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Abstract
HIV-associated neurocognitive disorders (HAND) remain highly prevalent in people with HIV (PWH). Studies suggested 
that certain sociodemographic factors are associated with the risk of HAND in PWH. Here we investigated the impact of 
HIV infection and demographics on functional brain networks. One run of 8.5 min resting state functional MRI (fMRI) data 
was collected from 101 PWH (41–70 years old) and 40 demographically comparable controls. Functional connectivity (FC) 
was calculated using average wavelet coherence. The impact of demographic factors on FCs was investigated using canoni-
cal correlation analysis (CCA). Wavelet coherence analysis revealed a reduced within-network connectivity in the dorsal 
somatomotor network (dSMN), along with a reduced between-network connectivity between dSMN and medial temporal 
lobe (MTL) in PWH (compared to controls). Across all participants, CCA revealed that older age and HIV infection had 
negative impacts on network connectivity measures (mainly reduced within- and between-network FCs), whereas education 
had an opposite effect. In addition, being female at birth or a member of a minority ethnic/racial group was also associated 
with network disruptions. Our data suggested that advanced age and HIV infection are risk factors for functional brain 
network disruptions, whereas higher educational attainment was linked to better preserved functional network connectivity.

Keywords  HIV · MRI · Network connectivity · Age · Education

Introduction

In the post-era of combination antiretroviral therapy (cART), 
HIV-associated neurocognitive disorders (HAND) remain 
highly prevalent and impactful in people with HIV (PWH). 
Many factors can contribute to neurocognitive impairment 
in PWH (Saylor et al. 2016), including HIV disease sever-
ity (e.g., low CD4 nadir counts (Valcour et al. 2006)) and 
comorbidities (e.g., cardiovascular disease (Wright et al. 
2010)). In addition, certain sociodemographic factors are 
associated with greater risks of neurocognitive impairment 

in PWH, including advanced age (Morgan et al. 2012) and 
lower levels of education (Bonnet et al. 2013). Neuroimag-
ing studies have shown that advanced age is associated with 
greater neural injury in PWH, including brain volume reduc-
tion (Guha et al. 2016; Saloner et al. 2019) and disruptions 
to structural and functional brain networks (Thomas et al. 
2013; Kuhn et al. 2018). However, few neuroimaging stud-
ies have investigated the impact of other sociodemographic 
factors on brain structure and function in PWH, including 
education, which, as a proxy for cognitive reserve in adults, 
is known to affect brain structure and function (EClipSE 
Collaborative Members et al. 2010).

Alterations in patterns of functional connectivity (FC), 
measured by noninvasive functional magnetic resonance 
imaging (fMRI) (especially resting state fMRI), have been 
widely used to study cognitive impairment and alterations in 
clinical populations (e.g., PWH) and nonclinical populations 
(e.g., healthy older adults) (Stam 2014). For instance, cogni-
tive aging studies have shown that advanced age is associated 
with reduced FC in several main brain networks and the reduc-
tion in FC correlates with cognitive decline (Sala-Llonch et al. 
2015). By contrast, education is shown to have an opposite 
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effect, i.e., with higher number of years of education being 
associated with higher FCs (Perry et al. 2017; Shen et al. 
2018), implicating an education-related preservation of “nor-
mal” functional network connectivity.

In HIV, several previous studies have shown that HIV infec-
tion leads to abnormalities in FC within several cortical func-
tional networks, such as the default mode network (DMN), 
control network (CON), and salience network (SAL) (Wang 
et al. 2011; Thomas et al. 2013). In addition to these cortical 
connections, recent studies found that both cortico-striatal and 
cortical-cerebellar connections play important roles in HIV 
and HAND (Ortega et al. 2015), suggesting that subcortical 
regions are as important as cortical regions and should be 
taken into account in HIV studies.

Here, we systematically investigated the effect of HIV and 
sociodemographic factors on functional brain networks, using a 
recently developed brain parcellation that characterized whole-
brain functional network organization with improved represen-
tation of subcortical regions and previously established cortical 
regions (Seitzman et al. 2020). There were two main aims:

First, we investigated whether HIV affects system-level net-
work connectivity in whole-brain functional networks using 
wavelet coherence analysis (Chang and Glover 2010; Zhang 
et al. 2016; Mohanty et al. 2020), which measures the relation-
ship between two signals in the time–frequency domain. Stud-
ies suggested that wavelet-based approaches might have the 
advantages of denoising, being robust to outliers, and captur-
ing the “true” synchronized long memory neuronal oscillations 
(Gu et al. 2015; Mohanty et al. 2020). We hypothesized that 
certain aspects/components of brain networks were disrupted 
in PWH (compared to HIV-uninfected controls).

Second, we used canonical correlation analysis (CCA) to 
quantify the multivariate association between patterns of network 
connectivity measures and demographics (including age, educa-
tion, race, sex at birth, and HIV infection). CCA is a powerful 
multivariate approach that seeks maximal correlation between 
linear combinations of variables in two different sets, i.e., func-
tional connectivity and behavioral test scores (Smith et al. 2015; 
Drysdale et al. 2017; Yu et al. 2019). A recent study used a 
combination of CCA and multimodal MRI techniques to inves-
tigate the impact of HIV on brain structure and networks (Sui 
et al. 2020). We hypothesized that both advanced age and HIV 
infection were associated with disruptions to functional brain 
networks, whereas higher educational attainment (measured as 
number of years of formal education) had an opposite effect.

Methods

Participants

Participants were recruited from the greater Washington, 
D.C., metropolitan area. One hundred and four PWH and 

forty demographically matched HIV negative controls 
were enrolled after a telephone-screening and a subse-
quent onsite-screening visit using the following criteria: 
41–70 years old; speak and understand English; more than 
7 years of education; no MRI contraindications; no illicit 
substance use within the past 3 months (mandatory urine 
toxicology test was performed during each visit); and no 
other major neurological and psychiatric disorders. The 
study protocol was approved by Georgetown University’s 
Institutional Review Board and written informed consent 
from each participant was obtained prior to enrollment. 
Three PWH were excluded from data analysis due to vis-
ible brain anomalies (n = 2) or had poor signals (n = 1, 
see below). Hence, the final dataset reported here includes 
a total of 101 PWH and 40 matched controls. Disease-
related information for the 101 PWH included: current 
CD4 count 680 (498) (median, interquartile range (IQR)); 
CD4 nadir 199, 297.25 (median, IQR); disease duration 28 
(14) years (median, IQR); 87.3% of PWH with successful 
viral suppression (plasma viral load < 50 copies/ml).

Neuropsychological testing

A neuropsychological test battery including tests of seven 
cognitive domains was administered (for details, see Yang 
et al. 2021a). For each participant, a T-score for each cog-
nitive domain was calculated separately using a norma-
tive database then a global mean T-score (GMT, a global 
cognitive measure) was obtained by averaging the T-scores 
from each of the seven domains. In addition, a global defi-
cit score (GDS) was calculated based on neuropsychologi-
cal tests (Carey et al. 2004; Blackstone et al. 2012) and the  
Lawton and Brody Activities of Daily Living (Lawton and 
Brody 1969) index was computed to diagnose HAND using 
the standard Frascati guideline (Antinori et al. 2007).

MRI acquisition and preprocessing

Structural MRI and resting-state functional MRI were 
scanned at the Center for Functional and Molecular Imag-
ing at Georgetown University Medical Center using a 3-T 
Siemens Magnetom Trio with a 12-channel head coil or 
Prisma-Fit scanner with a 20-channel head coil. As in our 
previous studies (Yang et al. 2021a), the potential effects 
of data acquisition from different scanners were controlled 
using the ComBat method (Johnson et al. 2007; Yu et al. 
2018).

High-resolution T1-weighted images were acquired with 
3D-MPRAGE using the following parameters: 1 × 1 × 1 
mm3 resolution, TR/TE = 1900/2.52 ms, flip angle = 9°, 160 
contiguous 1-mm sagittal slices, FoV = 256 × 256 matrix. 



Journal of NeuroVirology	

1 3

One run of resting state fMRI images was acquired with an 
echo-planar sequence using the following parameters: flip 
angle = 90°, TR/TE = 2040/29 ms, FoV = 64 × 64 matrix, 35 
interleaved axial slices (4 mm thick, no gap; 3.2 × 3.2mm2 
in plane resolution). There were 264 acquisitions, and the 
first 5 acquisitions were discarded to allow for magnetiza-
tion stabilization.

The Computational Anatomy Toolbox (CAT, version 
12.6) (www.​neuro.​uni-​jena.​de/​cat/) and the CONN func-
tional connectivity toolbox (https://​www.​nitrc.​org/​proje​cts/​
conn/) were used for preprocessing and analyzing structural 
and functional MRI data, respectively. Default preprocessing 
procedures in the CAT and CONN software were applied. 
Standard structural MRI preprocessing in CAT consisted of 
correction for bias-field inhomogeneities, denoising, skull-
stripping, segmentation, and corrections for partial volume 
estimation. Resting-state functional images were first pre-
processed in SPM12 (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). 
The preprocessing of functional MRI data included slice-
timing correction, realignment, coregistration to structural 
volume, normalization based on structural normalization 
parameters obtained from CAT12, outlier identification, 
and smoothing with an 8-mm FWHM. Normalized images 
were then processed following the standard CONN pipeline 
(Whitfield-Gabrieli and Nieto-Castanon 2012). The tempo-
ral processing in CONN included removal of 36 regressors 
(9 confounding factors: six movement parameters + signals 
from CSF/white matter/gray matter, as well as their tempo-
ral derivative, quadratic term, and temporal derivatives of 
each quadratic term), band passing [0.01 0.1] Hz, detrend-
ing. Instead of using global signal as a nuisance regressor, 
signals from gray matter, white matter, and CSF were each 
modeled in separate nuisance regressors in the current study.

Quality Control (QC) of MRI images

All the MRI images, including T1 images in native space, 
normalized T1 images, resting-state BOLD images in native 
space, and normalized resting-state BOLD images, were 
visually inspected by F.N.Y. A binary quality rating for 
each image was created (0: fail, 1: pass). For T1 images, 
an additional quality assurance rating generated by CAT12 
was used: the overall rating had to be higher than 3.5 (i.e., 
higher than the satisfactory quality). For resting-state BOLD 
images, maximum movement in any direction or maximum 
rotation had to be lower than 1 mm or 1° (additional scrub-
bing process was applied to volumes that did not meet 
this criterion), respectively. Two PWH participants were 
excluded due to failure to pass QC, i.e., with visible brain 
anomalies. A third PWH participant was excluded due to 
poor signal in 13 out of 300 ROIs (i.e., no GM signal in 
these ROIs).

Functional network analysis

The atlas we used has 300 functionally defined cortical, 
subcortical, and cerebellar areas (Seitzman et al. 2020). 
Functional connectivity between all pairs of regions from 
this atlas was calculated using average wavelet coherence 
(http://​grins​ted.​github.​io/​wavel​et-​coher​ence/) between 0.01 
and 0.1 Hz (Gu et al. 2015; Zhang et al. 2016; Yu et al. 
2019). We excluded 5 ROIs due to poor signal quality (i.e., 
no GM signal) and signal dropout and 12 more ROIs that 
were not assigned to a specific network, which resulted 
in 282 ROIs for the subsequent analyses. There 282 ROIs 
were grouped into 13 well-defined brain networks, including 
default mode network (DMN), visual network (VIS), fron-
toparietal network (FPN), reward network (REW), dorsal 
attention network (DAN), ventral attention network (VAN), 
salience network (SAL), cingulo opercular network (CON), 
dorsal somatomotor network (dSMN), lateral somatomotor 
network (lSMN), auditory network (AUD), parietomedial 
network (PMN), and medial temporal lobe (MTL). Within- 
and between-network connectivities were defined by previ-
ous studies (Gu et al. 2015; Yu et al. 2019). Within-network 
connectivity was calculated as the average functional con-
nectivity within all ROIs in each of 13 brain networks. Two 
types of between-network connectivity were defined as fol-
lows: pairwise between-network connectivity between all 
pairs of the 13 brain networks (average functional connec-
tivity between ROIs in one network and ROIs in another 
network), and one-versus-all-others between-network con-
nectivity between each brain network and all other brain 
networks (average functional connectivity between ROIs in 
one network and ROIs in all other networks).

Group comparisons of network connectivity

Each network connectivity (within-, one-versus-all-others-, 
and pairwise between-network connectivity) was compared 
across groups using generalized linear model (GLM) analy-
sis, adjusting for age, education, sex, and race as covari-
ates. All p values were adjusted for multiple comparisons 
(13 within-network metrics + 13 one-versus-all-others 
between-network metrics + 78 pairwise between-network 
metrics = 104 comparisons) by controlling the false discov-
ery rate (FDR).

Canonical Correlation Analysis (CCA)

To better characterize the multivariate relationship between 
demographics (including HIV infection) and network con-
nectivity, CCA was performed in the combined sample of 
PWH and controls. CCA seeks maximal correlations between 

http://www.neuro.uni-jena.de/cat/
https://www.nitrc.org/projects/conn/
https://www.nitrc.org/projects/conn/
https://www.fil.ion.ucl.ac.uk/spm/
http://grinsted.github.io/wavelet-coherence/
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combinations of variables in both sets (demographics and 
network connectivity). To reduce dimensionality, a princi-
pal component analysis (PCA) was conducted on 91 net-
work connectivity measures (13 within-network connectiv-
ity and 78 pairwise between-network connectivity) (Fig. 1). 
We chose the first 23 components that explained more than 
90% of the total variance. These 23 principal components 
of network connectivity were used as one set of variables in 
CCA. The other set consisted of each patient’s demograph-
ics, including age (years), education years, sex (1 = male at 
birth, 0 = female at birth), race (1 = African American, 0 = not 
African American), and HIV infection (1 = PWH, 0 = healthy 
controls) (similar results were found if we normalized these 
two sets of variables before running CCA). A schematic 
illustration of the CCA analysis is provided in Fig. 2. The 
CCA provided 5 pairs of modes that maximally correlated 
the network variables and the demographics. For each pair 
of CCA modes, a permutation testing procedure with 10,000 
permutations was performed to test the significance (one set 
of variables was randomly shuffled across rows, then CCA 
analysis was rerun). In addition, a more strict statistical anal-
ysis Bartlett’s χ2 statistic was performed. Only if both tests 
rejected the null hypothesis of no association at the level of 
p < 0.05, was a CCA mode pair considered significant in this 

study. Given a significant CCA mode pair, Pearson’s corre-
lations between each CCA mode and the corresponding set 
of network connectivity or demographics were performed 
(FDR-corrected for multiple comparisons). These tests were 
conducted to quantify the strength of the contribution of the 
individual network connectivity and demographics to the cor-
responding CCA mode.

Statistical analyses

The statistical analyses were conducted in SPSS 27.0 (Chi-
cago, IL), and MATLAB 2018b (Math Works, Natick, MA). 
All statistical analyses were two-tailed.

Contingency χ2 tests and ANCOVA were used to exam-
ine group differences in demographics between PWH and 
controls (see Table 1). As our sample of participants was 
predominantly African American (AA), race was defined 
as a dichotomous variable: AA (1), non-AA (0).

PCA and CCA were conducted using the functions pca 
and canoncorr in MATLAB, respectively. Point-biserial 
correlation was used to calculate associations between 
dichotomous variables and continuous variables, in a way 
similar to Pearson’s correlation.

Fig. 1   Functional connectivity (FC) of within- and between- 
networks. Network connectivity metrics, including 13 within-network  
connectivity, 78 pairwise between-network connectivity, and 13 
one-versus-all-others between-network connectivity (outlined in red 
rectangle), of A PWH and B controls. C Differences between PWH 
and controls in those 104 network connectivity measures, depicting 

as − log10(p) values. Red star represents p values that survived FDR 
correction. Red means PWH had higher network connectivity values 
than controls, while blue denotes controls had higher network con-
nectivity values than PWH. Brain regions (center MNI coordinates) 
that belong to D dSMN and E MTL, respectively
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Results

Participants

There were no significant differences in demographics, 
GDS, and GMT between PWH and controls (Table 1).

Differences of network connectivity between PWH 
and controls

Mean network connectivity in PWH and controls is shown 
in Fig. 1A, B, respectively. Overall patterns of network 
connectivity were comparable between PWH and controls 
(2d correlation coefficient = 0.948, measured by corr2 in 
MATLAB). However, PWH have decreased network con-
nectivity compared to controls in general. Specifically, 
PWH have significantly lower within-network connectiv-
ity in dSMN (F(1,135) = 13.39, p = 0.018 FDR-corrected), 
and reduced between-network connectivity in dSMN-MTL 
(F(1,135) = 13.44, p = 0.018 FDR-corrected), after controlling 
for age, education, sex, and race. Figure 1D, E depict net-
work nodes of dSMN and MTL, respectively.

In addition, both within-network connectivity in dSMN 
and between-network connectivity in dSMN-MTL were 
not significantly correlated with HIV markers (CD4 nadir, 

current CD4, and disease duration) and T-scores in seven 
cognitive domains.

Correlation patterns of network connectivity 
with demographics

To further investigate the multivariate relationship between 
network connectivity and demographics (including HIV 
infection), CCA was performed between these two sets 

Fig. 2   Schematic illustration of the CCA. First, PCA was performed 
on network connectivity matrix X (141 participants * 91 network 
connectivity measures). This resulted in network component matrix 
X2: (141 participants * 23 network components). CCA was conducted 
on X2 (141*23) and Y (141 participants * 5 demographics (includ-
ing HIV infection status, age, sex, race, and education)) by applying 

calculated weight A and B to X2 and Y, respectively. The products 
of CCA were CCA network mode V (141*5) and CCA demographic 
mode U (141*5). Only the first mode pair V1 and U1 reached statisti-
cal significance in both nonparametric tests. The scatter plot of the 
correlation between V1 and U1 is shown on the right side of this fig-
ure. V1 and U1 were highly correlated (r = 0.602, p < 1e−14)

Table 1   Demographics, GDS, and GMT of PWH and controls

Note: Data depicted as mean (standard deviation)
PWH people with HIV, n.s. non-significant, Edu education (the num-
ber of years of formal education), Sex sex at birth, AA African Ameri-
cans, GDS global deficit score, GMT global mean T-score

Demographics PWH Controls p values

Age 56.3 (6.4) 54.6 (7.1) n.s
Edu 14.3 (3.0) 14.6 (2.7) n.s
Sex (female%) 24.8% 35.0% n.s
Race (AA%) 64.4% 60.0% n.s
GDS 0.33 (0.40) 0.39 (0.47) n.s
GMT 48.84 (6.39) 49.57 (7.54) n.s
# participants 101 40
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of variables in 141 participants (101 PWH + 40 controls). 
The first CCA mode pair reached statistical significance 
under two different non-parametric tests (permutational 
p = 0.023, Bartlett’s χ2 test p = 0.021). Next, we examined 
the relationship between demographics and the identified 
demographic CCA mode. All five demographics were 
significantly correlated with the demographic mode (all 
p < 1 × 10–7, FDR-corrected, see Fig. 3A, B). The associa-
tions between 91 network connectivity measures and the 
network CCA mode were also investigated. The majority 
of network connectivity measures were negatively corre-
lated with the network CCA mode (see Fig. 3C). Seventeen 
out of 91 network connectivity measures were significantly 
correlated with the network CCA mode (p < 0.05, FDR-
corrected, see Fig. 3D), including within-network connec-
tivity in the DMN, VIS, FPN, DAN, VAN, dSMN, lSMN, 
AUD, and PMN.

To better understand the association between demo-
graphics and network connectivity, we did a post hoc 
correlation analysis between demographics and the 17 
network connectivity measures (correlation coefficients 
are depicted in Fig. 3E). In general, years of education 
and being male at birth (male at birth was coded as 1) 
were positively correlated with network connectivity, 
while age, being minority (AA was coded as 1), and 
HIV infection were negatively correlated with network 
connectivity.

Discussion

In this study, we investigated the effects of HIV and demo-
graphics on the architecture of whole-brain functional net-
works. After controlling for age, years of education, sex, 
and race, wavelet coherence analysis revealed that com-
pared to demographically comparable controls, PWH had 
lower within-network connectivity in dorsal somatosensory 
network as well as lower between-network connectivity 
(between the dorsal somatosensory network and medial tem-
poral lobe). We further explored the combined effects of 
demographics and HIV infection status on the multivariate 
patterns of network connectivity. The result suggested that 
age, being minority, being female at birth, and HIV infec-
tion might be risk factors for abnormalities in 17 functional 
network connectivity measures, while higher levels of edu-
cation might be beneficial for maintaining normal functional 
network connectivity.

Despite the fact that most PWH in the current study were 
on stable cART and had successful peripheral viral suppres-
sion and there was no difference in global cognitive function 
between PWH and controls (Table 1), disrupted network 
connectivities in dSMN and between dSMN-MTL were 
prominent in PWH. These results converge with previous 
magnetoencephalography (MEG) studies, which showed 
that PWH had decreased activity in both postcentral gyrus 
and supplementary motor area (Becker et al. 2013; Wilson 

A B E

C D

Fig. 3   Results of CCA. A Correlations between demographics and 
CCA demographic mode U1. FDR corrected p values of those corre-
lations are shown in B. Similarly, correlations between network con-
nectivity and CCA network mode V1 are shown in C. FDR-corrected 
p values of those correlations are shown in D. Green stars indicate 

p < 0.05. E Post hoc correlation between demographics and network 
connectivity. Red represents positive correlation coefficients, and blue 
denotes negative correlation coefficients. Results were based on all 
participants
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et al. 2015) (both belong to dSMN, see Fig. 1D) compared 
to controls. Furthermore, Wilson et al. (2015) reported that 
PWH had smaller left postcentral gyrus than controls, and 
more interestingly, the gray matter volume reduction in the 
left postcentral gyrus correlated with MEG anomaly (but 
only in PWH) (Wilson et al. 2015). Taken together, it is 
notable that PWH have shown various dSMN deficits using 
different imaging modalities, suggesting the neural injury to 
the dSMN might be prevalent in PWH, which in turn might 
underlie the prevalent injury in the motor and related neu-
rocognitive domains (Heaton et al. 2011). Although MTL, 
consisting of bilateral anterior hippocampus and entorhi-
nal cortex in the current study, has been involved in vari-
ous neurodegenerative diseases including HAND (Moore 
et al. 2006), few studies have investigated the association 
between dSMN and MTL. Additional studies are needed 
to further examine the role of dSMN-MTL relationship in 
HIV pathology.

Of note, previous FC studies with resting state fMRI data 
did not find an effect of HIV on the sensorimotor network 
(Thomas et al. 2013; Cole et al. 2018). Several factors might 
contribute to this discrepancy. First, the regions involved in 
the sensorimotor network in the previous studies (Thomas 
et al. 2013; Cole et al. 2018) were different from dSMN 
used in the current study, which was based on a recently 
developed brain parcellation atlas (Seitzman et al. 2020) and 
included subcortical regions (putamen and thalamus) and 
cerebellar regions (cerebellar lobes 4, 7, 8). Both subcortical 
and cerebellar structures are known to be vulnerable to HIV 
pathology (Israel et al. 2019). Second, wavelet coherence, 
instead of Pearson correlation, was used to quantify FC in 
the current study. Wavelet coherence has several benefits 
over Pearson correlation, such as robustness to outliers (Gu 
et al. 2015; Mohanty et al. 2020). Third, most PWH in the 
current study are on stable cART and virally suppressed. 
Fourth, difference in demographics among studies might 
contribute to the inconsistent findings, as suggested by the 
present study, in which we found that all four demographic 
factors had strong impacts on brain networks (Fig. 3).

The current study did not directly investigate the differ-
ence in functional connectivity between PWH with HAND 
and PWH without HAND. However, using a different 
approach (Shen et al. 2017), our previous study revealed 
that the functional connectivity associated with the right 
post-central gyrus, the right putamen, and the cerebellum 
lobe VIII may have the potential to differentiate cognitively 
impaired PWH from controls and cognitively normal PWH 
(Yang et al. 2021b). Importantly, these regions are part of 
the dSMN in the current study, providing converging evi-
dence suggesting that alterations in the dSMN may play an 
important role in HAND status.

The CCA results have several important implications. 
First, advanced age and HIV showed similar detrimental 

effects on a multivariate pattern of network connectiv-
ity, especially on within-network connectivity in DMN, 
FPN, and lSMN. This is consistent with a previous study 
that found additive effects of HIV and aging on the DMN 
(Thomas et al. 2013), suggesting that older PWH may be 
at an elevated risk of neural injury, which in turn may 
put them at a greater risk of neurocognitive impairment 
(Morgan et al. 2012). Second, we found that being female 
at birth was associated with increased network disrup-
tions in these middle- to advanced-age participants. The 
increased network disruptions might reflect/underlie the 
higher risk of cognitive impairment (Maki et al. 2018; 
Sundermann et al. 2018; Duarte et al. 2021; Liang et al. 
2021) and neural injury (Liang et al. 2021) in women with 
HIV than men with HIV. However, this result should be 
taken with caution: (i) the study sample was imbalanced 
with regard to sex at birth, with 25 female PWH versus 
76 male PWH; (ii) the small sample size might also limit 
our capability to explicitly test this prediction with PWH 
only, which produced an insignificant model. Third, the 
data suggested that being minority was associated with 
worse network disruptions, which is in line with a higher 
risk of cognitive impairment in African Americans liv-
ing with HIV (McCombe et al. 2013; Cross et al. 2013). 
The greater impairment in African Americans is likely 
due to a combination of multiple and complicated fac-
tors, including socioeconomic status (SES) (Arentoft et al. 
2015) and associated comorbidities (e.g., type 2 diabetes 
(Signorello et al. 2007))— all of them have known impacts 
on brain health and brain functions. Last but certainly not 
the least, the CCA results revealed that education acted 
in the opposite direction of age and HIV infection in 
affecting functional brain networks, with higher number 
of years of formal education associated with less disrup-
tions to the functional networks (mainly higher within- and 
between-network FCs, Fig. 3). This is in line with studies 
examining healthy adults and reporting higher educational 
achievement is beneficial for different measurements of 
functional connectivity (Marques et al. 2016; Perry et al. 
2017; Hausman et al. 2020), suggesting education might 
act as a protective factor against neural injury (i.e., disrup-
tions to functional brain networks) due to advanced age 
and HIV infection, which in turn might underlie (at least 
partially) the association between education levels and 
risks of neurocognitive impairment in PWH (Bonnet et al. 
2013). Furthermore, these data suggested that, in addition 
to using demographically comparable controls, the usage 
of covariates is justified, and the impact of covariates on 
the results should be investigated (Hyatt et al. 2020).

This study has several limitations. First, consistent with 
several other studies (e.g., Thomas et al. 2013), we also 
did not find any correlations between network connectivity 
and NP scores and HIV markers. This might be due to a 
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relatively young sample (41–70 years old) and/or relatively 
normal cognitive performance in our sample of PWH. Sec-
ond, there was a significant correlation between race and 
GMT across all participants (p = 0.0006) in this study, with 
African Americans living with HIV had lower GMT scores, 
suggesting a potential bias in study sampling. Even though 
there were no correlations between network connectivity and 
GMT scores, the difference in GMT scores might still con-
tribute to the CCA results, i.e., the observed negative impact 
of being a member of a minority ethnic/racial group on brain 
networks was driven by difference in global neurocognitive 
function in the current study sample, at least partially. Third, 
due to a small sample size with female participants and a 
lack of socioeconomic data (such as household income), we 
were not able to fully investigate the mechanisms underlying 
the association between network connectivity and race or 
sex in the present study. Future studies with a large sample 
size, more balanced participant groups (i.e., more female 
participants, and comparable global cognitive function 
between ethnic/racial groups), and detailed info on SES sta-
tus are warranted to address these questions. Fourth, PWH 
with higher educational attainment tend to have better cART 
adherence, which may lead to longer duration of successful 
viral suppression that might contribute to the impact of edu-
cation on functional connectivity in the current study. How-
ever, the current study did not have the data to accurately 
quantify the duration of viral suppression. Future studies 
with longitudinal cohorts may help to directly address this 
important question.

In summary, we found a systemic reduction in func-
tional connectivity of within- and between-networks in 
PWH (compared to controls). In addition, while advanced 
age and HIV infection negatively affected functional net-
work connectivity, the opposite relationship was identified 
for education, suggesting that higher educational attain-
ment may ameliorate the detrimental impact of age and 
HIV infection on functional brain networks.
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