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Abstract—We design and implement parallel graph coloring al-
gorithms on the GPU using two different abstractions—one data-
centric (Gunrock), the other linear-algebra-based (GraphBLAS).
We analyze the impact of variations of a baseline independent-set
algorithm on quality and runtime. We study how optimizations
such as hashing, avoiding atomics, and a max-min heuristic
affect performance. Our Gunrock graph coloring implementation
has a peak 2× speed-up, a geomean speed-up of 1.3× and
produces 1.6× more colors over previous hardwired state-of-the-
art implementations on real-world datasets. Our GraphBLAS
implementation of Luby’s algorithm produces 1.9× fewer colors
than the previous state-of-the-art parallel implementation at the
cost of 3× extra runtime, and 1.014× fewer colors than a greedy,
sequential algorithm with a geomean speed-up of 2.6×.

Index Terms—parallel, GPU, graph coloring, graph algorithms

I. INTRODUCTION

A graph G = (V,E) is comprised of a set of vertices V
together with a set of edges E, where E ⊆ V × V . Graph
coloring C : V → N is a function that assigns a color
to each vertex that satisfies C(v) 6= C(u) ∀(v, u) ∈ E.
In other words, graph coloring assigns colors to vertices
such that no vertex has the same color as a neighboring
vertex. Graph coloring is particularly useful in parallelizing
computations for graphs (or graph-like data structures) such
as the deterministic scheduling of dynamic computations [1].
Graph coloring is critical for the register allocation problem in
compiler optimization [2], preconditioners for sparse iterative
linear systems [3], [4], exam timetable scheduling [5], Sudoku
solving [6], regularizing sparse matrix-matrix products [7], and
approximating sparse Jacobians and Hessians that arise during
automatic differentiation [8], [9].

Given a coloring C, many computations over same-colored
vertices can be completely data-parallel, and computations
iterate over all colors to process all vertices. Consequently
it is desirable to minimize the number of colors in a graph
coloring. However, a graph coloring that minimizes the num-
ber of distinct colors is NP-hard, difficult to approximate,
and challenging to parallelize. In practice, various heuristics
are used, and different algorithms and implementations of
graph coloring exhibit tradeoffs between computation time and
number of colors in the computed graph coloring.

Our contributions in this paper are as follows:
1) We survey parallel graph coloring algorithms on the

GPU, and investigate how different optimizations such
as hashing, avoiding atomics, and a max-min heuristic
impact runtime and number of colors.

2) We show how the independent-set-based algorithm using
Luby’s Monte Carlo heuristic maps to a data-centric and
a linear-algebra-based graph framework on the GPU,
which are Gunrock [10] and GraphBLAS [11] respec-
tively.

3) We demonstrate a peak 2× speed-up and a geometric
mean speed-up of 1.3× over the previous hardwired
state-of-the-art implementation [12], using Gunrock’s
high-level, bulk-synchronous, data-centric implementa-
tion of a parallel graph coloring algorithm.

4) We are the first to design a parallel graph coloring
algorithm that uses linear-algebra-based primitives based
on the GraphBLAS API. The implementation yields
a coloring with 1.9× and 5.0× fewer colors than the
two state-of-the-art graph coloring implementations by
Naumov et al. [12], and 1.014× fewer colors than the
greedy sequential algorithm in 1.92× less time.

II. BACKGROUND & RELATED WORK

Given a graph G = (V,E), let n = |V | and m = |E|.
A graph is undirected if for all v, u ∈ V : (v, u) ∈ E ⇐⇒
(u, v) ∈ E. Otherwise, it is directed. The set of neighboring
vertices to vertex v is called its adjacency adj(v).

The classic sequential “greedy” graph coloring algorithm
works by using some ordering of vertices. Then it colors
each vertex in order by using the minimum color that does
not appear in its neighbors. While there exists an ordering
that leads to the optimal number of colors, the problem of
finding such a perfect ordering is NP-hard. Fortunately, certain
orderings (such as ordering the vertices by degree from largest
to smallest) can be used to bound the maximum number of
colors to no more than one more than the maximum degree
of the graph.

Algorithm 1 The parallel graph coloring algorithm.
Input: Graph G = (V,E)
Output: Array C of colors for each v ∈ V .

1: procedure PARALLELCOLOR(A)
2: U ← V
3: while |U | ≥ 0 do
4: Choose an independent set I from U in parallel
5: Color the vertices in I and put in C
6: U ← U − I
7: end while
8: return C
9: end procedure



This greedy algorithm cannot be easily parallelized. Instead,
one approach to parallel graph coloring uses independent sets.
Shown in Algorithm 1, an independent set is found in parallel
every iteration, which is then colored. Research has then
been focused around how such an independent set is found.
Luby’s parallel maximal independent set algorithm is one such
heuristic [13]. The Monte Carlo heuristic Luby proposes is the
following:

1) For each v ∈ V , generate a random number p(v)
2) v is added to the independent set I if and only if p(v) >

p(w) for all w ∈ adj(v).
Two heuristics that follow are: (1) Luby’s algorithm in

which the independent set I is maximal, and (2) a generalized
Luby’s algorithm in which I does not have to be maximal.

Jones and Plassmann propose a parallel graph coloring
algorithm for asynchronous distributed execution [14]. In
their computation model, they assign a single vertex to each
processor and communicate colors between neighboring ver-
tices. Each vertex then colors itself using the minimum color
available to it.

A. Multi-threaded CPU

For a shared memory computation model, Gebremedhin and
Manne [15] propose a greedy algorithm. Their algorithm has
3 phases: optimistic (speculative) coloring, conflict detection,
and conflict resolution. The first phase involves assigning a
batch of vertices to different processors, assigning the mini-
mum color available to a vertex (taking into account both local
and remote neighbors), synchronizing with other processors,
and repeating. In doing so, however, different processors may
color two neighboring vertices in the same step. That motivates
the conflict detection phase, which is done in parallel, and the
conflict resolution phase, which is done sequentially. Deveci et
al. [16] modify the Gebremedhin-Manne algorithm for Xeon
Phi and GPU. Using the work-span model, Hasenplaugh et
al. [17] study the various impact of different orderings on the
parallel complexity, runtime and quality of ordering.

B. Distributed CPU

To the best of our knowledge, the first distributed-memory
implementations of graph coloring algorithms are due to
Allwright et al. [18]. They implemented Luby’s algorithm, the
Jones-Plassmann heuristic, as well as two greedy heuristics:
smallest-degree-last and largest-degree-first, on both the CM-5
and the Intel iPSC/860 computers. They found that smallest-
degree-last greedy heuristic used the fewest number of colors.
In terms of performance, Jones-Plassmann and largest-degree-
first were the two fastest codes.

Bozdağ et al. [19] extend the work of Gebremedhin and
Manne to a graph coloring framework in distributed mem-
ory. Their scheme also involves speculative coloring, conflict
detection, and finally conflict resolution. The advantage of
greedy algorithms compared to independent-set-based algo-
rithms such as Jones-Plassmann is that they often result
in fewer colors. More recently, Salihoğlu and Widom [20]
implement a similar scheme on Pregel-like systems where

they apply various additional optimizations such as finishing
computations serially.

C. Handcoded GPU

The first graph coloring work on the GPU was done
by Grosset et al. [21]. Their algorithm is based on the
Gebremedhin-Manne algorithm, and they find that they can
color with fewer colors than distributed graph coloring imple-
mentations. Naumov et al. [12] implement a state-of-the-art
implementation csrcolor using the popular cuSPARSE library.
Their algorithm implements the generalized Luby’s algorithm.
Che et al. [22] study variations of the Jones-Plassmann algo-
rithm. They observe a static work allocation runs into load-
imbalance problems, so they use a largest degree-first strategy
for early iterations, followed by a randomized strategy.

III. GRAPH PROCESSING FRAMEWORKS

We consider two graph processing frameworks for the GPU:
GraphBLAS [11] and Gunrock [10].

A. GraphBLAS

Several independent systems use matrix algebra to perform
graph operations [23]–[25]. GraphBLAS is an effort by the
graph analytics community to unify such efforts into a single,
unified API [26], [27]. The goal of the GraphBLAS API
specification is to outline the common, high-level operations—
such as vector-vector inner product, matrix-vector product, and
matrix-matrix product—and define the standard interface for
scientists to use these functions in a hardware-agnostic manner.
This way, the runtime of the GraphBLAS implementation
can make the difficult decisions about optimizing each of
the GraphBLAS operations on a given piece of hardware. In
this paper, instead of defining our own functions, we use the
functions from the GraphBLAS API when we describe our
algorithms.

We give an informal introduction to the five GraphBLAS
operations that we use in the GraphBLAS-based graph col-
oring algorithm (Algorithm 2), but an interested reader can
consult the API document for more details [26].

1) Assign to a vector (GrB assign): Assigns a scalar to a
vector using a mask, which is a core concept of GraphBLAS.
The mask controls whether a result of the computation will be
written to the output array. As an example, let us consider the
elementwise multiplication operation for vectors a, b, c using
a mask vector m i.e. c ← a × b .∗ m. If the mask element
m[i] is C-style castable to 0, then computation result c[i] is
unchanged. However, if the mask element is C-style castable
to 1, then the computation result c[i] = a[i]× b[i]. If we take
= to mean “C-style castable”, then:

c[i]←
{

c[i], if m[i] = 0
a[i]× b[i], if m[i] = 1

At a high-level, masking has proved to be important for
performance, because we can avoid many memory accesses
when the mask is 0 [28].



Algorithm 2 Parallel independent set graph coloring algorithm
implemented in linear algebra (GraphBLAS).
Input: Adjacency matrix A of graph G = (V,E), already built

empty vectors C, weight, frontier
Output: Array C of colors for each v ∈ V .

1: procedure GRAPHBLASCOLOR(A, C)
2: . Initialize colors to 0
3: GrB assign(C, GrB NULL, 0, GrB ALL, nrows(A), desc);
4: . Assign random weight to each vertex
5: GrB apply(weight, GrB NULL, GrB NULL,

set random(), weight, desc);
6: for each color = 1, . . . , n do
7: . Find max of neighbors
8: GrB vxm(max, GrB NULL, GrB NULL,

GrB INT32MaxTimes, weight, A, desc);
9: GrB eWiseAdd(frontier, GrB NULL, GrB NULL,

GrB INT32GT, weight, max, desc);
10: . Find all largest nodes that are uncolored
11: GrB reduce(succ, GrB NULL, GrB INT32Plus,

frontier, desc);
12: . Stop when frontier is empty
13: if succ = 0 then
14: break;
15: end if
16: . Assign new color
17: GrB assign(C, frontier, GrB NULL, color, GrB ALL,

nrows(A), desc);
18: . Get rid of colored nodes in candidate list
19: GrB assign(weight, frontier, GrB NULL, 0,

GrB ALL, nrows(A), desc);
20: end for
21: end procedure

2) Apply user-defined function (GrB apply): Applies the
user-defined function to each element of a vector. In this case,
we are using ‘set random()’ to set each vector element to a
random integer.

3) Vector-matrix multiply (GrB vxm): Multiplies a vector
by a matrix. The GraphBLAS API hides the distinction be-
tween sparse vs. dense vectors and matrices from the user, but
instead allows the implementation to internally call different
subroutines based on input sparsity. One core concept of
GraphBLAS is that it relies on overloading the standard arith-
metic semiring through the concept of generalized semirings.
For example, the matrix-vector multiplication is done using
the max-times semiring ‘GrB INT32MaxTimes’ (max,×,R),
which overloads the standard arithmetic semiring (×,+,R).
Our implementation uses a proposed addition [29] to the
standard GraphBLAS API called predefined semirings, which
avoids the user having to use the ‘GrB Semiring‘ interface to
build the matrix-multiplication operation they want.

4) Elementwise add (GrB eWiseAdd): Elementwise adds
a vector with another vector.

5) Vector reduction (GrB reduce): Reduces a vector to a
scalar.

B. Gunrock

Gunrock is a parallel graph analytics library that employs
a high-level data-centric abstraction focused on operations on
vertex or edge frontiers [10]. Hidden from the programmer,

Gunrock integrates sophisticated load-balancing and work-
efficiency strategies into its core. These strategies are exposed
to the programmer using a high-level API as Gunrock’s
operators. In this paper we will leverage the following Gun-
rock’s high-performance operators to express our algorithms,
and measure and compare the performance of the different
implementations:

1) Advance Operator: An advance operator is used to
generate a new frontier from the current frontier by visiting
the neighbors of the current frontier. Each input item maps to
multiple output items from the input item’s neighbor list.

2) Compute Operator: A compute operator defines an oper-
ation on all elements (vertices or edges) in its input frontier. A
programmer-specified compute operator can be used together
with a traversal operator such as advance. Gunrock performs
that operation in parallel across all elements without regard to
order.

3) Neighbor-Reduce Operator: A neighbor-reduce operator
uses the advance operator to visit the neighbor list of each item
in the input frontier and performs a segmented reduction over
the neighborhood (neighbor list) generated via the advance.

IV. IMPLEMENTATION MAPPING TO FRAMEWORKS

We implemented our parallel graph coloring algorithms
using two GPU graph processing frameworks: GraphBLAS
and Gunrock. It is challenging to write hardwired graph
algorithms on the GPU, so our goal is to find out whether these
two frameworks are flexible enough to design and implement
a graph coloring algorithm, and whether the result will be
performance-competitive with the state of the art.

In both frameworks, we input compressed sparse row (CSR)
sparse matrix format, which is commonly used for graph
analytics. In CSR, one array stores a list of neighbor nodes
and another array stores the offset of the neighbor list for
each node. The column-indices array and row-offsets array
are equivalent to the neighbor nodes list and the offset list in
the basic adjacency list definition.

A. GraphBLAS

1) Independent Set Graph Coloring: Algorithm 2 shows the
Independent Set (IS) graph coloring algorithm designed using
the GraphBLAS API. This will be the base algorithm, which
we will modify to do maximal independent set and Jones-
Plassman graph coloring. We begin at Line 3 by initializing
the color vector C to 0, which means each vertex is uncolored.
This is done using the GrB assign function. Next, each vertex
of the weight vector must be initialized to a random integer
using a user-defined function ‘set random()’.

For each vertex v of the weight vector, we find the max
weighted neighbor in adj(v). This operation is performed
using GrB vxm in Line 8 of Algorithm 2 where we multiply
the weight vector with adjacency matrix A on the (max,×,R)
semiring. Next, to find the independent set, we compare the
max weighted neighbor of each vertex with its own weight
using the GrB eWiseAdd function with the GrB INT32GT
binary function. This function compares two integer values
and returns true if the lefthand side element is greater than



the righthand side element, and false otherwise. The output in
the frontier vector will be the independent set this iteration.
Next, we compute a reduction using GrB reduce to determine
the size of the independent set. If it is zero, then we are
done. Otherwise, we must color it and eliminate it from the
candidate list weight. These two operations can be done with
GrB assign.

Algorithm 3 Maximal independent set graph coloring inner
loop implemented in linear algebra (GraphBLAS).
Input: Adjacency matrix A of graph G = (V,E), already built

empty vectors mis, weight, frontier
Output: Maximal independent set vector mis.

1: procedure GRAPHBLASMISINNER(A, mis)
2: . Initialize MIS array to 0
3: GrB assign(mis, GrB NULL, 0, GrB ALL, nrows(A),

desc);
4: do
5: . Find max of neighbors
6: GrB vxm(max, weight, GrB NULL,

GrB INT32MaxTimes, weight, A, desc);
7: . Find all largest nodes are candidates
8: GrB eWiseAdd(frontier, GrB NULL, GrB NULL,

GrB INT32GT, weight, max, desc);
9: . Assign new members (frontier) to independent set

10: GrB assign(v, f, GrB NULL, 1, GrB ALL, nrows(A),
desc);

11: . Eliminate frontier from candidate list
12: GrB assign(weight, frontier, GrB NULL, 0, GrB ALL,

nrows(A), desc);
13: . Stop when frontier is empty
14: GrB reduce(succ, GrB NULL, GrB INT32Plus,

frontier, desc);
15: if succ = 0 then
16: break;
17: end if
18: . Remove neighbors of frontier from candidates
19: GrB vxm(max, weight, GrB NULL, GrB Boolean,

frontier, A, desc);
20: GrB assign(weight, max, GrB NULL, 0, GrB ALL,

nrows(A), desc);
21: while succ > 0
22: end procedure

2) Maximal Independent Set Graph Coloring: To imple-
ment maximal independent set graph coloring, we replaced
Lines 8 and 9 of Algorithm 2 with a call to GRAPHBLAS-
MISINNER (Algorithm 3). The main difference is that instead
of using the Monte Carlo heuristic proposed by Luby once, we
keep adding vertices to the independent set until it is maximal.
Only when it is maximal do we color the independent set.
Therefore, the main difference is that we introduce a do-while
loop on Line 4. In order to add vertices to the independent set,
the problem of conflicts in the next iteration must be solved.
This is done by doing a second traversal per iteration in order
to find the independent set’s neighbors, which can then be
removed. These two operations are done by the GrB vxm
and GrB assign on Lines 19 and 20.

3) Jones-Plassman Graph Coloring: To implement Jones-
Plassman graph coloring, we replaced Lines 8 and 9 of Algo-
rithm 2 with a call to GRAPHBLASJPINNER (Algorithm 4).
The primary challenge that needs to be addressed in Jones-

Algorithm 4 Parallel Jones-Plassman graph coloring algorithm
helper function implemented in linear algebra (GraphBLAS).
Input: Adjacency matrix A of graph G = (V,E), color vector

C, random vector weight, independent set frontier, already built
empty vector colors, vector ascending that has been filled with
numbers 0, 1, 2, ... max colors

Output: Minimum available color min color.
1: procedure GRAPHBLASJPINNER(A, C)
2: . Find neighbors of frontier
3: GrB vxm(max, C, GrB NULL, GrB Boolean, frontier,

A, desc);
4: . Get min color
5: GrB eWiseMult(n, GrB NULL, GrB NULL,

GrB INT32PlusMul, max, C, desc);
6: . Fill possible colors array
7: GrB assign(colors, GrB NULL, GrB NULL, 0,

GrB ALL, nrows(A), desc);
8: . Scatter nodes into possible colors array
9: GxB scatter(colors, GrB NULL, n, max colors, desc);

10: . Map boolean array to element id
11: GrB eWiseMult(min array, GrB NULL, GrB NULL,

GrB INT32MinPlus, colors, ascending, desc);
12: GrB Vector setElement(min array, max colors, 0);
13: . Compute min color
14: GrB reduce(min color, GrB NULL, GrB INT32Max,

min array, desc);
15: return min color;
16: end procedure

Plassman is after determining the candidate independent set
frontier, finding the minimum color available to all these
vertices.

The latter task can be formulated as follows: We have a set
of colors represented by the natural numbers and wish to find
the smallest number not in the set. We implement this with a
scatter (Line 9) to an array of possible colors colors:

colors[n[i]] = max colors[i] for all i ∈ n

However, this scatter could not be done within the confines
of the GraphBLAS API. Therefore, we needed a GraphBLAS
extension operation GxB scatter. Next, the first zero in this
Boolean array must be found. This can be done by comparing
the Boolean array to an ascending integer array, and returning
1 if the two array’s values match and a 0 if they do not. Finally,
a min-reduction on the Boolean array yields the minimum
available color.

B. Gunrock

1) Independent Set Graph Coloring: The Independent Set
(IS) graph coloring algorithm finds an independent set of
vertices to be colored based on random-number comparisons.
Neighboring vertices compare their pre-assigned random num-
bers with one another. The independent color set contains only
those vertices that possess the largest random numbers relative
to their neighbors. Every vertex inside the independent color
set can then be painted with the same color because they are
guaranteed to not be neighbors.

Our Gunrock implementation of this algorithm follows. In
it, a compute operator inputs a frontier of all vertices and



compares each vertex’s random number to its neighbors’ in
parallel. A for loop within each thread execution flow checks
the vertex’s assigned random number with its neighbor’s
serially on Lines 25–35 of Algorithm 5. This results in load
imbalance because each vertex has a different degree. Thread
divergence is also a concern, because the random number
comparison divides the frontier into vertices that belong to the
independent color set and vertices that do not. The Gunrock
enactor iteratively calls this compute operator until all vertices
are colored on Line 9 of Algorithm 5. The algorithm checks
for valid vertices’ colors by invoking another compute operator
after every coloring. The thread execution, when checking for
valid colors, atomically counts the number of vertices in the
independent color set. If the count is equal to the number
of vertices in the graph, then all vertices in the graph have
been successfully colored and Gunrock can stop the executing
iteration loop.

An optimization for this implementation involves forming
two independent sets every iteration. Instead of only assigning
vertices with the largest random number relative to their
neighbors to a maximum independent color set, the implemen-
tation also assigns colors to vertices with the smallest random
number to a minimum independent color set. Because the
max-comparison and min-comparison sets must be mutually
exclusive, we can perform assignment on two colors every
iteration with no additional overhead, amortizing the cost of
the serial for loop (Lines 33 and 41 of Algorithm 5). This
optimization reduces the coloring time almost by half.

2) Hash and Independent Set Graph Coloring: We propose
a Hash Independent Set algorithm, which is a modification
of the Independent Set algorithm. Each vertex in the frontier
compares only its neighbors with one another, and adds the
neighbor vertex with the largest random number relative to all
neighbors to the color set. This method guarantees one color
proposal per vertex, because for every vertex there exists at
least one neighbor vertex with the largest random number.
This means the Hash IS color set can contain more vertices
than the independent color set of min-max IS (Lines 20–24 of
Algorithm 6). The color set is not an independent set, unlike
the IS color proposal, because each vertex knows only its local
topology. Asserting that one of the neighbors can be colored
without knowing the neighbor’s connections can result in a
color conflict, since neighboring vertices can be added to the
color set by different proposing vertices. In min-max IS, a
vertex either forfeits its access to the independent color set
(if a neighbor has a better random number), or adds itself to
the set only when all neighbor vertices forfeit their accesses.
Having a larger color set means Hash IS solutions have fewer
iterations and a potentially fewer number of colors. It also
means the coloring process is not an exact solution, and needs
a conflict resolution scheme.

The conflict resolution is another compute operation. It
checks all colored vertices with their neighbors in a serial
for loop similar to the min-max IS coloring scheme. If the
resolution detects a color conflict, it resets one of the violating
vertices to uncolored. In general, the implementation sacrifices

Algorithm 5 Parallel graph coloring algorithm implemented
in Gunrock with min-max coloring optimization.
Input: Frontier F = (V ) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: . Gunrock’s color primitive driver.
2: procedure GUNROCKCOLOR(F,C,R)
3: Initialize iteration← 0
4: . Initialize colors to be invalid
5: Initialize C ← c ∀c = invalidColor
6: . Assign random weight to each vertex
7: Initialize R← generateRandomNumbers
8: Initialize F ← v ∀v ∈ G
9: while ∀c ∈ C is not valid do

10: . Call coloring compute operator using a parallel forall
11: F ← ComputeOp(

ColorOp(iteration,C,R), F )
12: end while
13: end procedure
14: . Gunrock’s Compute Coloring operator
15: procedure COLOROP(iteration,C,R)
16: v = F [threadIdx]
17: . If already colored, return
18: if C[v] is valid then:
19: return
20: end if
21: Initialize colormax← true
22: Initialize colormin← true
23: color ← 2 ∗ iteration
24: . Visit all neighbors of an active node and find the minimum

and maximum random number
25: for u ∈ Neighbor(v) do
26: if C[u] is valid

& C[u] 6= color + 1
& C[u] 6= color + 2 then

27: continue
28: end if
29: if R[v] ≤ R[u] then
30: colormax← false
31: end if
32: if R[v] ≥ R[u] then
33: colormin← false
34: end if
35: end for
36: . If active vertex is the maximum or minimum, color it
37: if colormax then
38: C[v]← color + 1
39: end if
40: if colormin then
41: C[v]← color + 2
42: end if
43: end procedure

fast runtime for fewer colors. To amortize the cost of the
conflict resolution, the implementation uses a hash table to
inform the vertex about previous colors that cannot be used.
Based on this partial knowledge, the vertex can choose to
either use previous colors that are not prohibited by the hash
table or use a new color generated every iteration. Doing so
potentially reduces the total number of colors used. Because
the hash table does not store all prohibited colors for a vertex,
the vertex can end up using one of those colors. This means
the conflict resolution scheme can check for conflicts due to
non-independent color set and the use of prohibited colors at



the same time. Empirically, using the hash table can reduce
the total number of colors by 1 or 2. Our hash table reserves
a fixed number of entries per vertex. A hash generation
operator populates colors that vertices cannot use based on the
vertices’ neighbor. The hash table size is a modifiable value,
and is inversely related to the number of conflicts because
the table does not guarantee storing all prohibited colors. A
Gunrock compute operator automatically updates the table
every coloring iteration after new vertices are colored. If all
entries for a vertex are filled, the table ignores new colors
for that vertex. Better hash functions can replace the random
number comparison with a color proposal based on color sets
of previous iterations.

Algorithm 6 Parallel graph coloring algorithm implemented
in Gunrock with hash coloring optimization.
Input: Frontier F = (V ) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: . Gunrock’s Compute Hash Coloring operator
2: procedure HASHCOLOROP(iteration,C,R,H)
3: v = F [threadIdx]
4: . If already colored, return
5: if C[v] is valid then:
6: return
7: end if
8: Initialize max/min← v
9: Initialize temp← R[v]

10: color ← 2 ∗ iteration
11: for u ∈ Neighbor(v) do
12: if R[u] > temp & C[u] is not valid then
13: max← u
14: end if
15: if R[u] < temp & C[u] is not valid then
16: min← u
17: end if
18: end for
19: . Reuse existing color first if possible
20: for c ∈ UsedColors do
21: if c /∈ H(max/min, u)∀u ∈ Neighbor(max/min)

& C[max/min] is not valid then
22: C[max/min]← c
23: end if
24: end for
25: . If existing colors result in conflict, use new color
26: if C[max/min] is not valid then
27: C[max/min]← color + 1 / color + 2
28: end if
29: end procedure

3) Advance Neighbor-Reduce Graph Coloring: The Ad-
vance Neighbor-Reduce coloring implementation eliminates
the serial for loop found inside the min-max IS operator on
Lines 25–35 of Algorithm 5 with a parallel reduce on Lines
24–28 of Algorithm 7. This implementation uses Gunrock’s
Advance operator to gain access to all neighboring vertices
in parallel. The Reduce operator then compares all vertex-
assigned random numbers to all neighbor vertices in parallel,
flagging to-be-colored vertices. A compute operator then col-
ors all flagged vertices in parallel.

This implementation is similar to min-max IS because
Advance Reduce operators return an independent color set.

However, because the Reduce operator can only perform
binary operations (either max or min comparison), the imple-
mentation cannot paint two colors per iteration. This is because
the Reduce operator consumes the Advance neighbor frontier;
reusing the frontier for a second comparison is not permitted
without launching another neighbor-reduce operation (one
for max reduction, one for min reduction). Another future
optimization is to fuse the max and min operations and use a
single reduce operator to avoid a global synchronization.

Algorithm 7 Parallel graph coloring algorithm implemented
in Gunrock using Advance Reduce operator.
Input: Frontier F = (V ) for all V ∈ G.
Output: Array C of colors for each v ∈ V .

1: . Gunrock’s Advance-Reduce color primitive driver.
2: procedure GUNROCKARCOLOR(F,C,R)
3: Initialize iteration← 0
4: Initialize C ← c ∀c = invalidColor
5: Initialize R← generateRandomNumbers
6: Initialize F ← v ∀v ∈ G
7: Initialize Removed← []
8: while ∀c ∈ C is not valid do
9: . Create a neighborhood frontier and reduce

10: F ← NeighborReduceOp(
AdvanceOp(F,Removed),
ReduceMaxOp(Removed))

11: F ← ComputeOp(
ColorRemovedOp(iteration,C,Removed))

12: end while
13: end procedure
14: . Advance operator: Visit all neighbors to reduce
15: procedure ADVANCEOP(F,Removed)
16: v = F [blockIdx]
17: if Neighbor(v, threadIdx) /∈ Removed then
18: return Neighbor(v, threadIdx)
19: end if
20: end procedure
21: . Reduce a neighbor segment based on the max random number
22: procedure REDUCEMAXOP(Removed)
23: a = F [2 ∗ threadIdx+ 1]
24: b = F [2 ∗ threadIdx+ 2]
25: Reduced.append((a < b) ? b : a)
26: end procedure
27: . Color vertices that are removed from frontier
28: procedure COLORREMOVEDOP(iteration,C,Removed)
29: v = Removed[threadIdx]
30: if C[v] is valid then:
31: return
32: end if
33: C[v] = iteration
34: end procedure

V. EXPERIMENTS & DISCUSSION

A. Experimental setup

We ran all experiments in this paper on a Linux work-
station with 2× 3.50 GHz Intel 4-core E5-2637 v2 Xeon
CPUs, 556 GB of main memory, and an NVIDIA K40c GPU
with 12 GB on-board memory. The GPU programs were
compiled with NVIDIA’s nvcc compiler (version 9.1.85). The
C code was compiled using gcc 5.4.0. All graph coloring
tests were run 10 times with the average runtime used for



Dataset Vertices Edges Avg. Degree Diameter Type

offshore 260k 4.2M 17.33 41* ru
af shell3 505k 17.6M 35.84 485* ru

parabolic fem 1.1M 112.8M 8 1536* ru
apache2 7.4M 4.8M 7.74 449* ru
ecology2 1M 5M 6 1998* ru
thermal2 4.2M 483M 8 1778* ru

G3 circuit 1.6M 7.7M 5.83 515* ru
FEM 3D thermal2 148k 3.5M 24.6 150 rd
thermomech DK 204k 2.8M 14.93 647* rd

ASIC 320ks 322k 1.3M 6.68 45 rd
cage13 445k 7.5M 17.8 42* rd

atmosmodd 1.3M 8.8M 7.94 351* rd
rgg n 2 15 s0 32.8k 320k 9.78 191 gu
rgg n 2 16 s0 65.6k 684k 10.44 254 gu
rgg n 2 17 s0 131k 1.5M 11.11 341 gu
rgg n 2 18 s0 262k 3.1M 11.8 464 gu
rgg n 2 19 s0 524k 6.5M 12.47 632* gu
rgg n 2 20 s0 1M 13.8M 13.14 865* gu
rgg n 2 21 s0 2.1M 29M 13.81 1182* gu
rgg n 2 22 s0 4.2M 60.7M 14.47 1621* gu
rgg n 2 23 s0 8.4M 127M 15.14 2230* gu
rgg n 2 24 s0 16.8M 265.1M 15.8 2622 gu

TABLE I: Dataset Description Table. Graph types are: r: real-
world, g: generated, u: undirected, d: directed. An asterisk (*)
indicates diameter is an estimate using samples from 10,000
vertices.

results. The implementation of GraphBLAS we use is called
GraphBLAST [11].

The datasets we used are listed in Table I. The rgg random-
ized graphs were generated for DIMACS10 [30], [31], and all
other graphs are from the SuiteSparse Matrix Collection [32].
All datasets have been converted to undirected graphs, and
self-loops and duplicated edges are removed.

B. Performance Summary of Gunrock

Figure 1a compares runtime for our Gunrock and Graph-
BLAST implementations and state-of-the-art Naumov et al.
JPL and CC GPU implementations with a baseline CPU
implementation. In general, our Gunrock’s Independent Set
implementation shows better performance over Naumov et al.’s
JPL implementation with a comparable color count because of
our min-max independent set optimization, essentially gener-
ating two independent sets for every iteration. Gunrock’s IS
implementation uses a compute operator (not load-balanced),
which as the results show outperforms Gunrock’s AR im-
plementation (load-balanced), because the overhead of doing
complex load-balancing when using advance and segmented
reduction on neighbors is more taxing than simply assigning
each active thread to a vertex and generating two independent
sets per iteration than one. Gunrock’s Hash implementation
doesn’t perform well against Naumov et al.’s JPL imple-
mentation due to the global synchronization required after
generating the sets before resolving any color conflicts. The
conflict resolution operator and the hash generation within the
hash implementation also contribute to the slowdown when
compared against Gunrock’s IS implementation.

Optimization Performance (ms) Speedup

Baseline (Advance-Reduce) 656 —
Hash Color 17.21 38.11×

Independent Set with Atomics 13.67 1.26×
Independent Set without Atomics 11.15 1.23×

Min-Max Independent Set 6.68 1.67×

TABLE II: Impact of Gunrock’s optimizations on the perfor-
mance measured in elapsed time (ms) on the G3 circuit dataset
with approximately 1.6M vertices and 7.7M edges.

Our Independent-Set-based graph coloring achieves a peak
performance of 2× on the parabolic fem dataset, and a
geometric mean of 1.3× compared to Naumov’s JPL imple-
mentation, while maintaining a comparable color count. The
performance gain observed against Naumov’s implementation
is mainly due to the two independent set coloring per itera-
tion optimization. Gunrock’s IS implementation also avoids
atomics and global synchronization unlike other Gunrock
implementations. The flaw of the IS implementation is the
serial for-loop within the compute operator that visits all
neighbors per active vertex. The performance degradation due
to the serial for-loop is clearly visible in the af shell3 dataset
(as shown in Figure 1a, a slowdown of 0.47× compared to
Naumov’s JPL implementation), where the average degree of
the graph is 35.84, much higher than some of the other test
datasets (see Table I).

Our Hash-based graph coloring expands on IS min-max
coloring by using two additional compute operators for conflict
resolution and hash generation. Due to the additional operators
we are able to reuse colors for every iteration and generate a
lower color count than the IS implementation (see Figure 1b).
Due to the additional operators, we now require two global
synchronizations, one after each operator, causing the slow-
down when compared to the IS implementation.

Our Advance Neighbor-Reduce based graph coloring per-
forms poorly against the state-of-the art and other Gunrock
implementations. The goal of this implementation was to
eliminate the serial for-loop within the Gunrock’s IS and
Hash implementation with a parallel segmented reduce. How-
ever, the overhead of performing a load-balanced advance-
segmented reduce with two global synchronizations is more
than simply assigning each vertex to an active thread with
a serial for-loop. The bottleneck of the AR implementation is
the segmented reduction operation within the neighbor-reduce,
internally performed by assigning segments to threads, warps
or blocks depending on the size of the segment.

C. Performance Summary of GraphBLAST

On the real-world data shown in Figure 1a, the three Graph-
BLAST implementations in terms of runtime can be listed
from slowest to fastest as independent set, Jones-Plassman,
and maximal independent set. The latter two are 1.98× and
3× slower than the independent set baseline. The fastest
out of the three implementations is slower than Naumov by
1.66×. In terms of number of colors as shown in Figure 1b,
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Fig. 1: Speedup and color count comparison of our implementations on various datasets vs. Naumov et al. implementations
and greedy CPU implementation.

the order of best to worst reverses: maximal independent
set, Jones-Plassman and independent set. This is evidence
of the time-quality tradeoff often seen across graph coloring
algorithms [9]. The latter two need 2.5× and 2.9× more colors
than maximal independent set. Compared to Naumov, 1.9×
fewer colors are used. Compared to the greedy sequential
implementation, maximal independent set yields 1.02× fewer
colors using 2.6× less time.

To explain the differences in runtime, we ran some profiling
of GPU kernels. We find that for maximal independent set
and Jones-Plassman as compared to the independent set, a
second call to GrB vxm ends up taking nearly 50% of
the runtime. For Jones-Plassman in particular, the call on
Line 7 can be optimized by using GrB assign rather than
using a cudaMemcpyHostToDevice operation. For maximal
independent set, the inner loop needs to run potentially for
many iterations, which causes the runtime to increase.

D. Time-quality Trade-off

Figure 2 shows the time-quality tradeoff between different
Gunrock implementations and between different GraphBLAST
implementations. In the case of Gunrock, using a more
compute-intensive implementation such as hashing the color
leads to fewer colors used than independent set. Similarly for
GraphBLAST, using maximal independent set, which as noted
above takes a second call to GrB vxm and an inner loop to
repeat traversals until the independent set is maximal, uses

more time to converge. However once a coloring is found,
it is higher quality than one found using the independent set
algorithm.

E. Scalability Summary using Randomly Generated Graphs
(RGG)

On the synthetic data used for scaling as shown in Fig-
ure 3b, we show the best performers in terms of runtime
from GraphBLAST and Gunrock, which are independent set
implementations in both cases. We see that Gunrock does
better for smaller graphs, which indicates that it has lower
overhead. GraphBLAS begins to do better beyond scale 23
and 24. In terms of numbers of colors as shown in Figure 3d,
the Gunrock implementation requires 1.14× fewer colors.

When comparing colors in Figure 1b, we show that our
GraphBLAST MIS implementation outperforms all other im-
plementations, even generating better color count than a
greedy CPU algorithm. Gunrock’s Hash implementations also
show promising results in the number of generated colors, as
they are able to better utilize colors while resolving conflicts,
and reuse some of the colors assigned in the past iterations.
Gunrock’s IS and AR implementations also generate compa-
rable color counts to Naumov’s JPL implementation.

VI. CONCLUSIONS

In this paper, we designed and implemented parallel graph
coloring algorithms on the GPU using two different abstrac-
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Fig. 2: Different implementations offer different tradeoffs between runtime and color count; for both Gunrock and GraphBLAST,
we can generally use a more expensive implementation and achieve better color counts.

tions: one data-centric (Gunrock), the other linear-algebra-
based (GraphBLAS). We analyzed the impact of variations of
a baseline independent set algorithm on quality and runtime.
We examined how optimizations such as hashing, avoiding
atomics and a max-min heuristic affects performance. We
demonstrated our Gunrock graph coloring implementation has
a peak 2× speed-up and geomean speed-up of 1.3× over a pre-
vious hardwired state-of-the-art implementation that produces
a coloring of similar quality. We showed our GraphBLAS im-
plementation of Luby’s algorithm produces 1.9× fewer colors
than the previous state-of-the-art parallel implementation and
1.014× fewer colors than a greedy, sequential algorithm.

One limitation of this work is that it focuses on comparisons
of different variants of either Jones-Plassman or Luby’s Monte
Carlo heuristic. A possible future research direction would
be to compare these algorithms with Gebremedhin-Manne
on the GPU. Another future research direction would be to
examine how the largest-degree-first heuristic compares with
the randomized algorithms we used. In this work, we primarily
looked at mesh graphs. With power law graphs, is possible
that a random weight initialization would perform worse than
largest-degree first, because random weight initialization will
make it more likely a node with few neighbors is colored
rather than a node with many neighbors being colored as in
the case of largest-degree-first.
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[26] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, The
GraphBLAS C API Specification, Nov. 2017, rev. 1.1.

[27] ——, “Design of the GraphBLAS API for C,” in IEEE International
Parallel and Distributed Processing Symposium Workshops, 2017, pp.
643–652.
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