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Abstract 

Background/Objective: Nonalcoholic fatty liver disease affects 30% of the world adult population. It 

comprises a spectrum of liver histopathological presentation that varies from hepatocellular lipid 

accumulation, or nonalcoholic fatty liver (NAFL), to nonalcoholic steatohepatitis (NASH). Mechanism(s) 

of NAFLD onset and progression are modulated by a multilayered interaction between genetics, 

environmental factors, and comorbidities. In the US., the Hispanic population presents with higher rate of 

NAFLD, and more advanced histological scores compared to other ethnicities. However, the underlying 

metabolic drivers of these observations are not clear. Previous metabolomic studies revealed that NAFLD 

is associated with several metabolic dysregulations in lipid, carbohydrate, and amino acid metabolism. 

Also, alterations in polyunsaturated fatty acids (PUFA) and downstream oxidized lipids as oxylipins 

(OXLs) and endocannabinoids (eCBs) are reported to distinguish different stages of NAFLD. However, is 

not clear if ethnicity-related metabolomic differences exist in NAFLD. The identification of ethnicity-

related metabolomic differences will expand current knowledge with on mechanism(s) of NAFLD onset 

and progression. It can also identify unshared mechanism(s) that may explain the observed ethnicity-

related disparity in NAFLD rate and severity. The objective of this “proof of principle” analyses is to 

explore metabolomic profiles of a group of Hispanic (HIS) and Caucasian (CAU) subjects with NAFLD 

undergoing bariatric surgery Methods: We compared metabolomic profiles in a group of obesity NAFL-

HIS and NAFL-CAU subjects to ethnicity-matched lean and healthy control subjects. We also compared 

the profiles of subjects with NASH to NASH-free (0-NASH) subjects. For this we profiled plasma and 

liver samples using untargeted, semi-quantitative metabolomic approaches for metabolites related to 

primary metabolism using gas chromatography/time-of-flight mass spectrometry (GC‐TOF MS); complex 

lipids using charged surface hybrid liquid chromatography/quadrupole time of flight mass spectrometry 

(CSH‐QTOF MS/MS); choline and related metabolites using hydrophilic interaction liquid 

chromatography/quadrupole time of flight mass spectrometer (HILIC-QTOF MS/MS). We also 

performed a targeted and quantitative lipidomic analysis to profile for plasma fatty acids and related 

downstream lipid mediators using ultra-high-performance liquid chromatography-electrospray ionization-
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tandem mass spectrometry (UPLC-ESI-MS/MS). Results: Findings from current analyses reveal 

ethnicity-related metabolic perturbation, independent of obesity. Specifically, lean, and healthy HIS 

subjects showed higher plasma profiles of triglycerides, acylcarnitines, free fatty acids and downstream 

lipid mediators. Our finding also shows that in NAFL there are ethnicity-related differences in plasma 

profiles of fatty acids and acylcarnitines. In specific, NAFL-CAU was characterized by higher 

arachidonic acid, while NAFL-HIS showed lower n-3 PUFA. With the progression to NASH, comparison 

within ethnicity groups indicated that the hepatic lipidomic profile in NASH-HIS was characterized 

higher levels of free fatty acids and lipotoxic lipids, suggesting lipotoxicity is involved in the progression 

of NASH. We also observed a higher hepatic triglyceride with signs of impaired mitochondrial β-

oxidation. Remarkably, the plasma OXLs and eCBs profiles discriminated ethnicities with NASH, 

independent of histological severity. In specific, NASH-HIS was characterized with lower arachidonic 

acid derived OXLs, and findings suggest a downregulated lipoxygenase(s) and upregulated soluble 

epoxide hydrolase(s) activities. Conclusion: The analyses presented in this dissertation highlights the 

existence of ethnicity-related metabolomic variations in NAFLD that could potentially modulate disease 

risk and severity in HIS. It also indicates that ethnicity-specific lipidomic signature can distinguish 

NASH, which needs to be verified in larger studies. 
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1. Definitions 

Described first in 1980, [1], nonalcoholic fatty liver disease (NAFLD) is a range of abnormal 

histopathological presentations that include hepatocellular triglycerides (TGs) accumulation, also 

known as steatosis or nonalcoholic fatty liver (NAFL), necrosis and inflammation, or nonalcoholic 

steatohepatitis (NASH), which can advance to cirrhosis and hepatocellular cancer [2,3]. NAFL is 

defined by imaging or histology as the presence of hepatocellular lipid droplets, accounting for >5% 

the total liver weight; absence of hepatocellular injury, defined by hepatocyte ballooning, mild 

inflammation with or without fibrosis; after excluding secondary causes of hepatic fat accumulation. 

Other causes of hepatocellular fat accumulation include excessive alcohol consumption, (defined as 

the intake of >14 drinks/week in women or >21 drinks/week in men, or a daily intake of >10 g/day of 

alcohol); the use of steatogenic medication (e.g., corticosteroids, mipomersen, lomitapide, 

methotrexate, amiodarone); starvation; total parenteral nutrition; other coexisting liver disease 

etiologies, such as viral or autoimmune hepatitis, hemochromatosis, and Wilson disease [3]. On the 

other side, NASH is defined as the presence of NAFL in combination with histological evidence of 

inflammation and hepatocytes injury with or without fibrosis [3].  

2. Epidemiology 

According to a recent global meta-analysis that included 8.5 million subjects from 22 countries, 

the worldwide prevalence of NAFLD was estimated to be 25% of the general population, and this 

prevalence is expected to rise parallel to the metabolic syndrome (MetS) pandemic [4]. NAFLD is 

highly prevalent in the Middle East 32% and South America 31%, followed by the U.S. 24%, and 

with the rate lowest in Africa 14% [4]. When investigating NAFLD prevalence among subjects with 

multiple comorbidities, as obesity and type 2 diabetes mellitus (T2DM), the prevalence of NAFLD 

was 50% in this high-risk group compared to 16% in the general population, independent of ethnicity 

[5]. The prevalence of NASH in the general population is estimated to be between 2 to 6%. In 

morbidly obese subjects, this rate increases to 59%, whereas it is lower, being 7 to 30%, in low-risk 

subjects who undergoing liver biopsy without clinical suspicion [4]. 
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3. Risk factors 

3.1. The metabolic syndrome 

The MetS is a cluster of metabolic derangements that include hypertension (HTN); low level of 

high-density lipoprotein-cholesterol (HDL-C) or dyslipidemia; high level of TGs or 

hypertriglyceridemia; elevated glucose level or T2DM; and visceral adiposity [6]. Clinically, MetS is 

defined as the existence of three or more of the for mentioned abnormal metabolic manifestations [6]. 

NAFLD is strongly associated with all components of MetS, including T2DM, dyslipidemia, TGs, 

and obesity [7,8]. MetS affects about 43% of subjects with NAFLD and 71% of subjects with NASH 

[4], with about 90% of NAFLD subjects presenting with at least one component of MetS [9-11]. 

Owing to this strong correlation, it is argued that NAFLD is the hepatic presentation of the MetS. 

However, evidence indicate that this link is bidirectional, as components of MetS can predict NAFLD 

onset and progression [12-14], and NAFLD may precede the development of MetS [15-17]. 

There are data suggesting that the effect of MetS on the risk of NAFLD may be influenced by 

ethnicity. In a study based on data from the U.S. Third National Health and Nutrition Examination 

Survey (1988–1994) and employing confirmatory factor analysis to challenge the notion that NAFLD 

is the hepatic continuum of MetS, a basic model constructed with components of MetS exhibited 

strong goodness‐of‐fit, whereas the addition NAFL decreased the model fit statistics [18]. When 

analysis was repeated by ethnicity, the addition of NAFL resulted in higher model fit for Hispanics 

and non‐Hispanic Blacks compared to Whites, indicating that the association between MetS and 

NAFLD may be influenced by ethnicity [18]. In support of this evidence, findings from the NASH-

Clinical Research Network (NASH-CRN) indicated that the effect of IR on the risk of NASH was 

modified by ethnicity, where IR was a strong predictor of NASH in non-Hispanics whites, but not in 

Hispanics [19].  

3.2. Type 2 diabetes mellitus and insulin resistance  

In patients with T2DM, the estimated worldwide prevalence of NAFLD and NASH was 55.5% 

and 37.3%, respectively [20]. It is estimated that about 23% of NAFLD and 44% of NASH subjects 

present with T2DM [4]. Compared to non-diabetic, subjects with T2DM are at higher risk for the 
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progression to NASH [21], fibrosis, and hepatocellular carcinoma [22]. This strong link between 

NAFLD and T2DM was found to be reciprocal, as results from a recent meta-analysis including 

studies of nondiabetic subjects show that NAFLD diagnosis increases the risk for T2DM [23]. 

Insulin resistance (IR), a condition characterized by impaired glucose disposal in the periphery, 

including muscle and adipose tissues [24,25], is thought to be a key player in the pathology of 

NAFLD [26,27]. In subjects with NAFL and NASH compared to healthy control and under 

euglycemic-clamp test, the rate of glucose disposal in response to glucose infusion was decreased and 

the ability to suppress adipose tissue lipolysis in response to insulin was impaired, indicating a state of 

peripheral IR that was evident at the level of skeletal muscle and adipose tissues [28]. Hepatic IR, or 

the inability of insulin to suppress hepatic glucose production in fasted state, with subsequent 

hyperglycemia and hyperinsulinemia [29], was also reported in NAFLD with T2DM [30] and in non-

diabetic subjects [31]. The metabolic effect of IR state in the context of NAFLD is discussed in 

section 6. 

3.3. Obesity 

It was estimated that about 51% of NAFLD subjects and 82% of NASH subjects are obese [4]. 

Moreover, obesity was found to increase the risk of NAFLD by 3-fold compared to none-obese 

subjects [32-34]. In the U.S., NAFLD was estimated to affect 5 to 10% of non-obese subjects [35], 

and this rate increases to 95% in morbidly obese subjects [36]. The distribution of adiposity was found 

more determinant to NAFLD risk than amount of adiposity. This was demonstrated with a strong 

linear association between visceral adiposity and NAFLD [37-40], which could be explained by IR, 

which is associated with visceral adiposity [24,25]. The implications of obesity in the development 

and progression of NAFLD are discussed in section 6. 

3.4. Dyslipidemia 

Dyslipidemia affects about 43% of subjects with NAFLD and 71% of subjects with NASH [4]. In 

NAFLD, dyslipidemia mainly manifests as elevated TGs, elevated low-density-lipoprotein cholesterol 

(LDL-C) count or particle size, and decreased HDL-C [41,42]. The implications of dyslipidemia in the 

development and progression of NAFLD are discussed in section 6. 
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3.5. Hypertension 

NAFLD is strongly associated with HTN [43,44], and arterial stiffness was found to correlate 

with NAFDL diagnosis, severity [45], and progression to fibrosis [46]. According to a global analysis, 

HTN was prevalent among 39% of subjects with NAFLD and 68% of subjects with NASH [4]. This 

link between NAFLD and HTN was shown to be bidirectional, as HTN increased the risk of NAFLD 

onset and progression, NAFLD was also found to be a strong predictor for HTN [47].  

3.6. Age and sex 

NAFLD diagnosis occurs more frequently after the fourth decade of life [20]. Advanced age was 

found to be a predictor for NAFLD development and progression to NASH [48]. This may be 

attributed to the fact that most NAFLD-related risk factors increase with age, as MetS, T2DM, and 

HTN [49,50]. The prevalence of NAFLD was reported to be higher in males compared to females [51-

53]. In female, NAFLD prevalence increases significantly after the age of 50, and was found higher in 

postmenopausal women, compared to premenopausal, suggesting a protective role of female 

hormones [54-56]. The risk of NAFLD progression to fibrosis was higher in males compared to 

females [57,58]. Up to date, the mechanisms explaining this sex-related differences in NAFLD 

prevalence are not clear. 

3.7. Genetics  

Genome-wide association studies and exome-wide association studies revealed an association of 

multiple genes variants with risk of NAFLD development and progression. The identified genes were 

involved in the regulation of lipid and carbohydrate metabolism, mitochondrial function, insulin 

signaling, oxidative stress, inflammation, immune response, and fibrogenesis [59-61].  

The rs738409 [C] > [G] variant of the patatin-like phospholipase domain-containing gene 

(PNPLA3), with the substitution of isoleucine to methionine at position 148 was associated with the 

full spectrum of NAFLD [62-68]. This association was also established in studies that included 

multiple ethnicities cohorts [68-73] and found to be independent of age, sex, T2DM [67], total or 

visceral adiposity [62,74], IR and dyslipidemia [75]. The potential mechanism by which the PNPLA3 

variant is involved in the pathogenesis of NAFLD is discussed in section 6. 
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The rs58542926 [C] > [T] variant of the transmembrane 6 superfamily member 2 (TM6SF2), 

with glutamate to lysine substitution at residue167 was associated with an increased hepatic TGs 

content [76-78] and a higher risk of NASH [79]. This gene variant was also associated with a marked 

reduction in apoB-100, very-low density lipoprotein (VLDL) particle count and size, as well as in the 

VLDL and LDL TGs and cholesterol content [77,78,80]. The TM6SF2 gene encodes a trans-

membrane protein that regulates the lipidation and secretion of VLDL and cholesterol synthesis 

[76,78,80,81]. The rs58542926 variant of TM6SF2 results in a loss-of-function of the enzymatic 

activity with consequent NAFL due to reduced lipidation and/or secretion of VLDL [59]. 

The single nucleotide polymorphism in glucokinase regulator (GCKR) at rs780094 was 

associated with NAFLD in multiple ethnicities [73,82-85]. The GCKR gene encodes a protein that 

functions as a negative regulator of glucokinase, a hepatic enzyme responsible for glucose uptake 

[86,87]. The missense mutation impairs the protein’s function, results in increased hepatic glucose 

uptake and malonyl Co-A production, which serves as substrate for hepatic de novo lipogenesis 

(DNL), a process that inhibits mitochondrial β-oxidation of fatty acids [88]. 

In a group of high-risk subjects of European descent, the rs641738 [C] > [T] gene variant of the 

membrane bound o-acyltransferase domain-containing 7 (MBOAT7) was found to be associated with 

a higher risk of NAFL and NASH [89], and with an increased risk of progression to hepatocellular 

carcinoma in NAFLD patients without cirrhosis [90]. The MBOAT7 gene encodes for the enzyme 

lysophosphatidylinositol acyltransferase 1, responsible for incorporating arachidonic acid (AA, 20:4n-

6) and other polyunsaturated fatty acids (PUFAs) into phospholipids (PLs) in remodeling pathways 

[91]. The rs641738 [C] > [T] variant is associated with a down-regulation of MBOAT gene transcripts 

and protein levels, with impaired incorporation of AA (20:4n-6) in PLs [89,92]. 

3.8. Diet 

3.8.1. Hyper-caloric diet 

A hyper-caloric diet may induce NAFLD by promoting obesity, which is a major risk factor for 

NAFLD [32-34]. However, NAFLD can occur in a smaller rate in non-obese subjects [35], suggesting 

the involvement of mechanisms that are not exclusively related to obesity. However, the link between 
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caloric-content and NAFLD may be influenced by weight status and dietary composition. In morbidly 

obese subjects, there was a lack of association between caloric content and the NAFLD spectrum, 

while the risk of inflammation was associated with a higher intake of carbohydrates and lower intake 

of fat [93]. Also, in animal models, NAFLD can be induced by caloric-restricted diet containing high 

sucrose or high fructose in the absence of weight gain [94,95].  

3.8.2. Fructose and fructose-containing sugars  

In experimental animals, dietary fructose, sucrose, or high-fructose corn syrup are commonly 

used to induce NAFL and NASH [95-98]. In humans, multiple observational studies pointed toward a 

strong association between fructose and fructose-containing sugar intake and the risk of NAFLD 

development and progression [93,99-104]. The intake of fructose and fructose-containing sugar was 

also associated with the development of unfavorable metabolic outcomes strongly linked to NAFLD, 

including dyslipidemia and HTN [105,106]. However, the effect of fructose-containing sugar on the 

development of NAFLD is controversial. There is a lack of large, long-term studies to assess this 

relationship. Nevertheless, in short-term setting, this relation may be confounded by excessive dose, 

caloric content, and weight status [107]. Results from one meta-analyses that inspected the short-term 

effect (≤ 10 weeks) of fructose or sucrose intake on hepatic fat content, DNL, liver enzymes in normal 

and overweight subjects concluded that there is lack of evidence supporting the role of isocaloric or 

hypocaloric fructose or sucrose as cause of NAFLD [108]. Another meta-analysis that included 

normal and overweight subjects concluded that short-term hypercaloric and high-fructose diets 

increased hepatic fat content by 54%, while the intake of fructose with isocaloric diet did not induce 

NAFLD [109]. 

3.8.3. Fatty acids and cholesterol  

In animals, a diet high in saturated fatty acids (SFAs) [110,111] and PUFAs deficiency was 

associated with development of NAFL [112-115]. In obese subjects with NAFLD, the diagnosis of 

NASH was associated with a high dietary intake of cholesterol [116], high SFAs and PUFAs dietary 

intake [99,116]. An excess dietary n-6 with reduced n-3 PUFAs was associated with NAFLD 

[117,118], and an increased SFA:PUFA ratio was associated with NASH [99,116]. Moreover, results 
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from two meta-analysis showed that n-3 PUFAs supplementation alleviated hepatic lipid content 

[119,120], with no effect on NASH histological outcomes [119]. Another meta-analysis concluded 

that n-3 PUFAs supplementation significantly reduced plasma/serum alanine aminotransferases 

(ALT), aspartate aminotransferases (ASL) and TGs level, however, with marginal reduction in hepatic 

fat content. In the same study, a dose-response analysis showed that an intake of 1.0 g/day of 

eicosapentanoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n- 3) predicted a 2.74% 

decrease of hepatic fat content and 9.97 mg/dL reduction in TGs levels [121]. Monounsaturated fatty 

acids (MUFA) intake, mainly as component of the Mediterranean diet [122], has been shown to be 

effective in reducing hepatic fat content, liver enzymes, and circulating lipid profile in subjects with 

NAFLD [123,124]. 

3.9. Ethnicity  

In the U.S., disparity in NAFLD prevalence is reported, with Hispanics being impacted at higher 

prevalence [4,52,125-128] and severity [5,19,129]. Furthermore, this disparity trend was consistent 

when comparing Hispanic to non-Hispanic children and adolescents [130], suggesting that the ethnical 

disparity of NAFLD prevalence is independent of age [131]. However, the ethnical disparity in 

NAFLD prevalence was more profound in the general population, than in high-risk groups with other 

existing co-morbidities. In a study that examined NAFLD prevalence in high-risk cohort with obesity 

and T2DM, NAFLD prevalence rate was 50% and not associated with ethnicity [5]. However, in the 

same study, the risk of NASH among subjects with NAFLD was highest in Hispanics and lowest in 

African Americans, with no significant difference between ethnicities in fibrosis scores [5]. 

Gender disparity in the distribution of NAFLD according to ethnic group was also reported, as 

NAFLD in Caucasians was more prevalent in men than in women. However, this difference was not 

observed in Hispanic and African American [132]. Up to date, the mechanisms underpinning these 

ethnic disparities are not clear. Potential factors contributing to the higher rate of NAFLD in 

Hispanics are discussed in section 7. 
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4. Natural history  

Both NAFL and NASH are recognized as progressive liver conditions that increase the risk for 

developing advanced liver disease and mortality [46,57,133-139]. It is estimated that about 30% of 

individuals with NAFL will eventually develop NASH [140-142]. Compared to subjects with NAFL, 

NASH patients are at increased risk for developing liver and non-liver-related complications [46]. 

About 40-50% of patients with NASH will develop fibrosis [133], with an estimated average 

progression of 0.09 fibrosis stages per year [4]. 

Mortality in NAFLD patients is mainly due cardiovascular disease, followed by non-liver 

malignancy, and then liver-related deaths, which is primary due to hepatocellular carcinoma 

[4,57,134,135]. Despite the low rate of liver-related mortality, it corresponds to 20,000,000 estimated 

deaths among subjects with NAFLD [4,143]. When NASH is present, this risk of liver-related 

mortality increases by 5 to 10-fold [144]. In another analysis, the presence of NASH with fibrosis was 

associated with lower survival, and this was not true for NAFL alone [145]. In the U.S., about 10% of 

NASH subjects receive liver transplantation [146]. NASH is considered a major indication for liver 

transplant [3] and was projected to be main indication in the U.S. by 2020 [146].  

5. NAFLD diagnosis and treatment  

Early diagnosis of NASH is determinant for its prognosis. Specifically, the identification of 

NASH in the pre-fibrotic stage can significantly improve the response to therapy [147] . Liver biopsy 

and histological confirmation are the gold standard to establish NAFLD diagnosis. On histological 

examination, the principal features of NAFLD are microvascular steatosis with or without the 

presence of lobular inflammation, peri-sinusoidal fibrosis, and hepatocellular ballooning [148]. The 

NAFLD activity score (NAS) is commonly used to establish a histopathological diagnosis and 

characterization of NASH, and it accounts for steatosis, hepatocellular ballooning, and lobular 

inflammation [3]. The NASH-CRN scoring system is commonly used to determine the stage of 

fibrosis [148]. In general, liver biopsy is an invasive procedure, subjected to risk of complications 

[149,150] and inter-observer variability of pathology interpretation [151].  
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NAFLD can also be identified and diagnosed by various abdominal imaging modalities. These 

include ultrasound, computed tomography, magnetic resonance elastography, and transient 

elastography. These imaging techniques vary according to sensitivity, specificity, and ability to 

quantify steatosis, necroinflammatory activity, and fibrosis [147]. The disadvantages of these imaging 

modalities include the high costs, radiation exposure, and limited applicability for morbidly obese 

patients, inability to detect low-moderate grades of fibrosis or to characterize necroinflammatory 

activity [152]. 

Despite the epidemic and significance of NAFLD, there are no FDA-approved treatments 

[153,154]. Clinical approaches to manage NAFLD are mainly directed to manage the concurrent 

components of MetS. Effective approaches include lifestyle changes, dietary modifications and 

increased physical activity aimed to body weight reduction [155-157]. However, lifestyle 

interventions are hard to comply to [158]. Bariatric surgery is indicated for s subset of subjects [159], 

with the benefits of reversal of NAFLD shown in long term follow up studies [160]. 

6. Pathophysiology 

Steatosis develops when fatty acids availability exceeds the liver’s disposal capacity [161]. 

Specifically, when the hepatic uptake of non-esterified fatty acids (NEFAs) from the circulation and 

lipid synthesis form DNL, outweighs the disposal rate, mainly by β-oxidation of FA and export of 

TGs with VLDL particles, the net result is hepatocellular lipid accumulation [162]. 

The mechanism of NAFLD progression was previously explained by the “two hits” hypothesis 

[163]. Hepatic lipid accumulation composes the “first hit”. As hepatic lipid accumulation overwhelms 

the disposal and storage capacity, excess lipids will induce oxidative stress, inflammation, the “second 

hit”, with ultimate progression to NASH [163]. Later, the “multiple hit” model was proposed to 

explain the heterogeneous presentation and disease course of NAFLD, and to include a multi-layered 

interaction between host genetics, environmental factors, and microbiome [164]. In the” multiple hit” 

model, following the accumulation of hepatocellular lipids, a cascade of metabolic insults orchestrates 

multiple cellular and systemic responses, including oxidative stress and lipid peroxidation, 

lipotoxicity, glucotoxicity, inflammation, endoplasmic reticular stress, mitochondrial dysfunction, 
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apoptosis, and intestinal dysbiosis, that will collectively alter lipid metabolism, induce hepatocytes 

injury, and provoke NAFLD development and progression [161,165-167]. 

Within the context of obesity and MetS, IR is considered a component of the ‘multiple hits’ in 

the pathogenesis of NAFLD [26,27]. IR is characterized by impaired glucose disposal in peripheral 

tissues [24,25] and results in impaired suppression of adipose tissue lipolysis, a state known as 

adipose tissue dysfunction, with consequent increased efflux of NEFA [168]. Adipose tissue and 

skeletal muscle IR were reported in NAFLD subjects compared to healthy controls [169,170]. In 

NAFLD patients, the insulin-mediated inhibition of adipose tissue lipolysis was found impaired and 

plasma NEFAs was found persistently elevated [28,171-173]. Moreover, in patients with NAFLD, 

adipose tissue lipolysis was identified as the major source of fatty acids in hepatocellular TGs store 

[174,175]. The uncontrolled lipolysis of visceral adipose tissue may further exacerbate the state of IR 

with the release of pro-inflammatory cytokines, which in turn triggers peripheral tissues 

inflammation and impair insulin signaling [176,177].  

The increased flux of NEFA into the circulation is efficiently cleared by hepatic uptake [178]. 

Data on hepatic β-oxidation of fatty acids are inconsistent with reported increase [28,179] and 

decrease in NAFLD subjects compared to controls under basal conditions [180]. An impaired 

metabolic flexibility, or the inability to alternate between fat and carbohydrate oxidation as a source 

of energy during insulin infusion was also reported in NAFLD [181] and is thought to be an adaptive 

mechanism against excess hepatic free fatty acids (FFAs) buildup [182]. 

Hepatic IR, or the inability of insulin to suppress hepatic glucose production in fasted state [29], 

was reported in NAFLD subjects with [30] and without diabetes [31,169,170]. The extent of adipose, 

hepatic and skeletal muscle IR was comparable to that in T2DM patients, independently from the 

degree of steatosis [181]. Hepatic IR is accompanied by uncontrolled hepatic glucose production and a 

compensatory hyperinsulinemia, both stimulating hepatic DNL [183,184]. Accordingly, DNL was 

reported to be 3-fold higher in subjects with NAFLD, compared with healthy controls [175,185]. The 

ability of insulin to suppress hepatic DNL in fasted state was impaired in NAFLD subjects and 

hepatic DNL was comparable in fed and fasted states, this indicate metabolic inflexibility, which is 



 

 

11 

believed to contribute to the development of NAFL [174]. The ability of insulin to suppress VLDL 

production was impaired in NAFLD [186] and NAFL was found associated with increased production 

of TG-rich VLDL [187,188], which contributes to the development of hypertriglyceridemia and 

dyslipidemia.  

Hepatic TGs accumulation is thought to be a protective mechanism from the metabolic burden of 

increased hepatic fatty acids availability [182,189,190]. However, this concept is questioned [191], as 

evidence from longitudinal studies show that substantial number of subjects with NAFL, in the 

absence of necroinflammation and ballooning, may progress to advanced fibrosis over a relatively 

short period of time [136,137]. Moreover, a role for hepatocellular lipids in mediating inflammation is 

proposed, as indicated by an up-regulation of genes involved in inflammatory response in subjects 

with NAFL [192].  

Evidence indicates a potential role of specific lipid species in histological changes observed 

during NAFLD progression, and the involvement of mechanisms related to TGs, diglycerides (DGs), 

and PLs remodeling in NAFLD progression. In a recent study using Mass Spectrometry (MS) imaging 

techniques to study spatial distribution of lipids in liver tissue, it was found that in both animal models 

and humans, there was a loss of hepatic lipid zonation and marked remodeling of PLs with NAFLD 

progression, with enrichment of AA (20:4n-6) acid in PLs located in the pericentral hepatocytes zone, 

potentially to serve as a source for eicosanoid synthesis. In the same study, the transcript levels of 

lysophosphatidylcholine Acyltransferase 2 (LPCAT2) and cytosolic phospholipases A2 (cPLA2) 

involved in membrane remodeling; arachidonate 15-lipoxygenase (ALOX15) involved in eicosanoid 

production were increased [193]. In support of this evidence, genome-wide association studies 

identified a robust association of PNPLA3 G allele with the full spectrum of NAFLD [62-68]. In 

hepatocytes, the PNPLA3 protein is thought to be involved in lipid remodeling, as it was shown to 

have a transacylase activity that facilitates the direct fatty acid transfer between lipids [194], and an 

acyltransferase activity catalyzing the conversion of lysophosphatidic acid to phosphatidic acid [195]. 

Also, in vitro studies showed the PNPLA3 protein modulates the activity of adipose TG lipase 

(ATGL) or Patatin Like Phospholipase Domain Containing 2 (PNPLA2) via sequestering the cofactor, 
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comparative gene identification-58, which is essential for ATGL function [196-198]. The net effect of 

PNPLA3 and ATGL activity is to induce the hydrolysis of fatty acid ester bonds of glycerolipids, with 

a high preference for oleic acid (OA,18:1n-9) among other fatty acyl moieties to be incorporated into 

complex lipids as TGs, DGs, and phosphatidylcholine [199-201]. The PNPLA3 I148M variant results 

in a loss-of-function of the enzymatic activity, impairs the ATGL activity with consequent TGs 

accumulation, altered saturation of hepatocellular lipids [196-199,202-204], and impairment of 

hydrolysis and incorporation of OA (18:1n-9) moiety from TGs pool [205]. In hepatic stellate cells, 

the PNPLA3 protein is involved in retinol metabolism with potential role in fibrogenesis. The 

PNPLA3 has a retinyl-palmitate lipase activity that promotes the release of retinol from hepatic 

stellate cells [206,207]. The PNPLA3 I148M variant results in reduced retinol release and 

bioavailability, which promotes inflammation and fibrogenesis [206,208]. 

Collectively, the combination of increased hepatocellular lipid retention and dysregulation in 

lipid remodeling, increases the demand on the liver to handle metabolic burden from excess energy 

substrates and may direct lipids to pathways that generate hepatotoxic lipid species, also known as 

lipotoxicity [209-211]. Lipotoxicity correlates with the severity of NAFLD [212] and induces 

production of reactive oxygen species and lipid peroxidation [213], as well as stress cellular-response 

and apoptosis [212,214]. Up to date, the lipotoxic lipid specie(s) promoting hepatocellular injury and 

the NASH phenotype are not identified. However, in vitro and in vivo evidence indicate the SFA, 

palmitate (PA,16:0) [110,215,216], DGs and ceramides (CERs) [217-219], lysophosphatidylcholines 

[220], and free cholesterol [221,222] as lipotoxic species with potential role in NAFLD. 

7. Factors contributing to the high prevalence and severity of NAFLD in Hispanics 

Multiple factors can come into interplay to explain the reported ethnic disparities in NAFLD rate 

and severity, these factors include the presence of comorbidities as MetS; genetic predisposition; 

environmental factors such as diet, socioeconomic status, and inaccessibility to health care 

[126,127,223]. The prevalence of MetS and its components is higher in Hispanics compared to non-

Hispanic whites and African American [224]. Hispanics are also reported to have higher body mass 

index (BMI), visceral adiposity, and IR for BMI compared to other ethnicities [225-227].The 
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prevalence of T2DM is higher in Hispanics compared to non-Hispanic whites, however, comparable 

to that of African Americans [127,228]. Plasma TGs levels are significantly lower in African 

Americans compared to Hispanics and Caucasians, who have comparable TGs profile [229]. 

However, the extent by which these variations may explain the observed disparity in NAFLD 

prevalence and severity is unclear. 

The homozygous carriers of the rs738409 [G] allele in PNPLA3 gene, discussed in detail in 

section 3.7 and 6, has the highest frequency in Hispanics compared to other ethnicities. In one study, 

the frequency of the I148M variant was reported to be 49%, 23%, and 17% in Hispanics, Whites, and 

African Americans, respectively [62]. A following study reported the allelic frequency in a group of 

subjects with biopsy-confirmed NAFLD to be 91% and 70% in Hispanics and non-Hispanics, 

respectively [67]. Similar findings have been replicated in following studies [72,73,230]. 

Other environmental and life-style factors include diet, physical activity and socioeconomic 

status, based on data from the NASH-CRN, and compared to non-Hispanic Whites, Hispanics with 

NASH were younger, consumed higher amount of carbohydrates and less fat, performed less physical 

activity, and came from lower socio-economical background [19]. The acculturation of the Hispanics 

to the U.S. dietary habits and lifestyle was reported with a change in diet with successive generations 

of Hispanics in which fruit and vegetable intake decreased and sugar-sweetened beverages intake 

increased in third-generation Hispanics compared to first-generation [231]. Acculturation to American 

society was also found to be associated with a more sedentary lifestyle, as multiple studies have 

reported lower physical activity among Hispanics as compared with other ethnicities [232] [233]. 

8. Metabolomics for the study of NAFLD 

Metabolomics is the comprehensive characterization of small molecules, or metabolites, in a 

biological matrix by applying analytical chemistry methods [234]. The high-throughput range of 

detected metabolites reflects substrates, intermediates, and products of metabolic processes that are 

direct product of gene-environment (exposome) interactions. Therefore, metabolomics has the 

advantage of better reflecting the phenotype, compared to genomics and proteomics [235,236]. 

Metabolomic approaches are with diverse scientific applications. The ability to predict a given 

https://www.sciencedirect.com/topics/medicine-and-dentistry/type-2-diabetes
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phenotype with a metabolomic signature is a common application of biomarker discovery. 

Characterizing changes in metabolomic profile between two disease states, or exposures, may provide 

insights into altered metabolic pathways to pin out mechanisms and potential therapeutic targets 

[234,236].  

Mass spectrometry is a commonly used method with high sensitivity and the ability to detect 

metabolites in very low abundance. It includes gas chromatography-mass spectrometry (GC-MS) 

which characterizes thermally stable, volatile metabolites and liquid chromatography-mass 

spectrometry (LC-MS) which can profile more polar metabolites with lower thermal stability and 

higher relative molecular mass [237,238]. 

Previous metabolomic profiling studies on liver biopsies revealed that NAFLD is associated with 

defects in the tricarboxylic acid cycle (TCA) resulting in metabolic perturbations including alterations 

in amino acids, lipids, and bile acids profiles [239,240], impaired antioxidant capacity, and PLs 

composition [240]. In situ analysis of tissue lipidomic composition and distribution revealed that there 

are differential distribution of lipids within the liver lobule, and the progression of NAFL to NASH 

impacts lipid zonation and, possibly, remodeling [193,241-243]. Last, the employment of 

metabolomic for biomarker discovery enabled the identification of a plasma lipidomic signature that 

can distinguish NASH from NAFL [244-248]. 

9. Justifications and aims  

NAFLD is a major health concern and a heavy economic burden on health systems. It is a 

frequent indication for liver transplant [3]. It is also associated with high risk of morbidity and 

mortality [249,250]. In the U.S., the annual cost of NAFLD is estimated to be 103 billion dollars 

[249]. The Hispanic population is a fast-growing population and expected to account for 30% of the 

U.S. population by 2060 [251]. Alongside, the economic impact of NAFLD is expected to inflate. The 

pathophysiology of NAFLD is not clearly understood, especially with regard to the progression from 

NAFL to NASH. Ethnicity-related disparity in NAFLD prevalence and severity are reported with 

Hispanics being affected disproportionally at higher rate compared to other ethnicities [5,125-127]. To 

date, the biological mechanism(s) underlying these observations is not clear. The characterization of 
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metabolomic profile associated with a given phenotype is a valid way to understand its biochemical 

underpinning. Within this context, metabolomics offers a valuable tool to expand our understanding 

of NAFLD etiology and pathophysiology. To our knowledge, ethnicity was not addressed before in a 

metabolomic profiling study conducted in NAFLD. 

The standard method for establishing NAFLD diagnosis, liver biopsy, is invasive and subjected 

to limitations [149,150]; and a clinically feasible, non-invasive biomarker to characterize NASH is an 

unmet necessity. Moreover, with histopathological changes occurring with progression from NAFL to 

NASH, little is known about the correlation of liver histological features with liver tissue or plasma 

metabolome in NAFLD subjects. Most of the available literature focuses on plasma or serum, with 

few available data on liver metabolites. 

A guiding principle for our methodology is that there are biochemical differences between 

Hispanic and Caucasian subjects with NAFLD that could explain, at least in part, the ethnicity-related 

disparity observed in NAFLD prevalence and progression. In this dissertation, as a “proof of 

principle”, the objective is to explore metabolomics profiles of a group of Hispanic and Caucasian 

bariatric surgery subjects with NAFLD. In specific, we conducted this study to: (i) characterize liver 

and plasma metabolomic profiles by ethnicity groups; (ii) determine the role of specific biochemical 

pathway(s) involved in NAFLD in the study groups; (iii) identify if ethnicity-specific panel of 

metabolites characterizes NASH. 

Results of this work will expand our understanding of mechanism(s) underlying NAFLD onset 

and progression and shed light on potential unshared mechanism(s) for NAFLD between ethnicities. 

Our results will provide bases for hypothesis generation for future research aiming to find therapeutic 

targets and to identify ethnicity- specific metabolomic signatures that differentiate stages of NAFLD, 

which with future validation, can aid in clinical practices.  

10. Chapters overview  

Lipid species as DGs, CERs, and FFAs are thought to be key factors in the progression to NASH 

[240]. Previous literature identified alterations in plasma FFAs and lipid composition in patients with 

NAFL vs. NASH [244,248]. The comparison of lipidomic profiles in relation to ethnicity in NAFLD 
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may provide insights into potential lipotoxic lipid specie(s) and pathway(s) that are unshared between 

ethnicities. In chapter two, published in [252], we conducted an untargeted lipidomic profiling of 

plasma and liver tissues for metabolites related to primary metabolism, including fatty acids and 

complex lipids; choline and related metabolites in a group of Hispanic and Caucasian bariatric surgery 

subjects with NAFLD. Our findings revealed ethnicity-related differences in plasma profiles, 

independent of obesity, with Hispanics showing higher plasma TGs, acylcarnitines, and FFAs. Also, 

in NASH, there were ethnicity-related differences in hepatic profile with Hispanics having higher 

FFAs, TGs and lysophospholipids. Our findings suggest that impaired mitochondrial β-oxidation and 

lipotoxicity are involved in the progression of NASH in Hispanics. 

In chapter three, published in [253], we examined a targeted and quantitative lipidomic profiling 

of plasma oxylipins in a group of Hispanic and Caucasian bariatric surgery subjects with NAFLD. 

Oxylipins, including eicosanoids, prostaglandins, and leukotrienes, are biologically active lipids with 

implication in various pathological conditions, including diabetes, cardiovascular disease and cancer 

[254,255]. The study of oxylipins in NAFLD is a relatively new area [256]. Investigating oxylipins in 

NAFLD with regards to ethnicity can identify potential role of dietary PUFAs and down-stream 

inflammatory-mediators in NAFLD progression. Findings indicate that in NAFLD, there are 

ethnicity-related differences in plasma profiles with Hispanic having lower long chain PUFAs, 

independent of histological severity. Also, when comparing between ethnicity groups, differences in 

plasma lipid mediators distinguished ethnicities with NASH. Importantly, our findings point out to a 

lower lipoxygenase(s) activities and higher soluble epoxide hydrolase(s) activities in Hispanics with 

NASH.  
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1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a continuum of liver pathology that includes 

steatosis (NAFL), hepatocellular inflammation and ballooning, or nonalcoholic steatohepatitis 

(NASH) and cirrhosis [1]. It affects 25% of the general population and up to 95% of individuals with 

medically complicated obesity [2,3]. Based on the strong correlations of NAFLD with metabolic 

syndrome and its components, NAFLD is argued to be its hepatic manifestation [4,5]. In the U.S., 

disparity in NAFLD prevalence is reported, with Hispanics (HIS) being impacted at higher rate and 

severity compared to other ethnicities [6-11]. To date, the biological background underlying this 

disparity remains unclear. 

NAFL develops when fatty acid availability, from the hepatic uptake of free fatty acids (FFA) 

and de novo lipogenesis (DNL), outweighs the utilization and disposal capacity, mainly by synthesis 

of triglycerides (TG) and other lipids, mitochondrial β-oxidation and export as very low‐density 

lipoprotein [12]. Mechanisms of NAFLD progression are explained by the “multiple hit” model, in 

which lipid overload, the first hepatic hit, overwhelms the disposal, utilization and storage capacity. 

This results in a cascade of metabolic insults including oxidative stress, lipotoxicity, endoplasmic 

reticular stress, mitochondrial dysfunction and apoptosis, collectively, provoking hepatocyte injury, 

inflammation and disease progression [12,13]. 

Mitochondrial function is altered in NAFLD and hepatic β-oxidation of fatty acids is reported to 

be both increased and decreased [14-16]. This inconsistency is thought to reflect a process of 

mitochondrial adaptation to compensate for the increased availability of FFAs, with an initial increase 

in -oxidation, tricarboxylic acid cycle and oxidative phosphorylation [14,15,17]. Eventually, the 

metabolic capacity and antioxidant defenses are overwhelmed, resulting in hepatic oxidative stress 

and diverting FFAs to the production of hepatotoxic lipids [18,19]. It is thought that accumulation and 

generation of hepatotoxic lipids is critical to NAFLD progression [20]. As mentioned above, 

lipotoxicity is considered a component of the “multiple hit” and may result from the accumulation of 

hepatotoxic lipids or intermediates, such as saturated fatty acids (SFA), ceramides (Cer) and 
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lysophosphatidylcholine (LPC) [21-24]. Lipotoxicity can also result from a deficiency or imbalance in 

lipids essential for cellular integrity and function, including polyunsaturated fatty acids (PUFA) [24].  

Previous metabolomic analysis of liver tissue and plasma have shown that NAFLD is associated 

with derangements of lipid, carbohydrate, and amino acid metabolism [25-29]. Dysregulation in one-

carbon metabolism, including alterations in choline, betaine, methionine and in the universal methyl 

donor, S-Adenosyl-L-methionine (SAMe), is also implicated in NAFLD development and NASH 

severity, as shown from animal studies [30]. In humans, a recent metabolomic analysis identified a 

subtype of NAFLD subjects characterized by impaired one-carbon metabolism with NASH 

progression [31]. However, to our knowledge, no previous metabolomic profiling study has addressed 

ethnicity-related variations with regards to NAFLD. 

The objective of this study was to investigate metabolomic profiles in a group of Hispanic (HIS) 

and White Caucasian (CAU) with obesity and biopsy-confirmed NAFLD. The identification of 

metabolomic differences between HIS and CAU subjects with NAFLD may provide a new research 

direction pointing towards ethnicity-specific changes as potential drivers for the disparity observed in 

NAFLD rate and progression. To this end, we employed untargeted metabolomic profiling of primary 

metabolism, complex lipids, choline and related metabolites in a group of Hispanic (NAFL-HIS) and 

Caucasian (NAFL-CAU) subjects with obesity and NAFLD of comparable histological presentations, 

as compared to a group of ethnicity-matched lean healthy control subjects. We also compared liver 

and plasma metabolomic profiles in a group of NASH (NASH-HIS) and (NASH-CAU) subjects with 

similar NAFLD Activity Score (NAS), to a group of BMI-matched NASH-free (0-NASH) subjects in 

both ethnicities. 

2. Subjects and methods 

1.1. Subjects  

Liver biopsies (n =17) and plasma samples (n =15) were retrieved from the biobank repository at 

the Division of Gastroenterology and Hepatology, UC Davis Medical Center. Samples were collected 

from bariatric surgery patients who self-identified ethnicity as either HIS or CAU. Included subjects 

were both males and females; age range 18−75 years; with class II and III obesity (body mass index 
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(BMI) > 35.0 kg/m2); no previous diagnosis of acute or chronic diseases except for obesity or type 2 

diabetes based on medical history. Exclusion criteria were diagnosis of secondary causes of chronic 

liver disease based on medical history, including viral and autoimmune hepatitis, HIV, 

hemochromatosis, alpha 1 anti-trypsin deficiency, Wilson disease and drug-induced liver disease; 

excessive alcohol intake (defined as >20 g/day for women and >30 g/day for men); and subjects with 

advanced fibrosis (stage >2).  Healthy control subjects (HC; n =22) were recruited via public postings. 

Both male and female subjects were included; age between 18−75 years; BMI between 18 and 25 

kg/m2; no current or previous diagnosis of chronic diseases; absence of signs of acute diseases. 

For subjects with NAFLD, demographic, anthropometric and clinical data were collected 

retrospectively using data recorded within 7 days of bariatric surgery procedure. For HC subjects, 

demographic data were self-reported and anthropometric measurements were collected during one in-

clinic visit. All subjects were consented with a signed form and the study protocol was approved by 

the Institutional Review Board at the University of California, Davis (protocol # 856052). 

1.2. Biological samples  

Liver tissue samples were collected by intraoperative core biopsy during bariatric surgery (time 

of collection is not available). For each subject, one sample was submitted in 10% formalin to the 

Department of Pathology for routine diagnostic interpretation. A second sample was flash-frozen in 

liquid nitrogen immediately after harvest and subsequently transferred and stored at −80 °C until 

analysis. Blood samples were collected by veno-puncture in EDTA-containing pre-cooled tubes after 

a 10-hour overnight fasting on the day of operation for NAFL group or in clinic for HC (time of 

collection is not available). Samples were centrifuged and stored at −80 °C until analysis. 

1.3. Histopathology 

Specimens received by the Department of Pathology were processed as per routine protocol. 

After diagnostic interpretation was completed, biopsy slides were retrieved and scored using the 

NASH Clinical Research Network (NASH-CRN) histology scoring system, which includes steatosis, 

hepatocellular ballooning, lobular inflammation, and fibrosis, by a gastrointestinal pathologist blinded 

to the subject’s clinical data. The NAFLD Activity Score (NAS) and fibrosis score were tabulated 
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[32]. NASH diagnosis was determined by incorporating the histology scores into a diagnostic 

algorithm [33].  

1.4. Untargeted metabolomics  

Untargeted, semi-quantitative metabolomic profiling for plasma and liver samples was 

performed at the UC Davis West Coast Metabolomics Center. Samples were extracted using 

methanol: methyl tert-butyl ether (MTBE):water as previously described [34]. To profile metabolites 

related to primary metabolism including carbohydrates, sugar phosphates and amino acids, the 

aqueous phase was dried and subjected to trimethylsilation and methoximation and analyzed by gas 

chromatography/time-of-flight mass spectrometry (GC‐TOF MS) [35]. Spectral data were processed 

and annotated using BinBase [36]. To profile FFAs and complex lipids, including mono-, di- and TGs, 

cholesteryl ester (CE), phospholipids (PL), sphingolipids (SL), the organic phase was dried, 

resuspended and analyzed by charged surface hybrid liquid chromatography/quadrupole time of flight 

mass spectrometry (CSH‐QTOF MS/MS) [37]. Data collected in both positive and negative ion mode 

and processed using MassHunter (Agilent Technologies, Inc., Santa Clara, CA, 

http://www.agilent.com). Lipids were identified based on MS/MS fragmentation patterns using 

Lipidblast software [38]. To profile acylcarnitine, choline, betaine, S-Adenosyl-L-methionine (SAMe) 

and related metabolites, aqueous phase was analyzed by the biogenic amines platform using 

hydrophilic interaction liquid chromatography/quadrupole time of flight mass spectrometer (HILIC-

QTOF MS/MS) [37]. Data were collected in both positive and negative mode. MS-DIAL was used for 

data processing [39]. For annotations, the three-levels of compound annotation by the Metabolomics 

Standards Initiative (MSI) was employed [40]. Metabolites with MSI level 1 annotation (i.e., an 

MS/MS spectral library with retention time and precursor mass) were excluded form statistical 

analyses. All mass spectra are available at Massbank of North America 

(http://mona.fiehnlab.ucdavis.edu). The study details are available on The Metabolomics Workbench 

(http://www.metabolomicsworkbench.org), ID number (ST000977).  

In this study, fatty acids and complex lipids are described by name and lipid class, respectively, 

followed by number of (carbons, double bounds) of the fatty acyl moiety (i.e., linoleic acid (18:2n6) 

http://www.agilent.com/
http://mona.fiehnlab.ucdavis.edu/
http://www.metabolomicsworkbench.org/
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and TG(50-52:0-6)). The index of fatty acid desaturase-1(FADS1, Δ-5 desaturase) was estimated as 

the product to precursor ratio or arachidonic acid (20:4n6)/dihomo-γ-linolenic acid (20:3n6). Stearoyl-

CoA desaturase (SCD1, or Δ-9 desaturase) was estimated as palmitoleic acid (16:1n7)/palmitic acid 

(16:0). The hepatic relative ratio of free n6 to n3 PUFAs was calculated as arachidonic acid 

(20:4n6)/eicosapentaenoic acid (20:5n3) and arachidonic acid (20:4n6)/docosahexaenoic acid 

(22:6n3). 

1.5. Statistical analysis:  

Statistical analysis was performed using JMP Pro 14.1 (SAS Institute Inc., Cary, NC; 

http://www.jmp.com). Unknowns and metabolites and with MSI level 1 identification from HILIC-

QTOF MS/MS platform were excluded. Outliers were detected and excluded using the robust Huber 

M test and missing data were imputed using multivariate normal imputation if greater than 70% 

complete. Metabolites with more than 30% missing data were excluded. The Johnson’s 

transformation was used to attain normal data distributions for statistical assessment.  

Metabolite means were calculated using Log normalized data, fold changes were calculated as 

the mean of NAFL/HC for comparison between NAFL and HC or NASH/0-NASH for comparison 

between NASH and 0-NASH. Students’ t-test was used to compare means. Differences were 

considered likely at p <0.05, and possible if the p-value was ≥0.05 and <0.1.  

To examine if ethnicity-specific differences exist in NAFLD and to evaluate the interaction of 

ethnicity x health status (i.e., NASH or NAFL), full factorial analysis of covariates (ANCOVA) was 

employed. This model included ethnicity, health status, ethnicity x health status interaction as fixed 

effects, and age and sex as covariates. Benjamini-Hochberg false discovery rate (FDR) correction for 

multiple comparisons using a q =0.2 was performed, given the pilot nature and small sample number 

of this study [41]. To reduce data dimensionality and facilitate visualization, metabolites were 

clustered using the JMP implementation of the SAS VARCLUS procedure, a principal component 

analysis (PCA)-based clustering algorithm, with cluster components calculated as the linear sum of all 

variables in a cluster. 

http://www.jmp.com/


 

 41 

For NAFL vs. HC comparisons and to focus on ethnicity-specific differences, we only clustered 

metabolites with p <0.1 for ethnicity x NAFL interaction. Next, cluster components were subjected to 

partial least square-discriminant analysis (PLS-DA) separately in each ethnicity with leave-one-out 

cross validation (LOOCV) [42]. A variable importance in projection (VIP) score of >1 was set as a 

threshold for variable selection [43]. Because the PLS-DA model was constructed using reduced set of 

data to highlight only ethnicity- specific differences between NAFL and HC, the VIP scores should 

not be directly compared between the two analyses.  

For NASH vs. 0-NASH comparisons and to focus on ethnicity-specific differences, we clustered 

metabolites with p <0.05 for the NASH effect within ethnicity groups or with p <0.05 for the ethnicity 

x NASH interaction. To further examine the effect of ethnicity between NASH and 0-NASH, cluster 

components were reevaluated using t-test for group comparison within ethnicity and ANCOVA to 

check on interaction (ethnicity x NASH).  

To examine the association between metabolomic profiles and liver histological scoring, 

Spearman's rank correlations was performed. To correct for multiple testing, Benjamini-Hochberg 

FDR adjustment was performed with q =0.2 [41].  

1.6. Over representation analysis  

To provide an overview on the general changes in metabolomic profile, we employed 

ChemRICH [44], a statistical enrichment analysis based on chemical similarity. This approach clusters 

metabolites into non-overlapping chemical groups using Tanimoto substructure chemical similarity 

coefficients and calculates cluster p-values using the Kolmogorov–Smirnov test.  

1.7. Pathway enrichment analysis  

Pathway analysis was performed using MetaboAnalyst (McGill University, Quebec, 

CA; http://metaboanalyst.ca) [45]. Metabolites with differential alterations between ethnicity in NASH 

(p <0.05) were compared against pathway-associated metabolite sets from Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [46]. Fisher’s Exact test was used to assess over-representation and the 

relative betweenness centrality was used for topology analysis. 

  

http://metaboanalyst.ca/
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3. Results 

1.8. Subject characteristics  

The clinical and histological features for NAFL and NASH subjects are presented in Table 1 and 

Table 2. When comparing between ethnicities, both NAFL and NASH groups showed no difference 

in age, BMI and other clinical parameters including histology NAS scores. 

In NAFL groups, the mean age was 45 ± 16 and 50 ± 16 years in HIS and CAU, respectively (p 

>0.05); 29% of HIS and 30% of CAU had moderate to severe steatosis; 43% of HIS and 50% of CAU 

were diagnosed with NASH and exhibited various degrees of lobular inflammation. One NAFL-CAU 

subject had portal/periportal fibrosis, or stage 1A. The mean NAS score for NAFL subjects was 2.4 ± 

2.4 and 2.9 ± 1.5 for HIS and CAU, respectively (p >0.05). When compared to HC, BMI was 80% 

higher in NAFL-HIS and 70% higher in NAFL-CAU. In NASH subjects, the mean NAS score was 

4.7 ± 0.58 and 4 ± 1 for HIS and CAU, respectively (p >0.05). Compared to 0-NASH, both ethnicities 

showed no difference in age, BMI or other clinical parameters. 

1.9. Ethnicity-specific differences in plasma metabolome in NAFL 

 Given the low sample size and broad analysis in this study, we first evaluated NAFL-

dependent changes by chemical classes separately in each ethnicity, effectively reducing the number 

of comparisons (Fig. 1). In both ethnicities, when compared to corresponding HC, NAFL was 

associated with lower plasma phosphatidylcholines (PC), unsaturated LPCs, galactosyl Cers, CEs and 

amino acids. Specific to CAU, NAFL showed higher levels of ACs and unsaturated FFAs, driven by 

elevated PUFAs including linoleic acid (18:2n6), α-linolenic acid (18:3n3), eicosadienoic acid 

(20:2n6) and MUFAs, heptadecenoic acid (17:1n7) and physeteric acid (14:1n7). Also, NAFL-CAU 

showed a reduction in many PLs including ether-linked PLs (Table S1). These differences in ACs and 

in unsaturated fatty acids were not evident in the NAFL-HIS group, which was characterized by 

alterations in sphingomyelins (SM) and xanthines, with higher level hydroxybutyrates, trimethyl 

ammonium compounds and sugar alcohols (Table S2). 

To further examine this ethnicity-associated divergence in metabolomic profile, ANCOVA was 

performed with interaction (ethnicity x NASH). Of the 940 metabolites detected, 46 plasma 
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metabolites (4.9%) were found altered (p <0.05) in NAFL between ethnicities with an additional 59 

metabolites showing a p-value between 0.05 and <0.1. However, none of these passed the FDR-based 

multiple comparisons adjustment. Although the probability of differences was low and the number of 

findings was close to that expected by random chance, due to the strong class-specific changes and the 

exploratory nature of this study, we proceeded with a characterization of metabolite differences 

between the groups. 

The variable clustering approach reduced the data to 21 cluster components. To highlight the 

apparent ethnicity-specific metabolic differences between NAFL and HC groups, these cluster 

components were projected using a PLS-DA (Fig. 2). In CAU, 11 of the 21 clusters contributed to the 

discrimination of NAFL and HC in CAU with VIP scores >1. These clusters were represented by 

ether-linked PL(32-40:0-5) (cluster 8 and 15), PE(18-36:0-1) and PC(34-36:0-3) (cluster 3) which 

were lower in NAFL-CAU, and PC(38:4-5) (cluster 20) which appeared higher. Also, NAFL-CAU 

showed higher abundance of short to medium length acylcarnitines (i.e. AC(2-14:0-2); (cluster 2 and 

7) and in non-esterified FFAs (cluster 2), including the SFAs myristic acid (14:0) and margaric acid 

(17:0), oleic acid (18:1n9); the PUFAs linoleic acid (18:2n6) and α-linolenic acid (18:3n3). Similar 

trends were observed for docosahexaenoic acid (22:6n3) and eicosapentaenoic acid (20:5n3) (cluster 

21), but with VIP <1. Also, NAFL-CAU showed higher levels of the intestinal microbiota-related, 

trimethylamine N-oxide (TMAO) and indole-3-acetate (cluster 5) and lower levels of the purine-

related metabolites, adenosine and guanine (cluster 16 and 13).  

 The differences in ACs and in non-esterified FFAs were not evident in NAFL-HIS, as 

compared to corresponding HC. Instead, 9 of the 21 clusters contributed to the discrimination of 

NAFL and HC with VIP scores >1. These clusters indicated lower levels of PC(40:6-7) (cluster 9) and 

higher levels of PC(38:4) (cluster 19) and ether-linked PL (36:1-4) (cluster 4 and 19). There was also 

evidence of higher abundance of metabolites related to purine metabolism, xanthine and hypoxanthine 

(cluster 11) and in the endocannabinoid-like stearoylethanolamide (cluster 17), with differences in 

multiple other organic compounds (cluster 6, 11, 12, 14, 16). Because the PLS-DA was generated 

using a reduced number of metabolites (with ethnicity interaction p <0.1), the VIP scores should not 
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be compared directly between the two models. Details on ANCOVA, variable clustering and PLS-DA 

results are shown in Table S3. 

 Together, results suggest metabolomic variation between NAFL and HC in CAU with 

alterations in PLs, ACs, non-esterified FFAs and some organic compounds, while in NAFL-HIS, 

changes were limited to PLs and some organic compounds. In addition, plasma FFA and AC profiles 

appear differentially altered with NAFL between ethnicity groups. These findings are depicted by the 

unsupervised PCA performed on cluster components (Fig. S1), showing complete separation of 

NAFL-CAU from HC-CAU, indicating these two groups are metabolically distinct, while there was a 

partial overlap between NAFL-HIS and HC-HIS, suggesting less metabolic variations between these 

groups.  

1.10. High acylcarnitines, triglycerides and unsaturated fatty acids distinguish HIS from CAU in 

HC 

The limited differences seen between NAFL and HC in HIS may reflect metabolic 

dysregulations in lean healthy HIS. To examine this, we compared plasma metabolomic profile in HC 

between ethnicities. Chemical similarity analysis clearly showed that in lean healthy subjects, HIS 

presented with higher ACs, TGs and unsaturated FFAs (Fig 3 and Table S4). HC-HIS had higher level 

(p <0.05) of the FFAs, margaric acid (17:0), oleic acid (18:1n9), linoleic acid (18:2n6), with similar 

trends in a number of other fatty acids. In addition, HC-HIS presented higher TG(51-58:1-9), DG(36-

38:2-6), AC(2-16:0-1), altered PLs profiles, lower levels of the amino acids, glycine and alanine and 

the purine-related metabolites, adenosine, and hypoxanthine (Table S5).  

1.11. Ethnicity-specific alteration in hepatic FFAs profile characterizes NASH  

To examine differences in hepatic metabolomic profile associated with the progression to NASH, 

we stratified NAFL group into 0-NASH and NASH. Due to the limited sample size and breadth of 

current analysis, we first examined NASH-dependent changes in each ethnicity by chemical classes. 

Next, to examine ethnicity-specific metabolomic alterations in NASH, ANCOVA was performed with 

interaction (ethnicity x NASH) followed by variable clustering for data reduction, given the strong 

class-specific changes observed, the small sample size and the exploratory nature of this pilot.   
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Upon examining liver metabolomic profile, ChemRich analysis (Fig. 4) showed that NASH was 

associated with higher unsaturated FFAs in HIS, driven by heptadecenoic acid (17:1n7); lower 

unsaturated PCs concurrent with higher levels in unsaturated LPCs; lower levels of unsaturated PEs 

with an elevation in many ether-linked PLs; lower ACs with higher TGs and DGs. To a lesser impact, 

HIS-NASH showed alteration in organic compounds, including lower level of several amino acids 

and related derivatives and in purine nucleosides and adenosine (Table S6). NASH in CAU showed 

higher SFAs, mainly capric acid (10:0) and lauric acid (12:0); lower levels of many unsaturated FFAs, 

PE, phosphatidylserines and in organic compounds including trimethyl ammonium compounds and 

dipeptides (Table S7). 

ANCOVA showed 26 liver metabolites, (2.8%) of detected metabolites being altered at a p <0.05 

between ethnicities in case of NASH with an additional 33 metabolites showing a p-value between 

0.05 and <0.1. However, these did not survive FDR-correction. Regardless, we proceeded with the 

characterization of the composition of these metabolites and their distribution between the groups. 

Variable clustering performed on metabolites with p <0.05 for the NASH effect within ethnicity 

groups and with p <0.05 for the ethnicity x NASH interaction collapsed the data into 32 cluster 

components. Comparison of cluster components between ethnicities (Fig. 5) suggested that with 

NASH, clusters 3, 4, 6, 7, 8, 16, 18, 22, 23, 24 were differentially altered with tendencies shown for 

cluster 2, 9, 13, 14, 26. Cluster descriptions, correlations, means and p-values for cluster components 

and individual metabolites are detailed in Table S8. 

NASH appeared associated with differential changes in the hepatic FFA profiles between 

ethnicities. Among the altered clusters was cluster 18 (p <0.05 for interaction of ethnicity x NASH). 

This cluster is composed of the MUFAs, heptadecenoic acid (17:1n7), oleic acid (18:1n9) and 

eicosenoic acid (20:1n9); and the PUFAs, linoleic acid (18:2n6), α-linolenic acid (18:3n3). These 

FFAs were higher with NASH in HIS with an opposite trend seen in CAU. Similar trends were 

observed for arachidonic acid (20:4n6) and eicosapentanoic acid (20:5n3) (cluster 14), however, this 

cluster showed tendency for interaction (ethnicity x NASH). The MUFAs and PUFAs in cluster 14 

and 18 correlated with LPC(16:1) and LPC(20:5). 
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Hepatic LPC and LPE profiles appeared to be differentially altered between ethnicities in NASH 

with higher levels seen in HIS and lower levels in CAU and interaction shown for LPC(16-20:1-5) 

(clusters 18, 8, 25) and LPE(18-20:0-4) (cluster 16 and 23), and with tendency shown for LPC(16-

22:1-6) (cluster 2, 14). For both ethnicities, NASH had lower levels of almost all hepatic PCs and 

PEs. This trend differed between ethnicities in HIS for PC(32-37:1-3) and PE(34-36:2-4) (cluster 4), 

with apparent alterations in some ether-linked PLs (cluster 9 and 23) and SM(d33-36:1-2) (cluster 4). 

There also appeared to be a lower level of hepatic ACs in NASH cases. However, a differentially 

lower ACs with interaction (ethnicity x NASH) was shown in HIS for AC(10-18:0-2) (cluster 22, 6) 

with tendency for AC(2:0) (cluster 26). In both ethnicities, NASH showed higher hepatic TGs, with 

differentially higher (p <0.05 in NASH between ethnicities) seen for TG(44-58:0-2) (cluster 2) and 

tendency shown for TG(48-50:0) (cluster 7, 4) observed in HIS. Some organic compounds of 

unspecific classification (cluster 3, 13, 14, 8) were also differentially altered in NASH between 

ethnicities. 

Collectively, these findings suggest ethnicity-related differences in hepatic metabolomic profile 

with the progression to NASH, with markedly increased hepatic FFAs, TGs; lower levels of ACs and 

changes in several PLs seen in NASH-HIS. A heatmap illustrating variations in plasma and liver 

FFAs profile with NASH is shown in Fig. 6. Additionally, we performed pathway analysis using 

hepatic metabolites seen to be different between ethnicity group in NASH (raw p <0.05). These 

results support our cluster analysis with pathways related to unsaturated fatty acid metabolism found 

altered (FDR-adjusted (p <0.2), reflecting alteration in linoleic acid (18:2n6), eicosapentaenoic acid 

(20:5), oleic acid (18:1n9) and several PLs (Fig 7 and Table S9).  

1.12. Ethnicity-specific alteration in plasma metabolites characterizing NASH  

When examining NASH-dependent changes by chemical classes in plasma and in comparison to 

0-NASH groups, ChemRich analysis (Fig. 8) showed that NASH-HIS had higher unsaturated TGs and 

SMs (Table S10) and NASH-CAU had higher Cers and SMs (Table S11). 

To examine ethnicity-specific metabolomic alterations in NASH, we performed ANCOVA with 

interaction (ethnicity x NASH) followed by variable clustering for data reduction. Results showed 18 
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(1.9%) of detected plasma metabolites appeared different at a p <0.05 in NASH between ethnicities, 

with 13 additional metabolites showing a p-value between 0.05 and <0.1. These differences did not 

survive FDR-correction. Cluster analysis reduced data dimensionality into 25 clusters. Comparison of 

cluster components (Fig. 9) showed that clusters 4, 5, 17, 20, 25 were differentially altered with 

NASH between ethnicities with tendencies shown for cluster 7, 11, 12, 13, 16. Cluster descriptions, 

correlations, means and p-values for cluster components and individual metabolites are detailed in 

Table S12. 

With NASH in HIS, the plasma TGs profile was differentially altered (p <0.05 for ethnicity x 

NASH interaction) with higher levels of TG(50-52:0-6) (cluster 4) and tendency for TG(54-56:1-2) 

(cluster 7). Compared to respective 0-NASH, plasma levels of CEs, PCs, and PEs were higher in 

NASH. Ethnicity-specific differences included CE(16:1) (cluster 11), which was higher in CAU; 

LPE(18:2) (cluster 4) and ether-linked PLs (cluster 5 and 25), which were higher in HIS. 

Differences in FFA profiles were not observed in plasma between NASH and 0-NASH. Both 

ethnicities showed lower plasma AC(10-14:1-2) (cluster 22) with NASH, however, HIS had a 

differentially lower (p <0.05 for ethnicity x NASH interaction) 3-hydroxybutyric acid (cluster 5). 

NASH was also associated with specific plasma amino acid profile with interaction (ethnicity x 

NASH) seen in HIS with higher alanine (cluster 25). Also, differential or with tendency for interaction 

are alterations in some organic compounds (cluster 4, 7, 12, 13, 15, 16, 17, 20 and 25). 

Together, these findings reveal that ethnicity-related differences associated with NASH in 

plasma mainly affected TGs and some PLs in HIS, with altered organic compounds seen in both 

ethnicities. 

1.13. Correlations of metabolomic profiles with liver histology 

Correlation analyses were performed on hepatic metabolites with steatosis and lobular 

inflammation, two histological features relevant to NASH diagnosis. In NASH-CAU, lobular 

inflammation correlated positively with metabolites including the eicosanoid, 20-hydroxyarachidonic 

acid; and negatively with MUFA(16-18:1); TG(50:0) (r =-0.6, raw p <0.05). Hepatic steatosis 

correlated negatively with metabolites including MUFA(20-24:1); arachidonic acid (20:4n6); choline 
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and  S-Adenosyl-L-homocysteine. It correlated positively some SFA(9-12:0), TG(49:0) (r >-0.6, raw 

p <0.05).  

In NASH-HIS, hepatic inflammation correlated negatively with metabolites including AC(5-

20:0-4); purine related metabolites, adenosine, inosine, hypoxanthine; SAMe; Cer(d40:1-2), and 

PC(33-40:1-7). It correlated positively with DG(34-36:1-3); TG(44-60:0-4); the MUFA(17-24:1); 

PUFA, α-linolenic acid (18:3n3), linoleic acid (18:2n6), eicosadienoic acid (20:2n6); and LPC(18-

20:0-5) (r >0.7, raw p <0.05). These metabolites retained significance after FDR-adjustments. Hepatic 

steatosis correlated positively with TG(48-58:2-8) and negatively with some organic compounds (r 

>0.7, raw p <0.05) (Table S13). Conversely, hepatic steatosis and lobular inflammation scores 

correlated with many plasma metabolites, but these did not pass FDR-adjustment (Table S14).   

4. Discussion  

Hispanics are impacted with higher prevalence and progression rate of NAFLD [6-11]. However, 

the biological background for this disparity is not clear. To investigate metabolic variations associated 

with NAFL in these groups, we examined plasma and liver metabolomic profiles with respect to 

ethnicity in a group of HIS and CAU subjects with obesity and liver biopsy-characterized NAFL. 

Results revealed several ethnicity-related metabolomic distinctions and the major findings are: 1) In 

NAFL, as compared to HC, the plasma FFAs and ACs profile are differentially altered between 

ethnicities; 2) HIS present with signs of metabolic perturbation independent of obesity; 3) In NASH, 

comparing to BMI and histology-matched NASH-free subjects, the hepatic profile was differentially 

altered between ethnicities with HIS showing higher abundance FFAs and lipotoxic lipids.  

In NAFLD, peripheral insulin resistance contributes to elevated plasma FFAs as the insulin-

mediated suppression of adipose tissue lipolysis is impaired [47,48]. In the current study, NAFL 

groups were obese with features of metabolic syndrome. However, our results show discrepancies in 

plasma profiles between ethnicities. In NAFL-CAU, there were higher plasma FFAs, as compared to 

HC. This is consistent with insulin resistance, increased adipose tissue efflux and is in line with 

previous lipidomic analysis in NAFLD subject [24,29,49]. NAFLD is also characterized by impaired 

metabolic flexibility and plasma ACs are reported to be altered [25,50]. In NAFL-CAU, we confirmed 
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an elevation in many ACs species, including short chain AC(2-5:0) and long chain AC(10-14:0-2). 

AC(3-5) are derived from amino acids, even‐chain AC(4-20) reflect incomplete fatty acid β‐oxidation 

and AC(2:0) is the product of complete β‐oxidation and may originate from glucose metabolism [51]. 

Altered plasma ACs profile indicates dysregulations in substrate oxidation across all tissues. 

Unexpectedly, elevations in plasma FFAs and in ACs profiles were not marked in NAFL-HIS, 

which can be explained by the higher ACs and unsaturated fatty acids seen in lean and healthy HIS, as 

compared to CAU counterparts. We also observed higher plasma TGs in HC-HIS, a feature often 

associated with insulin resistance and obesity [52]. Hypertriglyceridemia is reported to be more 

frequent in overweight and obese HIS, compared to other ethnicities [53-56]. However, our findings 

indicate that this derangement along with a higher FFAs, ACs, altered PLs and amino acids profiles 

are independent of obesity and suggest early signs of metabolic perturbation in HC-HIS. Given that 

NAFLD results from a complex interplay between environmental factors, host genetics, intestinal 

dysbiosis and comorbidities [13], it is possible that such metabolic derangements increase the 

predisposition of HIS to NAFLD and/or its associated risk factors and are worth further investigation. 

Our findings also show lower ether-linked PLs in NAFL-CAU. Although these differences were 

not evident in NAFL-HIS, a lower abundance of many ether-linked PLs were observed in HC-HIS, 

compared to HC-CAU. In NAFLD, a reduction in ether-linked PLs correlated with disease severity 

[29]. Beside a role in maintaining bio membrane fluidity and integrity, ether-linked PLs are thought to 

ameliorate NAFLD by modulating fatty acid oxidation and an antioxidant capacity [57,58].  

With the progression from NAFL to NASH, our findings show differences in hepatic lipidomic 

profile between ethnicities, despite comparable NAS scores. Remarkably, NASH-HIS subjects had 

higher levels of hepatic FFAs with ethnicity interaction (p <0.05) shown for the MUFA heptadecenoic 

acid (17:1n), oleic acid (18:1n9), eicosenoic acid (20:1n9); and in the PUFA, α-linolenic acid 

(18:3n3), linoleic acid (18:2n6). Results from hepatic pathway analysis corroborate our metabolomic 

findings and show unsaturated fatty acid metabolism pathways differentially altered with NASH 

between ethnicities. These ethnicity- related alterations in hepatic FFAs suggest variations in 
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processes including hepatic uptake of FFAs, DNL, PLs turnover and hepatic unsaturated fatty acid 

metabolism, which are worth further examination.  

Upregulated hepatic FFA clearance may explain the observed elevation of hepatic FFAs in 

NASH-HIS. In fact, tracer studies in NAFLD show that 60% of hepatic lipid content originates from 

adipose tissue lipolysis, indicating a major contribution of the liver’s uptake to hepatic FFAs profile 

[59]. In support, in both animals and humans, the expression and membrane localization for fatty acid 

translocase CD36 are increased in NASH [60]. 

Hepatic TGs accumulation is thought to be a protective adaptive mechanism from the lipotoxic 

effect of FFAs [61-63]. However, this notion is questioned as in subjects with early NAFL and no 

histological evidence of inflammation, the expression of several hepatic inflammatory genes were 

upregulated [64]. In NASH, DNL was reported to be increased in comparison to NAFL [65]. This 

process generates SFA(14-16:0), which are converted to MUFA via stearoyl-CoA desaturase (SCD1, 

or Δ-9 desaturase) and further esterified to form DGs and TGs [66]. In our study, NASH in both 

ethnicities showed no differences in the estimated hepatic Δ-9 desaturase index (results not shown). 

NASH also had higher level of TGs, but more profound in HIS with a trend of higher DGs. The 

higher levels of TGs, DGs and MUFA observed in NAHS-HIS suggest increased DNL. In NASH-

HIS, lobular inflammation correlated positively with TG(44-60:0-4) (r >0.7, p <0.05), DG(34-36:1-3) 

(r >0.7, p <0.000) and the MUFAs, heptadecenoic acid (17:1n7), oleic acid (18:1n9), eicosenoic acid 

(20:1n9), and nervonic acid (24:1n9) (r >0.8, p <0.00) suggesting an involvement of TGs, DGs, 

MUFAs with NASH in HIS. Interestingly, in NASH-CAU a negative correlation (r >-0.6, p <0.05) 

was observed between hepatocellular inflammation and heptadecenoic acid (17:1n7), oleic acid 

(18:1n9), with tendency shown for palmitoleic acid (16:1n7). While, when tested individually, 

MUFAs are shown to be less lipotoxic compared than SFAs, it has been shown that treatment of 

HepG2 cells and human primary hepatocytes with a mixture of five SFAs and MUFAs as observed in 

NASH, exhibited higher toxicity compared to the mixture reported in normal liver and NAFL [21,24]. 

Therefore, the effect of MUFAs may be dependent factors including proportion and composition. 
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Also in our samples, plasma TGs were differentially higher in NASH-HIS, which suggests 

upregulated hepatic export or impaired peripheral clearance. 

An upregulated PL turnover can contribute to elevated unsaturated fatty acids. In our results, the 

strong correlation found between the altered MUFAs, PUFAs and many lysophospholipid species 

(Table S8) suggests a shared biochemical pathway. As part of hepatic lipid remodeling, phospholipase 

A2 catalyzes the breakdown of membrane PL to form lysophospholipids and release unsaturated fatty 

acids. In NASH, the transcript level of cytosolic phospholipases A2 (cPLA2) is upregulated [67]. Also, 

NASH is markedly lower in hepatic PCs content and higher in LPCs [24,28,68]. Our results are in line 

with the decreased hepatic PCs and PEs profile seen in NASH in both ethnicities, with more marked 

reductions seen in NAHS-HIS. However, the hepatic LPC and LPE profile showed differential 

alterations by ethnicity with higher levels observed in HIS and lower levels in CAU. Together, the 

higher abundance of hepatic PUFA, lower level of PC and higher LPC seen in NASH-HIS support an 

upregulated hepatic PL turnover. The depletion in PC or alteration in PC to PE ratio disrupts the 

function and integrity of cellular, mitochondrial and lipid droplets bio-membranes and results in 

cellular stress, apoptosis and inflammation [69]. In vitro evidence shows a lipotoxic effect of LPC by 

altering mitochondrial function and activating apoptosis [23,70,71]. In HIS-NASH, lobular 

inflammation correlated positively with LPC(16-20:0-5) and the PUFA, linoleic acid (18:2n6), α-

linolenic acid (18:3n3) and eicosadienoic acid (20:2n6); and negatively with PC(32-40:1-7) and 

PE(34-38:2-6) (r >0.8, p <0.006), which are also in support of a role of upregulated PLs turnover in 

NASH pathogenesis. 

A decrease in hepatic fatty acid desaturase-1(FADS1, Δ-5 desaturase) is reported with NASH 

[24]. This is thought to induce preferential increase in n6 PUFAs flux at the expense of n3 PUFAs. 

Accordingly, NAFLD progression is characterized by de-enrichment of long-chain PUFAs with a 

shift towards a higher n6 to n3 PUFAs ratio seen across multiple lipid classes [27,28]. In the current 

study, we estimated Δ-5 desaturase and the relative ratio of n6 to n3 PUFAs from hepatic FFAs and 

results show no differences with NASH for both ethnicities (not shown).  
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Also, the progression to NASH was associated with reduction in most hepatic ACs in both 

ethnicities with differentially lower AC(12-18: 0-2) seen in HIS. We also found the hepatic AC(5-

18:0-4) correlated negatively with lobular inflammation in NASH-HIS. In plasma, 3-hydroxybutyric 

acid was found differentially reduced in NASH-HIS. 3-hydroxybutyric (or β-hydroxybutyrate) is a 

liver-produced ketone body from acetyl-CoA derived from mitochondrial β-oxidation of fatty acid 

[72]. Together, these findings suggest a role of mitochondrial β-oxidation dysfunction in both 

ethnicities with NASH. 

Alterations in hepatic amino acid, choline, methionine and SAMe profiles were associated with 

NASH but not different between ethnicities. The dysregulations in hepatic unsaturated fatty acid 

metabolism associated with NASH progression were not reflected in plasma. This, along with the 

limited correlations of plasma metabolomic profile with liver histological scores, leads us to conclude 

plasma profile is not an optimal predictor of hepatic histological differences relevant to NASH. 

Our data may be used for hypotheses generation. Diet is a modulator of PUFAs status [73]. In 

this study, we did not account for the role of diet or the treatment with lipid-lowering drugs to the 

ethnicity- related differences observed in NAFL and NASH. Since performing a liver biopsy without 

clinical indication is ethically questionable, we could not confirm that our HC subjects are free from 

liver pathology. It might have been interesting to genotype our subjects for PNPLA3 as the G allele is 

robustly associated with NAFLD and the homozygous rs738409 [G] variant presents with high 

frequency in HIS [74-76]. Due to sample size, cross-sectional and proof-of-concept nature, our 

findings need to be confirmed in larger and mechanistic settings. In particular, based on selected 

metabolites with ethnicity interaction (p <0.05) (Table S15), the minimum sample size required to 

verify plasma findings in lean healthy subjects is 45 subjects per group. To verify alterations in 

hepatic lipidomic profile, a minimum of 24 and 12 subjects would be required for each arm in CAU 

and HIS, respectively.  

To our knowledge, this is the first metabolomic profiling addressing ethnicity in NAFLD. Our 

NAFL patients are biopsy-characterized with comparable BMI, clinical and histological presentations; 

with almost all plasma and liver samples obtained from the same subjects. Our findings provide 
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preliminary evidence supporting ethnicity-related variations in NAFLD pathogenesis and highlight 

signs of metabolic perturbations in HIS independent of obesity and other components of metabolic 

syndrome. With the progression to NASH, our data suggest ethnicity-related alterations in hepatic 

unsaturated fatty acids metabolism and points toward potential involvement of lipotoxicity in its 

mechanisms. We postulate that such alterations predispose HIS to higher rate of NAFLD and/or add a 

“hit” component when coexisting with metabolic syndrome to act as a driver for the advanced NASH 

presentation seen in HIS.  
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7. Tables: 

Table 1. Demographic, clinical, and histological characteristics of study subjects.  

 

General characteristics are shown as percent (for categorical data) and mean ± SEM (for nominal data). Group 

comparisons were performed by chi-square test (categorical) or t- test (nominal). (a) NAFL-HIS vs. HC-HIS; (b) 

NAFL-CAU vs. HC-CAU; (c) NAFL-HIS vs. NAFL-CAU. ALT, alanine aminotransferase; AST, aspartate 

aminotransferase; BMI, body mass index; DM, diabetes mellitus; FBG, fasting blood glucose; HbA1c, 

hemoglobin A1c; HDL, high-density lipoprotein; LDL, low density lipoprotein; NAS, the NAFLD Activity 

Score; TG, triglycerides.   
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Table 2. Demographic, clinical, and histological characteristics of subjects with NASH.  

 

General characteristics are shown as percent (for categorical data) and mean ± SEM (for nominal data). 

Comparison was performed by t- test (nominal) or chi-square test (categorical). (a) NASH-HIS vs. 0-NASH-HIS; 

(b) NASH-CAU vs. 0-NASH-CAU. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body 

mass index; FBG, fasting blood glucose; NAS, the NAFLD Activity Score; NASH, Nonalcoholic steatohepatitis; 

0-NASH, Nonalcoholic steatohepatitis-free; TG, triglycerides. 
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8. Figures 

 

Figure 1. Plasma metabolites altered by chemical class in NAFL, compared to HC in both ethnicities. 

Chemical similarity enrichment analysis (ChemRICH) and enrichment statistics plot for NAFL vs. HC in CAU 

(top panel) and HIS (bottom panel). Each cluster represents altered chemical class of metabolites (p <0.05). 

Cluster sizes represent the total number of metabolites. Cluster’s color represents the directionality of metabolite 

differences: red – higher in NAFL; blue – lower in NAFL. Colors in between refer to mixed population of 

metabolites manifesting both higher and lower levels in NAFL when compared to the control. The x-axis 

represents the cluster order on the chemical similarity tree. The plot y-axis shows chemical enrichment p-values 

calculated using Kolmogorov–Smirnov test. Only clusters with p <0.05 are shown. FDR-adjustment q =0.2, and 

clusters with FDR-adjusted p ≥0.2 are shown in gray. (n, NAFL-HIS =7, HC-HIS =14; NAFL-CAU =8, HC-

CAU =8). The detailed ChemRICH results are shown in (Table S1 and S2). AC, Acylcarnitines; CAU, White 

Caucasian; Cer, Ceramides; CE, Cholesteryl ester; DG, Diglycerides; Ether-PL, Ether-linked phospholipids; 

HIS, Hispanic; LPC, Lysophosphatidylcholine; LPE, Lysophosphatidylethanolamines; MUFA, 

Monounsaturated fatty acid; PC, Phosphatidylcholines; PUFA, Polyunsaturated fatty acids; SFA, Saturated fatty 

acids; SM, Sphingomyelins; NAFL, Steatosis; TG, Triglycerides. 
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Figure 2. Supervised clustering model illustrating potential ethnicity-specific variations in plasma 

observed between NAFL vs. HC in both ethnicities. Metabolites with p <0.1 for interaction (ethnicity x 

NAFL) from ANCOVA were clustered and cluster components were subjected to partial least square-

discriminant analysis (PLS-DA) separately in each ethnicity. Only clusters of variable importance in projection 

(VIP)>1 are illustrated. A combined loading and score plot for a) NAFL-CAU vs. HC-CAU; b) NAFL-HIS vs. 

HC-HIS. The model was validated with leave-one-out cross validation (LOOCV). The (Q2), (R2X) and (R2Y) is 

0.817, 0.285 and 0.918; 0.816, 0.204 and 0.911 for CAU and HIS, respectively. The details on metabolites and 

clusters components are shown in (Table S3). AC, Acylcarnitines; CAU, White Caucasian; Ether-PC, Ether-

linked phosphatidylcholines; Ether-PE, Ether-linked phosphatidylethanolamines; HC, Healthy control; HIS, 

Hispanic; MUFA, Monounsaturated fatty acid; OC, Organic compounds; PC, Phosphatidylcholines; PUFA, 

Polyunsaturated fatty acids; NAFL, Steatosis; SEA, Stearoyl ethanolamine; SFA, Saturated fatty acids. 
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Figure 3. Plasma metabolites altered by chemical class in lean healthy control subjects between 

ethnicities. Chemical similarity enrichment analysis (ChemRICH) highlighting plasma metabolomic changes 

observed in HC-HIS, compared to HC-CAU. Each cluster represents altered chemical class of metabolites (p 

<0.05). Cluster sizes represent the total number of metabolites. Cluster color represents the directionality of 

metabolite differences: red – higher in HC-HIS; blue – lower in HC-HIS. Colors in between refer to mixed 

population of metabolites manifesting both higher and lower levels in HC-HIS when compared to the HC-CAU. 

The x-axis represents the cluster order on the chemical similarity tree. The plot y-axis shows chemical 

enrichment p-values calculated using Kolmogorov–Smirnov test. Only clusters with p <0.05 are shown. FDR-

adjustment q =0.2, and clusters with FDR-adjusted p ≥0.2 are shown in gray. (n, HC-HIS =14, HC-CAU =8) 

The detailed ChemRICH results are shown in (Table S4). AC, Acylcarnitines; CAU, White Caucasian; DG, 

Diglycerides; Ether-PC, Ether-linked phospholipids; HIS, Hispanic; MUFA, Monounsaturated fatty acid; 

PUFA, Polyunsaturated fatty acids; TG, Triglycerides.   
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Figure 4. Liver metabolites altered by chemical class in NASH, compared to NASH -free subjects, in both 

ethnicities. Chemical similarity enrichment analysis (ChemRICH) illustrating hepatic metabolite class altered in 

NASH compared to 0-NASH in both ethnicities. ChemRICH enrichment statistics plot, illustrating liver 

alterations in NASH vs. 0-NASH in CAU (top panel) and HIS (bottom panel). Each cluster represents altered 

chemical class of metabolites (p <0.05). Cluster sizes represent the total number of metabolites. Cluster’s color 

represents the directionality of metabolite differences: red – higher in NASH; blue – lower in NASH. Colors in 

between refer to mixed population of metabolites manifesting both higher and lower levels in NASH when 

compared to the 0-NASH. The x-axis represents the cluster order on the chemical similarity tree. The plot y-axis 

shows chemical enrichment p-values calculated using Kolmogorov–Smirnov test. Only clusters with p <0.05 are 

shown. FDR-adjustment q =0.2, and clusters with FDR-adjusted p ≥0.2 are shown in gray. (n, 0 NASH-HIS =4, 

NASH-HIS =3; 0 NASH-CAU =5, NASH-CAU =5). The detailed ChemRICH results are shown in (Table S6 

and S7). AC, Acylcarnitines; CAU, White Caucasian; Cer, Ceramides; CE, Cholesteryl ester; DG, Diglycerides; 

Ether-PL, Ether-linked phospholipids; HIS, Hispanic; LPC, Lysophosphatidylethanolamines; MUFA, 

Monounsaturated fatty acid; NASH, Nonalcoholic steatohepatitis; 0-NASH, Nonalcoholic steatohepatitis-free; 

PC, Phosphatidylecholine; PE, Phosphatidylethanolamine; PUFA, Polyunsaturated fatty acids; SFA, Saturated 

fatty acids; TG, Triglycerides. 
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Figure 5. Ethnicity-related variations in liver metabolomic profile in NASH vs. 0-NASH. Results of t-test 

and ANCOVA (ethnicity x NASH) interaction comparison performed on plasma variable cluster components 

between NASH and 0-NASH in both ethnicities. Clustering was performed on metabolites that were different (p 

<0.05) within groups (NASH vs. 0-NASH) or between ethnicity groups (interaction (NASH x ethnicity)). Data 

are presented as the fold change from 0-NASH; error bars represent standard error. Metabolite clusters are 

ranked in order of p-value for (interaction (NASH x ethnicity) and labeled by a number and a description of 

representative metabolite. For complex lipids, lipid class is followed by number of (carbons, double bounds) of 

the fatty acyl moiety. Clusters with interaction (p <0.05) or tendency for interaction (p =0.05 to < 0.1) are 

marked with the dashed line. Clusters showing ethnicity-related differences in NASH (p <0.05) or tendency for 

interaction (p=0.05 to <0.1) are marked with the dashed line. Clusters affected by NASH within ethnicity (p 

<0.05) are denoted with (*); clusters with tendency (p=0.05 to <0.1) are denoted with (t). (n, 0 NASH-HIS =4, 

NASH-HIS =3; 0 NASH-CAU =5, NASH-CAU =5). The details on metabolites and clusters components are 

shown in (Table S8). AC, Acylcarnitines; CAU, White Caucasian; DG, diglycerides; Ether-PC, Ether-linked 

phosphatidylcholines; Ether-PE, Ether-linked phosphatidylethanolamines; HIS, Hispanic; MUFA, 

Monounsaturated fatty acid; NASH, Nonalcoholic steatohepatitis; 0-NASH, Nonalcoholic steatohepatitis-free; 

OC, Organic compounds; PC, Phosphatidylcholines; PE, Phosphatidylethanolamine; PL, Phospholipids; PUFA, 

Polyunsaturated fatty acids; NAFL, Steatosis; SAMe, S-Adenosyl-L-methionine; SFA, Saturated fatty acids; 

SM, sphingomyelins; TG, triglycerides. 
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Figure 6. Heat-map for plasma and liver free fatty acids with fold change and p-values in NASH vs. 0 

NASH in both ethnicities. Group means are shown with normalized data converted to z-scores. Fatty acids 

showing ethnicity-related differences (p <0.05 on interaction NASH x ethnicity) in are denoted by (*), and with 

tendency for interaction (p =0.05 to <0.1) are denoted with (t). Mean direction of change is indicated by color 

and intensity, with red representing increased values, and blue representing decreased values. CAU, White 

Caucasian; HIS, Hispanics; NASH, Nonalcoholic steatohepatitis.  
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Figure 7. Hepatic metabolic pathways differentially altered with NAHS between ethnicities. Metabolites 

with differential alterations between ethnicity in NASH (p <0.05) were compared against pathway-associated 

metabolites sets from Kyoto Encyclopedia of Genes and Genomes (KEGG) [46]. Metabolic pathways 

significantly altered are shown as nodes. The (y-axis) represents the p-values as determined by Fisher’s Exact 

test. The (x-axis) represents the impact of pathways as determined by the relative betweenness centrality-

topology analysis. The size of the node represents the total hit number of hits. (n, 0 NASH-HIS=4, NASH-

HIS=3; 0 NASH-CAU=5, NASH-CAU=5). Detailed pathway analysis statistics are shown in (Table S9). 
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Figure 8. Plasma metabolites altered by chemical class in NASH, compared to NASH -free subjects, in 

both ethnicities. Chemical Similarity Enrichment Analysis (ChemRICH) of illustrating plasma metabolite class 

altered in NASH compared to 0-NASH in both ethnicities. ChemRICH enrichment statistics plot, illustrating 

plasma alterations in NASH vs. 0-NASH in CAU (top panel) and HIS (bottom panel). Each cluster represents 

altered chemical class of metabolites (p <0.05). Cluster sizes represent the total number of metabolites. Cluster’s 

color represents the directionality of metabolite differences: red – higher in NASH; blue – lower in NASH. 

Colors in between refer to mixed population of metabolites manifesting both higher and lower levels in NASH 

when compared to the 0-NASH. The x-axis represents the cluster order on the chemical similarity tree. The plot 

y-axis shows chemical enrichment p-values calculated using Kolmogorov–Smirnov test. Only clusters with p 

<0.05 are shown. FDR-adjustment q=0.2, and clusters with FDR-adjusted p ≥0.2 are shown in gray. (n, 0 

NASH-HIS=4, NASH-HIS=3; 0 NASH-CAU=5, NASH-CAU=3). The detailed ChemRICH results are shown 

in (Table S10 and S11). CAU, White Caucasian; Cer, Ceramides; CE, Cholesteryl ester; HIS, Hispanic; SM, 

Sphingomyelins; NASH, Nonalcoholic steatohepatitis; PC, Phosphatidylcholine; TG, Triglycerides. 

  



 

 69 

 

Figure 9. Ethnicity-related differences in plasma metabolomic profile in NASH vs. 0-NASH. Results of t-

test and ANCOVA (ethnicity x NASH) interaction comparison performed on plasma variable cluster 

components between NASH and 0-NASH in both ethnicities. Clustering was performed on metabolites that 

were different (p <0.05) within groups (NASH vs. 0-NASH) or between ethnicity groups (interaction (NASH x 

ethnicity)). Data are presented as the fold change from 0-NASH; error bars represent standard error. Metabolite 

clusters are ranked in order of p-value for (interaction (NASH x ethnicity) and labeled by a number and a 

description of representative metabolite. For complex lipids, lipid class is followed by number of (carbons, 

double bounds) of the fatty acyl moiety. Clusters showing ethnicity-related differences in NASH (p <0.05) or 

tendency for interaction (p=0.05 to <0.1) are marked with the dashed line. Clusters affected by NASH within 

ethnicity (p <0.05) are denoted with (*); clusters with tendency (p=0.05 to <0.1) are denoted with (t). (n, 0 

NASH-HIS=4, NASH-HIS=3; 0 NASH-CAU=5, NASH-CAU=3). The details on metabolites and clusters 

components are shown in (Table S12). AC, Acylcarnitines; CAU, White Caucasian; CE, cholesteryl ester; DG, 

diglycerides; Ether-PC, Ether-linked phosphatidylcholines; Ether-PE, Ether-linked phosphatidylethanolamines; 

HIS, Hispanic; MUFA, Monounsaturated fatty acid; NASH, Nonalcoholic steatohepatitis; 0-NASH, 

Nonalcoholic steatohepatitis-free; OC, Organic compounds; PC, Phosphatidylcholines; PL, Phospholipids; 

PUFA, Polyunsaturated fatty acids; NAFL, Steatosis; SFA, Saturated fatty acids; SM, sphingomyelins; TG, 

triglycerides. 
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9. Supplemental materials  

Table S1. ChemRich enrichment statistics for plasma comparisons of obese with NAFL vs. lean healthy control 

in White Caucasian. 

Table S2. ChemRich enrichment statistics for plasma comparisons of obese with NAFL vs. lean healthy control 

in Hispanic. 

Table S3. Untargeted semi-quantification data table for comparisons of obese with NAFL (NAFL) vs. lean 

healthy control (HC) in Hispanic (HIS) and White Caucasian (CAU). 

Table S4. ChemRich enrichment statistics for plasma comparisons of healthy control Hispanic vs. White 

Caucasian. 

Table S5. Untargeted semi-quantification data table for comparisons of healthy control subjects between 

ethnicities. 

Table S6. ChemRich enrichment statistics for liver comparisons of NASH vs. 0-NASH in Hispanic. 

Table S7. ChemRich enrichment statistics for liver comparisons of NASH vs. 0-NASH in White Caucasians. 

Table S8. Untargeted semi-quantification data table for comparisons of liver metabolomic profiles in NASH vs. 

0-NASH in both ethnicities. 

Table S9. Results from pathway analysis performed on liver metabolites of interaction with ethnicity in NASH. 

Metabolites with (p-value <0.05) on (ethnicity x NASH) from ANCOVA were mapped against pathway-

associated metabolites sets from Kyoto Encyclopedia of Genes and Genomes (KEGG). 

Table S10. ChemRich enrichment statistics for plasma comparisons of NASH vs. 0-NASH in Hispanics. 

Table S11. ChemRich enrichment statistics for plasma comparisons of NASH vs. 0-NASH in White Caucasian. 

Table S12. Untargeted semi-quantification data table for comparisons for plasma metabolomic profiles in 

NASH vs. 0-NASH in both ethnicities. 

Table S13. Spearman's rank correlation analysis performed on liver metabolites and histological features in 

NASH. 

Table S14. Spearman's rank correlation analysis performed on plasma metabolites and histological features in 

NASH. 

Table S15. The minimum sample size required to detect differences between group means with 80% power and 

95% confidence level was calculated. Calculation is based on selected metabolites with ethnicity interaction (p 

<0.05) for (a) Lean healthy comparison, (b) NASH comparison. 

Figure S1. Natural clustering of study groups illustrating variations in plasma metabolomic profile
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition affecting one in four 

adults worldwide and this rate increases with coexisting components of metabolic syndrome [1]. Its 

histological presentation includes hepatocellular steatosis, or non-alcoholic fatty liver (NAFL) with a 

range of necroinflammation with or without fibrosis. When hepatocellular damage and ballooning are 

present, this is clinically defined as non-alcoholic steatohepatitis (NASH) [2]. The pathogenesis of 

NAFLD is not fully elucidated. Whereas its onset involves an interplay between genetics and 

environmental factors with coexisting comorbidities, the progression to NASH appears to be 

provoked by multiple or parallel hits including oxidative stress and inflammation [3,4]. Oxidative 

stress modulates insulin signaling, lipid metabolism, inflammation, and fibrogenesis, and many 

oxidative stress biomarkers have been associated with NAFLD severity [5,6]. In the U.S., the risk and 

severity of NAFLD vary among ethnic/racial groups, with Hispanics (HIS) being affected 

disproportionately and presenting more frequently with advanced inflammation and fibrosis compared 

to other ethnicities [7-9]. The metabolic drivers underlying this disparity are not clear. 

Polyunsaturated fatty acid (PUFAs) are bioactive lipids and precursors to inflammatory lipid 

mediators including oxylipins (OXLs) and endocannabinoids (eCBs). OXLs are produced from 

PUFAs by mono- and dioxygenases, including lipoxygenases (e.g., 5-LOX, 12-LOXs, and 15-LOXs); 

cyclooxygenases (i.e., COX-1 and -2), and a variety of cytochrome P450s (CYPs) [10]. PUFAs can 

also undergo non-enzymatic oxygenation mediated by free radicals and the rate of this production is 

increased under oxidative stress [11]. In general, OXLs from n-3 PUFAs have anti-inflammatory or 

less pro-inflammatory effect compared to those derived from n-6 PUFAs [12,13]. The fatty acid 

ethanolamides (i.e., N-acylethanolamides), one class of eCB, are synthesized by complex 

interactions of lipases and fatty acid amide hydrolase from PUFAs and membrane associated 

precursors [14]. Collectively, these lipids work through receptor-mediated mechanisms and likely 

contribute to NAFLD by modulating processes including lipogenesis, inflammation, and 

mitochondrial β-oxidation [10,15]. 
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Previous lipidomic analyses showed that NAFLD is associated with dysregulated PUFAs 

metabolism [16-20]. Alterations in circulating OXL and eCB profiles are reported in NAFLD and 

other liver pathologies. In fact, numerous lipid mediators have been shown to predict NAFL or NASH 

[18,21-26]. However, metabolomic profiling in NAFLD with regards to ethnicity is limited. Our prior 

semi-quantitative lipidomic profiling study indicated ethnicity-specific differences in plasma PUFA 

profiles in subjects with NAFL, with higher abundance of linoleic acid (LA) and α-linolenic acid 

(ALA) seen in Caucasians (CAU) compared to ethnicity-matched lean subjects [27]. In the same 

study, the progression to NASH was characterized by ethnicity-specific differences in hepatic 

lipidomic profiles with higher levels of saturated and unsaturated fatty acids seen in NASH-HIS. 

Ethnicity was not previously addressed in OXL and eCB profiling efforts. Examining such lipidomic 

differences among ethnicities may shed light on potential mechanisms modulating the disparity in 

NAFLD prevalence and severity. 

The objective of this “proof-of-concept” study is to examine ethnicity-related changes in PUFAs 

and their downstream inflammatory mediators in a group of subjects with obesity and biopsy-

confirmed NAFL and NASH. We employed targeted lipidomic analysis of plasma PUFAs, OXLs, and 

the N-acylethanolamides class of eCBs to compare HIS and CAU subjects with medically 

complicated obesity to ethnicity-matched lean healthy controls (HC). Profiles in subjects diagnosed 

with NASH were also compared to ethnicity and BMI-matched participants without NASH (0-

NASH). In addition, we conducted a secondary analysis including prospectively collected subjects to 

compare OXL profile between ethnicities in NASH. 

2. Subjects and methods 

2.1. Subjects and samples 

In this retrospective/ prospective cohort study (Figure S4), all subjects self-reported ethnicity as 

either HIS or CAU. HC subjects (n = 22) were recruited via public posts. Plasma and liver samples 

form bariatric surgery patients with medically complicated obesity were retrieved from the biobank 

repository of the Division of Gastroenterology and Hepatology, UC Davis Medical Center. The 

primary cohort (n = 18) consisted of subjects with NAFL and various degrees of necroinflammation. 
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Only subjects with NASH were included in the secondary analysis (n = 9) and this cohort was 

expanded with prospectively collected subjects diagnosed with NASH (n = 20). Subject inclusion and 

exclusion criteria and details on data collection are described elsewhere [25]. Briefly, plasma samples 

were collected preoperatively after an overnight fast, and liver tissue samples were collected by 

biopsy performed during bariatric surgery. Liver histopathological evaluations were performed in a 

blinded fashion in the UC Davis Medical Center Department of Pathology, and samples were scored 

according to the NASH Clinical Research Network (NASH-CRN) histology system, The NAFLD 

Activity Score (NAS) and fibrosis scores were calculated [26]. NASH diagnosis was determined 

using a diagnostic algorithm based on steatosis, inflammation, and fibrosis scores [27]. All subjects 

were consented and the Institutional Review Board at the University of California, Davis approved the 

study protocol (# 856052). 

2.2. Plasma targeted lipidomic analysis 

Quantitative lipidomic profiling of PUFAs, OXLs and NAEs was performed by ultra-high-

performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-

MS/MS) (S2), as previously described [28]. Briefly, plasma samples were enriched with deuterated 

surrogates, isolated by liquid/liquid extraction, and separated and quantified by UPLC-ESI-MS/MS. 

In the primary analysis, ESI-polarity switching facilitated the simultaneous detection of eCBs 

(positive mode) and oxylipins and PUFAs (negative mode) on an API 6500 QTRAP (AB Sciex, 

Framingham, MA, USA). Metabolites were quantified against authentic analytical standards with 6-

to-10-point calibration curves and calculated concentrations were corrected for analytical surrogate 

recovery. This method detected 5 PUFAs and 66 lipid mediators, including 10 eCBs and 46 OXLs. 

The secondary analysis was performed on an API 4000 QTrap (AB Sciex) and restricted to the 

negative mode electrospray ionization to increase the power of the OXLs discovery. This approach 

detected 46 OXLs and two nitrolipids. Details on the analysis protocols and reported data are 

available on the Metabolomics Workbench (http://www.metabolomicsworkbench.org, accessed on 

06/13/2021), ID numbers (ST000977 and ST001845). Analyses were carried out at the UC Davis 
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West Coast Metabolomics Center. In this manuscript, abbreviations used for OXLs and eCBs follow 

standard consensus and are detailed with lipid identifiers in Table S6. 

2.3. Statistical analysis 

Statistical analyses were performed using JMP Pro 14.1 (SAS Institute Inc., Cary, NC; 

http://www.jmp.com, accessed on 03/10/2021). Outliers were identified and excluded using “robust 

Huber M test”. Lipids with >30% missing data were excluded. Missing data were imputed by 

“multivariate normal imputation”. Data normality was achieved by Johnson’s transformation. After 

data processing, and to determine if subjects with stage 4 fibrosis (n = 2) are biological outliers, we 

employed principal component analysis (PCA). As a result, no outliers were detected (Figure S5). 

Non-normalized data were used to calculate metabolite geometric means. Fold change (FC) was 

calculated for each ethnicity separately as (A − B)/B where A is the mean of (NAFL or NASH) and B 

is the mean of (HC or 0-NASH). A FC >0 indicates an increase and <0 indicates decrease and ± 20% 

FC was set as a threshold. Student’s t-test of Johnson normalized data was used to examine 

differences between (NAFL vs. HC) and (0-NASH vs. NASH) in each ethnicity. Full factorial 

analysis of covariates (ANCOVA) was employed to evaluate the interaction of ethnicity  health 

status. This model included ethnicity (HIS or CAU), health status (NAFL or HC; 0-NASH or NASH), 

ethnicity x health status interaction as fixed effects, with age and sex as covariates. To check any 

effect of fibrosis or advance NAS score on the differences observed, we repeated the analysis on a 

subset of histology-matched subjects (n = 5 HIS and n = 5 CAU). Pathways/network visualization 

with fold change and p-values were plotted using Cystoscope 3.8.2 (https://cytoscape.org, accessed on 

05/22/2021). [29]. Mean differences were considered likely at p <0.05. To adjust for false discovery 

rate (FDR), Benjamini-Hochberg FDR correction was performed [30]. A q = 0.2 was set as a 

threshold, given the pilot nature and small sample size of the study. 

For the secondary analysis, raw data were auto-scaled to correct for batch effect (Figure S6) [31]. 

Lipids affected by batch were excluded (three lipids) and data were normalized by Johnson’s 

transformation. Partial least square-discriminant analysis (PLS-DA) was performed to discriminate 

ethnicities in NASH subjects with leave- one-out cross validation (LOOCV) [32]. An R2 and Q2 > 0.5 

http://www.jmp.com/
https://cytoscape.org/
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are acceptable values to indicate reliability of the model in explaining differences between groups 

[33]. A variable importance in projection (VIP) score of >1.0 was set as a threshold for variable 

selection. To check any effect of advanced fibrosis, we repeated the analysis after excluding subjects 

with fibrosis grade 3 and 4 (n = 3 HIS and n = 4 CAU). 

3. Results 

3.1. Subject characteristics 

The clinical and histological features of NAFL subjects from the primary cohort are presented in 

Table 1. The mean age in NAFL and HC, respectively, was 47 ± 15 and 43 ± 14 in HIS; 50 ± 18 and 

44 ± 12 in CAU (n.s). The mean BMI in HIS was 46 ± 6 in NAFL and 26 ± 2 in HC (p-value < 0.05); 

in CAU, the mean BMI was 42 ± 8 in NAFL and 25 ± 3 in HC (p-value < 0.05). Within NAFL group, 

the mean NAS score was 3 ± 3 and 3 ± 1 for HIS and CAU, respectively (n.s). No difference in 

clinical and histological parameters was found between ethnicities. In subjects with NASH compared 

to 0-NASH, the mean NAS score was 5 ± 2 and 4 ± 1 for HIS and CAU, respectively (n.s) (data not 

shown). 

The secondary cohort included NASH subject with various degrees of necroinflammation and 

fibrosis (Table 2). When comparing NASH-HIS and NASH-CAU, no difference was found with BMI 

and other clinical and histological parameters. The mean NAS score was 5 ± 2 and 5 ± 1 for NASH-

HIS and NASH-CAU, respectively (n.s). 

3.2. Ethnicity-related rlterations in plasma PUFAs and lipid mediator profiles characterize NAFL 

We examined differences in plasma fatty acids and lipid mediators between NAFL and HC 

(Figure 1 and Table S1). Compared to corresponding HC, 25 (38% of total detected) and 7 (11%) 

lipid levels were different in NAFL-HIS and NAFL-CAU, respectively (FDR-adjusted p < 0.2). 

Ethnicity-specific changes observed in NAFL, with interaction (ethnicity x NAFL), include 8 lipids 

(15%) and 2 enzymatic ratios (raw p-Interaction < 0.05) but did not survive FDR-correction (q = 0.2). 

To rule out any effect of histological severity on the differences observed between ethnicities, the 

analysis was repeated on a subset of histology-matched subjects (Table S2). As a result, 12 lipids 
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(19%) and one enzymatic ratio were found altered (raw p-Interaction < 0.05), with 3 lipids, i.e., ALA, 

LA, and 9-hydroperoxyoctadecadienoic acid (-HpODE) surviving FDR correction. 

When compared to HC, there were overlapping differences seen in NAFL for both ethnicities as 

well as ethnicity-specific differences (Figure S1). In both ethnicities, NAFL showed higher levels of 

several eCBs derived from PUFA and other fatty acids. The 18 carbon (C18) PUFAs, ALA and LA 

showed similar higher trend with higher levels of downstream fatty acid alcohols, hydroperoxide, 

ketones, epoxides, and vicinal diols. Specific to NAFL-HIS, there were differentially higher levels of 

LA-triols (i.e., trihydroxyoctadecaenoic acids (TriHOMEs) (raw p-Interaction < 0.05). On histology-

matched analysis, higher TriHOMEs and LA-epoxide, 12(13)-epoxyoctadecenoic acid (-EpOME) 

levels were found significant (raw p-Interaction < 0.05). Of note, the n-6 to n-3 ratio was higher, 

however, with no ethnicity x NAFL interaction. In NAFL-CAU, there was differentially higher ALA 

and LA and its hydroperoxide, 9-HpODE (raw p-Interaction < 0.05). On histology-matched analysis, 

these lipids retained significance with LA, and 9-HpODE passing the FDR-threshold. 

The 20 carbon (C20) and longer chain PUFAs (LC-PUFA) showed opposite trends with higher 

levels in NAFL-CAU and lower in NAFL-HIS. The ratio of docosahexaenoic acid (DHA)/ 

eicosapentanoic acid (EPA) + ALA was found lower in both ethnicities (FDR-adjusted p-value). In 

HIS, alcohols, ketones, thromboxane derived from arachidonic acid (AA) were higher, however with 

no interaction (ethnicity x NAFL). DHA and its vicinal diol, 19,20-dihydroxydocosapentaenoic acid (-

DiHDoPA), levels were differentially lower (raw p-Interaction < 0.05) with tendency shown for lower 

EPA. On histology-matched analysis, lower levels of these lipids were found significant (raw p-

Interaction < 0.05). Specific to CAU, there was differentially higher AA and its vicinal diol, 14,15-

dihydroxyeicosatrienoic acid (-DiHETrE) that remained significant after histology adjustment (raw p 

< 0.05). While these findings show common alterations seen in NAFL for both ethnicities, they also 

highlight ethnicity-specific changes. This includes a divergence in LC-PUFA profile, mainly with 

lower EPA and DHA seen in HIS. Although these differences did not pass FDR adjustment, 

histology-matched analysis yielded consistent and stronger differences, suggesting ethnicity-specific 
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differences characterized NAFL, independently of liver histology severity. It also suggests that 

fibrosis may weaken the differences between ethnicities. 

3.3. Ethnicity-related differences in plasma PUFAs and lipid mediators’ independent of obesity 

Ethnicity-specific differences in plasma lipidome within lean HC were examined (Figure S2 and 

Table S1). Among the differences observed, HIS had higher LA (raw p < 0.05), ALA, 9-HpODE, and 

TriHOMEs levels (FDR-adjusted p-value), and lower AA-derived prostaglandin, PGE2 (FDR-

adjusted p-value) levels. These findings indicate alterations in plasma PUFAs and lipid mediator 

profiles in HIS independent of obesity. 

3.4. The progression to NASH is characterized by ethnicity-related alterations in plasma PUFAs 

and lipid mediator profiles 

We examined differences in plasma fatty acids and lipid mediators between 0-NASH and NASH 

(Figure 2 and Table S3). Compared to corresponding 0-NASH, 7 (11% of total detected) and 6 (9%) 

lipids were found different in NASH-HIS and NASH-CAU, respectively (raw p-value <0.05). None 

passed the FDR-correction threshold. There were differentially altered lipids by ethnicity group (raw 

p-Interaction < 0.05), including 11 lipids (17%) and two enzymatic ratios. Three of these lipids and 

the two enzymatic ratios passed the FDR-correction threshold. 

With the progression from 0-NASH to NASH, less marked differences in plasma PUFA profile 

were observed. Compared to 0-NASH, NASH-HIS showed a trend for lower plasma PUFAs, only 

affecting AA (raw p-value < 0.05). There was a trend for higher C18-PUFA derived alcohols, triol, 

epoxides and vicinal diols, with TriHOMEs being differentially higher (raw p-Interaction < 0.05). We 

also observed a trend for lower LC-PUFA derived lipid mediators, mainly affecting AA-alcohols, 5-

hydroxyeicosatetraenoic acid (-HETE); thromboxane (TXB2); and prostaglandin (PGE2), with 5-

HETE and TXB2 found differentially changed between ethnicities (raw p-Interaction < 0.05). Also, 

the oleic acid (OA)-derived N-oleoyl glycine levels were lower with NASH (raw p-Interaction < 

0.05). 

In NASH-CAU, there was a trend of higher C18, LC-PUFAs and downstream lipid mediators. 

Interaction (ethnicity  NASH) was shown with higher 9-HpODE, TXB2, and in EPA-epoxide, 
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17(18)-epoxyeicosatetraenoic acid (-EpETE) (raw p-Interaction < 0.05). There was an opposite trend 

for C18-PUFA derived vicinal diols that were higher in HIS and lower in CAU, compared to 

corresponding 0-NASH, with interaction (ethnicity x NASH) shown for 12,13- and 15,16-

dihydroxyoctadecadienoic acid (-DiHODE) (raw p-Interaction < 0.05). Multiple sEH enzymatic 

indices were higher in HIS and lower in CAU, including 9_10-dihydroxyoctadecenoic acid (-

DiHOME)/9(10)- epoxyoctadecenoic acid (-EpOME) and 9_10-DiHODE)/9(10)-

epoxyoctadecadienoic acid (-EpODE) (raw p-Interaction <0.05). Also, with NASH, there were higher 

levels of many eCBs, including dihomo-γ-linolenoylethanolamide, palmitoleoylethanolamide, 

palmitoleoylethanolamide, oleoyl-ethanolamide and N-oleoylglycine (raw p-Interaction < 0.05). 

Although PUFA changes are less marked in NASH, trends are consistent with changes seen in NAFL 

and support divergence in LC-PUFA profiles. It also highlights ethnicity-related differences in OXLs 

and eCBs associated with NASH progression. Given that NASH groups in both ethnicities had 

comparable NAS scores, this suggests the ethnicity-related differences observed with NASH are not 

likely driven by histological severity. 

3.5. Plasma OXLs profile discriminates between ethnicities with NASH 

A supervised PLS-DA was performed including all profiled lipids to examine if plasma OXLs 

profile can discriminate between ethnicities with NASH. The model demonstrated separation between 

HIS and CAU with 22 (49%) contributing lipids having VIP > 1. This indicates differences in OXLs 

profile characterizes HIS and CAU with NASH (Figure S3 and Table S4). The Q2 and R2 for the 

model were 0.62 and 0.72, respectively, indicating a fair reliability of the model. Of note, an overlap 

between ethnic groups was observed and subjects within this area shared advanced fibrosis (grade 3 

and 4), indicating that HIS and CAU subjects with NASH and advanced fibrosis share similar plasma 

OXLs profile. Also, it suggests that advanced fibrosis may be attenuating the multivariate model. 

Therefore, we repeated the analysis after excluding subjects with advance fibrosis (Figure 3 and Table 

S4). As a result, the model exhibited complete separation between ethnicities in NASH with 20 (44%) 

lipids contributing to this difference (VIP > 1.0). The Q2, R2 were 0.99 and 0.98, respectively, 

indicating optimal prediction and reliability of the multivariate model. 
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In subjects with NASH and mild to moderate fibrosis, OXLs profiles showed opposite direction 

of change between ethnicities in some AA-derived mediators, with TXB2, 15-keto PGE2, 5-HETE 

and 5,6 DiHETrE being lower in HIS compared to CAU. Many OXLs derived via LOX pathway 

and/or auto-oxidative routes were lower in NASH-HIS, including TriHOMEs, 9- and 13-keto-

octadecadienoic acid (-KODE), 9- and 13- hydroxyoctadecatrienoic acid (-HOTE), and 5-HETE. 

Some CYP-derived OXLs were lower in NASH-HIS, as 9(10)-EpOME, 12(13) EpOME and 12(13)-

EpODE. Multiple sEH enzymatic indices were found higher in NASH-HIS, compared to NASH-

CAU, including 12,13-DiHOME/12(13)-EpOME; 9,10-DiHOME/9(10)-EpOME; 17_18-

DiHETE/17(18)-EpETE along with higher levels of the vicinal diol, 14,15-DiHETrE. These findings 

further confirm lower AA-derived OXLs in HIS with NASH, which are also characterized by lower 

LOX and higher sEH-derived lipid mediators compared to CAU. They also indicate that plasma OXL 

profiles can discriminate between ethnicities in NASH. 

4. Discussion 

This study is the first to examine targeted plasma PUFA, OXL, and eCB profiles with regards to 

ethnicity in a group of HIS and CAU subjects with obesity and biopsy-diagnosed NAFL and NASH. 

Our findings indicate that: (1) NAFL and NASH are characterized by ethnicity-related differences in 

plasma PUFA profiles, independent of histological severity; (2) Ethnicity-related differences in 

plasma OXLs profiles characterize NASH, independent of histological scores; (3) Plasma PUFA 

profile is altered in apparently healthy HIS, independent of obesity. 

The hepatic and serum/plasma PUFA profiles are dysregulated in NAFLD [16-20]. Our results 

expand on these findings and show ethnicity-related differences in plasma PUFA profile in NAFL and 

NASH. With NAFL, both ethnicities showed higher ALA and LA levels, which were pronounced in 

CAU but not in HIS. This can be attributed to differences in the levels of these PUFAs in lean and 

healthy subjects, as HIS showed higher levels compared to their CAU counterpart. There was also a 

divergence in LC-PUFA profiles between ethnicities. CAU showed higher levels mainly affecting 

AA, while HIS displayed lower levels mainly affecting DHA and EPA. Consistent trends were shown 

with the progression from 0-NASH to NASH with arachidonic almost reaching significance 
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(p-Interaction = 0.07). This is in line with our previous untargeted profiling in NAFL done on the 

same subjects showing higher C18-PUFAs in CAU, and a trend for lower LC-PUFA with tendencies 

shown for DHA and EPA in HIS [27]. The lack of significant difference in LC-PUFA in our previous 

analysis may be due to the semi-quantitative nature and the clustering statistical approach. Also in 

agreement with our current finding is the lower serum/plasma DHA and EPA levels reported in obese 

HIS, compared to non-HIS [34,35]. Together, this implies diminished plasma LC-PUFA characterizes 

obese HIS with NAFL and NASH. As diet affects circulating and tissue PUFA levels [36], the 

ethnicity-dependent differences in dietary intake of n-3 PUFAs which is reportedly lower in HIS 

could be responsible for these observed changes [35,37]. While we did not account for diet, our 

findings suggest a possible etiological role for it as we observed higher linoleic and ALA levels 

independent of obesity in lean healthy HIS compared to CAU. Beside diet, genetic variants in cluster 

region of fatty acid desaturases (FADS) can predict LC-PUFA serum/blood levels [38,39]. Single 

nucleotide polymorphisms (SNP) in FADS1 and FADS2, which encode fatty acid desaturases, were 

robustly associated with NAFLD [40,41]. Lower Δ-5 desaturase levels are reported in both NAFL and 

NASH [16,17,20]. Notably, SNPs in FADS that are associated with insufficient LC-PUFA 

biosynthesis present with high frequency in Amerindians, a subgroup of HIS [42]. However, genotype 

was not examined in current study, and both ethnicities had lower estimated Δ-5 desaturase activity 

with NAFL. Therefore, diet and/or genetic factors may contribute to the observed ethnicity-related 

PUFA alterations but need further assessment. 

Other key findings include the ethnicity-related differences in OXLs and eCBs profiles. The 

COX pathway exerts pro-inflammatory effects as it catalyzes the conversion of AA to prostaglandin 

PGE2, thromboxane TXB2, and other fatty acid alcohols [10]. In animal models of NASH, the 

expression and activity of COX-2 were upregulated, and its inhibition ameliorated NAFL and NASH 

[43,44]. Previously, high TXB2 and PGE2 levels were reported in subjects with NAFL and NASH 

[22]. Findings in NASH-CAU from our secondary analysis are consistent with this literature, as TXB2 

and 15-Keto PGE2 discriminated between ethnicities with NASH with higher levels in CAU and 

lower levels in HIS. When comparing within ethnicities, the progression from 0-NASH to NASH in 
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HIS was marked with a trend for lower AA, almost reaching statistical significance (p-Interaction = 

0.07) and downstream OXLs with TXB2 being differentially lower (p-Interaction < 0.05). These 

findings suggest ethnicity-related alterations in AA metabolism and downstream COX-derived OXLs 

in NASH. 

Animal studies indicate a role for LOX pathways in NAFL and inflammation [45,46]. LOX 

pathways lead to the synthesis of fatty acid alcohols, ketones, hydroperoxides, and the specialized 

pro-resolving mediators (SPMs). With possible exceptions, n-6 PUFA derived alcohols are pro-

inflammatory [10]. Under oxidative stress, PUFAs can also undergo auto-oxidation to form alcohols, 

ketones, hydroperoxides [11]. Previous studies reported higher LOX and auto-oxidation metabolites in 

NAFL and increased AA metabolites via LOX with the progression to NASH [18,22,23,41]. In our 

results, compared to control groups, NAFL and NASH in both ethnicities presented higher alcohols 

and ketones derived from C18-PUFAs, indicating an upregulated LOX pathway(s). In NAFL, we 

observed a positive correlation between some fatty acid alcohols and the oxidative stress markers, F2-

isoprostanes and 9-HETE (Table S5), implying a contribution of non-enzymatic auto-oxidation. 

Interestingly, our secondary analysis showed many LOX derived OXLs being higher in NASH-CAU 

compared to NASH-HIS, with a similar trend found for the oxidative stress marker, 9-HETE (VIP = 

0.98). Together, while LOX and oxidative pathways are upregulated with NAFL in both ethnicities, 

the magnitude of these alterations is lesser in HIS with NASH, compared to CAU. Based on this 

finding, we reasoned that LOX, and possibly oxidative stress, may be pivotal for NASH severity in 

CAU, and to a lesser extent in HIS. 

CYP enzymes catalyze the synthesis of fatty acids epoxides and alcohols. In general, fatty acid 

alcohols are pro-inflammatory, and epoxides are anti-inflammatory and transient, and are hydrolyzed 

by the action of sEH to form inactive or less active vicinal diols [10,47]. A role for sEH in NAFLD 

progression is indicated by animal studies, showing that sEH inhibition improves NAFL, NASH, and 

fibrosis [47]. In subjects with NASH, compared to NAFL, AA derived vicinal diols are higher [22]. 

Our results show, with the progression to NASH, an ethnicity-dependent opposite trend for vicinal 

diols derived from C18-PUFA, which were higher in HIS and lower in CAU. Some of these vicinal 
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diols and sEH enzymatic indices showed interaction (ethnicity  NASH) and were found higher in 

NAHS-HIS and lower in NASH-CAU, compared corresponding 0-NASH. This may suggest higher 

activity of sEH in NASH-HIS. Our secondary analysis also shows higher ratios of multiple sEH 

enzymatic indices in HIS compared to CAU, and lower C18-PUFA epoxides possibly due higher 

hydrolysis rate. NASH-CAU showed higher levels of many PUFA epoxides, compared to NASH-

HIS, indicating upregulated CYP pathway(s) and/or less hydrolysis. Together, our finding highlights 

ethnicity-related differences in sEH activity that was higher in HIS with NASH. 

Extensive evidence from animal studies indicates a role for eCB system in NAFL, mitochondrial 

dysfunction and inflammation and fibrosis [48,49]. In NAFL, both ethnicities had higher levels of 

several eCBs. However, with the progression to NASH, many eCBs were higher in CAU and lower in 

HIS as compared to corresponding 0-NASH (raw p-Interaction < 0.05). We also observed levels of 

the OA-derived mediators N-oleoyl glycine, and oleoylethanolamide. These observations could not be 

examined in our secondary analysis as we detected limited numbers of eCBs and did not profile for 

fatty acids. Nevertheless, this may indicate ethnicity-related variations in eCBs profiles and OA 

metabolism with NAFLD in HIS that need to be further examined. 

Our findings corroborate the epidemiological evidence indicating ethnicity as one variable 

affecting the association between PUFAs and cardiometabolic risks [29,45,46]. In fact, the observed 

ethnicity-related alterations may be relevant to NAFLD severity. EPA and DHA modulate hepatic 

fatty acid oxidation, de novo lipogenesis, redox balance and inflammation via direct interaction with 

nuclear receptors and transcription factors [50]. These LC-PUFAs are also precursors to potent SPMs 

which drive inflammatory resolution [10]. Also, the pro-inflammatory cascade of AA via COX is 

necessary for the biosynthesis of SPMs and initiating inflammatory resolution [13,51]. Therefore, a 

diminished level of these PUFAs may abolish anti-steatogenic and anti-inflammatory mechanisms. 

Likewise, a higher sEH activity may result in deactivation of anti-inflammatory PUFA epoxides 

[10,47]. Interestingly, our findings suggest that upregulated LOX pathway(s) may be imperative to 

NASH severity in CAU with a lesser extent in HIS. Collectively, we postulate that the observed 

ethnicity-related changes translate to the more advanced NASH histological presentation seen in HIS. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/beta-oxidation
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Of note, these changes are independent of fibrosis or NAS scores, in fact, histology adjustment 

resulted in stronger differences in both analyses, implying that subjects with advanced fibrosis may 

share similar lipidomic profile. 

Our findings have clinical/diagnostic implications. Given liver biopsy risks and limitations [52], 

there is an ongoing search for noninvasive biomarker for NAFLD, with multiple biomarkers have 

been recently proposed including betatrophin and fetuin-A [53,54]. Also, several AA- derived OXLs 

were shown to predict NASH including higher levels of 5- and 15-HETE, PGE2, and some vicinal 

diols [18,22]. While our findings in NASH-CAU show trends consistent with current literature, 

findings in HIS indicate otherwise. Ethnicity-related differences in plasma metabolomic profile have 

been reported before in diabetes, Alzheimer’s disease, and bladder cancer [55-57]. We propose that 

ethnicity-specific plasma signature may characterize NASH. In fact, utilizing ethnicity-related 

variations in plasma lipidomic profile may be instrumental for the enhanced precision of such 

diagnostic tools. If further verified, it will serve as a much-needed non-invasive tool aiding in clinical 

practice for early detection of NASH in both HIS and CAU populations. It can also pave the road for 

examination of ethnicity-specific lipidomic signatures in other ethnicities as the Asian and African 

American populations. On another note, a role of EPA and DHA supplementations in improving 

NAFLD and its risk factors is supported by clinical evidence [58,59]. Also, growing data indicate the 

utility of sEH inhibitors in NASH treatment [42,57,58]. Therefore, evaluating these interventions for 

NASH treatment seems warranted, particularly in the HIS population. 

This “proof-of-concept” analysis is based on a small, single-center study. The limited sample 

size may have compromised the correction for multiple testing in the primary analysis. However, 

findings from the secondary analysis were consistent and the multivariate model is validated for 

overfitting and predictability. Other strengths include biopsy-characterized NAFL and NASH and 

analysis adjusted for BMI and histology. While NAFLD prevalence is reported to be higher in males 

compared to females [60-62], we could not examine sex differences due to small sample size. 

However, we did adjust for sex as a covariate. 
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In conclusion, we performed targeted lipidomic profiling for PUFAs and related lipid mediators 

with regards to ethnicity. Results show ethnicity-related divergence in LC-PUFA and downstream 

OXLs profiles with NAFL and NASH progression, independent of histological scores. Our secondary 

analysis indicates that in NASH and compared to CAU, HIS are characterized by lower levels of AA 

derived OXLs, lower LOX with an upregulated sEH pathway(s). These lipidomic differences may be 

relevant to the ethnicity-related disparity reported in NAFLD rate and severity and are worth further 

investigations. Our findings suggest ethnicity-specific lipidomic signature may characterize NASH. 

Although preliminary, these novel observations support the need for larger validation studies. 
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7. Tables 

Table 1. Demographic, clinical, and histological characteristics of study subjects in primary analysis. 

 

General characteristics of NAFL group in both ethnicities shown as percent (for categorical data) and mean ± 

SEM (for nominal data). Comparisons were performed by t-test (nominal) or chi-square test (categorical). (*) 

NAFL-HIS vs. NAFL-CAU. 
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Table 2. Demographic, clinical, and histological characteristics of NASH subjects in secondary analysis. 

 

General characteristics of subjects included in the secondary analysis shown as percent (for categorical data) and 

mean ± SEM (for nominal data). Comparisons were performed by t-test (nominal) or chi-square test (categorical). 

(*) NASH-HIS vs. NASH-CAU. 
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8. Figures  

 

Figure 1. Differences in plasma polyunsaturated fatty acids (PUFAs) and lipid mediators between non-alcoholic 

fatty liver (NAFL) compared to healthy control (HC) in primary cohort. Metabolic network for (a) Hispanic 

(HIS); (b) Caucasian (CAU) illustrating saturated (SFAs), monounsaturated (MUFAs) and polyunsaturated fatty 

acids (PUFAs), including n-3 and n-6 PUFAs with pathways of oxylipins and endocannabinoids synthesis. Node 

size represents fold changes, calculated as (HC − NAFL)/HC. Node’s color represents the directionality of 

differences: higher in NAFL (red); lower in NAFL (blue); no change (grey). Shown are only lipids with 

differences between NAFL vs. HC (t-test raw p < 0.05) and/or with interaction (ethnicity x NAFL) (ANCOVA 

raw p < 0.05). Lipids with interaction (ethnicity x NAFL) (ANCOVA raw p < 0.05) are marked with a solid 

circle. Means and p-values are detailed in Table S1. Fatty acids are described by number of carbons and double 

bounds of the fatty acyl moiety (i.e., C18:2n6). NAFL (n = 10 HIS and 8 CAU); HC (n = 14 HIS and 8 CAU). 

ADH, alcohol dehydrogenase; AEA, arachidonoyl ethanolamine; AG, arachidonoyl glycerol; DEA, 

docosatetraenyl ethanolamide; DGLEA, dihomo-gamma-linolenoyl ethanolamide; DH, dehydrogenase; DHEA, 

docosahexaenoyl ethanolamide; DiHDoPA, dihydroxydocosapentaenoic acid; DiHETE, 

dihydroxyeicosatetraenoic acid; DiHETrE, dihydroxyeicosatrienoic acid; DiHO, dihydroxyoctadecanoic acid; 

DiHODE, dihydroxyoctadecadienoic acid; DiHOME, dihydroxyoctadecenoic acid; Elov, fatty acid elongase; 

Ep-KODE, epoxyoxooctadecenoic acid; EpETE, epoxyeicosatetraenoic acid; EpODE, epoxyoctadecadienoic 

acid; EpOME, epoxyoctadecenoic acid; F2-IsoP, F2 isoprostanes; FAAH, fatty acid amide hydrolase; Fads, 

fattyaciddesaturase; HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE, 

hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; HOTE, hydroxyoctadecatrienoic acid; 

HpODE, hydroperoxyoctadecadienoic acid; KETE, keto-eicosatetraenoic; KODE, keto-octadecadienoic acid; 
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LEA, Linoleyl ethanolamine; LG, linoleoylglycerol; LOX, lipoxygenase; NA-Gly, arachidonylglycine; NAPES, 

N-acylphosphatidyl ethanolamine-specific; NO-Gly; OEA, oleoyl ethanolamine; OG, oleoylglycerol; PEA, 

palmitoyl ethanolamine; PGE, prostaglandin E; PGF, prostaglandin F; POEA, palmitoleoyl ethanolamide; SEA, 

stearoyl ethanolamide; sEH, soluble epoxide hydrolase; TriHOME, trihydroxyoctadecaenoic acid; TXB, 

thromboxane. 
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Figure 2. Heatmap illustrating fold changes and differences in plasma polyunsaturated fatty acids (PUFAs) and 

lipid mediators between non-alcoholic steatohepatitis (NASH) compared to NASH-free (0-NASH) in primary 

cohort. Fold changes are indicated by color and intensity, with red indicating an increase, and blue indicating a 

decrease. Lipids different in NASH vs. 0-NASH (t-test raw p < 0.05) are noted by (*). Ethnicity-related 

differences, or interaction (ethnicity x NASH) (ANCOVA raw p < 0.05) are marked with bold red color. C18 

PUFAs and related lipids are marked with “green”; long chain-PUFAs and related lipids are marked with 

“yellow”; saturated fatty acids (SFA) and monounsaturated fatty acid (MUFA) related lipids are marked with 

“grey”. Means and p-values are detailed in Table S3. Fatty acids are described by number of carbons and double 

bounds of the fatty acyl moiety (i.e., C18:2n6). NASH (n = 6 Hispanic (HIS) and 3 Caucasian (CAU); 0-NASH 

(n = 4 HIS and 5 CAU). ADH, alcohol dehydrogenase; AEA, arachidonoyl ethanolamine; AG, arachidonoyl 

glycerol; DEA, docosatetraenyl ethanolamide; DGLEA, dihomo-gamma-linolenoyl ethanolamide; DH, 

dehydrogenase; DHEA, docosahexaenoyl ethanolamide; DiHDoPA, dihydroxydocosapentaenoic acid; DiHETE, 

dihydroxyeicosatetraenoic acid; DiHETrE, dihydroxyeicosatrienoic acid; DiHO, dihydroxyoctadecanoic acid; 

DiHODE, dihydroxyoctadecadienoic acid; DiHOME, dihydroxyoctadecenoic acid; Elov, fatty acid elongase; Ep-

KODE, epoxyoxooctadecenoic acid; EpETE, epoxyeicosatetraenoic acid; EpODE, epoxyoctadecadienoic acid; 

EpOME, epoxyoctadecenoic acid; F2-IsoP, F2 isoprostanes; FAAH, fatty acid amide hydrolase; Fads, 

fattyaciddesaturase; HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE, 

hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; HOTE, hydroxyoctadecatrienoic acid; 

HpODE, hydroperoxyoctadecadienoic acid; KETE, keto-eicosatetraenoic; KODE, keto-octadecadienoic acid; 

LEA, Linoleyl ethanolamine; LG, linoleoylglycerol; LOX, lipoxygenase; NA-Gly, arachidonylglycine; NAPES, 

N-acylphosphatidyl ethanolamine-specific; NO-Gly; OEA, oleoyl ethanolamine; OG, oleoylglycerol; PEA, 

palmitoyl ethanolamine; PGE, prostaglandin E; PGF, prostaglandin F; POEA, palmitoleoyl ethanolamide; SEA, 

stearoyl ethanolamide; sEH, soluble epoxide hydrolase; TriHOME, trihydroxyoctadecaenoic acid; TXB, 

thromboxane 
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Figure 3. Supervised multivariate clustering model demonstrating ethnicity specific oxylipins profile 

discriminates Hispanic (HIS) and Caucasian (CAU) with non-alcoholic steatohepatitis (NASH) without advanced 

fibrosis. Score plot for NASH-HIS (red) vs. NASH-CAU (blue) when excluding stage 3 and 4 fibrosis. Light color 

represents subjects from primary cohort and dark color represents secondary cohort. The model was performed 

on all profiled lipids. Lipid mediators are colored according to metabolizing enzyme pathways, lipoxygenase, and 

autoxidation (red); cytochrome p450 epoxygenase (brown); and soluble epoxide hydrolase (green); 

cyclooxygenase (blue); other (black). The model was validated with leave-one-out cross validation. The Q2 and 

R2 are 0.99 and 0.98, respectively. Details on variable importance into the projection scores are shown in Table 

S4. NASH (n = 9 HIS and 13 CAU). DiHETE, dihydroxyeicosatetraenoic acid; DiHETrE, 

dihydroxyeicosatrienoic acid; DiHODE, dihydroxyoctadecadienoic acid; DiHOME, dihydroxyoctadecenoic acid; 

Ep-KODE, epoxyoxooctadecenoic acid; EpETE, epoxyeicosatetraenoic acid; EpODE, epoxyoctadecadienoic 

acid; EpOME, epoxyoctadecenoic acid; HETE, hydroxyeicosatetraenoic acid; HOTE, hydroxyoctadecatrienoic 

acid; KETE, keto-eicosatetraenoic; KODE, keto-octadecadienoic acid; PGE, prostaglandin E; TriHOME, 

trihydroxyoctadecaenoic acid; TXB, thromboxane. 
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9. Supplementary materials  

Table S1: Targeted quantification data table for comparisons of HIS and CAU obese subjects with NAFL vs. 

lean HC.  

Table S2: Demographic, clinical, and histological characteristics of histology-matched subjects. Table S3: 

Targeted quantification data table for comparisons of HIS and CAU with NASH vs. 0-NASH.  

Table S4: Targeted quantification data table for comparisons of HIS and CAU with NASH in the secondary 

analysis.  

Table S5: Pearson’s correlation analysis between LOX metabolites and markers of oxidative stress.  

Table S6: Details on detected lipid class and identifiers.  

Figure S1: Venn-Diagram illustrating overlapping and unshared differences in polyunsaturated fatty acids 

(PUFAs) and lipid mediators between non-alcoholic fatty liver (NAFL) compared to healthy control (HC) in 

both ethnicities.  

Figure S2: Differences in plasma PUFA and lipid mediators between Hispanic (HIS) and Caucasian (CAU) in 

lean healthy subjects.  

Figure S3: Supervised multivariate clustering model demonstrating ethnicity specific oxylipins profile 

discriminates Hispanic (HIS) and Caucasian (CAU) with non-alcoholic steatohepatitis (NASH) with advanced 

fibrosis.  

Figure S4: Flow chart illustrating subject recruitment details for primary and secondary analysis. Figure S5: 

Principal component analysis (PCA) illustrating outliers before (left) and after (right) data normalization.  

Figure S6: Principal component analysis (PCA) illustrating the unsupervised clustering of samples from 

primary (red) and secondary cohort (green) shown before (left) and after (right) batch correction. 
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