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On the Equivalence of Nonnegative Matrix Factorization and

K-means — Spectral Clustering

Chris Ding∗ Xiaofeng He∗ Horst D. Simon∗ Rong Jin†

December 4, 2005

Abstract

We provide a systematic analysis of nonnegative matrix factorization (NMF) relating to data cluster-
ing. We generalize the usual X = FGT decomposition to the symmetric W = HHT and W = HSHT

decompositions. We show that (1) W = HHT is equivalent to Kernel K-means clustering and the
Laplacian-based spectral clustering. (2) X = FGT is equivalent to simultaneous clustering of rows
and columns of a bipartite graph. We emphasizes the importance of orthogonality in NMF and soft
clustering nature of NMF. These results are verified with experiments on face images and newsgroups.

1 Introduction

Standard factorization of a data matrix uses singular value decomposition (SVD) as widely used in principal

component analysis (PCA). However, for many dataset such as images and text, the original data matrices

are nonnegative. A factorization such as SVD contains negative entries and is difficult to interpret for

some applications. In contrast, nonnegative matrix factorization (NMF) [18, 19] restricts the entries in

matrix factors to be nonnegative. NMF has been shown recently to be useful for many applications in

environment [25], chemometrics [29], pattern recognition [20], multimedia [6], text mining [31, 26] and

DNA gene expressions [3]. This is also extended to classification [27]. A number of stuides focus on further

developing NMF computational methodologies [15, 22, 26, 5, 21].

Let X = (x1, . . . ,xn) ∈ Rp×n+ be the data matrix of nonnegative elements. In image processing, each

column xi is a 2D array of pixels gray level. In text processing, each column is a document. The NMF

factorizes X into two nonnegative matrices,

X ≈ FGT, (1)

where F = (f1, · · · , fk) ∈ Rp×k+ and G = (g1, · · · ,gk) ∈ Rn×k+ . k is a pre-specified parameter.

NMF can be traced back to 1970s (communication from Gene Golub) and has been studied by Paatero

[25, 29]. The work of Lee and Seung [18, 19] brought much attention to NMF in machine learning and data

mining communities. There appears to have some confusions, however. Lee and Seung emphasizes[18] that

NMF factors fk contain coherent parts of the original data (images), for example a nose or an eye. Later

experiments [16, 20] do not support the parts-of-whole interpretation of NMF. In fact, Hoyer[16] and Li,

et al[20] specifically propose sparsification schemes to achieve the parts-of-whole pictures.

∗Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720.
†Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824.
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Figure 1: Left: ORL face image dataset. Middle/Right: Computed basis vectors F = (f1, · · · , f16) for 2
runs with random initialization.

Figure 2: Left: Digits image dataset. Middle/Right: Computed basis F = (f1, · · · , f16) for 2 runs with
random initialization.

To further clarify this issue, we perform NMF on image datasets using the multiplicative algorithm.

Results for the AT&T ORL dataset are shown in Fig.1 and on Bell Lab digits dataset are shown in Fig.2.

These results agree with Hoyer[16] and Li, et al[20].

Furthermore, we note that the basis images are close to the original images in some sense. In face

dataset (Fig. 1), many basis images clearly resemble original faces. In digits dataset (Fig. 2), many basis

images clearly resemble 1-9 digits. Intuitively, these basis vectors look like representatives of clusters.

This observation motivates us to analyze the clustering aspect of NMF. We will show in §4 that the

basis images are actually the cluster centroids in the K-means (and fuzzy K-means ) clustering. In their

original paper[18], Lee and Seung emphasizes the difference between NMF and vector quantization (which

is identical to the K-means clustering). A number of studies[31, 21, 3], however, show empirically the

usefulness of NMF for data clustering.

In the rest of this paper, we provide a comprehensive analysis of NMF from the clustering point of view.

We begin in §2 with symmetric NMF, i.e., W = HHT where W is a square matrix of pairwise similarities

(could be a kernel). We show that W = HHT is equivalent to Kernel K-means clustering. In §3, we show

that NMF of X = FGT is equivalent to simultaneous clustering of rows and columns of X .

In §4, we show that X = FGT factorization is identical to K-means clustering under the G orthogonality
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(among columns of G), and is identical to fuzzy K-means clustering under approximate G orthogonality.

In §5, NMF is shown to be equivalent to Laplacian-matrix based spectral clustering and bipartite graph

clustering, with W and X replaced by their proper rescaled counter parts: D−1/2WD−1/2, D
−1/2
r XD

−1/2
c .

In §6, we propose symmetric W = HSHT as a more effective factorization than W = HHT. In §7 we

generalize the effective multiplicative update algorithm[19] for solving X = FGT to the case of symmetric

NMF of W = HHT and W = HSHT . There are a number of researches on further developing NMF

computational methodologies [27, 26, 21].

In §8, we illustrate some concepts and results of our analysis via experiments on internet newsgroups.

Brief summary are given in §9. Overall, our work emphasizes the role of orthogonality, the simultaneous

clustering of row and columns for X ≈ FGT , and the soft clustering nature of NMF. Preliminary results

of this work has appeared in conference[11].

2 Symmetric NMF and Kernel K-means clustering

Here we show that given a symmetric nonnegative matrix W of pairwise similarities, the nonnegative

W = HHT factorization is equivalent to Kernel K-means clustering. In §3, this is generalize to rectangular

nonnegative matrices.

K-means clustering is one of most widely used clustering method. Here we review their spectral re-

laxation formalism[32, 10]. This provides background information and paves the way to symmetric NMF.

K-means uses the K cluster centroids, mk =
∑
i∈Ck xi/nk, to characterize the data X = (x1, · · · ,xn).

The objective function is minimizing the sum of squared errors,

JK =
K∑

k=1

∑

i∈Ck
||xi −mk||2 =

∑

i

||xi||2 −
∑

k

1

nk

∑

i,j∈Ck
xT

i xj , (2)

The solution of the clustering is represented by K non-negative indicator vectors: H = (h1, · · · ,hK),

where the indicator for cluster Ck is

hk = (0, · · · , 0,
nk︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T/n
1/2
k (3)

where nk = |Ck |. Clearly HTH = I . Now Eq.(2) becomes JK = Tr(XTX)−Tr(HTXTXH). The first term

is a constant. Let W = XTX. Thus min JK becomes

max
HTH=I, H≥0

JW(H) = Tr(HTWH). (4)

The continuous solution forH are given by the principal components ofX via an orthogonal transformation[10].

The pairwise similarity matrix W = XTX is the standard inner-product linear Kernel matrix. It can be

extended to any other kernels. This is done using a nonlinear transformation (a mapping) to the higher

dimensional space

xi → φ(xi)

The clustering objective function under this mapping, with the help of Eq.(2), can be written as

min JK(φ) =
∑

i

||φ(xi)||2 −
∑

k

1

nk

∑

i,j∈Ck
φ(xi)

Tφ(xj). (5)
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The first term is a constant for a given mapping function φ(·) and can be ignored. Let the kernel matrix

Wij = φ(xi)
Tφ(xj). Using the cluster indicators H , the kernel K-means clustering is reduced to Eq.(4).

More broadly speaking, W can be any nonnegative pairwise similarity.

In the maximization formulation of Eq.(4), there are two constraints: nonnegativity and orthogonality.

If we relax (ignore) nonnegativity and retain orthogonality, the (continuous) solution for H are given by

the principal eigenvectors of W (a suitable orthogonal transformation[10] can restore the nonnegativity).

If we retain nonnegativity and relax orthogonality, we come to the nonnegative factorization below.

2.1 Nonnegative W = HHT factorization

We show that the optimization of Eq.(4) can be solved by the symmetrix NMF:

W ≈ HHT , H ≥ 0. (6)

Casting this in an optimization framework, an appropriate objective function is

min
H≥0

J1 = ||W −HHT ||2, (7)

where the matrix norm ||A||2 =
∑
ij a

2
ij , the Frobenius norm.

Theorem 1. W = HHT factorization is equivalent to Kernel K-means clustering with the strict orthogo-

nality relation Eq.(2) relaxed.

Proof. The maximization of Eq.(4) can be written as

H = arg min
HTH=I, H≥0

−2Tr(HTWH) = arg min
HTH=I, H≥0

||W ||2 − 2Tr(HTWH) + ||HTH ||2 (8)

= arg min
HTH=I, H≥0

||W −HHT ||2.

In Eq.(8), we add two constants, ||W ||2 and ||HTH ||2 = K. Now relaxing the orthogonality HTH = I

completes the proof. u–
If the nonnegativity condition is relaxed (ignored), the solution to H are the k eigenvectors with the

largest eigenvalues and orthogonality is retained. Now we keep the nonnegativity of H . Will the orthogo-

nality get lost?

Observation 2. W = HHT factorization retains approximate H-orthogonality.

proof. One can see that min J1 = ||W − HHT ||2 is equivalent to (1) maxH≥0 Tr(HTWH) and (2)

minH≥0 ||HTH ||2. The first objective is the original optimization objective Eq.(4). For the 2nd objective,

we note ||HTH ||2 = ||HTH − I ||2 + 2||H ||2 − Tr(I). Since W ≈ HHT , ||H ||2 = Tr(HHT ) ≈ TrW

is approximately constant. Thus the 2nd objective is reduced to minH≥0 ||HTH − I ||2 which ensures

approximate H-orthogonality. u–
The near-orthogonality of columns of H is important for data clustering. An exact orthogonality implies

that each row of H can have only one nonzero element, which implies that each data object belongs only

to 1 cluster. This is hard clustering, such as in K-means . The near-orthogonality condition relaxes this

a bit, i.e., each data object could belong fractionally to more than 1 cluster. This is soft clustering. A

completely non-orthogonality among columns of H does not have a clear clustering interpretation.

An illustrative example. We demonstrate NLR by a simple example. Fig.3 (left panel) shows a 2D

example of 38 points. The similarity between xi,xj is computed using Gaussian kernel Wij = exp(−||xi −
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xj ||2/2). The data has two dominant clusters. We set k = 2 The resulting cluster indicators h1,h2 are

shown in Fig.3 (right panel).

If we do a hard clustering by assigning each data point xi to the cluster c = arg maxkHik, we get points

in regions {A,C,E} as one cluster, and points in regions {B,D} as another cluster. This can be see clearly

from Fig.3 (right panel). This result is identical to a K-means clustering result.

However, we see that the magnitudes of h1,h2 on points in C are very close to each other. This indicates

that a partial (soft) cluster assignment would be more appropriate. Furthermore, the magnitude of h1,h2

on points in E,D are even smaller, indicating they do not belong to either of the dominant clusters. In

fact, all points in C,E,D can be considered as outliers. In general, if
∑

kHik is far below the average

value, we may consider xi as an outlier. This can be rigorously quantified.
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Figure 3: Left: A 2D dataset of 38 data points. Right: Their H = (h1,h2) values are shown as blue and red
curves. Datapoints are ordered by regions {B,A,C,E,D}, where B = {x1, · · · , x15}, A = {x16, · · · , x30},
C = {x31, x32}, E = {x33, x34, x35}, D = {x36, x37, x38}. ) H values for points in regions {C,E,D}
indicate they are fractionally assigned to clusters.

3 NMF and K-means clustering of a bipartite graph

Many application datasets are in the form of rectangular nonnegative matrix, such as a big matrix collecting

a set of images or the word-document association matrix for a document set. This rectangle matrix can

be viewed as the adjacency matrix B = (Bij) of a bipartitie graph, Bij contains the association between

row i and column j.

The kernel K-means approach of §2 can be easily extended to bipartitie graph. Let fk be the indicator

for the k-th row cluster. fk has the same form of hk as in Eq.(3). Put them together we have the indicator

matrix F = (f1, · · · , fk). Analogously, we define the indicator matrix G = (g1, · · · ,gk) for column-clusters.

Let s(Rk, C`) =
∑
i∈Rk

∑
j∈C` bij be the sum of weights(similarity) between row cluster Rk and column

cluster C`. K-means type clustering maximizes the within-cluster similarities s(Rk, Ck),

max
FT F = I;

GTG = I;
F, G ≥ 0

J2 =
∑

k

s(Rk, Ck)

(|Rk| |Ck|)1/2
= Tr(F TBG). (9)

This bipartie graph clustering objective can be obtained more formally: We combine the row and column
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nodes together as

W =

(
0 B
BT 0

)
, hk =

1√
2

(
fk
gk

)
, H =

1√
2

(
F
G

)
(10)

where the factor 1/
√

2 allows the simultaneous normalizations hT

khk = 1, fT

k fk = 1, and gT

kgk = 1. The

K-means type clustering objective of Eq.(4) becomes Tr(HTWH) = 2Tr(F TBG). On the other hand, J2

reduces to the standard K-means of Eq.(4) when W = B and row/column become the same.

zzz

r1

c5 c6c4c3c2c1

r3r2 r4 r5 r6 r7

R2R1

C1 C2

Figure 4: A bipartite graph with r-nodes and c-nodes. The dashed line indicates a possible cluster-
ing. K-means type clustering maximizes within-cluster similarities s(R1, C1), s(R2, C2). Spectral cluster-
ing minimizes between-cluster similarities s(R1, C2), s(R2, C1) and maximizes within-cluster similarities
s(R1, C1), s(R2, C2).

Theorem 3. The K-means bipartie graph clustering problem is equivalent to the following optimization

problem,

min
FT F = I;

GTG = I;
F, G ≥ 0

J2 = ||B − FGT ||2. (11)

From Eq.(3), we have J2 = TrF TBG. The optimization problem can be written

min
FT F = I;

GTG = I;
F, G ≥ 0

−2Tr(F TBG) =⇒ min
FT F = I;

GTG = I;
F, G ≥ 0

||B||2 − 2Tr(F TBG) + Tr(F TFGTG)

In the second equation, we add two constants: ||B||2 and Tr(F TFGTG) = TrI = k. The objective function

is identical to ||B−FGT ||2. Now we relax orthogonality constraints F TF = I ;GTG = I to the approximate

orthogonality. Thus NMF is equivalent to K-means clustering with relaxed orthogonality constraints. u–
Once again the orthogonality plays a crucial role. Here we show that in fact orthogonality are auto-

matically enforced in NMF.

Observation 4. X = FGT factorization retains G,F orthogonality approximately.

proof. One can see that JNMF = ||B||2 − 2Tr(F TBG) + Tr(F TF )(GTG) is equivalent to

max
F,G≥0

Tr(F TBG), (12)

min
F,G≥0

Tr(F TFGTG) (13)

The first objective recovers the original optimization objective Eq.(4). We concentrate on 2nd term. Note

Tr(F TFGTG) = Tr(F TF − I)(GTG− I) + Tr(F TF ) + Tr(GTG)− Tr(I).
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Because FGT ≈ X , the scale of F,G are constrained. Thus Tr(F TF ) = ||F ||2 and Tr(GTG) = ||G||2
are approximately constants. Therefore, the minimization problem of Eq.(13) becomes minimization of

Tr(F TF − I)(GTG− I) =
∑

k`(F
TF − I)k`(G

TG− I)k` , which is bounded from above by
√∑

k`

(F TF − I)2
k`

√∑

k`

(GTG− I)2
k` = ||F TF − I || · ||GTG− I ||,

using Cauchy’s inequality
∑

i aibi ≤
√∑

i a
2
i

√∑
i b

2
i . Minimization of a function f(x) can be approximated

by the minimization of the upper bound of f(x). Thus, the minimization problem of Eq.(13) becomes

min
F,G≥0

(||F TF − I || · ||GTG− I ||)⇒ (min
F≥0
||F TF − I ||) (min

G≥0
||GTG− I ||) (14)

Therefore, the orthogonality of F are approximately enforced. So does the orthogonality of G.

4 NMF as soft clustering

In §3 we show NMF is doing a simultaneous the rows and columns clustering of the rectangle matrix

B. When the orthogonality constraints of F,G are relaxed, it can be viewed soft clustering because we

can interprete the rows of F as posterior probability for row clustering and the rows of G as posterior

probability for column clustering. In this section, we give a more detailed analysis on the soft clustering

of NMF. We show that NMF is closely approximated by a fuzzy K-means clustering.

For simplicity, we normalize each column of the rectangle matrix B to 1. This is achieved by X ≡ BD−1
r ,

where Dr is the diagonal matrix containing the row sums of B. We denote the NMF of this column

normalized matrix X = (x1, · · · ,xn) as

X ≈ CHT , C = (c1, · · · , ck), H = (h1, · · · ,hk).

and with the consistent normalization

p∑

j=1

Cjk = 1,

k∑

r=1

Hir = 1.

because
∑p

i=1(CHT )ij =
∑p
i=1

∑k
r=1 CirHjr = 1, is consistent with

∑
iXij = 1.

The advantage of this normalization are: (1) H is a meaningful posterior probability because its row

sums are all 1. (2) Because the centroids of a subset of {xl} must be column-sum-to-1, columns of C

can be interpreted as cluster centroids. (For these reasons, in this section we write X = CHT instead of

X = FGT .)

First we consider the case where hk are mutually orthogonal. This corresponding to hard clustering,

i.e., each object belongs to exactly one cluster and ck are exactly the cluster centroids.

Theorem 5(Hard clustering). H-orthogonal NMF is identical to K-means clustering.

Proof. We have

JNMF = ‖X − CHT‖2 =

n∑

i=1

∥∥∥∥∥xi −
κ∑

k=1

ckhik

∥∥∥∥∥

2

=

n∑

i=1

∥∥∥∥∥
κ∑

k=1

hik(xi − ck)

∥∥∥∥∥

2

(15)

The orthogonality condition implies that on each row of H , only one element is nonzero. Thus

JNMF =

n∑

i=1

κ∑

k=1

h2
ik‖xi − ck‖2. (16)
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Now since hik = 0, 1, this becomes the standard K-means clustering. u–
Next, we consider the general case where hk are not necessarily orthogonal, i.e., each object could

belong to several clusters fractionally. We have the following results

Theorem 6(NMF Bound). JNMF can be approximated by a fuzzy K-means clustering :

JNMF ≈ J (f=2)
F , |JNMF − J (f=2)

F | ≤ JK (17)

where the fuzzy K-means clustering objective function[2] is

J
(f)
F =

n∑

i=1

κ∑

k=1

hfik‖xi − ck‖2, JK = J
(f=1)
F ,

κ∑

k=1

hik = 1. (18)

Proof. From Eq.(15), we have

JNMF =

n∑

i=1




κ∑

k=1

h2
ik‖xi − ck‖2 +

∑

k 6=`
hikhi`(xi − ck)T(xi − c`)


 = J

(1)
NMF + J

(2)
NMF.

The first term is J
(1)
NMF = J

(f=2)
F . To analyze the second term, we note that due to sign cancellation, we

expect J
(2)
NMF fluctuated around zero, i.e.,

J
(2)
NMF =

n∑

i=1

∑

k 6=`
hikhi`(xi − ck)T(xi − c`) ≈ n

∑

k 6=`
〈hikhi`(xi − ck)T(xi − c`)〉 ≈ 0. (19)

Using the inequality 2(xi − ck)T(xi − c`) ≤ ||xi − ck||2 + ||xi − c`||2, we have

|J (2)
NMF| ≤

n∑

i=1

∑

k 6=`
hikhi`|(xi − ck)T(xi − c`)| (20)

≤ 1

2

n∑

i=1

∑

k 6=`
hikhi`(||xi − ck ||2 + ||xi − c`||2) (21)

≤ 1

2

n∑

i=1

[
κ∑

k=1

hik||xi − ck||2 +

κ∑

`=1

hi`||xi − c`||2
]

= JK . (22)

Thus |JNMF − JF | = |J (2)
NMF| ≤ JK . u–

In fuzzy K-means clustering, cluster centroids are updated as

ck =

∑n
i=1 h

f
ikxi∑n

i=1 h
f
ik

, hik =

[
κ∑

`=1

[‖xi − ck‖
‖xi − c`‖

] 2
f−1

]−1

. (23)

Clearly J
(f=1)
F reduces to standard K-means clustering where hik is discretized into 0, 1.

To summerize, the soft clustering nature of NMF is close to f = 2 fuzzy K-means clustering and

K-means clustering provides a good initialization for NMF.

5 NMF and Spectral clustering

In recent years spectral clustering using the Laplacian of the graph emerges as solid approach for data

clustering [14, 28, 12, 24, 1, 8, 23] (complete references in [9]). Here we focus on the spectral clustering
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objective functions. There are three objectives: the Ratio Cut [14], the Normalized Cut [28], and the

MinMax Cut [12]. We are interested in the multi-way clustering objective functions,

J =
∑

1≤p<q≤K

s(Cp, Cq)

ρ(Cp)
+
s(Cp, Cq)

ρ(Cq)
=

K∑

k=1

s(Ck, C̄k)

ρ(Ck)
(24)

ρ(Ck) =




|Ck| for Ratio Cut∑
i∈Ck di for Normalized Cut

s(Ck, Ck) for MinMax Cut
(25)

where C̄k is the complement of subset Ck in graph G, s(A,B) =
∑
i∈A

∑
j∈B wij , and di =

∑
j wij .

Here we show that the minimization of these objective functions can be equivalently carried out via the

nonnegative matrix factorizations. The proof follows the multi-way spectral relaxation[13] of Normalized-

Cut and MinMaxCut. We focus on Normalized Cut.

Theorem 7. Normalized Cut using pairwise similarity matrixW is equivalent to Kernel K-means clustering

with the kernel matrix

W̃ = D−1/2WD−1/2. (26)

where D = diag(d1, · · · , dn).

Corallary 8. Normalized Cut using similarity W is equivalent to nonnegative matrix factorization

min
H≥0

J3 = ||W̃ −HHT ||2. (27)

Proof of Theorem 7. Let hk be the cluster indicators as in Eq.(3). One can easily see that

s(Ck , C̄k) =
∑

i∈Ck

∑

j∈C̄k

wij = hT

` (D −W )h` (28)

and
∑

i∈Ck di = hT

`Dh`. Define the scaled cluster indicator vector z` = D1/2h`/||D1/2h`||, which obey the

orthonormal condition zT

`zk = δ`k, or ZTZ = I , where Z = (z1, · · · , zK). Substituting into the Normalized

Cut objective function, we have

JNC =
K∑

`=1

hT

` (D −W )h`
hT

`Dh`
=

K∑

`=1

zT

` (I − W̃ )z` (29)

The first term is a constant. Thus the minimization problem becomes

max
ZTZ=I, Z≥0

Tr(ZT W̃Z) (30)

This is identical to the Kernel K-means clustering of Eq.(4) and can be solved by the nonnegative factor-

ization of W̃ = ZZT . Once the solution Ẑ is obtained, we can recover H by optimizing

min
H≥0

∑

`

∥∥∥∥ẑ` −
D1/2h`
||D1/2h`||

∥∥∥∥
2

. (31)

The exact solution are hk = D−1/2ẑk , or H = D−1/2Z. Thus row i of Z is multiplied by a constant d
−1/2
i .

The relative weight across different cluster in the same row remain same. Thus H represents the same

clustering as Z does. u–
We note besides nonnegative factorization solution for Eq.(30), another approach [30] is semi-definite

programming by noting that Tr(ZT W̃Z) = Tr(W̃ZZT ) = Tr(W̃Y ). This becomes maximization of a linear

function of f(Y ), where Y ≡ ZZT is restricted to semidefinite positive matrix. On another aspect, we have

emphasized that NMF allows approximate posterior interpretation of H . A strict posterior interpretation

of H can be guarantteed[17] by rigorously enforces the probability condition
∑

kHik = 1.
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5.1 Spectral bipartite graph clustering and NMF

In the Laplacian based bipartite graph clustering[33, 7, 13] the clustering objective function for Normalized

cut for K = 2 is

JB
NC =

s(R1, C2) + s(R2, C1)

2s(R1, C1) + s(R1, C2) + s(R2, C1)
+

s(R1, C2) + s(R2, C1)

2s(R2, C2) + s(R1, C2) + s(R2, C1)
(32)

Note s(Rk, C`) is defined near Eq.(9) Let Dr be a diagonal matrix containing row sums of B, and Dc be a

diagonal matrix containing column sums of B. Then 2s(R1, C1)+s(R1, C2)+s(R2, C1) = fT
1Drf1 +gT

1Dcg1.

Thus

JB
NC = K−

K∑

k=1

=
2fT

kBgk
fT

kDrfk + gT

kDcgk

This can be immediately generalized to K ≥ 2. Let

Z = (z1, · · · , zk), zk =

(
D

1/2
r fk

D
1/2
c gk

)/∥∥∥D
1/2
r fk

D
1/2
c gk

∥∥∥, zk =
1√
2

(
xk
yk

)
, Z =

1√
2

(
X
Y

)
(33)

and set

B̃ = D−1/2
r BD−1/2

c . (34)

we have

JB
NC = K − Tr

[
ZT

(
0 B̃

B̃T 0

)
Z

]
= K − 1

2
Tr

[(
X
Y

)T
(

0 B̃

B̃T 0

)(
X
Y

)]
= K − Tr XT B̃Y. (35)

Thus minimizing JNC becomes max Tr(XT B̃Y ). Now, repeating the same analysis as in §2, the solution to

min JB
NC becomes

min
XTX=I, Y TY=I

||B̃ −XY T ||2 (36)

Let the solution for this NMF be X = (x̂1, · · · , x̂k), Y = (ŷ1, · · · , ŷk). Once X,Y are obtained, we

need to recover F = (f1, · · · , fk), G = (g1, · · · ,gk), by optimizing

min
{fk,gk}

∥∥∥∥∥

(
x̂k
ŷk

)
−
√

2

(
D

1/2
r fk

D
1/2
c gk

)/∥∥∥D
1/2
r fk

D
1/2
c gk

∥∥∥
∥∥∥∥∥

2

(37)

The solution can be easily shown to be

fk = D−1/2
r x̂k, gk = D−1/2

c ŷk, (38)

This gives the spectral bipartite graph clustering via the NMF.

6 Nonnegative W = HSHT Factorization

In both Kernel K-means and spectral clustering, we assume the pairwise similarity matrix W are semi

positive definite. For kernel matrices, this is true. But a large number of similarity matrices is nonnegative,

but not s.p.d. This motivates us to propose the following more general NMF:

min
H

J5 = ||W −HSHT ||2, (39)
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where W ∈ Rn×n+ , H ∈ Rn×k+ , and S ∈ Rk×k+ is not necessarily diagonal. When the similarity matrix W

is indefinite, W has negative eigenvalues. HHT will not provide a good approximation, because HHT

can not obsorb the subspace associated with negative eigenvalues. However, HSHT can absorb subspaces

associated with both positive and negative eigenvalues, i.e., the indefiniteness of W is passed on to S.

This distinction is well-known in linear algebra where matrix factorizations have Cholesky factorization

A = LLT if matrix A is s.p.d. Otherwise, one does A = LDLT factorization, where the diagonal matrix D

takes care of the negeative eigenvalues.

The second reason for nonnegative W = HSHT is that the extra degrees of freedom provided by S

allow H to be more closer to the form of cluster indicators. This benefits occur for both s.p.d. W and

indefinite W .

The third reason for nonnegative W = HSHT is that S provides a good characterization of the quality

of the clustering. Generally speaking, given a fixed W and number of clusters K, the residue of the matrix

approximation J
opt
5 = min ||W −HSHT ||2 will be smaller than J

opt
1 = min ||W −HHT ||2. Furthermore,

the K-by-K matrix S has a special meaning. To see this, let us assume H are vigorous cluster indicators,

i.e., HTH = I . Setting the derivative ∂J5/∂S = 0, we obtain

S = HTWH, or S`k = hT

`Whk =

∑
i∈C`

∑
j∈Ck wij√

n`nk
(40)

S represents properly normalized within-cluster sum of weights (` = k) and between-cluster sum of weights

(` 6= k). For this reason, we call this type of NMF as weighted NMF. The usefulness of weighted NMF is

that if the clusters are well-separated, we would see the off-diagonal elements of S are much smaller than

the diagonal elements of S.

The fourth reason is the consistency between standard W = HHT and B = FGT . Since we can define

a kernel as W = BTB. Thus the factorization W ≈ BTB ≈ (FGT)T(FGT) = G(FTF )GT. Let S = FTF ,

we obtain the weighted NMF.

7 Algorithms for computing W = HHT and W = HSHT

In this section, we brief outline the algorithms for computing the factorizations. Since all these are non-

convex functions, the algorithms seek to find a local minima, similar in nature as K-means clustering and

spectral clustering. The algorithms have the same style as the NMF multiplicative updating rules of Lee

and Seung [18, 19].

7.1 Symmetric NMF W = HHT

The updating rule is

Hik ← Hik

(
1− β + β

(WH)ik
(HHTH)ik

)
. (41)

where 0 < β ≤ 1. In practical application, we find β = 1/2 is a good choice.

To derive the update rule of Eq.(41), we expand the objective function J = ||W −HHT||2 and obtain

∂J

∂H
= −4WH + 4HHTH

By the standard optimization theory via Lagrangian multipliers, the first order KKT complementarity

slackness condition is
(

∂J
∂Xik

)
Xik = 0, evaluated at the local minima X∗ij . For symmetric NMF, this leads

11



to

(−4WH + 4HHTH)ikHik = 0. (42)

This is a fixed point relation that Hik must satisfy at convergence. There are many ways to iteratively

update Hik. We use gradient decent, Hik ← Hik − εik ∂J
∂Hik

, and set εik = βhik/(4HH
TH)ik to obtain the

update rule of Eq.(41), which satisfies the fixed point equation of Eq.(42).

Updating symmetric NMF using the nonsymmetric NMF rules of is studied in [4].

7.2 Weighted symmetric NMF W = HSHT

The update rules are

Sik ← Sik
(HTWH)ik

(HTHSHTH)ik
. (43)

Hik ← Hik

(
1− β + β

(WHS)ik
(HSHTHS)ik

)
. (44)

The derivation follows W = HHT case. The KKT complementarity condition
(

∂J
∂Sik

)
Sik = 0 gives

(−2HTWH + 2HTHSHTH)ikSik = 0 (45)

for Sik. Using gradient descent, we obtain update rule Eq.43, which satisfies the fixed point equation Eq.45.

Similary, the KKT complementarity condition
(

∂J
∂Hik

)
Hik = 0 gives

(−4WHS + 4HSHTHS)ikHik = 0, (46)

for Hik . Using gradient descent, we obtain update rule Eq.44, which satisfies the fixed point equation

Eq.46.

8 Experiments on Internet Newsgroups

We perform experiments on Internet newsgroups articles to illustrate issues studied earlier regarding to

orthogonality, soft clustering, etc. For comparison, we do K-means clustering on the same datasets. Our

main purposes are to demonstrate (1) NMF performs substantially better than standard K-means . (2)

NMF performs soft clustering of rows and columns simultaneously.

A 20-newsgroup dataset is obtained from CMU: www.cs.cmu.edu/afs/ cs/project/theo-11/www/naive-

bayes.html. B contains the word-document matrix. 500 words are selected according to the mutual

information. tf.idf term weighting is used. we normalize each document to 1 in L2-norm. We use two

sets of 5-newsgroup combinations:

A B

NG2: comp.graphics NG2: comp.graphics

NG9: rec.motorcycles NG3: comp.os.ms-windows

NG10: rec.sport.baseball NG8: rec.autos

NG15: sci.space NG13: sci.electronics

NG18: talk.politics.mideast NG19: talk.politics.misc

Dataset A is moderately overlapping and dataset B is strongly overlapping. To accumulate sufficient statis-

tics, we generate 5 random datasets for each 5-newsgroup combinations: 100 documents were randomly

12



Sample 1 2 3 4 5

Dataset A

K-means 0.748 0.790 0.815 0.862 0.873
NMF 0.876 0.916 0.912 0.902 0.884

Dataset B

K-means 0.531 0.491 0.576 0.632 0.697
NMF 0.612 0.590 0.608 0.652 0.711

Table 1: Clustering accuracy for K-means and NMF for 5 random samples.

sampled from each newsgroup. K-means and NMF are applied to these 5 random sampled datasets. For

K-means , we run 10 trials with random starts and select the run with one with the best objective function

value. NMF results uses K-means results as initial guess. We discuss results on W = HSHT and B = FGT

separately.

8.1 Results using W = HSHT

We compute cosine similarity between documents by setting W = BTB. The experiments is done as

explained above. We first discuss clustering accuracy, using the known class labels. The results for

clustering accuracy for dataset A and B are listed in Table 1. We see that NMF consistently improve over

K-means , sometimes quite substantially.

Next, we consider the orthogonality of H , whose importance w.r.t. clustering is emphasized in §2 -
§4. We compute the normalized orthogonality, (HTH)nm = D−1/2(HTH)D−1/2, where D = diag(HTH).
Thus the diagonal is normalized to 1, and derivation can be clearly judged. The computed (HTH)nm are
given below:

(HTH)nm =

2
66664

1 0.321 0.305 0.355 0.283
1 0.294 0.293 0.304

1 0.240 0.259
1 0.238

1

3
77775
, S =

2
66664

.1625 .0017 .0009 .0022 .0023
.2234 .0010 .0026 .0022

.2017 .0014 .0008
.2576 .0027

.2410

3
77775

The average of off-diagonal elements is 0.289. Thus the solution is about 29% off the perfect orthogonality. The
factor S in W = HSHT is given above. S is close to a diagonal matrix. However, the small values are important
to make HSHT a better matrix approximation of W .

8.2 Results using B = FGT

The most interesting aspect of B = FGT factorization is the simultaneous clustering of document and words. We
first consider the orthogonality of F,G which characterizes the level of soft clustering. The normalized orthogonality
as in §8.1 are computed and given below

(F TF )nm =

2
66664

1 0.224 0.227 0.283 0.266
1 0.133 0.228 0.268

1 0.160 0.179
1 0.260

1

3
77775
, (GTG)nm =

2
66664

1 0.107 0.189 0.130 0.126
1 0.063 0.088 0.114

1 0.078 0.097
1 0.095

1

3
77775

One can see that off-diagonal elements are generally small. Comparing to (HTH)nm in W = HSHT

factorization, F,G are more orthogonal than H . This is mainly due to the fact that matrix B is much

more sparse than W . Furthermore, F is less orthogonal than G, indicating word clusters are more overlaped

than document clusters. The consequence of this difference is partially exhibited below.
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1-peak 2-peak 3-peak 4-peak 5-peak
238 123 75 45 19

Table 2: Number of words in different category. Total words is 500.

8.3 Word clustering analysis

Since NMF of the word-document matrix is doing simultaneous clustering of documents and words, let us

examine word clustering in some details. We believe this type of word clustering analysis is new; To my

knowledge, most text analysis and IR research emphasize document clustering; word clustering is far less

frequently discussed.

Since there are no known labels for word clustering, we look into the distribution of word cluster

indicators. By the meaning of word, we can approximately assess its relevance to each cluster (newsgroup).

We focus on dataset A.

We view the i-th row of word cluster indicator F as the posterior probability that word i belongs to

each of the K word clusters. Let this row of F be (p1, · · · , pK), which has been normalized to
∑

k pk = 1.

Suppose a word has a posterior distribution of (0.9, 0.1, 0, 0, 0); it is obvious this word is cleanly clus-

tered into one cluster. We say this word has a 1-peak distribution. Suppose another word has a posterior

distribution of (0.4, 0.6, 0, 0, 0); this word is clustered into two cluster. We say this word has a 2-peak

distribution. Now we wish to characterize each word as belonging to 1-peak, 2-peak, 3-peak, etc, We set

five prototype distributions:

(1, 0, 0, 0, 0), (
1

2
,

1

2
, 0, 0, 0), (

1

3
,

1

3
,

1

3
, 0, 0), (

1

4
,

1

4
,

1

4
,

1

4
, 0), (

1

5
,

1

5
,

1

5
,

1

5
,

1

5
),

and all permutations. For example, (1, 0, 0, 0, 0) is equivalent to (0, 1, 0, 0, 0). For each word, we assign

it to the closest prototype distributions based on symmetrized Kullbak-Leibler distance, In practice, we

first sort the row such that the components decrease from left to right, and then assign it to the closest

prototype. In Table 2, we show a typical result of this categorization.

Generally speaking, the less number of peaks a word has, the more unique content the word holds,

which in turn makes the word more clearly related to the topic of its assigned cluster. This is clearly seen

in the 1-peak words in Table 3, where we list top-ranked words in 1-peak, 2-peak and 5-peak categories.

The 2-peak words generally have a meaning that fits two clusters. In contrast, the 5-peak words generally

have no specific content. All these results are consistent with our understanding and are expected from a

systematic content analysis.

To summarize, during the simultaneous clustering of documents and words, NMF is capable of distin-

guishing the contents of words which fit different clusters. The results on 1-peak, 2-peak, etc., indicate

that NMF has a unique capability that many other clustering methods are lacking.

9 Summary

We prove that NMF is equivalent to Kernel K-means clustering and spectral clustering when the orthog-

onality condition is relaxed.

Our theoretical results clarify the meaning of factorization matrices: (a) the basis vectors (columns of
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cluster names 1-peak words
space satellite orbit mission incoming alaska launch

mideast israel arab muslim jew palestinian turkey
motercycle motorcycle bmw chain biker rider bike

baseball game pitcher basebal pitch catcher sox
graphics format graphic code pixel video viewer

2-peak words 5-peak words
space midest motor baseball graphics space midest motor baseball graphics

plane .04 .46 .00 .00 .50 ago .19 .28 .13 .21 .19
fly .46 .01 .00 .46 .06 area .28 .27 .21 .12 .11
project .57 .00 .02 .00 .42 full .22 .14 .27 .22 .16
scienc .38 .12 .00 .00 .50 give .16 .20 .19 .30 .16
water .12 .42 .38 .08 .00 kind .22 .19 .12 .16 .32
monitor .37 .07 .12 .00 .44 lot .19 .12 .18 .31 .20
fast .11 .00 .35 .07 .47 school .20 .26 .14 .21 .20
young .00 .35 .15 .50 .00 small .19 .32 .12 .14 .23
model .35 .00 .06 .15 .44 thing .19 .12 .29 .26 .13
net .36 .06 .06 .14 .37 write .25 .21 .20 .22 .12

Table 3: Top ranked words in 1-peak, 2-peak and 5-peak distributions. Posterior probabilities for 2-peak and
5-peak words are shown.

C in X = CHT ) are cluster centroids ; (2) the data projections (rows of H ) are cluster indicator vectors.

We emphasize that the relaxation of orthogonality condition is, in fact, a useful feature of NMF for

soft clustering. It enhance the posterior probability interpretation of the cluster indicator matrix H , which

provides a soft clustering framework and overcomes some of the problems of hard clustering. Both the

example in Fig.3 and the word posterior distribution (§8.3) illustrate this soft clustering aspect.

Overall, we provide an unified understanding of two aspects of kernel K-means (cf. Eq.4) and Laplacian

matrix-based spectral clustering (cf. Eq.30): (a) if the orthogonality is retained while nonnegativity is

relaxed, we obtain eigenvector solutions; (b) if the orthogonality is relaxed while nonnegativity is strictly

enforced, we obtain NMF.
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