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1Abstract

Distribution of Class Groups

by

Weitong Wang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Melanie Wood, Co-chair

Professor Sug Woo Shin, Co-chair

One goal of this thesis is to prove theorems that elucidate the Cohen-Lenstra-Martinet con-
jectures for the distributions of class groups of number fields, and further the understanding
of their implications. We start by giving a simpler statement of the conjectures. We show
that the probabilities that arise are inversely proportional to the number of automorphisms of
structures slightly larger than the class groups. We find the moments of the Cohen-Lenstra-
Martinet distributions and prove that the distributions are determined by their moments. In
order to apply these conjectures to class groups of non-Galois fields, we prove a new theorem
on the capitulation kernel (of ideal classes that become trivial in a larger field) to relate the
class groups of non-Galois fields to the class groups of Galois fields. We then construct an
integral model of the Hecke algebra of a finite group, show that it acts naturally on class
groups of non-Galois fields, and prove that the Cohen-Lenstra-Martinet conjectures predict
a distribution for class groups of non-Galois fields that involves the inverse of the number of
automorphisms of the class group as a Hecke-module. The Cohen-Lenstra-Martinet Heuris-
tics give a prediction for the distribution for the p-Sylow subgroups of the class groups of
random Γ-number fields when p ∤ |Γ|. In this thesis, we prove several results on the dis-
tributions of the class groups for some p||Γ|, and show that the behaviour is qualitatively
different than the predicted behaviour when p ∤ |Γ|. We do this by using genus theory and
the invariant part of the class group to investigate the algebraic structure of the bad part of
the class group. For general number fields, our result is conditional on a natural conjecture
on field counting. For abelian or D4 fields, our result is unconditional.
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1

Chapter 1

Introduction

1.1 Introduction

In this paper we prove several results to help elucidate the Cohen-Lenstra-Martinet con-
jectures [12, 14] for the distributions of class groups of number fields, and to further the
understanding of their implications. In Section 2.1, we explain the statement of the conjec-
tures in the framework of probability theory. In Section 2.2, we prove a result about the
terms appearing in the Cohen-Lenstra-Martinet conjectures. In particular, we prove certain
expressions given by Cohen and Martinet are equal to simpler expressions, which allows us
to conclude the following. (See Conjecture 2.1.3 and Theorem 2.2.1 for precise statements.)

Theorem 1.1.1. For every finite group Γ and subgroup Γ∞, among Galois number fields
K with isomorphism Gal(K/Q) ≃ Γ (i.e. Γ-fields) and decomposition group Γ∞ at ∞, the
Cohen-Lenstra-Martinet conjectures predict that

Prob(ClK ⊗ZZ[|Γ|−1] ∼= H) =
c

|HΓ∞||AutΓ(H)|
,

where ClK is the class group of K, and c is a constant, and H is any finite Z[|Γ|−1,Γ]-module
with HΓ = 1.

The original philosophy of the Cohen-Lenstra-Martinet conjectures, going back to Cohen
and Lenstra [12], is that objects should appear with frequency inversely proportional to their
number of automorphisms. So we naturally ask why there is an |HΓ∞| term in the above
predictions. In Section 2.3, we slightly enlargen the class group to the Galois group over Q
of the Hilbert class field of K, with the data of a decomposition group at ∞. We consider,
for the first time, the distributions of these larger structures, which we call class triples. We
show that a class triple is determined by the class group and decomposition group at ∞,
and the number of automorphisms of the class triple is exactly |HΓ∞ ||AutΓ(H)|, explaining
the probabilities above. Bartel and Lenstra [3] have given a different approach to this
question by giving conjectures about the distribution of Arakelov class groups based on those
groups appearing with frequency inversely proportional to their number of automorphisms



(which takes some work to make precise, see [2]). Their predicted distribution on Arakelov
class groups then pushes forward to the Cohen-Lenstra-Martinet distribution, over any base
number field.

In Section 2.4, we determine the moments, which are important averages of the Cohen-
Lenstra-Martinet distributions on finite abelian Γ-modules.

Theorem 1.1.2 (Moments). For every finite group Γ and subgroup Γ∞, if X is a random
Z[|Γ|−1,Γ]-module with the Cohen-Lenstra-Martinet distribution for Γ-fields with decompo-
sition group Γ∞ at ∞, then for every finite Z[|Γ|−1,Γ]-module H with HΓ = 1, we have the
H-moment of X is

E(| SurΓ(X,H)|) = |HΓ∞|−1.

Here SurΓ(X,H) denotes the surjective Γ-module homomorphisms from X to H. See
Theorem 2.2.1 and Theorem 2.4.2 for precise statements. These moments are the most
important averages of the Cohen-Lenstra-Martinet distributions. (See [11, Section 3.3] on
why they are called moments.) The only non-trivial predicted averages of the Cohen-Lenstra-
Martinet conjectures that have been proven are the Z/3Z-moment of the class groups of
quadratic fields due to Davenport and Heilbronn [16] (and Datskovsky and Wright [15] for
quadratic extensions of general global fields) and the Z/2Z-moment of the class groups of
cubic fields due to Bhargava [5]. (There is also more known on the 2-Sylow subgroup of the
class groups of quadratic fields; see [22, 55].) When working over Fq(t) instead of Q, there
are also results on the H-moments of class groups, including of Ellenberg, Venkatesh, and
Westerland [20] and the second author [63] for quadratic extensions, and of Liu, the second
author, and Zureick-Brown [38] for Γ-extensions, showing that as q → ∞ the moments
match those in Theorem 1.1.2. The paper [51] of Pierce, Turnage-Butterbaugh, and the
second author explains how the Cohen-Lenstra-Martinet conjectures for the moments of
class groups are related to other important conjectures in number theory, including the
ℓ-torsion conjecture for class groups, the discriminant multiplicity conjecture, generalized
Malle’s conjecture, and the count of elliptic curves with fixed conductor. So given the
relative accessibility and the centrality of these moments, Theorem 1.1.2 is useful because it
tells us what moments the Cohen-Lenstra-Martinet conjectures predict.

Moreover, we show that moments determine the Cohen-Lenstra-Martinet distributions
uniquely, which is particularly of interest because the moments are the statistics of class
groups about which we seem most likely to be able to prove something.

Theorem 1.1.3 (Moments determine distribution). For every finite group Γ and subgroup
Γ∞, if X is a random Z[|Γ|−1,Γ]-module such that for every finite Z[|Γ|−1,Γ]-module H with
HΓ = 1, we have

E(| SurΓ(X,H)|) = |HΓ∞|−1.

then X has the Cohen-Lenstra-Martinet distribution for Γ-fields with decomposition group
Γ∞ at ∞.

See Theorems 2.4.11 and 2.4.12 for precise statements. When we restrict to groups whose
orders are only divisible by a finite set of primes, we also prove that a sequence of random
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variables with these moments in the limit must have the Cohen-Lenstra-Martinet distribution
as its limit distribution. Theorem 1.1.3 is part of a long line of work showing results in the
same spirit for other categories of groups, including work of Heath-Brown [30, Lemma 17] for
elementary abelian p-groups, Ellenberg, Venkatesh, and Westerland [20, Section 8] for finite
abelian p-groups, the second author for finite abelian groups [42, Section 8], and Boston and
the second author [8, Theorem 1.4] for pro-p groups with a Z/2Z action. See [18, 21, 27, 63]
for other examples.

Next, we consider the implications of the Cohen-Martinet conjecture for class groups of
non-Galois fields. While these conjectures do not directly make claims about class groups
of non-Galois fields, when the class groups of non-Galois fields can be given as a function of
the class groups of Galois fields, then the Cohen-Martinet conjectures make a prediction for
their average. For example, let Γ be a finite group and Γ′ a subgroup of Γ. When L is a
Γ-field and K is the fixed field LΓ′

, then, localizing away from primes dividing |Γ|, we have
ClK ⊗ZZ[|Γ|−1] = (ClΓ

′

L ) ⊗Z Z[|Γ|−1] (where the Γ′ exponent denotes taking the fixed part).
So a conjecture about the distribution of class groups of Γ-fields has a consequence for the
distribution of class groups of their Γ′-fixed fields. However, there is also the possibility of
using the Cohen-Martinet conjectures, for some primes p | |Γ|, to predict distributions of
p-Sylow subgroups ClK,p of ClK . In order to realize this possibility, we prove a new result in
algebraic number theory relating class groups of non-Galois fields to class groups of Galois
fields, in particular at primes dividing the order of the Galois group.

Theorem 1.1.4 (Determination of class groups of non-Galois fields from Galois). Let L/K
be an extension of number fields such that L/Q is Galois with Galois group Γ and let Γ′ =
Gal(L/K). Let eΓ/Γ′ be the central idempotent of Q[Γ] for the augmentation character for
Γ acting on Γ′ cosets, and p a prime not dividing the denominator of eΓ/Γ′ and such that
eΓ/Γ′Z(p)[Γ] is a maximal order. Then we have an isomorphism

ClK,p
∼−→
(
eΓ/Γ′ ClL,p

)Γ′
,

where the subscript p denotes taking the Sylow p-subgroup.

See Theorem 2.5.6 for a precise statement (for relative class groups over an arbitrary base
number field). In particular, we note the restriction on p is exactly the condition on p for the
Cohen-Martinet conjectures to say something about the distribution of eΓ/Γ′ ClL,p. So The-
orem 1.1.4 allows us to fully determine the implications of the Cohen-Martinet conjectures
for the class groups of non-Galois fields.

Moreover, for p,K, L as in Theorem 1.1.4, we have the immediate corollary that the order
of the kernel of the capitulation map ClK → ClL is not divisible by p. The capitulation
kernel is very long-studied, but its structure is not well-known. Hilbert’s Theorem 94 [31]
proves that when L/K is finite, cyclic, and unramified, then the degree [L : K] divides
the order of the capitulation kernel. Hilbert then conjectured the Principal Ideal Theorem
of class field theory, eventually proved by Artin and Fürtwangler, that every ideal class in
K capitulates in the Hilbert class field. Suzuki [57] and Gruenberg and Weiss [29] proved
further generalizations showing that the capitulation kernel for unramified abelian extensions
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is large. Our theorem above is in the other direction, proving in some cases there is no p-part
of the capitulation kernel.

Theorem 1.1.4 implies that the Cohen-Martinet conjectures in principle give a prediction
for the distribution of class groups of fields K as above, but the predicted distribution for
a finite abelian p-group H is then the sum over eΓ/Γ′Z(p)[Γ]-modules G such that GΓ′ ≃
H (as groups) of the probability for G in the Galois predictions (see Equation (2.5.1)).
This prediction does not have the appearance of objects appearing with frequency inversely
proportional to their number of automorphisms. However, in Section 2.6, we prove new
theorems to give such a perspective on these probabilities, which we now outline.

Of course when L/Q is Galois, we have that Gal(L/Q) acts on ClL. However, when
K/Q has no automorphisms, one might at first guess that ClK has no particular structure
other than that of a finite abelian group. We prove, however, that there is always a natural
action of a certain ring o on ClK (depending on the Galois groups of the Galois closure
over Q and K). Given a representation V of finite group Γ over Q and a subgroup Γ′ of
Γ, the Hecke algebra Q[Γ′\Γ/Γ′] naturally acts on V Γ′

. We construct an integral model o
of the Hecke algebra so that the class group ClK,p (for K, p,Γ,Γ′ as in Theorem 1.1.4) is
naturally an o-module (see Lemma 2.6.4) and prove that our constructed o is a maximal
order (Corollary 2.6.8). This definition of o is particularly delicate at the primes p | |Γ′|, but
the proofs require similar work at all p. Note that o can be bigger than Z even when the field
K has no automorphisms; see Example 2.6.17 on degree 10 fields with Galois closure with
group A5 and Proposition 2.6.13 in which we prove o is trivial if and only if the augmentation
character for Γ acting on Γ′ cosets is absolutely irreducible.

Moreover, Theorem 1.1.4 and the results in Section 2.6 show that the p-Sylow subgroup
of the Γ-module ClL,p of a Galois field L containing K determines the o-module structure of
ClK,p. That shows that the Cohen-Martinet conjectures imply some prediction for the dis-
tribution of the o-modules ClK,p, and we further prove a simple expression for the prediction
in terms of |Auto(H)|−1 by way of the following result.

Theorem 1.1.5 (Cohen-Martinet predicts |Auto(H)|−1 for non-Galois fields). Given a finite
group Γ and subgroup Γ′, for every prime p satisfying the condition of Theorem 1.1.4, and
every p-group o-module H, there is a unique finite eΓ/Γ′Z(p)[Γ]-module G such that GΓ′ ∼= H
as o-modules. We also have

AuteΓ/Γ′Z(p)
(G) ≃ Auto(H).

See Theorem 2.6.12 for a related statement precisely on the implications of the Cohen-
Martinet conjecture. The key result we prove that allows us to prove Theorem 1.1.5 is
Theorem 2.6.7, which gives a Morita equivalence between the categories of eΓ/Γ′Z(p)[Γ]-
modules and o-modules. This is the fundamental algebraic property of our integral model o
of the Hecke algebra.

Note that Theorem 1.1.4 does not require L to be the Galois closure of K. So actually,
the Cohen-Lenstra-Martinet heuristics give infinitely many different predictions for the dis-
tribution of non-Galois (or Galois) class groups, by taking fixed fields of larger and larger
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fields. In Section 2.7, we prove that all of the predicted distributions agree, which is an
important internal consistency check on the conjectures.

Theorems 1.1.1, 1.1.2, 1.1.3, and 1.1.5 are theorems in the theory of finite Γ-modules, in-
cluding in the probability theory of random finite Γ-modules. Even though we have proven
them to specifically elucidate conjectures about class groups, we expect them, especially
Theorems 1.1.2 and 1.1.3 to have applications in other contexts. Distributions related to the
Cohen-Lenstra distribution have arisen for predicting the distribution of Tate-Shafarevich
groups of elliptic curves [17, 7], and so in order to generalize the predictions of [50] on the
asymptotics of elliptic curves of a given rank over Q to other base global fields, one will
need to use an analog of the Cohen-Martinet distributions. Also, beyond number theory, the
Cohen-Lenstra distributions on finite abelian groups, and related distributions, have many
interesting connections in algebraic combinatorics; see the recent work of Fulman and Ka-
plan [27] and also [9, 11, 10, 24, 25, 26, 28, 35, 35, 36, 49, 56, 60]. Further, the theorems that
moments determine the distribution have been used for determining distributions arising in
the theory of random graphs, such as the sandpile groups of Erdös-Rényi and random reg-
ular graphs [34, 43, 61]. These theorems on the moments have also been used to show that
certain random matrices have cokernels in the Cohen-Lenstra distribution [47, 48, 65], and
as an application determine the probability that a random 0/1 rectangular matrix gives a
surjective map to Zn. The Cohen-Lenstra and related distributions have also arisen in ques-
tions about random topological spaces [19, 33]. The more general Cohen-Lenstra-Martinet
distributions may be relevant in many of these contexts.

Then we are focused on the statistical results of class groups of number fields in compar-
ison with the Cohen-Lenstra-Martinet Heuristics (see Cohen and Martinet [14, Hypothèse
6.6] for the original statement), which predict the distribution of p-Sylow subgroups of class
groups when p does not divide the order of the Galois group. The heuristics Theorem 1.1.1
imply that for all r = 0, 1, 2, . . .

P(rkp ClK ≤ r) := lim
x→∞

∑
P (K)<x 1rkp≤r(K)∑

P (K)<x 1
= P(rkpX ≤ r) > 0,

and lim
r→∞

P(rkpClK ≤ r) = lim
r→∞

P(rkpX ≤ r) = 1,

where 1rkp≤r(K) is the indicator of rkp ClK ≤ r. For Galois number fields, Wood and the
author [59] compute E(|Hom(X,A)|), the A-moments for X, which shows that the heuristics
imply that

E(|Hom(ClK , A)|) :=
∑

P (K)<x |Hom(ClK , A)|∑
P (K)<x 1

<∞,

for all finite abelian p-groups A. Note that here we forget the Γ-module structure for the
convenience of our discussion. Moreover, Wood and the author [59] have shown that the
analogous statements for all non-Galois number fields K/Q follow from the Cohen-Lenstra-
Martinet Heuristics. To be precise, if the conjecture holds for the Galois closure Γ-extensions
L/Q with some p ∤ |Γ|, then the statistical distribution of ClK [p

∞] is given by a particular
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random module X, and that for all r = 0, 1, 2, . . . , we have

P(rkpClK ≤ r) := lim
x→∞

∑
P (K)<x 1M(K)∑

P (K)<x 1
> 0

and E(|Hom(ClK , A)|) :=
∑

P (K)<x |Hom(ClK , A)|∑
P (K)<x 1

<∞,

for all finite abelian p-group A, where K runs over all number fields K/Q such that its Galois
closure K̂/Q is a Γ-extension and that K = K̂Γ′

for a fixed subgroup Γ′ ⊆ Γ.

Remark. In the original Cohen-Lenstra-Martinet heuristics, fields are ordered by discrimi-
nant, which was an obvious ordering for number fields. Now we have the question of what
kind of ordering one should put on the fields, see for example [64]. In some cases, ordering
fields by discriminant will contradict what is predicted by the heuristics. See [3] for example.
The invariants of number fields that have been used for ordering all rely on the combination
of ramified primes, and we are mainly focused on the product of ramified primes, which is
denoted by P (K).

In this paper, we are going to discuss the distribution of ClK [q
∞] where the prime q||Γ|.

We first explain why there is no prediction for such primes in their original statement. Recall
the genus theory for quadratic number fields, which says that

ω(P (K))− 1 ≤ rk2ClK ≤ ω(P (K)),

where P (K) is the product of ramified primes of K/Q and ω(n) is the number of distinct
prime divisors for n ∈ Z. The group ClK [2

∞] then cannot be described by the approach of
the Cohen-Lenstra-Martinet Heuristics. Because, first, given a quadratic number field (say,
in terms of its minimal polynomial), we can tell quickly how large its 2-rank should be (up
to 1), which is not the case for ClK [p

∞] where p is odd. This phenomena could be thought
of as “predictable”, hence contradicting the spirit of the Cohen-Lenstra-Martinet Heuristics.
Second, for all r = 0, 1, 2, . . . , we have

P(rk2ClK ≤ r) = 0 and E(|Hom(ClK , C2)|) = +∞,

which is qualitatively different from what is prediceted by the heuristics. According to this
example, first, the statistical behaviour of ClK [2

∞] should be reconsidered, see [23, 55] for
example. Second, we want to generalize the genus theory above to all number fields, whose
details are given in § 3.1 following the idea of Ishida [32, Chapter 4]. Here we present the
main result in a brief way. Given a number field K/Q, and a prime q. If we have ideal
factorization pOK = pe11 · · · perr such that gcd(e1, . . . , er) ≡ 0 mod q, then we call p a ramified
prime of type q. For any number fieldK/Q, define its genus group G to be the Galois group of
the maximal unramified extension Kk/K obtained by composing with an abelian extension
k/Q. Then genus theory implies the following.
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Theorem 1.1.6. Let K/Q be a number field with maximal abelian subextension K0/Q. Fix
a rational prime q dividing n := [K : Q]. Then the q-rank of the genus group G admits the
following inequality

rkq G ≥ #{p is a ramified prime of type q and p ≡ 1 mod q} − rkq Gal(K0/Q).

In fact, genus theory is not the only way that can associate ramified primes with ideal
classes. P.Roquette and H.Zassenhaus ([54]) construct a subgroup of the class group that is
associated to ramified primes. The main theorem of their paper says the following.

Theorem 1.1.7. Let K be a number field of degree n over Q and q be a given prime number,
then

rkq ClK ≥ #{p is a ramified prime of type q} − 2(n− 1)

The main difference here compared to genus theory is that we do not require that p has
to be 1 mod q to contribute to the lower bound. For more details and comparison between
these two theories, see § 3.1.

Since the splitting type of a prime in a field extension K/Q is determined by its decom-
position group, it is then a purely group theoretical problem to find out all primes q so that
we can apply the above Theorems 1.1.6 and 1.1.7 and expect to get nontrivial estimate for
rkq ClK .

Definition 1.1.8. Let 1 ≤ G ≤ Sn be a finite transitive permutation group. Let σ ∈ G be
any permutation. Define e(σ) := gcd(|⟨σ⟩ · 1|, . . . , |⟨σ⟩ ·n|), i.e., the greatest common divisor
of the size of orbits. We call q a non-random prime for G if q|e(σ) for some σ ∈ G. On the
other hand, for a permutation σ ∈ G, if ql∥e(σ), then we call σ an element of inertia type ql.
Define Ω(G, ql) to be the subset of G consisting of all elements of inertia type ql. We denote⋃∞

l=1Ω(G, q
l) by Ω(G, q∞).

Example 1.1.9. First let G = S3. If K is a non-Galois cubic number field, then the
permutation action of G on K → C is exactly the conventional action of S3 on {1, 2, 3},
which induces the isomorphism G ∼= Gal(K̂/Q). By checking the elements of S3, we see that
3 is a non-random prime for G, e.g., 3 divides the length of (123). Using the language in
Theorem 1.1.7, totally ramified primes satisfy the condition that eK(p) ≡ 0 mod 3, in other
words totally ramified primes are just ramified primes of type 3, hence

rk3ClK ≥ #{p is totally ramified} − 4.

This example explains the terminology, “non-random primes”, from the aspect of Theo-
rem 1.1.7.

Given a transitive permutation group 1 ≤ G ≤ Sn, and a non-random prime q for G, we
first make the following conjecture on counting fields based on the Malle-Bhargava Heuristics
(see [41, 4, 62] for example) for counting fields with fixed number of ramified primes. For an
extension K/k of number fields, we denote its Galois closure by K̂.
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Definition 1.1.10. Let 1 ≤ G ≤ Sn be a transitive permutation group, and let k be
a number field. Let S be the set of all number fields (K/k, ψ) such that its Galois closure
(K̂/k, ψ) is a G-extension (see Definition 1.2.2), and that K = K̂G1 where G1 is the stabilizer
of 1. Suppose that Ω is a (nonempty) subset of G that is closed under invertible powering,
i.e., if ga = h, hb = g, then g ∈ Ω if and only if h ∈ Ω. Define for the set Ω, and for all
r = 0, 1, 2, . . . ,

1(Ω,r)(K) :=


1 if there are exactly r primesp ∤ |G|

s.t. I(p) ∩ Ω ̸= ∅;
0 otherwise.

where I(p) here means the inertia subgroup of p. If the set Ω is clear in the context, we may
also denote the function 1(Ω,r)(L) by 1r(L) for short.

Conjecture 1.1.11. Keep G, k,S as above. Suppose that id /∈ Ω is a (nonempty) subset of
G that is closed under invertible powering.

1. For all r = 0, 1, 2, . . . , there exists some r′, such that

∑
K∈S
P (K)<x

1(Ω,r)(K) = o

 ∑
K∈S
P (K)<x

1(Ω,r′)(K)

 ,

In this case we say that the conjecture 1 holds for the pair (S,Ω).

2. For all r = 0, 1, 2, . . . ,

∑
K∈S
P (K)<x

1(Ω,r)(K) = o

 ∑
K∈S
P (K)<x

1


In this case we say that the conjecture 2 holds for the pair (S,Ω).

Using the conjecture on counting fields, we can present our main statistical result.

Theorem 1.1.12. Let 1 ≤ G ≤ Sn be a transitive permutation group, and let k be a number
field. Let S be the set of all number fields (K/k, ψ) such that its Galois closure (K̂/k, ψ) is
a G-extension, and that K = K̂G1. Let H ⊆ G be a subgroup such that K̂H ⊆ K for K ∈ S.
If q is a non-random prime for G such that q|[K : K̂H ], and Conjecture 1.1.11(2) holds for
(S,Ω), where Ω := Ω(G, q∞), then

P(rkq Cl(K/K̂H) ≤ r) = 0 and E(|Hom(Cl(K/K̂H), Cq)|) = +∞,

where K runs over fields in S for the product of ramified primes in K/Q, and Cl(K/K̂H)
denotes the relative class group.
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The zero-probability and infinite moment, that are qualitatively different from the Cohen-
Lenstra-Martinet Heuristics, justify the notion “non-random prime” from another point of
view. With the help of Class Field Theory and Tauberain Theorems, we can prove the
Conjecture 1.1.11(1) for abelian extensions. To be precise, we have the following.

Theorem 1.1.13. Let Γ be a finite abelian group with a subgroup Λ, and let S be the set of all
abelian Γ-extensions K/Q. If q is a prime number such that q||Γ/Λ|, then the Conjecture 1
holds for (S,Ω), where Ω := Ω(Γ, q∞). In addition, we have

P(rkq Cl(K/KΛ) ≤ r) = 0 and E(|Hom(Cl(K/KΛ), Cq)|) = +∞,

where K runs over fields in S for the product of ramified primes in K/Q.

For non-abelian extensions, the first obstacle is counting fields. We present here an
example, D4-fields. Let D4 be the dihedral group of order 8, and we are going to consider
quartic number fields L/Q whose Galois closure M/Q are D4-fields. According to the work
of S.A.Altug, A.Shankar, I.Varma, K.H.Wilson [1], the result of counting such fields by the
Artin conductor of 2-dimensional irreducible representation of D4 is proven. So, the main
result in this case can be summarized as follows.

Theorem 1.1.14. Let S be the set of quartic number fields L/Q whose Galois closure are
D4-extensions M/Q. We have

EC(|Hom(ClL, C2)|) = +∞,

where the subscript C means that the fields L ∈ S are ordered by the Artin conductor of
2-dimensional irreducible representation of D4.

Because of the famous genus theory for quadratic number fields, it is not difficult to prove
that

P(ClK ≤ r) = 0 and E(Hom(ClK , C2)|) = +∞
where K runs through all quadratic number fields for discriminant or product of ramified
primes. So, it raises the question of the so-called “capitulation”. To be precise, the map
i(I) = IOL, where I is an ideal of K, induces the map i∗ : ClK → ClL. The kernel
ker i∗ is eliminated by 2 in this case. So it is a question how to describe i∗(ClK [2

∞]) and
how to estimate it. For the other direction, we can consider the map Z(p) ⊗ NmK/L :
ClL[p

∞] → ClK [p
∞]. It is surjective for every odd prime p. So, the kernel Cl(L/K)[p∞] :=

ker(Z(p) ⊗ NmK/L) can tell us the difference between ClL[p
∞] and ClK [p

∞]. In the case of
2-Sylow subgroup, the norm map Z(2) ⊗ NmK/L is no longer surjective, but Cl(L/K)[2∞]
remains a notion that tells the difference between ClL and ClK philosophically. See also [14,
Théorème 7.6] for the discussions on relative class groups. In § 3.5, we will order quartic fields
by product of ramified primes and try to discuss this problem under additional hypothesis.
We here give the following result. Write D4 = ⟨τ, σ|τ 2 = σ4, τστ−1 = σ3⟩.

Lemma 1.1.15. Let L/Q be a quartic number field with Galois D4-closure M/Q, let K be
the quadratic subfield of L, and let I(p) be the inertia subgroup of p.
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(i) Let Ω1 be the set {σ, σ3, στ, σ3τ}. Then we have

rk2 i∗ClK ≥ |{p ̸= 2 : I(p) ∩ Ω1 ̸= ∅}| − 6.

(ii) Let Ω2 := Ω(D4, 2
∞) = {σ, σ3, σ2, στ, σ3τ}. Then we have

rk2Cl(L/K) ≥ |{p ̸= 2 : I(p) ∩ Ω2 ̸= ∅}| − 6.

We can see from the above result that the concepts non-random prime for G and Ω(G, ql)
give an estimate of the map i∗ : ClK → ClL and Z(2) ⊗ NmL/K : ClL → ClK .

To summarize this section, the notion “good prime” in [14, Définition 6.1] (see also
[59, §7]) gives a criterion for us to apply the Cohen-Martinet-Lenstra Heuristics so that we
can predict the statistical behaviour of the class groups. In this paper, the notion “non-
random prime” predicts the cases when we expect nontrivial subgroup of ClK from ramified
primes and qualitatively different statistical results from “good prime” cases. However,
Example 3.2.2 shows that there are primes p that are neither good in the sense of the
heuristics nor non-random in this paper. So, it raises a question: what does ClK [p

∞] look
like, in different point of views?

1.2 Notation

We first attach a list of notions used in the paper here. Throughout the whole chapter, Γ is
always a finite group and S is always a set of (possibly infinitely many) rational primes.

Definition 1.2.1. Let K be a number field and K0/Q be a subextension of K. We write
ClK for the class group of K. Then we define the relative class group ClK/K0 to be the
subgroup of ClK consisting of ideal classes α with trivial norm NmK/K0 α in ClK0 . Also, let
IK be the group of fractional ideals and PK the group of principal fractional ideals of K.

Definition 1.2.2. For a field K0, by a Γ-extension of K0, we mean an isomorphism class of
pairs (K, τ), where K is a Galois extension of K0, and τ : Gal(K/K0) ≃ Γ is an isomorphism.
An isomorphism of pairs (K, τ), (K ′, τ ′) is an isomorphism α : K → K ′ such that the map
mα : Gal(K/K0) → Gal(K ′/K0) sending ϕ to α◦ϕ◦α−1 satisfies τ ′ ◦mα = τ . We sometimes
leave the τ implicit, but this is always what we mean by a Γ-extension. We also call Γ-
extensions of Q Γ-fields.

Definition 1.2.3. Define ZS to be the localization of Z by the subset of non-zero integers
not divisible by any primes in S, so the maximal ideals of ZS are given by the primes in
S. For any finite abelian group G, define its S part GS as the subgroup generated by all
p-Sylow subgroups with p ∈ S. (Note that our definition for S-part of G is the opposite of
GS in [14].) We will also use the usual notation Z(p) for ZS when S = {p}.
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Definition 1.2.4. If f is a measurable function on a probability space, we let P denote the
probability measure and E(f) denote the expected value of f . In this paper, our probability
spaces will always be discrete and countable and

E(f) =
∞∑
i=1

f(Gi)P(Gi).

Throughout the paper, we often have a ring R, a central idempotent e of R, and then
consider the ring eR. The reader is warned that eR is not a subring of R in the usual sense,
as R and eR do not share an identity. One could consider eR as notation for the quotient
R/(1− e)R. Then we introduce some notions from analytic number theory.

(i) We use some standard notation coming from analytic number theory. For example,
write a complex number as s = σ + it. Denote the Euler function by φ(n). Let ω(n)
counts the number of distinct prime divisors of n and so on.

(ii) If A is an abelian group, then let rkq A denote the q-rank of A where q is a given prime
number.

(iii) If K is a number field, let rkK denote the rank of global units of K.

(iv) Let vq(n) denote the exponent of q in n, i.e., the valuation at q.

Since there are more than one ways to describe field extensions, we give the following two
definitions to make the term like “the set of all non-Galois cubic number fields” precise.

Definition 1.2.5. Let Γ be a finite group, and let Γ′ be a subgroup of Γ. Let k be a
fixed number field. Define S(Γ,Γ′; k) to be the set of all pairs (K,ψ), where K/k is a
finite extension whose Galois closure L/k is a Γ-extension via ψ : Gal(L/Q) ∼= Γ such that
K = LΓ′

. When k = Q, we omit k.

The second definition uses permutation group.

Definition 1.2.6. Given a finite group G ⊆ Sn whose action on {1, 2, . . . , n} is transitive.
Let k be a number field. Let S(G; k) be the set of pairs (K,ψ) such that [K : k] = n and
that the group isomorphism ψ : Gal(L/k) ∼= G, where L is the Galois closure of K/k, defines
the Galois action of G on the k-embeddings K → Q. If the base field k = Q, then we just
omit it and write S(G) := S(G,Q).

Intuitively these two definitions make sure that when we count Galois cubic fields in Q̄
we are counting them once. And when we count non-Galois cubic fields, say fixed fields of
(12) ∈ S3, we are counting them without considering their conjugates in a fixed S3-field.
Next, we give the probability notions over a discrete space.
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Definition 1.2.7. Let T = {a, b, c, . . . } be a set of at most countable objects. If d : T → R+

is a map such that for all N > 0 the preimage TN := d−1[0, N) is finite, then for all large
enough N > 0, one has a discrete probability space (TN , µN) with uniform distribution µN .
For all function f : T → R, it induces functions f : TN → R for all large enough N > 0. We
then define its expectation E(f) over T for d as

E(f) = lim
N→∞

EN(f) = lim
N→∞

∫
TN

f dµN ,

provided that the limit exists in the sense of R ∪ {±∞}. The asymptotic of f over T for d
is denoted as

N(T, d; f ;x) :=
∑

s∈T,d(s)<x

f(s).

Then we give the notation of counting number fields.

Definition 1.2.8. Let S = S(G; k) where G is a transitive permutation group, and let
d : S → R+ be an invariant of number fields (e.g. discriminant or product of ramified
primes). Define

N(S, d;x) :=
∑

K∈S,d(K)<x

1.

If f is a function defined over S, then we define

N(S, d; f ;x) :=
∑

K∈S,d(K)<x

f(K).

In particular, if f = 1(Ω,r) (see Definition 1.1.10), then just write

N(S, d; (Ω, r);x) := N(S, d;1(Ω,r);x).

Using the idea of the expectation, we can define some functions over the set of fields S
and study their expectations.

Definition 1.2.9. Let q be a rational prime, and let r ≥ 0 be an integer. Define for finite
abelian groups with respect to q and r as follows. If A is a finite abelian group, then

1rkq≤r(A) =

{
1 if rkq A ≤ r

0 otherwise.

Definition 1.2.10. Let G be a transitive permutation group, and let S := S(G; k), and
let q be a rational prime. Let d : S → R+ be an invariant of the number fields, such
that d−1[0, N) is finite for all N > 0. Given a pair (K,ψ) ∈ S, we can view Cl as a map
S → ModZ according to (K,ψ) 7→ Cl(K/k). For all r = 0, 1, 2, . . . , define the probability of
the q-rank of the class group less than r to be

P(rkq Cl(K/k) ≤ r) := E(1rkq≤r ◦ Cl(K/k)),
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provided that the limit exists, where the expectation is over S for d. Define the A-moment
of the relative class groups to be

E(|Hom(Cl(K/k), A)|) := E(|Hom(Cl(K/k), A)|),

provided that the limit exists where A is any finite abelian q-group, where the expectation
is over S for d.

Note that the definition of the probability and A-moment can be translated to the ratios
of asymptotics according to the definition of expectation. For example,

E(|Hom(Cl(K/k), A)|) = lim
x→∞

N(S, d; |Hom(Cl(K/k), A)|;x)
N(S, d;x)
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Chapter 2

Moments and interpretations of the
Cohen-Lenstra-Martinet heuristics

2.1 Explanation of the Cohen-Lenstra-Martinet

Heuristics in the Galois case

The goal of this section is to state Cohen, Lenstra, and Martinet’s conjectures on the distri-
bution of relative class groups of Galois extensions. This requires introducing many pieces
of notation.

Notations for semisimple Q-algebras

Let A be a finite dimensional semisimple Q-algebra; we denote by {ei}1≤i≤m its irreducible
central idempotents, and Ai = eiA its simple factors. The algebra A is thus identified with
a product

∏m
i=1Ai, where each algebra Ai is isomorphic to an algebra of matrices Mli(Di),

where Di is a division algebra of finite rank over Q of which the center is a number field Ki.
We let h2i = dimKi

Ai. Let O be a maximal order in A and G a finite O-module. For any
u ∈ Qm, we define

|G|u :=
m∏
i=1

|eiG|ui .

(See [52, §10] for basic results on semisimple Q-algebras and maximal orders.)

Notations for the Heuristics

In the rest of this section, we let A = Q[Γ], and continue with the notation above. In
particular, we let

e1 =
1

|Γ|
∑
σ∈Γ

σ.



Each ei corresponds to a distinct irreducible Q-representation of Γ with character χi. We
choose a fixed absolutely irreducible character φi contained in χi.

Now let K0 be a number field, and K/K0 a Galois extension with Galois group Γ. If v is
an infinite place v of K0, then let Γv be the decomposition group at v. We also define

χK = −1 +
∑
v|∞

IndΓ
Γv

1Γv ,

which is a character of Γ associated to K/K0.

Definition 2.1.1. We define the rank of K/K0 to be an m− 1-tuple in Qm−1 given by the
formula

u = (u2, . . . , um), ui =
1

hi
⟨χK , φi⟩ ∀i = 2, . . . ,m. (2.1.1)

Remark. For the original definition of rank ofK, see [14, Definition 6.4]. These two definitions
are equivalent by [14, Theorem 6.7].

Let S be a finite set of primes. We will next define a random module to model the class
groups ClSK , which are naturally (1−e1)ZS[Γ]-modules. Cohen and Martinet did not directly
consider the distribution that we will define below. However, as we will prove in this paper,
building on tools from [14], the distributions we will now define turn out to be equivalent
to the ones considered in [14]. We think there are advantages of viewing the conjecture in
multiple equivalent but differently presented forms.

Definition 2.1.2. If p ∈ S implies that p ∤ |Γ|, then for u = (u2, . . . , um) ∈ Qm−1, we define
a random variable X = X((1−e1)Q[Γ], u, (1−e1)ZS[Γ]) to be a random (1−e1)ZS[Γ]-module
such that for all finite (1− e1)ZS[Γ]-modules G1, G2, we have

P(X ∼= G1)

P(X ∼= G2)
=

|G2|u|AutΓ(G2)|
|G1|u|AutΓ(G1)|

(where, of course, we order the irreducible central idempotents of (1− e1)Q[Γ] by the order
in Q[Γ]).

Remark. It follows from [14, Theorem 3.6] (with their u as ∞ and their s as our u) that this
definition is well-defined, i.e., the series∑

G

1

|G|u|AutΓ(G)|
,

is convergent, where G runs through all isomorphism classes of finite (1− e1)ZS[Γ]-modules.
Even when |S| = ∞, the series is still convergent as long as ui > 0 for all i = 1, . . . ,m. So
the above definition can be extended to the case |S| = ∞ as long as all the ui’s are positive.
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Statement of the Conjecture

The conjecture of Cohen-Martinet [14, Hypothesis 6.6] says the following.

Conjecture 2.1.3 (Cohen and Martinet [14]). Let S be a finite set of prime numbers
such that the primes in S are relatively prime to |Γ|, and u ∈ Qm−1, and X = X((1 −
e1)Q[Γ], u, (1 − e1)ZS[Γ]) the random module defined above. Then, for every “reasonable”
non-negative function f defined on the set of isomorphism classes of finite (1 − e1)ZS[Γ]-
modules, we have

lim
x→∞

∑
|DiscK|≤x f((1− e1) Cl

S
K)∑

|DiscK|≤x 1
= E(f(X)),

where the sum is over all Γ-extensions K/K0 and the rank of K/K0 is u (and no conjecture
is made if the sums are empty).

The cases when K0 = Q and either Γ is abelian and K is totally real, or |Γ| = 2, are the
earlier conjecture of Cohen-Lenstra [12, Fundamental Assumptions 8.1].

Remark. In [14], a quantity MS
u (f) appears in place of E(f(X)). The identity MS

u (f) =

E
(
f(X)

)
is proved in Proposition 2.4.5. Also the S-part of the relative class group ClSK/K0

appears in place of (1−e1) ClSK . In Lemma 2.5.10, we show that these are actually the same.
Note that e1Cl

S
K = ClSK0

. Therefore we only consider the (1− e1)-part as a random object.

Cohen and Martinet actually make further conjectures for some primes dividing |Γ| and
for infinite S. We will give the conjecture for p | |Γ| in Conjecture 2.5.2.

Remark. In Conjecture 2.1.3, we give the conjecture made by Cohen and Martinet, with the
addition of the hypotheses that p ∤ |Γ| and S is finite, except that we have replaced some
mathematical expressions in the original conjecture with equivalent mathematical expres-
sions. In particular, we have replaced them with equivalent expressions that we think shed
more light on the nature of the conjecture. However, there are several problems with the
content of the conjecture that we briefly mention here, and are mostly orthogonal to the
work in this paper. First, given the example of [3, Theorem 1.1] of Bartel and Lenstra, it
is probably best to keep the conjecture to finite sets S. Second, the ordering of the fields
needs to be changed in the conjecture, given the example of [3, Theorem 1.2] of Bartel and
Lenstra, who suggest ordering fields by the radical of their discriminant based on work on the
second author [64] that shows this ordering has nice statistical properties for abelian Galois
groups. Third, Malle’s work [39, 40] suggests that we should also require that S does not
contain any primes dividing the order of the roots of unity of K0. The function field results
in [38] suggest that these are all the corrections that need to be made. Finally, we need to
find an appropriate meaning of “reasonable” for the conjecture (which is never specified by
Cohen and Martinet). See [7, Section 5.6] and [3, Section 7] for some possible notions of
“reasonable.”

Even though the conjectures of Cohen, Lenstra, and Martinet do not include the cases
of function fields, as mentioned in the introduction there has been significant recent work
in proving partial results towards their function field analogs. In this analogy the u = 0
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distribution provides the conjectural distribution for Pic0 of random Γ-covers of P1
Fq
, and

when one wants to consider some points of the curve at infinity and the distribution of the
class groups of the corresponding affine curves, then distributions with u ̸= 0 arise. See [63,
Section 1] and [37, Section 3.5] for specific discussion of this aspect of the analogy.

2.2 The |G|u in Cohen-Martinet

In this section, we will find a simpler expression for the |G|u term that appears in the
conjecture of Cohen and Martinet. We continue the notation from Section 2.1.

Theorem 2.2.1. Let K/K0 be a Γ-extension of number fields. For each infinite prime v of
K0, let Γv be a decomposition group at v. We assume that the set S only contains primes
not dividing |Γ|. If H is a finite (1− e1)ZS[Γ]-module, then

|H|u =
∏
v|∞

|HΓv |,

where v runs over all infinite primes of K0.

Proof. By the definition of |H|u, the theorem reduces to the case of a ZS[Γ]-module H such
that H = eiH for some i > 1. Let e ̸= e1 be a central irreducible idempotent of Q[Γ]
associated to the Q-irreducible character χ and rank u, and let H be a finite eZS[Γ]-module.
We first show the following identity

|HΓv | = |H|
⟨χ,aΓ/Γv

⟩
⟨χ,aΓ⟩

for each infinite place v of K0, where for a subgroup ∆ ⊆ Γ we define aΓ/∆ := −1 + IndΓ
∆ 1∆

to be the augmentation character of ∆ and aΓ := aΓ/1. By [14, Theorem 7.3], for each v,
there exists some abelian group Gv such that, as abelian groups, we have

H = eH ∼= G⟨χ,aΓ⟩
v and HΓv = (eH)Γv ∼= G

⟨χ,aΓ/Γv ⟩
v ,

hence the identity.
Note that χK = −1 +

∑
v|∞(aΓ/Γv + 1), and that ⟨χ, 1⟩ = 0. We then know that

∏
v|∞

|HΓv | =
∏
v|∞

|H|
⟨χ,aΓ/Γv

⟩
⟨χ,aΓ⟩ = |H|

⟨χ,χK⟩
⟨χ,aΓ⟩ .

If we denote by φ a fixed absolutely irreducible character contained in χ and let {φ1, . . . , φj}
be the set of all the distinct conjugates of φ, then

χ = d

j∑
i=1

φi.
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where d is the Schur index. So we have

⟨χ, χK⟩ = d

j∑
i=1

⟨φi, χK⟩ = dj⟨φ, χK⟩.

On the other hand, since the character φ is absolutely irreducible,

⟨χ, aΓ⟩ = d

j∑
i=1

⟨φi, aΓ⟩ = djφ(1) = djh

where h is the hi of Section 2.1, and one can check h = dimφ. We then know that∏
v|∞

|HΓv | = |H|
⟨χ,χK⟩
⟨χ,aΓ⟩ = |H|

1
h
⟨φ,χK⟩ = |H|u = |H|u

completing the proof.

Remark. Actually the statement of Theorem 2.2.1 can be extended to some primes dividing
|Γ|. Let e be a central idempotent in Q[Γ] such that e1 · e = 0 and S be a set of primes such
that e ∈ ZS[Γ] and eZS[Γ] is a maximal order in eQ[Γ] (i.e. S only contains good primes for
e, see the definition in Section 2.5). If H is a finite eZS[Γ]-module, then

|H|u =
∏
v|∞

|HΓv |.

The proof is the same as above because Theorem 7.3 in [14] still holds in this case.

2.3 Probabilities inversely proportional to

automorphisms

Since the Cohen-Lenstra and Cohen-Martinet conjectures are rooted in the philosophy that
objects appear inversely proportional as often as their number of automorphisms, it is nat-
ural to ask why there is a term |G|u in the conjectures at all. One answer is that it was
necessary to match computational evidence, and other heuristic explanations are given in
[12, Section 8]. In this section, we give another perspective, over the base field Q, in which
we see class groups as a part of a larger structure where |G|u|Aut(G)| is the number of auto-
morphisms of the larger structure. Bartel and Lenstra [3] have given a different perspective
on interpreting these probabilities, over a general number field, as inversely proportional to
the automorphisms of a larger object, in their case, the Arakelov class groups. In contrast,
our larger objects below are only slightly larger than the class groups, and in particular,
finite.

Let Γ be a fixed finite group. We choose an embedding Q̄ ⊂ C so that Gal(Q̄/Q) has a
canonical decomposition group Gal(C/R) at ∞. We fix a map s : Gal(C/R) → Γ, let K ⊂ Q̄
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be a Galois extension of Q with an isomorphism Gal(K/Q) ≃ Γ, and let the decomposition
group at ∞ given by s (under the isomorphism).

Let K ′ be the maximal unramified abelian extension of K in Q̄ of order prime to |Γ|.
The structure we consider is the finite group G := Gal(K ′/Q) with given maps

c : Gal(C/R) → G and π : G→ Gal(K/Q) = Γ,

where π is a surjection with abelian kernel. Of course, ker(π) = ClSK (where S is the set of
primes not dividing |Γ|) is naturally a Γ-module, but the data (G, c, π) is a little more. In
fact, it is a class triple as defined below.

Definition 2.3.1. For a given map s : Gal(C/R) → Γ, we call (G, c, π) a class triple (for s)
if G is a finite group satisfying the following conditions:

i) π : G → Γ is a surjective homomorphism such that ker π is an abelian group whose
order is coprime to |Γ|;

ii) c : Gal(C/R) → G is a homomorphism such that π ◦ c = s;

iii) ker πΓ = 1 (where Γ acts by conjugation by preimages in G);

iv) im c ∩ kerπ = 1.

Then for two class triples (G1, c1, π1) and (G2, c2, π2), a morphism τ is a group homomorphism
G1 → G2 such that π1 = π2 ◦ τ and that τ ◦ c1 = c2.

Theorem 2.3.2. For a given map s : Gal(C/R) → Γ and a class triple (G, c, π), we have

|Aut(G, c, π)| = |kerπim(s)||AutΓ(kerπ)|.

Further, given a finite Γ-module H of order relatively prime to |Γ| with HΓ = 1, there is a
unique isomorphism class of class triples for s with kerπ isomorphic to H as a Γ-module.

Proof. Let A be the group of automorphisms of (G, c, π), and since each such automorphism
preserves kerπ (set-wise) and respects π, we have a homomorphism

A→ AutΓ(kerπ).

By the Schur-Zassenhaus theorem, we can write G = ker π ⋊ Γ (non-canonically), and so in
this notation an element τ ∈ A is determined by where it sends kerπ and Γ. Further, since
π = π ◦ τ , it follows that τ sends Γ to another splitting of G→ Γ. By Schur-Zassenhaus all
the splittings of G→ Γ are conjugate by elements of ker π.

This gives a map from ker π to the set of splittings of G→ Γ. We claim this gives | kerπ|
distinct splittings. In ker π ⋊ Γ, we have

(n, 1)(1, γ)(n, 1)−1 = (n(n−1)γ
−1

, γ).
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Suppose that (n1, 1) and (n2, 1) give the same splitting for some n1, n2 ∈ kerπ. Then for all
γ ∈ Γ we have

n1(n
−1
1 )γ

−1

= n2(n
−1
2 )γ

−1

,

i.e., n−1
2 n1 = (n−1

2 n1)
γ−1

. By the definition of class triple, this implies n1 = n2. Thus we
have | kerπ| splittings.

Any element AutΓ(kerπ) and any splitting Γ → H combine to give an automorphism of
(G, π) by the definition of semi-direct product. We next determine which of these automor-
phisms preserves c. Let K ⊂ G be K := π−1(im π ◦ c). So we have

1 → kerπ → K → imπ ◦ c→ 1.

Since im c ∩ kerπ = 1, one splitting of the above is imπ ◦ c → im c. Another splitting is
imπ ◦ c → 1 × imπ ◦ c ⊂ kerπ ⋊ Γ according to our chosen splitting above. By Schur-
Zassenhaus, these two splittings are conjugate by an element (n, 1) for some n ∈ kerπ.

So let I = imπ ◦ c. Then the elements of im c are (n, 1)(1, γ)(n−1, 1) = (n(n−1)γ
−1
, γ) for

γ ∈ I. These elements are fixed by the element of Aut(G, π) that comes from ψ ∈ AutΓ(kerπ)
and conjugation of Γ by (m, 1) if and only if for all γ ∈ I,

(m, 1)(ψ(n(n−1)γ
−1

), γ)(m−1, 1) = (n(n−1)γ
−1

, γ)

i.e.
n−1mψ(n) = (n−1mψ(n))γ

−1

i.e. n−1mψ(n) is fixed by I, i.e m ∈ n−1(kerπ)Iψ(n). Thus we conclude that exactly
|AutΓ(kerπ)||(kerπ)I | elements of Aut(H, π) preserve c. This gives the first statement of
the theorem.

For the second statement of the theorem, by Schur-Zassenhaus, any class triple giving H
has G ≃ H ⋊ Γ. Choosing c to be s composed with the trivial splitting Γ → H ⋊ Γ gives at
least one class triple giving H. As we saw above, any other choice of c differs by conjugation
by an element of H, i.e. differs by an automorphism of H ⋊ Γ fixing the map to Γ.

Corollary 2.3.3. Let K ⊂ Q̄ be a Galois extension of Q with Galois group Γ and decom-
position group Γ∞ at ∞ and map s : Gal(C/R) → Γ∞ ⊂ Γ. Let G := Gal(K ′/Q) with given
maps

c : Gal(C/R) → G and π : G→ Gal(K/Q) = Γ,

Let S be the set of primes not dividing |Γ|. Then

|Aut(G, c, π)| = |(ClSK)Γ∞||AutΓ(ClSK)|.

So, combining with Theorem 2.2.1, we see that the probabilities in the Cohen-Lenstra
and Cohen-Martinet conjectures are inversely proportional to the number of automorphisms
of the class triples associated to the fields (which are determined up to isomorphism by their
class groups and decomposition groups but have a different number of automorphisms from
their class groups).
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2.4 Moments of the Cohen-Lenstra-Martinet

Random Groups

In this section, we will find the moments of the Cohen-Lenstra-Martinet random Γ-modules,
and moreover show that their distributions are determined by their moments.

Moments for Galois Extensions

We keep the notation from Section 2.1. However, in this section, we will take the set S
of prime to be not necessarily finite. We will also define a slightly more general notion of
random modules.

Definition 2.4.1. (Random O-modules) Let A be any finite dimensional semisimple Q-
algebra with m simple factors. Let S be a set of prime numbers, O be a ZS-maximal order
of A, and u ∈ Qm be a fixed m-tuple. If either S contains finitely many primes or ui > 0 for
all i = 1, . . . ,m, then we define X = X(A, u,O) to be a random finite O-module such that
for all finite O-module G1 and G2, we have

P(X ∼= G1)

P(X ∼= G2)
=

|G2|u|AutO(G2)|
|G1|u|AutO(G1)|

.

When S does not contain any primes dividing |Γ|, then ZS[Γ] is a maximal order in Q[Γ]
(and so (1− e1)ZS[Γ] is a maximal order in (1− e1)Q[Γ]), and our previous definition of X
is a special case of the above. As in Remark 2.1, X is well-defined.

Now given H a finite O-module, consider the function | SurO(G,H)| counting the number
of surjective O-morphisms from G to H. Then we have the following formula to compute
the moments of X.

Theorem 2.4.2. Given a finite O-module H, we have

E (|SurO(X,H)|) = 1

|H|u
.

Proof. In this proof a summation over G/ ∼ always means the sum is over all isomorphism
classes of finite O-modules, with G a representative from each class. For finite O-modules
G,H, we have

|SurO(G,H)| = #{G′ ⊂ G|G/G′ ∼= H} · |AutO(H)|.

where G′ ⊂ G denotes G′ a sub-O-module of G. For G1 and G2 finite O-modules, [14,
Proposition 3.3] gives

∑
G/∼

|AutO(G)|−1#{H ⊆ G : H ∼= G1 and G/H ∼= G2} = |AutO(G1)|−1|AutO(G2)|−1.
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Let

Z(u) =
∑
G/∼

1

|G|u|AutO(G)|
. (2.4.1)

Then we deduce that

E
(
|SurO(X,H)|

)
=
∑
G/∼

P(X ∼= G)|SurO(G,H)|

=
∑
G/∼

1

|G|u|AutO(G)|Z(u)
|AutO(H)|

∑
G1/∼

#{G′ ⊆ G|G′ ∼= G1, G/G
′ ∼= H}

=
|AutO(H)|
Z(u)

∑
G1/∼

1

|G1|u|H|u
∑
G/∼

1

|AutO(G)|
#{G′ ⊆ G|G′ ∼= G1, G/G

′ ∼= H}

= |AutO(H)|
∑
G1/∼

1

|AutO(G1)| · |G1|uZ(u)
1

|AutO(H)| · |H|u

=
1

|H|u
∑
G1/∼

P(X ∼= G1) =
1

|H|u
.

When applying the results to class groups, it is always the case that we only consider the
e-component of Q[Γ] where e is some central idempotent. Suppose that e is some central
idempotent in A = Q[Γ], then eA ⊆ Q[Γ] is also a semisimple Q-algebra and eO is a maximal
order in eA. We could build a random module directly from eO, or we could multiply our
original random module by e. The following shows these two constructions are the same.

Lemma 2.4.3. Let e = e2 + · · · + ek be some central idempotent of A, and let X1 =
X(A, u = (u1, . . . , um),O) and X2 = X(eA, v = (v2, . . . , vk), eO) be the random modules
defined in Section 1.2 such that ui = vi for all i = 2, . . . , k. Then eX1 and X2 have the same
probability distribution, i.e., for all finite eO-modules G, we have

P(eX1
∼= G) = P(X2

∼= G).

Proof. Let S be the set of isomorphism classes of finite (1 − e)O-modules. For all finite
eO-modules G1, G2, we have

P(eX1
∼= G1)

P(eX1
∼= G2)

=

∑
H∈S P(X1

∼= G1 ⊕H)∑
H∈S P(X1

∼= G2 ⊕H)

Since all the terms defining the probabilities factor over Gi and H, we conclude the lemma.

Therefore Theorem 2.4.2 can be applied to eX directly.
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Corollary 2.4.4. Let e ∈ O be any central idempotent. Given a finite O-module H, we
have

E (| SurO(eX,H)|) =


1

|H|u
if eH = H,

0 otherwise.

Proof. If eH ̸= H, then there is no surjective homomorphism from any eO-module to H.
If eH = H, then O-morphisms from eG to H are the same as eO-module homomorphisms
from eG to H. So the corollary follows from Lemma 2.4.3 and Theorem 2.4.2.

Now we will show that the expected values of functions of X agree with the averages
that appear in the conjectures of [14].

Remark. The original definition of MS
u (f), the average appearing the the conjectures in [14],

is given by their Definition 5.1 and Conjecture 6.6. However, note that in the original paper,
the definition of MS

u (f) must be corrected to involve e, e.g. MS
u (f) should be defined with

the implicit algebra eQ[Γ] instead of Q[Γ].

Proposition 2.4.5. Let |S| < ∞, and let f be a non-negative function defined on the
isomorphism classes of finite O-modules. For X = X(A, u,O), we have

E
(
f(X)

)
= lim

x→∞

∑
|G|≤x |G|−u

∑
φ∈Hom(P,G)|AutO(G)|−1f(G/ Imφ)∑

|G|≤x |G|−u
∑

φ∈Hom(P,G)|AutO(G)|−1

where the sum is over finite O-modules G and P is a projective O-module of rank u (as
defined in [14, Definition 3.1]). Here x ∈ Zm, and |G| ≤ x means that for every i, we have
|eiG| ≤ xi, and the limit means all xi → ∞.

Proof. In this proof a summation over G/ ∼ always means the sum is over all isomorphism
classes of finite O-modules, with G a representative from each class. By [14, Theorem 4.6
(ii)] with ψ(G) = |AutO(G)|−1 and s = u, if gG1(G) = #{φ ∈ HomO(P,G) : G/ imφ ∼= G1}
and P is projective of rank u, then∑

G/∼

gG1(G)

|AutO(G)||G|u
=

Z(0)

|AutO(G1)||G1|uZ(u)
,

where Z is defined in (2.4.1) (and see Remark 2.1 for the convergence). Then we have∑
G/∼

|G|−u
∑

φ∈HomO(P,G)

|AutO(G)|−1f(G/ imφ)

=
∑
G1/∼

f(G1)
∑
G/∼

gG1(G)

|AutO(G)||G|u

=
∑
G1/∼

f(G1)
Z(0)

|AutO(G1)||G1|uZ(u)
= Z(0)E

(
f(X)

)
We can also apply this to the constant function f(G) = 1, and deduce the proposition.
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Moments Determine the Distribution

So the random O-module X has H-moment |H|−u for every finite O-module H. Now we
ask: given a random finite O-module Y with H-moment |H|−u for all H, does Y have the
same probability distribution as X? In this section, we will see the answer is yes.

Recall the notations from Section 2.1: A =
∏m

i=1Ai and Ki is the center of Ai. Now for
each pair (i, p) where i = 1, . . . ,m and p is a prime of Ki, we can consider the completion
Ai,p

∼= Mli,p(Di,p) of Ai at p (where Di,p is the completion of Di at p and li,p is some positive
integer). Note that in this notation that the choices of p depend on i. If O is a maximal ZS-
order in A, then eiO also admits a completion Oi,p = eiO⊗ZKi

ZKi,p
(where ZKi

is the ring of
integers of Ki and ZKi,p

is the valuation ring of Ki,p). In particular, Oi,p is a maximal order
in Ai,p. Then in this case (unlike in the global case), there always exists an isomorphism

Oi,p
∼= Mli,p(Oi,p),

where Oi,p is the maximal order in Di,p, which is given by a valuation.
If G is a finite O-module, and (i, p) some prime ideal of O (i.e. p is a prime ideal of

Ki), then let Gp denote the part of G annihilated by a power of p and we know that Gp is
naturally a finite Oi,p-module. For any two finite O-modules G1 and G2, we have

|AutO(G1)| =
∏
(i,p)

|AutOi,p
(G1,p)| and | SurO(G1, G2)| =

∏
(i,p)

| SurOi,p
(G1,p, G2,p)|.

Moreover, the category of Oi,p-modules is equivalent to the category of Oi,p-modules, because
they are both matrix algebras over Oi,p. So the question of counting surjective morphisms
is then reduced to the following case: let D be a division algebra over Qp with the maximal
Zp-order O and we consider the category of finite O-modules. Given any (finite) partition
λ : λ1 ≥ λ2 ≥ . . . , there exists a unique (up to isomorphism) finite O-module G such that

G ∼=
⊕
i

O/pλi ,

where p is the unique maximal ideal of O, see, e.g. [14, Lemma 2.7]. Then we write G = Gλ

and call it the O-module of type λ. Also let q = |O/p| be the cardinality of the simple
O-module.

Definition 2.4.6. Given a partition λ : λ1 ≥ λ2 ≥ · · · ≥ λn, it can be represented by a
Young diagram whose number of boxes in the ith row represents the number λi. Then the
transpose λ′ of λ is the partition such that λ′j equals to the number of boxes in the jth
column in the diagram of λ. We have a partial ordering on partitions as follows, Given two
partitions µ, λ, we say that µ ≤ λ when µi ≤ λi for each i = 1, 2, . . . .

Lemma 2.4.7. Let D be a division algebra over Qp with maximal Zp-order O. Given two
O-modules Gλ, Gµ of type λ and µ. Then

|HomO(Gλ, Gµ)| = q
∑∞

i=1 λ
′
iµ

′
i .
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Proof. By Lemma 2.7 (and more generally §2) in [CM90], we only need to check the formula
for the case when Gλ, Gµ are both cyclic, which is clear, i.e.,

|HomO(O/p
m,O/pn)| = qmin(m,n) = qλ

′
1µ

′
1 .

Lemma 2.4.8. Let G = Gλ be a O-module of type λ. If µ ≤ λ, then the number of submodules
of type µ, denoted by αλ(µ; q), satisfies

αλ(µ; q) ≤
∏
j≥1

1

(1− 2−j)λ1
· q

∑λ1
i=1 µ

′
iλ

′
i−(µ′

i)
2

.

Proof. First we claim

αλ(µ; q) ≤
|HomO(Gµ, Gλ)|

|AutO(Gµ)|
,

i.e., if f : Gµ → Gλ happens to be an injective map, then f ◦ g where g ∈ AutO(Gµ) clearly
gives us the same subgroup in Gλ. Then by Theorem 2.11 in [CM90], if π1, . . . , πt are the
distinct (nonzero) values of {µi} with multiplicities k1, . . . , kt, then

|AutO(Gµ)| = q
∑

i(µ
′
i)

2
t∏

i=1

(ki)q ≥ q
∑

i(µ
′
i)

2
t∏

i=1

(∞)q ≥ q
∑

(µ′
i)

2
∞∏
j=1

(1− q−j)µ1 ,

where the notion (k)q means
∏k

i=1(1− q−i) if k > 0. Since µ1 ≤ λ1, we have

αλ(µ; q) ≤
|HomO(Gµ, Gλ)|

|AutO(Gµ)|
≤

∞∏
j=1

1

(1− q−j)µ1
q
∑

µ′
iλ

′
i−(µ′

i)
2 ≤

∏
j

1

(1− 2−j)λ1
· q

∑
µ′
iλ

′
i−(µ′

i)
2

.

Lemma 2.4.9. For any given O-module G of type λ, there exists a constant C such that

#{H ⊆ G} ≤ Cλ1q
1
4

∑
(λ′

i)
2

.

Proof. To prove this lemma, we sum the result in Lemma 2.4.8 over all µ ≤ λ, and a bound
for this sum is given in [42, Lemma 7.5].

Now using the lemmas above and results from [42], we can prove that the Cohen-Lenstra-
Martinet distributions are determined by their moments, and in fact even a sequence of
random variables with moments converging to moments described in Theorem 2.4.2 must
converge to the Cohen-Lenstra-Martinet distribution.
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Theorem 2.4.10. Take A,O,m as in Section 2.1 and let u ∈ Qm be an m-tuple. Assume
that either that |S| < ∞ and u ≥ 0, or, that |S| = ∞ and ui > 0 for all i. Let Ki be the
center of each component Ai and Ri the integral closure of ZS in Ki. Then R :=

⊕
Ri is

the center of O and each Oi is a maximal Ri-order in Ai (see [52, Theorem 10.5]).
Let {Xn} be a sequence of random variables taking values in finite O-modules. For each

prime p of O, let np ≥ 0 such that np = 0 for almost all p. Let S be the set of all finite
O-modules H such that the annihilator of Hp divides pnp. Moreover let N be the O-module
such that Np is of type (np, 0, 0, . . . ).

Suppose that for every G ∈ S, we have

lim
n→∞

E
(
|SurO(Xn, G)|

)
=

1

|G|u
.

Then for every H ∈ S, the limit

lim
n→∞

P(Xn ⊗R N ∼= H)

exists and for all G ∈ S we have∑
H∈S

lim
n→∞

P(Xn ⊗R N ∼= H)|SurO(H,G)| =
1

|G|u
.

Suppose {Yn} is another sequence of random variables taking values in finite O-modules
such that for every G ∈ S, we have

lim
n→∞

E
(
|Sur(Yn, G)|

)
=

1

|G|u
.

Then for every H ∈ A, we have

lim
n→∞

P(Xn ⊗R N ∼= H) = lim
n→∞

P(Yn ⊗R N ∼= H).

Proof. The proof is very similar to [42, Theorem 8.3], so we only present a sketch and
highlight the differences. First we suppose that the limit

lim
n→∞

P(Xn ⊗R N ∼= H)

exists for all H ∈ S and we are going to show that for all G ∈ S we have∑
H∈S

lim
n→∞

P(Xn ⊗R N ∼= H)| SurO(H,G)| =
1

|G|u
.

By Lemma 2.4.7 and the same argument as in [42, Theorem 8.3], for each G ∈ S, there
exists G′ ∈ S such that ∑

H∈S

|HomO(H,G)|
|HomO(H,G′)|

<∞.
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Then the same argument as in in [42, Theorem 8.3] using the Lebesgue Dominated
Convergence Theorem concludes that∑

H∈S

lim
n→∞

P(Xn ⊗R N ∼= H)|Sur(H,G)|

= lim
n→∞

∑
H∈S

P(Xn ⊗R N ∼= H)|Sur(H,G)| = 1

|G|u

i.e., if for all H ∈ S the limit limn→∞ P(Xn ⊗RN ∼= H) exists, then the moments agree with
E
(
|Sur(X,G)|

)
for all G ∈ S.

Next we show that if the limits limn→∞ P(Xn ⊗R N ∼= H) and limn→∞ P(Yn ⊗R N ∼= H)
exist for all H then∑

H∈S

lim
n→∞

P(Yn ⊗R N ∼= H)|Sur(H,G)| =
∑
H∈S

lim
n→∞

P(Xn ⊗R N ∼= H)|Sur(H,G)| = 1

|G|u

implies
lim
n→∞

P(Yn ⊗R N ∼= H) = lim
n→∞

P(Xn ⊗R N ∼= H).

Note that the averages |HomO(X,H)| and | SurO(X,H)| over all H, are determined from one
another by finitely many steps of addition and subtraction. We’ll apply [42, Theorem 8.2]
with distinct primes pi’s in the assumption replaced by not necessarily distinct real numbers
qi’s. The proof of the theorem actually proves the statement in this generality.

Now let M be the set defined in [42, Theorem 8.2] where the choice of qi comes from
the following: there are only finitely many primes pij ⊆ ZKi

such that npij > 0 for all
i = 1, . . . ,m, so we can let qk = |Ok/p

′
k| where Ok ⊆ Di,pk is the maximal order in Di,pk and

p′k is the unique maximal ideal. We say that an O-module G ∈ S corresponds to µ ∈ M if
the type of G is exactly µ′ where µ′ is obtained by (µ′)k = (µk)

′. We then define

xµ = lim
n→∞

P(Xn ⊗R N ∼= Gµ′)

for all µ ∈ M . And similarly for yµ. If we let Cλ denote the expected value of the number
of homomorphisms into Gλ′ , then by Lemma 2.4.9, we know that Cλ satisfies the condition
in [42, Theorem 8.2]. Then [42, Theorem 8.2] tells us that xµ and yµ are determined by Cλ.

Finally, the same diagonal argument at the end of the proof [42, Theorem 8.3] shows
that when the limit moments are |G|−u, the limit limn→∞ P(Xn ⊗R N ∼= H) exists for all
H ∈ S.

The above theorem is the most flexible for applications, but we will state now simpler
versions to emphasize the main point.

Theorem 2.4.11. Keep the notations in Theorem 2.4.10. Assume that |S| < ∞. If {Xn}
is a sequence of random variables taking values in finite O-modules such that

lim
n→∞

E
(
| SurO(Xn, G)|

)
=

1

|G|u
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for all finite O-module G, then

lim
n→∞

P(Xn
∼= G) =

1

|AutO(G)||G|uZ(u)
,

i.e., the limit of the random variables exists and has the same probability distribution as the
random variable X = X(A, u,O).

Proof. If |S| <∞, we can take into account all the prime ideals of O at one time. Provided
that G is a finite module such that Gi,p is of type λi,p where λi,p is a partition, then in
Theorem 2.4.10 we take ni,p = (λi,p)′1 + 1. If H is any O-module such that

H ⊗R N ∼= G,

then H has to be isomorphic to G, i.e., P(Xn
∼= G) = P(Xn ⊗N ∼= G), and it is determined

by the limit moments.

Theorem 2.4.12. Assume that |S| = ∞ and ui > 0 for all i = 1, . . . ,m, and X =
X(A, u,O) is the random variable we’ve defined. If Y is a random variable taking values in
finite O-modules such that

E
(
| SurO(Y,G)|

)
=

1

|G|u
= E

(
| SurO(X,G)|

)
.

Then
P(Y ∼= G) = P(X ∼= G),

for all finite O-modules G.

Proof. We let pi be the primes of O. By Theorem 2.4.11, for every n we have

P(Ypi ∼= Gpi| i = 0, 1, . . . , n) = P(Xpi
∼= Gpi | i = 0, 1, . . . , n).

Then by basic properties of measures, we have

P(Y ∼= G) = P(Ypi ∼= Gpi | i = 0, 1, 2, . . . )

= lim
n→∞

P(Ypi ∼= Gpi | i = 0, 1, . . . , n)

= lim
n→∞

P(Xpi
∼= Gpi| i = 0, 1, . . . , n)

= P(Xpi
∼= Gpi | i = 0, 1, 2, . . . ) = P(X ∼= G).

However the statement on limit moments determining the limit distributions does not
hold if S contains infinitely many primes.
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Example 2.4.13. Let S contain infinitely many prime numbers which are relatively prime
to |Γ| (so that O = ZS[Γ]) and ui > 0 for all i. Let H be any finite O-module. Then
P(X ∼= H) > 0.

For every rational prime p, there is a O-module Gp whose underlying abelian group is
a p-group, say (ZS/pZS)

n ∼= (Z/pZ)n which is a representation of Γ over the finite field Fp.
Let Yp be a random O-module such that

P(Yp ∼= G) =


P(X ∼= G) ∀G ̸= H or H ×Gp;

0 if G = H;

P(X ∼= H) + P(X ∼= H ×Gp) if G = H ×Gp.

Since | SurO(H,G)| = | SurO(H ×Gp, G)| whenever p > |G|, for every O-module G, we have

lim
p→∞

E(| SurO(Yp, G)|) = E(| SurO(X,G)|).

However limp→∞ P(Yp ∼= H) = 0. This shows there is no analog of Theorem 2.4.11 for infinite
S.

2.5 Explanation of the Cohen-Martinet Heuristics in

the non-Galois case

Cohen and Martinet [14] do not specifically make a conjecture about the distribution of class
groups of non-Galois fields. However, they do show that by expressing class groups of non-
Galois fields in terms of Galois fields, such conjectures can be obtained as consequences of
their conjectures in some cases. The goal of this section is to deduce the entire consequence
of the Cohen-Martinet conjectures for class groups of non-Galois fields. Interestingly, in the
non-Galois case, one can sometimes also say something about the p-Sylow subgroup of the
class group for p dividing the order of the Galois group of the Galois closure. So first, we
must state a more complete version of the conjecture of [14] that includes these primes.

In this section we continue the notations introduced in Section 2.1 and Section 2.1. In
particular, Γ is a fixed finite group.

Definition 2.5.1. Let e be any central idempotent of Q[Γ]. We say that a prime number p
is good for e if e ∈ Z(p)[Γ] and eZ(p)[Γ] is a maximal Z(p)-order in eQ[Γ], and it is bad for e
otherwise.

This definition is stated slightly different from the original one in [14, p. 6.1], but they
are equivalent (see [52, Theorem 10.5]). A prime p such that p ∤ |Γ| is good for any central
idempotents e, including e = 1. For a central idempotent e in Q[Γ], and S a set of primes
good for e, [14, Hypothesis 6.6] is a conjecture for the distribution of eClSK . Proposition
2.4.5 and Lemma 2.5.10 show that this conjecture is equivalent to the following.
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Conjecture 2.5.2 (Cohen and Martinet [14]). Let e be a fixed central idempotent in (1 −
e1)Q[Γ], such that e = e2 + · · ·+ ek, where the ei are irreducible central idempotents. Let S
be a set of prime numbers such that if p ∈ S then p is a good prime for e, and u ∈ Qk−1.
Let X = X(e(1− e1)Q[Γ], u, eZS[Γ]). Then, for every “reasonable” non-negative function f
defined on the set of isomorphism classes of finite eZS[Γ]-modules, we have:

lim
x→∞

∑
|DiscL|≤x f(eCl

S
L)∑

|DiscL|≤x 1
= E

(
f(X)

)
where L runs through all Γ-extensions of K0 such that |DiscL| ≤ x and the rank of L/K0

restricted to the coordinates 2, . . . , k is u.

Note that all of the caveats of Remark 2.1 still apply, including the fact that the term
“reasonable” is left undefined.

For a field extension L/K of number fields with groups of fractional ideals IL and IK ,
the embedding i : IK → IL defined on fractional ideals induce, by passing to the classes, the
homomorphism:

i∗ : ClK → ClL .

For this homomorphism, we have the following.

Theorem 2.5.3 ([14, Theorem 7.6]). Let L/K be a Γ′-extension of number fields. The kernel
(resp. the cokernel) of

i∗ : ClK → ClΓ
′

L is annihilated by |Γ′| (resp. |Γ′|2).

The direct corollary is the following.

Corollary 2.5.4 ( [14, Corollary 7.7] ). Let K0 ⊆ K ⊆ L be a tower of number fields such
that L/K0 is a Γ-extension and that K is the fixed field of the subgroup Γ′ of Γ. If every
prime in S is not a prime divisor of |Γ′|, the homomorphism

i∗ : Cl
S
K/K0

→
(
ClSL/K0

)Γ′

is an isomorphism.

When p ∤ |Γ|, the above results mean that Conjecture 2.5.2 implies a distribution on the
class group of the fields K/Q with Galois closure L|Q (ordered by the discriminant of the
Galois closure).

Now consider the primes p | |Γ|. We’ll see below (Lemma 2.5.11) that if p is a good
prime for eΓ/Γ′ which is defined below, then p | |Γ′|, which implies that Corollary 2.5.4 is
not useful if we want to make predictions on the distribution of p-Sylow subgroups of class
groups of non-Galois fields for p | |Γ|. However, in this section we will prove Theorem 2.5.6
that allows us to deduce consequences Conjecture 2.5.2 for p-Sylow subgroups of class groups
of non-Galois fields and p | |Γ|.
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Definition 2.5.5. Let 1Γ′ be the unit character of Γ′, and

rΓ/Γ′ = IndΓ
Γ′ 1Γ′ and aΓ/Γ′ = rΓ/Γ′ − 1Γ.

Then define eΓ/Γ′ to be the central idempotent associated to aΓ/Γ′ , i.e., if V is a representation
of Γ over Q with character aΓ/Γ′ , then eΓ/Γ′ is the minimal central idempotent of Q[Γ] that
acts on V as identity.

Theorem 2.5.6. Let K0 ⊆ K ⊆ L be a tower of number fields such that L/K0 is Galois
with Galois group Γ and that K is the fixed field of the subgroup Γ′ of Γ. If every prime
p ∈ S is a good prime for eΓ/Γ′, then

(i) p ∤ [K : K0] for all p ∈ S, and we have the following split short exact sequence

1 −→ ClSK/K0
−→ ClSK

Nm−→ ClSK0
−→ 1,

hence ClSK = ClSK0
×ClSK/K0

where we view ClSK0
as a subgroup of ClSK;

(ii) the induced homomorphism i∗ : ClSK/K0
→ ClSL is injective with image

(
eΓ/Γ′ ClSL

)Γ′
⊆

ClSL, i.e.,

i∗ : Cl
S
K/K0

∼−→
(
eΓ/Γ′ ClSL

)Γ′
is an isomorphism.

Remark. Cohen and Martinet give another result [14, Theorem 7.8] that could be used to
relate the class groups of non-Galois fields to Galois fields, but [14, Theorem 7.8] is incorrect
as stated. Their result instead should require that Γ′ has a normal complement ∆ such
that Γ′ acts on ∆ (by conjugation) with trivial stabilizers on each non-identity orbit. For
example, this hypothesis and the theorem fails for the example Γ = S4 and Γ′ = S3, which
is an example that appears in [13]. However, our Theorem 2.5.6 can be applied in this case
and in every case in which the Cohen-Martinet heuristics make a prediction.

Note that Theorem 7.4, applied in the case K0 = Q, has the following corollary.

Corollary 2.5.7. Let L/Q be a Γ-field and K be the fixed field of Γ′. If p is good for eΓ/Γ′,
then the order of the capitulation kernel

ker i∗ = ker(ClK → ClL)

is not divisible by p.

For many pairs (Γ,Γ′), there is at least one prime p | |Γ′| that is good for eΓ/Γ′ , e.g. p
is good for (Sp+1, Sp), and 2 is good for (A5, A4), and 5 is good for S5 or A5 with a certain
subgroup of index 6 (a stabilizer of the action on P1

F5
). For these primes, Corollary 2.5.7

appears to be a new result on the capitulation kernel.
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From Theorem 2.5.6, we see that Conjecture 2.5.2 implies a conjecture on averages of
functions on class groups of non-Galois fields, in which the finite abelian group H appears
with weight proportional to ∑

G/∼
GΓ′∼=H

1

|G|u|AutΓ(G)|
, (2.5.1)

where G runs through all finite eΓ/Γ′ZS[Γ]-modules, up to isomorphism, such that GΓ′ ∼= H
as abelian groups. We’ll spend the rest of this section proving Theorem 2.5.6. In the
next section we will give a simple expression for (2.5.1) and an interpretation of the values
appearing in (2.5.1). We start with a useful statement that we will use repeatedly.

Lemma 2.5.8. Let e be a central idempotent in Q[Γ] such that e ∈ ZS[Γ] and that eZS[Γ]
is a maximal order in eQ[Γ]. Then any eZS[Γ]-module G is cohomologically trivial as a
Γ-module, i.e., for every subgroup Λ of Γ and every integer n ∈ Z, we have

Ĥn(Λ, G) = 0,

where Ĥ denotes Tate cohomology.

Proof. Note that via the ring homomorphism e : ZS[Γ] → eZS[Γ] given by x 7→ ex, all
eZS[Γ]-modules are also Γ-modules.

Let G be any eZS[Γ]-module. We can find a projective eZS[Γ]-module P with surjective
homomorphism φ : P → G. Then we have a short exact sequence of eZS[Γ]-modules

0 → L→ P → G→ 0,

where L is the kernel of φ. Since maximal orders are hereditary (e.g., see [52, Theorem 21.4])
the submodule L of P is also a projective eZS[Γ]-module. Since e ∈ ZS[Γ], we know that, as
Γ-modules, eZS[Γ] is a direct summand of ZS[Γ]. Therefore P and L, as summands of the
module (eZS[Γ])

m for some m, are summands of the module (ZS[Γ])
m. Note that ZS[Γ] is

an induced Γ-module and hence cohomologically trivial. So P and L, as summands of some
induced Γ-module, are both cohomologically trivial. Then the short exact sequence implies
that G is also cohomologically trivial.

Next, we note the following property of the central idempotent eΓ/Γ′ and its relationship
to

e′1 =
1

|Γ′|
∑
τ∈Γ′

τ.

Lemma 2.5.9. If V is any Q-representation of Γ of character χ, then

dimQ V
Γ′
= ⟨1Γ′ ,ResΓΓ′ χ⟩Γ′ = ⟨rΓ/Γ′ , χ⟩Γ.

In particular, if χ1, . . . , χm are all the Q-irreducible characters of Γ such that ei is associated
to χi for all i = 1, . . . ,m, then for all i = 1, . . . ,m we have

eie
′
1 ̸= 0 ⇐⇒ ei = e1 or ei · eΓ/Γ′ = ei.
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Proof. The first identity is exactly given by Frobenius reciprocity. For the second statement,
note that eiQ[Γ] is a representation of character niχi for some ni ≥ 1, and that (eiQ[Γ])Γ

′
=

e′1eiQ[Γ].

Remark. We let e1, e2, . . . , ek be all the distinct irreducible central idempotents of Q[Γ] such
that e · e′1 ̸= 0. By the above lemma,

eΓ/Γ′ = e2 + · · ·+ ek,

which could be taken as an alternative definition for eΓ/Γ′ .

Lemma 2.5.10. Let L/K0 be a Γ-extension of number fields. If e is a central idempotent
of Q[Γ] such that e1 · e = 0 and p is a prime number that is good for e, then

eClL[p
∞] = eClL/K0 [p

∞].

Remark. This lemma shows that taking the relative class group has no effect if one only
cares about good primes for some central idempotent e ∈ Q[Γ]. Therefore in the statement
of the Cohen-Lenstra-Martinet Conjectures (see Conjecture 2.1.3 and 2.5.2) we do not need
to use the concept of relative class group.

Proof. First of all let’s introduce some notations. For a number field k, let Ik be the group
of fractional ideals and Pk the group of principal ideals. Then for any prime p, let Ik,p :=
Z(p) ⊗Z Ik and Pk,p := Z(p) ⊗Z Pk. Note that we have a short exact sequence

1 → Pk,p → Ik,p → Clk[p
∞] → 1.

Since e ∈ Z(p)[Γ], the notion eClL[p
∞] and eClL/K0 [p

∞] are well-defined. It is clear that
eClL/K0 [p

∞] ⊆ eClL[p
∞]. Our goal is to show that NmL/K0(I) is indeed a principal ideal of

K0 for all ideals I ∈ IL such that the ideal class [I] is contained in eClL[p
∞].

For any x ∈ ClL[p
∞], we have

NmL/K0(ex) =
∑
γ∈Γ

γex =
(
|Γ|e1

)
e · x = 0 · x = 0.

Therefore NmL/K0 : eClL[p
∞] → eClL[p

∞] is actually the zero map. Claim: (ePL,p)
Γ =

PK0,p ∩ ePL,p. We first prove the claim. Recall that if eZ(p)[Γ] is a maximal order then any
eZ(p)[Γ]-module is cohomologically trivial by Lemma 2.5.8. In particular

1 = Ĥ0(Γ, ePL,p) = (ePL,p)
Γ/NmL/K ePL,p

This shows that if a “principal ideal” I ∈ ePL,p is fixed by Γ, then it is represented by a
“principal ideal” of K0, hence the claim.

By cohomological triviality again, we know that eClL[p
∞], eIL,p, ePL,p are all cohomolog-

ically trivial, so

(eClL[p
∞])Γ = (eIL,p)

Γ/(ePL,p)
Γ = (eIL,p)

Γ/(PK,p ∩ eIL,p).
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This implies that for any ex ∈ (eClL[p
∞])Γ, we have ex = 1 if and only if it is represented by

a “principal ideal” of K (an element in PK,p), hence eClL[p
∞] is indeed generated by ideals

whose norm in ClK0 is 0, i.e., eClL[p
∞] = eClL/K0 [p

∞].

We need one more lemma for the proof of the theorem.

Lemma 2.5.11. If p is a prime such that eΓ/Γ′ ∈ Z(p)[Γ], then p does not divide |Γ/Γ′|. In
particular, if p | |Γ/Γ′|, then p is bad.

Proof. Let
P := Z(p)[Γ]e

′
1 = {xe′1|x ∈ Z(p)[Γ]}

be a left Z(p)[Γ]-module. We know that eΓ/Γ′e′1 is contained in P , because eΓ/Γ′ is already
contained in Z(p)[Γ]. This implies that e1 = e1 · e′1 is also contained in P , for the idempotent
e′1 is contained in P and could be written as

e′1 = 1 · e′1 = (e1 + · · ·+ em) · e′1 = e1 + e2e
′
1 + · · ·+ eke

′
1 = e1 + eΓ/Γ′e′1.

Let {σ1, . . . , σq} be a fixed set of representatives of left cosets Γ/Γ′. Then every element
x ∈ P can be written uniquely as

x =

q∑
i=1

aiσie
′
1,

where ai ∈ Z(p). If in addition, x is fixed by Γ, then all the ai must be the same, which
implies that if we let

x0 :=
s∑

i=1

1 · σie′1 = |Γ/Γ′| · e1,

then P Γ = Z(p)x0. Since e1 ∈ P Γ, we know that there exists some a ∈ Z(p) such that
ax0 = e1, i.e.,

a · |Γ/Γ′| = 1.

So |Γ/Γ′| is a unit in Z(p), i.e., p does not divide |Γ/Γ′|.

Finally let’s prove Theorem 2.5.6.

Proof of Theorem 2.5.6. It is clear that we can reduce to the case where the set S is the
singleton {p} with p a good prime for eΓ/Γ′ .

For (i), by Lemma 2.5.11, we know that p ∤ |Γ/Γ′| = [K : K0]. Then let’s view ClK0 [p
∞]

as a subgroup of ClK [p
∞] via the induced map i∗ : ClK0 → ClK . We have the following short

exact sequence
1 → ClK/K0 [p

∞] → ClK [p
∞]

n∗→ ClK0 [p
∞] → 1

where n∗ is induced by the norm map NmK/K0 , because n∗(ClK0 [p
∞]) = [K : K0] ·ClK0 [p

∞] =

ClK0 [p
∞]. Then by i∗ ◦ n∗ = [K : K0], we see that

1

[K : K0]
i∗ is well-defined for ClSK0

and

splits n∗. This shows (i).
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Then let’s prove (ii). For a number field k, let Ik denote the group of fractional ideals,
and Pk the group of principal ideals. Then for k, we have the short exact sequence

1 → Pk → Ik → Clk → 1,

Tensoring with Z(p) gives us a short exact sequence

1 → Z(p) ⊗Z Pk → Z(p) ⊗Z Ik → Clk[p
∞] → 1.

Let Pk,p := Z(p)⊗Z Pk and Ik,p := Z(p)⊗Z Ik. And for an element xk ∈ Ik,p, we let [xk] denote
its image in the class group.

Recall the set-up in the statement: Let K0 ⊆ K ⊆ L be a tower of extensions such that
Gal(L/K0) = Γ and that Gal(L/K) = Γ′ ⊆ Γ.

Claim 1 : By viewing IK,p as a subgroup of IL,p via the embedding i : IK → IL, we have an
exact sequence

IK,p ∩ IΓL,p → ClK [p
∞] → ClK/K0 [p

∞] → 1, (2.5.2)

where the map ClK [p
∞] → ClK/K0 [p

∞] = ClK [p
∞]/ClK0 [

∞] is the quotient map given by (i).
Let’s prove the claim. First of all IK0,p ⊆ IΓL,p, therefore the image of IK,p ∩ IΓL,p in ClK [p

∞]
must contain ClK0 [p

∞]. If x ∈ IK,p ∩ IΓL,p gives an ideal class [x], then by (i), we can write
[x] = [y] · [z] with [y] ∈ ClK0 [p

∞] and [z] ∈ ClK/K0 [p
∞]. The computation

[x][K:K0] = NmK/K0 [x] = NmK/K0 [y] · NmK/K0 [z] = [y][K:K0]

shows that [z] = 1 and [x] ∈ ClK0 [p
∞]. Therefore the image of IK,p∩ IΓL,p is exactly ClK0 [p

∞],
the kernel of ClK [p

∞] → ClK/K0 [p
∞].

Claim 2 : We have a short exact sequence

1 → PK,p ∩ eΓ/Γ′PL,p → IK,p ∩ eΓ/Γ′IL,p → ClK/K0 [p
∞] → 1. (2.5.3)

We prove this claim now. First of all, the ideal classes given by IK,p∩ eΓ/Γ′IL,p are contained
in the relative class group ClK/K0 [p

∞], because

NmK/K0 [y] = NmK/K0 eΓ/Γ′ [y] =
∑

σ∈Γ/Γ′

σ(erΓ/Γ′ − e1) · [y] = |Γ/Γ′|(e1erΓ/Γ′ − e1) · [y] = 1.

We then only need to show the surjectivity. As a Z(p)[Γ]-module, IL,p admits the following
decomposition

IL,p = eΓ/Γ′IL,p × (1− eΓ/Γ′)IL,p.

Consequently IΓ
′

L,p =
(
eΓ/Γ′IL,p

)Γ′
×
(
(1− eΓ/Γ′)IL,p

)Γ′
. By IL,p ↪→ V := Q⊗Z(p)

IL,p, we know
that x ∈ IL,p is fixed by Γ′ if and only if e′1 · x = x where the action happens in V . Since

e′1 · (1− eΓ/Γ′) = e′1 · (e1 + ek+1 + · · ·+ em) = e′1 · e1 = e1,
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for any element z ∈ (1− eΓ/Γ′)V , it is fixed by Γ′ if and only if it is fixed by Γ. Therefore if
x ∈ IΓ

′
L,p, then

x = y · z

with y ∈
(
eΓ/Γ′IL,p

)Γ′
and z ∈ IΓL,p. By Lemma 2.5.8, the eΓ/Γ′Z(p)[Γ]-module eΓ/Γ′IL,p is

cohomologically trivial, hence

(eΓ/Γ′IL,p)
Γ′
/NmL/K eΓ/Γ′IL,p = Ĥ0(Γ′, eΓ/Γ′IL,p) = 1.

Therefore, y is always an element in IK,p. If the element above x = y · z is contained in IK,p,
then z is also contained in IK,p, i.e.,

IK,p =
(
IK,p ∩ eΓ/Γ′IL,p

)
×
(
IK,p ∩ IΓL,p

)
,

where the direct product is the direct product as abelian groups. Then by (2.5.2), [z] ∈
ClK0 [p

∞], and [x] ≡ [y] in the relative class group ClK/K0 [p
∞] = ClK [p

∞]/ClK0 [p
∞], which

proves Claim 2. Moreover, the claim also tells us that i∗(ClK/K0 [p
∞]) ⊆ eΓ/Γ′ ClL/K0 [p

∞].

Final Step: Since p is a good prime for eΓ/Γ′ , we know that eΓ/Γ′ ∈ Z(p)[Γ] and eΓ/Γ′Z(p)[Γ]
is a maximal order of eΓ/Γ′Q[Γ], hence obtain the following short exact sequence

1 → eΓ/Γ′PL,p → eΓ/Γ′IL,p → eΓ/Γ′ ClL[p
∞] → 1,

where every object showing up is an eΓ/Γ′Z(p)[Γ]-module. Then by Lemma 2.5.8, we know
that eΓ/Γ′PL,p, eΓ/Γ′IL,p and eΓ/Γ′ ClL[p

∞] are all cohomologically trivial as Γ-modules. So
the identity (

eΓ/Γ′ ClL[p
∞]
)Γ′
/NmL/K eΓ/Γ′ ClL[p

∞] = Ĥ0(Γ′, eΓ/Γ′ ClL[p
∞]) = 1

holds. This immediately implies that if [x] ∈ (eΓ/Γ′ ClL[p
∞])Γ

′
, then [x] is represented by an

ideal coming from K, and i∗ : ClK/K0 [p
∞] → (eΓ/Γ′ ClL[p

∞])Γ
′
is surjective. Similarly, by

Ĥ0(Γ′, eΓ/Γ′IL,p) = 1, and Ĥ0(Γ′, eΓ/Γ′PL,p) = 1

we know that

(eΓ/Γ′IL,p)
Γ′
= IK,p ∩ eΓ/Γ′IL,p, and (eΓ/Γ′PL,p)

Γ′
= PK,p ∩ eΓ/Γ′PL,p.

Also by Ĥ1(Γ′, eΓ/Γ′PL,p) = 1, we have the short exact sequence

1 → (eΓ/Γ′PL,p)
Γ′ → (eΓ/Γ′IL,p)

Γ′ → (eΓ/Γ′ ClL[p
∞])Γ

′ → 1.

Then these identities together with the short exact sequence (2.5.3) gives the following
commutative diagram which concludes the proof:

1 PK,p ∩ eΓ/Γ′PL,p IK,p ∩ eΓ/Γ′IL,p ClK/K0 [p
∞] 1

1 (eΓ/Γ′PL,p)
Γ′

(eΓ/Γ′IL,p)
Γ′

(eΓ/Γ′ ClL[p
∞])Γ

′
1.

i∗
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2.6 Reinterpretation of the Cohen-Martinet

Heuristics in the non-Galois case

In this section, we reinterpret the distribution on abelian groups from (2.5.1) that we have
shown are predicted by the Cohen-Martinet heuristics to be the distribution of class groups of
non-Galois fields. Returning to the principle that objects should appear inversely as often as
their number of automorphisms, we will see that these class groups of non-Galois fields have
certain structure and the distribution is given as inverse to the number of automorphisms of
that structure. We end the sections with several examples for different groups Γ.

We first define some notation used in this section. Let Γ′ be a fixed subgroup of Γ. We’ve
defined the trivial idempotent e1 in Section 2.1, the augmentation character aΓ/Γ′ and the
central idempotent eΓ/Γ′ of Q[Γ] associated to it in Section 2.4. Let erΓ/Γ′ = e1 + eΓ/Γ′ be
the central idempotent associated to the character rΓ/Γ′ , and e′1 be the irreducible central
idempotent associated to the unit character 1Γ′ of Γ′ in Q[Γ′]. Note that e′1 is naturally an
idempotent in Q[Γ] via the embedding Γ′ ↪→ Γ, but it is not necessarily central. Throughout
this section, let S be a fixed finite set of good primes for eΓ/Γ′ (see definition in Section 2.5),
and O ⊆ Q[Γ] be a maximal ZS-order containing the group ring ZS[Γ]. By our assumption,
eΓ/Γ′O is exactly eΓ/Γ′ZS[Γ].

Definition 2.6.1. For any (Γ,Γ)-bimodule M and any subgroup Λ of Γ, let ΛM be the
subgroup of M fixed by the action of Λ on the left. Similarly MΛ is the subgroup fixed by
the action of Λ on the right.

Caution: The notation MΛ is different from the use in previous sections, as before we
only considered left actions. The reason for these two notations is that objects like O are
(Γ,Γ)-bimodules and we have to distinguish left and right Γ′-invariant parts.

Integral model for the Hecke algebra and Morita equivalence

First of all, Q[Γ] is a (Γ,Γ)-bimodule, we can consider the subspace Γ′Q[Γ]Γ
′
, which is also

called the Hecke algebra, written as Q[Γ′\Γ/Γ′], and which we will write as e′1Q[Γ]e′1. Note
that e′1Q[Γ]e′1 is a Q-algebra, but its identity e′1 is not the identity of Q[Γ]. If V is any
left Q[Γ]-module, then Γ′

V is naturally a left e′1Q[Γ]e′1-module. Let e′1xe
′
1 ∈ e′1Q[Γ]e′1 and

v ∈ Γ′
V , then for all τ ∈ Γ′, we have

τ · (e′1xe′1 · v) = (τe′1xe
′
1) · v = e′1xe

′
1 · v.

This shows that e′1xe
′
1v is still fixed by Γ′, hence e′1xe

′
1 ·Γ

′
V ⊆ Γ′

V . Also for a left Q[Γ]-module
V , we always have

Γ′
V = Γ′

(erΓ/Γ′V ).

So we see that for Q[Γ]-module V , the invariants Γ′
V are naturally a e′1Q[Γ]e′1-module.

Our goal is now to construct an integral version of this kind of structure. Given a finite
O-module G, one has a natural action of P := Γ′

OΓ′
= O∩ e′1Q[Γ]e′1 on

Γ′
G by reasoning as
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above. However, in general P is not even a ring, because if S contains any primes dividing
|Γ′|, then P does not contain a multiplicative identity. Even if S does not contain any primes
dividing |Γ′|, it is not clear what kind of ring P is. We will construct a ring o, agreeing with
P when S does not contain primes dividing |Γ| and larger than P otherwise, and show that
this larger ring o still acts on Γ′

G. After proving several results, in Corollary 2.6.8, we will
see that o is actually a maximal order.

Definition 2.6.2. We define
o = Γ′

(eΓ/Γ′Oe′1).

We include the factor eΓ/Γ′ because of our intended application to (relative) class groups.
When Γ = Sn and Γ′ = Sn−1 is the stabilizer of an element, then we have eΓ/Γ′O =Mn−1(ZS)
and o = ZS (see Example 2.6.15). When Γ = D4 and Γ′ is a non-central order 2 subgroup, we
have eΓ/Γ′O = ZS ×M2(ZS), and o = Z2

S (see Example 2.6.16). When Γ = A5, we let Γ act
on {1, 2, 3, 4, 5} in the usual way and let Γ′ be the subgroup fixing 1. Then eΓ/Γ′O =M4(ZS)
and o = ZS. As suggested by these examples, we will show in general that eΓ/Γ′O and
o are Morita equivalent in Theorem 2.6.7, even though in general in they can have more
complicated structures as arbitrary maximal orders in sums of matrix algebras over division
algebras. This Morita equivalence will play a central role in our reinterpretation of the
prediction of the Cohen-Martinet heuristics in the non-Galois case.

We start by showing that o is an order of the semisimple Q-algebra e′1eΓ/Γ′Q[Γ]e′1.

Proposition 2.6.3. Let e1, . . . , em be the distinct irreducible central idempotents of Q[Γ] and
eΓ/Γ′ = e2 + · · · + ek. The Q-algebra e′1Q[Γ]e′1 = Γ′Q[Γ]Γ

′
is a semisimple Q-algebra whose

decomposition into simple components is given by

e′1Q[Γ]e′1 =
k∏

i=1

e′1eiQ[Γ]e′1.

The category of e′1Q[Γ]e′1-modules is equivalent to the category of erΓ/Γ′Q[Γ]-modules. The

subgroup Γ′
(Oe′1) is a ZS-order of e′1Q[Γ]e′1, and o is a ZS-order of e′1eΓ/Γ′Q[Γ]e′1.

Proof. In the proof, let A = Q[Γ] and A′ = e′1eΓ/Γ′Q[Γ]e′1. Note that e′1Q[Γ]e1e
′
1 = e1A and

Γ′(
(1−eΓ/Γ′)Oe′1

)
= ΓO, c.f. Lemma 2.5.9. We can focus on eΓ/Γ′A, A′ and o (the “nontrivial

parts”) in the rest of the proof.
The irreducible central idempotents of A give a decomposition of A′

A′ = e2e
′
1A

′ × · · · × eme
′
1A

′,

with each component a Q-algebra because eie
′
1 is central in A′. Note that e′1 · ei ̸= 0 if and

only if ei = e1 or ei · eΓ/Γ′ ̸= 0 by Lemma 2.5.9. So we have

A′ = e2e
′
1A

′ × · · · × eke
′
1A

′.

For any simple Q-algebra B ∼= Ml(D) where D is an division algebra and any idempotent
f ∈ B, we have fBf ∼= Ml′(D) for some l′ ≤ l. This can be shown using the decomposition of
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the identity into mutually orthogonal primitive idempotents by the Krull-Schmidt-Azumaya
Theorem, see e.g. [53, p. 6.12].

We apply this result to eie
′
1 for each i = 2, . . . , k as follows. The Q-algebra eiA is simple,

and eie
′
1 is an idempotent in eiA. Therefore if eiA ∼= Mli(Di) where Di is some division

algebra, then there exists some integer 0 < l′i < l, such that eie
′
1A

′ = eie
′
1Aeie

′
1
∼= Ml′i

(Di),
hence e′1eiA

′ is a simple Q-algebra for all i = 1, . . . , k. Since A′ is the direct sum of finitely
many simple Q-algebras, it is a semisimple Q-algebra.

The equivalence of the category of e′1eiA
′-modules and the category of eiA-modules follows

from the fact that they are both matrix algebras over Di, hence A
′ is Morita equivalent to

eΓ/Γ′A. Finally by e′1e1Q[Γ]e′1 = e1A ∼= Q, the statements on e′1Q[Γ]e′1 are all proved.
We now check that o is indeed a subring of A′. By definition, o, as the Γ′-invariant part

of an Γ-module, is an additive abelian group. For all x, y ∈ eΓ/Γ′O such that xe′1, ye
′
1 ∈ o,

since σxe′1 = xe′1 for all σ ∈ Γ′, we know that e′1xe
′
1 = xe′1, i.e., xe

′
1 ∈ A′ and o ⊆ A′ is

an additive subgroup. For xe′1, ye
′
1 ∈ o, we have xe′1ye

′
1 = x(e′1ye

′
1) = xye′1, which is still

an element in o because xy ∈ eΓ/Γ′O and (xe′1)ye
′
1 is fixed by Γ′ on the left. In particular,

e′1eΓ/Γ′ is contained in o and is the identity for A′, hence o is indeed a subring of A′.
Then let’s show that o is a ZS-order in A

′. We’ve already showed that o is a subring of

A′. Then we check that Q⊗ZS
o = A′. Let x ∈ eΓ/Γ′A, then we can write it as x =

1

n
y with

some n ∈ Z and y ∈ |Γ′|2eΓ/Γ′O because Q⊗ eΓ/Γ′O = eΓ/Γ′A. Therefore

e′1xe
′
1 =

1

n
⊗ e′1ye

′
1

where e′1ye
′
1 ∈ Γ′

(eΓ/Γ′O)Γ
′ ⊆ o by our construction. This shows that Q⊗ o = A′.

Finally we show that o is finitely generated as a ZS-module. Since eΓ/Γ′O is finitely
generated as a ZS-module, say eΓ/Γ′O = ZS · x1 + · · ·+ ZS · xN , then

o ⊆ Oe′1 = ZS · x1e′1 + · · ·+ ZS · xNe′1,

is a submodule of a finitely generated ZS-module, hence itself finitely generated over ZS.

Now we will show that the Γ′-invariant part of an eΓ/Γ′O-module is naturally an o-module.

Lemma 2.6.4. For any finitely generated eΓ/Γ′O-module G, its Γ′-invariant part Γ′
G is an

o-module via the action
(σe′1) · g := σ · g,

where the right-hand side is the action of eΓ/Γ′O on G, for all g ∈ Γ′
G and σe′1 ∈ o with

σ ∈ eΓ/Γ′O.

Remark. As the identity of o, the element eΓ/Γ′e′1 acts as identity on Γ′
G for any eΓ/Γ′O-

module G despite the fact that eΓ/Γ′e′1 is not even contained eΓ/Γ′O in general.

Remark. We can immediately see from Theorem 2.5.6 that ClSK/K0
is naturally an o-module.

This will be the key to our interpretation of (2.5.1).
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Proof. If σe′1 = τe′1 with σ, τ ∈ eΓ/Γ′O, then the sum of the coefficients of elements in the
same left coset of Γ′ must be the same, hence σ ·g = τ ·g for all g ∈ Γ′

G. This shows that the
definition does not depend on the choice of σ ∈ eΓ/Γ′O. Moreover, since σe′1 is fixed by Γ′

on the left, we know that σe′1g ∈ Γ′
G. So we’ve shown that σe′1 · g = σg gives a well-defined

map.
Note that e′1 ·σe′1 = σe′1 for all σe

′
1 ∈ o by definition. If σ1e

′
1, σ2e

′
1 ∈ o with σ1, σ2 ∈ eΓ/Γ′O,

then σ1e
′
1σ2e

′
1 = σ1σ2e

′
1 which shows that the action is associative. Finally, σ1e

′
1g + σ2e

′
1g =

(σ1+σ2)g = (σ1+σ2)e
′
1g = (σ1e

′
1+σ2e

′
1)g. So this definition turns Γ′

G into an o-module.

We then prove the equivalence of the category of eΓ/Γ′O-modules and the category of
o-modules in the rest of this subsection.

Lemma 2.6.5. Given a finitely generated left eΓ/Γ′O-module G, the left o-module
Γ′
(eΓ/Γ′O)⊗eΓ/Γ′O G is isomorphic to Γ′

G as o-modules.

Proof. It suffices to prove this for each component of G, for eG is a left Γ-module via the
composition ZS[Γ] → O → eO for each irreducible central idempotent e of eΓ/Γ′Q[Γ]. We

then fix e and assume eG = G. There is a natural eO-isomorphism φ : eO⊗eOG
∼→ G given

by σ ⊗ g = σ · g. Note that σg ∈ Γ′
G for all σ ∈ Γ′

(eO). We then obtain an ee′1o-morphism
ψ : Γ′

(eO) ⊗eO G → Γ′
G by restricting φ on the subgroup Γ′

(eO) ⊗eO G. Because for all
τe′1 ∈ ee′1o where τ ∈ eO we have

τe′1φ(σ ⊗ g) = τe′1(σg) = τσg φ
(
τe′1(σ ⊗ g)

)
= φ(τσ ⊗ g) = τσg.

Claim: ψ : Γ′
(eO)⊗eO G→ Γ′

G is an ee′1o-isomorphism.
The morphism ψ is injective because φ is. For the proof of surjectivity, we first recall

that a morphism f : H1 → H2 of abelian groups is surjective if and only if fp : H1,p → H2,p

is surjective for all prime p where fp and Hi,p denote the localization at p. In addition, fp is

surjective if and only if f̂p : Ĥ1,p → Ĥ2,p is surjective where f̂p and Ĥi,p denote the completion
at p.

Since Ô := O⊗ZS
Zp is a maximal Zp-order in Qp[Γ] (see [52, p. 11.6]) and ô := o⊗ZS

Zp

is the same as Γ′
(eΓ/Γ′Ôe′1), the results above go through similarly. In particular, the additive

subgroup Γ′
(eΓ/Γ′Ô) of eΓ/Γ′Ô is a left ô-module by the analogue of Lemma 2.6.4, hence an

(ô, eΓ/Γ′Ô)-bimodule. So we can reduce the problem to proving

ψ̂p :
Γ′
(eÔ)⊗eÔ Ĝ→ Γ′

Ĝ

is surjective for all p ∈ S.
By abuse of notation, let O be a maximal Zp-order in Qp[Γ] with p a good prime for

eΓ/Γ′ , and let o := Γ′
(eΓ/Γ′Oe′1) just like above. Let eQp[Γ] ∼= Ml(D) be an isomorphism such

that eO ∼= Ml(O) where D is a division algebra over Qp and O ⊆ D is the unique maximal
Zp-order in D with the unique two-sided maximal ideal p, c.f. [52, (12.8), (17.3)]. Then the

40



finitely generated eO-module G admits the following matrix representation

G ∼=


O · · · O

O · · · O
...

...
...

O · · · O


l×m

⊕


O/pr1 O/pr2 · · · O/prn

O/pr1 O/pr2 · · · O/prn
...

...
...

...
O/pr1 O/pr2 · · · O/prn


l×n

=
(
Ml×1(O)

)m ⊕Ml×1(O/p
r1)⊕ · · · ⊕Ml×1(O/p

rn),

such that the action of eO ∼= Ml(O) on G is exactly the left matrix multiplication. We may
therefore assume without loss of generality that G is indecomposable, i.e., G ∼= Ml×1(O) if G
is projective or G ∼= Ml×1(O/p

r) with r ≥ 1 if G is torsion. Let f be the primitive idempotent
such that

f 7→


1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0


via eQp[Γ] ∼= Ml(D). There exists a surjective morphism π : eO → G given by the composi-
tion of eO → Of defined by x 7→ xf and the quotient map O → O/pr. Since eO is projective,
by Lemma 2.5.8, the induced map Γ′

(eO) → Γ′
G is also surjective. For any g ∈ Γ′

G, there
exists σe ∈ Γ′

(eO) such that π(σe) = g. In particular, by definition of π, we may assume
that σe = σf ∈ Of , hence

ψ
(
σf ⊗ π(f)

)
= σf · π(f) = π(σf) = g.

This proves the surjectivity of ψ, hence the lemma.

Lemma 2.6.6. If e is a central irreducible idempotent contained in eΓ/Γ′, then the subgroup
eOe′1 of eQ[Γ] consisting of elements of the form exe′1 with x ∈ O is an (eO, ee′1o)-bimodule
where the right ee′1o-action is given by right multiplication in Q[Γ]. Then the (eO, eO)-
bimodule homomorphism eOe′1 ⊗ee′1o

Γ′
(eO) → eO defined by exe′1 ⊗ y 7→ exe′1y, where the

right-hand side is the multiplication in Q[Γ], is surjective.

Proof. The map is well-defined because e′1 · y = y by multiplication in the group algebra
Qp[Γ], hence the product is actually exy which is contained in eO. Just like in the proof of
Lemma 2.6.5, we will check the surjectivity locally and use the same abuse of notations for
O and o. Let eQp[Γ] ∼= Ml(D) be an isomorphism of Qp-algebras with D a division algebra
over Qp such that eO ∼= Ml(O) under the isomorphism where O ⊆ D is the unique maximal
Zp-order of D with the unique maximal two-sided ideal p generated by a prime element π.

Since O is given by the valuation on D extended from the valuation on Qp, there exists
a smallest integer n ∈ Z such that e′1π

n ∈ eO. In particular, there exists at least one unit
element in the matrix representation of e′1π

n.
Claim: e′1π

n can generate the whole of eO = Ml(O) as (eO, eO)-bimodule. This can
be shown by constructing the usual basis {Eij} from e′1π

n via finitely many row/column
operations.
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Since e′1π
n is contained in the image, the claim shows that eOe′1 ⊗ee′1o

Γ′
(eO) → eO is

surjective, and we prove the lemma.

We finally have the following.

Theorem 2.6.7. The category of eΓ/Γ′O-modules and the category of o-modules are Morita
equivalent via the functors:

Γ′
(eΓ/Γ′O)⊗eΓ/Γ′O − : eΓ/Γ′O−Mod → o−Mod

eΓ/Γ′Oe′1 ⊗o − : o−Mod → eΓ/Γ′O−Mod

Proof. Let’s denote by ( , ) the eΓ/Γ′O-balanced bilinear map Γ′
(eΓ/Γ′O) × eΓ/Γ′Oe′1 → o

defined by (x, ye′1) 7→ xye′1. This map is well-defined because xye′1 ∈ Oe′1 and e
′
1xye

′
1 = xye′1

is contained in the Γ′-invariant part.
Similarly let [ , ] denote the o-balanced bilinear map eΓ/Γ′Oe′1×Γ′

(eΓ/Γ′O) → eΓ/Γ′O given
by [xe′1, y] 7→ xe′1y = xy. Since these bilinear maps are defined using the multiplication in
Qp[Γ], they satisfy the condition for a Morita context, i.e.,

ze′1 · (x, ye′1) = [ze′1, x] · ye′1, and z · [xe′1, y] = (z, xe′1) · y.

Then {eΓ/Γ′O, o, o
(
Γ′
(eΓ/Γ′O)

)
eΓ/Γ′O

, eΓ/Γ′O

(
eΓ/Γ′Oe′1

)
o
, ( , ), [ , ]} forms a Morita context.

The map eΓ/Γ′Oe′1 ⊗ Γ′
O → eΓ/Γ′O is surjective by Lemma 2.6.6. The other map is also

surjective because we have

Γ′
(eΓ/Γ′O)⊗eΓ/Γ′O eΓ/Γ′Oe′1 =

Γ′
(eΓ/Γ′Oe′1) = o

by Lemma 2.6.5. Then the equivalence and the functors are given by Morita theorem (see
[53, Theorem 3.54]) directly.

Corollary 2.6.8. The ZS-order o in e′1eΓ/Γ′Q[Γ]e′1 is a maximal order.

Proof. By [52, p. 11.6], it suffices to show that ôp = o ⊗ZS
Zp is a maximal Zp-order in

e′1eΓ/Γ′Qp[Γ]e
′
1 for each p ∈ S.

Let A = Qp[Γ] and A
′ = e′1eΓ/Γ′Q[Γ]e′1. We use the same abuse of notation for O and o

as in the proof of Lemma 2.6.5 (i.e., O := Ô and o := ô).
First of all o is Morita equivalent to eΓ/Γ′O. Since eΓ/Γ′O is hereditary and this property

is preserved by Morita equivalence, we know that o is also a hereditary ring. Let e ̸= e1 be
an irreducible central idempotent in A such that e · e′1 ̸= 0, and eA ∼= Ml(D) where D is a
division algebra over Qp and ee

′
1A

′ ∼= Ml′(D) for some l′ < l (see Proposition 2.6.3). By [52,
p. 39.14], if ee′1o is a hereditary order in ee′1A

′, then it is of the form

ee′1o
∼=


(O) (p) (p) · · · (p)
(O) (O) (p) · · · (p)
(O) (O) (O) · · · (p)
...

...
...

...
...

(O) (O) (O) · · · (O)


(n1,...,nr)
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where O ⊆ D is the maximal order in D and p its unique maximal ideal and n1+ · · ·+nr = l′

gives the size of the block along the diagonal.
Assume for contradiction that ee′1o is not maximal. By [52, p. 17.3], we know that r ≥ 2

and there exists at least two non-isomorphic indecomposable projective modules, because a
column in the above matrix representation is exactly an indecomposable projective module.
But this is already contradiction, for eO only admits one indecomposable projective module
up to isomorphism.

Therefore, ee′1o must be of the form Ml′(O), and it is a maximal order of ee′1A
′ again by

[52, p. 17.3]. The argument holds for all ee′1, hence o is a maximal order of A′.

Random o-Module

From (2.5.1), we were led to wanting to understand the distribution of the abelian groups
Γ′
X for our random eΓ/Γ′O-modules X. Now, we realize that Γ′

X is naturally an o-module,
so we will instead consider the distribution of o-modules Γ′

X.
On one hand, the random eΓ/Γ′O-module X = X(eΓ/Γ′Q[Γ], u, eΓ/Γ′O) defined in Sec-

tion 2.1 with u = (u2, . . . , uk) ∈ Qk−1 gives us a random o-module Γ′
X. On the other hand,

since o is a maximal order in the semisimple Q-algebra e′1eΓ/Γ′Q[Γ]e′1, we can also define a
random o-module Y = (e′1eΓ/Γ′Q[Γ]e′1, v, o) with v = (v2, . . . , vk) ∈ Qk−1. We are going to
show that for suitably chosen u ∈ Qk−1 and v ∈ Qk−1, the random o-modules Γ′

X and Y
have the same distribution. For simplicity, let

X ′ = Γ′
X.

Theorem 2.6.9. Let e1, . . . , em be the distinct irreducible central idempotents of Q[Γ] and
eΓ/Γ′ = e2 + · · · + ek. Let χi be the Q-irreducible character associated to ei and φi be
any fixed absolutely irreducible character contained in χi for all i = 2, . . . , k. Let X =
X(eΓ/Γ′Q[Γ], u, eΓ/Γ′O) and Y = Y (e′1eΓ/Γ′Q[Γ]e′1, v, o) with u, v ∈ Qk−1 so that ui corre-
sponds to ei and vi corresponds to eie

′
1 for all i = 2, . . . , k. The random o-modules X ′ = Γ′

X
and Y give the same probability distribution if and only if

vi =
⟨φi, aΓ⟩

⟨φi, aΓ/Γ′⟩
ui

for all i = 2, . . . , k, where aΓ = aΓ/1 := −1 + IndΓ
1 1 is the augmentation character of the

trivial subgroup.

Proof. We will start by obtaining the formula for the probability distribution of X ′. For any
finite o-module H, we have X ′ ∼= H if and only if X ∼= eΓ/Γ′Oe′1 ⊗o H by Theorem 2.6.7.
Therefore for any two finite o-modules H1, H2, let Gi := eΓ/Γ′Oe′1 ⊗o Hi for i = 1, 2, and we
have

P(X ′ ∼= H1)

P(X ′ ∼= H2)
=

|G2|u|AuteΓ/Γ′O(G2)|
|G1|u|AuteΓ/Γ′O(G1)|

=
|G2|u|Auto(H2)|
|G1|u|Auto(H1)|

.
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Given any finite o-module H, let G := eΓ/Γ′Oe′1⊗H be the finite eΓ/Γ′O-module such that
Γ′
G ∼= H. By [14, Theorem 7.3], for each i = 2, . . . , k, there exists some finite ZS-module Gi

such that
eiG ∼= G

⟨χi,aΓ⟩
i and eie

′
1H = Γ′

(eiG) ∼= G
⟨χi,aΓ/Γ′ ⟩
i , (2.6.1)

where the isomorphisms are isomorphisms as abelian groups. We then know that

|eiG| = |eie′1H|⟨χi,aΓ⟩/⟨χi,aΓ/Γ′ ⟩. (2.6.2)

Therefore if

vi =
⟨φi, aΓ⟩

⟨φi, aΓ/Γ′⟩
ui

for all i = 2, . . . , k, then |G|u = |H|v, hence X ′ is defined the same way as Y and they give
the same probability distribution.

Conversely if X ′ and Y give the same distribution, then

|G2|u

|G1|u
=

|H2|v

|H1|v

for all finite eΓ/Γ′O-modules G1, G2 such that Hi :=
Γ′
Gi with i = 1, 2. Then the identities

(2.6.1) tell us that this condition forces

vi =
⟨φi, aΓ⟩

⟨φi, aΓ/Γ′⟩
ui

for all i = 2, . . . , k.

Definition 2.6.10. Let L/K0 be a Γ-extension and u ∈ Qm be the rank of L/K0. Then
define v ∈ Qk−1 given by the formula in Theorem 2.6.9 to be the rank of LΓ′

/K0. (In
Section 2.7 we show this does not depend on L, but only LΓ′

.)

Just like in Section 2.2, we can express |H|v in terms of the decomposition groups Γv at
infinite places v|∞.

Corollary 2.6.11. If u is given by the rank of a Γ-extension L/K0 and v the rank of LΓ′
/K0

(as given in the definition just above), then for any finite o-module H, we have

|H|v = |eΓ/Γ′Oe′1 ⊗o H|u =
∏
v|∞

|(eΓ/Γ′Oe′1 ⊗o H)Γv |

where v runs over all infinite places of K0.

Proof. This is the combination of Theorem 2.6.9 and Theorem 2.2.1.

By Theorem 2.6.9, we can always identify the random o-module Γ′
X with some random

o-module Y = Y (e′1eΓ/Γ′Q[Γ]e′1, v, o) and the Cohen-Martinet conjecture predicts ClSK are
distributed as random o-modules.
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Theorem 2.6.12. Let Γ be a finite group and Γ′ ⊆ Γ a subgroup. Assume that S only
contains good primes for eΓ/Γ′. If u is the rank of some Γ-extension L/K0, then let v be the
rank of LΓ′

/K0 (as given in the definition just above) and Y = Y (e′1eΓ/Γ′Q[Γ]e′1, v, o) be the
random finite o-module. For a non-negative function f defined on the class of isomorphism
classes of finite o-modules, the Cohen-Martinet conjecture (Conjecture 2.5.2 for f(Γ

′−) and
e = eΓ/Γ′) implies that

lim
x→∞

∑
|dL|≤x f(Cl

S
LΓ′/K0

)∑
|dL|≤x 1

= E
(
f(Y )

)
,

where the sums are over Γ-extensions L/K0 and the discriminant |dL| ≤ x and the rank of
L/K0 is u.

In particular, the results of Section 2.4 all apply here to give the moments of the predicted
distributions and see that the distributions are determined by their moments.

Remark. The probabilities in Theorem 2.6.12 are

c

|H|v|Auto(H)|

for each finite o-module H. We also see that if we want the probability of obtaining some
finite abelian group H, then the desired probability in (2.5.1) can be rewritten as a sum
over o-module structures on the finite abelian group H of the above probabilities. One could
also apply the class triples approach of Section 2.3 to obtain probabilities that are purely
inversely proportional to automorphisms of some object. Perhaps the simplest way to do
this to make a class triple from eΓ/Γ′ ClSL.

Examples

In this section, we give some examples of specific Γ and Γ′ to see what o is in that case.
Given a finite group Γ and subgroup Γ′, we define ei, χi, φi as in Theorem 2.6.9. We have
that eiQ[Γ] ≃ Mli(Di), where Di is a division algebra with center Ki, and Ki is the field
generated by the values of φi. We can decompose

aΓ/Γ′ =
k∑

i=2

aiχi.

for positive integers ai. Then we can see from the proof of Proposition 2.6.3 and a dimension
calculation using Frobenius reciprocity that

e′1eΓ/Γ′Q[Γ]e′1 ≃
k⊕

i=2

Mai(Di).

From this we conclude the following about the cases in which there is really no additional
structure by realizing the class group is an o-module.
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Proposition 2.6.13. The maximal ZS-order o in e′1eΓ/Γ′Q[Γ]e′1 is isomorphic to ZS if and
only if aΓ/Γ′ is absolutely irreducible.

Example 2.6.14 (aΓ/Γ′ multiplicity 1). So if all the ai are 1 and Di = Ki (i.e. all the Schur
indices are 1), or equivalently, every absolutely irreducible character that appears in aΓ/Γ′

appears with multiplicity 1, then by Corollary 2.6.8, we have that

o ≃
k⊕

i=2

ZKi
,

where ZKi
is the localization of the ring of algebraic integers of Ki at by the non-zero rational

integers not in S.
If in addition, all the decomposition groups Γv are trivial for a Galois Γ-extension L/K0,

then for the associated vi for L
Γ′
, we can compute using Theorem 2.6.9 that vi = rK li, where

rK is the number of infinite places of K.

Example 2.6.15 (An example on Sn). Even more specifically, we consider the case where
K/Q is a non-Galois extension whose Galois closure L/Q is a Γ = Sn-field such that K
is the fixed field of Γ′ = Sn−1 where Sn−1 ↪→ Sn in the usual way. Moreover assume that
L/Q is totally real, so u = 1 by Theorem 2.2.1. Since aΓ/Γ′ is absolutely irreducible with
aΓ/Γ′

(
23 · · · (n− 1)

)
= 1, we have

aΓ/Γ′ =
aΓ/Γ′(1)

|Γ|
(
(23 · · · (n− 1))−1 + · · ·

)
=
n− 1

n!

(
(23 · · · (n− 1))−1 + · · ·

)
.

Also, for p ∤ n!/(n− 1), one can explicitly compute eΓ/Γ′Z(p)[Γ] =Mn−1(Z(p)). Therefore p is
a good prime if and only if p ∤ n!/(n− 1). Let S be the set of good primes for eΓ/Γ′ .

By Theorem 2.6.9 we have
|H|v = |H|n−1

where n = |Γ/Γ′|, i.e., v = n − 1. In this case, o is just ZS. Hence we expect ClSK to
behave like a random abelian group without any additional structure coming from the o
action, and the predictions have each finite abelian ZS-module H appearing with probability
|H|−(n−1)|Aut(H)|−1 as ClSK .

Example 2.6.16 (An example on D4). Let Γ = D4, the dihedral group of order 8 and S
only contain odd primes. Write Γ = ⟨σ, τ⟩ with τ 2 = σ4 = 1 and τστ−1 = σ−1. Let K/Q be
a degree 4 extension with Galois closure L|Q a totally real Γ-field such that K is the fixed
field of the subgroup Γ′ = {1, τ} (so u = 1 by Theorem 2.2.1).

The character aΓ/Γ′ is of degree 3, the sum of two absolutely irreducible characters φ of
degree 1, and χ of degree 2. Let eφ, resp. eχ, be the irreducible central idempotent in Q[Γ]
associated to φ, resp. χ. The idempotents are given by

eχ =
1

8
(1 + σ2 − σ − σ3 + τ + σ2τ − στ − σ3τ) and eφ =

1

2
(1− σ2)
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and 2 is the only bad prime number for eΓ/Γ′ .
Since φ is an absolutely irreducible character of degree 1 and e′1 · eφ = eφ, we then know

that eφe
′
1o

∼= ZS. On the other hand, Frobenius reciprocity shows that dimQ e
′
1eχQ[Γ]e′1 = 1,

hence eχe
′
1o, as a maximal order in e′1eχQ[Γ]e′1, is also isomorphic to ZS. So o = Z2

S as an
algebra.

On the other hand, the normalizer of Γ′ is {1, τ, σ2, σ2τ}, i.e., there exists 2 automor-
phisms ofK/Q. In particular, the class group ClSK is not only an abelian group but an abelian
group with an order 2 automorphism, i.e., ClSK is a ZS[t]/(t

2 − 1)-module with t · x = σ2 · x.
Moreover, one can check that the ring homomorphism eΓ/Γ′e′1o → ZS[t]/(t

2 − 1) given by

eφe
′
1 7→

1

2
(1 + t) and eχe

′
1 7→

1

2
(1− t)

is an isomorphism which is compatible with the actions on class groups. So in this example,
considering the o-module structure on ClSK and the structure on ClSK from the automorphisms
of K/Q are equivalent.

We will also work out the predicted moments explicitly in this case. Let
X = (eΓ/Γ′Q[Γ], 1, eΓ/Γ′O), and let G be a finite eΓ/Γ′O-module, and H = Γ′

G. Then

E
(
|Suro(Γ

′
X,H)|

)
= E

(
|SureΓ/Γ′O(X,G)|

)
=

1

|G|u
=

1

|eφG|
1

|eχG|
.

Then using (2.6.2), we have

E
(
|Suro(Γ

′
X,H)|

)
=

1

|1+t
2
H||1−t

2
H|2

.

Example 2.6.17 (An Example on A5). This is an example where the non-Galois extension
admits no “automorphism” but the ring o is nontrivial.

Let Γ = A5. The subgroup Γ′ generated by (123) and (12)(45) is called the twisted S3 in
A5 because this subgroup is isomorphic to S3. It is a maximal proper subgroup of A5. Since
Γ is simple, this says that the normalizer of Γ′ is itself.

Now assume that K/Q is a non-Galois extension with Galois closure a Γ-field L|Q such
that K = LΓ′

. Since automorphisms of K over Q correspond to Γ′ cosets of elements σ ∈ Γ
such that σΓ′σ−1 = Γ′, then we can see that K admits no nontrivial automorphism.

The character rΓ/Γ′ is given by a Q-representation of dimension 10. By checking the
character table, Γ has 4 characters over Q. Note that there is a unit character contained
in rΓ/Γ′ . The character rΓ/Γ′ contains three different absolutely irreducible characters, say
rΓ/Γ′ = χ1 + χ2 + χ3 where χ1 is the unit character, χ2 is the character of degree 4 and χ3

is the character of degree 5. By Theorem 2.6.7, this implies that o admits two orthogonal
irreducible idempotents, hence cannot be isomorphic to ZS. By computations using Frobe-
nius reciprocity, we can see that e′1eiQ[Γ]e′1 is a one-dimensional Q-vector space where ei
is the irreducible central idempotent associated to χi, for i = 2, 3. Therefore the ring o is
isomorphic to Z2

S. Moreover, we can check that a prime number p is good for eΓ/Γ′ if and
only if p ̸= 2, 3, 5, i.e., p ∤ |Γ|. So for a set S of good primes, the class group ClSK has a
natural order 2 automorphism (from (1,−1) ∈ Z2

S) and the conjectures reflect this structure.
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2.7 Independence of Galois field

Though we imagine the reader was thinking of L as the Galois closure of K in the last two
sections, that was never strictly required. It could have also been a larger Galois extension. In
fact, we could have even considered Γ′ normal so thatK/K0 was Galois. With this realization,
we see that the Cohen-Martinet heuristics make several (infinitely many) predictions for the
averages of the the same class groups (though each prediction is with a different ordering
of the fields, since the conjectures as worded are always ordered by the discriminants of the
Galois fields). In this section, we show that all those predictions agree.

We start by showing that v does not depend on the choice of the Galois extension L/K0

containing K/K0 (see the explicit statement below). We start with a lemma, whose proof is
straightforward.

Lemma 2.7.1. If Γ′ ⊆ Γ is a normal subgroup, then e′1 is central in Q[Γ] and

(e1 + eΓ/Γ′)Q[Γ] ∼= e′1Q[Γ] ∼= Q[Γ/Γ′].

In particular, if we let ē1 be the irreducible central idempotent in Q[Γ/Γ′] associated to the
unit character of Γ/Γ′, then the maximal order o of e′1eΓ/Γ′Q[Γ] is isomorphic to a maximal
order in (1− ē1)Q[Γ/Γ′].

Theorem 2.7.2. Let K/K0 be any finite extension with Galois closure a Γ-extension L/K0

of rank u ∈ Qm−1 such that Gal(L/K) ∼= Γ. Let M |K0 be a Σ-extension of rank w ∈ Qn−1

such that L ⊆M with Gal(M |L) ∼= ∆, and Gal(M |K) ∼= Σ′. If S only contains good primes
for eΓ/Γ′ ∈ Q[Γ] and eΣ/Σ′ ∈ Q[Σ], then the rank v of LΓ′

/K0 and the rank ṽ of MΣ′ |K0 are

the same. Moreover, Γ′
(eΓ/Γ′O) is isomorphic to Σ′

(eΣ/Σ′Õ) where O, resp. Õ, is a maximal
ZS-order in Q[Γ], resp. in Q[Σ] provided that the embedding Q[Γ] → Q[Σ] defined by

γ 7→ σ
∑
δ∈∆

δ

where γ is the image of δ under the surjective map Σ → Γ, maps O into Õ.

Proof. We use E for central idempotents in Q[Σ] and e for the ones in Q[Γ]. For example

let e′1 :=
1

|Γ′|
∑

γ∈Γ′ γ, E ′
1 :=

1

|Σ′|
∑

σ∈Σ′ σ. Moreover let F1 :=
1

|∆|
∑

δ∈∆ δ. Note that

E ′
1 · F1 = F1 · E ′

1 = E ′
1. By Lemma 2.7.1, we have

E ′
1Q[Σ]E ′

1 = E ′
1F1Q[Σ]E ′

1 =
1

|Σ′|
∑
σ∈Σ′

σ ·Q[Σ/∆]E ′
1

=
1

|Σ′/∆|
∑

σ∆∈Σ′/∆

σ∆ ·Q[Σ/∆]E ′
1
∼= e′1Q[Γ]e′1

This computation shows that Γ′
(eΓ/Γ′O) is equivalent to Σ′

(eΣ/Σ′Õ), because they are both

maximal orders in e′1Q[Γ]e′1. Moreover, if the embedding Q[Γ] ↪→ Q[Σ] sends O into Õ,
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then by the isomorphism in Lemma 2.7.1 Q[Γ] ∼= (E1 + EΣ/∆)Q[Σ] which is induced by

the embedding, we know that O ∼= (E1 + EΣ/∆)Õ, hence the isomorphism Γ′
(eΓ/Γ′O) ∼=

Σ′
(eΣ/Σ′Õ).
Note that by Lemma 2.7.1, EΣ/∆Q[Σ] ∼= (1 − e1)Q[Γ], and they have same number of

irreducible components whose correspondence is given by E 7→ EF1 for all irreducible central
idempotents E ∈ Q[Σ]. Assume without loss of generality that EΣ/∆ = E2 + · · · + Em in
Q[Σ] and EiF1 = ei for all i = 2, . . . ,m.

Claim: wi = ui for all i = 2, . . . ,m. Let’s prove the claim. Let Σv ⊆ Σ be any
decomposition group of some infinite place v|∞ of K0 defined up to conjugacy. Note that
the ranks u and w do not depend on the choice of the maximal orders. We may assume
without loss of generality that EΣ/∆Õ ∼= (1− e1)O. Let G be any finite EΣ/∆Õ-module and
H the corresponding (1− e1)O-module under the isomorphism of maximal orders. Since G
is fixed by ∆, hence a Σ/∆-module, and we can take Γv to be the image of Σv under the
surjective map Σ → Γ, and obtain

|ΣvG| = |Σv∆G| = |ΓvH|.

By Theorem 2.2.1, we know that the claim is true.
Then by the interpretation of v for non-Galois case and the fact that we can choose the

maximal orders such that EΣ/∆Õ ∼= (1 − e1)O, we know that the computation of the rank
v of K/K0 can always be reduced to its Galois closure L/K0, i.e., the rank v of K/K0 is a
property of K and the distribution of the random o-module Y = (e′1eΓ/Γ′Q[Γ]e′1, v, o) does
not depend on the choice of the Galois extension M |K0 containing K.

49



50

Chapter 3

Distribution of the bad part of the
class group

3.1 Non-randomness

The term non-randomness here refers to the case where we can obtain some nontrivial ideal
classes in ClK associated to the ramified primes. There are two main reasons why we are
interested in the relation between ideal classes and ramified primes. The first one is that
we have the famous example of genus theory for quadratic number fields as in § 1.1, which
means that from the definition of a quadratic number field alone we can tell the 2-rank
of its class group. We of course want to see if this phenomena also happen when we look
at higher degree fields. The second reason is that product of ramified primes is the main
ordering we currently use for number fields. Even in the case people use some other orderings
(discriminant, conductor etc.), they are still related to ramified primes. It then makes the
results, providing nontrivial information about class groups asscociated to ramfied primes,
more valuable. For the purpose of explaining the main results in this section, we first
introduce a notion that will also be used in later sections.

Definition 3.1.1. LetK/Q be a number field, and let p, q be two rational primes. If eK(p) ≡
0 mod q, then we call p a ramified prime of type q. More generally, if eK(p) ≡ 0 mod ql for
some l ≥ 1, then we call p a ramified prime of type ql.

Because of the fundamental identity

[K : Q] =
∑

eifi

where ei is the ramification index and fi is the inertia degree for a fixed prime, we only need
to discuss ramified primes of type q for q|[K : Q].

Example 3.1.2. If K/Q is Galois itself, i.e., Gal(K/Q) ∼= Γ, then for any rational prime
p, one has pOK =

∏
i p

e. So it is just a question whether q divides the ramification index e



or not. An example would be a quadratic extension K/Q with q = 2. In this case, p is a
ramified prime of type q if and only if p is ramified in K/Q.

For non-Galois extensions, things become a little more complicated. Let K/Q be a non-
Galois cubic extension with q = 3. Then p is a ramified prime of type 3 if and only if p is
totally ramified in K/Q. Note that there are partially ramified primes for non-Galois cubic
extensions, i.e., pOK = p21p2, which are not ramified prime of type 3.

Genus theory

The goal of this section is to prove Theorem 1.1.6, by which we want to give a brief intro-
duction on genus theory for number fields focused on the structure of the genus group. The
basic question of genus theory is to find out the maximal unramified abelian extension of
a number field K obtained by composing with an absolute abelian number field k. To be
precise, we have the following definition.

Definition 3.1.3. let K/Q be a number field of degree n, and let k/Q be the maximal
abelian extension such that Kk/K is an unramified extension. We call such a field the genus
field Kk over K, and call the Galois group Gal(Kk/K) the genus group G.

Since Kk/K is an unramified abelian extension, it is a subextension of the Hilbert ex-
tension of K whose Galois group is isomorphic to the class group ClK of K, hence the genus
group is a quotient group of the class group ClK . According to Ishida [32, p.33-39], we make
a summary of the results on the genus group. Fix a rational prime q such that qt∥n with
t ≥ 1. Let A ∼= Gal(k/Q) be the Galois group of the abelian extension k/Q, and let K0 be
the intersection of k and K which is also the maximal abelian subextension of K/Q. See the
diagram for summary below.

Kk

K k

K0

Q

G

A

G

Definition 3.1.4. Let K/Q be a number field, and let p be a prime number. Let k(p) be
the unique subfield of Q(ζp) with degree gcd(p − 1, eK(p)) where ζp is a primitive pth root
of unity.

Note that k(p) is nontrivial if and only if gcd(p − 1, eK(p)) is nontrivial. Moreover the
Galois group of k(p)/Q is cyclic of order gcd(p− 1, eK(p)). The first result is to describe the
extension k/Q given the ramified primes of K/Q.
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Theorem 3.1.5. [32, Chapter IV, Theorem 3] Let K be a number field, and let k be the
abelian field such that Kk is the genus field. Let k1/Q be the composite of k(p) where p
runs through all rational prime numbers such that p ∤ eK(p), and let k2/Q be the intersection
of all inertia subfields of k at p where p runs through all rational prime numbers such that
p ∤ eK(p). Then k = k1k2 and k1 ∩ k2 = Q. In particular, A admits a subgroup

Gal(k/k2) ∼= Gal(k1/Q) ∼=
∏

p∤eK(p)

Z/ gcd(p− 1, eK(p)).

Now that we have a result on the group A, the description of G follows from
A/Gal(K0/Q) ∼= G. In the sense of estimation for rkq q

rG, we give the following statement.

Theorem 3.1.6. Let K/Q be a number field with maximal abelian subextension K0/Q. Fix
a rational prime q dividing n := [K : Q] and some integer l ≥ 1, the q-rank of the group
ql−1G admits the following inequality

rkq q
l−1G ≥ #{p is a ramified prime of type ql and p ≡ 1 mod q} − rkq Gal(K0/Q).

Remark. Theorem 1.1.6 just follows from this result. Morever we can see that if G[q∞] admits
higher torsion part, then ClK [q

∞] must also have higher torsion part. Also, if there is no prime
p|eK(p), then k2 = Q and A ∼=

∏
p∤eK(p) Z/ gcd(p− 1, eK(p)), hence G ∼=

(∏
p∤eK(p) Z/ gcd(p−

1, eK(p))
)
/Gal(K0/Q).

Example 3.1.7. Let K/Q be a non-Galois cubic field, and q equal 3. Then the requirement
gcd(p− 1, eK(p)) ≡ 0 mod 3 is equivalent to p totally ramified in K/Q and p ≡ 1 mod 3. In
other words, we have

rk3ClK ≥ #{p is a totally ramified prime and p ≡ 1 mod 3}.

This clearly generalizes genus theory for the quadratic case. See also [32, Chapter 5] for
more discussions on the case of odd prime degree.

The class rank estimate on the invariant part of the class group

In the paper of Roquette and Zassenhaus [54], there is another result on the estimate of the
q-rank of the class group with respect to ramified primes whose idea is totally different from
genus theory. As seen in previous part, what genus theory really cares about is the genus
group, which is the quotient of the class group. In this section the first goal is of course to
give the proof Theorem 3.1.11. More importantly, we want to show the construction, which
is more useful in this paper. We first need some notions to present their precise statement.

Definition 3.1.8. Let K/Q be a number field whose Galois closure is a Γ-extension L/Q.
By viewing the group of fractional ideals IK of K as a subgroup of IL, we define the
invariant part of the class group, denoted by CΓ

K , of K under the action of Γ as the image
of I Γ

L ∩ IK in ClK , i.e.,
CΓ

K := im(I Γ
L ∩ IK → ClK).
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To give a precise statement on the estimation for the invariant part CΓ
K of the class group,

we in addition need the following definition of q-radical subfields of K.

Definition 3.1.9 (q-radical subfields). LetKq be the subfield ofK generated by all elements
ξ ∈ K which are q-radicals over Q, i.e., ξq ∈ Q. Let nq = [Kq : Q] be its degree.

It is clear that nq |n, hence one has

vq(nq) ≤ vq(n).

But if one wants to ask when vq(nq) is strictly less than vq(n), then the following notation
actually gives a condition for it.

Definition 3.1.10. Define the notion δ
(q)
K to be 1 or 0 according to whether or not the

following conditions are simultaneously satisfied:

(i) q > 2;

(ii) K contains a primitive q-th root of unity ζ;

(iii) There exists some η in K∗ such that ζ−1ηq ∈ Q.

Remark. If all of the above three conditions hold, then one can show that [Kq(η) : Kq] = q
so that nq · q |n and hence vq(nq) + 1 ≤ vq(n). See [54, §6].

Using the notations introduced above, we can first state an estimation for CK due to
Roquette and Zassenhaus. Though in the paper [54], the main goal is to prove the result
for the q-rank of the class group. We here instead describe the structure of the subgroup
CΓ

K [q
∞] ⊆ ClK [q

∞], which is also due to Roquette and Zassenhauss.

Theorem 3.1.11. Let K/Q be a (not necessarily Galois) extension of degree n whose Galois
group is Γ, and let q be a given prime number, and let l ≥ 1 be an integer, then

#{p is a ramified prime of type ql} −
(
rkK +vq(nq) + δ

(q)
K

)
≤ rkq q

l−1CΓ
K ≤

#{p is a ramified prime of type ql}.

We prove the theorem by two lemmas. The first lemma gives a detailed description of
the elements in CΓ

K in the sense of fractional ideals.

Lemma 3.1.12. [54, Equation (8)] Let K/Q be a number field whose Galois closure a Γ-
extension L/Q. For each prime p, define a(p) to be the ideal such that pOK = a(p)eK(p).
Then IK ∩I Γ

L is a free abelian group generated by {a(p)}. Let Pk be the group of principal
ideals of a number field k. Then the group C̃Γ

K := IK ∩ I Γ
L /PQ is given by

C̃Γ
K
∼=
∏
p

Z/eK(p).
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The second lemma is to estimate the difference between principal ideals of K and Q.

Lemma 3.1.13. [54, Equation(11)] Let K/Q be a number field whose Galois closure a Γ-
extension L/Q, and let Pk be the group of principal ideals of a number field k. Then

rkqP
Γ
K/PQ ≤ rkK +vq(nq) + δ

(q)
K , (3.1.1)

where PΓ
K := PK ∩ I Γ

L .

Now let’s prove the theorem.

Proof of Theorem 3.1.11. It is clear that Lemma 3.1.12 gives the upper bound of rkq q
l−1CΓ

K ,
because PQ ⊆ PK . According to the short exact sequence

0 → PΓ
K/PQ → I Γ

K/PQ → CΓ
K → 0,

the inequality (3.1.1) tells us the lower bound directly.

An obvious application is to apply the theorem to the class group ClK , for C
Γ
K ⊆ ClK .

Corollary 3.1.14. Let K be a number field of degree n over Q, and let q be a prime number,
and let l ≥ 1 be an integer, then

rkq q
l−1ClK ≥ #{p is a ramified prime of type ql} −

(
rkK +vq(nq) + δ

(q)
K

)
.

Remark. One can show that the number rkK +vq(nq) + δ
(q)
K is always smaller than 2(n− 1),

i.e., the above inequality has a weaker but shorter expression

rkq q
l−1ClK ≥ #{ramified primes of type ql} − 2(n− 1),

which proves the statement of Theorem 1.1.7.

One of the advantages of this theory, as mentioned above, is that CΓ
K is a subgroup of

ClK . So, we can even try to discuss the relative class group here, i.e., for a subfield K ′ ⊆ K,
we want to give a description for CΓ

K ∩ Cl(K/K ′).

Theorem 3.1.15. Let K/Q be a number field of degree n whose Galois group is Γ. If
K ′ ⊆ K such that ql∥[K : K ′] where q is a rational prime, and l ≥ 1, then

rkq q
l−1Cl(K/K ′) ≥ #{p is a ramified prime of type ql} − 2(n− 1).

Proof. For each prime p, recall that a(p) is the ideal of K such that pOK = a(p)eK(p). We’ve
shown in Lemma 3.1.12 that a(p) is fixed by the action of Γ, viewed as an element of IL.
So, we have the following computation

NmK/K′(a(p)) = a(p)[K:K′],
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where a(p)[K:K′] is treated as an ideal of K ′. If ql|eK(p), and b(p) := (a(p))eK(p)/ql , then
NmK/K′(b(p)) becomes a power of pOK′ , hence a principal ideal of K ′. So, b(p) represents
an ideal class of Cl(K/K ′). By Lemma 3.1.12, the group CΓ

K is generated by ideals of the
form a(p), we therefore know that the subgroup BΓ

K := ⟨b(p)|p is a ramified prime of type
ql⟩/PK ⊆ CΓ

K [q] is contained in Cl(K/K ′). In particular, ⟨b(p)⟩/PQ ∼=
∏s

i=1 Z/ql, where
s = #{p is a ramified prime of type q}. Then by Lemma 3.1.13, we know that rkq PΓ

K/PQ

is bounded above by a constant rkK +vq(nq) + δ
(q)
K ≤ 2(n− 1), hence the result.

3.2 Non-random primes

In Theorem 1.1.6 and Theorem 1.1.7, we see that rkq ClK is related to ramified primes of
type q. If we fix the Galois group Γ, a question we can ask is for which primes q we can get
ramified primes of type q? In a G-extension, let’s first answer this question by the following
lemma.

Lemma 3.2.1. Let G be a finite transitive permutation group, and let q be a fixed prime.
If (K/Q, ψ) is an extension of number fields such that its Galois closure (K̂, ψ) is a G-
field and that K = K̂G1, then a prime p ∤ |G| is a ramified prime of type q if and only if
I(p) ∩ Ω(G, q∞) ̸= ∅ where I(p) is the inertia subgroup of p.

The proof comes from the relationship between the orbit sizes on an inertia generator and
the ramification indices in the factorization pOK = pe11 · · · pess . See, for example, Neukirch [46,
Definition 9.2 and Remark below] for details.

Example 3.2.2 (Counter-example). We here show an example where the prime q divides
the order of the extension K/Q but it is not a non-random prime. Consider the permutation
group G defined as the image of the following morphism A4 → S6, (12)(34) 7→ (1)(2)(34)(56),
and (123) 7→ (134)(265). In the sense of number theory, S(G) contains number fields K/Q
of degree 6, whose Galois closure K̂/Q are A4-extensions, so that the action of Gal(K̂/Q)
on K/Q induces a map A4 → S6. The stabilizer of 1 is the image of {1, (12)(34)} in this
case. One can check that the group G has no element required in Definition 1.1.8 to turn
the prime 2 into a non-random prime, despite the fact that 2 divides the order of [K : Q].
Note that according to Cohen and Martinet [14], the prime 2 is not “good”, i.e., 2 is not
good but not non-random. See also [59, §7] for details on the concept “good primes”.

Our most important goal in this section is to prove Theorem 1.1.12, which can justify
the notion non-random prime from the view of statistics. We reach the theorem in several
steps. Recall that we have the Conjectures 1.1.11 in § 1.1. Step zero is to prove the relation
between these two conjectures, i.e., Conjecture 1.1.11(1) implies Conjecture 1.1.11(2).

Lemma 3.2.3. Let G be a transitive permutation group and k be a fixed number field, and let
S := S(G, k). Let d be an invariant of number fields in S. Suppose that Ω is a (nonempty)
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subset of G that is closed under invertible powering. If for all r = 0, 1, 2, . . . , there exists
some r′ such that

N(S, d; (Ω, r);x) = o (N(S, d; (Ω, r′);x))

then for all r = 0, 1, 2, . . . , we have

N(S, d, (Ω, r);x) = o (N(S, d;x)) .

Proof. Since all fields counted by N(S, d; (Ω, r);x) and N(S, d; (Ω, r; );x) are also counted
by N(S, d;x), we have N(S, d; (Ω, r′);x) ≤ N(S, d;x). The lemma then follows.

The first step is to show that Conjecture 1.1.11(2) implies zero-probability.

Theorem 3.2.4. Let 1 ≤ G ≤ Sn be a transitive permutation group, and let S := S(G). Let
G1 ⊆ H ⊆ G, where G1 is the stabilizer of 1 that fixes K ∈ S. Let q be a non-random prime
for G such that ql∥[H : G1], where l ≥ 1, and let Ω :=

⋃∞
j=l Ω(G, q

j). Let d be an invariant
of the number fields in S. If for all r = 0, 1, 2, . . . , we have

N(S, d, (Ω, r);x) = o(N(S, d;x)),

then for all r = 0, 1, 2, . . . , we have

P(rkq ql−1Cl(K/K̂H) ≤ r) = 0,

where K runs over fields in S for the invariant d, and K̂ is the Galois closure of K.

Proof. First of all, recall that we have for all finite abelian group A and for all r = 0, 1, 2, . . . ,

1rkq≤r(A) =

{
1 if rkq A ≤ r

0 otherwise.

According to Thereom 3.1.15, if there are at least r+2n ramified primes p for K/Q contained
in the set {p ∤ |G| : I(p) ∩ Ω ̸= ∅}, then

rkq q
l−1Cl(K/K̂H) > r.

If N(S, d, (Ω, r);x) = o(N(S, d;x)) for all r, then this implies that

P(rkq ql−1Cl(K/K̂H) ≤ r) = lim
x→∞

N(S, d;1rkq≤r ◦ (ql−1Cl(K/K̂H));x)

N(S, d;x)

≤ lim
x→∞

N(S, d;
∑r+2n

i=0 1(Ω,i);x)

N(S, d;x)
= 0.

Then let’s prove that bounded probability, hence also zero-probability, implies infinite
moment.
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Theorem 3.2.5. Let 1 ≤ G ≤ Sn be a transitive permutation group, and let S := S(G). Let
G1 ⊆ H ⊆ G, where G1 is the stabilizer of 1 that fixes K ∈ S. Let d be an invariant of the
number fields in S. Let q be a rational prime and l ≥ 1 be an integer. If there exists some
constant 0 ≤ c < 1 such that for all r = 0, 1, 2, . . . , we have

P(rkq ql−1Cl(K/K̂H) ≤ r) ≤ c, then E(|Hom(ql−1Cl(K/K̂H), Cq)|) = +∞,

where K runs over fields in S for the invariant d, and K̂ is the Galois closure of K, and Cq

is the cyclic group of order q.

Proof. According to similar idea, 1rkq=r(A) to be the indicator that tells us if rkq A = r. By
definition of the Cq-moment and the probability of the q-rank, for all r ≥ 0, we have

E(|Hom(ql−1Cl(K/K̂H), Cq)|) = lim
x→∞

N(S, d; |Hom(ql−1Cl(K/K̂H), Cq)|;x)
N(S, d;x)

= lim
x→∞

∞∑
n=0

qn
N(S, d;1rkq=n ◦ (ql−1Cl(K/K̂H));x)

N(S, d;x)

≥ qr lim
x→∞

(
1−

N
(
S, d;1rkq≤r−1 ◦ (ql−1Cl(K/K̂H))

)
;x)

N(S, d;x)

)
= qr · (1− P(rkq ql−1Cl(K/K̂H) < r)) ≥ qr(1− c).

For any number N > 0, by taking a large enough r > 0, we have

E(|Hom(ql−1Cl(K/K̂H), Cq)|) > N,

hence E(|Hom(ql−1Cl(K/K̂H), Cq)|) = +∞.

In short, we can just say that whenever the Conjecture 1.1.11 holds, then we have zero-
probability and infinite moment, i.e., Theorem 1.1.12 is true. We will show in later sections
that for abelian extensions, the Conjecture 1.1.11(1) holds. Here we discuss an example
where the fields are not ordered by product of ramified primes.

Example 3.2.6 (Ordering by discriminant). Let’s consider non-Galois cubic extensions the
set S := S(S3, {1, (23)}) of K/Q. In this case we want to show that the analogous statement
of Conjecture 1.1.11(1) is false for (S; {(123), (132)}) when the fields ordered by discriminant,
despite the fact that 3 is non-random for S3.

According to the work of Bhargava, Shankar, and Tsimerman [6, Theorem 8], we know
that counting nowhere totally ramified degree 3 cubic fields will give the main term cx where
c is a nonzero constant, which is the same main term as counting all cubic fields by dis-
criminant. This already contradicts the analagous statement of Conjecture 1.1.11(2) when
ordering fields by discriminant, the weaker one. So we can conclude that when cubic fields
ordered by discriminant with non-random prime 3 is a counter-example for the analogous
result of the conjecture. On the other hand, Proposition 3.4.8 shows that, under some hy-
pothesis, Conjecture 1.1.11(2) holds for (S; {(123), (132)}). This shows that the conjecture,
and possibly the statistical behaviours of non-random primes that show qualitatively differ-
ence from good primes, are dependent on the choice of the ordering of the number fields.
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3.3 Dirichlet series and Tauberian Theorem

For the purpose of proving results on counting fields in different situations, we discuss the
analytic properties of some Dirichlet series. Let’s first present a Tauberian Theorem that is
used in the paper repeatedly.

Theorem 3.3.1 (Delange-Ikehara). [45, Appendix II Theorem I] Assume that the coefficients
of the Dirichlet series are real and non-negative, and that it converges in the half-plane σ > 1,
defining a regular function f(s). Assume, moreover, that in the same half-plane one can write

f(s) =

q∑
j=0

gj(s) log
bj

(
1

s− 1

)
(s− 1)−αj + g(s),

where functions g, g0, . . . , gq are regular in the closed half plane σ ≥ 1, the bj-s are non-
negative rational integers, α0 is a positive real number, α1, . . . , αq are complex numbers with
ℜαj < α0, and g0(1) ̸= 0.

Then for the summatory function S(x) =
∑

n<x an we have, for x tending infinity,

S(x) =

(
g0(1)

Γ(α0)
+ o(1)

)
x logα0−1 x(log log x)b0 .

If f satisfies the same assumptions, except that α0 = 0 and b0 ≥ 1, then

S(x) = (b0g0(1) + o(1))x
(log log x)b0−1

log x
.

Remark. According to the statement of Conjecture 1.1.11 and our discussion in § 3.2, for
results on asymptotics, we are focused on the comparison of the main terms. The complex
analysis metheds in number theory (like Tauberian Theorms) can give us the information of
the error term. See, for example, [58, Part II] for more details.

Let’s introduce a notion that will be used later. It is inspired by counting fields problems.

Definition 3.3.2. For a pair (q, a) of relatively prime numbers, let

P(q, a;x) := {p is a prime natural number| p ≤ x and p ≡ a mod q}.

In particular, let P(q, a) be the set of all prime natural numbers such that p ≡ a mod q.
Then define

ζ
(
q, a; s

)
=

∏
p∈P(q,a)

(1− p−s)−1

when ℜ(s) > 1.

A suitable power of the function ζ(q, a; s) admits a meromorphic extension to the closed
half plane σ ≥ 1. To prove this, we need a lemma.
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Lemma 3.3.3. There exists a holomorphic function g1(s) in the closed half plane such that∑
p

p−s = log

(
1

s− 1

)
+ g1(s).

Proof. Let ζ(s) be the Riemann zeta function. Since it admits a meromorphic extension to
the whole of the complex plane with a simple pole at s = 1, we can write it as

ζ(s) =
f0(s)

s− 1
,

with f0(s) holomorphic function on the complex plane with f0(1) = 1. By taking the
logarithm of the Euler product

∏
p(1− p−s)−1 in σ > 1, we see that

log ζ(s) =
∑
p

p−s +
∑
n≥2

1

n

∑
p

p−ns.

This shows that
∑

p p
−s is a holomorphic function in σ > 1, hence in the open half plane

σ > 1 there exists g1(s) such that∑
p

p−s = log

(
1

s− 1

)
+ g1(s),

where

eg1(s) = f0(s) · exp

(∑
n

1

n

∑
p

p−ns

)
=: f(s)

for all σ > 1. Since ζ(s) ̸= 0 for all σ ≥ 1. We then see that f0(s) ̸= 0 for all σ ≥ 1.
Therefore we can extend g1(s) to the closed half plane σ ≥ 1. To be precise, for each point
s on the line σ = 1, since f(s) ̸= 0, there exists some open neighbourhood U of s, such that
f0(U) is away from 0 so that log ◦f is well-defined and equal to g1 on U ∩ {σ > 1}. Since
the presheaf of holomorphic functions on C forms a sheaf, we can glue the local analytic
continuations together and obtain an analytic continuation for g1(s) on the closed half plane
σ ≥ 1.

Lemma 3.3.4. Let (q, a) be a pair of relatively prime numbers. The function ζ(q, a; s)ϕ(q)

admits a meromorphic continuation to the half plane σ > 1/2 with a simple pole at s = 1.
To be precise, there exists some holomorphic function f0(s) in the closed half plane σ ≥ 1
such that

ζ(q, a; s)ϕ(q) = f0(s)
1

s− 1
.

In addition, f0(s) and L(χ, s) has no zero along the line σ = 1 for all Dirichlet characters
χ.
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Proof. Let P := P(q, a) and ⟨P⟩ denote the semi-subgroup of ⟨Z>0, ·⟩ generated by P . Since∑
n≤x
n∈⟨P⟩

1

|ns|
≤
∑
n≤x

1

|ns|
,

we know that ζ(q, a; s) converges absolutely and uniformly in σ > 1+ δ for any δ > 0. Then
for any σ > 1, we have

log ζ(q, a; s) =
∑
p∈P

p−s +
1

2

∑
p∈P

p−2s + · · · .

Similarly for any Dirichet character χ mod q, we have

logL(s, χ) =
∑ χ(p)

ps
+

1

2

∑ χ(p2)

p2s
+ · · · .

Therefore

log ζ(q, a; s) =
1

ϕ(q)

∑
χ

χ(a) logL(s, χ) + g(s)

for all σ > 1, where g(s) is given by

g(s) =
∞∑
n=2

1

n

∑
p∈P

(
p−ns − 1

ϕ(q)

∑
χ

χ(a)χ(pn)p−ns

)
=

∞∑
n=2

1

n

∑
pn ̸≡a mod q

p−ns

Note that g(s) is absolutely convergent in σ > 1/2. By taking the exponent, we have

ζ(q, a; s)ϕ(q) =
∏
χ

L(s, χ)χ(a) · h(s)

where h(s) is an analytic non-vanishing function in σ > 1/2. Therefore the pole behaviour of
ζ(q, a; s) is the same as

∏
χ L(s, χ)

χ(a), hence the same as L(s, χ0) where χ0 is the principal
Dirichlet character modulo q (see for example [44, pp. 4.8, 4.9]), which concludes the proof
for the formula. For all a ∈ (Z/q)∗, write

ζ(q, a; s)ϕ(q) =
fa(s)

s− 1

for some holomorphic function fa(s) in the closed half plane σ ≥ 1, we then see that∏
p|q

(1− p−s)ϕ(q)ζ(s)ϕ(q) =
∏

a∈(Z/q)∗
ζ(q, a; s)ϕ(q)

=
∏

a∈(Z/q)∗

fa(s)

s− 1
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This shows that each fa(s) has no zero along the line σ = 1. Then by

fa(s)

s− 1
= ζ(q, a; s)ϕ(q) =

∏
χ

L(χ, s)χ̄(a) · h(s),

we see that each L(χ, s) has no zero along the line σ = 1.

Based on the above lemma, we can study the asymptotics of counting primes that are
a mod q. This result is given by the following.

Proposition 3.3.5. For a given pair of coprime numbers (q, a), one has∑
p∈P(q,a)

ϕ(q)p−s = log

(
1

s− 1

)
+ g(s)

where g0(s) is a holomorphic function in the closed half plane σ ≥ 1. Moreover, there exists
holomorphic functions f1, . . . , fr in the closed half plane σ ≥ 1 such that

∑
p1<···<pr
∈P(q,a)

ϕ(q)r(p1p2 · · · pr)−s = logr
(

1

s− 1

)
+

r∑
i=1

fi(s) log
r−i

(
1

s− 1

)
.

Proof. According to Lemma 3.3.4, L(χ, s) has no zero along the line σ = 1. If χ ̸= χ0 is not
the principal character, then one see that the formula

logL(s, χ) =
∑
p

χ(p)

ps
+
∑
n≥2

1

n

∑
p

χ(pn)

pns

first defines a holomorphic function in the open half plane σ > 1 and then extends to the
closed half plane σ ≥ 1, which serves as logL(χ, s). Therefore by summing over all the
Dirichlet characters modulo q, we obtain∑

p∈P(q,a)

ϕ(q)p−s =
∑
p

p−s + g0(s)

where g0(s) is a holomorphic function in the closed half plane σ ≥ 1. According to
Lemma 3.3.3, we see that∑

p∈P(q,a)

ϕ(q)p−s = log

(
1

s− 1

)
+ g1(s) + g0(s)

where g1(s) is a holomorphic function in the closed half plane σ ≥ 1. By taking g(s) :=
g0(s) + g1(s), we then obtain the required formula.
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The formula for
∑

p1 ̸=···̸=pr∈P(q,a) ϕ(q)
r(p1 · · · pr)−s can be obtained by induction on r. It

is clear that the statement is true for r = 1. Provided that the claim is true for 1, . . . , r.
Then by induction, one has∑

p1<···<pr+1

∈P(q,a)

ϕ(q)r+1(p1 · · · pr+1)
−s

=
r+1∑
l=1

(−1)l−1
∑

p∈P(q,a)

ϕ(q)lp−ls
∑

p1<···<pr
∈P(q,a)

ϕ(q)r+1−l(p1 · · · pr+1−l)
−s

= logr+1

(
1

s− 1

)
+ · · · .

The coefficients of logi(1/(s−1)) are all holomorphic functions in the closed half plane σ ≥ 1
by induction, for all i = 0, 1, 2, . . . , r + 1. And the proof is done by induction on r.

A result that will be used in this paper, inspired by Hardy-Littlewood Tauberian Theorem
(see for example [44, Theorem 5.7]), relates

∑
n<x an and

∑
n<x an/n. Using the identity

∞∑
n=1

ann
−s = s

∞∫
1

A(x)x−s−1 dx

for a Dirichlet series and summation by parts (see in particular [58, Theorem 0.3]), we can
prove the following statement.

Lemma 3.3.6. Let {an} be a non-negative sequence.

(i) If there exists a constant α > 0 and an integer β ≥ 0 such that∑
n<x

an = (α + o(1))x logβ x,

Then we have ∑
n<x

an
n

=

(
α

Γ(β + 2) + o(1)

)
(log x)β+1.

(ii) If there exists some integers β1 ≥ −1, β2 > 0 such that∑
n<x

an ≪ x(log x)β1(log log x)β2 ,

then ∑
n<x

an
n

≪ (log x)β1+1(log log x)β
′
2 ,

where β′
2 = β2 if β1 > −1, and β′

2 = β2 + 1 if β1 = −1.

The proof itself is left to the reader.
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3.4 Semidirect product of abelian groups

In this section we consider the following set-up. Let G := H ⋊F where H,F are both finite
abelian groups such that for each h ∈ H and g ∈ F we have

ghg−1 = ha(g,h).

For example, an abelian group G = H ⊕ F . For another example, dihedral group G = Dq

where q is an odd prime. Our first goal in this section is focused counting fields with
local specifications, i.e., give an estimate for N(S(G), P ; (Ω, r);x) where Ω is closed under
invertible powering and conjugation. Then we can try to apply the counting fields results
to different situations including abelian extensions (G = H). We make a notion at the
beginning of this section for the convenience of our discussion.

Definition 3.4.1. If g ∈ G, then define γg to be its order.

Galois theory

First of all, we take a look at Class Field Theory. Let K/Q be an abelian F -extension. Let
JK be the idèle class group of K. Let O∗

v be the units of the complete local field Kv with
v some place of K, and let O∗

K be the group of global units. For any F -module A, B, let
HomF (A,B) be the group of F -morphisms from A to B. The following short exact sequences

1 → O∗
K →

∏
v

O∗
v →

(∏
v

O∗
v

)
/O∗

K → 1

1 →
(∏

v

O∗
v

)
/O∗

K
i−→ JK → ClK → 1

where we denote the embedding (
∏

v O∗
v )/O

∗
K → JK by i, induce long exact sequences

respectively, i.e., for any F -module A, we have

0 → HomF

(
(
∏
v

O∗
v )/O

∗
K , A

)
→ HomK(

∏
v

O∗
v , A) → HomF (O

∗
K , A)

→ Ext1F

(
(
∏
v

O∗
v )/O

∗
K , A

)
→ · · ·

0 → HomF (ClK , A) → HomF (JK , A)
i∗−→ HomH

(
(
∏
v

O∗
v )/O

∗
K , A

)
→ Ext1F (ClK , A) → · · ·

(3.4.1)

Remark. The first observation is that given a set of local morphisms {ρv ∈ HomF (O∗
v , A)}v

that are trivial almost everywhere, their product ρ :=
∏

v ρv may not be extended to JK

because of global units O∗
K and Ext1F (ClK , A). Second, if there is ρ̃ ∈ HomF (ClK , A) →

HomF (JK , A) such that ρ̃ coincide with ρv on O∗
v for each v, then the number of the

preimages of ρ in HomF (JK , A) is exactly |HomF (ClK , A)|.
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Next, we give a description for the Galois action of F on the H-extensions. For a rational
prime p ∤ |G|, let sp ∈ G be the image of Frobenius (up to conjugation) and let tp ∈ G be the
generator of inertia (up to conjugation). Since sptps

−1
p = tpp, we have the following result.

Lemma 3.4.2. Let L/Q be a Galois G-extension, and let p be a rational prime such that
p ∤ |G|. Recall that for an element g ∈ G, its order is denoted by γg.

(a) If sp is not conjugate to any g ∈ F , then γtp |(p− 1);

(b) else if sp is conjugate to some g ∈ F , and gtpg
−1 = t

a(g,tp)
p , then γtp|(pγg − 1) and

p ≡ a(g, tp) mod γtp.

Inspired by the Galois action, or the twisting of F on H, we make the following notion.

Definition 3.4.3. Fix a rational prime p. Let Ω be a subset of G closed under invertible
powering and conjugation, and let Hp(Ω) be a subset of Ω constructed as follows.

(i) If h ∈ Ω\F , and γh|(p− 1), then h ∈ Hp(Ω).

(ii) If h ∈ Ω\F , and p ≡ a(g, h) mod γh for some g ∈ F , then h ∈ Hp(Ω).

Let hp(Ω) := |Hp(Ω)| denote its order.

Counting fields

We first make a notion inspired by Wood [64, Theorem 3.1]. Recall that for g ∈ G, we
denote its order by γg.

Definition 3.4.4. Let Ω be a subset of G = H ⋊ F closed under invertible powering and
conjugation. Define

β(F,Ω) :=
∑

id ̸=g∈Ω

c(g)[Q(ζγg) : Q]−1

where c(g) is the number of elements conjugate to g.

Note that the notion β(F,Ω) is always an integer. In this section, we show the following
two theorems on counting fields.

Theorem 3.4.5. Recall that G = H ⋊F such that ghg−1 = ha(g,h) for all g ∈ F and h ∈ H.

(i) Let Ω1 ⊆ H\{id} be a subset that is closed under invertible powering and conjugation.
If there exists some integer β1 such that

N(S(F ), P ; |Hom(Cl(K), H)|2;x) ≪ x(log x)β1

then

N(S(G), P ; (Ω1, r);x) ≪

{
x(log x)β(F,H\Ω1)+

1
2
β1(log log x)

1
2
(r+1) if Ω1 ̸= ∅

x(log x)β(F,H)+ 1
2
β1 Otherwise.
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(ii) Let Ω2 ⊆ G\{id} be a subset that is closed under invertible powering and conjugation
such that Ω2 ∩ F ̸= ∅. Let r = 0, 1, 2, . . . be an integer. If there exists some constant
β2, β3 such that

N(S(F ), P ; |Hom(Cl(K), H)|2 · 1(F∩Ω2,r);x) ≪ x(log x)β2(log log x)β3 ,

then

N(S(G), P ; (Ω2, r);x) ≪

{
x(log x)β(F,H\Ω2)+

1
2
β2(log log x)

1
2
(r+β3)+1 if Ω2 ∩H = ∅;

x(log x)β(F,H\Ω2)+
1
2
β2(log log x)

1
2
β3+1 otherwise.

Theorem 3.4.6. Assume that G is an abelian group. If id /∈ Ω ⊆ G is closed under invertible
powering, then for large enough r, we have

N(S(G), P ; (Ω, r);x) ≍ x(log x)β(G\Ω)−1(log log x)r if Ω ̸= G\ id

N(S(G), P ; (Ω, r);x) ≍ x

log x
(log log x)r+1 if Ω = G\ id

where f(x) ≍ g(x) means that g(x) ≪ f(x) ≪ g(x) as x→ ∞, and

β(G\Ω) :=
∑

g∈G\Ω

[Q(ζγg) : Q]−1.

Let’s first present a lemma, which is the key of the above results.

Lemma 3.4.7. Let K be a fixed F -field. Recall that G = H ⋊ F and that ghg−1 = ha(g,h)

for all g ∈ F and h ∈ H. Let 1 /∈ Ω be a subset of H closed under invertible powering and
conjugation.

(i) Let

∑
n

bn(Ω, r)n
−s :=

∏
p∤|G|

(1 + hp(H\Ω)p−s)

(
1 +

∑
p1<p2<···<pr

r∏
i=1

hpi(Ω)p
−s
i

)
.

There exists some analytic functions g0(s), . . . , gr(s), g(s) in the closed half plane
ℜ(s) ≥ 1 such that

∑
n

bn(Ω, r)n
−s =

r∑
i=0

gi(s)(s− 1)β(F,H\Ω) logr−i

(
1

s− 1

)
+ g(s).

(ii) Let h(p) := |Hom(Z∗
p|F | , G)|, and let∑

n

bn(K, (Ω, r))n
−s : = |Hom(Cl(K), H)|

∏
p| gcd(P (K),|G|)

h(p)p−s
∏

p:vp(P (K)/|G|)>0

p−s

∏
p:vp(|G|/P (K))>0

(1 + h(p)p−s)
∑
n

bn(Ω, r)n
−s.
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Then, we have ∑
n

∑
L∈S(G)

K⊆L,P (L)=n

1(Ω,r)(L)n
−s ≤

∑
n

bn(K, (Ω, r))n
−s.

Proof. First we note that Ω is not required to be a proper subset of H, i.e., Ω may be empty,
hence the result can be applied to the case when we want to estimate the counting of all
extensions L/K such that L ∈ S(G). And Ω = ∅ simply says that 1(Ω,r)(L) = 1 for all L/k
and L ∈ S(G), and that bp(Ω) = 0 for all p, and that β(F,Ω) = 0.

Second, we give the definition of product of ramified primes for a homomorphism ρ ∈
HomF (

∏
v O∗

v , H) where v runs over all places of K. For each p, let ρp ∈ Hom(
∏

v|p O∗
v , H)

be the corresponding local morphism. We define P (ρp) = p if ρp is nontrivial, and P (ρp) = 1
otherwise. Then define P (ρ) :=

∏
p P (ρp). Let L/K be an H-extension such that L ∈ S.

There exists an Artin reciprocity map ρ̃ ∈ Hom(JK , H) corresponding to L, i.e., L is the
class field of ρ̃. If ρ̃ agrees with ρ on

∏
v O∗

v , then we have

P (ρ̃) = P (ρ),

i.e., we can treat in this case P (L/K) := P (ρ̃).
Third, according to Class Field Theory (3.4.1), we have

N(HomF (JK , H), P ;1(Ω1,r);x) ≤ |Hom(ClK , H)| ·N(HomF (
∏
v

O∗
v , H), P ;1(Ω,r);x).

Hence it suffices to estimate the number of the morphisms ρ ∈ HomF (
∏

v O∗
v , H). Note that

a morphism ρ can be decomposed into local morphisms ρ =
∏

p ρp, where

ρp ∈ HomF (
∏
v|p

O∗
v , H),

and ρp is trivial for all but finitely many prime p. For each ρp, the Galois action of F says
that it is enough to consider ρv : O∗

v → H for some v|p. If p ∤ |G|, then the local morphism ρv
always factors through the group of roots of unity µ = ⟨ζ⟩ of O∗

v , hence is totally determined
by the image of the generator ζ. According to Lemma 3.4.2, for h ∈ H, if ρv(ζ) = h, then
h ∈ Hp(H). Similar results hold when we replace H by Ω ∩ H and H\Ω. So, for each
square-free n, we know that

bn(K, (Ω, r)) ≥ |{ρ : P (ρ) = n and for i = 1, 2, . . . , r,∃pi(pi|n and ρpi(ζi) ∈ Ω)}|,

where ζi ∈ O∗
vi

is a generator of the group of roots of unity and vi|pi is a place of K lying
above pi. This prove that∑

n

∑
L∈S(G)

k⊆L,P (L)=n

1(Ω,r)(L)n
−s ≤

∑
n

bn(K, (Ω, r))n
−s.
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And we are done for the proof of (ii).
Fourth, we want to give the correct analytic description and continuation of the Dirichlet

series of
∑

n bn(Ω, r)n
−s. The definition of Hp(H\Ω) means that we can classify Hp(H\Ω)

based on p ≡ a mod |F |. Recall that for an element h ∈ H we denote its order by γh. Let f
be the annihilator of F . We consider the following Euler product∑

n

b′n(Ω, r)n
−s :=

∏
id ̸=h̸∈Ω

∏
a(g,h):g∈F

ζ(γh, a(g, h); s)
∏

p1<···<pr
∈
⋃

h∈Ω P(γh,1)

ϕ(f)rp−s
1 · · · p−s

r ,

where ζ(m,n; s) =
∏

p∈P(m,n)(1− p−s)−s, and P(m,n) is the set of all primes p ≡ n mod m

for a pair of coprime number (m,n) (see also Definition 3.3.2). We can compute the order
of the pole by the following expression:∑

id ̸=h∈H\Ω

c(h)[Q(ζγh) : Q]−1 = β(F,H\Ω),

where c(h) denote the number of elements conjugate to h. So, this shows that∑
n

b′n(Ω, r)n
−s = g0(s)(s− 1)β(F,H\Ω) logr

(
1

s− 1

)
+ · · · ,

whose analytic continuation is given by Lemma 3.3.4 and Proposition 3.3.5. Then the com-
parison between

∑
n bn(Ω, r)n

−s and
∑

n b
′
n(Ω, r)n

−s finishes the proof.

Finally let’s give the proof of the theorems.

Proof of Theorem 3.4.5. Let∑
n

An(Ωi, r)n
−s :=

∑
n

∑
L∈S
P (L)=n

1(Ωi,r)(L)n
−s

where i = 1, 2, and q is a rational prime. Since the proof of each case is similar, we present
only one of them, and the rest is left to the reader.

Let Ω1 ⊆ H\{1} be a non-empty subset closed under invertible powering and conjugation.
Consider first the Dirichlet series∑

n

an(K; (Ω1, r)) :=
∑
n

∑
L∈S1
P (L)=n

1(Ω1,r)(L)n
−s.

According to Lemma 3.4.7, we know that∑
n

an(K; (Ω1, r)) ≤
∑
n

bn(K; (Ω1, r))n
−s,
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i.e., an(K; (Ω1, r)) ≤ bn(K; (Ω1, r)) for each n. Then by taking into account all quadratic
number fields, we have∑

n

An(Ω1, r)n
−s =

∑
K∈S(F )

∑
n

an(K; (Ω1, r))n
−s

≤
∑

K∈S(F )

∑
n

bn(K; (Ω1, r))n
−s =:

∑
n

Bn(Ω1, r)n
−s

Then, by Cauchy-Schwartz Inequality, we have∑
n<x

An(Ω1, r) ≤
∑
n<x

Bn(Ω1, r)

≤ hω(|G|)

 ∑
P (K)<n

|Hom(ClK , H)|2 x

P (K)

1/2(∑
n<x

(bn(Ω1, r))
2

)1/2

where h := maxp |Hom(Z∗
p|F | , G)|. By our assumption we know that∑

P (K)<n

|Hom(ClK , H)|2 x

P (K)
≪ x(log x)β1+1.

Since
∑

n<x bn(Ω1, r))
2 is the coefficient of the Euler product

∏
p

(1 + hp(H\Ω1)
2p−s)

∑
d=p1···pr

r∏
i=1

hpi(Ω1)
2p−s

i ,

we can apply Lemma 3.4.7 and Theorem 3.3.1 here, and get∑
n<x

(bn(Ω1, r))
2 ≪ x(log x)2β(F,H\Ω1)−1(log log x)r+1.

Combining all components of the inequality, and we are done for (i).

Then let’s prove Theorem 3.4.6, the Conjecture 1.1.11(1) for abelian extensions.

Proof of Theorem 3.4.6. Let β := β(G\Ω), and δ be the indicator of −1, i.e., δ(−1) = 1 and
δ(x) = 0 otherwise. Let ∑

n

an(Ω, r)n
−s :=

∑
n

∑
K∈S(G)
P (K)=n

1(Ω,r)(K)n−s.

By setting F = {id} and G = H, we see that Lemma 3.4.7 already gives an upper bound
for counting fields with local specifications (Ω, r). To be precise, we have∑

n

an(Ω, r)n
−s ≤

∑
n

bn(Q; Ω, r)n−s,
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where the Dirichlet series
∑

n bn(Q; Ω, r)n−s is given in the statement of Lemma 3.4.7. Then
the analytic continuation of

∑
n bn(Q; Ω, r)n−s, shown as in Lemma 3.4.7, together with

Tauberian Theorem 3.3.1 gives the asymptotics

N(S(G), P ; (Ω, r);x) ≪ x(log x)β−1(log log x)r+δ(β).

On the other hand, since G = H is abelian, we apply Class Field Theory here, and consider
the Dirichlet series∑

n

cn(Ω, r)n
−s :=

∏
p∤|G|

(1 + hp(G\Ω)p−s)
∑

p1<p2<···<pr

r∏
i=1

hpi(Ω)p
−s
i .

Since F = {id} in this case, the computation of hp(Ω) gives

hp(Ω) = {h ∈ Ω|h ̸= id and p ≡ 1 mod γy}.

Therefore,
∑

n cn(Ω, r)n
−s ≤

∑
n an(Ω, r)n

−s, and the analytic continuation of
∑

n cn(Ω, r)n
−s

can be obtained by comparing with∑
n

c′n(Ω, r)n
−s :=

∏
g∈G\{id}∪Ω

ζ(γg, 1; s)
∑

p1<···<pr
pi∈

⋃
g P(γg ,1)

p−s
1 · · · p−s

r ,

which is also of the form f(s)(s− 1)β(log 1
s−1

)r + · · · . So, by Tauberian Theorem 3.3.1, we
know that

N(S(G), P ; (Ω, r);x) ≫ x(log x)β−1(log log x)r+δ(β).

And we are done for the proof.

Applications

Let’s first use the following result to explain why the above discussions are useful for dihedral
extensions.

Proposition 3.4.8. Let q be an odd prime, and let Ω := Ω(Dq, q). If the Cohen-Lenstra
Heuristics hold for quadratic number fields, and

N(S(Dq), P ;x) ≫ x log x,

then, we have
N(S(Dq), P ; (Ω, r);x) = o(N(S(Dq), P ;x))

for all r = 1, 2, . . . . Also, for all r = 0, 1, 2, . . . , we have

P(rkq ClK ≤ r) = 0 and E(|Hom(ClK , Cq)|) = +∞,

where K runs over all fields in S for the product of ramified primes in K/Q.
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Proof. In this case, if we writeDq = Cq⋊C2, then Ω = Cq\{id}. Therefore, β(C2, Cq\Ω) = 0,
and the rest follows from Theorem 3.4.5, Theorem 3.2.4 and Theorem 3.2.5.

Remark. The statement itself is exactly Conjecture 1.1.11(2) for Dq-extensions. But we need
two hypothesis: the Cohen-Lenstra Heuristics for quadratic number fields and an estimate
for counting Dq-fields.

Then let’s show Theorem 1.1.13, the result of relative class groups for abelian extensions,
as promised in § 1.1.

Theorem 3.4.9. Let G be a finite abelian group with a subgroup H, and let S := S(G). If
q is a prime number such that ql∥|G/H| where l ≥ 1, then q is a non-random prime for the
quotient G/H. In addition, for all r = 0, 1, 2, . . . , we have

P(rkq ql−1Cl(K/KH) ≤ r) = 0 and E(|Hom(ql−1Cl(K/KH), Cq)|) = +∞,

where K runs over all fields in S for the product of ramified primes in K/Q.

Proof. Since ql||G|, the set Ω :=
⋃∞

i=l Ω(G, q
i) is nontrivial, where we view the abelian group

G as a transitive permutation group. This shows that q is a non-random prime for G. In
particular, Theorem 3.1.15 shows that

rkq q
l−1Cl(K/KH) ≥ #{p ∤ |G| : I(p) ∩ Ω ̸= ∅} − 2(|G| − 1),

where I(p) means the inertia subgroup of p. The set Ω is closed under invertible powering
(and conjugation), hence Theorem 3.4.6, Theorem 3.2.4 and Theorem 3.2.5 show that the
statements of zero-probability and infinite moment are true.

3.5 D4 extensions

In this section, let D4 = ⟨σ, τ |σ4 = 1 = τ 2, τ−1στ = σ3⟩ be the dihedral group of order 8.
Define S := S(D4, ⟨τ⟩), i.e., we are mainly focused on the quartic extensions whose Galois
closure are D4-fields, According to the Definition 1.1.8 of non-random primes, we also view
the groupD4 as a permutation groupD4 ↪→ S4 via the Galois action ofD4 on the embeddings
K → C where L ∈ S. The prime 2 is the only non-random prime for the permutation group
D4 by checking all elements in the form of cycles.

The distribution of ClL[2
∞] when ordered by conductor

We first introduce the definition of the conductor for a quadratic extension of a quadratic
number field, which will be used here as the invariant of the number fields.

Definition 3.5.1 (Conductor). If K is a quadratic field and L is a quadratic extension of
K, define the conductor of the pair (L,K) as

C(L,K) :=
disc(L)

disc(K)
.
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If L is a D4-field and K denotes its (unique) quadratic subfield, then C(L,K) = C(L) (the
conductor of L).

Note that this conductor given by the above formula agrees with the Artin conductor for
the irreducible 2-dimensional representation of D4, if the quartic field has D4-Galois closure.
See [1, §2.3] for details. We here follow this definition for the convenience of both computation
and generalization to other quartic fields. Recall that S = S(D4, ⟨τ⟩) = {(L, ψ)}. Note that
L admits a unique quadratic subfield K. Let q = 2, which is the only non-random prime
for (D4, ⟨τ⟩). We want to study the statistical behaviour of ClL[2

∞] where L ∈ S for the
conductor. Let’s first prove a lemma similar to [1, Lemma 5.1].

Lemma 3.5.2. For any 0 < ϵ < 1
2
, we have

∑
0<D<X
D squarefree

2ω(D)

D
·

 ∞∑
m=1

D
1
2+ϵ∑

n=1
mn ̸=□

µ(m)

m2n

(
D

mn

) = Oϵ(X),

where
( ·
·

)
means Legendre symbol here.

Proof. We follow the idea of [1, Lemma 5.1] to prove it. First of all, interchanging the order
of the sum gives

∑
0<D<X
D squarefree

2ω(D)

D

 ∞∑
m=1

D
1
2+ϵ∑

n=1
mn ̸=□

µ(m)

m2n

(
D

mn

) =
∞∑

m=1

1

m2

∑
n<X

1
2+ϵ

mn ̸=□

1

n

∑
n

2
1+2ϵ<D<X

D squarefree

2ω(D)

D

(
D

mn

)
.

(3.5.1)
Let’s focus on the n-sum and D-sum. We apply a squarefree seive to complete the D-sum.
In particular, we can rewrite (3.5.1) as

∑
n<X

1
2+ϵ

mn̸=□

1

n

( ∑
α<n

1
1+2ϵ

µ(α)

α2

∑
n

2
1+2ϵ≤α2d<X

τ(d)

d

(
α2d

mn

)

+
∑

n
1

1+2ϵ<α<X
1
2

µ(α)

α2

∑
n

2
1+2ϵ≤α2d<X

τ(d)

d

(
α2d

mn

))
,

where τ(d) is the number of positive divisors of d. For squarefree D, the notion τ(D) =
2ω(D). Note that for any nontrivial Dirichlet character χ and its associated series L(s, χ) =∑

n χ(n)n
−s, we know that L(s, χ) is a holomorphic function in the closed half plane ℜ(s) ≥

1. In particular L(1, χ) is a constant that is bounded by maxN |
∑N

n=1 χ(n)|. We may
therefore estimate the sum by Pólya-Vinogradov inequality. In particular, (3.5.1) is bounded
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by

≪
∑

n<X
1
2+ϵ

mn ̸=□

1

n

( ∑
α<n

1
1+2ϵ

1

α2

∣∣∣∣∣∣∣
∑

α−2n
2

1+2ϵ≤d<α−2X

τ(d)

d

(
α2d

mn

)∣∣∣∣∣∣∣
+

∑
n

1
1+2ϵ<α<X

1
2

1

α2

∣∣∣∣∣ ∑
d<α−2X

τ(d)

d

(
α2d

mn

)∣∣∣∣∣
)

≪
∑

n<X
1
2+ϵ

mn ̸=□

m(log n)2

n
1

1+2ϵ

≪ mX
1
2
+ϵ(logX)2

The lemma then follows from the m-sum, i.e.,

X
1
2
+ϵ(logX)2

∞∑
m=1

m−1 = o(X).

We define
N(S, C; f ;x, y) :=

∑
n<x

∑
L∈S

C(L)=n,Disc(K)<y

f(L),

where f is some function defined on S. In other words we put some restrictions on the
discriminant of K ⊆ L by this notion.

Theorem 3.5.3. Recall that S = S(D4, {1, τ}), and for each L ∈ S, let K be its unique
quadratic subfield. We have

EC(|Hom(ClL, C2)|) = +∞

where L runs over all fields in S for the conductor C.

Proof. First of all, by Theorem 3.1.11, it suffices to prove that

EC(f) = +∞

where f(L) = 2ω(Disc(K)) for each L ∈ S, because |Hom(ClL, C2)| ≥ 2−6 · f(L). Second, [1,
Lemma 4.5] gives the smooth count result, hence we are reduced to prove that

∑
[K:Q]=2
Disc(K)<y

L(1, K/Q)

L(2, K/Q)

2ω(Disc(K))

|Disc(K)|
∼ c(log y)2,
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where L(s,K/Q) =
∑

n
χK(n)
ns and χK is the quadratic character associated to K. According

to Lemma 3.5.2, we know that

∑
0<D<y
D squarefree

2ω(D)

D
·

 ∞∑
m=1

D
1
2+ϵ∑

n=1
mn ̸=□

µ(m)

m2n

(
D

mn

) = o(y),

for any 0 < ϵ < 1
2
. Then by [1, (21)], we know that

∑
[K:Q]=2
Disc(K)>0

2ω(Disc(K))

|Disc(K)|−s
·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
= ζ(2) ·

∏
p

(1 + 2p−s − 2

p2
p−s − 1

p3
).

This implies that

∑
[K:Q]=2
0<Disc(K)<y

2ω(Disc(K))

|Disc(K)|
·

∑
0<a,b<∞

(Disc(K),ab)

µ(a)

a3b2
∼ c1(log y)

2,

where c1 > 0 is a constant. Similar result holds when Disc(K) < 0. According to [1, (19)
and (20)], we finally obtain that

∑
[K:Q]=2
|Disc(K)|<y

L(1, K/Q)

L(2, K/Q)

2ω(Disc(K))

|Disc(K)|
∼ c2(log y)

2

where c2 > 0 is a constant. By [1, Lemma 4.5], we know that

N(S, C; f ;x, xβ) ∼ cx(log x)2,

where 0 < β < 2
3
. Hence we have

EC(|Hom(ClL, C2)|) ≥ 2−6EC(f) ≥ 2−6 lim
x→∞

N(S, C; f ;x, xβ)
N(S, C;x)

= +∞.

Further discussion with Malle-Bhargava Heuristics

The main topic in this section is slightly different from the previouos one. When ordered by
product of ramified primes, the Malle-Bhargava Heuristics ([41, 4, 62]) predict that

N(S, P ;x) ≫ x log3 x. (3.5.2)
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For a quartic number field L ∈ S, it admits a unique quadratic number field K. We can
first try to describe the image of ClK [2] in ClL and then prove the related statistical results.
Consider the group homomorphism

i : IK → IL

between fractional ideals. It induces a group homomorphism on the class groups ClK → ClL,
which we denote by i∗. Recall that if M is the Galois closure,

CD4
K = (IK ∩ I D4

M ) · PK/PK ,

where PK is the group of principal ideals. We already know by genus theory for quadratic
number fields that ClK [2] admits a good estimate with an algebraic expression and this result
can give an infinite moment. So, it would not be surprising that ClL[2] has similar algebraic
structure or statistical behaviour. We first give a statement explaining the relation between
ClK [2

∞] and ClL[2
∞].

Lemma 3.5.4. Let L/Q be a quartic number field with Galois D4-closure M/Q, let K be
the quadratic subfield of L, and let I(p) be the inertia subgroup of p.

(i) Let Ω1 be the set {σ, σ3, στ, σ3τ}. Then we have

|{p ̸= 2 : I(p) ∩ Ω1 ̸= ∅}| ≥ rk2 i∗C
D4
K ≥ |{p ̸= 2 : I(p) ∩ Ω1 ̸= ∅}| − 6.

(ii) Let Ω2 be the set {σ2}. Then we have

rk2C
D4
L /i∗(C

D4
K ) ≥ |{p ̸= 2 : I(p) ∩ Ω2 ̸= ∅}| − 6.

(iii) Let Ω3 be the set {σ, σ3}. Then we have

|{p ̸= 2 : I(p) ∩ Ω3 ̸= ∅}| ≥ rk2 2C
D4
L ≥ |{p ̸= 2 : I(p) ∩ Ω3 ̸= ∅}| − 6.

(iv) Let Ω4 := Ω(D4, 2
∞) = {σ, σ3, σ2, στ, σ3τ}. Then we have

rk2Cl(L/K) ≥ |{p ̸= 2 : I(p) ∩ Ω4 ̸= ∅}| − 6.

Proof. We view the group of fractional ideals IK ,IL as subgroups of IM . (i): First of all,
an odd prime p is ramified in the quadratic extension K/Q if and only if I(p) ∩ Ω1 ̸= ∅. In
other words,

CD4
K = ⟨p|p ̸= 2, I(p) ∩ Ω1 ̸= ∅⟩/PD4

K ,

where p = (pOK)
2 and PK is the group of principal ideal of K. This already gives the upper

bound of the 2-rank. It is clear that Ω1 ⊆ Ω(D4, 2
∞), i.e., i∗C

D4
K is a subgroup of CD4

L . So
the lower bound of rk2 i∗C

D4
K comes from

rk2 PL/PK ≤ rk2 PL/PQ ≤ 6
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by Lemma 3.1.13.
(ii): By comparing with the choice of Ω1, it is not hard to see that if an odd prime p

has inertia in Ω2, then this means that p is unramified in K/Q, and then prime(s) lying
above p are ramified in L/K. Whatever the specific splitting type of p is, we see that
eL(p) ≡ 0 mod 2, hence p is a ramified prime of type 2. This shows that Ω2 ⊆ Ω(D4, 2

∞),
i.e.,

⟨a(p)|p ̸= 2 and I(p) ∩ Ω2 ̸= ∅⟩/PD4
L ,

where a(p) = (pOL)
eL(p), is a subgroup of CD4

L . So, by Lemma 3.1.13 again, we obtain the
result directly.

(iii): An odd prime p has inertia in Ω3 means that it is totally ramified in L/Q. The
conclusion itself follows from Theorem 3.1.11 directly. Note that this also explains that if
we want an upper bound for rk2C

D4
L /i∗(C

D4
K ), then we can write it as

rk2C
D4
L /i∗(C

D4
K ) ≤ |{p ̸= 2 : I(p) ∩ (Ω2 ∪ Ω3) ̸= ∅}|.

(iv): This is just the application of Theorem 3.1.15 with Γ = D4 and [L : K] = 2 = q.

This lemma shows the relation between Ωi, defined in the lemma, and the different
subgroups of CD4

L . Now let’s see what happens for counting fields.

Theorem 3.5.5. Recall the definition of Ωi in the above Lemma 3.5.4, where i = 1, 2, 3, 4.
We show that

N(S, P ; (Ω1, r);x) ≪ x(log x)2x(log log x)r+1

N(S, P ; (Ω2, r);x) ≪ x(log x)7/2(log log x)
1
2
(r+1)

N(S, P ; (Ω3, r);x) ≪ x(log x)5/2(log log x)
1
2
(r+1)

N(S, P ; (Ω4, r);x) ≪ x(log x)2(log log x)
1
2
(r+1).

Proof. The proof for Ω1 and Ω4 are similar to each other. The choice of Ω1 means that if
p has inertia in Ω1 then p is ramified in the quadratic subextension K/Q of L/Q. First we
define the Dirichlet series

∑
n

ann
−s :=

∑
n

 ∑
L∈S,P (L)=n

1(Ω,r)(L)

n−s.

Given a quadratic number field K/Q of product of ramified primes P (K), we can consider
all quadratic extensions L/K to get an upper bound, that is, let∑

n

bn(K)n−s :=
∑
n

∑
P (ρ)=n

1 · n−s.

By considering the local morphisms Hom(
∏

v|p O∗
v , C2) together with their ramified primes,

we have∑
n

bn(K)n−s ≤ |Hom(ClK , C2)|2ω(P (K))+4P (K)−s(1 + 16 · 2−s)
∏
p∤d

(1 + 3p−s).
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Finally we let K runs over all quadratic number fields and define the following Dirichlet
series ∑

n

cnn
−s :=

∑
d=p1···pr

∑
P (K)=d

∑
n

bn(K)n−s.

By considering the upper bound of
∑

n cnn
−s, we have∑

n<x

cnn
−s ≤

∑
d=p1···pr

22r+5d−s(1 + 16 · 2−s)
∏
p

(1 + 3p−s)

= g(s) + g0(s) log
r

(
1

s− 1

)
(s− 1)−3 + · · ·

where g(s), g0(s), . . . are holomorphic functions in the closed half plane ℜ(s) ≥ 1 whose
existence follows from Proposition 3.3.5. Clearly,

∑
n ann

−s ≤
∑

n cnn
−s, hence by Theo-

rem 3.3.1, we have
N(S, P ; (Ω, r);x) ≪ x log2 x(log log x)r,

which is o(x log3 x).
The proof for Ω2, Ω3 are based on Theorem 3.4.5 and similar to each other, so we only

show one of them here. Recall that Ω3 = {σ, σ3}. If an odd prime p has inertia in Ω3, then
this means that p is totally ramified in L/Q where L ∈ S is the quartic number field. Let
M/Q be the Galois closure of L/Q. Instead of considering the quartic number fields L ∈ S,
we consider another quadratic subfield K1 := M ⟨σ⟩. Note that K1 is not a subfield of L. In
other words, we view D4 = C4 ⋊ C2. By Alex Smith [55], we know that Gerth’s conjecture
holds for ClK1 where K1 runs over quadratic number fields. This shows the following:

N(S(C2), P ; |Hom(ClK1 , C4)|2;x) =
∑

P (K1)<x

| Sur(ClK1 , C4)|2 +
∑

P (K1)<x

|Hom(ClK1 , 2C4)|2

≪ N(S(C2), P ; 4
ω(P (K1));x)

≪ x log3 x,

where Sur means surjective group homomorphism. In addition, C4\Ω3 = {1, σ2}. By Theo-
rem 3.4.5 with S(D4) and the given Ω3, we have β1 = 3 and β(C2, C4\Ω3) = 1. Therefore,
we have

N(S, P ; (Ω3, r);x) ≪ x log5/2 x(log log x)
1
2
(r+1).

Consequently we have the following statistical results, whose proof are just a direct
application of Theorem 3.2.4 and Theorem 3.2.5.

Corollary 3.5.6. Assume that the Malle-Bhargava Heuristics hold for N(S, P ;x), or (3.5.2)
holds, then for all r = 1, 2, 3, . . . , we have

P(rk2 i∗(ClK) ≤ r) = 0 and E(|Hom(i∗(ClK), C2)|) = +∞
P(rk2 2ClL ≤ r = 0) and E(|Hom(2ClL, C2)|) = +∞
P(rk2Cl(L/K) ≤ r = 0) and E(|Hom(Cl(L/K), C2)|) = +∞
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where L ∈ S for the product of ramified primes in L/Q and K is the quadratic subfield of L.

77



78

Bibliography

[1] Salim Ali Altug et al. The number of quartic D4-fields ordered by conductor. 2017.
arXiv: 1704.01729 [math.NT].

[2] Alex Bartel and Hendrik W Lenstra. “Commensurability of automorphism groups”.
In: Compositio Mathematica 153.2 (2017), pp. 323–346.

[3] Alex Bartel and Hendrik W Lenstra Jr. “On class groups of random number fields”.
In: Proceedings of the London Mathematical Society 121.4 (2020), pp. 927–953.

[4] Manjul Bhargava. “Mass formulae for extensions of local fields, and conjectures on the
density of number field discriminants”. English (US). In: International Mathematics
Research Notices 2007 (2007). issn: 1073-7928. doi: https://doi.org/10.1093/
imrn/rnm052.

[5] Manjul Bhargava. “The density of discriminants of quartic rings and fields”. In: Annals
of mathematics, ISSN 0003-486X, Vol. 162, Nº 2, 2005, pags. 1031-1062 162 (Sept.
2005). doi: 10.4007/annals.2005.162.1031.

[6] Manjul Bhargava, Arul Shankar, and Jacob Tsimerman. “On the Davenport–Heilbronn
theorems and second order terms”. In: Inventiones mathematicae 193.2 (2013), pp. 439–
499.

[7] Manjul Bhargava et al. “Modeling the distribution of ranks, Selmer groups, and Sha-
farevich–Tate groups of elliptic curves”. In: Cambridge Journal of Mathematics 3.3
(2015), pp. 275–321. doi: 10.4310/cjm.2015.v3.n3.a1. url: https://doi.org/10.
4310%2Fcjm.2015.v3.n3.a1.

[8] Nigel Boston and Melanie Matchett Wood. “Non-abelian Cohen–Lenstra heuristics
over function fields”. In: Compositio Mathematica 153.7 (2017), pp. 1372–1390.

[9] Gautam Chinta, Nathan Kaplan, and Shaked Koplewitz. “The cotype zeta function of
Zd”. In: arXiv: Number Theory (2017).

[10] Julien Clancy, Timothy Leake, and Sam Payne. “A note on Jacobians, Tutte polyno-
mials, and two-variable zeta functions of graphs”. In: Experimental Mathematics 24.1
(2015), pp. 1–7.

[11] Julien Clancy et al. “On a Cohen–Lenstra heuristic for Jacobians of random graphs”.
In: Journal of Algebraic Combinatorics 42.3 (2015), pp. 701–723.

https://arxiv.org/abs/1704.01729
https://doi.org/https://doi.org/10.1093/imrn/rnm052
https://doi.org/https://doi.org/10.1093/imrn/rnm052
https://doi.org/10.4007/annals.2005.162.1031
https://doi.org/10.4310/cjm.2015.v3.n3.a1
https://doi.org/10.4310%2Fcjm.2015.v3.n3.a1
https://doi.org/10.4310%2Fcjm.2015.v3.n3.a1


[12] H. Cohen and H. W. Lenstra. “Heuristics on class groups of number fields”. In: (1984).
Ed. by Hendrik Jager, pp. 33–62.

[13] Henri Cohen and Jacques Martinet. “Class groups of number fields: numerical heuris-
tics”. In: Mathematics of Computation 48.177 (1987), pp. 123–137.
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