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Abstract: There is conflicting evidence on the protective role of breastfeeding in relation to the
development of allergic sensitisation and allergic disease. Studies vary in methodology and definition
of outcomes, which lead to considerable heterogeneity. Human milk composition varies both
within and between individuals, which may partially explain conflicting data. It is known that
human milk composition is very complex and contains variable levels of immune active molecules,
oligosaccharides, metabolites, vitamins and other nutrients and microbial content. Existing evidence
suggests that modulation of human breast milk composition has potential for preventing allergic
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diseases in early life. In this review, we discuss associations between breastfeeding/human milk
composition and allergy development.

Keywords: breastfeeding; human milk; allergy; allergic diseases; oligosaccharides; microbiome;
cytokines; thymus

1. Introduction

Over the last few decades there has been a worldwide steady increase in the prevalence of
allergic diseases [1]. Commensurate with a decrease in infectious diseases, allergy has become a
considerable health/economic burden, most notably in relatively more affluent countries [2]. However,
similar trends are starting to be seen in the developing world [3]. Explanations for this virtual allergy
pandemic are not entirely clear but the “hygiene hypothesis” [4] remains the most widely quoted
theory, explaining allergic disease rise as a mutually counter-regulatory interaction between the
immune response to infection and that associated with allergy. Urban affluent lifestyles have been
associated with significantly reduced infant exposure to bacterial infection and an altered commensal
microbiome leading to a default allergic pattern of immune responses to common environmental
ostensibly harmless antigens/allergens. Earlier birth order and/or fewer number of siblings, late or no
attendance in day care facilities, and reduced exposure to pets [5] are among factors most commonly
associated with allergic disease development. The apparent importance of rural environment exposure
has been demonstrated in the study by Sozanska and co-authors [6], showing dramatic changes in
community lifestyle leads to increased risk of allergy development. The accession of Poland to the
European Union and changes in agricultural policies have resulted in an increase in prevalence of
allergic diseases over an eight-year period. Within this timeframe, population contact with domestic
animals and unpasteurised milk consumption has significantly declined while allergy rates have risen.

Although the “hygiene hypothesis” provides a mechanistically credible explanation for the rise
in allergy prevalence, other societal factors have been brought forward, such as dramatic changes in
dietary preferences over the past few decades. The less frequent consumption of fresh fruit, vegetables
and fish has lowered fibre intake, and altered omega-3 and omega-6 polyunsaturated fatty acid
(PUFA) ratios. Other environmental factors include lack of ultraviolet exposure leading to vitamin D
insufficiency, greater exposure to air pollutants such as volatile organic compounds, diesel particulates
and ozone, and even, increased exposure to chemical contaminants from packaged foods. Allergy
is therefore, perceived as a “modern malady” prompting clinicians, researchers and policy makers
around the globe to search for effective primary prevention [7]. Preventative strategies are particularly
important for children at high risk of allergy development [8,9], with one or both parents being
allergic [10]. It is suggested that the “window of opportunity” for allergy prevention is somewhere
within the timeframe between conception and the first six months after birth [7,11,12]. As virtually all
association studies do not discriminate between exposures of the mother during pregnancy, and/or
lactation, or those directly affecting the infant, it is not possible to attribute a more exact timing of the
“window”. It is perhaps more likely that a sequence of events during pregnancy and the early months
of life combine to alter the risk of allergic sensitization and subsequent disease.

Human milk (HM) should be the main source of nutrition during a critical period of metabolic and
immune programming, driven in part by its effects on intestinal function. Accumulated data suggests
that a wide range of bioactive factors: such as proteins, polyunsaturated fatty acids, oligosaccharides,
microbial content, metabolites, and micronutrients [13] present in HM can influence the infant’s gut
immune maturation. Chronic allergic diseases are linked with the altered functioning of the innate and
adaptive immune systems [14] and evidence suggests that it can be influenced using interventional
strategies [15]. Recent research shows that various maternal exposures, such as immunisation,
dietary patterns, vitamin D,ω-3 fatty acids and/or probiotics, may influence HM composition and
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thereby affect infant health. HM composition varies over time from delivery, within and between
women, and even within the same feed, which may in part, explain some of the conflicting results of
general observational studies regarding the provision of breastfeeding. Although HM constituents
will be critical in influencing a range of other aspects of breastfeeding, such as its “exclusivity”,
the close physical contact during nursing and time of weaning may also have important implications
for health and development. However, results are inconsistent between studies, and there is no
clear understanding of the pathways linking the intervention with effects on HM composition and
health outcomes.

This review summarises existing evidence on breastfeeding and human milk composition in
relation to allergic disease development.

2. Breastfeeding and Immunological Outcomes

Many aspects of breastfeeding can potentially influence its health effects [16]. These include
duration of breastfeeding, maternal diet during lactation [17], and age at complementary food
introduction [18–20], which can all differentially affect how breastfeeding may act on child health
and immune development. Breastfeeding alters a child’s gut microbiome and subsequent immune
development [21,22] and influences risk of respiratory infections through maternal antibody
transfer [21]. It also impacts childhood nutrient intake such as vitamin D. The latter nutrient has
been of particular interest because there are vitamin D receptors on many immune active cells and
most notably on regulatory T-cells. Insufficiency is associated with reduced T-cell regulation of
immune hyper-sensitive responses [23]. Data from some studies suggests that breastfeeding may
impact immune organ functioning, with a difference in thymus involution seen between breastfed and
formula fed children (discussed in more detail in Section 2.3).

It is well established that breastfeeding confers protection against both short-term adverse
outcomes including reduced morbidity and mortality from neonatal infections) and long-term
events including reduction in blood pressure, type 2 diabetes, increased IQ and better educational
achievements in later life (even when adjusted for family socio-economic status [24]) [25]. A World
Health Organisation (WHO) report suggests that there is a lower long term morbidity from
gastrointestinal and allergic diseases in infants who were exclusively breastfed for 6 months in
comparison to non-breastfed children [26]. Moreover, breastfeeding seems to play an important role at
a time of complementary food introduction. Thus, during introduction of gluten into the infant diet it
may reduce the risk of coeliac disease, suggesting important interactions between BM components,
dietary antigens, and gut associated lymphoid tissue (GALT) [27]. However, this protective effect
on coeliac disease remains uncertain, as studies have produced conflicting evidence [28]. Similar
associations of reduced allergy in infants who have continued being breastfed during weaning have
been reported [29]. Based on these data, current UNICEF and WHO recommendations are “every
infant should be exclusively breastfed for the first six months of life, with continued breastfeeding for
up to two years or longer” [30].

Despite some high-quality research, there is conflicting evidence on the protective role of
breastfeeding in relation to many non-communicable diseases, including immunological (allergic
and autoimmune) outcomes. It has been hypothesised that the mixed results may be in part
due to variations in HM composition as it is known to contain a large variety of immune active
components [13] which are present in differing concentrations [31]. Which factors are able to provide
sufficient influence on short and long-term health outcomes in infants is still a matter of discussion,
despite a number of studies attempting to address this question.

2.1. Importance of Breastfeeding Duration

When evaluating the relationship between breastfeeding duration and health outcomes it is
important to have clear definitions for breastfeeding duration. It is usually defined as total breastfeeding
duration, the time between birth and complete cessation of breastfeeding; while exclusive breastfeeding
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duration is the time between birth and first introduction of a non-breastmilk feed. Feeding expressed
breastmilk, fresh or frozen, by bottle, and use of donor breastmilk, given directly or fresh or frozen by
bottle, are variably included within these definitions of total or exclusive breastfeeding, depending
on the focus of the research study. Use of the term exclusive breastfeeding is problematic in that
it combines two separate interventions—timing of first solid (‘complementary’) food introduction,
and use of a breastmilk substitute (formula milk). In general the evidence that early formula milk
introduction is not optimal for development of infants health is stronger than the evidence that early
complementary food introduction causes harm. It also depends on the type of allergy developed and
exposure of allergens involved. This discrepancy has been highlighted by recent data showing that
early complementary food introduction has defined health benefits—recent studies show that the
phenomenon of oral tolerance induction, known for over 100 years to occur in animal experiments,
also occurs in humans [7,29,32–34]. Oral tolerance occurs when early and sustained feeding of a food
antigen reduces risk for developing food allergy to that antigen. This phenomenon has been shown to
occur in humans for the two most common food allergies affecting young children: egg and peanut
allergy [34]. However it is important to underline that tolerance development was only demonstrated
in the per protocol and not ITT group in the latter study and further research is needed to make
definitive conclusions.

This first sign that early introduction of complementary foods may be beneficial to infant health,
suggests that future studies will need to more clearly distinguish timing of infant formula introduction
and timing of complementary food introduction when evaluating relationships between exclusive
breastfeeding duration and allergic disease risk.

2.2. Breastfeeding and Allergic Diseases

At the beginning of the last century, Grulee and Sanford suspected a link between HM
substitute feeding and a higher incidence of eczema [35]. Since then many prospective and
retrospective observational studies have tested breastfeeding associations with the onset of
allergic disease, providing mixed results for eczema [19–21,36–49] sensitisation [21,37,42,46–58] and
asthma [19–21,36,42,47,48,59–66]. Messages culminating from these studies range from a protective
effect of breastfeeding [67], to a higher risk of atopy [68], or no significant effect [69]. Despite the
conflicting evidence, several clinical societies have made recommendations regarding the duration
and type of breastfeeding. As mentioned above, the WHO recommends exclusive breast feeding for at
least 6 months in all infants with continued breastfeeding up to 2 years or longer if a mother wishes to
do so [30].

The first efforts to systematically review existing evidence on breastfeeding associations with
the selected eczema [70] and asthma [71], were made by Gdalevich and Mimouni two decades
ago. Later, additional systematic reviews and meta-analyses were undertaken, assessing worldwide
evidence [26,72,73], or focusing on data from developed countries [74]. The main challenge in the
meta-analyses of these data was significant heterogeneity in the definitions of breastfeeding, which are
not always consistent with WHO recommendations, and in phenotyping of for health outcomes. In the
most recent systematic review which was published just two years ago [75], Lodge and colleagues
reported on 4 different definitions of eczema, food allergy and asthma, and 3 definitions of allergic
rhinitis used across studies [75], with differing breastfeeding exclusiveness and duration creating even
more uncertainty.

Assessment of breastfeeding’s potential to prevent allergic disease in observational studies is
not an easy task as several factors, such as socioeconomic status, positive allergy family history, early
exposure to pets and timing of solid food introduction, alongside variations in HM composition,
are all sources of bias. Prospective randomised studies are needed to provide solid evidence
of causal relationships, however such studies would be unethical. The sole large randomized
controlled trial used an innovative approach in a country with a very low breast feeding rate
and investigators randomised mothers to a breast feeding promotion group or continued standard
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practice. The intervention significantly increased breast feeding rates and facilitated evaluation of
the breastfeeding associations with health outcomes in Belarus [76]. There was a reduced risk of
early eczema (Odds Ratio (OR) 0.54, 95% CI 0.31–0.95) with breastfeeding but no long-term protection
against eczema, allergic rhinitis and asthma at 6.5 years of age, despite the long duration and exclusivity
of breastfeeding observed in this trial [77]. However, the extent to which WHO recommendations
delayed introduction of non-milk food sources at a critical period where tolerance induction may be
important to prevent allergy is uncertain [78].

2.2.1. Eczema

Most of the studies assessing breastfeeding impact on eczema development come from the
cross-sectional studies or birth cohorts. The major weakness of collected data is related to a long
retrospective recall period and lack of adjustment for potential confounding factors, such as allergy
family history [75]. Authors of The International Study of Asthma and Allergies in Childhood (ISAAC),
a large observational study assessing more than two hundred thousand children worldwide, failed to
find evidence of a breastfeeding protective effect on eczema development at 6–7 years of age (OR 1.05,
95% CI 0.97–1.12), but reported some protection against severe eczema (OR 0.79, 95% CI 0.66–0.95) [79].
Outcomes of a systematic review and meta-analysis, covering literature up to 2014, suggested that
children below 2 years of age who were exclusively breastfed for more than 3–4 months were are at
lower risk (OR 0.74, 95% CI 0.57–0.97) of eczema development; however, this protective effect was no
longer evident after the age of 2 (OR 1.07, 95% CI 0.98–1.16) [75]. The authors highlighted a potential
high risk of bias from smaller studies showing more significant protective effects.

2.2.2. Food Allergy

Studies assessing the association between breastfeeding and food allergy contribute conflicting
results, with some cohort studies reporting a reduced risk of food allergy development in a
general population [80,81] and in high risk children [82], with others suggesting a greater risk after
breastfeeding [83,84]. The most recent meta-analysis showed no statistically significant association
between breastfeeding and food allergy development (OR 1.02, 95% CI 0.88–1.18). Assessment of food
allergy is not straightforward in the context of a clinical trial, as the gold standard for confirming the
diagnosis is the double-blind food challenge, which is not always a viable option for study participants.
In many studies, a combination of a clinical history and skin prick test (SPT) or serum IgE testing is
used as surrogate markers of a diagnosis of food allergy with inevitable high heterogeneity. Hence,
the primary goal for future research should be harmonization of the outcome definition [75]. Recent
clinical trials showing benefits in early food introduction (from 3 to 4 months of age), in parallel with
breastfeeding, may indicate a worthwhile strategy to decrease risks of food allergy development.
This has been driven by recent studies, such as the Learning Early About Peanut Allergy (LEAP) and
Enquiring About Tolerance (EAT) trials [29,33], suggesting that in some children, early introduction
(before child age 6 months) of peanut and/or egg protein reduces the risk of allergy to these foods [7].

2.2.3. Asthma

More than 15 years ago, Gdalevich and Mimouni reported a link between breastfeeding and
lowered asthma prevalence in children (OR 0.70, 95% CI 0.60–0.81) [71]. This association has been
further confirmed in two subsequent meta-analyses (OR 0.78, 95% CI 0.74–0.84] [73] and OR 0.88, 95%
CI 0.82–0.95 [75]). Biological plausibility or coherence in published evidence for a role of breastfeeding
in protecting against asthma development includes its demonstrated benefit in reducing the number of
respiratory tract infections in early infancy, especially among infants in middle- and low-income
countries [75]. In addition, exclusive breastfeeding reduces the duration of hospital admission,
risk of respiratory failure and the requirement for supplemental oxygen in infants hospitalized with
bronchiolitis [85,86]. Some of the described protective effects may be mediated through an antiviral
mechanism or non-specific enhancement/maturation of the infant immune system.
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However, there is significant heterogeneity (study design, outcome definition, country
development) between studies reporting an inverse association between breastfeeding infants and
asthma development. Some of the differences can be explained by variations in the definitions
for breastfeeding exclusivity and duration, and methods to diagnose asthma in children [87]. It is
known that many infants who wheeze in the first years of life do not develop asthma in later life [88],
but wheeze is often used as the diagnostic marker of asthma. There are several notable large prospective
birth cohorts, such as Avon Longitudinal Study of Parents and Children (ALSPAC) [50], Prevention
and Incidence of Asthma and Mite Allergy (PIAMA) [89] and the cross-sectional International Study
of Asthma and Allergies in Childhood (ISAAC) [90] study, with data from these studies considered
of higher quality [75]. The protective effects of breastfeeding on asthma are more apparent in recent
studies, perhaps due to improvements in methodology [73,75]. It is worth noting that subgroup
analysis shows a greater protective effect of breastfeeding in middle to low income countries where
allergy is less common [75]. It seems likely that the major effect is on respiratory infection induced
wheeze rather than atopic asthma. Future studies will need to phenotype and endotype asthma
more precisely.

2.3. Breastfeeding, Thymus and Immunity

The thymus is an essential organ for generation of T cell immunity and tolerance. Lymphoid
progenitors from the bone marrow migrate to the thymus, where a series of stringent positive and
negative selection processes take place [91]. These processes are important for the production of
functional T cells, which are able to recognize and respond to foreign/microbial antigens presented
by the MHC in the periphery, but also Foxp3+ regulatory T (Treg) cells, which mediate immune
tolerance to self and a variety of self and foreign antigens [92]. Not surprisingly, thymic aplasia as
seen in DiGeorge syndrome is associated with immune deficiency and immune dysregulation [93].
Furthermore, in all vertebrates the thymus naturally shrinks in size with age. This process of thymic
involution is poorly understood to date [94] but impacts directly on thymic output [95].

Thymic size can also be influenced by a variety of factors. Prenatally, maternal factors such as
preeclampsia has been associated with reduced thymic diameter [96], although the mechanism and the
consequences of this need to be further investigated. Postnatally, various events such as acute stress
are known to reduce the thymic size [97].

Breastfeeding on the other hand, has been associated with increased thymic size. At 4 months of
age, the thymus size (as assessed by ultrasound) in exclusively breast-fed infants was more than double
the size of formula fed infants, an effect that persisted at least until 10 months of age [98]. A further
study revealed that persistent breast feeding between 8 and 10 months also correlated with increased
thymus size in a “dose dependent” manner [99]. Although the immune implication of this remains
unclear, a subsequent study showed a correlation between breast feeding and peripheral CD4 and
CD8 T cell counts and proportion [100]. The importance of thymic tissue for T cell immunity is further
supported by a study showing that partial or total thymectomy in infants undergoing cardiac surgery
was associated with lower T cell numbers and immunoglobulin levels later in life [101]. The mechanism
by which breastfeeding may influence thymus size is unclear. However, one study conducted in rural
Gambia suggested that the reduced thymic size and output in exclusively breastfed infants born in the
“hungry season” compared to “harvest season” was associated with reduced Interleukin 7 (IL7) levels
in the breast milk [102]. As IL7 is critical for thymopoiesis [103], it seems plausible that this cytokine
may influence thymic size. However, other breast milk cytokines and metabolic components need to
be considered as well.

In addition, breast milk is known to shape the infant’s gut microbiome [104]. The gut microbiome
is the main source of bacterial metabolites such as short chain fatty acids, which have been shown to
play a central role in T cell development and differentiation [105]. Hence, a mechanistic explanation
implicating a beneficial role of breastfeeding on the infant’s gut microbiome may be an alternative
explanation for enhanced thymic size in breastfed infants.
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Overall, evidence suggests that breastfeeding influences thymic size. However, evidence is lacking
regarding the mechanism and the immune impact of this observation. Future longitudinal cohort
studies are required to address this. These studies should include good measures of thymic output
such as assays of T cell receptor excision circles (TREC) and thorough immune phenotyping of T cell
subsets, gut microbiome profiling as well as good clinical data on immune outcomes.

3. Human Milk Composition and Allergy

Human milk is the earliest and should be the only source of nutrition during first few months of
life, a crucial period for infant immune system development and metabolic programming for lifelong
health and development. Many biologically active components are found in HM, and there is some
evidence, arising from the studies in humans, suggesting maternal exposures can change both HM
composition and subsequent infant health outcomes [78,106–108].

3.1. Human Milk Immunological Composition

Variations in breast milk immune composition (and the infant’s response to HM immune
constituents) may also explain some of the conflicting results of studies evaluating whether prolonged
exclusive breast-feeding can prevent allergic disease [109,110]. Human milk is a “soup” full of immune
active factors, including leukocytes (polymorphonuclear neutrophils, monocytes/macrophages,
lymphocytes), which potentially may influence immunological outcomes in infancy and early
childhood. It contains over 250 potentially immunologically active proteins, including a wide variety
of cytokines, inflammatory mediators, signalling molecules, and soluble receptors [13], as well as
prebiotic oligosaccharides: polyunsaturated fatty acids (PUFAs) [111]: and a diverse microbiome [112],
all of which are involved in complex interactions which could influence immune outcomes.

Colostrum (early human milk, produced during the first days of life) is very rich in
immunologically active molecules that are present in much higher concentrations than mature
HM [106,113–116]. The levels of growth factors in colostrum decline very rapidly, which may be
partially explained by increasing dilution, as in the first days of life the infant’s volume requirements
are low [116]. As HM matures, the relative concentrations of the immunologically active molecules
decrease as the volume and nutritional requirements of the infant increase.

There is only limited literature on the relationship between maternal diet (including intervention
trials), human milk immunological composition, and allergy development [117,118]. The main studies
are summarised in Tables 1 and 2.

Table 1. Maternal dietary interventions and human milk immunological composition.

Study Intervention
Time of HM
Collection

Postpartum
HM Composition Changes

Fish Oil and Fresh
Fish

Hawkes 2001 [119] Fish oil supplementation 5 weeks no significant influence on TGF-β1 and TGF-β2

Dunstan 2004 [120] Fish oil supplementation 3 days no significant influence on IgA and sCD14 levels

Urwin 2012 [121] Farmed salmon
supplementation 1, 5 and 28 days no significant influence on TGF-β1, TGF-β2

and sCD14

Probiotics

Bottcher 2008 [122] Probiotic supplementation
(L. reuteri) 3 days and 1 month

↓ TGF-β2 and ↑ IL-10 (borderline significance) in
3 day samples
no difference in IgA, SIgA, TGF-β1, TNF, sCD14
in 1 month samples

Prescott 2008 [123] Probiotic supplementation
(L. rhamnosus or B. lactis) 7 days

↑ TGF-β1 in HM from B. lactis group
no significant influence on IL6, IL10, IL13, IFN-γ,
TNF-α, sCD14, total IgA

Boyle 2011 [124] Probiotic supplementation
(L. rhamnosus) 7 and 28 days

↓ sCD14 and IgA levels in HM from L. rhamnosus
GG group
no significant influence of on TGF-β1
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Table 1. Cont.

Study Intervention
Time of HM
Collection

Postpartum
HM Composition Changes

Hoppu 2012 [125]
Diet and Probiotic
supplementation

(L. rhamnosus and B. lactis)

colostrum (after birth)
and 1 month

↑ IL-2, IL-4, IL10 TNF-α and total n-3 fatty acids
in probiotic group
no significant influence on IFN-γ and IL6

Kuitunen 2012 [126]

Probiotic supplementation
(A combination of 2 species
of L. rhamnosus, B. breve and

P. freudenreichii)

0–3 days and 3 months ↑ IL-10 and ↓ casein IgA antibodies in
probiotics group

Savilahti 2015 [127]

Probiotic supplementation
(A combination of 2 species
of L. rhamnosus, B. breve and

P. freudenreichii)

0–3 days and 3 months no significant influence on sCD14, HBD2
and HNP1–3

Other Interventions

Linnamaa 2013 [128] Blackcurrant seed oil after delivery and
3 months

↑ IFN-γ and ↓ IL-4 in blackcurrant seed oil group
no significant influence on IL-5, IL-10, IL-12 and
TNF levels

Nikniaz 2013 [129] Synbiotic 3 and 4 months ↑ IgA and TGF-β2 in synbiotic group
no significant influence on TGF-β1

“↑”—stands for increased levels of a particular factor and “↓”—stands for decreased levels of a particular factor.

Table 2. Human milk immunological composition and allergy development.

Study Allergic Outcomes
Assessed

Relationship between Human Milk Composition and Outcomes

Human Milk
Composition Factors Outcome of Influence

Kalliomaki 1999
[130]

Eczema
(up to 12 months)

↑ TGF-β1 and TGF-β2
(colostrum) higher post weaning-onset atopic disease

Jones 2002 [131] Eczema (up to 6 months) ↓ sCD14 (3 months HM) higher eczema incidence at 6 months of age

Bottcher 2003
[132]

Allergic sensitisation
(up to 2 years)
Salivary IgA

(up to 2 years)
Eczema (up to 2 years)

IL-4, IL-5, IL-6, IL-8, IL-10, IL-13,
IL-16, IFN-γ, TGF-β1, TGF-β2,

RANTES, eotaxin or SIgA
(colostrum and 1 month HM)

no significant influence on atopy and/or allergy

Oddy 2003 [133] Asthma-like symptoms
(up to 12 months)

↑ TGF-β1 (2 weeks HM)
TNF-α, sCD14 and IL10

(2 weeks HM)

lower risk of wheeze in infancy
no significant association with infant wheeze

Savilahti 2005
[134]

Allergic sensitisation
(up to 4 years)

Eczema (up to 4 years)

↓ IgA casein antibodies and
sCD14 (colostrum) higher incidence of atopy development

Snijders 2006
[135]

Eczema
(up to 12 months)

Allergic sensitisation
(up to 2 years)

Wheezing (up to 2 years)

TGF-β1, IL-10, IL-12 and sCD14
(1 month HM)

no significant influence on any of the atopic
manifestations

Bottcher 2008
[122]

Allergic sensitisation
(up to 2 years)

Eczema (up to 2 years)
↓ TGF-β2 (colostrum)

lower incidence of sensitisation during the first
2 years of life
a trend of protective effect on eczema
development

Kuitunen 2012
[126]

Allergic diseases
(up to 5 years)

Eczema (up to 5 years)
Allergic sensitisation

(up to 2 years)

↑ TGF-β2 (3 month HM)
IL-10 and TGF-β2 (3 month HM)

higher risk of allergic disease and eczema at
2 years of age
no significant association with allergic outcomes
at 2 and 5 years of age

Soto-Ramirez
2012 [136]

Asthma-like symptoms
(up to 12 months)

infants in the highest quartile of
IL-5 and IL-13 (2 weeks HM)

higher risk of asthma-like symptoms
development

Ismail 2013 [137]

Eczema
(up to 12 months)

Allergic sensitisation
(up to 12 months)

TGF-β1, sCD14, total IgA
(7 and 28 days HM)

no significant association with any of the atopic
manifestations
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Table 2. Cont.

Study Allergic Outcomes
Assessed

Relationship between Human Milk Composition and Outcomes

Human Milk
Composition Factors Outcome of Influence

Orivuori 2014
[138]

Eczema (up to 4 years)
Asthma (up to 6 years)
Allergic sensitisation

(up to 6 years)

↑ sIgA (2 months HM)
TGF-β1 (2 months HM)

sIgA (2 months HM)

lower eczema incidence up to the age of 2 years
no significant association with the outcomes
no significant association with atopy or asthma
up to the age of 6

Savilahti 2015
[127]

Allergic diseases
(up to 5 years) ↑ sCD14 (3 months HM) higher incidence of allergic sensitisation and

eczema

Jepsen 2016 [58]
Eczema (up to 3 years)

Recurrent wheeze
(up to 3 years)

↑ IL-1β (1 month HM)
CXCL10, TNF-α, CCL2, CCL4,
CCL5, CCL17, CCL22, CCL26,

TSLP, IL17, CXCL1, CXCL8,
TGF-β1 (1 month HM)

lower eczema incidence up to the age of 3 years
no significant association with eczema or
wheeze

Munblit 2017
[139]

Eczema-like symptoms
(up to 6 months)

Wheeze (up to 6 months)
Food allergy

parental-reported
(up to 6 months)

↑ TGF-β2 (1 month HM)
detectable IL-13 (colostrum)

detectable IL-13 (1 month HM)
HGF, TGF-β1, TGF-β3, IL-2,
IL-4, IL-5, IL-10, IFN-γ, IL-12
(colostrum and 1 month HM)

higher risk of eczema
lower risk of food allergy
lower risk of eczema
no significant association with eczema, wheeze
or food allergy

“↑”—stands for increased levels of a particular factor and “↓”—stands for decreased levels of a particular factor

3.1.1. Immune Composition and Allergy

Among the immunological markers assessed in HM, TGF-β is probably the most studied to date.
The systematic review by Oddy and Rosales assessed relationships between TGF-β in human milk
and immunological outcomes in infants and children [140]. Two-thirds the studies selected for this
review found an association between higher TGF-β1 or TGF-β2 levels in colostrum or mature milk and
reduced risk of atopic outcomes in the infant. The authors suggested that TGF-β found in human milk
may play a role in homeostasis maintenance in the intestine, regulating inflammation and subsequently
promoting oral tolerance which may reduce the risk of allergy development [140].

A few studies focused on eczema, found increased TGF-β1 and/or TGF-β2 in HM associated with
this skin disease onset in infants [122,126,130,139]. However, contrasting results of other studies do
not allow final conclusions on the influence of TGF-β on eczema development [132,135,137,138]. Oddy
and co-authors reported increased TGF-β1 levels in breast milk to have some protective effect against
wheeze development in infancy [133] but this conflicts with two other large cohort studies [135,138].
As it is assumed that TGF-β has biological relevance and is active in the infant gut [141], these results
suggest that TGF-β plays an important role and may be a missing component of progression from
allergic sensitisation to allergy disease in early life, but inconsistency in results prevents us from
making any definitive statements. Differences in the outcomes can be affected by the stage of lactation
when samples were collected.

Another immune active molecule that is of interest is soluble CD14, a bacterial pattern recognition
receptor for cell wall components such as lipopolysaccharide. It is primarily expressed on the surface
of monocytes, macrophages and neutrophils as membrane CD14 [142,143] but is also found in HM in
its soluble form—sCD14. In all the studies levels of sCD14 in HM were very high as this immune active
molecule is amongst those immune factors actively excreted into HM. CD14 may play an important
role, providing protection against subsequent allergy manifestation [144–146]. More than a decade
ago, Jones and co-authors showed that low sCD14 levels in mature milk were associated with eczema
development [131] and then Savilahti reported similar trends for colostrum [134]. Later studies,
however, failed to reproduce these results and did not report any protective effect of this soluble
receptor on eczema [135,137]. The conflict between the outcomes of the studies may be a consequence
of a difference in CD14 genotype with breastfeeding being associated with a decreased risk of atopic
sensitisation in children with a CT/CC genotype [52]. We now recognise eczema as a consequence of
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genetically determined skin barrier defects with allergy being a likely secondary outcome. Phenotyping
and genotyping eczema in relation to breast feeding therefore becomes a priority.

There is a general agreement between studies suggesting that levels of other human milk immune
active molecules, cytokines in particular, are not associated with atopy and/or allergy development
in early life [126,132,135,137]. The only outlying results come from the recent paper by Jepsen and
co-authors, suggesting that high levels of IL1β in mature milk are associated with lower risk of eczema
by the age of 3 [58] and Jarvinen et al. showing that networks of pro-inflammatory and regulatory
cytokines in HM are associated with tolerance to cow’s milk [147]. As many cytokines exist in very low
concentrations in HM, the sensitivity of the assays is critical and many studies report a high proportion
of undetectable levels in their samples [58,148,149]. This may explain lack of conclusive data on HM
cytokines association with immunological outcomes. Furthermore, if there are only trace levels of
these mediators they are unlikely to have significant biological activity. Future studies will need to
assess biological activity alongside assays of concentrations.

Most of the studies were aimed at allergic sensitisation, eczema, early wheezing and/or asthma
and allergic rhinitis development as the main phenotypic outcomes which allow for some comparison.
However, significant methodological heterogeneity between the studies, especially with regards to the
stage of HM collection and outcome definitions, are the main obstacles on the way to any meta-analysis
of up to date data in this field. Despite these difficulties it is apparent that certain factors of interest
in HM may play a role in allergic sensitisation and/or allergy prevention. The most promising HM
components are TGF-β, sCD14, and particularly their relationship with HM oligosaccharides (HMOs)
and microbiome, interactions which have not been extensively studied and may represent a prime area
for future research. In view of the large number of potentially immune-active constituents in breast
milk, investigation of only a limited range of constituents may well produce conflicting results. There is
a lack of studies, attempting to assess HM as a whole, rather than focusing on single components.
In other words, the “soup” is likely more important than individual ingredients.

3.1.2. Potential for Immunological Composition Alteration via Dietary Interventions

Given the observations discussed above there is the intriguing possibility for interventions
which modify maternal immunity to impact infant immune responses and allergic disease in
offspring [131,134]. With the development of the ‘hygiene hypothesis’ many focused their research on
the protective effects of environmental exposures during pregnancy and early life, during a period of
time when infant gut colonization and maturation of the immune system takes place. Despite a number
of birth-cohort studies, the ability to change human milk composition remains a “grey area” in existing
knowledge and more hypothesis driven research is required before large population intervention trials
can begin.

Existing data provides evidence that HM composition is highly variable within the same
individual and between women. It has been shown that maternal lifestyle (dietary habits,
physical activity, place of residence) can have a significant influence on HM biologically active
components [106–108,116]. These findings have motivated a number of intervention trials aiming to
prevent allergy development in early infancy.

There are many trials of probiotic administration, as single-entity products of a specific strain or
mixtures, in the prevention of allergy development, with cumulative meta-analytic evidence suggesting
some protection against eczema [150]. Prescott et al. observed higher levels of TGF-β1 and IgA in
human milk of mothers receiving B. lactis HN019 probiotics, and higher IgA levels alone in those
receiving L. Rhamnosus HN001. In contrast probiotic supplementation did not seem to have an effect
on the rest of BM immunological profile (IL-13, IFN-γ, IL-6, TNF-a, IL-10 and sCD14) [123]. Two other
studies of probiotic use during pregnancy reported no effect on TGF-β levels in HM [124,151] and
they were in opposition to findings by Rautava and co-authors [152]. Heterogeneity of methods again
confounds attempts at meta-analysis.
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Another potential intervention approach is the use of prebiotics. Prebiotics are non-digestible
food components that may confer benefit by providing the substrates for normal bacterial growth the
gut. It is more common now to see prebiotics added to formula milk. It is unclear whether prebiotics
are capable of modifying HM composition or influencing subsequent allergy development in both
high risk and general populations [153].

PUFAs (e.g.,ω-3 andω-6 fatty acids) are an essential part of HM composition and, as a logical
investigation, researchers have attempted to influence PUFA levels in HM by means of intervention,
selecting fish oil or whole fish as a main source of PUFA. Some of these studies also evaluated HM
immunological composition. Data from several intervention trials showed no apparent evidence for
the impact of fish consumption on immune active molecules in HM [119–121]. Another source rich in
ω-3 and ω-6 fatty acids is blackcurrant seed oil. A Finnish study reported lower levels of IL-4 and
increased IFN-γ in HM following black currant seed oil consumption, with no differences in IL-5,
IL-10, IL-12 and TNF levels, in comparison to an olive oil fed group [128].

Overall, there is some evidence that probiotic [123,124,152] administration to pregnant and
lactating women, or a diet with a high fish intake [121] alters breast milk immune composition.
Although the specific changes identified are not always correlated with clinical outcomes, maternal
supplementation during pregnancy and lactation to enhance human milk “quality” may have a
beneficial influence on health outcomes, and modulation of breast milk composition is one possible
mechanism [154] (see Table 2).

3.2. Human Milk Oligosaccharides

3.2.1. The Fascinating Complexity of Human Milk Oligosaccharides

Unique to HM is the complexity and abundance of HMOs consisting of both short-chain as
well as long-chain oligosaccharide structures in a unique ratio based on molecular size (roughly 9:1
respectively). Together with specific metabolites derived from bacterial fermentation, the HMOs play
a key role in microbiome development and building a healthy immune system, creating a fit and
resilient immune system in early and later life [155]. It is important to realize that the complex HMO
composition is determined by genetic polymorphisms and activity of the secretor fucosyltransferase2
gene (FUT2), the Lewis gene (FUT3), and is regulated by glycosyl-transferases within the mammary
gland. Differences in genetically determined glycosyl-transferase patterns affect HMO amount and
composition between mothers and during lactation [156]. The presence or absence of α1,2-linked
fucosylated epitopes in secretions, including saliva and milk, defines secretor and non-secretors
respectively. Consequently, the secretor-phenotype distribution differs among populations [157,158].
The provision of secretor type related complex mixtures of HMOs, have been associated with a direct
protection against infections [159] and may be linked to a reduction in allergic disease incidence in
breast-fed infants later in life [46].

The basic HMO structure is fucosylated and/or sialylated, resulting in respectively neutral and
acidic oligosaccharide structures within short- as well as long-chain structures. In addition to the
inter-individual genetic variation, the total HMO concentration varies during lactation which normally
provides the optimal needs over time. Colostrum contains approximately 20–25 g/L HMOs, whereas
mature HM has declining HMO concentrations to 5–15 g/L [160,161]. 2′-Fucosyllactose (2′-FL) is a
disaccharide which is thought to be the most abundant oligosaccharide with a concentration ranging
from 0.06 to 4.65 g/L [157,158]. Each HMO is structurally unique and effects of individual structures
may not be universal to all HMOs, therefore understanding the balanced complex mixture is of
considerable importance.

Although the protective capacity of HM against infections within infants is clearly observed,
the possible benefit for the prevention of immune related disorders such as allergy remains
controversial [135,162,163]. Any discordance between the early developmental requirements for an
infant’s immune development and the dynamic nature of HM constituents may possibly contribute to
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the development of allergic diseases [162]. Whether observed effects are derived from direct interaction
with immune cells or indirectly through the alterations in microbiome composition and change in
derivatives thereof remains unknown. It is clear however, that the microbiota composition and activity
can have an influence on the development of allergy, more specifically regulatory T cell development
is strongly influenced by the microbial composition, and therefore subject to modulation by dietary
intervention and specific oligosaccharides [164–166]. Several studies have shown that the composition
of the gut microbiome differs significantly between those with allergy and/or allergic disease and
those without [167–171]. How a microbiome composition becomes dysbiotic and thereby leads to the
development of immune related disorders such as allergy is hitherto not fully understood; however,
it is thought that early-life ecological succession of mucosal colonization occurs concomitantly with
development, expansion, and education of the mucosal immune system [172]. Indeed, gnotobiotic
mouse studies have demonstrated that there is a critical window of time for immune development,
after which intestinal immune development cannot be fully achieved [173–175].

3.2.2. Shaping the Microbial Balance in Early Life

The question of how optimal early-life microbial ecological succession occurs is a topic of intense
interest. Once HMOs are formed, only those bacteria that possess the necessary enzymes (incl. glycosyl
hydrolases) can cleave and utilize these oligosaccharides [176]. Members of the Bacteroidaceae and
Bifidobacteriaceae families have been shown to consume HMOs, including several Bifidobacteria which
have the sialidases and glycosidases necessary to internalize and catabolize HMOs [177–181]. What this
means is that for breast-fed infants, bifidobacteria have the capability to preferentially colonize the infant
GI tract by the third month of life [177]. In addition, it was recently shown in a mouse study that the
combination of B. infantis with HMO decreased GI inflammation and permeability [182]. Other mouse
studies revealed that oral administration of Bifidobacteria is able to modulate inflammation associated
with allergy [171,183,184]. However, the total HM oligosaccharide composition is likely to be very
important and it should be realized that individual oligosaccharides in HM might have their own
unique function on microbes, immune cells and epithelial cells.

Given that maternal secretor status impacts the bifidobacterial community structure of the infant
gut [185], it can be hypothesized that a combination of HMOs with specific bacteria are able to modulate
gut immunity and gut integrity. Additional roles of fucosylated and sialyated HMOs are related to the
common structural motifs they share with glycans on the gut epithelia that are known receptors for
pathogens. It is thought that HMOs competitively interact with pathogens, preventing adhesion and
biofilm formation on the gut epithelium [186–188]. Together with their ability to only be fermented by
specific bacteria, HMOs therefore play an important role in shaping early gut microbial succession.
The nature of this succession, and exactly how different oligosaccharides function in this context, are
questions that remain to be elucidated.

As previously discussed, there have been conflicting reports regarding the relationship between
breastfeeding and development of allergy [19,117,189,190], and it may be that it is the combination of
oligosaccharides and bacteria that shape immunity. Indeed, it was recently reported that infants born
by caesarean section with a high risk of allergies had a lower risk of IgE-associated eczema at 2 years,
but this association was not observed at 5 years [46]. In addition, prebiotic oligosaccharides together
with Bifidobacteria have recently shown in caesarean-delivered infants to be able to modulate the
microbial composition which was associated with the emulation of the gut physiological environment
observed in vaginally delivered infants [191,192]. Moreover, epidemiological studies have frequently
shown that there is a clear associational link between perinatal factors, such as breastfeeding, caesarean
delivery, and antibiotic use, and the programming of intestinal inflammatory disorders. However,
more work needs to be done to fully understand how HMOs and allergy development are related.
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3.2.3. HMOs Are Directly Involved in Early Life Immune Development

How the complete mixture of and/or specific HM oligosaccharides are able to beneficially
regulate gut microbiota composition, maintain gut integrity, and most importantly, enhance mucosal
immunity to establish a balanced immune development is not completely understood. Because of
the multiple different structures within authentic HMOs, several distinct receptors and pathways
are thought to play an important role within the direct immune modulating role of HMOs. Direct
interaction has recently been shown (by using glycan microarray technology) between glycan-binding
proteins expressed on the epithelial cells and cells of the innate immune system to specific HMOs.
For instance, 2′-Fucosyllactose and 3-fucosyllactose were shown to bind human DC-SIGN (Dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-integrin), a C-type lectin receptor
present on the surface of both macrophages and dendritic cells. Moreover, the involvement of
a set of glycan binding receptors including the C-type lectin receptors and Toll-like receptors
(TLR) has been identified [193–195]. The direct binding of 2′FL to human DC-SIGN has been
shown to be fucose-specific and DC-SIGN signaling seems to be influenced, leading to alteration
in pro-inflammatory cytokine response in a TLR specific fashion [196,197]. In addition, it has
long been known that human galectins expressed by intestinal epithelial cells also interact with
oligosaccharides [198]. However, the exact mechanisms of how HMOs are able to alter the biological
function of these human cells are still unknown.

Only a few limited studies have focused on the immune-modulatory effects of individual HMOs
within infants and in animal studies, and have suggested anti-inflammatory and immune regulatory
potential, but the mechanism by which specific HMOs may influence the risk for allergy development
is currently not known [199]. Supplementation of the diet with 2′FL or 6′SL did not show any effect on
the levels of allergen specific Immunoglobulin (Ig)E or IgG1 in sensitized or challenged mice. Dietary
supplementation with specific oligosaccharides providing some of the functional benefits of HMOs,
have been shown to reduce the risk of developing allergies in infants [200,201]. Recent data suggest
that the onset of IgE-associated allergic manifestations, (but only in infants with a high hereditary
risk for allergies and born by C-section) might be associated with FUT2-dependent oligosaccharide
composition in breast milk consumed by these infants [46]. These mechanisms collectively include
but may not be limited to the pathogen decoy capacity of specific HMOs, the prebiotic effect on the
microbiome composition, the modulation of the SCFA production which in turn supports the barrier
integrity and/or through direct immune modulatory functions [202]. However, further clinical studies
are needed to support either one of these mechanisms to identify the full potential of HMOs within the
early life immune development.

Within the last few years an interesting increase in understanding and knowledge regarding the
presence and effects of HMOs and composition has been achieved. Consequently, with expansion of
these studies and progress in biotechnology, the potential of adding HMOs to the complex mixture of
prebiotic oligosaccharides in infant formulas are increasing. However, in order to decide which to add,
in which concentration, composition and combination to prevent and treat allergy development in
early life, as well as later in life, clearly needs additional study.

3.3. Human Milk Microbiota

Early microbial colonization is essential for infant’s metabolic and immunological development [203].
Cumulative evidence suggests a direct link between microbial colonization and the risk of
non-communicable diseases in later life, including allergies [204,205]. After birth, the transfer of
microbiota continues during lactation, and is considered to be the cause of differences in gut microbiota
between exclusively breastfed and formula fed infants during the first months of life [206]. In the
recent years the presence of a HM microbiome has been confirmed, with a variety of microbes and
their associated genes and antigens transmitted to the infant during breastfeeding [112]. Available
data show that HM contains approximately 103–105 viable bacteria per mL [207,208].
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Initially, the presence of microbes in human milk was evaluated by use of culture-dependent
techniques and isolates belonged to Staphylococcus, Streptococcus, and Lactobacillus and Bifidobacterium
species, which have been used as probiotics in intervention trials [209]. With the development and
application of culture-independent techniques including next-generation sequencing, it has become
clear that HM contains a much more diverse variety of bacteria, including other lactic acid bacteria,
such as Enterococcus, Lactococcus and Weissella; typical inhabitants of the oral cavity, such as Veillonella
and Prevotella; bacteria usually found in the skin, like Propionibacterium, and other Gram negatives,
e.g., Pseudomonas, etc., [112,210–212]. In a recent systematic review, a core of predominant organisms
was described, which includes Staphylococcus, Streptococcus and Propionibacterium [213]. These genera
are universally predominant in human milk, regardless of different potential confounding factors,
such as sampling, geographic location or analytical methods [213].

There is still scarce information about the influence of environmental and perinatal factors on
HM microbiota composition [214]. Some studies reported that geographical location [112,204,206,215],
delivery mode [207,208], maternal body mass index (BMI) [211,216] or antibiotic intake [217] would
have an impact on HM microbiota. However, others did not find similar effect with regards to other
perinatal factors [218]. Furthermore, an imbalance in the normal bacterial composition of HM can
lead to the overgrowth of specific opportunistic pathogens and lead to mammary infection, such as
lactational mastitis [219,220].

The origin of HM bacteria is currently unknown. A number of hypotheses have been proposed:
(1) human milk microbiota could derive from the mother’s skin, and the infant’s oral cavity during
suckling; (2) an internal route, the “entero-mammary pathway” has been proposed and suggests that
bacteria from maternal gut could be taken up by immune cells and transported via blood stream or
lymphatic system to the mammary gland [221]; (3) specific microbes were detected in the human breast
tissue, which may also supply microorganisms to the milk [222,223].

Human milk microbes hypothesised to play a key role as early gut colonizers, likely
contribute to the immune system development and maturation [224,225]. Alterations or divergent
antibodies/microbiota transferred via HM may affect an infant’s immune development. Lower
proportions in the Bifidobacterium genus have been observed in HM from allergic mothers [226].
The gut microbiome from allergic children also differs from non-allergic in composition and
diversity [226]. Recently, altered immune responses towards gut microbiota were observed as early as
1 month postpartum, in exclusively breastfed children who subsequently developed allergies [227].
Relationships between HM components (HMOs, fatty acids, immunological constituents, etc.) and
allergy development in infants have been recently receiving increased attention [46,60,139,228–230].
Several studies reported that allergic disease and asthma are less common in children exposed to
unpasteurized cow’s milk (CM), which is a source of viable microorganisms [231]. Therefore, bacterial
communities of HM could also be taking part in the protection of infants against allergic diseases,
acting as a natural probiotic, and this requires further elucidation. However, unpasteurized CM also
contains many immune active constituents with close sequence homology to those found in HM. These
could also potentially explain the benefits of raw CM. Existing data suggests that some Lactobacillus
and Bifidobacterium strains have been linked to allergy protection, in particular against eczema [150].
It is worth noting, however, that eczema is not synonymous to allergy, as discussed in other sections
of the manuscript. This highlights a need in precision of outcome definitions alongside pheno- and
endo-typing infant outcomes. As these genera can be found in HM, it is, therefore, plausible that their
transfer to the infant during breastfeeding could provide immunological protection, although more
work is needed to confirm this link.

The potential protective effect of HM bacteria against allergic diseases development has not been
properly studied and future research should also investigate HM bacterial recognition by the immune
system. Better knowledge would help to understand the importance of maternal transference of
altered immune responses towards microbiota during breastfeeding, and their potential influence on
allergy development during infancy. However, it is rather difficult to establish causal relationships
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between HM microbiome and its role in protection against allergic diseases. It is impossible to rule out
the probability of an epi-phenomenon, and future research should tackle cause-effect relationships.
Further analysis based on state-of-the-art, next-generation sequencing methods will be crucial in
understanding the association between bacterial diversity inherited through breastfeeding and an
infant’s potential allergy development.

In clinical trials, oral administration of bacterial strains to lactating mothers showed modulatory
effects both on human milk composition and on the infant’s gut. It was shown that Lactobacillus reuteri
intake led to its detection in the mother’s milk and infant faeces [210]. Similarly, another study
studied the effect of supplementation with L. rhamnosus to reduce the risk of allergy development
when given to women during pregnancy and lactation [232]. Probiotic intake during pregnancy and
lactation also induced specific changes in the infant Bifidobacterium colonization and influenced HM
microbiota composition compared with those receiving placebo [233]. Recently, the effects of perinatal
probiotic supplementation on the HM composition have been reinforced, leading to changes in its
microbiota, including Bifidobacterium and Lactobacillus sp., and also functional components of HM,
such as oligosaccharides (HMO) and lactoferrin [234].

Protective effects of certain Lactobacillus and Bifidobacterium strains on eczema development have
been previously reported [235,236]. Their ability to provide protection against other allergic diseases
has also been described, although results are conflicting and existing evidence does not support their
use for allergy prevention. The beneficial effect on eczema has been proved [150], but the causality is
still unclear. As eczema is a consequence of a skin barrier defect, the possibility of protection due to
direct effects of short-chain fatty acids on skin rather than immune modulation cannot be excluded.
If strong relationships between specific HM microorganisms and allergic diseases are further confirmed,
prebiotics and probiotics could be used to improve HM composition and infant microbiota modulation.

3.4. Human Milk Micronutrients

While breastfeeding is recommended as the sole source of infant nutrition up to 6 months of age by
WHO [237], there are caveats that an adequate maternal diet is required in conjunction with sufficient
volumes of milk that can be transferred to the infant [237]. Lactating women and infants have a greater
physiological demand for micronutrients and are therefore at higher risk of adverse consequences
with insufficiency. Despite HM containing a multitude of micronutrients that are the infant’s sole
source in early life, comprehensive methodical research has not been carried out in this area [238].
Further, many HM micronutrients differ between women, such as Vitamin A and group B vitamins,
which are influenced by maternal dietary intake (Table 3). Owing to this variation and the limited
number of studies that often use small participant numbers, frequently suffer from lack of control for
stage of lactation, fail to record maternal supplementation, and have inconsistent sampling, robust
reference ranges for HM micronutrients do not exist. To add fuel to the fire, various methods have been
employed such as microbiology and radioisotope dilution with the recent addition of chromatography,
coupled with UV, fluorometric and mass spectrometry detection making comparisons even more
challenging. Only recently has there been a concerted effort to shed light on questions such as
variation within feeding, circadian rhythms and the impact of maternal supplementation. This lack
of research likely explains conflicting results and has subsequently hampered the determination of
recommended daily intakes for infants [239]. The other potential explanation is failure to consider the
timing of deficiencies. Transfer of nutrients to the foetus during pregnancy is likely equally, if not more
important, than HM composition. During the first trimester of pregnancy, programming of growth
trajectories will have a profound effect on foetal and infant requirements for micronutrients. Keeping
in mind the “Developmental Origins of Health and Disease” (DOHaD) hypothesis, which suggests
fetal developmental ‘plasticity’ and discordance between intra- and extra-uterine exposures produces
the greatest adverse effects [240].
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Table 3. Human milk micronutrients known to be influenced by maternal diet. The range of
mean concentrations is given for mature milk. Reference [241]—”Handbook of Milk Composition”
summarises milk composition up to approximately 1993.

Component Affected by
Maternal Diet Concentration Component Unaffected

by Maternal Diet Concentration

Fat Soluble Vitamins
K 0.12–0.98 ug/dL [241–243] Tocopherol (vit E) 207–366 ug/dL [244–246]

D 0.008–0.62 ug/dL
[242,246–248]

Retinol (Vit. A) * 40–485 µg/L [242,245,249]

Water Soluble Vitamins
Thiamin (vit B-1) 21.1–228 ug/L [249–251] Folate 53–133 ug/L [241,252,253]

Riboflavin (vit B-2) 0.03–0.35 mg/L [249,251]
Niacin (vit B-3) 68.7–260 ug/L [251,254]

Vit B-6 0.06–0.31 mg/L
[241,249,251,255]

Cobalamin (vit B-12) 85–970 ng/L [249,255,256]
Ascorbic acid (vit C) 35–105 mg/L [241,246,249]

Pantothenic acid (vit B-5) 2.0–2.5 mg/L [241,251]
Choline 144–258 mg/L [241,257]

Minerals
Selenium 3–60 ng/mL [241,249,258,259] Zinc 0.68–12 ug/mL [241,245,260–262]

Iodine 9–250 ug/L [241,249,263–265] Copper 0.006–0.5 ug/mL [241,245,253]
Iron 0.3–0.9 ug/mL [245,262,266]

Calcium 259–300 mg/L [241,245,262]
Phosphorus 130–170 mg/L [241,245,262]
Magnesium 30.5–31.4 mg/L [241,245]

Sodium 111–300 mg/L [241,245,262]
Potassium 380–630 mg/L [241,245,262]
Chromium 0.15–0.8 ng/mL [241,247,253]
Chloride 453–690 mg/L [241,262]

Manganese 0.33–125 ng/mL [241,245,253,262]

* Vit.—Vitamin.

3.4.1. Vitamin A

A number of HM vitamins are influenced by maternal diet including vitamin A, which plays a
major role in both growth and immune function. In a small study of lactating Bangladeshi women
(n = 18) intensive sampling showed that the most appropriate sample should be taken from a pumped
volume from a full breast and that there was a small but significant circadian variation that disappeared
when milk fat was accounted for. Further, vitamin A content increased significantly with acute
supplementation [254]. Vitamin deficiencies in the infant included adverse outcomes such as severe
respiratory and gastrointestinal infections, as well as increased morbidity and mortality [267]. In a
mouse model, maternal supplementation during lactation prevented allergic airway inflammation and
had a protective effect on oral tolerance induction [268]. This finding is consistent with a meta-analysis
of human studies that shows dietary intake of vitamin A to have either a beneficial association in
asthma prevention or no association [269]. In contrast, direct neonatal supplementation in human
neonates appears to increase the risk of atopy and wheezing, particularly in females [270]. It is
speculated that HM borne vitamin A reduces allergy via promotion of intestinal crypt development
and a reduction of gut permeability without impacting the digestion of milk [16,268]. Future studies
will serve to shed light on the protective mechanisms of HMvitamin A.

3.4.2. B Vitamins

In general, group B vitamins concentration of HM is also strongly related to maternal intake and
levels respond to dietary supplementation [271,272]. Levels of HM B vitamins are based on samples
from women in established lactation, as thiamin, vitamin B-6, and folate are lower, and vitamin B-12
higher in the first few weeks of lactation (transitional milk) [272], whereas, in established lactation the
levels of all B vitamins remain relatively stable [246]. Importantly, maternal depletion impacts infant
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status to varying degrees depending on the vitamin and the levels of the vitamin. Further, complicating
the picture is the lack of global documentation on the prevalence of HM vitamin B deficiency.

Studies investigating relationships between vitamin B and infant allergy are also scant with one
study showing no relationship between wheeze or eczema in infants (16–24 months) and maternal
intake of folate, vitamin B12, vitamin B6, and vitamin B2 during pregnancy [273].

3.4.3. Vitamin D

Vitamin D is a steroid hormone produced by skin exposure to ultraviolet light and has many
important roles such as maintaining bone health via the regulation of calcium and phosphorus
absorption. It also plays a role in the innate and adaptive immune system. Due to the ubiquitous
reduction in the time spent outdoors, maternal HM concentrations of vitamin D (25-Hydroxyvitamin
D) are often deficient. Since HM vitamin D levels are positively related to maternal serum
concentrations [274–276] there are serious concerns regarding the vitamin D status of exclusively
breastfed infants, evidenced by a resurgence in the diagnosis of rickets [277]. Maternal daily vitamin D
supplementation of 400–2000 IU of vitamin D/day increases HM concentrations and subsequently
infant 25-Hydroxyvitamin D status [278]. Hence, the current recommendations of the American
Academy of Pediatrics is that all breastfed infants be supplemented with 400 IU/day of oral vitamin D
from birth [279].

It is not clear whether vitamin D intake during pregnancy and lactation lowers the risk of infant
allergies. In a number of studies, high maternal vitamin D levels have been associated with increased
risk of eczema, asthma, food allergy or sensitization to food allergens [280–282] while others report
reduced risk of allergic outcomes [269,283–286] or no relationship [286–288]. An interesting study
on a large Finnish cohort found that maternal vitamin D intake from food was associated with
reduced risk of cow’s milk allergy (CMA) while supplementation of both vitamin D and folic acid
was associated with increased risk of CMA [289]; however, it is likely that other lifestyle factors have
contributed to this finding. Comparisons of these studies are limited due to differences in study design,
methodologies, supplementation, time of measurements, along with a lack of information regarding
lactation. The other issue is the reported non-linear relationship between allergy outcomes in relation
to vitamin D levels with very low and very high levels increasing the risks. The optimal level for
immunological health is still to be defined and this may well differ dependent on stage in pregnancy
and the age of the infant. Supplementation of lactating women and monitoring of their infants for
allergy has yet to be carried out and may yield different results as seen with vitamin A. Hence,
due to the limited and conflicting evidence, the World Allergy Organization has not recommended
supplementing women in pregnancy or lactation as an allergy preventative strategy [290].

3.4.4. Iron

Iron levels in HM are relatively low (0.3 mg/L), but this micronutrient is highly bio-available to
the infant with absorption rates ranging between 16% and 50%, which is higher than that available
from formula feeds [291]. The reported prevalence of iron deficient anemia is <2% up to 6 months
and 2–3% between 6 and 9 months in European infants [291]. Therefore, infant supplementation
is generally not recommended in the first 6 months of life with the exception of infants of diabetic
mothers and low birth weight infants that have low iron stores [266,292]. However, it is recommended
that the first complementary foods are rich in iron [293]. A recent study has found as many as a third
of healthy fully breastfed infants are iron deficient or have iron deficiency anaemia at 5 months of
age [294]. Supplementation of breastfed infants (1–6 months) with 7.5 mg per day of ferrous sulfate
resulted in higher haemoglobin concentration and higher mean corpuscular volume at 6 months of age
than those not supplemented [295]. Better visual acuity and greater Bayley Mental and Psychomotor
Developmental Indices were also recorded at 13 months in supplemented infants. Thus, the American
Academy of Paediatrics recommends that exclusively breastfed term infants and those receiving more
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than half of their daily feeds as breast milk be supplemented with oral iron at 1 mg/kg per day from
4 months of age [296].

Adequate iron is essential for both normal infant neurodevelopment [266] and immune protection
yet is the most common global micronutrient deficiency worldwide [297] with infants and children at
high risk due to the high demand for rapid growth. Very few studies have investigated the relationship
of infant iron status and immunological outcomes with one case-control study showing no difference
in infant status with respect to eczema [298].

3.4.5. Zinc

Infants and children have high requirements for zinc due to rapid growth and tissue synthesis.
Zinc deficiency is not uncommon (>20%) particularly in infants/children less than 5 years of
age [299,300]. Symptoms of zinc deficiency include growth retardation, altered immune function and
gastrointestinal effects such as diarrhea. Those infants/children at highest risk are those consuming
a combination of breast milk and a predominantly plant-based diet of low zinc content as well as
prematurity and low birth weight. [301]. HM zinc content is not related to maternal zinc status and
in developed settings, zinc intake from HM is considered adequate provided the mother is able to
generate enough milk for her infant [301]. However, infant zinc supplementation is often indicated in
low resources settings and those where complementary foods are low in zinc [301].

Again, research into the relationship between infant zinc intake during lactation and allergy is
scarce. Of note a case control study has shown that zinc status is lower in those infants with eczema
compared to their matched controls [298], which is more likely a direct effect on skin barrier rather
than immune responses.

3.4.6. Summary

Micronutrients are important part of the HM composition, but there is a only small body of
evidence that their intake during early life may be related to allergy. In order to establish firm
relationships future research will need to consider sampling and measurement methods of HM.
This includes importance of adjustment for timing—pregnancy vs. lactation; foetal and infant growth
trajectories; and includes better clinical outcome definition. It is also possible to measure dose
(rather than concentration) by employing methods such as test weighing [302] to further improve the
quality of subsequent studies.

3.5. The New Frontier: Human Milk Glycoproteins and Metabolites

Metabolomics is one of the newest “omics” sciences which has been integrated into HM study
using a top-down systems biology approach to explore and unravel the genetic-environment-health
paradigm [303]. Metabolomics, or the study of metabolites, is useful to elucidate the complex
interactions of HM constituents, and to understand the physiological state of HM in various stages of
lactation [304] and in response to infection. Metabolomics, together with other the “omics” such as
proteomics and glycomics and genomics can enable us to understand this complex and dynamic
relationship. Several complementary analytical platforms such as nuclear magnetic resonance
(NMR), capillary electrophoresis (CE), liquid or gas chromatography (LC or GC) coupled with mass
spectrometry (MS) have been used to profile the composition of HM [305,306]. Recent study by
Andreas et al. has identified 710 metabolites in HM using various modified extraction methods, such as
Folch extraction and single-phase extraction using methanol and methyl tert-butyl ether (MTBE) [305].

Besides characterizing the HM metabolome, temporal changes in metabolites across stages
of lactation can be tracked to demonstrate the adaptation of breasts to meet the nutritional and
developmental requirements of the growing infant. Using LC- and GC-MS methods, Villasenor et al.
reported increases in several fatty acids such as linoleic and oleic acid, from the first to the fourth
week postpartum in full-term infants, while cholesterol, fucose and α-tocopherol levels declined [306].
In NMR-based analyses, Wu et al. reported decreases to phosphocholine and glycerol-phosphocholine
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concentrations after the first month of lactation that coincided with an elevation in levels of choline,
a compound essential for the neonate’s growth and neuronal development [307]. Whereas, Sundekilde
et al. characterized and compared 51 metabolites including HMOs, in preterm and full-term milk
up to 100-days post-partum [304,308]. Lacto-N-difucohexaose I, 3′-sialyllactose and 6′-sialyllactose
were identified to be higher in preterm milk compared to term milk [304]; these HMOs have been
implicated in the onset of necrotizing enterocolitis in rat pups [309] and infants [310]. Recent studies
have revealed strong associations between HM metabolites (including HMOs) and the microbiota of
the infant’s gut [311]; this content was covered in earlier sections of this review.

The hygiene hypotheses have expanded our understanding of how allergic disease originates
during infancy. Equally important and likely in response to our microbial environment is the role
of breastfeeding in promoting tolerance to antigens and subsequently reducing the incidence of
allergy and asthma [312,313]. This protection is potentially related to bioactive compounds such as
secretory immunoglobulin A (sIgA) and TGF-β, present in colostrum and mature human milk that
provide protection during the time when the infant’s own immune responses are immature. TGF-β is
discussed in the earlier sections of this review and this section will focus on a few constituents of HM in
relation to infant infection and inflammation as follows: 2 glycoproteins, secretory immunoglobulin A,
and lactoferrin, and low molecular weight compounds such as lactose, choline and anti-inflammatory
short-chain fatty acids. Increasingly, we are appreciating the anti-infective and anti-inflammatory
roles of HM microbiota to directly influence the infant’s gut microbiome, and of HMOs which drive
the growth of microbes to shape gut immunity. These interactions between HM metabolites, the
gut microbiome and allergic disease are reviewed in more detail by Kumari and Kozyrskyj [314]
and Julia et al. [315]. The expanded role for antimicrobial proteins/peptides in HM, as breakdown
products of lactoferrin, will only be briefly mentioned in this section.

3.5.1. Secretory Immunoglobulin A (sIgA)

Secretory Immunoglobulun A (sIgA) is the principal immunoglobulin on human mucosal surfaces
which blocks microorganisms and toxins from attaching to mucosal epithelial cells. While oral
administration of monoclonal antigen-specific IgA prevents infection with bacterial and viral
pathogens, in its natural polyclonal state, non-specific sIgA protects against gastrointestinal and
respiratory infections [316]. In colostrum, levels of non-specific sIgA reaching 12 g/L are not
uncommon, and they decrease to 1 g/L in mature milk [317]. The HM transfer of sIgA from mother to
an infant provides protection against infection by binding pathogens and stimulating gut microbes
until the infant immune system takes over to produce sufficient sIgA levels [318]. It also has an
important role in the development of oral tolerance to gut microbiota. Fecal sIgA concentrations
reach a peak of 4.5 mg/g feces at 1 month of age in exclusively breastfed infants (fed some formula
immediately after birth); they decline to 1.5 mg/g of feces at 5 months of age where they remain for the
duration of infancy [319]. In exclusively formula-fed infants, however, fecal sIgA concentrations peak
at 1.5 mg/g feces, drop to 1 mg/g feces at 3 months, then reach comparable levels to breastfed infants
at 9 months of age. Much higher sIgA levels have been observed 1 week after birth with exclusive
breastfeeding [320]. Low levels of non-specific faecal IgA in infants were among the first associated
with a higher risk of allergy [321].

The production of intestinal IgA commences around 1 month after birth when low levels of fecal
sIgA can be detected in non-breastfed infants [322]. Hence, sIgA in colostrum has been likened to an
immune booster, a beneficial attribute that varies by maternal characteristics and can be impacted by
medical intervention. Residual country variation in colostrum sIgA levels has been reported, even after
accounting for collection time, and maternal parity, smoking, fruit and fish consumption, and allergen
sensitization [323]. Cesarean delivery was independently associated with reduced sIgA colostrum
levels in this study. Breakey et al. reported lower HM sIgA levels in time periods before and after
respiratory or gastrointestinal infections in 8-month old infants of a traditional population living in
rural Argentina [324].
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As evident by the presence of fecal IgA in exclusively formula-fed infants, full-term infants
produce substantial levels of their own IgA within 3 months after birth [325]. However, the highest
IgA levels are seen in exclusively breastfed infants and they increase in direct proportion to the “dose”
of HM (exclusive, partial versus no breastfeeding) provided to the infant. At this age, the likelihood of
C. difficile colonization in gut microbiota was reduced by 75% among infants with fecal IgA levels [326]
in the highest tertile, independent of parity, birth mode and breastfeeding status. While C. difficile
presence in the infant gut is not uncommon, it is a marker for lowered colonization resistance to
pathogenic bacteria and has been found to be associated with future allergic disease [327,328]. Hence,
BM and infant sIgA have an important role in reducing C. difficile colonization. Furthermore, infant
fecal IgA levels are noted to be inversely associated with infant serum levels of IgE and lower binding
of IgA to Bacteroides species increases risk for asthma at age 7 [227,321].

3.5.2. Lactoferrrin

Lactoferrin is a large molecular weight glycoprotein that is also present in colostrum and transition
milk, and at higher levels than in mature milk [329]. Lactoferrin participates in host defense against
microbial pathogens by binding bacterial membranes, binding iron and making it less available for
microbial growth, down-regulating tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β)
production, and stimulating the maturation of lymphocytes [330]. Peptide breakdown products of
lactoferrin have specific direct antibacterial and antifungal activity.

Higher lactoferrin levels were seen in HM preceding and following an infectious episode in the
rural infants of the Breakey et al. study [324]. Since this association with infection was in the opposite
direction to that seen for sIgA secretion in the same infants, the study authors proposed that lactoferrin
“responds” to an infection. Lactoferrin is detected in infant feces. Mastromarino et al. found fecal
bifidobacteria and lactobacilli concentrations in newborns to be positively correlated with fecal lactoferrin
levels soon after delivery [329]. Due to reported associations between child atopy with reduced and not
elevated lactobacillus abundance in the infant gut [331], it is interesting that Zhang et al. found eczema
and atopic sensitization at 6 months (but not later) to be more likely in infants of mothers with higher
HM levels of lactoferrin at 6 weeks after birth [332]. Upper respiratory tract infections were less likely
when children were 1 or 2 years of age with higher HM lactoferrin. Clearly, the interactions between
anti-infective and anti-inflammatory effects of this HM protein are complex and require further study.

3.5.3. Low Molecular Weight Metabolites

Milk Fatty Acids

Milk lipids are principal macronutrients in HM and account for over 50 % of the infant energy
daily intake requirements. Polyunsaturated fatty acids (PUFAs), more specifically the omega-3
(ω-3) fatty acids: docosahexaenoic (DHA) and eicosapentaenoic (EPA), have been shown to have
anti-inflammatory effects in chronic inflammatory diseases, such as asthma [333]. Several specialized
pro-resolving mediators such as resolvin and protectin, are synthesized from ω-3 fatty acids by
lipoxygenase and cyclooxygenase in Th2-cytokine-stimulated macrophages and airway epithelial
cells of human and murine origin [334,335]. These mediators have anti-inflammatory properties and
demonstrated suppressive effects on allergic asthma [336].

More recently, the short-chain fatty acids (SCFAs), acetate, butyrate and propionate, have gained
interest as mediators of allergic inflammations. They are produced by gut microbes and are used
as an energy source by gut epithelial cells (colonocytes) and after absorption, by the liver for
gluconeogenesis [314]. Increasingly, inflammation is being viewed as a by-product of the metabolic
activity of gut microbiota from evidence that SCFAs are altered in children who are or become
overweight or atopic. New evidence shows that maternal SCFA levels during pregnancy can directly
impact the health of infants. Thorburn et al. observed that when a high-fibre diet was consumed
during pregnancy, maternal serum acetate (but not other SCFA) levels were higher [337]. Lower serum
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levels of acetate during pregnancy were associated with wheeze in infants. In a follow-up murine
model experiment, feeding dams acetate during pregnancy and the immediate postpartum period
reduced the development of allergic airway inflammation in offspring.

SCFAs are the first metabolites produced by the gut microbiota of newborns, with synthesis
increasing rapidly after birth [338]. In the few published studies, total SCFA levels are elevated in the
gut of formula-fed versus breastfed infants born at term gestation, yet relative to other SCFA, acetate
levels are highest with exclusive breastfeeding [314,339]. Since microbiota have been detected in HM
and breastfeeding influences SCFA levels in infants, it is quite plausible that HM contains SCFA. In our
pilot comparison of HM across 5 countries, butyrate and acetate were detected by NMR spectroscopy
in HM collected 1 month after vaginal delivery in women who had not received antibiotics. Tan et al.
have observed a reduction in food allergy and total serum IgE levels in mice treated with acetate and
butyrate, but not propionate in drinking water [340]. This protection against food allergy was not
observed in the absence of gut microbiota, suggesting that in addition to SCFAs, a cascade of other
signaling molecules are required to prevent sensitization to food antigens [341].

Choline

Choline is a component of the non-protein nitrogen in human milk and is an important metabolite
for lipid synthesis and in the neurodevelopment of the infant [342]. The circulatory concentration of
free choline, phosphocholine, glycerophosphocholine in breastfed infants is positively correlated with
the choline contents of consumed HM [343]. Ozarda et al. has demonstrated that the water-soluble
choline content of early HM at 1 to 3 days postpartum was positively associated with maternal serum
C-reactive protein (CRP) levels [344]. Since serum CRP is typically elevated during active infection or
acute severe inflammatory processes [345,346], the Ozarda study suggests that HM choline content is a
response to low-grade inflammation in the nursing mother. In fact, higher intake of dietary choline in
adults has been independently associated with a reduction in inflammatory markers, namely with
lowered levels of serum CRP, interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) [347], although
the exact cause of this association remains unclear. Of interest, in the Ozarda et al. study, both HM
levels of choline and serum CRP were higher after caesarean versus vaginal delivery, differences
which could not be attributed to the weight, height or body-mass index of breastfeeding women [344].
It is of particular interest considering known notable associations between delivery by C-section and
increased risk of allergic diseases development [348].

Lactose

Lactose is the main component of the carbohydrate portion of HM and induces innate immunity
by up-regulating gastrointestinal antimicrobial peptides that protect the infant’s gut against pathogens
and regulate gut microbial homeostasis [349]. As such, the lactose concentration in HM increases
after closure of the tight junctions at the initiation of lactation [350]. Before the infant can absorb
lactose for energy use, it is broken down to glucose and galactose by β-galactosidase lactase in the
small intestine [351]. Infant lactose intolerance is not common, as lactase is tightly regulated in infant
and is then progressively down regulated in most children by 2 to 3 years of age [317]. As lactase
activity decreases, the lactose moiety remains intact and then reaches the large intestine, where it is
metabolized by gut microbes. This fermentation process produces hydrogen, methane, carbon dioxide
and lactate [352], molecules which have the potential to cause bloating, abdominal cramps, nausea and
symptoms typical of lactose intolerance. This lactose-lactase system is suggested to act as a biological
timer, controlling birth spacing in human and eventual weaning. Noteworthy is that lactase deficiency
is more prominent in those of Asian, South American and African descent [317]. However, there is no
high-quality research providing a link between the lactose and allergic diseases development.
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4. Breastfeeding/Human Milk Research Unmet Needs

Hitherto in this state-of-the-art review two predominant approaches were presented in the field
of breastfeeding and HM research, with some studies assessing the impact of breastfeeding on health
outcomes, while others testing putative associations between HM composition and the development
of non-communicable disease in general, and allergy in particular. There is an evident lack of studies
combining both, which therefore does not elaborate on the reasons for breastfeeding being beneficial
in some children, with no effect, or even conferring a higher risk of allergy development, in the others.
Furthermore, each field of study had its own methodologic challenges.

We pointed out that various methods of quantifying breastfeeding (exclusive breastfeeding versus
supplementation, feeding duration categorization), differences in assessing outcomes (self-report
versus clinical measures), and the timing of outcome assessment have all contributed to the inconsistent
results of association studies and intervention trials. In addition, the role of breastfeeding may vary
in importance depending on characteristics of the infant, such as age and mode of delivery. When
comparing the impact of breastfeeding on gut microbiota in neonates versus infants, Levin et al.
reported greater variance in microbial composition explained by breastfeeding at 6 months than at
1 month of age [353]. Before 3 months of age, the impact of caesarean section (CS) on gut microbial
composition has been found to be stronger than breastfeeding [353,354] and to be independent
of breastfeeding status [353,355]. On the other hand, findings from the Canadian Healthy Infant
Longitudinal Development birth cohort suggest that early breastfeeding may modify intrapartum
antibiotic prophylaxis and CS-associated dysbiosis of the gut microbiome later in infancy [355]. Hence,
in addition to correctly applying breastfeeding definitions, separating ante- from postnatal influences,
better phenotyping allergy outcomes and utilizing “big data” to study the impact of clusters of HM
components, assessment of infant subgroups is required for a more precise recommendations to be
made about breastfeeding according to maternal characteristics (i.e., asthmatic status, allergic history,
parity, etc.) and delivery mode.

We have also shown that HM has a very complex composition, consisting of a wide range of
immunologically active markers, oligosaccharides, live microorganisms, micronutrients, metabolites
and many other bioactive compounds. Human milk composition is dynamic and variable. Early milk
is particularly rich in its constituents and they undergo rapid change during the very first days of
life. Country differences are also apparent, but not fully explainable at this stage, indicating that
women living in different geographic locations may have distinct human milk profiles. The impact of
HM composition on allergic disease development in children is still a matter of discussion as studies
continue to produce conflicting results. In view of the vast number of crucial components in human
milk, investigation of a single or limited range of constituents may well lead to confusing outcomes.
An appealing thesis is that lactating women can be characterized according to specific and individual
constituents of their milk, called “lactotypes”. Future studies should investigate the possibility of
a lactotype phenotype in a large number of nursing women by analyzing human milk for multiple
constituents at a time and looking for associations with a variety of immunologic phenotype and
outcomes (Figure 1).

Methodological differences in the detection of constituents are also a major issue in HM studies,
which makes it challenging for meta-analyses to be undertaken. HM composition comparisons
between populations or countries should consider strict harmonisation of sampling, storage and
analysis protocols, especially for the timing of sampling, and the collection of samples from lactating
women with similar characteristics. Such studies would reduce variations caused by differences
between populations and between sampling methods, although variation in storage time of milk
samples could not be controlled in this way.

There are number of unmet research needs in breastfeeding and HM research (Box 1) which have
arisen during the development of this manuscript and should be addressed in the future research.
Addressing these needs would lead to a better understanding of the links between breastfeeding/HM
composition and allergic disease development in infancy and childhood.
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Box 1. Unmet research needs in breastfeeding and human milk research.

â Large and well-standardised studies of HM composition (integrated data on immune markers, HMOs,
PUFAs, microbiome and metabolites), defining lactotypes and assessing variation between women residing
in different countries

â Application of omics approaches (metabolomics, proteomics, genomics, etc.) to highlight the most
important components of HM in relation to allergic diseases

â Studies evaluating biological activity of a specific components within HM
â Randomised trials of breastfeeding interventions with long-term follow-up for allergic disease development
â Randomised trials of early weaning (3–4 months) using different dietary approaches
â Large cohort studies which combine assessments of breastfeeding influence on allergy development with

the constituent analysis of HM samples
â Development of a new intervention strategies for HM composition modification and indirect preventative

effect on allergy prevention
â Relevance of a geographical location/lifestyle/diet and its’ influence on the composition of human milk

should be assessed in more detail and research should account for these important confounders

As evidence accumulates from HM research, it will address some of these gaps to better inform policy
makers, clinicians and nursing mothers. Future studies must continue to apply sound methodological
approaches [356], as well as to incorporate new technologies and bring a “patient-centered”
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individualised approach to their application. Emerging laboratory and analytical methods will facilitate
the inclusion of data on the human milk microbiome and metabolome as likely mechanistically
important components of breastfeeding and these findings must be investigated for their roles
in the developmental origins of health and disease (DOHAD) [154]. As allergic sensitization
and allergy associated diseases are increasingly common and constitute the commonest group
of common conditions afflicting young people, they provide the best opportunity to investigate
DOHAD hypotheses.

5. Conclusions

Allergic diseases such as eczema, food allergy and asthma are the commonest chronic diseases
of childhood in many countries, and there is evidence that early life events, such as variations in
breastfeeding patterns, maternal diet, environmental and microbial exposures may be important
in their development. There remain a number of hurdles to overcome before we come to a clear
understanding on how to translate these associations into clinical practice because association is
not synonymous with cause and effect. The possibility that interventions which modify maternal
immunity can impact infant immune responses by changing HM composition is in part supported by
associations between HM composition and immunological outcomes.

Complexity and variability in human milk composition (and known infant’s response to many
of HM constituents) may also explain some of the conflicting results of studies evaluating the effect
of prolonged exclusive breastfeeding and the prevention of allergic disease development. Future
research needs to account for different environmental exposures and use systematic methodologies to
characterize variations in human milk composition in relation to well-defined clinical and immune
outcomes during childhood. Statistical approaches using cluster analysis should be implemented more
frequently, in order to define the role of lactotypes, consisting of immune active molecules, PUFA’s,
microbiome composition. Understanding the relationship between HM composition and development
of non-communicable diseases, and particularly allergy, may allow us to establish a new paradigm in
allergy prevention research—namely modulation of HM composition via maternal dietary and other
interventions, in order to promote healthy infant immune development.
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