgr)) 
        promoter_custom <- unique(bins_custom) 
        overlap.matrix.custom <<- OverlapMatrix(Grange_file, promoter_custom) 
         
        ##option to order the heatmap based on control 
        if (isTRUE(orderByReads)){ 
          overlap.matrix.hift.custom <<- OverlapMatrix(controlfile, promoter_custom) 
          nrow.matrix.custom <- nrow(overlap.matrix.custom) 
          nrow.hift.custom <- nrow(overlap.matrix.hift.custom) 
          if(nrow.matrix.custom > nrow.hift.custom) { 
            for(k in 1:(nrow.matrix.custom-nrow.hift.custom)) 
            { l <- c(k) 
              overlap.matrix.hift.custom <- rbind(overlap.matrix.hift.custom, l) 
            } 
          } 
          else if(nrow.matrix.custom < nrow.hift.custom){ 
            order(rowSums(overlap.matrix.hift.custom)) 
            overlap.matrix.hift.custom <- overlap.matrix.hift.custom[-
((nrow.matrix.custom+1):nrow.hift.custom), , drop=FALSE] 
          } 
          j <- order(rowSums(overlap.matrix.hift.custom)) 
          overlap.matrix.custom <<- overlap.matrix.custom[j,] 
        } 
         
        ##creating Mean Tag Count of matrix over the TSS, can change ylim as needed if 
topp limit does not capture the highest read count  
        
pdf(paste("MeanTagCount",Modification,if(isTRUE(withCustom))HeatEnv$promoterlist,if(is
TRUE(orderByReads))"sorted",".pdf", sep="_"), width = 4, height=9) 
        plot(x=seq(-3000, 3000, length.out=6001), 
             y=colMeans(overlap.matrix.custom), 
             ty="b", pch=18, 
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             ylim = c(0,0.7), 
             cex = .3, 
             col="red", 
             ylab="Mean tag count", 
             xlab="Distance from TSS (bp)", 
             main=Modification) 
        abline(h=seq(1,100,by=5), v=seq(-3000, 3000, length.out=10), lwd=0.2, 
col="black") 
        box(col="black", lwd=2) 
        dev.off() 
      } 
    } else if (isTRUE(orderByReads)){ 
      if(nrow.matrix > nrow.hift) { 
        for(k in 1:(nrow.matrix-nrow.hift)) 
        { l <- c(k) 
        overlap.matrix.hift <- rbind(overlap.matrix.hift, l) 
        } 
      } 
      else if(nrow.matrix < nrow.hift){ 
        order(rowSums(overlap.matrix.hift)) 
        overlap.matrix.hift <- overlap.matrix.hift[-((nrow.matrix+1):nrow.hift), , 
drop=FALSE] 
      } 
        j <- order(rowSums(overlap.matrix.hift)) 
        overlap.matrix <- overlap.matrix[j,] 
      } 
 
    if (is.null(xlim)) { 
      xlim <- 1:ncol(overlap.matrix) 
    } else if (length(xlim) == 2) { 
      xlim <- seq(xlim[1], xlim[2]) 
    } 
    #Heatmap pdf 
    if (isTRUE(withCustom)){ 
    pdf(paste(HeatEnv$promoterlist, Modification, if(isTRUE(orderByReads))"sorted", 
".pdf", sep="_"), width = 4, height=9) 
    image(x=xlim,  
          y=1:nrow(overlap.matrix.custom), 
          z=t(overlap.matrix.custom), 
          useRaster=TRUE,  
          col=cols, 
          yaxt="n",  
          ylab="",  
          xlab=xlab,  
          main=title) 
    dev.off() 
    } 
    ##Heatmap pdf 
    if (isTRUE(withCustom)==F){ 
    pdf(paste(Modification,if(isTRUE(orderByReads))"sorted",".pdf", sep="_"), width = 
4, height=9) 
    image(x=xlim,  
          y=1:nrow(overlap.matrix), 
          z=t(overlap.matrix), 
          useRaster=TRUE,  
          col=cols,  
          yaxt="n",  
          ylab="",  
          xlab=xlab,  
          main=title) 
    dev.off() 
    } 
    if(isTRUE(nrow(overlap.matrix.hift) != nrow.hift)){ 
      on.exit(overlap.matrix.hift <- OverlapMatrix(controlfile, tsses)) 
    } 
    if(isTRUE(withCustom) && isTRUE(orderByReads)){ 
      if(isTRUE(nrow(overlap.matrix.hift.custom) != nrow.hift.custom)){ 
      on.exit(overlap.matrix.hift.custom <- OverlapMatrix(controlfile, 
promoter_custom)) 
    }} 
  } 
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    ##creating Mean Tag Count of matrix over the TSS, can change ylim as needed if 
topp limit does not capture the highest read count 
    pdf(paste("MeanTagCount",Modification,if(isTRUE(orderByReads))"sorted",".pdf", 
sep="_"), width = 4, height=9) 
    plot(x=seq(-3000, 3000, length.out=6001), 
         y=colMeans(overlap.matrix), 
         ty="b", pch=18, 
         ylim = c(0,7), 
         cex = .3, 
         col="red", 
         ylab="Mean tag count", 
         xlab="Distance from TSS (bp)", 
         main=Modification) 
    abline(h=seq(1,100,by=5), v=seq(-3000, 3000, length.out=10), lwd=0.2, col="black") 
    box(col="black", lwd=2) 
    dev.off() 
  Heatmap(overlap.matrix, xlim=c(-3000, 3000), xlab=xlab, ylab=ylab, 
title=Modification, orderByReads=orderByReads, withCustom=withCustom) 
} 
 
 
Examples of generating multiple heatmaps 
GenHeat("hiFT-T_P15_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", ylab="Genome 
location", F, F) 
GenHeat("hiFT-T_P15_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", ylab="Genome 
location", F, T) 
GenHeat("hiFT-T_P15_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", ylab="Genome 
location", T, F) 
GenHeat("hiFT-T_P15_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", ylab="Genome 
location", T, T) 
GenHeat("5dd_DOX_plus_H3K4me2_merged", "hiFT-T_P15_H3K4me2_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
GenHeat("5dd_DOX_plus_H3K4me2_merged", "hiFT-T_P15_H3K4me2_merged", xlab="TSS", 
ylab="Genome location", F, T) 
GenHeat("5dd_DOX_plus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, F) 
GenHeat("5dd_DOX_plus_H3K4me2_merged", "hiFT-T_P15_H3K4me2_Rep1", xlab="TSS", 
ylab="Genome location", T, T) 
GenHeat("10dd_DOX_plus_SSEA3_pos_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
GenHeat("10dd_DOX_plus_SSEA3_pos_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, T) 
GenHeat("10dd_DOX_plus_SSEA3_pos_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, F) 
GenHeat("10dd_DOX_plus_SSEA3_pos_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, T) 
GenHeat("24dd_TRA_pos_DOX_plus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
GenHeat("24dd_TRA_pos_DOX_plus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, T) 
GenHeat("24dd_TRA_pos_DOX_plus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, F) 
GenHeat("24dd_TRA_pos_DOX_plus_H3K4me2_Rep2", "hiFT-T_P15_H3K4me2_Rep1", xlab="TSS", 
ylab="Genome location", T, T) 
GenHeat("24dd_TRA_pos_DOX_minus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
GenHeat("24dd_TRA_pos_DOX_minus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, T) 
GenHeat("24dd_TRA_pos_DOX_minus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, F) 
GenHeat("24dd_TRA_pos_DOX_minus_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, T) 
GenHeat("hIPSC-T_P10_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, F) 
GenHeat("hIPSC-T_P10_H3K4me2_merged", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", F, T) 
GenHeat("hIPSC-T_P10_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, F) 
GenHeat("hIPSC-T_P10_H3K4me1_Rep1", "hiFT-T_P15_H3K4me1_Rep1", xlab="TSS", 
ylab="Genome location", T, T) 
CustomTXDB("Adhesome_promoters.xlsx") 
CustomTXDB("yaptaz_promoters.xlsx") 
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CustomTXDB("Tead1_promoters1.xlsx") 
CustomTXDB("Srf_promoters1.xlsx") 
 
 
 
 
Overlap Plot Generator 
ensdb <- EnsDb.Hsapiens.v75 
tranx <- transcripts(ensdb) 
 
##defining peak files desired for comparison 
df_hiFT <- fread("_hiFT-T_P15_H3K4me3_Rep1/hiFT-T_P15_H3K4me3_Rep1_peaks.xls") 
df_5dd <- fread("_5dd_DOX_plus_H3K4me3_Rep1/5dd_DOX_plus_H3K4me3_Rep1_peaks.xls") 
df_10dd <- 
fread("_10dd_DOX_plus_SSEA3_pos_H3K4me3_Rep1/10dd_DOX_plus_SSEA3_pos_H3K4me3_Rep1_peak
s.xls") 
df_24plus <- 
fread("_24dd_TRA_pos_DOX_plus_H3K4me3_Rep1/24dd_TRA_pos_DOX_plus_H3K4me3_Rep1_peaks.xl
s") 
df_24minus <- 
fread("_24dd_TRA_pos_DOX_minus_H3K4me3_Rep1/24dd_TRA_pos_DOX_minus_H3K4me3_Rep1_peaks.
xls") 
df_hIPSC <- fread("_hIPSC-T_P10_H3K4me3_Rep1/hIPSC-T_P10_H3K4me3_Rep1_peaks.xls") 
   
df_hiFT <- dplyr::select(df_hiFT, chr, start, end, fold_enrichment) 
df_5dd <- dplyr::select(df_5dd, chr, start, end, fold_enrichment) 
df_10dd <- dplyr::select(df_10dd, chr, start, end, fold_enrichment) 
df_24plus <- dplyr::select(df_24plus, chr, start, end, fold_enrichment) 
df_24minus <- dplyr::select(df_24minus, chr, start, end, fold_enrichment) 
df_hIPSC <- dplyr::select(df_hIPSC, chr, start, end, fold_enrichment) 
 
create_comparison <- function(df_1, df_2, foldincrease = 1.5, folddecrease = 0.2, 
sensitivity = 1000, return_previous_compare = F){ 
combined <- genome_inner_join(df_1, df_2, by = c("chr","start","end")) 
 
combined <- combined %>% 
  mutate(foldchange = c(.$fold_enrichment.x/.$fold_enrichment.y))%>%  
  dplyr::filter((foldchange > 3) | (foldchange < 0.1)) %>% 
  mutate(chr = chr.x, start = round((start.x+start.y)/2), end = 
round((end.x+end.y)/2))%>% 
  group_by(chr) %>% 
  dplyr::select(chr, start, end, foldchange) 
 
convert_gr <- with(combined, GRanges(chr, IRanges(start, end))) 
 
## renaming styles. 
ncbi_format <- mapSeqlevels(seqlevels(convert_gr),"NCBI") 
convert_gr_ncbi <- renameSeqlevels(convert_gr, ncbi_format) 
 
combined_overlaps <- subsetByOverlaps(tranx, convert_gr_ncbi, minoverlap = 
sensitivity) 
my_tx_keys <- combined_overlaps$tx_id 
clist <- c("ENTREZID", "SYMBOL", "TXID","TXNAME","TXSEQSTART","TXSEQEND") 
matching_enst <- select(ensdb, keys=my_tx_keys, columns = clist, keytype = "TXID") 
 
df_overlaps <- as.data.frame(combined_overlaps) 
overlapsofall <- inner_join(df_overlaps, matching_enst, by = c("tx_id" = "TXID")) 
##colnames(overlapsofall)[1] <- "chr" 
overlapsofall$seqnames <- sub("^", "chr", overlapsofall$seqname) 
df_overlapsofall <- as.data.frame(overlapsofall) 
df_combined <-as.data.frame(combined) 
 
interests <- genome_inner_join(df_combined, df_overlapsofall, by = c("chr"="seqnames", 
"start","end")) 
interests <- dplyr::select(interests, chr, start.x, end.x, SYMBOL, foldchange) 
interests <- unique(interests) 
 
df1_final <- genome_inner_join(df_1, interests, by = c("chr", "start" = 
"start.x","end"="end.x")) 
df1_final <- dplyr::select(df1_final, chr.x, start, end, fold_enrichment, SYMBOL, 
foldchange) 
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df2_final <- genome_inner_join(df_2, interests, by = c("chr", "start" = 
"start.x","end"="end.x")) 
df2_final <- dplyr::select(df2_final, chr.x, start, end, fold_enrichment, SYMBOL, 
foldchange) 
 
if(return_previous_compare==T){ 
  return(df1_final) 
} else { 
return(df2_final) 
} 
} 
one <- create_comparison(df_hiFT, df_5dd, 3, 0.1, 1000, T) 
one 
##Output should have the following rows in a dplyr dataframe, if this was not the 
output, may need to adjust the parameters in create_comparison 
 
    chr.x     start       end fold_enrichment        SYMBOL foldchange 
 1: chr12  46123661  46125111         4.79741         ARID2   3.261836 
 2: chr13  48632134  48633543         3.84848          MED4   3.331988 
 3: chr17  47090795  47091752         3.81579       IGF2BP1   3.006240 
 4: chr19  49713522  49714657         4.90012         TRPM4   3.173098 
 5:  chr2  10219323  10221110         3.64453          CYS1   3.057133 
 6:  chr2 202147035 202149427         4.09973         CASP8   3.097362 
 7:  chr2 202147035 202149427         4.09973        LRG_34   3.097362 
 8:  chr2 219081126 219083452         3.41797         ARPC2   3.090640 
 9: chr20  36024289  36025655         5.67113           SRC   3.163722 
10:  chr3   4344675   4345894         4.78956         SUMF1   3.457667 
11:  chr4 113066235 113067545         3.84029       C4orf32   3.828651 
12:  chr4 113626211 113628597         3.38979  RP11-148B6.2   3.067544 
13:  chr6  31465672  31467127         5.55814          MICB   3.802257 
14:  chr7  33391742  33394195         4.50502          BBS9   3.091708 
15:  chr8  22856865  22858162         5.70247 RP11-875O11.1   3.066322 
16:  chr8  22856865  22858162         5.70247       RHOBTB2   3.066322 
17:  chr9  97766420  97767938        10.48509        C9orf3   6.983309 
18:  chr9  97810803  97812424         9.05636        C9orf3   4.028361 
19:  chr9 108209734 108211249         5.38182         FSD1L   3.033891 
20:  chrX 129065131 129067083         3.88369  RP4-537K23.4   3.691054 
21:  chrX 129086679 129087449         3.55686  RP4-537K23.4   3.449411 
 
two <- create_comparison(df_5dd, df_hiFT, 3, 0.1, 1000, T) 
three <- create_comparison(df_5dd, df_10dd, 3, 0.1, 1000, T) 
four <- create_comparison(df_10dd, df_24plus, 3, 0.1, 1000, T) 
four.minus <- create_comparison(df_10dd, df_24minus, 3, 0.1) 
five <- create_comparison(df_24plus, df_24minus, 3, 0.1, 1000, T) 
six <- create_comparison(df_24plus, df_hIPSC, 3, 0.1, 1000, T) 
six.minus <- create_comparison(df_24minus, df_hIPSC, 3, 0.1) 
 
three_without10 <- create_comparison(df_5dd, df_24plus, 3, 0.1, 5) 
thee_without10minus <- create_comparison(df_5dd, df_24minus, 3, 0.1) 
 
##needs to be adjusted based on what comparison the user wishes to make. Comparisons 
are from right to left 
list_final <- list(one, two, three, four, five, six) 
 
gene_to_display <- 4 
p = ggplot(bind_rows(list_final, .id="df"), aes(df,fold_enrichment)) +  
  geom_point(alpha = 0.25, size= 2, aes(color=SYMBOL)) + 
  geom_text_repel( 
    data = subset(bind_rows(list_final, .id="df"), foldchange > gene_to_display), 
    aes(label = SYMBOL), 
    size = 3, 
    box.padding = unit(0.3, "lines"), 
    point.padding = unit(0.3, "lines"), 
    segment.size = 0.2 
  ) + 
  labs(x = "Condition", y = "Peak fold enrichment", title = "H3K4me3") + 
  theme(legend.position='none', axis.title.x = element_text(size = 17), axis.text.x = 
element_text(angle=45, vjust= 0.4), 
       axis.title.y = element_text(size = 17),  
       axis.text = element_text(size = 12), plot.title = element_text(size=25, 
hjust=0.5)) +  
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  scale_x_discrete(labels = c("hiFT", "5dd", "10dd", "24ddplus", "24ddminus", 
"hIPSC")) 
  ##geom_dotplot(alpha = 0.25, binaxis = "y", stackdir = "center", dotsize = 0.5, 
aes(color=SYMBOL)) 
p 

##ggsave("ggplot/H3K4me3.pdf", p,  width = 12, height = 12, dpi = 300 




