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Abstract 

 Several topics in the realm of Nuclear Magnetic Resonance (NMR) spectroscopy are discussed in 

this dissertation. These topics can be divided into two major sections. The first section considers the 

treatment of data from standard NMR relaxation and diffusion experiments. The current standard for the 

analysis of transients in low-field NMR is the Inverse Laplace Transform (ILT). Often leading to an 

inconsistency in the stability of results, the ILT tends to be an ill-posed problem like many other inversion 

methods. Alternative data processing methods have recently been introduced in an attempt to improve the 

resolution, stability, and accuracy of results for both discrete and continuous sets of recovered constants. 

 The application of the Matrix Pencil Method (MPM), a generalized eigenvalue-based algorithm, to 

NMR transients has recently gained traction as a reliable processing method with low computational costs. 

Here, the MPM is first extended to the resolution and quantitative analysis of multiple longitudinal (T1) 

relaxation components from data acquired by a stray-field sensor.  A comparison of MPM to ILT is 

conducted by testing several combinations of Gd3+-doped 0.9% saline samples with an array of 

concentrations. It is shown that MPM not only has a greater ability to resolve than ILT at low SNR, but the 

resulting time constants and relative component weights are also closer to their expected values. 

 The results of the stray-field study brings about two questions: What are the true limitations of the 

MPM resolution capabilities and how can experiments be optimized to gain the most information possible 

from the data? The MPM provides exact solutions for noise-free transients with few discrete components. 

These solutions increasingly deviate as the SNR of the transient decreases. Numerical and analytical 

methods are developed to use this knowledge at a given SNR to predict the prime sampling interval to 

obtain the maximum resolution and accuracy possible.  

 The second major section concerns the effects of spatial confinement on diffusion and chemical 

exchange. Two-site exchange has been exhaustively studied and its dynamics are well understood. Three-

site exchange, on the other hand, is a drastically different story. Recent kinetics studies on three-site systems 

have revealed asymmetric exchange behavior when subjected to restrictive environments. This asymmetry 
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is indicative of a violation of detailed balance which states that all pairs of relaxation sites should experience 

equivalent exchange at thermal equilibrium. An investigation on the effects of confinement on three-site 

exchange is conducted using two 2D numerical methods, a Monte-Carlo vacancy diffusion simulation and 

a molecular dynamics gas diffusion simulation with elastic particles. These simulations reveal that this 

asymmetry indeed arises when the diffusive motion is driven away from standard Brownian dynamics. 

Under this driven equilibrium, a circular flux between relaxation sites develops which goes against detailed 

balance. The cyclical diffusive behavior potentially arises from the excitation of the diffusive eigenmodes 

of a pore.  
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Chapter 1: The Essence of NMR and Relaxation 

1.1 Introduction 

From the humble one-dimensional proton spectrum of simple organic molecules to the convoluted 

multi-dimensional transients of complex systems, nuclear magnetic resonance (NMR) spectroscopy has 

long been used as a ubiquitous analytical tool in the physical and biological sciences [1-3]. New hardware 

developments are rapidly pushing NMR at low magnetic fields out of the lab and into nature [4]. NMR 

often lacks the spectral resolution required for structure elucidation at these weak magnetic field strengths. 

However, the utility of the technique is not lost as a trove of information on the dynamics and chemical 

landscape of a system can be recovered from various experiments. The following chapter aims to give the 

foundational knowledge necessary to understand the significance of the parameters to be considered 

throughout the data processing portion of this dissertation. This chapter is also intended to serve as a bridge 

to the discussion of diffusion and exchange in the latter chapters. 

 

1.2 Tiny Magnets in a Polarizing World 

The most basic of NMR experiments can be broken down into two simple steps – an initial 

perturbation of the sample by an external magnetic field followed by an excitation by radiofrequency 

radiation. Development of this technique was driven by a few experiments spanning over twenty years [5].  

 

1.2.1 Quantization of Angular Momentum and the Stern-Gerlach Experiment 

  At the onset of the 20th century, Arnold Sommerfeld proposed an amendment to Niels Bohr’s 

model of electrons circularly orbiting the nucleus of an atom [6]. By confining the number of possible 

orientations of the z-component of angular momentum, the model for electron motion could also encompass 

elliptical orbits. Electrons at the same principal energy level with different orbits could possess the same 

energies unless perturbed by an additional force. This theoretical extension brought about the concept of 
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quantum degeneracy and allowed for further explanation of the fine structure that appeared in atomic 

Hydrogen spectra. 

 In the early 1920’s, Otto Stern and Walther Gerlach developed an apparatus to explore this theory 

of “space quantization” that would help lead to an unintended realization [7-9]. The experimental method 

was simple: generate a beam of electrically neutral silver atoms, pass the beam through an inhomogeneous 

magnetic field, and detect the atoms on a screen following deflection. If angular momentum is quantized, 

the magnetic dipole arising from the orbital angular momentum of the single unpaired electrons would 

deflect the atoms in one of two directions on the experimental z-axis, up or down. The results showed the 

beam split in two producing two separate bands on the screen. “Space quantization” was successfully 

proven and appeared to verify the Bohr-Sommerfeld model. 

 While this theory was proven to be correct in general, the assertion that the partisan deflection 

occurred due to the orbital angular momentum of the unpaired silver electron was not. The number of 

degenerate states for any angular momentum quantum number (J) was later predicted to be 2J+1. The 

unpaired electron in silver was later discovered to possess no orbital angular momentum meaning that it 

did not have any degenerate orbits. If the beam splitting did not come from the orbital angular momentum, 

it must come from another source of angular momentum with J = 1/2. This angular momentum was formally 

postulated to be an intrinsic property of both elementary and composite quantum particles with no classical 

analogue by George Uhlenbeck and Samuel Goudsmit [10]. A heavily scrutinized concept suggested by 

Ralph Kronig just months prior, it was suggested that electrons rotate in space generating a magnetic dipole 

moment just as orbital angular momentum does for a point charge [11]. While is it now understood that 

these quantum particles are not really rotating, this intrinsic angular momentum has been dubbed “spin” 

and it is at the core of all of magnetic resonance. 

 

1.2.2 Zeeman Splitting and Larmor Precessions 

The Stern-Gerlach experiment is a direct application of the anomalous Zeeman effect [12]. In the presence  
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of an external magnetic field, the energy of the interaction with a magnetic dipole moment (𝜇) can be 

described by the classical equation 

𝐸 = − 𝜇 ∙ �⃗⃗�. (1.1) 

Equation. 1.1 can be translated to a relevant quantum variant via the Wigner-Eckart theorem which states 

that there is a scalar relationship between the magnetic dipole and angular momentum (𝐽) as  

𝐸 = −𝛾𝐽 ∙ 𝐵.⃗⃗⃗⃗ (1.2) 

The gyromagnetic ratio, γ, is the resulting proportionality constant and is dependent on the charge and mass 

of the particle the interaction. 

 

Figure 1.1. Diagram of the energy levels for nuclear spins of 1/2, 1, and 3/2 before and after applying a 

magnetic field. 

 

 The interaction of the magnetic dipole with a magnetic field lifts the degeneracies for a system with 

non-zero angular momentum in a symmetric manner as shown in Fig. 1.1 [13]. For the case of a particle 

with a nuclear spin of I = 1/2, two projections of the angular momentum exist on the z-axis as mI = 1/2 and 

-1/2. These projections subject the particle to a decrease or increase in energy respectively due to the parallel 

and antiparallel interactions with the magnetic field. This pattern continues for all half-integer spins such 

as I = 3/2 with mI = 3/2, 1/2, -1/2, and -3/2 with the extent of each energy shift governed by the projections. 
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Particles with integer spins undergo a similar splitting of degeneracies, but additionally possess a projection 

of mI = 0 that is unaffected by the external magnetic field much like orbital angular momentum of the silver 

atom in the Stern-Gerlach experiment.  

Consider the behavior of a common macroscopic object with a net magnetic moment in an external 

magnetic field, such as a compass needle in Earth’s magnetic field. A torque is imposed on the magnetic 

moment forcing the object to rotate as governed by Eq. 1.3. 

𝜏 = 𝜇 × �⃗⃗� (1.3) 

The minimum energy for the interaction is achieved when the needle reorients the magnetic moment to be 

aligned parallel to the Earth’s field. Once the moment is polarized the needle ceases movement.  

 

Table 1.1. Gyromagnetic ratios (γ) of common NMR active nuclei. 

Nucleus Nuclear Spin (I) γ [MHz/T] 

1H 1/2 42.58 

2H 1 6.54 

13C 1/2 10.71 

14N 1 3.08 

15N 1/2 -4.32 

19F 1/2 40.08 

31P 1/2 17.24 

 

 The situation is similar for a spin in a magnetic field, but the motion is altered by the presence of a 

constant angular momentum. The magnetic moment will always maintain contributions in the x and y 

directions that is dependent on the initial orientation of the spin with respect to the direction of the magnetic 

field. The applied torque forces the spin to move about the principal axis of the magnetic field at a fixed 

angle, forming a cone. This is behavior that is easily modelled by the classical case of a spinning top under 

the tug of gravity and is referred to as precession. The rate of this precession, called the Larmor frequency, 

is proportional to the magnitude strength of the static magnetic field, B0. 
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𝜔0 = −𝛾𝐵0 (1.4) 

γ determines both the direction of the motion and the extent of the magnetic field’s influence on 

the particle. A majority of nuclear spins possess a positive gyromagnetic ratio which causes the magnetic 

moment to precess in a clockwise motion according to Eq. 1.4 and the right-hand rule. 

 

1.2.3 Rabi’s Contributions 

 The next crucial experiment in the development of magnetic resonance came from the mind of 

Isidor Rabi [14]. The Stern-Gerlach experimental setup was initially designed to isolate magnetic moments 

of different orientations as a sort of quantum state selector, but by placing a second apparatus in series it 

can be used to reconverge the separated beams for detection. Rabi took advantage of this fact in attempts 

to measure the nuclear magnetic moments of lithium compounds. An addition to the state selection and 

detection deflecting fields, a static electromagnet which generated homogeneous fields was placed in 

between with a solenoid coil situated in the electromagnet parallel to the molecular beam.  

The coil introduces a radiofrequency (RF) oscillating magnetic field to the situation. By fixing the 

frequency of the oscillating field, ω1, and varying the magnetic field strength of the electromagnet, B0, Rabi 

saw a drastic decrease in beam intensity at a specific field strength similar to Fig. 1.2. This drop corresponds 

to a tuning of the Larmor frequency of the nuclear spins to the applied oscillating frequency, or magnetic 

resonance. 

As is the case with the phenomenon of the Zeeman effect, the oscillating field applies a torque 

which effectively reorients the spin [12]. The RF field induces a transition between spin states which will 

change how the particle is deflected resulting in varying intensities at the detector. The resonance 

experiment demonstrates that the transition probability is at a maximum where the recorded beam intensity 

is at a minimum, but can still be non-zero when the oscillating field is near-resonance.  
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Figure 1.2. Simplified reconstruction of Rabi’s experimental results. Maximum transition probability is 

found at resonance where γB0 = ω1, shown here as a minimum in molecular beam intensity. 

 

Rabi’s experiment serves as the blueprint for all magnetic resonance experiments today. Modern 

systems do not require specific spin state selection and thus, the Stern-Gerlach components are no longer 

used. Instead, most experiment use only the homogeneous magnetic field and the coil introduced by Rabi 

in which the coil acts as both the RF transmitter and the detector [15].  

 

1.3 The Classical Equations of Motion for Magnetization 

1.3.1 Net Magnetization and Free Precession 

 Up to the mid-1940’s, all magnetic resonance experiments had been conducted on individual gas 

phase particles in a molecular beam [5,15]. In this context, the particles in question are not subjected to the 

macroscopic and bulk interactions that come from a more natural environment. The first successful 

experiments on condensed matter were performed by Edward Purcell and Felix Bloch [16,17]. When 
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discussing the behavior of an ensemble of spins undergoing a typical magnetic resonance experiment, Bloch 

proposed a classical approach.  

 It was suggested that the resultant magnetic moment of all spins in a set volume, dubbed the net 

magnetization, �⃗⃗⃗�, undergoes a torque in a magnetic field much like individual spins do This is easily 

demonstrated by the substitution of �⃗⃗⃗� into Eq. 1.3. 

�⃗� = �⃗⃗⃗⃗� × �⃗⃗⃗� (1.5) 

The realization that torque in Eq. 1.5 is linearly proportional to the time variation of the net magnetization 

reveals the following differential equation: 

𝑑�⃗⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗⃗� × �⃗⃗⃗� (1.6) 

The so-called Bloch equations provide a simple, yet effective model for the behavior of an ensemble of 

spins under several common scenarios [17].  

 The first case to be investigated is the net magnetization purely under the influence of the static 

magnetic field, B0. The principal axis of the classical model, the z-axis, is defined by the direction of the 

B0 field. At equilibrium, the solution to the Bloch equation is trivial as the net magnetization sits static on 

average in the z-direction. However, if �⃗⃗⃗� is forced into the x-y plane, a more interesting conclusion is 

drawn. Reorienting �⃗⃗⃗� to possess non-zero transverse components and solving the Bloch equations yields 

the following set of relationships: 

𝑀𝑥 = 𝑀𝑥𝑦 sin(𝜔0𝑡) 

𝑀𝑦 = 𝑀𝑥𝑦 cos(𝜔0𝑡) (1.7) 

𝑀𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

where Mxy represents the magnitude of the net magnetization in the x-y plane and ω0 is the Larmor 

precession as defined in Eq. 1.4. These results shows that the magnetization precesses about z-axis at a 

fixed angle the in the absence of additional forces as seen in Fig. 1.3. 
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Figure 1.3. The free precession solution to the Bloch equations in the laboratory frame for the x- (dark 

grey solid line), y- (light grey dash-dotted line), and z-components (black dashed line) of magnetization. 

M0 is the magnitude of the net magnetization. 

 

1.3.2 Moving to the Rotating Frame of Reference 

 All discussions about motion up to this point have been viewed from the perspective of an outside 

observer, or the so called “laboratory frame.” In a scenario consisting of only one source of motion, such 

as the pure Larmor precession case discussed in the previous section, the Bloch equations yield easily 

understood solutions. As additional perturbations are introduced, the effects of the individual influences 

become difficult to separate. 

 Consider the addition of an RF excitation source in a typical NMR experiment, depicted by  

𝑑�⃗⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗⃗� × (𝐵0⃗⃗⃗⃗⃗ + 2𝐵1⃗⃗⃗⃗⃗ cos(𝜔𝑐𝑡)). (1.8) 
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With the application of two magnetic fields, the static B0 and the linearly polarized, oscillating B1 with a 

carrier frequency of ωc, it is reasonable to expect that the magnetization will precess about both fields 

simultaneously. However, comprehending these results from the Bloch equations becomes increasingly 

difficult with each perturbation that is added. For the purposes of this thesis, the phase term of the oscillating 

field is neglected as the relevant pulses that will be discussed will be aligned along axes. 

To simplify the picture that is drawn it is common practice to switch to another frame of reference. 

Rotating the x and y components of the coordinate system in the complementary direction to the Larmor 

precession near the resonant frequency essentially inhibits the impact of the B0 field. From the perspective 

of this new coordinate system, the static field appears to reduce in strength in accordance with  

𝐵𝑒𝑓𝑓 = 𝐵0 −
𝜔𝑟𝑜𝑡

𝛾
(1.9) 

where ωrot represents the frequency at which the x- and y- axes rotate. This is referred to as the “rotating 

frame” of reference. 

 A secondary assumption is made to further simplify calculations. Radiofrequency pulses are 

typically applied in the xy-plane and oscillates parallel to the plane. The radiation could be mathematically 

decomposed into two circularly polarized sources rotating in opposing directions within the xy-plane given 

by Eq. 1.10 and 1.11. 

𝐵1𝐴
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐵1

⃗⃗⃗⃗⃗[cos(𝜔𝑐𝑡) 𝑥 + sin(𝜔𝑐𝑡) �̂�] (1.10) 

𝐵1𝐵
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = 𝐵1

⃗⃗⃗⃗⃗[cos(𝜔𝑐𝑡) 𝑥 − sin(𝜔𝑐𝑡) �̂�] (1.11) 

Given that B1A and B1B in the same plane as the rotating coordinates, moving to the rotating frame also 

changes how these fields appear. 

 Like Larmor precession, the B1A component rotates counterclockwise, and thus the apparent 

frequency in the rotating frame is reduced. The opposite is true for the clockwise B1B which appears to move 

faster. When the carrier frequency is close to the transition frequency, B1A becomes nearly static while B1B 

moves with almost double the initial frequency. The latter field oscillates too quickly to have any 

appreciable effect on the magnetization and thus can be neglected leaving only the reduced B1A. By keeping 
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only one rotating field the effective B1 magnitude in the rotating frame is halved. This is the rotating wave 

approximation. 

 

Figure 1.4. The off-resonance (a) and on-resonance (b) free precession solutions to the Bloch equations in 

the rotating frame for the x- (dark grey solid line), y- (light grey dash-dotted line), and z-components (black 

dashed line) of magnetization. M0 is the magnitude of the net magnetization. 

 

Combining the rotating frame transformation and rotating wave approximation, the Bloch 

equations expressed in Eq. 1.8 modifies to the form 
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𝑑𝑀′⃗⃗⃗⃗⃗

𝑑𝑡
= 𝛾𝑀′⃗⃗⃗⃗⃗ × (𝐵𝑒𝑓𝑓

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐵1
′⃗⃗⃗⃗⃗ cos((𝜔0 − 𝜔𝑐)𝑡)) . (1.12) 

Through the remainder of this chapter, the tick mark will be used to represent the Bloch equations in the 

rotating frame [12]. In the condition where ωrot and ωc are in resonance with the Larmor frequency, Eq. 

1.10 reduces to the form 

𝑑𝑀′⃗⃗⃗⃗⃗

𝑑𝑡
= 𝛾𝑀′⃗⃗⃗⃗⃗ × 𝐵1

′⃗⃗⃗⃗⃗, (1.13) 

where the Bloch equation for the effects of an RF pulse is similar to the free precession scenario in the 

laboratory frame. That is, the net magnetization rotates about the axis of the perturbation at a frequency of 

ω1 as the Larmor precession piece becomes constant as seen in Fig. 1.4(b). For simple two-level systems, 

such as 1H NMR, the frequency of this nutation, ω1, is equivalent to the Rabi frequency, or the rate of 

population cycling between the spin up and spin down states. 

 

1.3.3 Applying a sequence of RF pulses 

 Modern NMR spectroscopy utilizes various sequences of RF pulses to coax out the physical 

properties of an analyte. Armed with a clear image of the effect of RF on the net magnetization, keeping 

track of the current position of �⃗⃗⃗� when applying multiple pulses can be further simplified. Consider the 

matrices for the elemental rotations of vectors in linear algebra: 

𝑹𝒙(𝛼) = [
1 0 0
0 cos(𝛼) − sin(𝛼)

0 sin(𝛼) cos(𝛼)
] 

𝑹𝒚(𝛼) = [
cos(𝛼) 0 sin(𝛼)

0 1 0
− sin(𝛼) 0 cos(𝛼)

] (1.14) 

𝑹𝒛(𝛼) = [
cos(𝛼) −sin(𝛼) 0
sin(𝛼) cos(𝛼) 0

0 0 1

] 

where α is the angle of rotation to be referred to as the flip angle from here on. In the rotating frame, these 

matrices provide a general solution to any RF pulse along the Cartesian axes [13].  



12 

 The flip angle of the magnetization is dependent on the duration of the applied pulse, τp, as 

determined by 

𝛼 = 𝜔1𝜏𝑝 (1.15) 

In most routine experiments, including those to be discussed in this chapter, pulses are referred to by their 

direction and the flip angle. The most prevalent perturbations are due to π/2 and π pulses, corresponding to 

90° and 180°, respectively.  

 

Figure 1.5. The Free Induction Decay Pulse Sequence. The black rectangle represents a π/2 RF pulse in 

the x-direction. The damped oscillating function represents the time window for acquisition of the signal. 

 

 Fig. 1.5 depicts the simplest pulse sequence in NMR, the Free Induction Decay (FID) experiment 

[15]. This experiment consists of a single π/2 pulse applied in the x-direction which according to Eq. 1.14 

rotates the magnetization vector to align in the -y-direction. The receiver is then opened to acquire signal 

over some period of time. This signal is the basis for structure elucidation by one-dimensional NMR and 

will be explored briefly in a future section. 

 

 

1.4 Relaxation: Returning to Equilibrium 

 The final piece of the Bloch model required to describe routine NMR experiments is a mechanism 

for energy loss. As with any form of spectroscopy, the energy absorbed from a photon is eventually 

dispersed to return the system back to its equilibrium state. For example, in electronic spectroscopy, an 
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electron may shed excess energy via radiation-based methods like fluorescence and phosphorescence, or 

even radiationless processes such as intersystem crossings. Bloch suggested two parameters for the 

relaxation of the magnetization along the z-axis and in the xy-plane. 

 

1.4.1 Spin-Lattice Relaxation  

 The first type of relaxation mentioned by Bloch is the return of the z-component of the 

magnetization to equilibrium, M0 [17]. The spin-lattice, or longitudinal, relaxation characteristic time 

constant, is denoted as T1 and only contributes to the recovery of Mz. To account for this in the Bloch 

equations, Eq. 1.12 is added to the overall time evolution of Mz. 

𝑑𝑀𝑧

𝑑𝑡
=

(𝑀0 − 𝑀𝑧)

𝑇1

(1.15) 

Solving the spin-lattice term independently yields a result akin to first-order chemical kinetics – the system 

approaches the equilibrium state exponentially as 

𝑀𝑧 = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1) (1.16) 

Most standard NMR instruments possess a single detection channel perpendicular to the B0 field, 

thus direct detection of magnetization parallel to the static field is not possible [15]. In order to measure T1, 

alternative methods are required. One such experiment is the technique of Inversion Recovery as shown in 

Fig. 1.6.  

The concept of the Inversion Recovery pulse sequence is simple: a π-pulse rotates �⃗⃗⃗� to be anti-

parallel to the direction of the static field and the z-component is monitored over several time increments t1 

as it relaxes through zero and eventually returns to M0 [19]. To measure the current value of Mz, a π/2-pulse 

is necessary prior to acquisition to rotate this component into the plane of detection. The signal reflects the 

exponential behavior of the Bloch solution, albeit with a slight amplitude modification as the signal begins 

at -M0 rather than zero. 
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Figure 1.6. The Inversion Recovery pulse sequence (a) and the corresponding transient (b) for a spin-

lattice relaxation time of 0.2 s. 

 

𝑀𝑧 = 𝑀0 (1 − 2𝑒
−

𝑡
𝑇1) (1.17) 

Another technique for measuring T1 is the Saturation Recovery pulse sequence [20]. By applying a 

train of rapid π/2-pulses, the magnetization in the sample can effectively be destroyed allowing for an 

experiment that begins at Mz = 0. Similar to the Inversion Recovery method, Mz is allowed to relax over 

some time increment before a π/2-pulse allows for detection. The signal produced from the Saturation 

Recovery technique more closely matches Eq. 1.13. 
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Figure 1.7. The Saturation Recovery pulse sequence (a) and the corresponding transient (b) for a spin-

lattice relaxation time of 0.2 s. 

 

1.4.2 Spin-Spin Relaxation 

 The second type of relaxation is spin-spin, or transverse, relaxation which is characterized by the 

time constant T2. In contrast to spin-lattice relaxation, spin-spin relaxation is concerned with depletion of 

the x- and y-components of the magnetization. The rate of decay in both directions is equivalent resulting 

in similar terms for the respective Bloch equations. 

𝑑𝑀𝑥

𝑑𝑡
=

−𝑀𝑥

𝑇2

(1.18) 

𝑑𝑀𝑦

𝑑𝑡
=

−𝑀𝑦

𝑇2

(1.19) 
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Like the spin-lattice solution, solving these differential equations provide simple exponential solutions. 

𝑀𝑥 = 𝑀0𝑒
−

𝑡
𝑇2 (1.20) 

𝑀𝑦 = 𝑀0𝑒
−

𝑡
𝑇2 (1.21) 

 

Figure 1.8.  The FID signal in the laboratory (solid) and rotating (dashed) frames. All oscillations are 

removed in the rotating frame leaving only the exponential which decays with a spin-spin relaxation time 

of 0.4 s. 

 

Mx and My are directly detectable in most instruments unlike Mz [15]. The most obvious visual for 

the effect of spin-spin relaxation is the FID signal mentioned in section 1.3.3. By applying a π/2 pulse along 

the x-axis, the entirety of �⃗⃗⃗� is flipped to the -y-direction. When monitoring My from the laboratory frame, 

the signal is the product of two functions, the oscillation of free precession and the decay of the transverse 

relaxation solution. This signal simplifies to the pure exponential piece in the rotating frame as 

demonstrated by Fig. 1.8. 

 According to the Bloch equations, one should be easily able to determine T2 by investigating the 

envelope of the FID signal. Two potential methods for recovering this parameter are by fitting or by Fourier 
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transforming to the frequency domain. In the latter case, T2 is inversely proportional to the full width at half 

height of the frequency spectrum. These methods are generally not preferred as any inhomogeneity in the 

magnetic field causes deviations from the true value of T2: 

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇𝑖𝑛ℎ𝑜𝑚
. (1.22) 

T2
* is the effective transverse relaxation time constant which is always shorter than the true T2 [15]. Without 

a method to disentangle T2 from the effects of field inhomogeneity, Tinhom, this apparent time constant yields 

no significant information about the dynamics of the sample. As a consequence, using an FID to determine 

T2 risks the introduction of error and faulty characterization of an analyte.  

 

Figure 1.9. The Carr-Purcell-Meiboom-Gill pulse sequence (a) and the corresponding transient (b) for a 

spin-spin relaxation time of 0.4 s. 
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To ensure the proper measurement of T2, another pulse sequence dominates the relaxation market. 

The Carr-Purcell-Meiboom-Gill (CPMG) sequence, shown in fig. 1.9, is applied to cancel out the effects 

of dephasing [21,22]. To understand the CPMG pulse sequence, a brief discussion about spin echoes is 

necessary[23]. 

 

Figure 1.10. The behavior of spins in the xy-plane during a spin echo. (a) is the moment immediately after 

the π/2 pulse. (b) shows the effect of inhomogeneity as the spins dephase from each other. (c) depicts the 

reflection due to the pi pulse which maintains the frequency of each spin. (d) is the point at which the spins 

are refocused. 

 

In the instant immediately after applying a π/2 pulse, all spins are roughly parallel in the transverse 

plane. If these spins are allowed to evolve in time, one would expect that all spins precess with the same 

frequency and direction in the plane. However, the spins all experience a slightly different field strength 

depending on their position with respect to the magnetic field, and therefore each spin rotates with not only 
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different frequencies, but potentially different directions. While this may seem difficult to correct, it is as 

simple as the application of a π-pulse.  

By applying a π pulse along the complimentary transverse axis to the initial π/2 pulse, the magnetic 

moments reflect across the axis. Assuming this process happens faster than the translation of the molecules, 

each spin will maintain its frequency and direction of precession. This means that the magnetic moments 

that were departing from each other will now be moving towards each other, almost as if time was reversed. 

These spins will come back in phase for one moment before spreading out once again. The refocusing of 

these spins is the spin echo. 

The CPMG sequence utilizes this concept to cancel out the inhomogeneity effects, yielding a 

transient akin to an FID in the rotating frame with an appropriate decay rate. As depicted in fig. 1.10(a), the 

first two pulses are a spin echo sequence with a π/2 x-pulse, followed by an evolution time, τe, then a π y-

pulse. An acquisition window is opened to detect the maximum of the echo at twice the evolution time as 

the time to refocus is equivalent to the amount of time the spins had to dephase. The key to the CPMG 

sequence looking at a train of echoes to monitor the maximum magnitude of the transverse magnetization 

at several points in time as it decreases to 0. This is achieved by looping through the steps after the π/2 

pulse. Following the spin echo, the spins are allowed to dephase over τe again, another π y-pulse is applied, 

and the next echo is detected before repeating until the signal is near 0. 

 

1.4.3 Autocorrelation and Spectral Density 

 The Bloch equations provide a sufficient model to describe the effect of relaxation on the net 

magnetization of the sample. However, the relaxation term of these equations of motion is a 

phenomenological approximation and does not give any physical intuition about the mechanisms of 

relaxation. It is beneficial to take a more stochastic approach to understanding the processes that drive 

relaxation [13,2].  

Neglected up to this point are the small local magnetic fields experienced by each spin at any given 

moment. It is these local interactions that provide opportunities for returning to the equilibrium state. Due 
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to the constant motions and tumbling of molecules, these fields fluctuate rapidly and randomly and thus the 

average local field felt by the spins over a long period of time approaches zero [25]. However, by looking 

at these fluctuations from moment to moment, it is possible to develop a model that gives more insight to 

the significance of measuring time constants. 

 

Figure 1.11. Two random functions describing the behavior of locally fluctuating fields along the x-axis. 

Function (a) fluctuates less rapidly than function (b) which leads to different correlation times.  
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 Consider two functions which behave randomly over time, one of which appears to fluctuate more 

rapidly than the other as shown in fig. 1.11. If two points are taken from the function with slower 

fluctuations, one would expect no relationship between the two points as it is random. However, it may be 

noted that with sufficiently short times intervals, the strength of the fields at random pairs of time points 

often possess the same sign and close magnitudes. As the time interval, τ, is increased, this trend becomes 

less prevalent. The faster fluctuating function experiences similar behavior, but it is clear that the seemingly 

correlated behavior of the local fields falls off faster.  

 

Figure 1.12. The corresponding autocorrelation functions for a fast fluctuating function (solid) and a slow 

fluctuating function (dashed) with respective correlation times of 0.1 s and 0.5 s. 〈𝐵2〉 is set to 1 for this 

simulation. 

 

 To better explain this concept, it is useful to look at all pairs of points with the same interval. This 

is achieved by the autocorrelation function: 

𝐺(𝜏) = 〈𝐵(𝑡)𝐵(𝑡 + 𝜏)〉 = 〈𝐵2〉𝑒
−

|𝜏|
𝜏𝑐 . (1.23) 
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When the products of the fields at a given interval are averaged, a clearer time-dependent correlation 

appears. This function decays exponentially at a rate of 1/τc, where τc is the correlation time, as shown in 

Fig. 1.11. The rate of decay is strongly influenced by the rate of fluctuations in the random function. 

 Recall that how fast the local fields fluctuate is tied to the tumbling of molecules. It should be no 

surprise that faster tumbling equals faster fluctuations as the orientations of the molecules with respect to 

each other rapidly vary. In other words, faster motions yield shorter correlation times. This is captured by 

an alternative definition of τc – the time it takes for the molecule to tumble one radian. The measurement of 

correlation times reveals information about the dynamics of a sample. For liquids, which are the focus of 

the research conducted in this thesis, the Stokes-Einstein-Debye equation 

𝜏𝑐 =
𝜂𝑉

𝑘𝐵𝑇
(1.24) 

relates τc to the viscosity (η), volume (V), and temperature (T) of the sample where kB is the Boltzmann 

constant [26]. 

 

Figure 1.13. The corresponding spectral density functions for the slow fluctuating function (solid) and fast 

fluctuating function (dashed) with respective correlation times of 0.1 s and 0.5 s. 〈𝐵2〉 is set to 1 for this 

simulation. 
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 It is also useful to look at the frequency counterpart to the autocorrelation function. The Fourier 

transform of the autocorrelation function yields the spectral density function. 

𝐽(𝜔) = 2∫〈𝐵2〉𝑒
−

|𝜏|
𝜏𝑐

∞

0

𝑒𝑖𝜔𝑡𝑑𝑡 = 2〈𝐵2〉
𝜏𝑐

1 + 𝜔2𝜏𝑐
2

(1.25) 

This function yields the probability of finding a spin tumbling with a specific frequency given the amount 

of motion as defined by τc. The spectral density function holds the key to predicting the relaxation time 

constants for a given sample. 

 Armed with spectral density functions and the Stokes-Einstein-Debye relation, a simple model is 

available to predict relaxation time constants based on the nature of a sample. The first step to applying this 

model is the realization that the relaxation process for a spin is just a transition between states. Just as a 

spin must be excited at the Larmor frequency, emission requires the spin to feel the local fluctuating fields 

at the Larmor frequency, or at J(ω0) [13]. 

 In theme with the excitation of a spin, spin-lattice relaxation requires the precession of the 

components of �⃗⃗⃗� to induce a transition between states. Thus, only local fields perpendicular to the spin 

contribute to the process. For the case of spin-lattice relaxation, T1 is dependent on the transverse 

components of the fluctuating fields giving rise to the following relationship: 

1

𝑇1
= 2𝛾2〈𝐵𝑥

2 + 𝐵𝑦
2〉

𝜏𝑐

1 + 𝜔2𝜏𝑐
2

(1.26) 

In contrast, spin-spin relaxation is accomplished by demolishing the coherence of spins, adding 

some slight complexity. The annihilation of coherence can be accomplished in two ways, taking the spin 

out of the transverse plane and dephasing. The first is achieved in the same way as the spin-lattice case, the 

transverse elements of the local fields cause spin flips which provides the non-secular piece of T2. The latter 

contribution was mentioned in the previous section, field inhomogeneity. Dephasing does not require a 

direct transition between states, and thus is not dependent on the Larmor frequency. Rather the maximum 
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of the spectral density, J(0), is used to determine the secular piece of the relationship. The total equation 

for predicting T2 is 

1

𝑇2
= 𝛾2〈𝐵𝑧

2〉𝜏𝑐 + 𝛾2〈𝐵𝑥
2 + 𝐵𝑦

2〉
𝜏𝑐

1 + 𝜔2𝜏𝑐
2

(1.27) 

Note that T2 is always related to T1 by 

1

𝑇2
= 𝛾2〈𝐵𝑧

2〉𝜏𝑐 +
1

2𝑇1
, (1.28) 

where the factor of 1/2 in the T1 term arises from the consideration that the x- and y- magnetization is only 

influenced by fields of the opposite transverse component. 

 

Figure 1.14. A comparison of the spin-lattice (solid) and spin-spin (dashed) relaxation rates as a function 

of correlation time. Note that the spin-spin rate continues decreasing due to the effects of the field 

fluctuations in the z-direction. 

 

Fig. 1.14 shows the dependence of T1 and T2 on the correlation time which is a useful comparison 

for the prediction of relaxation rates for a given set of conditions. When motions are slow, or τc is long, 
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there is a large deviation in the relaxation time constants that is caused by the linear secular term of Eq. 

1.26. This is typically the regime of solid-state NMR and low temperature experiments. On the opposite 

extreme is the fast motion regime that is characteristic of liquids and high temperature experiments. The 

region in which T1 and T2 are approximately equivalent is known as “the extreme narrowing limit.” This is 

the limit where the conditions of the experiments conducted in this thesis lie [13]. 

 

1.5 Relaxation Mechanisms 

 With some background to the factors that affect relaxation rates, this chapter concludes with a brief 

overview of some of the most important mechanisms involved in the relaxation of spin-1/2 nuclei [27]. 

Generally, relaxation is driven by a single prevailing force which can be dependent on things such as the 

state of matter, spin, and impurities. 

 

1.5.1 Dipolar Coupling 

 The most obvious fluctuating fields come from the dipole-dipole coupling of magnetic dipoles 

between nuclear spins [28]. The strength of the dipolar coupling is dependent on both the distance between 

spins, rIS, and the orientation of a vector passing through both spins with respect to the static field, ΘIS. 

𝑑𝐼𝑆 = −
𝜇0𝛾𝐼𝛾𝑆ℏ

4𝜋𝑟𝐼𝑆
3

(3 cos2(Θ𝐼𝑆) − 1) (1.29) 

The radial piece of this secular dipolar coupling constant falls off quickly as 1/rIS
3 requiring spins to be 

within close range to each other.  

In solid-state NMR, the angular component of dipolar coupling gives rise to interesting line shapes. 

As molecular tumbling is slow in solids, orientation-dependent interactions are prevalent appearing in the 

form of broad doublet known as the Pake pattern [29]. It is a common practice to narrow these spectral 

peaks by canceling out dipolar couplings. This is accomplished by rapidly spinning the solid at 54.74°, the 

so-called “magic angle,” with respect to the static field [30]. When the frequency of spinning is sufficiently 

high, this angle sends the angular piece of the dipolar coupling constant to zero as all anisotropic interactions 
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average out. In contrast, liquids tumble fast enough to average out dipolar effects on their own, thus no 

broadening appears. In both solids undergoing magic angle spinning and liquids, despite the cancellation 

of effects on average, the radial piece of the dipolar coupling still plays an important role in relaxation. 

These through-space interactions are typically the dominant relaxation mechanism in the majority spin-1/2 

systems. 

 

1.5.2 Paramagnetism 

 One of the few interactions which can trump the strength of nuclear dipolar coupling is the dipolar 

coupling between a nuclear spin and the spin of an unpaired electron [30]. Consider the gyromagnetic ratios 

of nuclei and an electron to be used in the calculation of Eq. 1.29. Whereas γ for nuclei are usually in the 

range of 1-100 MHz/T, electron spins precess much faster in a static field with a γ of about 28 GHz/T. As 

a result, the dipolar coupling constant for the interaction of a nuclear spin with an electron spin is anywhere 

from 100 to 10,000 times greater than that of the coupling between two nuclei. The relaxation time constants 

shorten drastically with the introduction of ions to a solution where more unpaired electrons in an electron 

induce a stronger effect. Often this is used experimentally to control the relaxation rate of a substance by 

the dissolution of a salt. The relaxation of the samples in the experiments described in chapters 3 and 4 of 

this thesis are primarily driven by these paramagnetic interactions. 

 

1.5.3 J-coupling and Scalar Relaxation 

 NMR is most widely used for the structure elucidation of complex molecules. In strong static fields, 

the spectra produced by a simple FID experiment are high resolution. Depending on the neighboring nuclear 

environment, the spectral peaks split into several hyperfine peaks [32]. This is the result of J-coupling, an 

indirect, through-bond interaction. In liquids, the J-coupling constant is isotropic and therefore scalar 

leading to the alternative term of scalar coupling.  
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The basic mechanism of scalar coupling is the polarization of electrons due to interactions with 

nuclear magnetic dipoles [33]. The resonant frequency of a nuclear spin is slightly shifted when the 

magnetic moment of a nearby electron is changed. An example of this process is nucleus A polarizes an 

associated electron A forcing electron B to flip its spin according to the Pauli exclusion principle. Because 

there are two equally probable spin flips, two hyperfine transition lines appear for each nucleus in the 

spectrum. 

 In the context of relaxation, there are two ways in which scalar couplings can contribute to the 

relaxation process [34]. First, if spins are exchanging at a rate faster than the J-coupling constant, scalar 

couplings may fluctuate allowing for relaxation to occur. This is referred to as “scalar relaxation of the first 

kind.” The second case occurs when one nucleus is coupled to another nucleus with a faster relaxation rate. 

The changes of the second nucleus induces a modulation which can drive faster relaxation for the first 

nucleus. This is referred to as “scalar relaxation of the second kind.” These scalar relaxation processes 

seldom overpower dipolar mechanisms for relaxation. 
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Chapter 2: Rapid Descents: Data Processing in NMR 

2.1 Introduction 

 As explained in the prior chapter, the time-domain signals of NMR relaxometry experiments 

recover or damp exponentially according to the solutions of the Bloch equations [1]. With a wide range of 

possible interactions driving relaxation, transients may vary anywhere in complexity from a simple 

monoexponential decay to a seemingly continuous distribution of damping exponentials. A wealth of 

physical insights exists hidden in the acquired data which leads to one of the primary problems of 

relaxometry – how does one reliably analyze such complex data? Several algorithms have been employed 

to varying degrees of success in attempts to retrieve as much information as possible from these transients. 

This chapter aims to explore common data analysis methods in NMR relaxometry to help contextualize the 

advancements in data processing which serve as the focus of the first major section of this dissertation. 

 

2.2 Least Squares Regression 

2.2.1 Ordinary Least Squares 

The tried and true methods of ordinary least squares (OLS) regression and non-linear least squares 

regression dominated data analysis in the early years of NMR relaxometry [2,3]. For systems with a single 

relaxation environment, linearization of the data is easily achieved by taking the logarithm of the time-

dependent signal, s(t), yielding the relationship 

ln[𝑠(𝑡)] = −𝑅𝑡 (2.1)

where the slope is the desired relaxation rate, R. This makes single component data a prime candidate for 

the application of linear regression models [4,5]. 

 Consider a univariate linear regression model with a y-intercept of 0, 𝑦𝑘 = 𝑥𝑘𝛽 + 𝜀𝑘, with the kth 

observation of the dependent variable yk, independent variable xk, residuals 𝜀𝑘, and coefficient β, In an ideal 

scenario, the fit “predicted” by 𝑥𝑘𝛽 is exact with 𝜀𝑘 = 0. The responses of real experiments, however, 
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always have some degree of unpredictable variation due to noise which must be considered. Ordinary Least 

Squares, as well as all other forms of least squares regression to be discussed, uses the sum of square 

residuals (SSR) as a goodness-of-fit test.  

𝑆𝑆𝑅(𝛽) =  ∑|𝑦𝑘 − 𝑥𝑘𝛽|2 = ∑|𝜀𝑘|2
𝐾

𝑘=1

𝐾

𝑘=1

(2.2) 

The “best” fit is estimated to occur when β minimizes SSR as this is effectively equivalent to minimizing 

the variance therefore reducing the variables which cannot be accounted for by the model. 

�̂� = argmin
𝛽

𝑆𝑆𝑅(𝛽) (2.3) 

When this global minimum is found, the coefficient �̂� is referred to as the OLS estimator. The OLS 

estimator is only considered valid and unbiased when three key assumptions are made according to the 

Gauss-Markov theorem: the mean of the noise is the zero, all errors are uncorrelated, and the variance of 

the noise is finite and static. Most noise in NMR relaxometry experimental data meets these requirements 

making this simple OLS regression model a suitable algorithm for the estimation of a single relaxation 

component by a simple substitution of Eq. 2.1 into Eq. 2.3 

�̂� = argmin
𝑅

∑|ln[𝑆(𝑡)]𝑘 − 𝑡𝑘𝑅|2
𝐾

𝑘=1

. (2.4) 

OLS regression is easily extended to complex, multivariate linear problems. To account for Q 

individual regressors 𝑥𝑞,𝑘 for a given data point k, the general linear model is defined by 

𝑦𝑘 = 𝛽0 + 𝑥1,𝑘𝛽1 + 𝑥2,𝑘𝛽2 + ⋯+ 𝑥𝑄,𝑘𝛽𝑄 + 𝜀𝑘 (2.5) 

where 𝛽0 corresponds to the estimate of the y-intercept. Expressing this model in matrix form, Eq. 2.6, 

makes the solution to the multivariate form of OLS more apparent. 

�⃗� = 𝑿𝛽 + 𝜀 (2.6) 

The K⨯1 vectors �⃗� and 𝜀 represent the dependent variable and errors for K total observations. 𝑿 is a K⨯Q 

matrix of the set of regressors with a corresponding vector 𝛽 of coefficients of size 1⨯Q. For data 

anticipated to possess a non-zero y-intercept, all elements of the first column must possess a value of one 
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in accordance with Eq. 2.5. Similar to the prior linear model, the OLS estimator is determined by finding 

the set of coefficients which minimizes SSR. 

�̂� = argmin
�⃗⃗⃗�

‖�⃗� − 𝑿𝛽‖
2

= argmin
�⃗⃗⃗�

‖𝜀‖2 (2.7) 

The solution to this minimization problem takes on the final form of 

�̂� = 𝛽 + (𝑿𝑇𝑿)−1𝑿𝑇𝜀. (2.8) 

 

Figure 2.1. Comparison of (a) monoexponential and (c) biexponential decays and their corresponding 

logarithms, (b) and (d).  

 

Unfortunately, the OLS method is not applicable to more complicated relaxometry signals. As 

demonstrated by plots Figs. 2.1(c) and 2.1(d), systems with more than one relaxation component do not 

linearize when the logarithm of the transient is taken. The non-linearity is a consequence of the additive 

nature of each environment’s signal contribution [3]. The total signal is modelled by 
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𝑠(𝑡) =  ∑ 𝐴𝑛𝑒−𝑅𝑛𝑡

𝑁

𝑛=0

(2.9) 

where Rn is the nth relaxation rate out of N total components and An is the respective weight of the 

contribution. Alternative non-linear data processing methods, such as non-linear least squares regression, 

must be contemplated. 

 

2.2.2 Non-linear Least Squares 

 Briefly mentioned in the previous section, the non-linear least squares (NLS) method shares the 

same goal as OLS [4]. That is the “best” fit estimator for NLS is determined by minimization of SSR. The 

simplicity of the OLS model makes it an analytically solvable problem, a feature that is absent in nonlinear 

problems. Consider briefly the smallest multicomponent relaxation system described by the equation 

𝑠(𝑡) =  𝐴1𝑒
−𝑅1𝑡 + 𝐴2𝑒

−𝑅2𝑡. (2.10) 

Whereas the single component scenario possesses only one unknown variable, the two component case is 

underdetermined with 4 coefficients and one equation. With no way to linearize the function, it is not 

possible to analytically solve for all unknown variables. This leads to the main difference in how linear and 

non-linear data must be treated – the NLS method takes an iterative approach to find the best fit as a function 

of each variable [5]. 

 One common algorithm for the application of NLS is the Levenberg-Marquardt algorithm [6,7]. 

The Levenberg-Marquardt algorithm is an amalgamation of the Gauss-Newton and Gradient Descent 

routines for optimization [8,9]. As is standard for many iterative approaches, an initial guess for each 

parameter to be fit is required. The difference between these three optimization methods is how the 

parameters are adjusted at each step.  

The Gauss-Newton method assumes the solution �̂� is near the current guess 𝛽𝑞 [8]. For sufficiently 

small adjustments of the parameters, the non-linear problem can be recontextualized as a linear problem 

using a first-order Taylor expansion of 𝜀 about the current guess. 
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𝛽𝑞+1 = argmin
�⃗⃗⃗�

‖𝜀𝑞 + 𝑱(𝜀𝑞)(𝛽 − 𝛽𝑞)‖
2

(2.11) 

Here, J is the Jacobian matrix of first-order partial derivatives. With the return to a linear format, solving 

for the new guess vector, 𝛽𝑞+1, can be treated as an OLS problem yielding the following solution: 

𝛽𝑞+1 = 𝛽𝑞 − (𝑱(𝜀𝑞)
𝑇
𝑱(𝜀𝑞))

−1

𝑱(𝜀𝑞)
𝑇
𝜀𝑞 (2.12) 

Taking 𝛽𝑞+1 − 𝛽𝑞 leaves the correction that determines the guess vector for the next iteration, 𝛿𝐺𝑁. 

𝛿𝐺𝑁 = −(𝑱(𝜀𝑞)
𝑇
𝑱(𝜀𝑞))

−1

𝑱(𝜀𝑞)
𝑇
𝜀𝑞 (2.13) 

The key selling point of the Gauss-Newton method is bypassing the calculation of Hessian matrices which 

heavily increase computational costs. With a proper guess, this algorithm converges rapidly. However, in 

the event that the initial guess is too far from the solution, the core approximation of this method is no 

longer valid, and the algorithm may fail to converge as tiny steps are taken.  

On the opposite end of the optimization grid, is the gradient descent algorithm which increments 

the guess parameters proportionally to the steepest slope of a locally linear function [9]. Here the adjustment 

to 𝛽𝑞 is calculated simply as 

𝛿𝐺𝐷 = −𝛾𝑞𝑱(𝜀𝑞) (2.14) 

where γq is the learning rate of the algorithm. While this method always drives towards minimum, the 

efficiency strongly depends on the choice of learning rate. If the learning rate is too high, divergent behavior 

may arise due to jumps that are too large. If the learning rate is too low, it may not only take eons to reach 

a solution, but the chance of falling into a local minimum increases. 

The Levenberg-Marquardt method modifies the Gauss-Newton algorithm by introducing a scalar 

damping parameter, λ, in the form of a penalty term where the identity matrix, I, adds bias towards solutions 

with smaller norms [6,7].  

𝛽𝑞+1 = argmin
�⃗⃗⃗�

(‖𝜀𝑞 + 𝑱(𝜀𝑞)(𝛽 − 𝛽𝑞)‖
2
+ ‖𝜆𝑰𝛽𝑞‖

2
) (2.15) 
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The adjustment to 𝛽𝑞 is now calculated as 

𝛿𝐿𝑀 = −(𝑱(𝜀𝑞)
𝑇
𝑱(𝜀𝑞) + 𝜆𝑰)

−1
𝑱(𝜀𝑞)

𝑇
𝜀𝑞 . (2.16) 

By tuning λ, the strengths of both the Gauss-Newton and gradient descent can be utilized. After each step, 

λ is actively altered by an additional factor, υ, to reflect the current change in SSR. Note that as λ decreases, 

Eq. 2.15 approaches the standard solution to the Gauss-Newton algorithm. Conversely, if λ is significantly 

increased, the damping term overwhelms the Hessian approximation, JTJ, and Eq. 2.15 approaches the 

gradient descent solution.  

 Figure 2.2 summarizes the standard procedure for the Levenberg-Marquardt algorithm. First, the 

parameters 𝛽𝑞 and λ are initialized and the value of υ is set. The residuals and the corresponding Jacobian 

matrix for the initial guess are calculated and the adjustment 𝛿𝐿𝑀 is determined and added to 𝛽𝑞. The 

residuals for 𝛽𝑞+1 are calculated and the SSR is compared to the previous step. A decrease in SSR at the 

new step suggests that the algorithm is converging towards a minimum, thus the damping parameter is 

decreased by a factor of υ to accelerate the process. 𝛽𝑞+1 is accepted as the new guess parameter and the 

algorithm moves to the next iteration. If SSR has increased, the new guess parameter is rejected and λ is 

instead increased by a factor of υ. The next iteration then calculates a new parameter adjustment using the 

new damping parameter, but the old coefficient guess. This algorithm repeats until a set tolerance is 

satisfied. The Levenberg-Marquardt algorithm has become a standard method for the analysis of nonlinear 

transients in NMR. However, the performance of this algorithm is dependent on not only the initialized 

parameters, but the model function for the data must also be guessed. Combined with the introduction of 

constraints to ensure only physical solutions, NLS can easily accumulate in computation cost and solution 

variability. 
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Figure 2.2. The Levenberg-Marquardt algorithm for the method of non-linear least squares regression. 

 

2.3 Inverse Laplace Transforms 

While the treatment of relaxation rates thus far has assumed a discrete distribution, in reality there 

is far more nuance in the environments of spins [10]. The relaxation rates which are typically reported are 

an average of the rates experiences by spins in similar environments [11]. When viewed from this 

perspective, it becomes clear that the distribution of rates may be more continuous in nature. By summing 

all of these possible rates, the total signal can be expressed as 

𝑠(𝑡) = ∫ 𝑃(𝑅)𝑒−𝑅𝑡𝑑𝑅

∞

0

(2.17) 
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where P(R) is the probability distribution of possible rates. Note the similarity to an inverse Fourier 

transform (Eq. 2.18) in which a function of frequency is converted to a function of time.  

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔

∞

−∞

(2.18) 

Fourier transforms can be considered to be a special case of another transformation, the Laplace transform.  

The main divergence between these transformations is related to the frequency domain [12]. 

Whereas the Fourier transform only observes frequencies from the imaginary axis, the Laplace transform 

looks at the full complex domain of frequencies. This crucial difference is clear when comparing the 

exponential functions of Eq. 2.17 and 2.18. For the case of relaxation, the signal as a continuous distribution 

of rates is a special form of the inverse Laplace Transform (ILT) in which only the real axis of frequencies 

are considered. 

With a continuous set of rates, it is only necessary to calculate the relative weights for each rate to 

model the total signal. Once again, the signal cannot be linearized and obtaining an analytical solution is 

not possible. This problem must be approximated using discretized, non-linear methods, such as NLS. 

However, it is possible to restrict the scope of this problem to improve computational costs and the accuracy 

of results. Returning to Eq. 2.10, consider the physical values that are possible for each parameter [11]. A1 

and A2 are the populations of particles undergoing the respective relaxation rates of R1 and R2. Note that all 

of these parameters must be positive values in order to reflect a physical system. If the least squares 

algorithm is constrained to coefficients greater than or equal to zero, this becomes a non-negative least 

squares (NNLS) problem [4]. 

 

 

2.3.1 Lawson-Hanson Algorithm 

One of the most prevalent algorithms for solving NNLS problems is the Lawson-Hanson algorithm 

as described in figure 2.3 [4,13]. This algorithm keeps track of which coefficients presently satisfy the 
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constraint conditions by defining two sets of indices. Set ℙ, called the passive set, possess the indices of 

coefficients which are positive and the active set ℝ contains the remaining indices. Consider a least square 

problem with K observations and Q coefficients. In the initialization of this algorithm, ℙ is a null set and ℝ 

= {1, 2, …, Q}. The initial guess of parameters 𝛽𝑞 is a vector of zeros. The final piece of the initialization 

is the calculation of  

�⃗⃗⃗� = 𝑿𝑇(�⃗� − 𝑿𝛽𝑞) (2.19) 

The vector �⃗⃗⃗� functions as a set of Lagrange multipliers with subvectors �⃗⃗⃗�ℙ and �⃗⃗⃗�ℝ composed of only the 

elements corresponding to their respective index sets.  

 The primary loop of the Lawson-Hanson algorithm continues until two conditions are met – the 

active set is null and the highest valued element of �⃗⃗⃗�ℝ is below a set tolerance. The iterative process solves 

the least squares problem for a newly defined subset of regressors, Xℙ, at each step until an optimized 

solution is found. The routine starts by choosing an index n to transfer from set ℝ to ℙ via 

𝑛 = argmax(�⃗⃗⃗�ℝ) . (2.20) 

Xℙ is then generated by taking the regressors corresponding to the indices in set ℙ. A respective subset of 

coefficients 𝛽ℙ are calculated in a standard least squares fashion.  

𝛽ℙ = (𝑿ℙ
𝑇𝑿ℙ)

−1
𝑿ℙ

𝑇 �⃗� (2.21) 

The complimentary subset 𝛽ℝ is a vector of zeros. The new vector of coefficients 𝛽𝑞+1 is then constructed 

by the combination of 𝛽ℙ and 𝛽ℝ. However, this least squares solution is unconstrained meaning there is a 

small chance that the calculated coefficients are negative. 
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Figure 2.3. The Lawson-Hanson algorithm for the method of non-negative least squares regression. 

 

 In the event that any coefficient is negative or zero, a subroutine is opened to determine a new set 

of coefficients which satisfy the constraints while also improving the fit. In this inner loop, an alternative 

set of coefficients is calculated by utilizing both the unconstrained solution and the previous guess. 𝛽𝑞 is 

replaced by the calculation of 𝛽𝑞 − 𝛼(𝛽𝑞+1 − 𝛽𝑞) where the new parameter α is dependent on the ℙ subsets 

of the new and old coefficients. 
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𝛼 = min(
𝛽𝑞,ℙ

𝛽𝑞,ℙ − 𝛽𝑞+1,ℙ

) (2.22) 

The index sets are updated based on the new values of 𝛽𝑞 where the indices of any remaining zero or 

negative coefficients are moved to ℝ and a new 𝛽𝑞+1 is calculated via the prior method. This inner loop 

continues until all coefficients of 𝛽𝑞+1 are positive. Once a solution is acceptable, �⃗⃗⃗� is calculated for the 

new parameters and the algorithm loops until the end conditions of the main loop are satisfied. 

 The ILT currently serves as the gold standard of transient analysis in NMR relaxometry [14]. This 

method excels in very complex environments where many relaxation rates are expected. The utility of the 

ILT has helped extend the scope of low field NMR towards not only distributions of relaxation rates, but 

into looking at the physical properties of porous materials, emulsions, and other complicated samples 

[15,16]. However, the ILT suffers from a few significant drawbacks: 1) large data sets can often accumulate 

high computational cost, 2) the solutions yield continuous estimations even for discrete systems, and 3) the 

solutions can be incredibly unstable with respect to noise when unmodified.  

As is common with inversion problems, the ILT is an ill-posed problem [14]. The set of exponential 

functions that build the regressor matrix are closely related in decay rates. As a consequence, several 

solutions may provide a sufficient fit to the signal making it difficult to discern the correct one. Additionally, 

issues arise from the physical constraints imposed on the exponentials. In the analysis of a CPMG transient, 

for example, all functions in the regressor are decaying such that the slope of the tangent line at each point 

is always negative. In contrast, real data possesses noise which causes an apparent random fluctuation in 

slopes. Attempting to model this behavior with only decaying functions leads to increased instability. 

 

2.3.2 Tikhonov Regularization  

 Several methods have been applied to enhance the stability of the ILT, however regularization is a 

dominating presence in NMR data analysis. An example of regularization is the Levenberg-Marquardt 

algorithm and the introduction of the penalty term to the Gauss-Newton method [6,7]. By introducing a 
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bias to the least squares problem, the number of possible solutions are reduced thereby increasing the 

stability of the algorithm. Regularization comes in multiple flavors which highlight different features of 

modelled data [18]. 

 The easiest to implement and most common in NMR is L2 regularization, also known as Tikhonov 

regularization or Ridge regression [19-22]. Tikhonov regression adds a penalty term to the least squares 

problem which is related to the square of the Euclidian norm of the coefficients. 

�̂� = argmin
�⃗⃗⃗�

(‖�⃗� − 𝑿𝛽‖
2
+ 𝜆‖𝚪𝛽‖

2

2
) (2.23) 

L2 regression for a linear least squares fit is exactly solvable yielding: 

�̂� = (𝑿𝑇𝑿 + 𝜆𝚪𝑇𝚪)−1𝑿𝑇�⃗� (2.24) 

The regularization matrix, Γ, enforces a preference towards more unique solutions by dampening the 

functions which are most influenced by the noise. This effect appears as a strong reduction of certain 

coefficients in the solution.  

Typically, as demonstrated in the Levenberg-Marquardt case, Γ is often chosen to be the identity 

matrix reducing Eq. 2.24 to 

�̂� = (𝑿𝑇𝑿 + 𝜆𝑰)−1𝑿𝑇�⃗�. (2.25) 

This is referred to as the standard form of Tikhonov regularization. Other common choices for the 

regularization matrix are the finite difference matrix operators which approximate derivatives. The finite 

difference matrices function as smoothing operators, thus highlighting more continuous features. The 

choice in Γ for NMR data analysis comes down to a priori knowledge about the complexity of the sample. 

A sample with a discrete set of relaxation rates prefers the standard form of Tikhonov regularization. 

 The regularization parameter, λ, acts as the Lagrange multiplier of the newly imposed constraints. 

As λ increases, the less desirable elements of the coefficients decrease more effectively diminishing the 

contribution of certain functions to the final solution. The choice of λ is crucial as too much regularization 

can lead to underfitting. In the case of L2 regression, no coefficient can be completely reduced to zero and 
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thus �̂� remains dense. As a consequence, L2 solutions for discrete relaxation systems will always present 

as broadened peaks. 

 

2.3.3 Lasso Regression 

 Another form of regularization is L1 regression, or lasso regression [20,23]. Similar to L2 

regression, a penalty term is introduced to the least squares problem. 

�̂� = argmin
�⃗⃗⃗�

(‖�⃗� − 𝑿𝛽‖
2
+ 𝜆‖𝚪𝛽‖

1
) (2.26) 

Here, the absolute value norm is introduced to constrain the vector of coefficients. Unlike L2 regression, 

the elements of �̂� may be reduced to zero thus introducing sparsity. This is beneficial to simple systems 

such as a mixture with few relaxation rates as the solutions will tend to present narrower peaks more 

reminiscent of the true distribution. However, L1 regression has a two notable drawbacks. First is that it is 

not analytically solvable. Consequently, additional numerical methods must be applied to reach a solution. 

Second, while this regularization does reduce the number of possible solutions, there is no guarantee that a 

unique solution exists. If two or more possible solutions exist, one is chosen at random. 

 

2.3.3 Elastic Net Regularization 

 In cases where distributions have both discrete and continuous features, L1 and L2 regularization 

will tend to lean heavily towards one property. There exists a hybrid of the two methods that allows for an 

intermediate degree of sparsity known as naïve elastic net regularization [24].  

�̂� = argmin
�⃗⃗⃗�

(‖�⃗� − 𝑿𝛽‖
2
+ 𝜆1‖𝚪𝛽‖

1
+ 𝜆2‖𝚪𝛽‖

2

2
) (2.27) 

Here, both the lasso and Tikhonov penalty terms are included with their own regularization parameters. The 

naïve elastic net problem can be broken into two steps – first the L2 term is used to group highly correlated 

coefficients which express more continuous features, then the L1 term performs the role of variable 

selection. At each stage of the calculation, the coefficients undergo shrinkage which in turn introduces 
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additional bias that is not present when solely utilizing L1 or L2 methods. The naïve elastic net tends to 

underperform as a result of this double shrinkage, only providing reasonable results when the regular 

parameters approach one of the regression extremes. A standard method to account for this increased bias 

is to simply scale �̂� by the following: 

�̂�′ = (1 + 𝜆2)�̂� (2.28) 

This minute modification maintains all the properties of the naïve elastic net solution, but greatly enhances 

the predictive power. This scaled version of the problem is referred to as elastic net regularization. 

 

2.4 The Matrix Pencil Method 

 While the ILT has proven to be a powerful force in NMR analysis, in most situations it is a case of 

applying a continuous method to a discrete system. Between stability issues and, especially for large data 

sets, high computational costs, alternative methods have recently entered the NMR space. One such method 

is the matrix pencil method (MPM) [25,26]. MPM is a relatively young technique which has found 

prominence in time-domain signal analysis due to its ability to handle the complex exponential functions 

which are central to this thesis [27]. 

 Consider the signal for a sample with a single relaxation component and the relationship at two 

points in time, 

𝑒−𝑅𝑡2 = 𝑒−𝑅(𝑡1+Δ𝑡) (2.29) 

where Δt is a fixed increment between the two points. Using the properties of exponents, Eq. 2.29 can also 

be expressed as 

𝑒−𝑅𝑡2 = 𝑒−𝑅Δ𝑡𝑒−𝑅𝑡1 . (2.30)

Because the relaxation rate and the time increment are fixed values, 𝑒−𝑅Δ𝑡 is a scalar quantity which will 

now denoted as λ. This revelation reveals that any two points in a monoexponentially decaying function are 

proportional to each other. In other words, Eq. 2.30 can be treated as a linear relationship. 

𝑠(𝑡1) = 𝜆𝑠(𝑡2) (2.31) 
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Barring noise, one only needs two points in a data set to calculate λ which can itself be used to calculate the 

exponential decay rate via 

𝑅 = −
Δ𝑡

ln(𝜆)
(2.32) 

This is the core concept behind the function of the matrix pencil method. 

 Moving to a mixture of two relaxation components, it becomes immediately clear that that 

solving for these rates is no longer so easy. 

𝐴1𝑒
−𝑅1𝑡2 + 𝐴2𝑒

−𝑅2𝑡2 = 𝜆1𝐴1𝑒
−𝑅1𝑡1 + 𝜆2𝐴2𝑒

−𝑅2𝑡1 . (2.33) 

There are now individual scalars and weights for each exponential that makes up the overall signal which, 

as discussed in section 2.1, is not analytically solvable with only one equation. Consider now, that the total 

signal is a linear combination of linear equations, or a linear system of equations. By detangling each 

contribution and looking at these linear problems individually, each term in the signal can be treated in a 

similar manner to Eq. 2.32. 

 To accomplish this, the MPM method starts by expressing the total signal as a matrix, to be denoted 

as Y.  

𝒀 = (
𝑌(1,1) ⋯ 𝑌(1,𝑚)

⋮ ⋱ ⋮
𝑌(𝑛, 1) ⋯ 𝑌(𝑛,𝑚)

) (2.34) 

Two-dimensional data sets are inherently matrices, while one-dimensional data sets are vectors. In line with 

the content of this thesis, the one-dimensional variant of MPM will be discussed. Generally, the one-

dimensional transients are transformed into the form of a Hankel matrix with dimensions n⨯n for this 

context. The matrix Y can be broken into two submatrices which represent a shift in time reflective of the 

two points in time in Eq. 2.31: 

𝒀𝟏 = (
𝑌(1,1) ⋯ 𝑌(1,𝑚 − 1)

⋮ ⋱ ⋮
𝑌(𝑛, 1) ⋯ 𝑌(𝑛,𝑚 − 1)

) (2.35) 

and 
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𝒀𝟐 = (
𝑌(1,2) ⋯ 𝑌(1,𝑚)

⋮ ⋱ ⋮
𝑌(𝑛, 2) ⋯ 𝑌(𝑛,𝑚)

) . (2.36) 

This pair of equally-sized submatrices are referred to as a matrix pencil [28]. This name stems from an old 

definition of pencil which refers to a convergence of properties, in this case these submatrices are related 

in time. 

 From this matrix form, the signal can now be decomposed into its individual contributions by a 

transformation into a generalized eigenvalue problem [28]. 

𝒀𝟐𝑝𝑖 = 𝜆𝑖𝒀𝟏𝑝𝑖 (2.37) 

𝑝𝑖 is the eigenvector corresponding to a specific relaxation component and λi is the respective eigenvalue. 

By rearranging Eq. 2.37, a familiar equation appears: 

𝒀𝟏
−1𝒀𝟐𝑝𝑖 = 𝜆𝑖𝑝𝑖. (2.37) 

This is the standard eigenvalue problem which is solved by diagonalization methods. Here, the eigenvalues 

represent the same scalars presented previously, thus all relaxation rates can be calculated via Eq. 2.32. It 

is important to note that Y1
-1 often cannot be directly calculated, so the pseudoinverse is used in its place. 

To calculate the relative weights for each relaxation component, consider an alternative way to 

model the signal for N relaxation: 

𝑠(𝑖 − 1) = ∑ 𝐴𝑛

𝑁

𝑛=1

𝜆𝑛
𝑖−1 (2.38) 

Because the time increments are constant for MPM, the total signal can be built purely by the powers of the 

eigenvalues. By constructing a pair of Vandermonde matrices from these powers of eigenvalues up to P 

time points, ZL and ZR, the amplitude matrix is calculated via 

𝑨 = 𝒁𝑳
−1𝒀𝒁𝑹

−1 (2.39) 

For a one-dimensional transient, ZR is the transpose of ZL where 

𝒁𝑳 = (
𝜆1

0 ⋯ 𝜆𝑁
0

⋮ ⋱ ⋮
𝜆1

𝑃 ⋯ 𝜆𝑁
𝑃
) (2.40) 
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To effectively apply the matrix pencil method, it is important to note how noise presents itself in 

the MPM solutions. As mentioned previously, the decay rates of these models only represent physical 

relaxation rates when real and positive which means ideal behavior is monotonic. The data begins to 

fluctuate resulting in additional complex decay rates once noise is introduced. As a consequence, some 

eigenvalues produced by MPM may become complex themselves. Keeping all of these eigenvalues will 

result in an exact model of the noisy data, however, very little information can be gained about the physical 

properties of the system. The underlying monotonic behavior of the data is masked due to an increase in 

matrix rank when noise is added.  

To account for this, the rank of the data matrix must be reduced to a predicted size based on an 

estimated number of relaxation components prior to solving the  generalized eigenvalue problem. This 

reduction is accomplished by the application of Singular Value Decomposition (SVD) as a filter [29]. SVD 

functions similar to an eigenvalue decomposition as it factorizes a matrix into its characteristic vectors, 

however SVD is not restricted to square matrices and therefore the diagonal matrix can include singular 

values [30]. Y is deconstructed into the left and right matrices of singular vectors, U and V, and the singular 

value matrix Σ. 

𝒀 = 𝑼𝚺𝑽∗ (𝟐. 𝟒𝟏) 

If the size of each matrix is restricted by the number of relaxation components, such as reducing S to 2⨯2 

for two physical rates, the corresponding reconstruction of the data matrix will be reduced in both noise 

and rank 

 Proper SVD filtering will prompt MPM to produce only physical eigenvalues. The computational 

cost of the MPM algorithm is very low, so typically one can just iterate through several guesses for the 

number of rates based on a priori information. The best rank results in the highest number of real and 

positive eigenvalues. Methods such as minimum description length have been employed previously to 

determine the optimal rank without the need for prior information, but these methods have not been utilized 

in the work to be discussed [26]. 
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 When comparing ILT and MPM, one cannot be treated as objectively superior. The ILT does suffer 

from much higher computational costs and more instability than MPM, however ILT shines when solutions 

are expected to be dense. For continuous distributions, MPM runs into the opposite issue of ILT in that a 

discrete solution is applied to a continuous problem. The transient for a system with hundreds relaxing 

components can often be reasonably modeled by a reduced set of exponentials. The MPM algorithm tends 

to find a solution with the minimum number of rates required to effectively reconstruct the signal. As a 

consequence, attempting to recover the rates for a continuous distribution yields only a fraction of the 

components, generally no more than about 10 rates. Thus, the current power of MPM lies in the analysis of 

simpler systems. However, there is still a desire to try to implement MPM to the analysis of these dense 

problems.  

 

2.5 Filtering 

 To conclude this chapter on techniques for NMR data analysis, a couple of filtering methods will 

be briefly discussed. Most relaxometry experiments are conducted at low magnetic fields, a regime which 

is notorious for poor signal-to-noise [31]. In some situations, the trade-off between the amount of noise 

reduction by signal averaging and the total experimental time are unconscionable. Denoising methods are 

often applied prior to fitting the data in order to help ensure reliable characterization of the sample. 

 

2.5.1 Apodization 

 The most common technique applied for noise reduction in NMR is apodization, often referred to 

as a Fourier filter [31]. Typically, noise in the time domain appears as high frequency artefacts in the 

frequency domain. By eliminating these high frequency features, the signal noise is effectively reduced in 

noise. This can be accomplished by the use of appropriate windowing functions. For relaxometry data, the 

corresponding Fourier transform takes on the shape of a Lorentzian function centered about zero. To 

maintain the core signal, this spectrum must be convoluted with a function which maintains the center of 
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the Lorentzian while decreasing any activity on the outer edges. An obvious solution is to use a smooth 

function with similar behavior such as a Gaussian. With a comparable choice of width, the Gaussian 

function will reduce any fluctuations at the higher frequencies and keep the main structure. The major 

drawback to the Fourier filter is that it is highly sensitive. Too much smoothing will inevitably affect the 

core signal resulting in aliasing as demonstrated in Fig. 2.5. In this situation, it is common to discard the 

first and last point of the data set. 

 

Figure 2.5. Denoising of a noisy transient by the Fourier filter. Plots (a) and (b) are the raw signal and 

respective frequency spectrum. Plots (c) and (d) are the results of apodization. Note that while noise has 

decreased, the end points of the data no longer fit the function. 

 

2.5.2 Matrix Pencil Filter 

 A new application of MPM has recently been suggested to bypass the aliasing issue of the Fourier 

filter [32]. The eigenvalues of the full rank MPM reveals a lot of information about the signal. As mentioned 
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previously, noise takes on the form of complex eigenvalues with MPM. This in turn produces complex 

decay rates in which the imaginary component describes a piece of the noise. Discarding the rates with the 

highest imaginary frequencies and reconstructing the signal eliminates much of the noise. In this way, the 

MPM can function as a bandpass filter much like the Fourier filter.  

 

Figure 2.6. Denoising of a noisy transient by the Matrix Pencil Filter. Plots (a) and (b) are the raw signal 

and respective frequency spectrum. Plots (c) and (d) are the results of the filter. Note that no major aliasing 

has occurred with this method. 

 

The matrix pencil filter (MPF) has one major advantage over apodization – a majority of the core 

signal contribution comes from the real components of the rates with low imaginary frequencies. In other 

words, eliminating the noise does not tamper with the underlying signal, and thus this filter does not tend 

to alias. As shown in Fig. 2.6, MPF is capable of a much higher degree of denoising over the Fourier 

method. 
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 Inversely, the MPF can also be used to improve spectral features. In the frequency domain, the real 

component of the decay rates decide the width spectral peaks. Consider a single peak with some form of 

inhomogeneous broadening. The MPM deconstruction of the corresponding time domain signal yields 

several rates. By discarding rates in which the real frequencies are high, the components of the signal which 

contribute to broadening are deleted. In this context, the MPF behaves like a shimming algorithm.   
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Chapter 3: Quantitative Stray-Field T1 Relaxometry with the 

Matrix Pencil Method 

Abstract 

The matrix pencil method (MPM) is tested as an approach to quantitatively process 

multiexponential low-field nuclear magnetic resonance T1 relaxometry data. The data is obtained by 

measuring T1 saturation recovery curves in the highly inhomogeneous magnetic field of a stray-field sensor. 

0.9% brine solutions, doped with different concentrations of a Gd3+ containing contrast agent, serve as test 

liquids. Relaxation-times as a function of contrast-agent concentration along with the T1 relaxation curves 

for combinations of multiple different test liquids are measured, and the results from processing using MPM 

as well as inverse Laplace transformation as a benchmark are compared. The relaxation-time resolution 

limits of both procedures are probed by gradually reducing the difference between the relaxation-times of 

two liquids measured simultaneously. The sensitivity to quantify the relative contribution of each 

component to the magnetization build-up curve is explored by changing their volume ratio. Furthermore, 

the potential to resolve systems with more than two components is tested. For the systems under test, MPM 

shows superior performance in separating two or three relaxation components, respectively and effectively 

quantifying the time constants. 

  

 

3.1 Introduction 

Stray-field nuclear magnetic resonance (NMR) relaxometry has evolved into a widely used tool in 

various industrial applications, such as well-logging and non-destructive materials testing to quantify liquid 

distributions in porous media and complex system characterization  [1–6]. In contrast to conventional NMR 

systems, where the sample is placed inside the bore of a magnet, single sided or stray-field NMR 

instruments  like the NMR-MOUSE and NMR well-logging tools are constructed from permanent magnets 



56 

and surface coils in such a way that the NMR signal is measured from a thin volume outside of the magnet 

[1]. These systems usually have a field strength below 1 T and a sizeable magnetic field gradient. Due to 

the gradient, spins at different distances from the magnet surface experience different Larmor frequencies. 

Hence, an applied radio frequency (RF) pulse will match only the Larmor frequency of spins in a thin 

sensitive volume at a certain distance away from the magnet surface. The combination of the low magnetic 

field strength together with the limited size of the sensitive volume results in a low signal to noise ratio 

(SNR). For the NMR-MOUSE this field of view can be shifted inside the object under study by 

repositioning the sensor with a step motor, which makes it possible to excite spins at different depths of the 

object and measure local changes in transverse magnetization decays [1,7]. 

 

Figure 3.1. Principle of transforming relaxometry data of a two-component system (left) into a quantitative 

relaxometry graph (right). 

 

In this study, the indirectly detected longitudinal magnetization T1 is quantitatively analyzed in 

terms of distributions, assuming they are best described by sums of exponential functions. However, the 

same principles also apply to decays impacted by transverse relaxation T2 and translational diffusion D [7]. 

The T1 relaxation build-up curves on the left-hand side of Fig. 3.1 represent the data of a T1 relaxation 

experiment with a long T1 time (green) and a short T1 time (blue). The measured signal is a weighted sum 

of both (black). To obtain a graph that reveals distributions of relaxation-times which resembles a spectrum 

(Fig. 3.1, right) which reveals the number and relative weight of relaxation components, the measured signal 
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(black) needs to be adequately decomposed. In the example case of Fig. 3.1, two peaks are obtained in the 

relaxation-time graph, one with a long and one with a short T1. The positions of the peak maxima on the x 

axis gives the relaxation-time and the difference of the peak areas A% reports the nuclear spin ratio of the 

components. 

Various signal processing methods have been applied to relaxation and diffusion signals. One 

option is to use a multi-exponential fit, but usually prior knowledge about the number and the relaxation-

time constants of the relaxation species is needed for this to be successful. Currently, one of the most widely 

used approaches to quantitatively fit relaxometry/diffusometry data is solving a Fredholm integral of the 

first kind, often also referred to as an inverse Laplace transformation (ILT) [8–14]. However, the 

mathematically ill-posed nature of this approach leads to high noise sensitivity and low resolution, disabling 

the separation of components in close vicinity. These difficulties arise also when fitting model functions to 

the experimental data to extract the time constants. 

In 2020 Fricke et al. [7] applied an approach known as the matrix pencil method (MPM) to the 

analysis of  relaxometry/diffusometry transient signals. This approach is an established analysis tool in 

various fields such as electromagnetic transient simulations, radar signal processing and vibroacoustic 

analysis [15–19]. MPM uses a set of matrices to solve generalized eigenvalue problems which yield high 

resolution, discrete results for the relaxation/diffusion rates  and low sensitivity to noise [7]. This approach 

is similar to covariance NMR, where the data is viewed in a matrix format to allow the application of matrix 

algebra operations to obtain discrete results for NMR spectra [20–22]. 

For stray-field NMR to be applicable to an even wider range of industrial and academic questions, 

such as the depth resolved relaxation analysis of multi-component systems, the ability of fit algorithms to 

quantitatively resolve close relaxation-time components is crucial. Therefore, the goal of the present work 

is to test, resolve and quantify the T1 relaxation-time resolution of MPM in the highly inhomogeneous 

magnetic field of a stray-field NMR system and compare its performance to ILT and multi exponential fits. 
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3.2 Theory 

3.2.1 Inverse Laplace Transformation 

In the one-dimensional case, the NMR signal s(t) measured as a function of time t is reported in 

terms of the Laplace transform of a distribution P(R) of relaxation rates R, where R is the relaxation rate or 

the inverse of the relaxation-time, 

𝑠(𝑡) = ∫ 𝑃(𝑅)𝑒−𝑅𝑡𝑑𝑅

∞

0

(3.1) 

The inverse transformation of Eq. (3.1) provides the distribution of relaxation rates, 

𝑃(𝑅) = ∫ 𝑠(𝑡)𝑒𝑅𝑡d𝑡

∞

0

(3.2) 

Equation (3.2) is solved numerically with a finite sum of exponential functions. However, since these 

exponentials do not form an orthogonal set, the solution is not unique, and several different distributions 

will satisfy this equation.  This means that the inversion prescribed by Eq. (3.1) is mathematically ill posed. 

With an increasing number of relaxation components, the distribution gets broader, resulting in high 

sensitivity to noise and low resolution. To reduce the number of possible solutions, regularization 

constraints are imposed. However, these constraints are without physical or statistical meaning and can 

introduce ambiguities to the interpretation of the relaxation-time distribution graphs. For example, broad 

peaks can be observed as well as artifacts at the edges of a graph. Detailed discussions of  ILT theory and 

regularization methods are available elsewhere [8–10]. It should be noted that the ILT algorithm in this 

work employs L2 regularization. Further, the regularization parameter α was determined for each data set 

individually using a loop to optimize χ2 [23]. A value of α = 109 was found to be suitable for all data sets.  

 

3.2.2 Matrix Pencil Method 

The MPM introduced by Fricke et al. [7] employs an alternative, algebraic approach where the 

multicomponent relaxation signal is defined as 
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𝑠(𝑡) = ∑ 𝐴𝑚

𝑀

𝑚=1

𝑒−𝑅𝑚𝑡 (3.3) 

where Rm are the decay rates of the relaxation components m = 1, 2, ..., M and Am are corresponding signal 

amplitudes. 

The MPM approach takes advantage of a characteristic exponential function identity. This identity 

realizes that the scalar 

𝑧 = 𝑒−𝑅∆𝑡 (3.4) 

written in terms of a single decay rate R and uniform sampling time Δt, is the solution to the vector equation 

s1 = zs2 when the elements of s2 and s1 are related to the elements of the measured signal array s(n-1) = 

exp(-(n-1)RΔt) as s2(n-1) = s(n) and s1(n-1) = s(n-1) respectively, where n = 1, 2, ..., N indicates the number 

measured signal array elements. In real, experimentally relevant cases more than just one exponential 

function contributes to the measured transient signal decay.  Here one first separates the measured signal 

array elements at the time (n-1)Δt, s(n-1), into two matrices Y1 and Y2 as 

𝒀𝟏 =

[
 
 
 
 
 𝑠(1) 𝑠(2) ⋯ 𝑠 (

𝑁

2
)

𝑠(2) 𝑠(3)  ⋮
⋮  ⋱ 𝑠(𝑁 − 2)

𝑠 (
𝑁

2
) ⋯ 𝑠(𝑁 − 2) 𝑠(𝑁 − 1)

]
 
 
 
 
 

(3.5𝑎) 

 

and 

𝒀𝟐 =

[
 
 
 
 
 𝑠(2) 𝑠(3) ⋯ 𝑠 (

𝑁

2
+ 1)

𝑠(3) 𝑠(4)  ⋮
⋮  ⋱ 𝑠(𝑁 − 1)

𝑠 (
𝑁

2
+ 1) ⋯ 𝑠(𝑁 − 1) 𝑠(𝑁)

]
 
 
 
 
 

(3.5𝑏) 

where N is the total number of measured signal points.  These two matrices are used to create the equation 

for a matrix pencil 𝒀𝟐 ⋅ 𝒑𝒎 = 𝑧𝑚𝒀𝟏 ⋅ 𝑝𝑚 that when reorganized reveals the generalized eigenvalue problem 

(𝒀𝟏
−1 ⋅ 𝒀𝟐 − 𝑧𝑚𝑬) ⋅ 𝑝𝑚 = 0 (3.6) 
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written in terms of the (N – 1)x(N – 1) unit matrix E, eigenvector 𝑝𝑚 and eigenvalue zm.  According to Eq. 

(3.3), the eigenvalue solutions to this problem zm directly report on the respective decay rates Rm and thus 

the associated relaxation time constants Tm since Tm = 1/Rm.  As shown in detail in Fricke et al. [7], the zm 

eigenvalues are used to define left and right Vandermonde matrices ZL and ZR that, along with the signal 

matrix Y2, form the matrix triple product 𝑨 = 𝒁𝑳 ⋅ 𝒀𝟐 ⋅ 𝒁𝑹whose diagonal elements A(m,m) are used to 

identify the relative contributions of each zm eigenvalue to the total signal.  In the case of the purely 

dissipative, non – oscillatory, exponentially damped transient signals encountered in NMR relaxometry, 

the zm eigenvalues with the largest A(m,m) amplitude are real.  The remainder of the eigenvalues are 

complex and are neglected as being non-physical and, when noise is present, capture primarily noise.  In 

comparison to relaxometry transient treatment with ILT, the advantages of the MPM approach are higher 

resolution relaxation time constant estimates with lower computational cost and better stability against 

noise[7]. The increased resolution of MPM in comparison to ILT is due to the discrete nature of the 

algebraic approach, which, when signal noise is present produces time constants that are box car distributed 

[7]. Further details regarding the theory and implementation of the MPM to all classes of one and 

multidimensional NMR problems can be found in the literature [7,24–27]. 

 

3.3 Method 

In this work, experiments are conducted with an NMR-MOUSE PM25 stray-field sensor connected 

to a Kea2 spectrometer manufactured by Magritek (Aachen, Germany). The stray-field is highly 

inhomogeneous and exhibits a strong constant field gradient of 300 kHz/mm in direction perpendicular to 

the flat sensitive slice. The lateral extension of the sensitive slice is 40 mm x 40 mm, and the 1H Larmor 

frequency at that position is 13.8 MHz. For the measurements, the thickness of the sensitive slice is set to 

0.4 mm, which corresponds to an acquisition time of 8 µs at the center of each echo. The pulse length was 

set to 5.75 µs. 
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Figure 3.2. Experimental setup with two different test liquids placed together on the detector. 

 

The model systems to test the resolution of the MPM are 0.9 weight-percent sodium chloride 

solutions doped with different amounts of diethylenetriaminepentaacetic acid gadolinium(III) dihydrogen 

salt hydrate (Gd-DTPA) (381667 Sigma-Aldrich) as a contrast agent. Sodium chloride solution was chosen 

as this is a standard test fluid used in several important industrial applications, e.g. hygiene product testing 

[4]. To prepare the test liquids, first a stock solution of 0.9% brine with a 2 mM concentration of the contrast 

agent was made. Afterwards, the stock solution was diluted to the desired concentrations to achieve a variety 

of relaxation-times. The samples at different dilutions were stored in separate identical glass vials (Fig. 3.2) 

with an outer diameter of 14.9 mm and an inner diameter of 12.3 mm. As the cross section of the vials is 

small compared to the detection area of the PM25 relaxometer, up to four of these tubes can be placed on 

the detector simultaneously. With this setup, measurements of various combinations of multiple relaxation 

species were possible. Measurements of the different solutions were conducted individually as well as in 

different combinations of two or three components. The T1 relaxation data for comparing MPM and ILT 

were generated with a saturation recovery sequence as shown in Fig. 3.3.  

The expression for this sequence takes the form of Eq. 3.7 

𝑠(𝑡) = 𝑠∞(1 − 𝑒−𝑅𝑚𝑡) (3.7) 
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The approach outlined in the theory section for the MPM can be applied directly to data of this form without 

the need for an inversion. However, in this case the “1” in Eq. (3.7) will lead to an additional, real, and 

positive eigenvalue. This eigenvalue corresponds to a very long relaxation time which functions similar to 

a DC offset. The amplitude of this offset has the opposite sign of the physical eigenvalues which makes it 

easily recognizable. This offset is then discarded with no negative effects to the physical results. 

 

Figure 3.3. Saturation recovery sequence. 

 

 The recovery period t(n) for the magnetization build-up was linearly divided into N = 500 steps, 

which is directly used as input parameter to create the (N-1)x(N-1) Y1 and Y2 matrices shown in equation 

3.5. 16 scans were averaged at each step as the SNR is proportional to the square root of the number of 

averaged scans [28]. The signal was detected by averaging the first 8 echoes of a CPMG sequence at an 

echo time of 100 µs. With this the proton density can be probed without the impacts of diffusion or 

relaxation on the signal [1]. These parameters were chosen to have a reasonable SNR while not 

overextending the measurement time. To access background noise, a measurement without sample was 

recorded. Based on this, the core noise level was determined to be one standard deviation on either side of 

the noise trace, as the majority of the noise is inside of these boundaries.  

The SNR was calculated by dividing the signal at thermodynamic equilibrium by the noise level. 

A linear correlation with the number of vials on top of the detector was found. Ratios of around 48, 72, and 

96 were determined for two, three, and four vials, respectively. 
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To evaluate the relaxation-time resolution limit of ILT and MPM, the relative difference ΔT% 

between two relaxation constants Ti is defined, 

∆𝑇% = (𝑇A − 𝑇B) ∗ 100%/𝑇A (3.8) 

where TA is the relaxation-time of the long component and TB the relaxation-time of the short component. 

 

3.4 Results and Discussion 

To determine the “true value” as reference for the computational accuracy, the T1 relaxation-time 

of each relaxation species was measured as reported in Table 3.1. The reported error values correspond to 

90% confidence intervals obtained by measurements of five different samples with the same concentration. 

With the chosen contrast-agent concentrations the T1 values covered one order of magnitude, from about 

90 ms to 1100 ms. In addition, a 0.9% brine solution without contrast-agent was tested. The solutions show 

the expected linear increase in relaxation rates R1 = 1/T1, with increasing contrast agent concentration [29]. 

Table 3.1 also reports the relative difference ΔT% = ΔTn/T1,stock of the relaxation-times with respect to the 

stock solution.  

Next, the saturation-recovery curves for two equal proton concentration containers simultaneously 

placed on the detector, were obtained. Three indicators are used to evaluate the relaxation-time resolution 

limit: 

1.  The potential to resolve both relaxation components. 

2.  The agreement of the T1 relaxation-time constants determined via the single component 

measurements with those determined from the distribution of the peaks. 

3. The magnitude of the quantification error of the relative contribution of the two components. The 

expected ratio is one as the spin density in all samples is the same within ± 1.1%. 
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Table 3.1: T1 relaxation-time constants and rates for the different contrast-agent concentrations. 

Solution Gd-DTPA 

concentration 

[mM] 

T1 (true value) 

[ms] 

R1 [1/s] ΔT% [%] 

A 2 89 ± 15 11.2 ± 1.90 n/a 

B 1.5 133 ± 21 7.5 ± 1.28 33.1 

C 1 179 ± 30 5.59 ± 0.95 50.3 

D 0.5 338 ± 58 2.96 ± 0.52 73.7 

E 0.25 595 ± 95 1.68 ± 0.27 85.0 

F 0.1 1099 ± 197 0.91 ± 0.16 91.9 

G 0 2240 ± 370 0.45 ± 0.08 96.0 

 

3.4.1 Relaxation Time Resolution Limit 

To determine the relaxation-time resolution limit, measurements were performed where solution A 

is placed on the detector together with a second tube having a different contrast agent concentration and 

thus different T1 value. Figure 3.4 summarizes the resulting graphs for the different relaxation species 

combinations, calculated with ILT (dashed) and MPM (solid). Black brackets at the top of the graphs are 

used to indicate the true value range of relaxation-time values based on the average relaxation-times and 

90% confidence intervals of the individual components outlined in Table 3.1. 

It should be noted that the A% values shown for the ILT peaks report the relative area under the 

apparent peaks on the logarithmic scale. The areas of artifacts were excluded from the analysis. The bins 

on the x axis are equidistant on a logarithmic scale, therefore, to get the area under the peak the left sided 

Riemann sum of the incremental areas is taken. Furthermore, the reported T1 time constants for ILT 
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correspond to the positions of the peak maxima. The reported A% values for MPM correspond to the 

intensities of the peaks and not the areas under the curve, as explained in the theory section. 

For the first combination, solutions A and G were measured together. Figure 3.a shows that at a 

high ΔT% of 96.4%, both algorithms are able to resolve the components. The A% values rounded to full 

percentages are 50:50 for MPM, and the computed T1 relaxation-times are within the range of one standard 

deviation below and above the average values measured for these relaxation components individually (see 

Table 3.1). With ILT the longer component is in the expected range, while the shorter component is 

overestimated by 39% and even the distribution is outside the true T1 time-constant range. The 

quantification leads to an inaccurate ratio of 38:62. In addition, at the left edge of the ILT graph a third peak 

emerges which is one of the artifacts mentioned in the theory section. This can be verified by extending the 

limits of the x axis, when performing the calculation. Instead of resulting in a larger fraction of the entire 

area, the signal is still present at the edge of the graph (data not shown). The false prediction of the short 

component, even though the relative difference between the relaxation time is high, is possibly related to 

the occurrence of the artifact. 

In the case that the 0.9% brine solution is substituted with solution F (Figure 3.4b), ΔT% = 91%. 

For this combination no artifact appears in the ILT graph, and the results are in agreement with the expected 

longitudinal relaxation-time values for both peaks and the ratio of 49:51 indicates close to equal 

contributions to the overall signal. MPM produces similar results.  
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Figure 3.4. Comparison of quantitative relaxometry results obtained using ILT (dashed line) and MPM 

(solid line) for different combinations of relaxation-time components. In graphs a-f) results are shown for 

the combination of solution A with G, F, E, D, C and B. The range of the true T1 values determined for each 

component individually are given as black brackets at top of the graphs. 
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Figure 3.4 (cont.). Comparison of quantitative relaxometry results obtained using ILT (dashed line) and 

MPM (solid line) for different combinations of relaxation-time components. In graphs a-f) results are shown 

for the combination of solution A with G, F, E, D, C and B. The range of the true T1 values determined for 

each component individually are given as black brackets at top of the graphs. 
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When using solution E as the second component (Figure 3.4c), ΔT% is reduced to 85%. The two T1 

relaxation components can still be resolved with both algorithms and the quantification results in A% values 

of 51% for the short component and 49% for the long component. The T1 time constants are in the measured 

ranges for the single components. The peak of the short component shows a broad distribution in the ILT 

graph. 

For solutions A and D where ΔT% = 73.7%, the ILT starts to approach its resolution limit. The 

peaks are no longer completely separated (Figure 3.4d). The true T1 value ranges are within the distributions 

of the two peaks. The maximum of the peak is shifted towards higher relaxation-times for the short 

component. The quantification leads to A% values of 63% and 37% which is as well outside of the range 

acceptable for analytical quantification. MPM, on the other hand, separates the two components effectively 

and also performs better at determining the contribution to the overall signal with a ratio of 56:44. The T1 

relaxation-time constants of the two peaks match the expected relaxation-time ranges. 

In the case where solutions A and C are placed on the detector together, ΔT% = 50.3%. Here, the 

ILT is no longer able to resolve the two components and the graph in Figure 3.4e shows only one peak with 

a T1 relaxation-time that is about the average of the constants of the two components. This indicates that 

for the ILT algorithm used here, two relaxation-times need to have a relative difference of about 74% to be 

resolved and accurately quantified. MPM, on the other hand, is able to resolve the two relaxation species 

even at a relative difference of about 50%. Furthermore, the relaxation constants match the ones measured 

for each component individually and the A% have an acceptable ratio of 55:45. 

Finally, the lowest tested relative difference of 33.1% was achieved by combining solutions A and 

B for the T1 saturation recovery experiment (Figure 3.4f). In this case also the MPM reaches its relaxation-

time resolution limit. While the estimation of the relaxation-time constants leads to the values that are in 

agreement with the results of the single component measurements, the quantification fails as the amplitudes 

have a ratio of 38:62, which is not within an acceptable range. 

Based on these observations, the T1 relaxation-time resolution limit of the MPM is determined to 

be between 33.1% and 50.3% as the latter was the last combination where the two peaks are properly 
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resolved and the quantification as well as the estimation of the T1 time constants are successful. With ILT 

a ΔT% ≈ 74% was required to resolve the two relaxation components. Due to the discrete nature of the 

eigenvalues calculated via MPM a higher relaxation-time resolution can be achieved compared to ILT. 

 

3.4.2 MPM Relaxation Time Resolution Limit Verification 

As the next step it was tested whether the determined relaxation-time resolution limit of MPM is 

impacted by the magnitude of the relaxation-time. Therefore, combinations of relaxation species with a 

similar relative difference, but higher absolute T1 relaxation-time constants were tested. The different 

combinations have ΔT% values between 43.2 and 50.3%. Table 2 summarizes the investigated solution 

combinations with their respective relative differences as well as the determined T1 values and the relative 

contributions of the component. 

Fig. 3.5 shows the corresponding relaxation graphs. Peaks with the same colour correspond to the 

same solution combination. Black brackets at the top of the graphs are used to indicate the expected range 

of relaxation-time values based on the average relaxation-times and standard deviations of the individual 

components outlined in Table 3.1. For all cases it was possible to effectively resolve the two components. 

All estimated T1 time constants are in agreement with the expected values obtained from measuring the 

relaxation-times of the components individually. From the A% in Table 3.2 it can be seen that the ratio of 

the components is around 50:50 for all combinations. 
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Table 3.2. MPM quantitative T1 relaxometry analysis results for combinations with relative differences 

close to the relaxation-time resolution limit. 

Solution 

combination 

ΔT% [%] Component 1 

T1 [ms] 

Component 2 

T1 [ms] 

Component 1 

A% [%] 

Component 2 

A% [%] 

2 mM and 1 mM 

Gd-DTPA  

(A and C) 

50.3 94 162 55 45 

1 mM and 0.5 

mM Gd-DTPA 

(C and D) 

47.0 184 309 55 45 

0.5 mM and 0.25 

mM Gd-DTPA 

(D and E) 

43.2 326 601 53 47 

0.25 mM and 0.1 

mM Gd-DTPA 

(E and F) 

45.9 579 1089 48 52 
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Figure 3.5. MPM T1 relaxometry results for combination with relative differences close to the relaxation-

time resolution limit. The range of the true T1 values determine for each component individually are given 

as black brackets at top of the graphs. 

 

3.4.3 Quantification Sensitivity 

Next to determining the relaxation-time resolution limit, the sensitivity of MPM to quantify 

components in a mixture was tested and compared to the ILT method. For this, in addition to the 50:50 

combination already used in section 3.4.1 solutions A and D were placed on the detector together with 

ratios of 66:33 and 75:25. Fig 3.6A shows the resulting graphs for the different ratios obtained using ILT, 

while Fig. 3.6B shows the results determined using MPM. Black brackets at the top of the graphs are used 

to indicate the range of the true T1 time values for the two components.  

When processing the data using ILT the position of the peak maxima of the 50:50 combination of 

solutions A and D are slightly overestimated for the shorter component, but the distributions still overlap 

with the expected range. The maxima of both components are inside the expected range for the 66:33 and 
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75:25 ratios. The differences in the contribution could lead to narrower peaks and might improve the 

potential to resolve the two components. 

 

Figure 3.6. T1 relaxation graphs of two component systems with ratios of 50:50 (black straight line), 66:33 

(blue dashed line) and 75:25 (red short-dashed line). The range of the true T1 values determined for each 

component individually are given as black brackets at the top of the graphs. The results were computed 

with a) ILT, using α = 109 and b) MPM. 

 

On the other hand, the T1 relaxation-time constant calculated via MPM are determined, well within 

the error range for all ratios. To quantify the contribution of the individual components using ILT the areas 

under the peaks of the resulting graphs are integrated, while for MPM the peak intensities are compared. 

Table 3.3 summarizes the quantification results based on the two different approaches. With ILT the 

analysis of the magnetization build-up curve data for the 50:50 ratio leads to an erroneous quantification, 

as the relative difference of the two components is too low. For the other two data sets, the integrations 

yield ratios of 71:29, which is in both cases close to the expected contribution to the original magnetization 

build-up signal. However, it is not possible to differentiate the two combinations. 
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Table 3.3. Quantification results of a two-component system obtained by ILT and MPM for different 

component ratios. 

Expected ratio ILT MPM 

50:50 63:37 56:44 

67:33 71:29 67:33 

75:25 71:29 74:26 

 

The T1 relaxation-times calculated via MPM all match the expected ranges of solutions A and D. 

Further, the peak intensities are in good agreement with the expected ratios for all tested ratios. These results 

imply that MPM is more reliable at quantifying components with varying contributions to the overall signal 

than ILT. 

 

3.4.4 Multicomponent Measurements 

In the final experiment, the complexity of the system under test was extended to a three-component 

system to test whether MPM is also capable of resolving and quantifying systems with more than two 

components. For this study solutions A, F and G were placed on the detector together in equal quantities, 

leading to an expected relative contribution of 33% for each component.  

Figure 3.7 shows the resulting NMR relaxometry graphs obtained using MPM (solid) and ILT 

(dashed). Black brackets at the top of the graphs are used to indicate the expected relaxation-time ranges 

for the three components. Both algorithms were able to estimate the correct number of relaxation 

components. However, the positions of the peaks calculated via ILT do not match the expected values. The 

T1 relaxation-time of solution A, the shortest component, is overestimated by a factor of about 2.5, the 

maximum of the relaxation-time distribution of the medium component (solution F) is a factor of 2 lower 

than the expected values. Only the peak of the 0.9% brine solution without contrast agent is partly  
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Figure 3.7. T1 NMR relaxometry graph of a combination of three components. MPM results are shown as 

solid, ILT results as dashed lines. The range of the true T1 values determined for each component 

individually are given as black brackets at top of the graphs. 

 

in the expected range. Further, integrating the area under the peaks leads to a ratio of 33:13:54, for solutions 

A, F and G, respectively.  

On the other hand, all relaxation-times were estimated correctly using MPM. The quantification 

results were accurate with calculated relative contributions of 35% (solution A), 31% (solution F) and 34% 

(solution G). This shows MPM is more accurate to determine and quantify relaxation-times for 

multicomponent systems.  
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3.5 Conclusion 

The performance of the MPM algorithm for quantitative relaxometry analyses is tested in this 

experimental study. The MPM results are compared with the widely applied L2 regularized, ILT method 

on T1 data obtained in the highly inhomogeneous magnetic field of a stray-field relaxometer. Using MPM 

it is possible to effectively resolve two relaxation species that have a relative difference ΔT% ≈ 43%, while 

for the same data the tested ILT algorithm is limited to resolve two components with ΔT% > 73%. With 

MPM it was even possible to separate a pair of relaxation species with a relative difference of 33.1%. 

The resolution limit for MPM is verified by combining samples with overall higher relaxation-

times, but similar relative difference in the range of 40 – 50%. This shows that the relaxation-time resolution 

limit is not negatively impacted by the magnitude of the relaxation-time. 

The two-component quantification sensitivity of both MPM and the ILT was also tested. It is 

possible to reliably quantify ratios of 50:50, 67:33 and 75:25 using MPM with A% close to the expected 

relations. The sensitivity of the applied ILT algorithm is too low to differentiate between a 67:33 and 75:25 

ratio.  

For the system under test, both algorithms could successfully reduce the measured magnetization 

build-up curve to three different relaxation components. However, the ILT algorithm failed to determine 

the correct relaxation-times for all solutions and only the quantification of the short component matched 

the expected 33% contribution. It should be noted that there is a variety of ways to impose constraints and 

regularizations on ILT that will impact the resulting distributions and could lead to improved resolution as 

well as sensitivity.  

This experimental study shows, that MPM is a robust approach to reveal and quantify components 

in mixtures of relaxation species with discrete T1 relaxation-time constants. This holds true even for data 

with SNR lower than 100 measured in the highly inhomogeneous magnetic field of a stray-field NMR 

sensor.  
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Future work will be dedicated to advancing the MPM algorithm to reveal distributions of relaxation 

times and diffusion coefficients as well as to process 2-dimensional, data. In addition, further investigations 

will be performed on fluids interacting with porous media and the acquisition of depth resolved 

relaxation/diffusion profiles. It will also be determined if the high resolution offered by MPM permits the 

tracking of small, long term T1, T2 and D changes during aging.  This will allow the stability of complex 

formulations to be reliably monitored in real time. It is clear that MPM could allow the analysis of currently 

inaccessible systems in several industrial sectors via low-field NMR sensors. 
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Chapter 4: Improving the Resolution of MPM Recovered 

Relaxometry Parameters with Proper Time Domain Sampling 

Abstract 

The matrix pencil method (MPM) is a powerful tool for processing transient nuclear magnetic 

resonance (NMR) relaxation signals with promising applications to increasingly complex problems. In the 

absence of signal noise, the eigenvalues recovered from an MPM treatment of transient relaxometry data 

reduce to relaxation coefficients that can be used to calculate relaxation time constants for known sampling 

time Δt. The MPM eigenvalue and relaxation coefficient equality as well as the resolution of similar 

eigenvalues and thus relaxation coefficients degrade in the presence of signal noise. The relaxation 

coefficient Δt dependence suggests one way to improve MPM resolution by choosing Δt values such that 

the differences between all the relaxation coefficient values are maximized. This work develops 

mathematical machinery to estimate the best Δt value for sampling damped, transient relaxation signals 

such that MPM data analysis recovers a maximum number of time constants and amplitudes given inherent 

signal noise. Analytical and numerical reduced dimension MPM is explained and used to compare 

computer-generated data with and without added noise as well as treat real measured signals. Finally, the 

understanding gleaned from this effort is used to predict the best data sampling time to use for non-discrete, 

distributions of relaxation variables. 

 

4.1 Introduction 

 Nuclear magnetic resonance (NMR) spectroscopy has a rich history in the study of solid, liquid, 

and gas phase samples in chemistry, biology, physics, medicine, etc [1]. High-resolution NMR, typically 

performed at high magnetic field with superconducting magnets using chemical shifts, scalar J couplings 

[2, 3], and long-range dipolar couplings spectrally manifesting as sample-ordered line-splitting or 

relaxation-induced line broadening [4–6], has emerged as the premiere method to study three-dimensional 
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chemical structure in solid and liquid phases. Lower magnetic field bench top, permanent magnets are 

beginning to become more popular in these high-resolution studies [7] although they have been used for 

years in magnetic resonance imaging and relaxometry [8, 9]. The imaging of materials [10] and living 

objects [11] is an entirely separate active research area that provides critical information regarding the 

preparation of new devices with engineered properties and of course, in the case of humans, insight into 

health and illness. NMR relaxometry, often performed on protonated samples with Larmor frequencies in 

the 1–20 MHz range, commonly uses low-resolution permanent magnets [8, 9]. Here the spectral resolution 

is poor, chemical shifts and scalar J couplings are not resolved, and typically the spin–lattice, longitudinal 

and spin–spin, transverse relaxation times, and the macroscopic diffusion coefficient as well as their 

respective two-dimensional correlations are the core measured parameters. The application of these low-

field relaxometry measurements to complex mixtures often reveals several relaxation times, and, therefore, 

a unique signal that is described by a weighted sum of exponentials [12, 13]. Provided these parameters can 

be measured, and more importantly extracted from the time domain, transient signals, they can be used as 

a fingerprint for a given substance or mixture, much like the chemical shifts and J couplings form 

fingerprints for complex macromolecules in high-resolution NMR work [7].  

The Fourier transform (FT) used to extract frequencies and amplitudes from oscillatory high-

resolution time domain NMR-free induction signals is not capable of recovering relaxation time values 

from exponentially damped, non-oscillatory NMR relaxometry signals. As relaxometry signals are not 

complex and oscillatory, the FT produces a spectrum with one broad peak at zero frequency. In these 

situations, the inverse Laplace transform (ILT) has emerged as the current industry standard for recovering 

relaxation time values from multicomponent NMR relaxometry data [13]. The ILT takes exponentially 

damped, real, and non-oscillatory transient signals as input and provides distributions of relaxation rates or 

times as output. Discretization of the ILT for application to data is accomplished by routines such as the 

Lawson–Hanson algorithm [14], a non-negative least squares (NNLS) method. As is common for inversion 

problems, ILT is an inherently ill-posed problem when unmodified. The consequences of this ill-posed 

nature are that several solutions may satisfy the problem, and that these solutions are easily influenced by 
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minute differences in the data. Using a set of pure exponential decay functions to model a data set that is a 

mixture of noise with pure exponential decay functions results in severe ILT instability. To restrict the 

number of possible solutions, L2 regularization is often applied at the expense of increased computation 

time and of course added artificial output distribution broadening [15].  

In recent years, some alternative methods have found success in bypassing some of the stability 

complications of the L2 regularized NNLS algorithms. One such method is Modified Total Generalized 

Variation regularization which conjoins L1 and L2 regularizations allowing variability in the discernment 

of discrete and continuous distribution features [16]. Moving away from the NNLS problem, the q-

exponential non-linear least squares method offers a statistics-driven approach to multiexponential 

modeling [17]. 

It is for these same reasons that the matrix pencil method (MPM) was developed and used to treat 

a wide range of relaxometry data from the study of textbook two component samples with different spin–

lattice and spin–spin relaxation times to unique emerging materials with new properties and vaccine-

binding biomolecules [18]. The work builds on earlier uses of the MPM in high-field solid-state NMR 

problems [19], speech analysis [20], and remote radar sensing [21]. The MPM is an algebraic way to treat 

transient, exponential signals. As it is not a mathematical transformation, the MPM sidesteps some of the 

complications encountered when using ILT, providing clear, discrete solutions that make it well-suited for 

NMR relaxometry studies. 

Initial work in this area was designed to advertise the usefulness of MPM to the broader NMR 

community by including applications from a wide range of disciplines as well as measurements of the core 

relaxation parameters [18]. A more recent, purely experimental paper considered the ultimate resolving 

capability of the conventional MPM algorithms introduced in the initial work [22]. Here two separate 

sample containers housing water with different paramagnetic impurity concentrations and known spin–

lattice relaxation times were simultaneously placed on top of a commercially available Magritek PM-25 

single-sided NMR instrument. The analysis of the two-component saturation recovery transient signals 

revealed that the resolving power of MPM was roughly twice that of ILT. In some cases, operation with 
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MPM offered even more gain over ILT. However, in these cases, perfect amplitude fidelity or reproduction 

of accurate fractional relaxation coefficient contributions to the signal was sacrificed. 

It was recognized in that recent experimental work that signal noise is the primary factor limiting 

MPM resolution. The greater the signal noise, the lower the resolution. The work reported here and 

described below acknowledges that the MPM reports eigenvalues that, in the absence of noise, are 

relaxation coefficients λm that depend on the inherent relaxation rate and signal sampling time Δt. Thus, the 

ability to resolve two relaxation times or rates reduces to resolving two relaxation coefficients that depend 

on the choice of Δt. This fact suggests that there should be an optimum Δt value that provides the best 

chance of resolving relaxation coefficients with similar relaxation time values. The next section describes 

how to maximize the sum of square difference of relaxation coefficients SSλ to obtain the best data sampling 

time Δtmax and motivates a performance metric or noise tolerance NT that can be used to verify the Δtmax 

value theoretically as well as to compare to actual experimental measurements. 

 

4.2 Theory 

The application of both one- and two-dimensional MPM to NMR relaxometry data is described in 

greater detail elsewhere [18]. In the one-dimensional case considered here, the measured non-oscillatory, 

damped, relaxometry signal s((n – 1)Δt) sampled at the time (n–1)Δt serves as MPM algorithm input. All 

index counters like n, m, and q in the following equations are understood to begin at value one. Central to 

the MPM approach is representation of the signal in terms of a linear combination of damped exponential 

functions as 

𝑠((𝑛 − 1)Δ𝑡) = ∑ 𝐴𝑚𝜆𝑚
𝑛 + 𝑁((𝑛 − 1)Δ𝑡)

𝑚𝑝𝑡𝑠

𝑚=1

(4.1) 

where the relaxation coefficient is λm = exp(–RmΔt), the relaxation rate Rm = 1/Tm is inversely proportional 

to the time constant Tm, the amplitude of the mth relaxing signal component is Am, and the total number of 

relaxing components is mpts. Standard Gaussian white noise represented by the zero average and cross-
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correlation, 〈N(nΔt)〉 = 〈N(nΔt)N(mΔt)〉 = 0, non-zero mean square, 〈N(nΔt)2〉 = 〈N2〉 ≠ 0, function N((n–

1)Δt) is used as the noise source as described in more detail in the Experimental section. The two primary 

outputs from MPM signal analysis are an amplitude matrix Ṽ and eigenvalues zm. In the absence of noise 

where N((n–1)Δt) = 0 for all choices of n in Eq. (4.1), the MPM analysis disentangles the linear combination 

of exponentials to provide an estimate of the signal amplitudes rates from the diagonal elements of the 

amplitude matrix as Am = V(m,m), and since λm = zm, as Rm = log(zm)/Δt. 

In the presence of noise, the eigenvalues zm deviate from their relaxation coefficient, noise-free 

values, λm. Not surprisingly, the closer the λm values, the larger the deviation of zm from λm for fixed mean 

square noise amplitude 〈N2〉. The dependence of the relaxation coefficient values λm on the dwell time Δt 

suggests that there will be a sampling time Δtmax that leads to the largest separation between λm values. This 

time can be determined by maximizing the sum of square differences as a function of Δt 

𝑆𝑆𝜆 = ∑ (𝜆𝑚 − �̅�)
2

𝑚𝑝𝑡𝑠

𝑚=1

      𝑤𝑖𝑡ℎ      �̅� =
1

𝑚𝑝𝑡𝑠
∑ 𝜆𝑚

𝑚𝑝𝑡𝑠

𝑚=1

(4.2) 

an effort that will provide the least sensitivity of the zm values to noise. A useful way to study the resolution 

limits of the MPM for both theoretical and real experimental data is to compare the sum of square 

differences obtained in the noise-free case shown in Eq. (4.2) to the sum of squares based purely on MPM 

eigenvalues with added noise 

𝑆𝑆𝑧 = ∑ (𝑧𝑚 − 𝑧̅)2

𝑚𝑝𝑡𝑠

𝑚=1

      𝑤𝑖𝑡ℎ      𝑧̅ =
1

𝑚𝑝𝑡𝑠
∑ 𝑧𝑚

𝑚𝑝𝑡𝑠

𝑚=1

(4.3) 

using the noise tolerance 

𝑁𝑇 =
𝑆𝑆𝑧 − 𝑆𝑆𝜆

𝑆𝑆𝑧 + 𝑆𝑆𝜆

× 100 (4.4) 

that describes the percent difference between SSz and SSλ for many values of Δt. In practice this would be 

accomplished by determining SSλ and SSz at different dwell times Δt. This is most easily done by first 

performing MPM on the raw transient sampled at the dwell time Δt. Subsequent MPM analyses are then 

performed on signals generated from the raw transient by taking every other data point at 2Δt, every third 
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data point at 3Δt and so on as described in Fig. 1a. In the noise-free case, SSz = SSλ and NT = 0 for all qΔt 

values. As the noise increases, SSz deviates from SSλ, NT becomes non-zero, and the ability of MPM 

eigenvalues to reproduce relaxation coefficients degrades. In the case of a purely theoretical comparison, 

one knows the λm values from knowledge of the Rm rates and multiples of the dwell time qΔt enabling 

calculation of SSλ. The value of SSz is obtained from the zm eigenvalues generated from MPM analysis of 

a decaying transient signal with added random noise having the same dwell time multiple qΔt. For 

experimental comparisons, samples with known Rm values in separate containers housed in the detection 

coil are used. Since the Rm values are known from separate measurements of each container alone, SSλ can 

be calculated for each multiple of the dwell time qΔt. The MPM analysis of the bulk signal obtained from 

all the containers simultaneously placed in the magnet and detection coil provides the zm eigenvalues at 

each qΔt needed to calculate SSz and thus a value for NT. 

To understand the meaning of and how to develop and use SSλ, SSz, and NT, consider the special 

signal involving just two relaxing components, or equivalently a biexponential decay signal where λ1 = 

exp(–R1Δt) and λ2 = exp(–R2Δt) for the respective decay rates R1 and R2. It should be clear that there are 

many choices of λ1 and λ2 given the dwell time Δt and that the subscript numbers indicate different 

relaxation rates not spin–spin versus spin–lattice relaxation rates. Ignoring the shaded gray region of Fig. 

4.1b that will be described below, the solid, curved line in the northwest corner of the plot shows the  
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Figure 4.1. The decay signal shown in (a) as the solid line helps graphically identify the signal points used for the 

MPM analysis. For example, for q = 1, the points separated by ∆t and indicated with a solid circle, open circle, 

square, and triangle are used, while for q = 2, the points separated by 2∆t and indicated with a solid circle, open 

square, open diamond and the s(6∆t) point not shown are used. The plot shown in (b) for two relaxation coefficients 

shows how the shaded gray region representing noise suggests that the points at ∆t and 4∆t shown as “x” symbols 

will present large NT values while the open symbols at 2∆t and 3∆t yield smaller NT values with the smallest being at 

∆tmax. The shaded gray region bounds are described by the f+〈N2〉 and f–〈N2〉 noise terms in the two relaxation 

coefficient eigenvalues shown in Eq. (4.12) 
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behavior of λ1 and λ2 for fixed R1 and R2 values as a function of variable dwell time Δt. Recall that this line 

describes the eigenvalues z+,- in the absence of noise as z+,- = λ1,2 in this case. The model transient signal 

shown in Fig. 4.1a obtained with a fixed Δt can be used to explore the solid line curve in Fig. 4.1b created 

with a continuous Δt variable by taking each point at Δt, every other point at 2Δt, every third point at 3Δt, 

every fourth point at 4Δt, etc. When operating in this way, the open circle, “x”, and “*” symbols shown on 

the solid line indicate the λ1,2 pairs obtained at the chosen qΔt value. Here q ≥ 1 is an index. The dot-dashed 

line along the diagonal in the plot represents the condition where λ1 = λ2. In the absence of noise, λ1 and λ2 

are not resolved because they are the same. As all the five symbolled points on the solid curve in Fig. 4.1b 

for different qΔt are displaced from the λ1 = λ2 diagonal, they are in principle able to be resolved in the 

absence of noise. However, the best resolution will occur for the largest difference between λ1 and λ2 or for 

the Δt value obtained from maximizing SSλ shown in Eq. (4.2) above. For two components, SSλ reduces to 

the difference λ1–λ2 which is captured by the dotted line along the anti-diagonal in Fig. 4.1b. When 

maximized as a function of Δt, the difference yields the optimized time Δtmax = log(R2/R1)/(R2–R1) and the 

most distinguishable relaxation coefficient λ1
max = (R1/R2)R1∕(R2−R1) and λ2

max = (R1/R2)R2∕(R2−R1). Graphically 

in the two-component case, the Δtmax value obtained from maximizing SSλ corresponds to finding the 

longest vector perpendicular to the λ1 = λ2 diagonal and between the diagonal and the λ1,2 curve. 

In the absence of noise, any two λm values are always completely resolved, although the best 

resolution occurs at Δtmax with the associated λ1 max and λ2 max values as just described. Moreover, the 

parameter NT in Eq. (4.3) is always zero in the absence of noise as SSz = SSλ. To determine the effect of 

added noise in the case of two relaxing components, MPM can be accomplished analytically, an approach 

that avoids the uncertainties in addition to the mysteries of the singular valued decomposition included in 

most MPM algorithms [15, 16]. Here one first uses the measured data array s((n-1)Δt) sampled at the times 

(n-1)Δt to construct two data matrices from just four points. 

𝒀1 = [
𝑠(0) 𝑠(𝑞Δ𝑡)

𝑠(𝑞Δ𝑡) 𝑠(2𝑞Δ𝑡)
]       𝑎𝑛𝑑      𝒀2 = [

𝑠(𝑞Δ𝑡) 𝑠(2𝑞Δ𝑡)
𝑠(2𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡)

] (4.5) 
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Notice that if q = 1, the first four points in the measured data s((n-1)Δt) array are used and λm = exp(-RmΔt). 

For q = 3, every third data point is used to select the {s(0), s(3Δt), s(6Δt), s(9Δt)} four points for analytical 

MPM analysis as described in Fig. 1a and λm = exp(− 3RmΔt). The matrix pencil equation 

(𝒀1
−1 ∙ 𝒀2 − 𝑧𝑚𝑬) ∙ 𝑝𝑚 = 0 (4.6) 

in terms of the unit matrix E and the eigenvectors 𝑝m is then solved for the eigenvalues zm. Essentially one 

finds the inverse matrix 

𝒀1
−1 =

1

𝑠(0)𝑠(2𝑞Δ𝑡) − 𝑠(𝑞Δ𝑡)2 [
𝑠(2𝑞Δ𝑡) −𝑠(𝑞Δ𝑡)

−𝑠(𝑞Δ𝑡) 𝑠(0)
] (4.7) 

and then the eigenvalues of the matrix product 

𝒀1
−1 ∙ 𝒀2 = ||

  0
𝑠(2𝑞Δ𝑡)2 − 𝑠(𝑞Δ𝑡)𝑠(3𝑞Δ𝑡)

𝑠(0)𝑠(2𝑞Δ𝑡) − 𝑠(𝑞Δ𝑡)2

  1
𝑠(0)𝑠(3𝑞Δ𝑡) − 𝑠(𝑞Δ𝑡)𝑠(2𝑞Δ𝑡)

𝑠(0)𝑠(2𝑞Δ𝑡) − 𝑠(𝑞Δ𝑡)2

|| (4.8) 

in the usual way as 

              𝑧± =
1

2

𝑠(0)𝑠(3𝑞Δ𝑡)−𝑠(𝑞Δ𝑡)𝑠(2𝑞Δ𝑡)

𝑠(0)𝑠(2𝑞Δ𝑡)−𝑠(𝑞Δ𝑡)2
± √1

4
(
𝑠(0)𝑠(3𝑞Δ𝑡)−𝑠(𝑞Δ𝑡)𝑠(2𝑞Δ𝑡)

𝑠(0)𝑠(2𝑞Δ𝑡)−𝑠(𝑞Δ𝑡)2
)
2
+

𝑠(2𝑞Δ𝑡)2−𝑠(𝑞Δ𝑡)𝑠(3𝑞Δ𝑡)

𝑠(0)𝑠(2𝑞Δ𝑡)−𝑠(𝑞Δ𝑡)2
       (4.9) 

These analytical expressions for MPM analysis can be used to explore the effect of signal noise on the z+,- 

eigenvalues and their deviation from λ1 and λ2. For two relaxing components with amplitudes A1 and A2, 

Eq. (4.1) implies that four consecutive signal points with noise beginning at t = 0 are 

𝑠(0) = 𝐴1 + 𝐴2 + 𝑁(0) 𝑠(2𝑞Δ𝑡) = 𝐴1𝜆1
2 + 𝐴2𝜆2

2 + 𝑁(2𝑞Δ𝑡)

𝑠(𝑞Δ𝑡) = 𝐴1𝜆1 + 𝐴2𝜆2 + 𝑁(𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡) = 𝐴1𝜆1
3 + 𝐴2𝜆2

3 + 𝑁(3𝑞Δ𝑡)
(4.10) 

Taylor expansion of Eq. (4.9) to second order in terms of these four independent noise variables along with 

knowledge that the average noise and cross-correlation are zero, 〈N(nΔt)〉 = 〈N(nΔt)N(mΔt)〉 = 0, and with 

non-zero mean square, 〈N(nΔt)2〉 = 〈N2〉 ≠ 0, results in two noise factors 
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𝑓+ = [1 + 𝐴1𝐴2(𝜆1
4 + 4𝜆1

2 + 𝜆2
2 + 𝜆1

4𝜆2
2 + 4𝜆1

3𝜆2
 + 4𝜆1

2𝜆2
2 + 4𝜆1𝜆2)]  

−
𝐴2

2[2𝜆2
4 + 2𝜆2

2 − 𝜆1
2 + 𝜆1𝜆2

5 − 𝜆1
2𝜆2

4 + 2𝜆1𝜆2
3 − 4𝜆1

2𝜆2
2 − 𝜆1𝜆2]

(𝜆1−𝜆2)
5

 

𝑓− = [−1 − 𝐴1𝐴2(𝜆2
4 + 4𝜆2

2 + 𝜆1
2 + 𝜆1

2𝜆2
4 + 4𝜆1

 𝜆2
3 + 4𝜆1

2𝜆2
2 + 4𝜆1𝜆2)] 

−
𝐴1

2[2𝜆1
4 + 2𝜆1

2 − 𝜆2
2 + 𝜆1

5𝜆2 − 𝜆1
4𝜆2

2 + 2𝜆1
3𝜆2 − 4𝜆1

2𝜆2
2 − 𝜆1𝜆2]

(𝜆1−𝜆2)
5

(4.11) 

that can be used to approximate the two eigenvalues to first order in 〈N2〉 as 

𝑧+,− ≃ 𝜆1,2 + 𝑓+,−〈𝑁2〉 (4.12) 

These two equations are interesting because they suggest that the added signal noise does not directly yield 

eigenvalues that fluctuate equally about an average z+,- = λ1,2. Rather, the added signal noise induces a shift 

of the z+,- eigenvalues away from the noise-free λ1,2 values. It is this shift that is captured by the shaded gray 

region in Fig. 4.1b with bounds indicated by dashed black lines that correspond to the f+〈N2〉 and f–〈N2〉 

factors appended to the λ1,2 relaxation coefficients in the z+,- eigenvalues in Eq. (4.12). A larger average 

signal noise 〈N2〉 will generate a larger shaded gray region on this plot. Consideration of the eigenvalue 

difference, z+ − z– = λ1 − λ2 + (f+ − f–)〈N2〉, indicates that the λ1–λ2 noise-free value increases to a larger 

〈N2〉-dependent number where the increase calculated from Eq. (4.11), (f+ − f–)〈N2〉, can be used to 

determine the noise tolerance defined in Eq. (4.4) as 

𝑁𝑇 =
(𝑓

+
− 𝑓

−
)〈𝑁2〉

2(𝜆1 − 𝜆2) + (𝑓
+

− 𝑓
−
)〈𝑁2〉

× 100 (4.13) 

It is important to remember that the NT value directly depends on qΔt through the definition of the λ1,2 

values and that the best separation of the z+,- eigenvalues will be when qΔt = Δtmax and when NT is 

minimum. In terms of the plot in Fig. 4.1b, the NT value for the points at Δt and 4Δt labeled with an “x” 

and firmly embedded in the shaded region will have large, close to 100% NT values because the noise is so 

large that the relaxation components are not resolved. The open circles at 2Δt and 3Δt will have smaller NT 

values. However, the point for Δtmax labeled with an “*” will display the minimum NT value and thus be 

most easily resolved in the presence of noise. As long as the Δtmax point on the λ1,2 curve is greater than the 
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system noise or equivalently lies outside of the gray shaded region in Fig. 4.1b, the NT value will approach 

zero and the two components will likely be resolved. If, however, this same point falls within the shaded 

gray area, a case not shown here, the NT value will become much greater and a reliable estimate of the λ1,2 

values is not possible given the inherent signal noise. 

A similar graphical interpretation of SSλ drives the determination of Δtmax for signals involving 

more than just two components. In the three-component case, the three λ1 = exp(-R1qΔt), λ2 = exp(-R2qΔt), 

and λ3 = exp(-R3qΔt) relaxation coefficients for the three R1, R2, and R3 rates label three orthogonal axes 

and maximization of SSλ amounts to determining the maximum perpendicular distance from the body 

diagonal to the λ1,2,3 curve. Noise in this case broadens the body diagonal line to the surrounding volume 

and only certain Δt values will provide λ1,2,3 points outside of this volume. These Δt sampling rates produce 

small NT values and thus faithful experimental estimates of the true relaxation properties can be recovered. 

The effect of the added noise can be mathematically considered in the same way it was for two relaxation 

coefficients above. The additional λ3 contribution to the signal s(t) requires an additional two signal points 

s(4qΔt) and s(5qΔt) to accomplish reduced dimensional MPM analysis. In this case, the Y1 and Y2 matrices 

are constructed as 

𝒀1 = [

𝑠(0) 𝑠(𝑞Δ𝑡) 𝑠(2𝑞Δ𝑡)

𝑠(𝑞Δ𝑡) 𝑠(2𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡)

𝑠(2𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡) 𝑠(4𝑞Δ𝑡)
]            𝒀2 = [

𝑠(𝑞Δ𝑡) 𝑠(2𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡)

𝑠(2𝑞Δ𝑡) 𝑠(3𝑞Δ𝑡) 𝑠(4𝑞Δ𝑡)

𝑠(3𝑞Δ𝑡) 𝑠(4𝑞Δ𝑡) 𝑠(5𝑞Δ𝑡)
] (4.5) 

and the Y1
−1⋅Y2 eigenvalues z1,2,3 are calculated to find λ1,2,3 and thus R1,2,3 given qΔt. Although analytical 

solutions for the z1,2,3 eigenvalues were generated akin to the two-component case shown in Eq. (4.12), the 

overwhelming complexity and number of terms prevent reproduction here. Instead, numerical 

diagonalization of Y1
−1⋅Y2 was used to calculate NT for MPM algorithm performance estimates on purely 

theoretical and experimental data. 

Extension of this approach to more than three relaxing components is straightforward. The MPM 

analysis of signals with four relaxing components requires eight signal point and five relaxing components 
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requires ten signal points. A signal with m relaxing components will thus require 2m points for treatment 

with reduced MPM, and of course numerical matrix diagonalization is required. 

 

4.3 Experimental 

 Gadopentetic acid (Gd-DTPA) and sodium chloride were obtained from Sigma-Aldrich and used 

without further purification. In-house deionized water was used to prepare a 0.9% (by mass) sodium 

chloride stock solution. Six samples in the 0.05 mM < [Gd-DTPA] < 2 mM concentration range were 

prepared from this stock solution and are listed in Table 1. All NMR measurements were accomplished 

using a Tecmag Apollo controlled, Aspect Instruments M100, 1.01 T, magnetic resonance imaging 

spectrometer operating at a 43.7 MHz 1H Larmor frequency. All MPM analyses of experimental data were 

accomplished on transient, exponentially damped signals obtained with the standard Carr–Purcell–

Meiboom–Gill (CPMG) pulse sequence [23]. The time between the 1024 consecutive collected spin echoes 

was 10 ms, the π/2 pulse time with 27 W of applied power was 35 μs and multiple samples easily fit within 

the 6 cm diameter, 10 cm long NMR detection coil. Signal averaging was used to sum eight separate signal 

acquisitions and this averaged signal corresponds to one experimental trial. The experimental data shown 

in all figures correspond to a 512-trial average. Experimental estimates of 〈N2〉 values were obtained by 

calculating the mean square of the last 200 points of the CPMG transient after scaling the raw signal so that 

the first point is one. 

All data processing and simulations were accomplished using Matlab (Mathworks, Natick, MA). 

Because the measured transient CPMG signals from the six standard Gd-DTPA-doped samples were single-

exponential, regression to exp(-(n-1)Δt/T2) could be used to accurately determine T2 values (R2 > 0.95). 

The noise in numerical transient signal simulations was established by scaling random numbers Ɲ(0,1) 

extracted from a zero-centered, width of one, standard normal distribution by the root mean square signal 

noise as N((n-1)Δt) = Ɲ(0,1)〈N2〉1/2 so that the mean square average and cross-correlation at each Δt reduce 
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to 〈N((n-1)Δt)2〉 = 〈N2〉 and zero. In all calculations, 15,000 noisy CPMG decay signals are used to calculate 

an average transient decay response that is used to estimate SSz. 

 

Table 1.  Summary of water T2 values as a function of Gd-TPA concentration 

[Gd-TPA] (mM) T2(ms) R (Hz) 

0.05 1,724 0.58 

0.10 1,471 0.68 

0.25 592 1.69 

0.50 448 2.23 

1.00 229 4.36 

2.00 98.1 10.2 

 

4.4 Results and Discussion 

 The goal of this work is to identify the data sampling time Δtmax that maximizes the resolution of 

as many relaxation components λm as possible in the presence of real signal noise described by 〈N2〉. It is 

the maximization of SSλ as a function of Δt in Eq. (4.2) that identifies Δtmax and it is the value of NT in Eq. 

(4) as a function of qΔt that reports on the resolution performance. Here NT values of zero are considered 

to perform well while NT values exceeding zero perform less well. The theoretical results in Fig. 4.2(a–d) 

for two and three relaxation components reflect these comments. 

The open circles shown in Fig. 4.2(a, b) describe the behavior of Eq. (4.13) as a function of qΔt 

and 〈N2〉 for two relaxing components with different R1 and R2 values. The relevant Rm values in units of 

Hz are shown in the plot mounted boxes. The solid lines correspond to numerical diagonalization of Eq. 

(4.8) followed by averaging over the random number generated noise N(qΔt). The similarity of the 

analytical behavior of Eq. (4.13) to the numerical results in the neighborhood of Δtmax indicated by the 
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vertical dashed line, especially at very low 〈N2〉 value, suggests that it is safe to use numerical 

diagonalization followed by averaging to determine NT values. The deviation of the analytical and 

numerical results displayed in Fig. 4.2a at large qΔt and 〈N2〉 values is not a limitation of numerical 

diagonalization. Rather it is due to restricting the eigenvalue expansion to the second-order term in the 

Taylor expansion used to develop the analytical eigenvalues in Eq. (4.12). Both the analytical and numerical 

approaches shown in Fig. 4.2b demonstrate that as the added noise 〈N2〉 increases the range of qΔt times 

that yield low to zero NT values decreases and becomes centered on the Δtmax value predicted from 

maximizing SSλ. It is only when 〈N2〉 exceeds 10–4 that NT noticeably increases from zero implying that the 

added noise is too great to adequately recover meaningful λ1,2 values from the z+,- eigenvalues even though 

operation at Δtmax is insured. In other words, as signal noise increases, the range of qΔt values providing 

z+,- eigenvalues that faithfully report the λ1,2 relaxation coefficient values decreases. In terms of the plot 

shown in Fig. 4.1b, as noise increases, the overall length of the solid line outside of the shaded gray area 

decreases and when 〈N2〉 exceeds 10–4, the entire λ1,2 curve is within the shaded gray area. The similarity of 

the solid line graphs with minima centered on Δtmax shown in Fig. 4.2b demonstrates that relaxation 

coefficient amplitude has little effect on both Δtmax and NT, consistent with the determination of Δtmax from 

SSλ where the relative contribution of the relaxation components to the full signal is not considered. 

Numerical diagonalization of the Y1
−1⋅Y2 matrix is used in all cases where more than two 

components are involved. The three-component case shown in Fig. 4.2c, like Fig. 2a, considers NT as a 

function of qΔt and 〈N2〉 for three equal amplitude components with three different rates R1,2,3 while Fig. 

4.2d, like Fig. 4.2b, fixes 〈N2〉 and the R1,2,3 values while varying the three amplitudes A1,2,3. The three-

component calculated results in Fig. 4.2(c, d) convey similar information as the two-component results in 

Fig. 4.2(a, b). As the noise 〈N2〉 increases, the range of qΔt values where NT equals zero decreases and 

centers on the Δtmax value predicted from maximizing SSλ as a function of Δt. There also appears to be very 

little dependence on the fractional contribution of each relaxation coefficient to the signal at fixed  
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Figure 4.2. Purely theoretical predictions of the behavior of ∆t max and NT for two (a, b) and three (c, d) relaxation 

coefficient cases as a function of added noise. The vertical dashed line in all the plots indicates the value of ∆t max 

obtained from maximizing SSλ in Eq. (4.2) as a function of ∆t. For easy reference, the appropriate relaxation rate Rm 

values in units of Hz are shown in the small box in each plot. The solid lines shown in all plots correspond to 

numerically determined estimates of NT. The open circles in (a) and (b) represent the two-component analytical result 

shown in Eq. (4.13). The two-coefficient comparison shown in (a) at the four 〈N2〉 = 10–10 (green), 10–8 (black), 10–6 

(red), and 10–4 (blue) noise levels used transient signals s(t) with equal amplitude A1 = A2 = 0.5 exponential decay 

functions. One 〈N2〉 = 10–4 noise value was used to generate (b) for four different exponential decay function amplitude 

pairs {A1,A2} = {0.5,0.5} (green), {0.25,0.75} (black), {0.33,0.67} (red), and {0.1,0.9} (blue). The three-coefficient 

comparison shown in (c) at the same four 〈N2〉 noise levels used transient signals s(t) with equal amplitude A1 = A2 = 

0.33 exponential decay functions. One 〈N2〉 = 10–8 noise value was used to generate (d) for four different exponential 

decay function amplitude triples {A1,A2,A3} = {0.33,0.33,0.33} (green), {0.25,0.25,0.5} (black), {0.2,0.4,0.4} (red), 

and {0.14,0.29,0.57} (blue). Some of the colors are difficult to see in (d) as the lines overlap (color figure online). 
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〈N2〉 value, as judged from the similarity of the numerically generated curves in Fig. 4.2d. The important 

difference between the two- and three-component cases shown in Fig. 4.2 is sensitivity to noise. The three-

component results always present NT values much greater than the corresponding two-component case for 

the same applied 〈N2〉 value. For example, for 〈N2〉 = 10-4 in Fig. 4.2a, NT is ca. 5% at most, while in Fig. 

4.2c, NT exceeds 50%. This effect can also be observed in the comparison of Fig. 4.2(b, d) where similarly 

shaped curves are produced from drastically different applied 〈N2〉 values, here 10-6 and 10-8 respectively. 

The reason that the three-component case appears to be more sensitive to noise is directly related to the 

proximity of the chosen relaxation rates. The two-component case uses R1 = 2.23 Hz and R2 = 10.2 Hz 

while the three-component case includes the additional 4.36 Hz rate. It is the smaller difference of 2.13 Hz 

in the three-component case in comparison to the 7.96 Hz difference in the two-component case that likely 

leads to this sensitivity. If the added third rate led to a similar 7.96 Hz difference, then a similar noise 

sensitivity would be expected. 

The set of six samples with the Gd-DTPA concentration in Table 4.1 was prepared, placed in six 

separate 1 mL plastic containers, and separately analyzed with the CPMG pulse sequence to obtain the 

listed T2 time constants. The value of R reported in Table 1 is the inverse of the T2 value. These samples 

were prepared to verify the predictions described in Fig. 4.2 by obtaining transient CPMG decay signals 

from different pairs, triples and quadruples of these tubes simultaneously placed inside of the NMR 

detection coil. The relaxation rates in Hz for the samples being simultaneously studied are included in all 

figure legends. 

The two-component predictions shown in Fig. 4.2(a, b) are reflected in the experimental 

measurements. Here different pairs of the samples listed in Table 4.1 were simultaneously placed inside of 

the NMR detection coil and explored with the CPMG pulse sequence. The left-hand column in Fig. 4.3 

shows how the NT value changes when the relaxation properties of one of the containers are changed while 

keeping those for the second container fixed. The relaxation rates obtained from the separate individual 

containers in Hz are shown in the legends. As the relaxation rates of the separate samples converge, the 

relaxation coefficients λm at all qΔt values become more similar. Experimental results  
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Figure 4.3. Comparison of experimental (open red circles) to theoretical (solid black line) NT values for two- 

component signals. The vertical dashed line in all the plots indicates the value of ∆tmax obtained from maximizing SSλ 

in Eq. (4.2) as a function of ∆t. For easy reference, the appropriate relaxation rate Rm values in units of Hz are shown 

in the small box in each plot. The results shown in the left-hand column (a–d) explore the effect of different Rm values 

for equal amplitude components while those shown in the right-hand column (e–h) have fixed Rm values with the 

respective {0.50,0.50}, {0.59,0.41}, {0.71,0.29}, and {0.91,0.09} relaxation coefficient amplitudes established using 

variable volume samples. The 〈N2〉 values used in the solid black line simulated results were obtained from the 

measured raw transient signal (color figure online). 
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shown as the open circles agree well with the solid line theoretical predictions. The theoretical result is 

much smoother than the experimental data because the experimental results were generated from an average 

of 512, 8 scan transient signal trials with noise while the theoretical prediction involved averaging over 

15,000 transient signals with the same noise amplitude as the measured data. The right-hand column in Fig. 

4.3 displays an expected small variation in shape as a function of relaxation coefficient amplitude 

confirming the theoretical predictions summarized in Fig. 2b. The graphs presented in Fig. 4.3 suggest that 

the best MPM performance with noise is when qΔt = Δtmax as the NT value is minimum. All the NT values 

for equal amplitude, similar relaxation coefficients shown in Fig. 4.3d and for drastically different 

amplitude relaxation coefficients shown in Fig. 4.3h are greater than zero. This observation suggests that 

even operation at Δtmax will not reliably recover accurate relaxation coefficients and thus relaxation times 

given the experimental noise level. 

A similar good agreement between experiment and theory is enjoyed in equal amplitude three and 

four relaxation coefficient studies as shown in the left- and righthand columns in Fig. 4.4, respectively. 

Here three and four separate equal-volume containers, each loaded with one of the samples listed in Table 

1, were simultaneously placed in the NMR detection coil and explored with the CPMG pulse sequence. The 

shape of the curves shown in Fig. 4.4(b, d) is to be expected by comparison to Fig. 4.3d. The difference 

between these results is the addition of the R1 = 0.58 Hz and 2.23 Hz rate samples in Fig. 4.4(b, d), 

respectively. In addition to being more sensitive to signal noise as judged by the larger qΔt range of NT > 0 

values in Fig. 4.4(b, d), the added relaxation rate sample also shifts Δtmax to longer values. The NT values 

much closer to zero displayed in Fig. 4.4(a, c) are also to be expected with reference to Fig. 3(b, c),  

respectively. Here the only difference is the addition of a third R1 = 0.58 Hz sample container to the NMR 

detection coil prior to generating the results shown in Fig. 4.4(a, c). Once again, the Δtmax values shift to a 

longer time due to the addition of the third sample. Even though the NT values for the three-component case 

suggest that the inherent experimental noise is too great to resolve the relaxation coefficients in Fig. 4.4d, 

the overall shape of the NT curve is easily reconciled with respect to the two relaxation coefficient  
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Figure 4.4. Comparison of experimental (open red circles) to theoretical (solid black line) NT values for equal 

amplitude three (a–d) and four (e–h) component signals. The vertical dashed line in all the plots indicates the value 

of ∆tmax obtained from maximizing SSλ in Eq. (4.2) as a function of ∆t. For easy reference, the appropriate relaxation 

rate Rm values in units of Hz are shown in the small box in each plot (color figure online) 

 

results shown in Fig. 4.3. Such a simple understanding does not seem possible when four relaxation 

coefficients are involved as shown in the right-hand column in Fig. 4.4. Like Fig. 4.4d, the NT value in all 
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the four component cases shown in Fig. 4.4e–h exceeds zero meaning that the MPM approach does not 

reliably resolve these four components given the level of experimental noise. Data sampling at the Δtmax 

value still produces NT values greater than zero although in most cases NT is minimum at qΔt = Δtmax. 

 

Figure 4.5. Dependence of ∆t max on the number of uniformly spaced components in the 0.1 s < T < 1 s range. The 

asymptotic ∆tmax values shown in (b) for the uniform (solid), Gaussian (dashed), and oppositely skewed, bimodal 

Gaussian (dash-dotted and dotted) amplitude profiles in (a) are 0.35, 0.34, 0.32, and 0.37 respectively. 

 

The agreement between experiment and theory displayed in Figs. 4.3, 4.4 validates the reduced 

MPM approach used here to calculate NT and its relationship to Δtmax. This strong agreement allows one to 

ask how small the experimental noise 〈N2〉 must be to resolve all four relaxation coefficients for the sample 

quadruples used to develop the results on the right-hand side of Fig. 4.4. In all cases, it was found that all 
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four components are resolved at Δtmax if the noise level is decreased by a factor of 100. Since the signal to 

noise ratio is known to increase with the square of the number of scans [24], increasing the number of 

signals averaged from 8 per trial to 100^2 × 8 = 80,000 should recover acceptable resolution. 

Another useful theoretical exercise considers the dependence of Δtmax on the density and amplitude 

of the time constants within a fixed range of values as summarized in Fig. 4.5. The graph in (a) displays 

four separate time constant amplitude envelope functions. These functions include a box or equal amplitude 

distribution across the 0.1 s to 1.0 s time range, a Gaussian distribution and two oppositely skewed, bimodal 

Gaussian distributions. These amplitude distributions were used to generate the respective plots of Δtmax as 

function of the density of relaxation coefficients in (b), or equivalently the number of relaxation coefficients 

# λ within the displayed fixed 0.1 s < T < 1 s range. The Δtmax values were obtained by maximizing Eq. 

(4.2) as a function of Δt and increasing number of relaxation coefficients. The Δtmax value for two relaxation 

coefficients is identical in all cases as the two time constants T1 = 0.1 s and T2 = 1 s yield R1 = 10 Hz and 

R2 = 1 Hz and Δtmax = log(R2/R1)/(R2–R1) = log(10 Hz/1 Hz)/(10 Hz–1 Hz) = 0.26 s. As the number of 

relaxation coefficients increases, the Δtmax value steadily increases and asymptotically approaches a 

constant number that reflects the relaxation time distribution mean value. The similarity of the 0.35 s and 

0.34 s asymptotic Δtmax values shown for the solid and dashed curves in Fig. 4.5b is expected as the 

corresponding time constant amplitude distributions shown in Fig. 4.5a are symmetric and have the same 

mean time constant value. As the shape of the distribution becomes bimodal in Fig. 4.5a, the asymptotic 

Δtmax value changes. The shift of average time constant to shorter T value for the dash-dotted curve in Fig. 

4.5a causes the asymptotic Δtmax value to shorten to 0.32 s in Fig. 4.5b. The opposite effect is observed for 

the dotted curve in Fig. 4.5b. Here the asymptotic Δtmax value lengthens to 0.37 s as the average time 

constant shifts to longer T value in Fig. 4.5a. It should be clear that operation at Δtmax does not guarantee 

that all the relaxation coefficients will be resolved. For example, it is not possible to resolve the ca. 1,000 

relaxation coefficients used to reach the Δtmax asymptotic limit. Rather, the asymptotic Δtmax values shown 

in Fig. 4.5 suggest the best sampling rate needed to extract the maximum number of relaxation coefficients 
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from the measured data provided enough signals have been averaged to keep the experimental noise level 

low and thus produce near zero NT values. 

 

4.5 Conclusion 

 The MPM is an algebraic way to analyze the damped, exponential, and transient signals common 

to all NMR relaxometry experiments. This work builds upon earlier results [18, 22] and demonstrates that 

the eigenvalues provided by MPM analysis zm most faithfully reproduce the relaxation coefficients λm when 

the data sampling time Δtmax is chosen such that the sum of square λm differences SSλ is maximum as a 

function of data acquisition sampling time Δt. The validity of Δtmax in sample collections contrived to 

simultaneously produce two, three, and four relaxation coefficients is demonstrated by comparison of 

experiment to theory via the NT parameter shown in Eq. (4). The analysis of two relaxation coefficient 

samples is attractive because a tractable analytical solution for NT is obtained to first order in the mean 

square noise 〈N2〉. In the case of Gaussian white noise, higher nth-order analytical corrections in terms of 

〈N2〉n could be developed. But judging from the agreement between the analytical and numerical results in 

the vicinity of Δtmax, numerical methods were adopted as they also easily scale to situations presenting more 

than just two relaxation coefficients. 

The obvious way to implement this work in the laboratory begins by obtaining a high signal–to–

noise, oversampled transient relaxation decay signal. Oversampling guarantees that Δt < Δtmax. The number 

and the values of the relaxation time constants are estimated from this oversampled signal using 

conventional MPM, ILT, data fitting, etc. The m estimated time constants are used to construct the λm 

relaxation coefficients and SSλ, the function that is maximized to yield Δtmax. The measured transient data 

is then resampled at Δtmax and MPM is used to find the inherent relaxation times and their relative 

contribution to the signal. If the actual number of time constants contributing to the signal is known, then 

the reduced MPM introduced here can be used in place of applying the MPM to the full resampled signal. 
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Chapter 5: Diffusion and Exchange in NMR 

5.1 Introduction 

 The motion sensing abilities of NMR spectroscopy is not limited to merely relaxation rates. Adding 

to the impressive resume is the capability to detect diffusive and exchange motions [1]. Much of the 

important molecular dynamics and spatial information about a sample can be uncovered with the proper 

NMR pulse sequences. The effects of these motions were previously touched on in chapter 1 with respect 

to relaxation [2]. Here, a slightly deeper look at the role of diffusion and exchange are provided in order to 

provide extra context for the final chapter of this dissertation. 

 

5.2 Diffusion 

5.2.1 Fick’s Laws 

 When discussing diffusion from a general chemistry and biology perspective, it is described as the 

translation of particles from a high density region to a lower density space. This behavior is described by 

Fick’s first law, 

𝐽 = −𝐷�⃗⃗�𝜑 (5.1) 

where 𝐽 is the diffusive flux along each cartesian axis, D is the diffusion constant, ∇φ and represents the 

concentration gradient of the sample [3,4]. The diffusivity is tied to key information about the conditions 

of the given particle, including average translational energy and the intermolecular forces of the surrounding 

environment [5]. For liquids, this information can be cleanly summed up by the Stokes-Einstein relation 

[6]. 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
(5.2) 

Here, η is the viscosity, T is the temperature, and r is the radius of the particle. Usually, the particle is 

approximated to be spherical for simplicity. Under anisotropic conditions, D takes on the form of a tensor, 

however most liquid-state NMR situations are isotropic, and the diffusion coefficient is a scalar quantity. 
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One can now imagine that as time evolves, the concentration gradient changes due to the flux of particles. 

This is described by Fick’s second law, also known as the diffusion equation: 

�̇� = 𝐷∇2𝜑 (5.3) 

 Consider, a typical NMR sample in which no such commanding concentration gradient exists. As 

is evident by relaxation, some translation must still exist in the sample to incite local field fluctuations [2]. 

The motion is driven by collisions with surrounding particles and is thus random in nature. This 

phenomenon is called Brownian motion and its corresponding D is known as the self-diffusion coefficient 

[6]. For an isotropic solution, the displacement across all dimensions on average reduces to zero as any 

random process would. However, similar to the squares of fluctuating fields in relaxation, the squares of 

the displacement are non-zero. The self-diffusion coefficient reflects the rate of this squared displacement 

yielding valuable dynamic via 

𝑑𝑟𝑚𝑠 = √2𝐷𝜏 (5.4) 

where drms is the root mean square displacement of a given particle and τ is the length of time travelled. 

 

5.2.2 Bloch-Torrey Equations 

 To observe the effects of diffusion on magnetization, the classical equations of motion are 

reintroduced [7]. Naturally, as spins translate through a volume, so too must the respective magnetic 

moment. This diffusion of magnetization can consequently be modeled by Fick’s second law: 

𝜕�⃗⃗⃗�

𝜕𝑡
= 𝐷∇2�⃗⃗⃗�, (5.5) 

where is the vector [𝑀𝑥 ,𝑀𝑦 ,𝑀𝑧]. In combination with the influence of Zeeman and relaxation interactions, 

the total change in magnetization can be captured by 

𝜕�⃗⃗⃗�

𝜕𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� + 𝑹 ∙ (�⃗⃗⃗� − �⃗⃗⃗�𝑒𝑞) + 𝐷∇2�⃗⃗⃗� (5.6) 

where �⃗⃗⃗�𝑒𝑞 is the equilibrium magnetization, usually Mz = M0, and R is a diagonal matrix of the relaxation 

rates, 
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𝑹 =

(

 
 
 
 

−
1

𝑇2
0 0

0 −
1

𝑇2
0

0 0 −
1

𝑇1)

 
 
 
 

. (5.7) 

This set of differential equations makes up the Bloch-Torrey equations [8].  

 Recall the previous discussion on the effects of inhomogeneity on spin-spin relaxation. In the 

absence of any magnetic field gradient, the field experienced by a spin at any location is equivalent. This 

means that the magnetization is invariant under translation of these spins. In contrast, diffusion in an 

inhomogeneous field will induce a change in precession rate of the magnetic moment based on the current 

position of the spin as a function of time [1,2]. This continuous movement introduces fluctuations which 

drive faster relaxation, thus further attenuating signals beyond the pure dephasing. By including a linear 

field gradient of strength G in the z-direction, the effect of diffusion can be calculated independently as 

𝜕�⃗⃗⃗�

𝜕𝑡
= −𝑖𝛾𝐺𝑧�⃗⃗⃗� + 𝐷∇2�⃗⃗⃗�. (5.8) 

Solving Eq. 5.8 yields the following attenuation function, 

𝐴 = 𝑒−
1
3
𝐷𝛾2𝐺2𝑡3

(5.9) 

In conjunction with the relaxation solution, the classical solution for an FID under the effects of diffusion 

is given by Eq. 5.10 [9]. 

𝑀(𝑡) = 𝑀0𝑒
−

𝑡
𝑇2𝑒−

1
3
𝐷𝛾2𝐺2𝑡3

. (5.10) 

 

5.2.3 Measuring Diffusion Coefficients 

 Since the debut of spin echoes, multiple methods of directly measuring diffusion coefficients with 

NMR have been considered [10]. The original Carr-Purcell method for studying diffusion coefficients 

utilizes the steady application of a known gradient magnetic field during a spin echo sequence [11,12]. An 

ideal spin echo refocuses all spins, but if an isochromat were to change in precession frequency at any point 
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during the process its dephasing may become irreversible. In most commercial systems, the amount of 

irreversible dephasing due to the static field inhomogeneity is negligible. With a stronger applied gradient, 

the effects of diffusion become more pronounced. By knowing G and T2, the self-diffusion coefficient can 

be calculated from a train of spin echoes using Eq. 5.10. 

 The Carr-Purcell method serves as an effective technique; however, it is haunted by hardware 

limitations [10]. Molecules with smaller coefficients require stronger gradient fields to see any appreciable 

effects due to diffusion. An increase in inhomogeneity results in a broader range of transition frequencies 

as the degree of dephasing grows. If the gradient field becomes too strong, some spins may no longer be 

subjected to enough RF power for sufficient excitation. To account for this effect, the amplitude of the RF 

must be increased while simultaneously increasing the bandwidth of the receiver, the latter introducing 

extra noise to the signal. 

 To bypass the complications that arise from the Carr-Purcell method, Stejskal and Tanner 

demonstrated the use of pulsed field gradients in the place of a continuous field [13]. The first pulsed 

gradient is applied immediately after the π/2 RF pulse over a period of δ. During this time, all spins dephase 

according to their location and gradient strength [14]. As with the standard spin echo, a π pulse is applied 

to begin the refocusing process. A second gradient pulse is then applied to reverse the effects of the initial 

dephasing pulse to ensure total coherence. If a spin diffuses at any time between these gradient pulses, Δ, 

the phase accrued due to the second pulse may not fully counter the first pulse. Only a fraction of the spins 

will refocus as a consequence, thus attenuating the recorded signal. The Bloch-Torrey equations can be 

solved for each step of the Pulsed Gradient Spin Echo (PGSE) sequence to find the following equation for 

the signal: 

𝑀(𝛥, 𝛿, 𝐺) = 𝑀0𝑒
−𝐷𝛾2𝐺2𝛿2(Δ−

𝛿
3
)

(5.11) 

 In contrast to previously discussed pulse sequences, PGSE data is not generally gathered as a 

function of time. Further attenuating the signal, incrementing Δ and δ subjects spins to increasing relaxation 

influence at each step. Instead, the strength of the gradient pulse is varied to increase the amount of 
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dephasing while maintaining a constant echo time. The transient is Gaussian as a function of G, so typically 

the transient is treated as a function of G2 in order to apply standard relaxometry data processing methods. 

 

Figure 5.1. The Pulsed Field Gradient Spin Echo sequence for measuring self-diffusion coefficients (a) and 

the corresponding transient (b) as a function of G (solid) and G2 (dashed). This transient was calculated 

with D = 2.3×10-9m2/s, δ = 7×10-3 s, Δ = 7×10-2 s, and γ = 42.8 MHz/T. 

 

5.2.4 Confinement 

 The path of molecules considered thus far have only been restricted by other molecules. In porous 

media and emulsions, often the motion of the molecules are further restricted by a barrier [15-19]. 
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Traditionally, scattering and microscopy techniques have been used to measure the size of these pores and 

droplets. However, each of these methods tend to require some amount of sample interference to be 

sufficient. NMR diffusion experiments are being increasingly applied as noninvasive methods to measure 

these physical properties.  

 With significant restriction, the root mean square displacement of molecules is skewed as a 

consequence of more frequent collisions. As a result, the diffusivity measured from PGSE experiments is 

smaller than the true self-diffusion coefficient [17]. With knowledge of the correct D and an approximate 

boundary shape, one of several equations can be leveraged to determine the confinement radius. Generally, 

the cavities are assumed to be spherical attenuating the signal as 

𝑀(𝛥, 𝛿, 𝐺) = 𝑀0𝑒
−2𝛾2𝐺2 ∑

1

𝛼𝑚
2 (𝛼𝑚

2 𝑟2−2)
[

2𝛿

𝛼𝑚
2 𝐷

−
2+𝑒−𝛼𝑚

2 𝐷(Δ−𝛿)−2𝑒−𝛼𝑚
2 𝐷Δ

(𝛼𝑚
2 𝐷)

2 −
2𝑒−𝛼𝑚

2 𝐷δ−𝑒−𝛼𝑚
2 𝐷(Δ+𝛿)

(𝛼𝑚
2 𝐷)

2 ]∞
𝑚=1

(5.12)
 

where r is the radius of the cavity and αm corresponds to the roots of the Bessel function (Jn) relation 

𝐽3/2(𝛼𝑟) = 𝛼𝑟𝐽5/2(𝛼𝑟). (5.13) 

Furthermore, often the size of these boundaries are not uniform throughout the sample, but rather a complex 

distribution. Currently, the primary mode of recovering these distributions of radii falls in the hands of 

inverse Laplace transforms. 

 

5.3 Exchange 

 Another source of motion for nuclear spins comes through more reactionary means. Be it through 

intermolecular or intramolecular reactions, nuclei may find themselves positioned in new magnetic 

environments by a change in chemical bonding [20]. This process, known as chemical exchange, gives rise 

to both spectral and relaxation effects which promote the study of chemical kinetics in NMR. In contrast to 

more traditional kinetics experiments, NMR analysis of kinetics is not constrained to systems which are far 

from equilibrium. Due to the effects of nuclear shielding, NMR proves to be highly sensitive to any 

movement of spins between chemical environments. Even after dynamic equilibrium, chemical exchange 

can still be observed.  
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5.3.1 Two-Site Exchange 

Consider a system with two chemical environments, A and B, in which the static field experienced 

by a spin occupying each site is different [1,20]. The resulting precession frequencies ωA and ωB serve an 

important role and the effects of exchange are discussed here in the form of chemical shift frequencies ΩA 

and ΩB. Two conditions exist for the following exchange between the sites: 

𝐴
𝑘𝐴𝐵

⇌
𝑘𝐵𝐴

𝐵. (5.14) 

First, if the two environments possess an equal population, the forward (kAB) and reverse (kBA) rates of 

reaction are also equivalent. This situation is referred to as symmetric two site exchange.  

The effects of exchange in NMR are tied to the relationship of the frequency of exchange with 

respect to the difference in chemical shifts ΔΩ [20]. If exchange occurs at a rate much slower than ΔΩ, the 

system is in the regime of slow exchange. Hopping between sites induces a sudden change in precession 

frequency and thus induces dephasing amongst the spins. As the rate of exchange increases in the slow 

regime, the degree of dephasing increases yielding noticeable broadening of each spectral peak while 

retaining some features of the two peaks. This continues until the rate of exchange is in the ballpark of ΔΩ, 

a point at which all resolution is lost producing a significantly broad spectrum as depicted in Fig. 5.2(c). 

This is the intermediate exchange regime, and the maximum amount of dephasing across all spins is found 

when k = ΔΩ/2.  

As the rate of exchange exceeds the intermediate regime, the phases begin to reconverge thus 

conversely narrowing the spectrum. This narrowing regime is the consequence of fast exchange [20]. With 

the rapid hopping, the spin response to the different environments blur thus resulting in an apparent average 

of precession frequencies. In the fast exchange regime, the spectrum collapses to one narrow peak as rate 

increases. 
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Figure 5.2. The effects of slow exchange on NMR spectra. These spectra were simulated with ΔΩ/2 = 6300 

Hz and exchange rates of k = 500 Hz (a), 2500 Hz (b), and 6300 Hz (c). As the exchange rate increases, 

the doublet collapses into a singlet. 



113 

 

Figure 5.3. The effects of fast exchange on NMR spectra. These spectra were simulated with ΔΩ/2 = 6300 

Hz and exchange rates of k = 6300 Hz (a), 20000 Hz (b), and 50000 Hz (c). As the exchange rate increases, 

the singlet narrows. 
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In the case where one site is heavily preferred over another, the rates of the forward and reverse 

reactions are governed by the equilibrium constant [20]. This is the most common condition for chemical 

reactions due to energetic and entropic barriers. Asymmetric two-site exchange experiences the same 

broadening and narrowing effects of the symmetric case. An additional distortion occurs due to the 

difference in populations in the form of weighted averaging of precession frequencies. Thus, in the fast 

exchange regime the narrowing peak shifts closer to the environmental frequency with a higher population. 

While the two-site exchange cases are deeply understood, systems of any higher complexity still hold some 

mysteries. Chapter 6 serves as an investigation of three-site relaxation in the realm of restricted diffusion. 

 

5.3.2 Bloch-McConnell Equations 

 As with the other motions discussed so far, the classical equations of motion provide satisfactory 

models for magnetization behavior due to exchange. McConnell introduced a modified set of equations for 

the purpose of understanding two-site chemical exchange [21,22]. For the purpose of calculating the 

spectral effects, only the transverse magnetization will be considered, as denoted by 𝑀+ = 𝑀𝑥 + 𝑖𝑀𝑦.  

With two sites, two precession frequencies contribute to the overall signal based on their relative 

populations, PA and PB. In a matrix form, this will be represented as 

𝑳 = (
𝑃𝐴𝜔𝐴 0

0 𝑃𝐵𝜔𝐵
) . (5.15) 

Considering only the effects of relaxation in the transverse plane, a matrix of the corresponding spin-spin 

relaxation rates is required, 

𝑹 =

(

 
−

1

𝑇2𝐴
0

0 −
1

𝑇2𝐵)

 . (5.16) 

Barring exchange momentarily, the Bloch equations which describe the transverse magnetization for two 

sites is 
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𝑑�⃗⃗⃗�+

𝑑𝑡
= (𝑖𝑳 + 𝑹)�⃗⃗⃗�+ (5.17)

 

where �⃗⃗⃗�+ is the vector [𝑀𝐴
+, 𝑀𝐵

+]. To account for exchange processes, a matrix of kinetic rates is employed 

known as the exchange matrix K. 

𝑲 = (
−𝑘𝐴𝐵 𝑘𝐵𝐴

𝑘𝐴𝐵 −𝑘𝐵𝐴
) (5.18) 

Inserting K into the Bloch formalism yields the Bloch-McConnell equations: 

𝑑�⃗⃗⃗�+

𝑑𝑡
= (𝑖𝑳 + 𝑹 + 𝑲)�⃗⃗⃗�+ (5.19)

 

In contrast to the previous classical models, the exchange matrix introduces off-diagonal elements. The 

Bloch-McConnell equations require diagonalization of 𝑖𝑳 + 𝑹 + 𝑲 in order to solve for the magnetization 

at each site. The total signal for two magnetic sites undergoing exchange is given by 

�⃗⃗⃗�+ = 𝑒Λ𝐴𝑡 + 𝑒Λ𝐵𝑡 (5.20) 

where ΛA and ΛB denote the eigenvalues for sites A and B respectively. 

 

5.3.3 Measuring Exchange 

 As previously discussed, the narrowing and broadening of spectral lines is reflected in relaxometry 

measurements by changes in relaxation rates. These changes can be utilized for the experimental 

investigation of kinetic processes such as the folding of proteins. One of the simplest methods for exchange 

studies is the relaxation dispersion experiment [23]. Considering the standard CPMG pulse sequence, 

complete refocusing of spins following a π pulse requires that all spins maintain their precession frequency 

during evolution times τe. Any exchange that occurs between refocusing pulses (2τe) will accrue additional 

dephasing that is not reversible thus decreasing the recorded signal. As a consequence, the CPMG signal 

damps faster.  

If the rate of refocusing pulses 1/2τe, known as repetition rate ν, outpaces the exchange rate, the 

attenuation effect becomes minimized as spins refocus before noticeable amounts exchange is able to occur. 

Accordingly, if the repetition rate is too slow, spins are given ample time to exchange thus decreasing echo 



116 

amplitudes. The relaxation dispersion experiment explores this phenomenon by determining the apparent 

relaxation rate of several CPMG transient signals as a function of repetition rate. The exchange rates may 

then be recovered by fitting to the solutions outlined by Carver and Richards [25]. 

 Another common experiment for looking at exchange in NMR is T2-T2 exchange which yields a 

map of the exchange processes [26]. Depicted in Fig. 5.5, this pulse sequence consists of two CPMG trains, 

occurring over periods of t1 and t2, separated by a mixing period τm which allows exchange to occur. 

Between the CPMG sequences, an additional π /2 pulse is introduced. A process known as magnetization 

storage is accomplished as the first π/2 pulse rotates any remaining transverse relaxation to the longitudinal 

direction. While the mechanisms of T1 now drive relaxation towards thermal equilibrium, the magnetization 

along the static field is encoded with the original precession frequencies and populations of the spins. 

During this relaxation period, spins are allowed to exchange before being subjected to another CPMG pulse 

sequence which is detected.  

 

Figure 5.4. The T2-T2 exchange pulse sequence for studying exchange. A CPMG with one repetition rate 

and overall experimental time, defined by 2n1τe, is followed by a storage pulse, then another CPMG with 

different parameters. 

 

The T2-T2 exchange sequence is repeated for several values of t1 while recording only the second 

CPMG as a function of t2 yielding a two-dimensional data matrix which when inverted provides the 

exchange map. Note that is beneficial to increment t1 in equally spaced intervals. If the exchange map 

displays off-diagonal peaks, exchange has occurred [26,27]. In conjunction with the solutions of the Bloch-
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McConnell equations, the integrals of the exchange peaks can provide useful kinetic information. This 

experimental technique is the basis for the experimental discussions in Chapter 6. 
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Chapter 6: Asymmetry in Three-Site Relaxation Exchange NMR 

Abstract 

The asymmetry of peak integrals in 2D relaxation maps of exchange between three sites indicates 

circular flow between the relaxation sites. This disagrees with the detailed balance according to which the 

exchange between any pair of sites must be balanced in terms of thermodynamic equilibrium. Confined 

diffusion of particles jumping randomly on a 2D checkerboard grid to any of their eight neighbor positions 

and confined gas diffusion were modeled in Monte Carlo simulations to explore the impact of topological 

constraints on particle exchange between three pools. Both models produce density variations across the 

pore and reveal that up to 1% of the molecules move in circular paths between the relaxation pools. This 

motion is driven by different features of  algorithm. It is silent in terms of thermodynamic equilibrium, 

confirming that multi-site exchange maps are symmetric in this case. The coherent flux is argued to result 

from stochastic pore resonance related to diffusion eigenmodes. If it can be driven experimentally by 

external time-varying electric, magnetic, or ultrasonic fields, this may be a way to enhance heterogeneous 

catalysis. 

 

6.1 Introduction 

Exchange is an essential ingredient of diffusion and spreading phenomena, which are abundant in 

nature and govern the evolution of tangible and intangible objects and goods [1], as well as the physics of 

living systems [2,3]. Nuclear magnetic resonance (NMR) provides particularly powerful methodologies to 

investigate molecular exchange processes [4,5]. Slow molecular exchange on the timescale of milliseconds 

is studied by e.g., two-dimensional exchange NMR, i.e., by chemical exchange spectroscopy for rotational 

motion [6] and by exchange relaxometry for translational motion [7]. In equilibrium, the nature of the 

exchange processes is commonly understood to be random Brownian motion, and the associated 2D NMR 

exchange maps are expected to be symmetric with respect to their diagonal. On the other hand, exchange 
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in non-equilibrium leads to asymmetry. This has been observed in NMR, for example, in 2D chemical 

exchange spectra for chemical reactions involving different sites [8], for the spread of hyperpolarization by 

spin diffusion [9], for slow flow across porous media in relaxation exchange maps [10], and in position and 

velocity exchange NMR [11].  

The kinetics of transitions or exchange between discrete states driven by random processes are 

described by van Kampen [12] as follows: 

𝑑𝑀𝑖(𝑡)

𝑑𝑡
= ∑ {𝑘𝑖𝑗𝑀𝑗(𝑡) − 𝑘𝑗𝑖𝑀𝑖(𝑡)}

𝑗
, (6.1) 

where Mi refers to populations represented in NMR by magnetization components collected in the vector 

�⃗⃗⃗�, and kij refers to the exchange rates equivalent to the transition probabilities from state j to state i, which 

are collected in the kinetic exchange matrix k. In equilibrium, 

𝑑𝑀𝑖(𝑡)

𝑑𝑡
= 0, (5.2) 

and the number of all particles arriving at site i from sites j is equal to the number of all particles leaving 

from site i to sites j so that the total mass is conserved. 

 As a result of mass balance, two-site exchange between states or sites A and B always leads to 

symmetric 2D NMR exchange maps in thermodynamic equilibrium as the number kBAMA of particles 

populating site B by leaving site A per unit of time is equal to the number of particles kABMB leaving site B 

and populating site A per unit of time. This number is the product of the rate kBA for transitions from site A 

to site B times the population MA of site A. The relationship kBAMA = kABMB is known as the principle of 

detailed balance. In thermal equilibrium, it is understood to also apply to rate processes involving more 

than two sites [2,13]. 

As an example of mass-balanced equilibrium diffusion between three sites [13,14], Eq. (6.2) 

becomes 

𝑘21𝑀1 + 𝑘31𝑀1 = 𝑘12𝑀2 + 𝑘13𝑀3

𝑘12𝑀2 + 𝑘32𝑀2 = 𝑘21𝑀1 + 𝑘23𝑀3

𝑘13𝑀3 + 𝑘23𝑀3 = 𝑘31𝑀1 + 𝑘32𝑀2,
(6.3) 
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or equivalently, mass balance requires 

𝑘31𝑀1 − 𝑘13𝑀3 = 𝑘12𝑀2 − 𝑘21𝑀1 = 𝑘23𝑀3 − 𝑘32𝑀2. (6.4) 

Normalization of this expression to the total number of exchanges per unit of time defines the asymmetry 

parameter asy used below: 

(𝑘23𝑀3 − 𝑘32𝑀2) [(1,1,1)𝒌�⃗⃗⃗�]⁄  

Here, kijMj is the number of transitions from pool j to pool i, corresponding to the peak integral in an 

exchange map after correction for relaxation effects so that the denominator corresponds to the integral 

over all peaks. The asymmetry parameter thus quantifies the imbalance of exchange between two sites in 

terms of the number of unbalanced exchanges normalized to the total number of exchanges. Therefore, it 

specifies the relative flux in the circular exchange process. While mass balance (Eq. 6.4) is a necessary 

condition for dynamic equilibrium, detailed balance, on the other hand, is a stronger condition applicable 

to thermodynamic equilibrium. It requires the following: 

𝑎𝑠𝑦 = 0. (6.6) 

Detailed balance was introduced by Maxwell in 1867 based on sufficient reason in his derivation 

of the speed distribution of gas atoms considering the speed exchange between colliding gas atoms in 

thermodynamic equilibrium [15]. An intriguing consequence of the exchange being balanced in detail 

between particles A and B amounts to the impossibility of assigning positive time to either velocity 

exchange from A to B or from B to A on the particle scale of the exchange process, thus admitting negative 

time or time reversal. In 1872, Boltzmann showed, in an elaborate treatment, that Maxwell’s speed 

distribution also applies to polyatomic gas molecules [16]. Furthermore, in 1917, Einstein derived Planck’s 

law of blackbody radiation as a balanced energy exchange between quantized radiation and matter, 

underlining the striking similarity to Maxwell’s speed distribution of gas atoms [17]. He concludes “Indem 

Energie und Impuls aufs engste miteinander verknüpft sind, kann deshalb eine Theorie erst dann als 

berechtigt angesehen werden, wenn gezeigt ist, daß die nach ihr von der Strahlung auf die Materie 

übertragenen Impulse zu solchen Bewegungen führen, wie sie die Wärmetheorie verlangt” [Since energy 
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and momentum are intimately connected, a theory can only then be considered justified when it has been 

shown that according to it the momenta of the radiation transferred to the matter lead to such motions as 

demanded by the theory of heat]. 

In his work extending Maxwell’s speed distribution to polyatomic gas molecules, Boltzmann 

considered molecules in a container whereby the walls reflected the molecules like elastic balls: “Bezüglich 

der Gefäßwände, welche das Gas umschließen, will ich jedoch voraussetzen, dass die Moleküle an 

denselben wie elastische Kugeln reflektiert werden. . . . Die Wände stören nicht, da an ihnen die Moleküle 

wie elastische Kugeln reflektiert werden; also geradeso von ihnen zurücktreten, als ob der Raum jenseits 

der Wände von gleich beschaffenem Gase erfüllt wäre” [Concerning the container walls which enclose the 

gas, I want to presume that the molecules are reflected from them like elastic balls. . . . The walls do not 

interfere because the molecules are reflected from them like elastic balls; that is, they recede from them just 

like that, as if the space beyond the walls would be filled with similarly conditioned gas]. Moreover, the 

interaction between gas molecules can be of any type. While Boltzmann states that any other interaction 

between walls and molecules leads to the same result, albeit at the loss of simplicity, the perfectly elastic 

reflections of the gas molecules at the walls eliminate the topological constraints of the box on their motion. 

For confined particles, this means that the pressure across the pore volume is constant; i.e., the time average 

of the particle density does not vary with the location inside the pore. Boltzmann obtained the same speed 

distribution for polyatomic molecules with internal degrees of freedom as Maxwell did for atoms based on 

a detailed balance of speed exchange. In the simulations reported below, the motion of molecules is 

considered whereby the interactions with the walls are the same as those among the molecules. 

Understanding confined diffusion [18] is important from a general point of view because the motion of 

molecules without topological constraints is an ideal limit which cannot be perfectly realized in practice, 

although it may be realized within experimental uncertainty. 
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Figure 6.1. Asymmetry in three-site diffusion-mediated exchange indicates coherent circular motion in a 

model example of water molecules in contact with a porous surface. Three water populations Mj are 

identified by different NMR relaxation times and colors They are molecules in the bulk (1), molecules on 

the surface (2), and molecules in the pores (3). The exchange rate constants are kji . The net particle flux 

kijMj − kjiMi between two sites differs from zero. The net mass of all molecules participating in the exchange 

is conserved. The figure illustrates positive asy. 

 

Two-site exchange processes will always be symmetric in equilibrium. This situation has been 

evaluated analytically for NMR relaxation exchange of fluids in porous media [19]. Yet, multi-site 

relaxation exchange NMR maps [20] can formally be asymmetric in equilibrium. For example, the 

transverse magnetization s(t1,t2) from a three-site T2 – T2 relaxation exchange NMR experiment [21], 

𝑠(𝑡1, 𝑡2) = (1,1,1)𝑒−(𝑹2+𝒌)𝑡2𝑒−(𝑹2+𝒌)𝑡𝑚𝑒−(𝑹2+𝒌)𝑡1 �⃗⃗⃗�(𝑡0), (6.7) 

has been simulated to model an experimentally observed asymmetric three-site T2 – T2 NMR exchange map 

of water molecules saturating Al2O3 powder, with the three relaxation sites corresponding to bulk water, 

water molecules on the surface of the powder particles, and water molecules inside the surface pores (Fig. 

6.1). Here, �⃗⃗⃗�(𝑡0) is the initial vector of transverse-magnetization components from relaxation sites 1, 2, 

and 3 generated from longitudinal thermodynamic equilibrium magnetization with a 90° pulse at the 

beginning of the experiment at time t0, and t1, tm, and t2 are the evolution, mixing, and detection time 
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intervals of the 2D NMR experiment, respectively [5,7]. Apart from the relaxation rate matrices R1 and R2 

and the kinetic matrix k, the best match obtained by forward simulation returned the peak integrals, 

revealing an asymmetry parameter of asy = –1.2%. This asymmetry of the forward and backward particle 

jumps between two sites specifies the relative circular flux between the three sites (Fig. 6.1). 

The asymmetry observed in the experiment can be argued to result from the uncertainty of the 

measurement and the data processing by 2D inverse Laplace transformation [22]. Also, asymmetric three-

site exchange disagrees with the detailed balance of the exchange between any pair of sites in 

thermodynamic equilibrium because it needs to be explained by circular diffusion on the pore scale, and 

such motion resembles that of a rachet, which Feynman has argued disagrees with the second law of 

thermodynamics [23]. Nevertheless, Monte Carlo simulations were executed and are discussed below to 

investigate asymmetry in three-site exchange. 

 

6.2 Modeling Confined Diffusion 

6.2.1 Vacancy Diffusion: Random Particle Jumps on a 2D Checkerboard 

Random jumps of particles from occupied sites to vacant sites were simulated with a Monte Carlo 

algorithm [24-27] in a confined space on a checkerboard. The algorithm models vacancy diffusion [28] 

encountered in metals and alloys, but the particles perform the jumps rather than the vacancies. To keep the 

simulation simple, it is limited to jumps on a 2D 3×3 Moore lattice of range 1 [29] following the rules of 

the game of life [29,30]. Here, the center particle can jump to any of its eight neighbors (Fig. 6.2). Different 

neighborhoods of range 1 were tested (Fig. S1 in the Supplement) [30], but only the Moore neighborhood, 

having the highest symmetry of all neighborhoods, produced data consistent with Eq. (6.4). Topological 

constraints were introduced, setting boundaries for the jump space. Initially, the available cells inside the 

jump space on the grid were populated randomly with particles up to a specified particle density. Particles 

in the bulk are indexed as 1, and two distinct boundary sections are indexed as 2 and 3, giving three 

environments for the particles to be exposed to and between which randomly selected particles can move. 
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A particle jumping from environment j to i is counted by incrementing the element ij of a 3×3 jump matrix 

with elements kijMj by 1. If the particle environment does not change with the jump, the respective diagonal 

element kjjMj is incremented. The NMR relaxation environments are indexed according to increasing 

relaxation rate. If a particle is in contact with two different relaxation environments, it is assigned to the 

relaxation environment with the higher index according to the higher relaxation rate. 

 

Figure 6.2. Jumps on a checkerboard grid modeling vacancy diffusion. The center particle can jump to any 

of its eight nearest neighbor cells, which are numbered clockwise from 1 to 8. Jump probabilities were 

introduced to account for particle interaction between the center particle (red) and neighboring particles 

(black). 

 

Different rules governing jumps to a neighbor cell were explored. (1) In the simplest case, one of 

the eight destination cells was chosen at random without assigning a jump probability. When the destination 

cell was free, the jump was executed, and the initial and final environments were compared to increment 

the corresponding entry in the jump matrix accordingly. When the destination cell was occupied, the particle 

remained at its source cell, and the respective diagonal element of the jump matrix was incremented. In all 

other cases, jump probabilities were assigned. (2) As a subtle variant of the random jumps to any of the 

eight neighbor cells, jumps to any of the free neighbor cells were randomly selected by assigning zero jump 

probability to occupied neighbor cells and equal probability for jumps to the empty cells. This algorithm is 

known to violate detailed balance [24,31]. (3)With reference to the Helmholtz free energy 𝐴 = 𝑈 − 𝑇𝑆, 

where U is internal energy, T is temperature, and S is entropy, a jump probability 𝑝 = exp {−
Δ𝐴

𝑘𝐵𝑇
} was 
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introduced, where Δ𝐴 = 𝑈 − 𝑇Δ𝑆, T is the temperature, and kB is the Boltzmann constant. Δ𝑈 = −�⃗�Δ�⃗⃗� 

and Δ𝑆 were estimated from the sum of distances to free or occupied neighbor cells by crude empirical 

models, as detailed in the supporting information. Here, �⃗� is the force, and Δ�⃗⃗� is the distance vector between 

two particles. This allowed us to probe attractive and repulsive interactions by changing the sign of Δ𝑈 in 

simulation runs and by varying the temperature in addition to varying population density equivalent to 

pressure. It is noted here that the force field on a randomly populated lattice is not conservative [31]. In 

other words, the energy balance of a particle moving in a circle is different from zero, and Monte Carlo 

simulations under these constraints probe a driven equilibrium and not the thermodynamic equilibrium [32]. 

The vacancy diffusion simulations were carried out with a program written in MATLAB R2020a 

by MathWorks on an Apple MacBook Pro 2.4 GHz with an Intel Quad-Core i5 processor. Unless indicated 

otherwise, 107 jumps were simulated in one run as taking 75 s. 

 

6.2.2 Gas Diffusion 

The gas diffusion calculations explore similar pore sizes and occupancy. Here, the motion of 

circular particles with diameters equal to the cell size was accomplished by propagating an initial 

distribution of particle speeds for random initial positions and directions in a Monte Carlo fashion based on 

instantaneous collisional forces. This distribution rapidly equilibrated to a Maxwell–Boltzmann 

distribution. Whereas in vacancy diffusion simulations the distribution of particles in the pore is recorded 

after each jump, it is recorded in the gas-phase simulations at constant time intervals. If the center of each 

particle was within one diameter of another, the particles are considered to have collided. Immediately after 

a collision, the projection of the velocity vector along the collision axis is reversed prior to propagating to 

the next step. In this approach, the observation time interval must be sufficiently small so that the new 

velocities are calculated with a small position uncertainty for the colliding particles [30,31]. 

The collisions change both the direction and velocity of the particles at each of the 109 constant 

time increments used here. Following conservation of momentum and kinetic energy,  
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𝜈1,𝑛𝑒𝑤 = 𝜈1,𝑜𝑙𝑑 −
2𝑚2

(𝑚1 + 𝑚2)

〈𝜈1,𝑜𝑙𝑑 − 𝜈2,𝑜𝑙𝑑 , �⃗�1 − �⃗�2〉

‖�⃗�2 − �⃗�1‖
2

(�⃗�1 − �⃗�2), (6.8) 

𝜈2,𝑛𝑒𝑤 = 𝜈2,𝑜𝑙𝑑 −
2𝑚1

(𝑚1 + 𝑚2)

〈𝜈2,𝑜𝑙𝑑 − 𝜈1,𝑜𝑙𝑑 , �⃗�2 − �⃗�1〉

‖�⃗�2 − �⃗�1‖
2

(�⃗�2 − �⃗�1). (6.9) 

These collisions with other particles and the wall are mediated by the particle size, which is set to be a 

fraction of the pore-side length of one. This means that a square pore with a five-particle diameter side 

length is populated with particles that have a diameter of one-fifth. To compare the continuous positional 

output of this model to vacancy diffusion, a two dimensional square grid with cell size set by the particle 

diameter is imposed on the entire pore. The quasi-continuous positional output is then binned into these 

cells and compared to the binned positions from the previous observation to determine if particles translated 

between the main pore volume, the pore wall, and the active site. The translational information is used to 

assign estimates of the jump matrix elements and thus the asymmetry parameter asy. 

The gas diffusion simulations were carried out with a program written in MATLAB R2020a by 

MathWorks Inc. on a home-built desktop computer possessing an AMD (Advanced Micro Devices) Ryzen 

7 2700 processor. In most cases, 109 jumps were simulated in one run, taking roughly 45 h to complete. 

 

6.3 Results 

Two different pore geometries were analyzed. Initially, the simulation was executed for a pore 

geometry (Fig. 6.3a) which approximated the surface structure of Fig. 6.1 and which is hypothesized to 

explain the observed asymmetry of water diffusing in a porous Al2O3 grain pack [21]. The dented surface 

was mirrored horizontally to double the probability of particles entering the dent (relaxation site 3) in the 

otherwise straight surface (relaxation site 2). The bulk of the particles defines relaxation site 1. Periodic 

boundary conditions were employed to the right and left. A pore boundary was treated just like an occupied 

cell, with the same rules applying to the jump probability. The simulations of particle motion confined to 

this complex pore structure and constrained by jump probabilities revealed the existence of asymmetric 

exchange. To understand the essence of the asymmetry, the pore geometry was simplified to a square with 
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Figure 6.3. Examples of pore models for two-dimensional three-site exchange based on a checkerboard 

grid. Particles can occupy one cell and jump to a neighboring one following different realizations of the 

jump probability. (a) Porous solid. The boundaries to the right and left are periodic. The boundaries at the 

top and bottom are rigid. Depending on their next neighbors in the first coordination shell, the particle 

relaxation environments are identified as bulk (1), surface (2), and pore (3), with increasing relaxation 

rates. (b) Small square pore with an active site. The bulk (1), the walls (2), and the active site (3) have 

different relaxation properties. If a particle is in contact with two different relaxation sites, it is counted as 

belonging to the particle pool with the larger relaxation rate, i.e., the pool with the higher number. 

 

an active site in the wall to study particle motion in detail. Particles in the bulk, in contact with the 

walls, and in contact with the active site are identified by different NMR relaxation properties (Fig. 6.3b). 

Enabled by the interaction model, which, depending on the particle environment assigns different jump 

probabilities as a function of temperature, the asymmetry parameter asy was evaluated for both pores with 

the vacancy diffusion algorithm as a function of temperature T and pressure P. Pressure was varied in terms 

of the population density, measured as the fraction of cells occupied in the pore. The results for the complex 

pore are reported in the Supplement (Fig. S3), whereas those for the simple square pore are reported here 

in the main text (Fig. 6.4). At certain temperatures and pressures, the autocorrelation function of the 
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occupation-time track of a particular cell and its Fourier transform were also determined. Striking features 

observed in vacancy diffusion were subsequently modeled with the gas diffusion algorithm in the square 

pore. 

 

 

Figure 6.4. Asymmetry parameters asy for diffusion inside the small rectangular pore depicted in Fig. 6.3b 

as a function of temperature T (a–c) and pressure P (d–f). (a) asy(T) for repulsive interaction at P = 0.3. 

(b) asy (T) for attractive interaction at P = 0.3. (c) asy (T) for jumps to randomly selected empty cells. (d) 

asy (P) for attractive interaction at T = 0.8. (e) asy (P) for attractive interaction at T = 0.1. (f) asy (P) for 

jumps to cells randomly selected from all eight neighbor cells. 

 

Relevant results for the square pore (Fig. 6.3b) are summarized in six graphs in Fig. 6.4. The 

asymmetry parameter varies strongly with temperature T (Fig. 6.4a, b) and pressure corresponding to 

population density P (Fig. 6.4d, e). All parameters are relative quantities without units. The top three graphs, 

namely (a), (b), and (c), show the variation of asy with temperature for a population fraction of 0.3, 

corresponding to that of a gas. The asymmetry parameter assumes only negative values in an abrupt but 
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reproducible manner in the range of −0.8% < 𝑎𝑠𝑦 < 0.0% for repulsive interaction (Fig. 6.4a), i.e., for the 

definition of the force between particles as illustrated in Fig. S2a. With reference to Fig. 6.1, negative asy 

reports that the straight exit route from the active site towards the center of the pore is preferred over the 

detour via the pore wall. When the interaction is changed from repulsive to attractive by inverting the sign 

of Δ𝑈 in the expression for the free energy, the asymmetry parameter varies as well, though only between 

−0.3% < 𝑎𝑠𝑦 < 0.0% (Fig. 6.4b). In either case, the asymmetry parameter varies with temperature and 

pressure. It is concluded that, for this small pore, up to about 1% of all jumps on the checkerboard can 

proceed in an ordered circular fashion between the three sites. Similar behavior is observed for the complex 

pore of Fig. 6.3a, as illustrated in Fig. S3 in the Supplement. 

At the extrema of the 𝑎𝑠𝑦(𝑇) curves in Fig. 4a and b, the dependence of the asymmetry parameters 

on population density was investigated (Fig. 6.4d, e). The variations with population density are smoother 

than those with temperature. Significant negative asymmetry results at intermediate pressures, while at low 

and high pressures, the asymmetry is small (Fig. 6.4d, e). At higher temperatures and high pressures, small 

positive asy is observed (Fig. 6.4d, T = 0:8, P = 0:8). If the destination cell for a jump is chosen at random 

without considering a hypothetical free-jump energy A, then essentially, noise more than 2 orders of 

magnitude smaller is observed for the exchange asymmetry determined from 107 jumps when varying T 

and P (Fig. 6.4c, f). However, a small bias towards negative asy results if the destination cell is chosen at 

random from all free neighbor cells (Fig. 6.4c), whereas no bias is detected if the destination cell is chosen 

at random from all neighbor cells, whether free or occupied (Fig. 6.4f). This difference becomes more 

pronounced at a higher number of jumps (see below). 
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Figure 6.5. Autocorrelation functions (center) of the occupancy of the yellow cells (left) and the real 

parts of their Fourier transforms (right) for repulsive interaction at T = 0.1 and P = 0.3. (a) Corner cell. 

(b) Off-center cell. (c) Center cell. The inset in the middle compares the decays of all three 

autocorrelation functions after subtraction of the offsets. 

To shed further light on the origin of the asymmetry, autocorrelation functions of the occupation-

time tracks of selected cells in the pore were computed and Fourier transformed (Fig. 6.5). The occupation-

time track was calibrated to zero mean for purely random occupation; i.e., it contained the negative 
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population density when it was empty and the complement of the population density to 1 when the cell was 

occupied. The faster the autocorrelation function decayed, the less coherently the cell population fluctuated 

and the broader its Fourier transform was, i.e., the transfer function (Fig. 6.5b, c). A constant offset of the 

autocorrelation function shows that the time-average population in the cell differs from the mean population 

of the pore (Fig. 6.5a, b). This offset produces a spike at zero frequency in the transfer functions. Subtracting 

the offsets from the autocorrelation functions and scaling the resulting functions to the same amplitude 

reveals different decays in different cells and thus variations in particle dynamics across the pore (inset in 

Fig. 6.5c, middle). These dynamics cannot readily be measured for a single cell in the pore, although an 

average over all cells and pores in the measurement volume would be amenable to experimentation by 

probing the particle dynamics with CPMG (Carr, Purcell, Meiboom, and Gill) measurements in magnetic 

gradient fields at variable echo times. Such measurements provide the frequency-dependent diffusion 

coefficient in terms of the Fourier transform of the velocity autocorrelation function [33-35]. 

While the autocorrelation function is difficult to probe experimentally, the asymmetry parameter 

asy, on the other hand, probes the particle dynamics and could be investigated experimentally directly by 

relaxation exchange NMR experiments provided the signal-to-noise ratio is good enough. The parameter 

depends on the location of the relaxation center in the pore wall (Fig. 6.6). This dependence has been 

verified to be identical for all walls of the square pore. Moreover, it exhibits mirror symmetry about the 

center position (Fig. 6.6g), ensuring that the simulation noise is negligible. For vacancy diffusion in a 5×5 

square pore with walls that are seven cells wide (Fig. 6.6a, b), asy varies consistently with position when 

the jumps are selected following a priori defined probabilities, irrespective of the particle interaction being 

positive or negative or of the destination cell having been chosen randomly from all free neighbor cells. 

However, the magnitude of asy depends strongly on the selection rule defined by the jump probability, as 

indicated in Fig. 6.6g by the scaling factors. It is highest at the corner positions and lowest at the center 

position. For random jumps to empty cells, asy was more than 1 order of magnitude smaller than for 

repulsive interaction so that the number of particle jumps had to be increased to 109, resulting in 3 h 

computation time for each data point in the corresponding trace (Fig. 6.6e, black). 
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Figure 6.6. Population density distributions and dependencies of the asymmetry parameter asy on the 

position of the active relaxation site in the wall of a pore with 5 × 5 cells. (a) Vacancy diffusion. Particles 

can jump one step on the grid in eight directions. (b) Deviations from average relative density 1 for 109 

jumps chosen at random to any of the free neighbor cells. (c) Deviations from average relative density 1 

for 109 jumps chosen at random to any of the eight neighbor cells. (d) Gas diffusion. The particle motion is 

computed on a fine grid. (e) Deviations from average relative density 1 for 109 observations of particle 

positions at observation intervals of duration 1. The particle position at the time of observation is binned 

to the coarse vacancy diffusion grid. (f) Deviations from average relative density 1 on a fine 50 × 50 grid 

of 0.1 particle diameters for 109 observations of particle positions at observation intervals of duration 0.01. 

(g) Variations of the asymmetry parameter with the position of the active site in the cell wall for differently 

interacting particles for vacancy diffusion at T = 0.2, P = 0.3, and different jump probabilities, as well as 

for gas diffusion at long and short observation intervals of 1 vs. 0.01. The mirror symmetry of each trace 

about the center position reports high precision of the simulation. 
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Interestingly, for gas diffusion (Fig. 6d), asy varies at long observation intervals (Fig. 6.6g, green) in a 

fashion similar to that for vacancy diffusion and is of a magnitude comparable to that of vacancy diffusion 

(Fig. 6.6g, black) but does not change sign with the position of the active site in the pore wall. In all these 

cases, the precision of the asymmetry parameter asy obtained in the simulations exceeds the second relevant 

digit. If the jumps in the vacancy diffusion simulations are chosen without bias from a jump probability, 

then no exchange asymmetry is detected; only noise nearly more than 1 order of magnitude lower than for 

jumps selected at random to one of the free neighbor positions is detected (Fig. 6.6g, gray). Similarly, the 

asymmetry parameter decreases with the observation time, becoming shorter by more than 2 orders of 

magnitude, as illustrated in Fig. 6.6g, for a long time step of 1 (dark green) versus a short time step of 0.01 

(light green) in simulation units of (m s2 / kBT )1/2. 

The particle dynamics manifested in asy are accompanied by variations of the average population 

density across the pore, which is depleted in the contact layer of the particle with the pore wall, enhanced 

in the next layer, and tapers off towards the pore center in both cases (Figs. 6.6b, e, S4). The densities vary 

in a similar fashion across the pore for both types of diffusion, albeit having somewhat different values, as 

can be verified by close inspection of the numbers in each cell in Fig. 6.6b and e. These density variations 

disagree with Boltzmann’s argument that elastic collisions with the walls effectively remove the impact of 

the walls to the effect that the walls can be neglected. Agreement, however, is reached if the destination 

cells for particle jumps in vacancy diffusion are chosen at random from all and not just the free neighbor 

cells (Fig. 6.6c) [24]. Shortening the observation interval in the gas diffusion simulations, however, 

maintains the unphysical density distribution across the pore and has no effect due to binning of the particle 

positions to the vacancy diffusion grid at the time of observation as the exact moment of a particle collision 

cannot be determined on a discrete time axis. On a finer grid, however, the population density is 

homogeneous, except in the regions close to the walls, which the centers of the circular particles cannot 

approach (Fig. 6.6f). If, however, projected onto the coarse vacancy diffusion grid, the population density 

modulations (Fig. 6.6e) reappear because the exact locations of collisions cannot be determined in a simple 

way at finite observation time intervals. Nevertheless, for both algorithms, the asymmetry parameter 
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approaches zero for all positions along the wall of the square pore (Fig. 6.6g, light green), confirming that 

detailed balance is observed. 

The maps in Fig. 6.6b, c, e, and f, which reveal the deviation of local population density from 

average population density, were calculated by summing the 2D maps of particle locations after each jump 

or at each observation time, normalizing the resultant maps to the number of jumps and the particle density 

and subtracting the average mean expected for a constant particle density across all cells in the pore. Further 

maps of population density variations for the two different pores of Fig. 6.3 with other sizes and interaction 

parameters are summarized in Fig. S4 of the Supplement. While the particle density varies less with 

temperature for vacancy diffusion, different density patterns are found at different pressures. The strongest 

density variations are near the pore wall regardless of whether the interaction is repulsive, attractive, or 

based on prior knowledge that a neighbor cell is occupied. This becomes particularly evident for larger 

pores (Fig. S4b, d, e). Coincidentally, at low density, the main features of the density maps are strikingly 

similar for vacancy diffusion with destination cells chosen randomly from among the free neighbor cells 

(Fig. S4b) and for gas diffusion (Fig. S4d). The particle density is strongly depleted at the pore corners and 

near the wall and is significantly increased in the next particle layer (Fig. S4e, f). For interacting particles, 

this concentration variation is carried forwards in vacancy diffusion with increasing distance from the wall, 

leading to concentration waves which taper off towards the center of the pore and interfere with each other 

coming from different directions. For small pores, interference patterns dominate the density distribution 

across the pore (Figs. 6.6b, e and S4a, c). For particles jumping randomly to empty neighbor cells, the decay 

of the concentration wave towards the pore center is fast, with few to no oscillations towards the pore center, 

while the oscillations are enhanced by conditioning the jump probability with a hypothetical free-jump 

energy (Fig. S4d, P = 0.2). In particular, the population density at the active site in the dent of the complex 

pore of Fig. 6.3a depends on the parameters P and T (Fig. S4a, b). 
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6.4 Discussion 

Confined two-dimensional diffusion has been modeled by two different algorithms to investigate 

to what extent the cross-peaks in 2D T2 – T2 exchange maps can be asymmetric. The asymmetry is 

quantified by an asymmetry parameter asy, which indicates the relative flux between two sites corresponding 

to the difference in the number of forward and backward exchanges normalized to the total number of 

exchanges. The vacancy diffusion algorithm models particle jumps on a checkerboard grid to the nearest 

neighbor cells under the constraint of different jump probabilities and samples the population map after 

each jump. The jump probability was determined from a Boltzmann distribution with a heuristic free energy 

which depends on the populations of  the surrounding cells. The asymmetry parameters turned out to be 

equal to zero in the case of equal jump probability to all neighbor cells [24], whether occupied or not, 

confirming the validity of detailed balance (Fig. 6.6g). They were found to be different from zero when 

different jump probabilities were assigned to different neighbor cells, i.e., when the jump energy depended 

on the population pattern of the neighbor cells. However, with the statistical arrangement of the particles 

on a checkerboard and the confinement of the interaction force to the next-nearest neighbors, energy was 

not conserved with a particle move so that each particle move either injected or extracted energy from the 

system. Nevertheless, the equilibrium condition (Eqs. 6.2 and 6.3) was fulfilled so that the system was not 

in thermodynamical equilibrium but rather in an equilibrium that was driven by the algorithm. The observed 

asymmetry parameter was, therefore, assigned to a driven and not thermodynamic equilibrium. 

The gas diffusion algorithm models particles colliding with initial velocity vectors and calculates 

new velocity vectors after a collision from conservation of energy and momentum, whereby the instant of 

a collision is interrogated on a discrete time grid. The smaller the observation time, the more precisely the 

instant of a collision is determined. Any deviation from the exact collision time leads to errors in the position 

coordinates of the colliding particles and thus their velocities (Eqs. 6.7, 6.8) [32]. While for large 

observation times a significant asymmetry parameter is observed (Fig. 6.6g, dark green), its value shrinks 

drastically when the observation time is reduced by a factor of 100 (Fig. 6.6g, light green). It is concluded 
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that, with the limit of infinitely short observation time, the gas diffusion algorithm can also produce a 

vanishing asymmetry parameter in a three-site exchange in agreement with the principle of detailed balance 

and with symmetry in the cross-peak intensities of exchange maps in thermodynamic equilibrium. If, on 

the other hand, the velocities are calculated with a systematic error in the gas diffusion model due to a finite 

observation interval, the resultant velocities disagree with the energy and momenta of elastic collisions so 

that, here, energy is also injected or extracted from the system, and the observed asymmetry parameter can 

be attributed to a driven and not a thermodynamic equilibrium. 

The asymmetry parameters observed for either of the two pore shapes (Fig. 6.3) investigated with 

the vacancy diffusion model vary in a range on the order of −1% < 𝑎𝑠𝑦 < 1%; i.e., up to 1% of all particles 

in the pore do not follow the detailed balance between all pairs of sites but move coherently in circles 

between the three sites. It is emphasized that this circular exchange is between the pools of particles 

representing the three sites, and it is not a motion followed by individual particles completing circular 

jumps. Given repulsive or attractive interaction in the vacancy diffusion model with heuristic temperature- 

and pressure-dependent jump probabilities, the variations of asy with temperature T appear to be rapid, 

reminiscent of phase transitions (Figs. 6.4a, b, S3a). The variations of asy with pressure corresponding to 

population density P are smooth (Figs. 6.4d, e, S3b). Either positive or negative values of asy are observed 

as T or P change. A sign change of asy indicates a change in the sense of the circular exchange (see Fig. 

6.1). 

For a simple square pore, the asymmetry parameter varies with the position of the active site in the 

cell wall, exhibiting mirror symmetry with respect to the wall center (Fig. 6.6g). The variation is the same 

for the different jump probabilities, referred to as repulsive and attractive interaction or random jumps to 

empty cells; albeit it differs significantly in magnitude. A similar dependence is observed in the gas-phase 

diffusion simulations at long observation times. Moreover, the autocorrelation functions and their Fourier 

transforms have been determined for the occupancy time tracks of selected cells at specific positions inside 

a small square pore for 107 jumps of all particles in the pore (Fig. 6.5). The time track function was devised 

to have zero mean for the average cell population. Depending on the position of the cell inside the pore, the 
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autocorrelation functions and their Fourier transforms vary. Specifically, the autocorrelation function can 

exhibit a significant constant offset. At these positions inside the pore, the particle densities are different 

from the pore average, and the cell is, on average, emptier or more occupied than would be expected if the 

exchange between all cells were the same. This conclusion is supported by the observed deviations of the 

cell occupancies from the pore average (Figs. 6.6b, e, S4). Near the pore wall, the average population 

density is depleted and varies in an oscillatory manner along the pore wall. Further towards the center of 

the pore, the average population density increases sharply and then tapers off towards the pore center to a 

value slightly above the average density. 

These observations for driven vacancy diffusion in a square pore with 5×5 cells are compared to 

independent simulations of driven gas diffusion (long observation time – step size 1) of non-interacting 

particles in a square pore with an edge length of five particle diameters and that also allows for seven 

relaxation centers along the pore wall (Fig. 6.6a, d). A similar variation of the asymmetry parameter is 

found for vacancy diffusion, but the asymmetry parameter is negative for all positions of the active site 

(Fig. 6.6g, dark green). Moreover, the depletion of the average particle density at the pore wall and its 

subsequent variation towards the center are similar, with the exception that oscillations of the average 

particle density along the pore wall are weaker for gas diffusion (Fig. 6.6b, e). These oscillations persist 

even at short observation times due to the uncertainty of localizing the particle positions at the exact time 

of their collision on a discrete time grid. The lack of a sign change in the asymmetry parameter with 

changing position of the active site may be explained by the destructive interference of particle collisions 

from multiple sites with the wall within one discrete particle diameter and the fact that the free path length 

between collisions in gas diffusion is not limited to the next cell as in vacancy diffusion but can range up 

to the pore diameter. Taken together, the observed asymmetry in the three-site exchange in driven 

equilibrium and the variation of the jump statistics with position inside the pore point to diffusive resonance 

phenomena like standing waves of air in pipes, as reported by Kundt [36], or vibrating plates, as reported 

by Chladni [37]. 
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Three-site exchange can be viewed as a finite-difference approximation to the Laplace operator 

[12,36] governing Fick’s second law [39]. Considering some local site N with neighbor sites N – 1 and N 

+ 1 to the right and left, the mass flow to and from site N given by Eq. (6.1) is 

𝑑𝑚𝑁(𝑡)

𝑑𝑡
= 𝑘𝑁,𝑁−1𝑚𝑁−1 − 𝑘𝑁−1,𝑁𝑚𝑁 + 𝑘𝑁,𝑁+1𝑚𝑁+1 − 𝑘𝑁+1,𝑁𝑚𝑁 (6.10) 

Taking the limit to the infinitesimally small distance Δ𝑟 → 𝑑𝑟 between the neighboring sites leads to 𝑘𝑗,𝑖 =

𝑘, revealing that Eq. (6.10) is a finite-difference approximation of a second spatial derivative balanced by 

the temporal variations of m during infinitesimal time dt: 

(𝑘 𝑚𝑁−1 − 2 𝑘 𝑚𝑁 + 𝑘 𝑚𝑁+1) Δ𝑟2⁄ ≈ 𝑘
𝑑2𝑚

𝑑𝑟2
=

𝑑𝑚

𝑑𝑡
Δ𝑟2⁄ . (6.11) 

In this limit, Eq. (6.11) becomes Fick’s second law, with the diffusion coefficient 𝐷 = 𝑘Δ𝑟2. This back-of-

the-envelope argument suggests that the observed asymmetry of the three-site exchange is a property of 

Fick’s second law and relates to eigenmodes of the Laplace operator [40,41]. 

The diffusion equation applicable to longitudinal magnetization in NMR instead of particle masses 

m is the Bloch–Torrey equation [42]: 

𝜕

𝜕𝑡
𝑚(𝑟, 𝑡) = 𝐷∇2𝑚(𝑟, 𝑡) − 𝜇 𝑚(𝑟, 𝑡), (6.12) 

where m now is the magnetization deviation from thermal equilibrium, and μ is the bulk relaxation rate. 

𝑚(𝑟, 𝑡) solves this equation in terms of an expansion into normalized eigenfunctions 𝜙𝑛(𝑟) with amplitudes 

An and eigenvalues τn [43,44]: 

𝑚(𝑟, 𝑡) = 𝑒−𝜇𝑡 ∑ 𝐴𝑛

∞

𝑛=0
𝜙𝑛(𝑟)𝑒

−
𝑡
𝜏𝑛 . (6.13) 

The eigenvalues are determined by the boundary condition 

𝐷 �⃗⃗� Δ𝜙𝑛(𝑟) = 𝜌 𝜙𝑛(𝑟) (6.14) 

where 𝜌 is the surface relaxivity, and �⃗⃗�  is the unit vector normal to the surface. They depend on the 

diffusion coefficient and determine the NMR relaxation time in different ways according to the pore 

geometry. The population 𝜙0 of the lowest normal mode has no nodes. The higher normal modes 𝜙𝑛 
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possess nodal surfaces. The higher diffusion eigenmodes have been detected by NMR with selective 

excitation of partial pore volumes making use of field gradients internal to the pore [44]. These experimental 

results reported by Song agree with the Monte Carlo simulations of driven diffusive translational motion in 

pores reported here in that the population density varies across the pore, and the offset of the autocorrelation 

function of the local pore occupancy depends on the position of the cell in the pore. It needs to be 

investigated further how much the NMR relaxation times and the associated particle dynamics vary with 

the position from the pore wall to the center in the driven concentration wave [45]. On the other hand, 

stochastic resonance in thermodynamic equilibrium was observed with NMR first by Sleator et al. [46] and 

subsequently studied in detail in different scenarios by Müller and Jerschow [47] and Schlagnitweit and 

Müller [48]. There, the magnetization fluctuating with the thermal motion of the nuclear spins assumes the 

role of the particles, and the resonance circuit assumes the role of the pore. Diffusion eigenmodes are 

expected to be unobservable with this method unless a subset of modes is driven by an external stimulus 

because they may be silent in thermodynamic equilibrium. 

From the exchange asymmetry of the particles in the square pore investigated in Fig. 6.6, a 

suggestive picture emerges for driven confined vacancy diffusion (Fig. 6.7), where the diffusion lengths 

are confined to the distances from the particle to the direct neighbor cells. Depending on the sign of the 

asymmetry parameter (Fig. 6.7a), a small fraction of the particles (blue circles) prefer the direct path 

towards or away from the active site (red square) at the pore boundary over the path along the boundary to 

or from the active site. In the center of the wall, the direct path away from the active site to the bulk is 

preferred over the path along the pore wall when leaving the region in contact with the active site (Fig. 

6.7b). But because jumps are allowed only to neighboring cells in vacancy diffusion, the cells belonging to 

relaxation pool 2 at the wall to the right and left of the active site 3 must be populated from the bulk 1 by 

direct jumps from the bulk to the wall. For these jumps, the asymmetry parameter is indeed positive, as  
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Figure 6.7. Illustration of the exchange asymmetry in driven equilibrium for the square pore of Fig. 6a. (a) 

Depending on the sign of the asymmetry parameter, a small fraction of diffusing particles (blue circles) 

prefer the direct path towards or away from the active site (red square) at the pore boundary over the path 

along the boundary from the active site. (b) Vacancy diffusion for negative asymmetry parameter and the 

active site 3 in the center of the pore wall. Jumps are limited to the next-nearest cells. The direct path away 

from the active site to the bulk 1 in the center is preferred over the path along the pore wall 2 when leaving 

the region in contact with the active site. (c) Gas diffusion for negative asymmetry parameter and the active 

site 3 in the center of the pore wall. The free paths between collisions can span the entire cell. (d) In-plane 

translational vacancy diffusion paths resulting from the variation of the asymmetry parameters with the 

position of the active site on the pore wall depicted in Fig. 6.6g. (e) Out-of-plane vibrational mode of a 

square plate observed by Chladni [37]. 
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observed for the off-center positions of the active site (Fig. 6.6g). Given the symmetry of the square pore, 

the in-plane translational diffusion paths resulting from the variation of the asymmetry parameters with the 

position of the active site on the pore wall demand the existence of eight diffusion vortices inside the planar 

pore (Fig. 6.7d). The symmetry of this in-plane translational diffusion pattern matches the symmetry of one 

of the node patterns of the out-of-plane vibrational modes of a square plate observed by Chladni (Fig. 6.7e) 

about a quarter of a millennium earlier [37]. This also suggests that the dynamic of driven vacancy diffusion 

observed in the computer model reported here is a resonance feature of the pore and thus relates to diffusion 

eigenmodes. The resonance effect is less pronounced for gas diffusion (Fig. 6.7c) where the free paths 

between collisions can span the entire cell. Because the mass flow from relaxation site 2 to the active site 

3 can be sustained from any position at the pore wall, the asymmetry parameter does not need to change 

sign when the active site moves along the pore wall (Fig. 6.7e), and the circular paths can have various 

shapes and can extend across the entire pore so that the vortex pattern is largely washed out. 

Given the technological importance of fluid motion in small pores in heterogeneous catalysis [49], 

it will be interesting to explore whether such a correlated motion resulting from standing longitudinal 

particle concentration wave patterns near pore walls can be driven by external stimuli like ultrasound, 

electric, or magnetic fields. The standing waves could be enhanced by tuning the driver frequency to the 

pore resonance like a musician enforces resonance modes on a flute when playing. To enhance the 

resonance modes, low-power, broadband, forced oscillations can also be considered, such as in Fourier 

transform infrared spectroscopy [50] and stochastic NMR spectroscopy [51], while triggering free 

oscillations by means of high-power impulses may destroy the porous medium under study. 

 

6.5 Summary 

The evidence provided by Monte Carlo simulations of random particle jumps on a 2D checkerboard 

and by simulations of 2D gas diffusion with topological confinements supports the notion that asymmetry 

in three-site exchange maps is an indication of the non-Brownian diffusion dynamics of confined particles 
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in driven equilibrium. Depending on the sign of the asymmetry parameter, a small fraction of all particles 

prefers the direct path towards or away from the active site at the pore boundary over the path along the 

boundary to or from the active site, resulting in a circular flux (Fig. 6.7). Both driven vacancy diffusion and 

driven gas diffusion produce congruent results. These are as follows: (1) circular exchange is a 

manifestation of driven equilibrium and leads to asymmetry of exchange peaks, while thermodynamic 

equilibrium manifests itself in the detailed balance and symmetry of exchange peaks. (2) The circular 

exchange in driven equilibrium appears to be a resonance phenomenon which can potentially be driven by 

external stimuli. Yet, the reported simulations are limited to two dimensions, and it may be argued that the 

asymmetry of exchange vanishes in the more common pores with three spatial dimensions. However, two-

dimensional diffusion is not an abstract model and arises for gas atoms adsorbed to metal surfaces [52] so 

that the driven coherent particle diffusion indicated by the non-zero asymmetry parameter may be observed 

there. Given the congruent simulation evidence for driven vacancy diffusion and gas diffusion in two-

dimensional confinements, it is hypothesized that confined diffusion can be partially converted to coherent 

motion by external excitation so that the detailed balance will be violated as observed in nonequilibrium 

phenomena [2,3]. 
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Appendix 

A 1D Matrix Pencil Method Script 

This appendix entry contains a Matlab script for the 1D MPM algorithm. This script works for T1 

and T2 relaxation as is. An additional line can be added to calculate diffusion coefficients from decay 

rates. For this algorithm to work, the x axis must be linearly spaced. 

 

 

         [   v l ,         ,      ,          ] =           ,     ,   l         

 

%%% S                l  l           l                            P    l        %%% 

  ll   k =   z       ; %I     l    k                    

        =       ll   k ; %N                    

   =        -       ; %Dw ll                    .                   l     l         

  

%%% SVD F l    %%% 

       =    k l      ; %            D                               

[ , ,v] =  v         ; %S    l   V l   D                            

       :,:  =    :  l       , :  l        ; %"P     "                                 

       :,:  =   :, :  l        ;            %   k                    l                   

v      :,:  = v :, :  l        ; 

  

 v       =       *      *v     '; %                                      l    

  

%%%        P    l E            D     C             A  l       %%% 

    :,:  =  v       :, :       ll   k  -    ; %G                         l  

    :,:  =  v       :, :      ll   k  ; 
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  ll   v l  =        v     *    ; %S lv             l z        v l       l   

   v l  =   ll   v l   :  l        ; %             l         l      v l    

      = -l      v l  .   ; %C l  l        l                        v l    

  

%%% A  l             %%% 

       =  :       ll   k -   

    l         ,:  =     v l  .^   -  ; %B  l     l       l             

    

         = l      '; %B  l              l             

          =     v l       * v        :        -  , :        -   *   v           ; 

%C l  l        ll    l             

 

%%% D        l    %%% 

         =                    .*    -  .* 0:       -  .*      ,  ; 

%    l                             l       

          =                         ; %N    l z          l             
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B Matrix Pencil Filter Code 

This appendix entry contains a Matlab script for the 1D MPM algorithm. For this algorithm to 

work, the x axis must be linearly spaced.  

 

         [           l                   ] =        l _    l      ,   ,   v l,         q ; 
  
%%% B     C    %%% 
  
   =   z      ; 
     =        ; 
  
  
   =        -       ; 
  
%%%   k                        l          w    SVD %%% 
  
         =    k l     ; 
  
  
[ , ,v] =  v           ; 
  
   =   z    ; 
  
       =  :   v l; 
             ,    =     ,   ; 
           :,    =   :,   ; 
    v      :,    = v :,   ; 
     
  
         v  =       *      *v     '; 
  
%%%        P    l E            D     C             A  l       
  
       =  :         -   ;    
         ,:  =          v    , :         -    ; 
         ,:  =          v    , :        ;  
    
 
     =        v    *   ; 
    jj =  :   v l; 
           =  :        -  ;        
     l       ,jj  =        jj   ^    -   ; 
            jj,    =        jj   ^    -   ;    
        
          jj  = -l         jj      ;    
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       =    v  l     *         v   :     -  , :     -   *   v         ; 
  
     =            ; 
     =     ; 
  
%          ;         ,   v l  
  
   =  ; 
   =  ; 
       =  :   v l; 
                            <          q 
                  l           =          ; 
          l           =   ; 
           =    +  ; 
        
    
  
  w   v l =    -  ; 
  w         w   v l,  w   v l  = 0; 
 
       =  :  w   v l; 
        jj =  :  w   v l; 
                  w         ,jj  =          l          ,  l       jj  ; 
        
    
  
    4,      = 0; 
  
       =  :    ; 
     
           =  :   v l; 
            jj =  :   v l; 
            %R             ,   =     l  , 3 =    l 
                 ,    =      ,    +          ,jj *     -  *   -  *             ; 
                3,    =     3,    +          ,jj *     -  *   -  *   l             ; 
            
        
     
           =  :  w   v l; 
            jj =  :  w   v l; 
            %F l     ,   =     l  , 4 =    l 
                 ,    =      ,    +   w         ,jj *     -  *   -  *   l             ; 
                4,    =     4,    +   w         ,jj *     -  *   -  *   l   l             ; 
            
        
         
    
  
    =    ;  
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C Supplement of “Asymmetry in three-site relaxation exchange NMR” 

C.1 Neighborhoods explored in 2D vacancy-diffusion simulations 

 

Figure S1. Simulation neighborhoods (grids) of range 1 for jumps from the center position (dark grey) to 

neighbor positions (light grey). All three asymmetry parameters from Eqn. (4) were calculated at each 

simulation run. Only the vacancy-diffusion simulations produced with the Moore neighborhood obeyed 

Eqn. (4), while all gas-diffusion simulations did. 

 

C.2 Empirical Ansatz for the estimation of the transition probability from ΔU and ΔS 

In an effort to introduce interactions between a particle and its surroundings, a quantity reminiscent 

of the free energy change ∆𝐴 = ∆𝑈 − 𝑇 ∆𝑆 is determined from crude models of the internal energy change 

∆𝑈 = −𝑭 ∆𝑹 defined by the net force 𝑭 exerted from all neighboring particles on the particle at stake and 

the length |∆𝑹| of the jump to the next cell, the temperature 𝑇, and the entropy change ∆𝑆. The force 𝑭 

between two particles follows Newton’s inverse square distance law. It is proportional to 
1

|∆𝑹|2
 In the 

direction of 
1

|∆𝑹|2
∆𝑹 from an occupied cell 𝑗 to the particle 𝑖 under consideration. The total force the particle 

𝑖 experiences is estimated from the vector sum of the forces exerted from the particles 𝑗 in all occupied 

neighbor cells (Fig. 2a), 
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The internal energy change ∆𝑈f ,i = −(𝑭f – 𝑭i)∆𝑹f ,i ≈ 𝑭i∆𝑹f ,i is modeled for each potential jump from the 

initial, occupied cell 𝑖 to the final, empty cell 𝑓 by the product of the net force 𝑭i with the vector ∆𝑹f ,i 

connecting the centers of the initial cell 𝑖 and the final cell 𝑓. 

The entropy change ∆𝑆 = 𝑆f – 𝑆i is the difference between the entropies of the particle with its eight 

nearest neighbors for the final state 𝑓 and the initial state 𝑖. It is modeled by the sum of the step lengths 𝑅 f 

,i = |∆𝑹 f ,i| of the particle 𝑖 to its unoccupied next nearest neighbor cells 𝑓, 

𝑆𝑖 = Σ𝑓∆𝑅𝑓,𝑖 (2) 

In case a neighbor cell is occupied, ∆𝑹 f ,i = 0. Detailed examples are worked out below. 

The sum of distances has been used as a model for the configurational entropy 𝑆 = −𝑘B*Σn𝑃nln(𝑃n), 

because the configurations on the square grid are discrete and differ so that the standard formula 𝑆 = 

𝑘B*ln(𝑊) does not strictly apply. The sum of jump distances in the Moore neighborhood can be argued to 

approximate 𝑊 (but not the logarithm) apart from some scaling factor. This crude approximation exhibits 

the essential features of entropy: The distance sum is zero, if there is only one possible configuration, and 

it grows with the number of accessible configurations. For purpose of calculating a jump probability 𝑝 =

exp {−
Δ𝐴

𝑘𝐵𝑇
} this suffices. 

In each jump step, an initially occupied cell 𝑖 is selected at random and 𝑝 is evaluated for all possible 

jumps to neighboring empty cells as potential final cells 𝑓. If for one or more jumps 𝑝 ≥ 1 is calculated, 𝑝 

is set to 1 and the destination cell of the jump picked at random from this subset of all potential jumps. If 

all neighbor cells are occupied, 𝑝 = 0, and no jump is counted. If 0 < 𝑝 < 1 the destination cell is chosen at 

random from all those with the same largest jump probability 𝑝 < 1. In the reported simulations, the 

Boltzmann constant 𝑘* has been set to 1 and so has the shortest distance between neighboring cells. 

Two other jump algorithms for choosing the destination cell were also tested: 1) Equal probability 

for all unoccupied neighbor cells, assigning jump probability zero to occupied cells, and 2) equal probability 

for choosing the destination cell from all neighbor cells. Respective results are reported in the main body 

of the manuscript. 
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Figure S2. Checkerboard randomly occupied by particles represented by filled circles. a) The cells 

surrounding the initial particle position 𝑖 are numbered clockwise from 1 to 8. Cells 5,7, and 8 are occupied, 

the others are empty. The force (green arrow) on the center particle is calculated as the sum of forces exerted 

from all particles in the occupied nearest neighbor cells (blue arrows). The entropy is estimated from the 

sum of distances to all neighboring free cells (red double arrows). b-f) The center particle in a) can jump to 

any of the free cells 1, 2, 3, 4, and 6, each of which has its own entropy. The final position 𝑓 of the jump is 

identified with a bias given by the jump probability based on a simple heuristic model of the free jump-

energy difference. 

 

C.3 Temperature and pressure dependences of exchange in the complex pore 

Relevant results for the pore structure of Fig. 6.3a are summarized in six graphs in Fig. S3. All 

parameters are relative quantities without units. The top three graphs a), b) and c) show the variation of 𝑎sy 

with temperature for a population fraction of 0.2 corresponding that of a gas. The asymmetry parameter 

assumes positive and negative values in a seemingly erratic but reproducible manner in the range of -0.7% 

< 𝑎sy < 0.4% for repulsive interaction (Fig. S3a), i. e. for the definition of the force between particles as 

illustrated in Fig. 6.2a. The interaction can be changed to attractive by changing the sign of ∆𝑈 in the 

expression for the free energy. In this case the asymmetry parameter varies as well, however, only between 

0% < 𝑎sy < 0.5% (Fig. S3b). In either case, up to roughly 0.5% of all jumps on the checkerboard proceed in 

a circular fashion between the three sites. With reference to Fig. 6.1, positive 𝑎sy reports that the straight 



157 

entry route from the bulk into the small pore is preferred over the detour via the grain surface. This is the 

case for attractive interaction at 𝑇 < 2 (Fig. S3b). For repulsive interactions and temperatures 𝑇 > 1, 𝑎sy is 

negative and the opposite route is preferred (Fig. S3a). If the destination cell is chosen at random from all 

free neighbor cells, then the simulation produces largely noise for 𝑎sy (Fig. S3c). The noise level is two 

orders of magnitude smaller than the maximum absolute values of 𝑎sy obtained with either repulsive (Fig. 

S3a) or attractive interaction (Fig. S3b).  

At the extrema of the 𝑎sy(𝑇) curves in Figs. S3a,b the dependences of the asymmetry parameters on 

pressure corresponding to population density were investigated (Figs. S3d-f). The variations with 

population density are smoother than those with temperature. Positive and negative values of 𝑎sy result at a 

low temperature of 𝑇 = 0.2 for repulsive interaction (Fig. S3d), whereas either negative or positive 

Asymmetry in three-site exchange NMR relaxometry values arise for repulsive (Fig. S3e) and attractive 

(Fig. S3f) interactions at higher temperatures of 𝑇 = 2.2 and 1.3, respectively. Interestingly, two well 

developed positive modes result for attractive interaction at 𝑇 = 1.3. 

 

 

Figure S3. Asymmetry parameters 𝑎sy for diffusion in and out of the grain pore depicted in Fig. 3a as a 

function of relative temperature 𝑇 (top row) at a population density of 0.2 and relative pressure or population 

density 𝑃 (bottom row) at different temperatures. a) 𝑎sy(𝑇) for repulsive interaction. b) 𝑎sy(𝑇) for attractive 

interaction. c) 𝑎sy(𝑇) for jumps chosen randomly from all free neighbor cells. d) 𝑎sy(𝑃) for repulsive 

interaction at 𝑇 = 0.2. e) 𝑎sy(𝑃) for repulsive interaction at 𝑇 = 2.2. f) 𝑎sy(𝑃) for attractive interaction at 𝑇 = 

1.3. 
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C.4 Population density distributions for different pores and thermodynamic parameters 

 

Figure S4. Maps showing the deviations of the particle density from its mean across the pore. a,b) 

Model for a porous solid, 107 jumps. c-e) Square pore, 107 jumps. The color scales are different in 

each plot. The particle concentrations vary more strongly with pressure 𝑃 than with temperature 

𝑇. e) Vacancy diffusion in a 32 × 32 pore with random jumps to empty neighbor cells. f) Gas 

diffusion in a 32 × 32 pore at a long observation time of 1, 108 jumps. 



159 

 

C.5 Matlab code for vacancy-diffusion simulations 

% R          D         
% 
% D                       
S   P = 0; % 0 =     l      ;   =      P  ;   =        
     =  ; %  :            8    0 ;  :           7   7 ; 3: 
    ll l  l     
P   = 0.3; %     l     -                  
  = 0.8; %                       
     l   = 0; %  :     v  j           l   , 0:        j     
       = 0; %  :       v  DU; 0: DA = 0;  l  :       v  DU 
   =  ; %    l                               l   
   =  ; %    l                      w ll 
 3 =  ; %    l                          v       
N  = 7; %             ll                 
N  = 7; %             ll                 
D l  P = 0.04; %     l     -                  
kB =  ; %       l                 
D l    = 0.04; %                       50 Nj    =  0000000; %           j     
% C                 v              
N   =       N    ; 
N   =       N    ; 
N   = 3; %             ll                       
N   = 3; %             ll                       
N   =  ; %     v         ll                       
N   = 4; %    v         ll                       
      =  q     ; 
   =     *      ; %    l                                 ll  
   =z      ,  ; 
% S    L                  v         
SL      = 0; %                     v         :      l     0 
SL 0 =  ; %          -v                 
   S   P ==   SL      =  5;     % v    P   
   S   P ==   SL      = 50;     % v      
SL  = z     6,SL     +  ; 
   S   P ==   %     l           
P   = 0; 
SL 0 =  ; 
    
   S   P ==   %                  
  = 0; 
SL 0 =  ; 
    
    SL  = SL 0:SL     + %          -v         l                ***** 
   S   P ==   
P   = P   + D l  P; 
SL   ,SL   = P  ; 



160 

    
   S   P ==   
  =   + D l   ; 
SL   ,SL   =  ; 
    
k = z     3,3 ; % k              
    = 0; %            l  l                  l               
       =  8*N ; 
   N  > N         =  8*N ;     
   =  ; %                  w        l                  
w  l     <           =   * ;     
       =   ; 
      = z           ,  ; 
     v   = z           ,  ; 
% S                 w               
      = z     N ,N  ; 
        >   %     ll l  l     
       ,:  =  ; 
      N ,:  =  ; 
       ,N    = 3; %     v       
      N ,N    = 3; %     v       
    
        ==   %          0         ,:  =  ; 03       N ,:  =  ; 04       :,   =  ; 05 
      :,N   =  ; 
      N  ,N    = 3; %     v       
    
        <   %           
       ,:  =  ; 
       ,:  =  ; 
      3,:  =  ; 
      N - ,:  =  ; 
      N - ,:  =  ; 
      N ,:  =  ; 
   N  >= 8 %          l   
   N  >= 6 
      3,N  -   = 0; 
      3,N    = 0; 
      3,N  +   = 0; 
      3,N  +   = 0; 
       ,N  -   = 3; 
       ,N    = 0; 
       ,N  +   = 0; 
       ,N  +   = 3; 
       ,N  -   = 3; 
       ,N    = 3; 
       ,N  +   = 3; 
       ,N  +   = 3; 
      N - ,N  -   = 0; 
      N - ,N    = 0; 
      N - ,N  +   = 0; 
      N - ,N  +   = 0; 
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      N - ,N  -   = 3; 
      N - ,N    = 0; 
      N - ,N  +   = 0; 
      N - ,N  +   = 3; 
      N ,N  -   = 3; 
      N ,N    = 3; 
      N ,N  +   = 3; 
      N ,N  +   = 3; 
    
    
    
          =      ; % k                             
% C             l     v  l  l    ll  
  0 = 0; %        v  l  l    ll  
       =  :N  
       =  :N  
           ,    == 0   0 =   0 +  ;     
    
    
    =       P  *  0 ; %             ll                 
       ==   0     =   0- ;     
       == 0     =  ;     
  llv   = z        ,3 ; %     k            ll  
  = 0; 
w  l    <     
    =       N  ; 
    =       N  ; 
            ,     == 0 
         ,    = ; %     l    
  =  + ; 
  llv    ,   =  ; %     k            ll  
  llv    ,   =    ; 
  llv    ,3  =    ; 
    
    
    = -      0; 
    =  +   ; 
 v      =      ; %                                  
% D   l     ll     l      
    l   3, ,   
              ; 
  l                    
   l  '      l     l     ' ; 
      0.  ; 
 j    v  = 0; %               v  j     
     j    =  :Nj    % BEGIN JU P LOOP 
   ll0 =           ; 
    =   llv      ll0,  ; 
    =   llv      ll0,3 ; 
% D                    ll 
  = [0,0]; %             ll                      l        *   
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      =    + ;          > N        =  ;     
      =    - ;          <         = N ;     
      =    + ;          > N        =  ;     
      =    - ;          <         = N ;     
     = 0; %                           ll  
k  =  ; %                l j      v         
   =            ,      ; %       l      l            
   =          ,      ; %       l      l            
 3 =            ,      ; %       l      l          3 
 4 =            ,    ; %       l      l          4 
 5 =            ,      ; %       l      l          5 
 6 =          ,      ; %       l      l          6 
 7 =            ,      ; %       l      l          7 
 8 =            ,    ; %       l      l          8 
      > 0     =    + ; 
      <     =   + [ ,- ]*  *  ;     
      ==     =   + [ ,- ]*  *  ;     
      >     =   + [ ,- ]*  * 3;     
      > k  k  =   ;     
    
      > 0     =    + ; 
      <     =   + [ ,0]*  ;     
      ==     =   + [ ,0]*  ;     
      >     =   + [ ,0]* 3;     
      > k  k  =   ;     
    
    3 > 0     =    + ; 
    3 <     =   + [ , ]*  *  ;     
    3 ==     =   + [ , ]*  *  ;     
    3 >     =   + [ , ]*  * 3;     
    3 > k  k  =  3;     
    
    4 > 0     =    + ; 
    4 <     =   + [0, ]*  ;     
    4 ==     =   + [0, ]*  ;     
    4 >     =   + [0, ]* 3;     
    4 > k  k  =  4;     
    
    5 > 0     =    + ; 
    5 <     =   + [- , ]*  *  ;     
    5 ==     =   + [- , ]*  *  ;     
    5 >     =   + [- , ]*  * 3;     
    5 > k  k  =  5;     
    
    6 > 0     =    + ; 
    6 <     =   + [- ,0]*  ;     
    6 ==     =   + [- ,0]*  ;     
    6 >     =   + [- ,0]* 3;     
    6 > k  k  =  6;     
    
    7 > 0     =    + ; 
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    7 <     =   + [- ,- ]*  *  ;     
    7 ==     =   + [- ,- ]*  *  ;     
    7 >     =   + [- ,- ]*  * 3;     
    7 > k  k  =  7;     
    
    8 > 0     =    + ; 
    8 <     =   + [0,- ]*  ;     
    8 ==     =   + [0,- ]*  ;     
    8 >     =   + [0,- ]* 3;     
    8 > k  k  =  8;     
    
% D             l       -           -                
DU = z     8,  ; 
DS = z     8,  ; 
  = z     8,  ; %     k   ll             j           l      
   =    ;    =    ; %       l          
S      l =                ,N ,  ,  ,      ; 
         ,     = 0; % j              
      == 0 
DU    =  *[ ;- ]; 
   =      ;    =      ; %     l            
DS    =                ,N ,  ,  ,      - S      l; 
    
      == 0 
DU    =  *[ ;0]; 
   =      ;    =    ; %     l            
DS    =                ,N ,  ,  ,      - S      l; 
    
    3 == 0 
DU 3  =  *[ ; ]; 
   =      ;    =      ; %     l          3 
DS 3  =                ,N ,  ,  ,      - S      l; 
    
    4 == 0 
DU 4  =  *[0; ]; 
   =    ;    =      ; %     l          4 
DS 4  =                ,N ,  ,  ,      - S      l; 
    
    5 == 0 
DU 5  =  *[- ; ]; 
   =      ;    =      ; %     l          5 
DS 5  =                ,N ,  ,  ,      - S      l; 
    
    6 == 0 
DU 6  =  *[- ;0]; 
   =      ;    =    ; %     l          6 
DS 6  =                ,N ,  ,  ,      - S      l; 
E   
    7 == 0 
DU 7  =  *[- ;- ]; 
   =      ;    =      ; %     l          7 



164 

DS 7  =                ,N ,  ,  ,      - S      l; 
    
    8 == 0 
DU 8  =  *[0;- ]; 
   =    ;    =      ; %     l          8 
DS 8  =                ,N ,  ,  ,      - S      l; 
    
         ,     =  ; % j              
% C l  l        l               l      
          ~= 0 % w                              
          ==   DA = DU -  *DS; 
 l   DA = -DU -  *DS;     
 l   DA = z     8,  ; 
    
  :,   =     -DA  kB*   ; 
  :,   =  :8; 
        l   ==  
      ~= 0    ,   = 0;     %    l                           ll  
      ~= 0    ,   = 0;     
    3 ~= 0   3,   = 0;     
    4 ~= 0   4,   = 0;     
    5 ~= 0   5,   = 0;     
    6 ~= 0   6,   = 0;     
    7 ~= 0   7,   = 0;     
    8 ~= 0   8,   = 0;     
    
% S        l               l                               -  ll        
P =       w   ,'       ' ; 
k  = k ; 
   =  ; 
   P  ,   >=   %                                 j    
       =  :8 
   P   ,   >=      =   + ;     
    
 l   
       =  :8 
   P  ,   == P   ,      =   + ;     
    
    
   ll = P          ,  ; %       l     k                   ll 
% I                      ll 
         ,     = 0; % j              ******* 
      ll > 0 
      ll ==      =     ;    =     ;     
      ll ==      =     ;     
      ll == 3    =     ;    =     ;     
      ll == 4    =     ;     
      ll == 5    =     ;    =     ;     
      ll == 6    =     ;     
      ll == 7    =     ;    =     ;     
      ll == 8    =     ;     
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j    l   =  ; %      l : j             l  
            ,     ~= 0 % j              l  
    =   llv      ll0,  ; 
    =   llv      ll0,3 ; 
j    l   = 0;443     
         ,     =  ; % j             ******* 
 
  llv      ll0,   =    ; %          ll v      
  llv      ll0,3  =    ; 
% D   l     ll     l      
 j    v  =  j    v  + ; 
    j    v  <=  0 
    l   3, ,   
              ; 
  l                    
   l  ['j    ',         j    ] ; 
      0.  ; 
    
% I                   -  ll   v         
      =    + ;          > N        =  ;     
      =    - ;          <         = N ;     
      =    + ;          > N        =  ;     
      =    - ;          <         = N ;     
k  =  ; 
   =            ,      ;       > k , k  =   ;     
   =          ,      ;       > k , k  =   ;     
 3 =            ,      ;     3 > k , k  =  3;     
 4 =            ,    ;     4 > k , k  =  4;     
 5 =            ,      ;     5 > k , k  =  5;     
 6 =          ,      ;     6 > k , k  =  6;     
 7 =            ,      ;     7 > k , k  =  7;     
 8 =            ,    ;     8 > k , k  =  8;     
% U      k              
        l   == 0 k k ,k   = k k ,k   +  ; 
 l      j    l   ~= 0 k k ,k   = k k ,k   +  ;     
    
   S   P == 0 %                        l      
         N  ,N    > 0 
      =    ; %      l :                   l      
 l         =    ; 
    
 v      =  v      +      ; %                    l          
         =  :            v       -   =      v        ;     
     v           =      ; %              
         =  :       %                 l               
           =           +     v          *     v         + -     ; 
    
    
    %%%%%% END JU P LOOP 
% S  w     l   
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    =  00*      0; %                          ll  
k    =         k  ; %     l           j     
k = k* 00 k   ; %      l z  k                 %    j     
                       w,'        -HH:  '   ; %    w      &      
     ['           ll : # ',            ,', % ',            ] ; 
     ['# j    : ',        k    ] ; 
     ['P: ',        P   ,',  : ',          ] ; 
     = k  ,  -k  ,  ;      = k  ,3 -k 3,  ;    3 = k  ,3 -k 3,  ; 
     ['k  -k  =',             ,', k 3-3 =',             ,', k 3- 
k3 =',           3 ] ; 
     '     l z   k                         j        % ' ;499      k ; 
SL   ,SL   =     ; % w                -v         l    
   S   P == 0 
      =       k   ; 
 v      =  v     *  0  k   *    ; 
         = 0; 
       =  :N  
       =  :N  
               ,    == 0          =          +  v        ,   ; 
    
    
    
         =            0; 
       = 0; %             v      
       = 0; 
       =  :N  %                   
       =  :N  
               ,    > 0,  v        ,    = 0;     
               ,    == 0  v        ,    =  v        ,    – 
        ;     
    v        ,    <               =  v        ,   ;     
    v        ,    >               =  v        ,   ;     
    
    
       =       ; 
   -       >               = -      ;     
    l   3, ,   
         v      ; 
      [-      ,      ] ; 
  l                    
   l  'v             v        ll     l     ' ; 
 l   l ['       ',               ,', P   ',        P   ,',   
',          ,',     ',           3 ] ; 
    l   3, ,3  %  l            l               
 l   [0,0.3] ; % **************** 
 l         ; 
 l   l '       l  ' ; 
 l   l '         l     ' ; 
     =  ^      w         ; 
   =          ,     ; 
    =     l   z           ; 
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      =  :       %        l  
       =           +   ; 
           +    =      ; 
    
      = z      ,     ; 
     = :              =  -      - ;     %               l    
 l   [0,0.3] ; %**************** 
    l   3, ,4  %  l   FF              l               
 l        ,   l      ; %    l      
 l   l '   q     ' ;550  l   l '       l    l     ' ; 
 l   [-      -        ] ; 
    l   3, ,5  %  l   FF              l               
 l        ,          ; %                
 l   [-      -        ] ; 
 l   l '   q     ' ; 
 l   l '       l    l     ' ; 
 l   [-      -        ] ; 
    l   3, ,6  %  l           
 v  = z     N + ,N +  ; 
      = :N  
      = :N  
 v    + ,  +   =  v        ,   ; 
    
    
      v  ; 
    
    
%%%%%% E            -v         l           w     l  %%%%%% 
   S   P > 0 
  = z     SL     +  ; 
  = z     SL     +  ; 
    SL  =  :SL     +  
  SL   = SL   ,SL  ; %    l                     
  SL   = SL   ,SL  ; %                              
   576     l   3, ,   %  l           
 l       ; 
 l   l '   ' ; 
 l   l '   ' ; 
   l  ['       ',               ,' P   ',        P   ,'   
',          ,'     ',           3 ] ; 
    l   3, ,3  
 l    ,  ; 
   S   P ==    l   l '    l             ' ;     
   S   P ==    l   l '           ' ;     
 l   l '             %        l j   ' ; 
    
         S =                ,N ,  ,  ,       
S = 0; 
     =   + ;         > N       =  ;     
     =   - ;         <        = N ;     
     =   + ; 
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     =   - ; 
             ,      == 0 S = S +      ;     
           ,      == 0 S = S +  ;     
             ,      == 0 S = S +      ;     
             ,    == 0 S = S +  ;     
             ,      == 0 S = S +      ;     
           ,      == 0 S = S +  ;     
             ,      == 0 S = S +      ;     
             ,    == 0 S = S +  ;     
    

 

C.6 Matlab code for gas-diffusion simulations 

         [           ,    l     ,   ] = 
                  l ,         l  ,        ,  ,        ,      ,             
  
%%%%%          l                                           l              
%%%%%                   l               l        ll      . I            
%%%%%       v     l              l                        l v l      
%%%%%      l ,                     l  ,                         ,     
%%%%%                                                  ,                  
%%%%%           l                l           ,                             
%%%%%                                      . .     7         [-0.  0.  0.3 
%%%%% 0.5 0.7 0.9  . ],                       . 
  
  
  
%%%%% I     l                  %%%% 
  
        :         l  ,   =           ; %                  ll       l   
      l      =         l .*      [         l    ] ;  
%            l                     l       
  
  = 0; %            
          =   :  :  +  *          '; %   ll            
     =   %                
            3,3,       +   = 0;  
%                  3 3         ,                          
  
          =      *         :           : ; 
  
  
%%%%% G                z         l   %%%%% 
  
%R      z          l                            v  l            l   
  
      l    =                     l  ,  *        ^ -   + ; 
       =  :         l   
w  l            l       ==      l     :   -     
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      l        =           *        ^ -   + ; 
    
    
     
      l    =       l           ; 
     =    l       l    ; 
     =              l   -     -   .          ; 
  
       =  :         l   
      l    ,   =                    ; 
      l    ,   =                    ; 
    
  
          =       l ;           =       l ; %     k                      
  
      =  .*  .*      [         l    ] ; %        z         l    l        v l 
v l       =           .*      l     ; v l       =           .*      l     ;  
%         v l                                             l    l  l      
  
      l   = [         ,         ,v l      ,v l      ];  
%        w                 l  w          l          , v l       ,            
      = [         ,         ];  
%     k                                                  
  
     
    l      = z             ; %                     k       l  l                      
   l      = [-0.05              -             :             -             :  -             -
                .05]; 
% B                                   l     ,     l l                 
% w ll            0                   l           . E          l         
%     l                   l                        
     
  
% P   l             l                    w              l          . 
%   k            l                                  l                 
% w           l           ll                                        
%  l         +  
       =  :         l   
       =  :          
       =  :          
           ,  >   l          &&         ,  <=   l        +  ... 
        &&         ,  >   l          &&         ,  <=   l        +   
    l        ,    =     l        ,    +  ; 
    
     
    
    
     
  
%%%%%   v              l   %%%%% 
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       =  :         %l                         
     
     =     +  %                                
  =  +  ; %             
  ll          = []; 
  
  
% C                                    l                l  . W    
%                     w              l                              
%                     v    ll    . A l        ll   ll               
%          . 
       =  :          l  -   
  ll           l   =       l     , :  ; 
    jj =    +  :         l   
  ll           l   =       l   jj, :  ; 
          ll           l  -  ll           l    <          
  ll          = [  ll         ;   jj]; 
    
    
    
  
    ll =  :  z    ll         ,   
  
  ll               =       l     ll          ll,  , :  ; %                       ll            l    
  ll               =       l     ll          ll,  , :  ; %                       ll            l    
  ll     v l       =       l     ll          ll,  ,3:4 ; %         v l           ll            l    
  ll     v l       =       l     ll          ll,  ,3:4 ; %         v l           ll            l    
  
  
% C l  l           w v l                 l        ll               l   
   =   ll               -   ll              ; 
 v =   ll     v l       -   ll     v l      ; 
 v      =      v,   ; 
  =         ^ ; 
  
  wv l       =   ll     v l       -  v     .  .*   ll              -  ll               ; 
  wv l       =   ll     v l       -  v     .  .*   ll              -  ll               ; 
  
  
% R  l             -  ll      v l        w        
%     -  ll      v l        
v l         ll          ll,    =   wv l         ; v l         ll          ll,    =   wv l         ; 
v l         ll          ll,    =   wv l         ; v l         ll          ll,    =   wv l         ; 
      l   = [         ,         ,v l      ,v l      ]; 
    
  
    kk =  :         l   
%    k                ,    l         ll      
           l   kk,   - 0  <           && v l       kk  < 0  ||... 
            -       l   kk,    <           && v l       kk  > 0  
v l       kk  = - .*v l       kk ; 
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%    k                ,    l         ll      
 l             l   kk,   - 0  <           && v l       kk  < 0 ... 
        ||     -       l   kk,    <           && v l       kk  > 0  
v l       kk  = - .*v l       kk ; 
    
    
  
  
%   v        l                                     
          =           + v l      .*  ;           =           + v l      .*  ; 
      l   = [         ,         ,v l      ,v l      ]; 
                l  +  :  *         l   ,:  = [                   ]; 
         
  
  
         
    jj =  :         l   
             
% U          l                     w          w                
% l    46  
       =  :        
       =  :        
         jj+         l  ,  >   l          &&       jj+         l  ,  <=   l        +  ... 
        &&       jj+         l  ,  >   l          &&       jj+         l  ,  <=   l        +   
    l        ,    =     l        ,    +  ; 
    
     
    
             
  
  
%%%%% C                E              %%%%% 
    
% S                                , S             w ll,     S    3  
%                   . 
  
               =  :        +   
  
% P     l                S    3                  v               
          jj,  <         &&        jj,  <                   +3*           ... 
        &&       jj,  >                   -3*              
                 
% P     l        ll      S    3                            
                   l  +jj,  <         && 
                l  +jj,  <                   +3*           ... 
        &&                l  +jj,  >                   -3*              
            3,3,            =             3,3,            +  ; 
                 
% P     l    v        S                                 
 l                     l  +jj,  >=         &&   -               l  +jj,   >=         ... 
        &&                 l  +jj,  >=         &&   -               l  +jj,   >=          
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            3, ,            =             3, ,            +  ; 
                 
% P     l    v        S                                 
 l   
            3, ,            =             3, ,            +  ; 
    
                 
  
% P     l                S                       v               
 l            jj,  >=         &&   -      jj,   >=          &&        jj,  >=         &&   -
      jj,   >=          
                 
% P     l        ll      S                                 
                   l  +jj,  >=         &&   -               l  +jj,   >=         ... 
&&                 l  +jj,  >=         &&   -               l  +jj,   >=          
             , ,            =              , ,            +  ; 
                 
% P     l    v        S    3                            
 l                     l  +jj,  <         && 
                l  +jj,  <                   +3*           ... 
&&                l  +jj,  >                   -3*              
             ,3,            =              ,3,            +  ; 
                 
% P     l    v        S                                 
 l   
             , ,            =              , ,            +  ; 
    
             
  
% P     l                S                       v               
 l   
                 
% P     l    v        S                                 
                   l  +jj,  >=         &&   -               l  +jj,   >=          && 
                l  +jj,  >=         &&   -               l  +jj,   >=          
             , ,            =              , ,            +  ; 
                 
% P     l    v        S    3                            
 l                     l  +jj,  <         && 
                l  +jj,  <                   +3*            && 
               l  +jj,  >                   -3*              
             ,3,            =              ,3,            +  ; 
                 
% P     l        ll      S                                 
 l   
             , ,            =              , ,            +  ; 
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% C                      v         v                                  
       :         l  ,:  =                 l  +  :  *         l   ,: ; 
         
    
    
     
% H                    l             ,      l z           v      
%     l                         0 
       
            l     .          l     ,' ll' -   
  l      
  
       =  :7 
      ,   =               , ,   -             , ,    .* 00.                 :,:,   ,' ll' ; 
      ,   =               ,3,   -            3, ,    .* 00.                 :,:,   ,' ll' ; 
      ,3  =               ,3,   -            3, ,    .* 00.                 :,:,   ,' ll' ; 
    
     
    
 

 




