
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Efficient Parallel Processing of Multimedia Applications on Multi-core Architectures

Permalink
https://escholarship.org/uc/item/6kj1v3g6

Author
Vu, Dung Tien

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kj1v3g6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Efficient Parallel Processing of Multimedia Applications on Multi-core Architectures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Dung Tien Vu

August 2014

Dissertation Committee:

Dr. Laxmi N. Bhuyan, Chairperson
Dr. Chinya V. Ravishankar
Dr. Rajiv Gupta
Dr. Walid A. Najjar

Copyright by
Dung Tien Vu

2014

The Dissertation of Dung Tien Vu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I want to thank Professor Chinya V. Ravishankar, Professor Rajiv Gupta and Profes-

sor Walid Najjar for being my committee members, and their comments contributing

to my dissertation. Especially, distinguished Professor Laxmi N. Bhuyan, my adviser

and the committee chairperson, whom I am proud of and so grateful for mentoring

my research through the years and the completion of this dissertation. I also would

like to thank Professor Vana Kalogeraki for her advising in the first years. During

that period, I have published two papers.

I want to thank Computer Science Professors at California State University, San

Bernardino, where I earned a MS degree, and support of my colleagues; Mr. Khalil

Daneshvar, Ms. Hong Cullen in this university, where I work while studying at UCR.

My grateful thanks to Professor Josephine Mendoza and Professor Arturo Concep-

cion who invited me to join their research projects at California State University, San

Bernardino. I sincerely appreciate their unquestioned confidence about my research

abilities as well as my unshakable determination in pursuing this Ph.D. endeavour.

Professor Mendoza, my MS adviser and mentor of Calstate Doctoral Incentive Pro-

gram, helps proof-read my papers and this dissertation.

I want to thank my brothers Cuong Vu, Quyet Vu, San Vu, Khue Vu, Van Vu,

and Hien Vu, whom I am always proud of, not only their achievements, but also their

caring for each others. Dr. Khue Vu, his wife, and his kids who have been with me

iv

since a night of April 1989, when we worryingly but bravely got abroad a tiny fishing

boat, with just a self-taught navigation knowledge, to sail for the first time through

the vast East Sea full of imminent dangers and inevitable misfortunes

I want to thank my wife, Thanh Hai, my staunchest supporter, who shares my

worries and difficulties, and takes good care of our children, so that I can concentrate

with my study.

I am grateful to my late beloved parents, also my teachers, who may know my

academic achievement today. Their teaching of kindness, benevolence, generosity,

self-esteem, striving, and examples of their own lives are the greatest things I have

learned from them.

v

To my beloved parents, my brothers, my family, and my Professors.

vi

ABSTRACT OF THE DISSERTATION

Efficient Parallel Processing of Multimedia Applications on Multi-core Architectures

by

Dung Tien Vu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2014

Dr. Laxmi N. Bhuyan, Chairperson

The well-known wave-front parallelization is proposed for parallel H.264/AVC video

processing. Under this approach, groups of independent macro-blocks (MBs) are si-

multaneously processed, one group after another. Barrier mechanism is employed

to synchronize processing of the independent MBs. This approach, however, has a

substantial synchronization overhead that significantly affects the throughput perfor-

mance. A novel dynamic scheduling scheme with recursive tail submit provides a good

throughput performance by exploiting macro-block level parallelism and alleviating

the synchronization overhead and thread contention. Nevertheless, it fails to achieve

an optimal performance due to the use of a global queue, and an unawareness of cache

locality of the underlying multi-core architecture. We propose a distributed dynamic

scheduling scheme that employs distributed LIFO queues, and schedules tasks in a

cache locality-aware and load-balancing fashion.

In H.264 video encoding, hierarchical search is widely proposed for the most expen-

vii

sive motion estimation. As a graphics accelerator, GPGPU is able to off-load compute

intensive functions. GPGPU is, therefore, suitable, especially with full search-based

approaches as the process can be efficiently parallelized. However, its fixed pyramid

structure lacks a mechanism to select the best multiple-candidate scheme consider-

ing diverse video encoding characteristics. We propose profiled-based fixed multiple-

candidate motion vector selection scheme, and an efficient dynamic multiple-candidate

motion vector selection scheme to dynamically select the best multiple-candidate mo-

tion vector schemes at runtime.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

2 Background 8
2.1 H.264/AVC Encoding - Decoding . 8
2.2 Parallelization Granularity . 10

2.2.1 GOP-level Parallelism . 10
2.2.2 Frame-level Parallelism . 11
2.2.3 Slice-level Parallelism . 13
2.2.4 Macro-block-level Parallelism 14

2.3 Distributed Shared Memory Architecture 15
2.4 Graphic Processing Unit (GPU) . 16

3 Related Research 19
3.1 Static Encoding Scheduling . 19

3.1.1 Wave-front Parallelization . 19
3.1.2 Barrier-based Synchronization Overhead 25
3.1.3 Related Works . 26

3.2 Dynamic Decoding Scheduling . 27
3.2.1 Global-Queue Dynamic Scheduling 27
3.2.2 Dynamic Scheduling using Recursive Tail Submit 28
3.2.3 Global Distribution Task Queue - Two Drawbacks 30
3.2.4 Related Work . 34

3.3 Motion Estimation in Video Encoding 35
3.3.1 Hierarchical Pyramid Search 35
3.3.2 GPU-based Hierarchical Search 38

ix

3.3.3 Major Drawbacks . 39
3.3.4 Related Work . 40

4 The Design of Distributed Dynamic Scheduling 44
4.1 Parallel Processing Model . 44
4.2 Multiple Distributed LIFO Task Queues 45
4.3 Distributed Dynamic Scheduling . 48

5 Parallel Encoding on Multi-core 51
5.1 The Implementation of Distributed Dynamic Scheduling 51
5.2 Performance Evaluation . 56

5.2.1 Experimental Setup . 56
5.2.2 Tail-Submit Dynamic Scheduling 57
5.2.3 Distributed Dynamic Scheduling 58
5.2.4 Load-Balancing and Utilization Performance 61

5.3 Summary . 64

6 Parallel Decoding on Multi-core 65
6.1 Evaluation of Different Dynamic Schemes 65

6.1.1 Experimental Setup . 65
6.1.2 Tail-submit Dynamic Scheduling 67
6.1.3 Simple Distributed-Queue Scheduling 67
6.1.4 Distributed Dynamic Scheduling 70
6.1.5 Load-Balancing Performance 73

6.2 Summary . 73

7 Parallel Motion Estimation on GPGPU 75
7.1 The Design of Dynamic Multi-candidate Motion-Vector Selection Scheme 75

7.1.1 Flexible Multiple-level Hierarchical Model 75
7.1.2 Computational Complexity Analysis of GPGPU-based Hierar-

chical Search . 77
7.1.3 Multi-candidate Pyramid Searches with Variable Fine-Tuning

Search Windows . 80
7.1.4 Motion Estimation Efficiency Metric 81
7.1.5 Nvida CUDA Implementation 81

7.2 Performance Evaluation . 84
7.2.1 Experiment Setup . 84
7.2.2 Verification of Computational Complexity 85
7.2.3 Motion Estimation Performance 87
7.2.4 Speedups and Motion Estimation Efficiency Gains. 89
7.2.5 Fixed Multi-candidate Scheme Selection 92
7.2.6 Dynamic Multi-candidate Scheme Selection 95

x

7.2.7 QoS Performance . 99
7.3 Summary . 100

8 Conclusion 102
8.1 Summary . 102
8.2 Future Research . 104

Bibliography 105

xi

List of Figures

2.1 A Typical H.264 Encoding. A residual MB is formed by subtracting
its original MB with a prediction created by intra or inter prediction. 9

2.2 A Typical H.264 Decoding. Decoded MB is reconstructed by adding
the decoded residual MB to the prediction MB. 9

2.3 H.264/AVC Video Data Structure. 10
2.4 Classic Prediction Structure: B frames not used as reference frame are

encoded using I(P) & P frames. The display order is from left to right,
and the decoding order is in number 12

2.5 Hierarchical Prediction Structure. After Instantaneous Decoder Re-
fresh (IDR) frame, B frames used as reference frames are decoded in
order. Display order is from left to right, and decoding order is in
number. 12

2.6 Fat-tree Hierarchical Topology of 32-core Atlix 4700 SGI Server. Each
node has 4 cores, 7.5GB of memory accessible to all 32 cores. 16

2.7 Distances Between Nodes of 32-core Atlix 4700 SGI Server. 16
2.8 GPGPU Memory Hierarchy. 17

3.1 Intra & Inter MB Dependencies. 20
3.2 MB Parallelism. Group of 3 yellow MBs of the time stamp TS5, can

be simultaneously encoded. 21
3.3 Concurrent MBs Over Time Stamp. HD(1280x720) has a maximum

independent MBs of 40. 22
3.4 Wave Front . 22
3.5 Barrier-based Synchronization Overhead. Percentages of maximum

synchronization overhead against total processing time can be as worst
as 70%. 25

3.6 Global LIFO-queue Dynamic Scheduling on 8-node 32-core SGI Server.
All cores dynamically submit and fetch MBs from a centralized global
queue at run time. 28

xii

3.7 Tail Submit. Unprocessed MB in global queue does not decrease as
decoder threads increase. 31

3.8 Undiscriminated Scheduling Scheme. Thread 4 submits MBs to distant
queue 15. 32

3.9 Normal Dynamic Scheme Outperforms Undiscriminated Dynamic Scheme. 32
3.10 Three-level Pyramid. Level 0-original resolution. Level 2-top level has

lowest resolution. 35
3.11 GPU-based Hierarchical search with Nvida’s Tesla are 50x, 20x and 10x

times faster than CPU-based full search, CPU-based pyramid search
and X264 Hexagon fast search, respectively. 38

4.1 Parallel Processing Model on a Multi-core Machine. Worker threads
update dependencies of MBs in parallel. 44

4.2 8-node 32-core SGI Server with 4-thread queue Topology. Threads 4-7
schedule MBs to any task queue, but fetch MBs from its home queue
at node 1 only. 46

4.3 Minimum Weighted-Queue-Length-based Scheduling Algorithm. . . . 48

5.1 Dual-lock Mechanism for Encoding-Decoding Task: The outer lock is
available until its queue is empty. The inner lock serializes access to its
queue. During encoding, a thread accesses its home queue only, while
during scheduling, it can also access other local queues. During the
encoding initialization, queue 0 is assigned the top-left MB while all
other queues are empty. 52

5.2 Right-First and Left-Down-First Orders Outperform wave-front Scheme. 60
5.3 8-thread queue Topology Outperforms All Other Distributed-queue

topologies. 60
5.4 Best scheme: 8-thread queue topology outperforms tail-submit schemes,

other distributed-queue topologies and wave-front scheme. 60
5.5 Wave-Front - Load is scattered all cores, inefficiently high CPU utiliza-

tion. 63
5.6 Tail Submit using Global Queue - Load is scattered to distant, high

overhead cores. 63
5.7 Distributed Dynamic Scheduling using Distributed Queues - Load is

balanced within efficient cores. 63

6.1 Tail-Submit. Righ-First Order outperforms Left-Down-First order and
global-queue dynamic scheduling base case. 66

6.2 Simple Distributed Queues: All MBs are scheduled to multi-queues. . 69
6.3 Distributed Dynamic Scheduling: distributed Queues, tail submit with

load-balancing and cache-locality awareness. 69

xiii

6.4 Best Scheme. Distributed dynamic scheme outperforms wave front and
simple distributed-queue schemes. 69

6.5 The Distributed Dynamic Scheduling: frame percentages vs. max.
MBs in queue. 72

6.6 MB Percentages Sent to Queue(s) by Tail Submit vs. Distributed
Dynamic Scheduling. 72

6.7 Relative Standard Deviation (RSD) of Thread Decoding Time. 72

7.1 Diagram of GPU-based Multi-candidate Hierarchical Search: Multiple
initial best motion vector sets are propagated and fined-tuned with FS
to the bottom level. The final ME results are obtained by GPU binary
reduction. 82

7.2 ME cost decreases as number of motion-vector candidates increases.
ME cost of schemes with the same number of motion-vectors increase
in approach A,B and C as search windows become smaller. 88

7.3 Approach A (fr = 1/2): Motion Estimation Efficiencies. 91
7.4 Approach B (fr = 3/8): Motion Estimation Efficiencies. 91
7.5 Approach C (fr = 1/4): Motion Estimation Efficiencies. 91
7.6 Equal processing times at top-level, 1st, and 2nd candidate, each ac-

counts 25% of FS. 94
7.7 Profiling graph of schemes of three approaches in speedup order. . . . 94
7.8 Linear scheme model graph is the upper bound of the best schemes

(FS,A-2,A-1,B-1,C-1). 94
7.9 The scheme selection box slides up and down to select highest possible

speedup schemes while satisfying the desired efficiency. 95
7.10 Efficiencies and number of frames selected by the dynamic selection. . 96
7.11 Fixed scheme selection can match the same efficiency of the dynamic

selection but has lower speedup. 96
7.12 Percentages of bit rate and Peak-Signal-To-Noise Ratio (PSNR) of dif-

ferent schemes with respect to the full search base case. Bit rate is
correlated with speedups, while PSNR is not much different among
the schemes. 99

xiv

List of Tables

3.1 Video Formats and Maximum Encoding Speedups 24

7.1 Percentages of Complexity and Speedups of Multi-candidate Motion
Vector Schemes with respect to FS 79

7.2 Processing Times of Top level, 1st., 2nd. and 3rd. candidate of A-3
scheme, the three-candidate motion vector scheme, match the com-
plexity analysis . 85

xv

Chapter 1

Introduction

H.264/AVC [24], the current state-of-the-art video standard is designed with out-

standing features that enhances not only video quality but also offers a high compres-

sion ratio. H.264 compression ratio is reported to be 2X higher compared with DivX

format [18]. The standard has been widely adopted in a broad range of video services

such as television broadcasting, video storage and transmission applications. How-

ever, processing of H.264/AVC video is very compute-intensive. Multi-core processing

either using multiple conventional MIMD (multiple instruction, multiple data)-based

CPU or integrated with SIMD (single instruction, multiple data)-based General Pur-

pose Graphic Processing Units (GPGPU) are the choices due to high throughput and

low latency. They are also low cost and widely available in the market. Non-uniform

memory access (NUMA) multi-core architecture [36], where shared memory is dis-

tributed among the nodes of processors, is becoming popular for its performance and

1

scalability. However, parallel video processing on this architecture is challenging due

to communication with remote memories, where data may be stored. High resolu-

tion videos (FHD, quad HD) even impose a greater challenge to parallel processing

because adding more cores would waste computing resources and degrade QoS. In

this paper we attempt to tackle those challenges with a focus on efficient processing

(encoding and decoding) through proper scheduling of tasks on the NUMA multi-core

architecture, and GPGPU as the graphics accelerators.

In H.264/AVC video processing, there are two types of decompositions, namely,

task-level and data-level decomposition. In task-level decomposition, processing func-

tions are assigned to different cores in a pipeline fashion. This decomposition type

requires significant communication exchanges between tasks. Its main drawbacks are

load imbalance and poor scalability [10, 31]. In data-level decomposition, a video

is typically partitioned into data units, each assigned to a different core. The par-

allelism can be handled at different level of granularity: group-of-pictures (GOP),

frames, slices, and macro-blocks (MB) of 16x16 display pixels. In general, more par-

allelism is available at fine granularity. In this research, we focus on MB parallelism,

the finest granularity level, to improve the processing throughput.

In MB parallelism, the popular wave front parallelization has been proposed to

simultaneously process groups of independent MBs subject to data dependency [47,

48, 16, 26, 25]. Processing of a previous MB group will resolve the dependencies

of the next MB group. However, while running this algorithm on our multi-core

2

server, we notice that the synchronization overhead limits the performance gains.

The wave front approach employs barrier mechanism to synchronize encoding among

independent MBs. Since MBs have varying processing time, threads can not complete

the processing at the same time, but must wait for each other at the barrier before

together starting processing the next MB group. In addition, larger resolution gives

rise to more iterations and more MBs per iteration. Those result in a significant

synchronization overhead. In [25], authors report the throughput of their encoder

employing wave front parallelization achieves a maximum speedup of 4X compared

with a single-thread one regardless of the number of cores employed.

Instead of using the barrier-based synchronization, we follow a dynamic approach

to execute the MBs as soon as their dependencies are resolved. The synchronization

is required only once at the end of each frame, regardless of its resolution. A tech-

nique called tail-submit dynamic scheduling has been proposed in [20], where current

threads will recursively process any ready MBs, and dispatch other ready MBs to

a shared global LIFO queue. This technique improves locality, reduces interproces-

sor communication, and hence, improve performance. Nevertheless, the tail-submit

dynamic scheduling still fails to achieve an optimal performance due to 1) the use

of a global queue, which incurs substantial contention overhead when the number of

cores increases and; 2) unawareness of cache-locality with respect to the underlying

multi-core architecture that results in unnecessary latency, communication cost and

load imbalance. In this dissertation, we propose a distributed dynamic scheduling

3

scheme that de-centralizes the global shared queue into multiple distributed LIFO

local queues deployed at processor nodes. We take advantages of hierarchical core /

cache topology of the underlying multi-core architecture while placing these queues.

Each queue is accessed by a small number of local threads. Each thread performs the

distributed dynamic scheduling to dispatch MBs to the remote queues to preserve

load-balancing and cache-locality.

In video encoding, the compression is done by compressing the residuals or the

differences between the target blocks and the most resembling blocks in previously

encoded area either in the same frame or on other frames. This processing is called

motion estimation. The most efficient one is between frames: inter-encoding, but

is also most compute expensive, which accounts for over 80% of processing time in

video encoding [6]. Among motion estimation approaches, block matching algorithms

are the most popular with diverse search approaches: full search (FS) that considers

all the possible matches within a search window, is the most accurate, but most

computationally complex. Heuristic search is faster but less accurate and, therefore,

offers less compression. Hierarchical search (HS) presented in this dissertation, is

widely considered for its low computational complexity and high efficiency. In this

approach, the original frame resolution is down-sampled into multi-resolution images

that stack as a pyramid with lowest resolution on top. A full or a heuristic search

is applied at the lowest resolution for a quick but crude motion estimate (ME). This

result then is expanded for the full resolution by propagating the initial motion vectors

4

towards the original resolution at the pyramid’s bottom level for the final ME. This

hierarchical search is also called pyramid search.

As a graphics accelerator, GPGPU embedded with hundreds of Single-Instruction

Multiple-Data (SIMD) cores, is able to off-load intensive computing of H.264 encoding

and decoding from CPU. GPGPU is suitable for the motion estimation, especially

with full search-based approaches as the process can be efficiently parallelized [6].

Multi-candidate motion vector approaches are proposed to mitigate the erroneous

estimation from the reduced resolutions. However, their fixed pyramid structure lacks

a mechanism to select the best multiple candidate scheme considering diverse video

encoding characteristics. We propose an efficient dynamic multiple candidate motion

vector selection approach to dynamically select best multiple candidate motion vector

schemes at runtime. To summarize, We make the following contributions on parallel

processing on multi-core CPU and GPGPU:

• Identify the synchronization overhead of wave front parallelization that signifi-

cantly affects the performance of video processing, and reduce CPU utilization.

• Analyze the MB parallelism, and determine the maximum processing speedup

for a video format. These speedups can be used as performance metrics to

evaluate an encoder or a decoder.

• Evaluate the access contention problem of the global shared task queue, and

also study the impact of cache locality of the underlying multi-core architecture.

5

• Propose distributed-LIFO-task-queue design for multi-core architecture to re-

duce the access-contention problem at the global task queue.

• Propose an efficient distributed dynamic scheduling scheme with cache-locality

and load-balancing awareness to dynamically dispatch MBs to distributed task

queues.

• Implement our proposed scheduling scheme on an encoder and a decoder using

OpenMP and POSIX threads on a shared memory multi-core SGI server, and

carry out extensive experiments with video benchmarks.

• Propose a flexible multiple-level hierarchical model using motion-estimation hir-

erarchical search on GPGU with variable fine-tuning search window sizes that

can increase speedups by reducing the computational complexity.

• Analyze and verify the correctness of computational complexity of the pyra-

mid search considering the number of candidates, fine-tuning search window

sizes, and hierarchical levels. The complexity analysis helps correctly deter-

mine speedups of any schemes in advance.

• Propose an important motion estimation efficiency metric that evaluates how

efficient a multiple candidate scheme is, compared with FS. A multiple candidate

scheme that may provide a substantial speedup would not be worth using if its

efficiency is insufficient.

6

• Propose profiling-based multiple candidate scheme selection, in which all pos-

sible multiple candidate schemes are profiled. A best fixed multiple candidate

scheme for a video can be selected that will achieve a highest possible speedup

and satisfy a desire efficiency.

• Propose an efficient runtime-based multiple candidate scheme selection that

dynamically selects flexible multiple candidate schemes for the next frame at

runtime based on speedup and efficiency of current scheme.

• Quantify our approach and demonstrate its performance via extensive experi-

ments on a real workload using a Nvida Telsa GPU.

The rest of this dissertation is organized as follows: Chapter 2 is on the background

of video processing and its parallelism. Chapter 3 is about related research of current

parallel video processing approach such as wave front parallelization, tail-submit dy-

namic scheduling, and their drawbacks. Chapter 4 is on design, implementation, and

evaluation of our proposed distributed dynamic scheduling on multi-core. Chapter 5

is about evaluation of our approach on parallel decoding on multi-core. Chapter 6 is

on parallel motion estimation on GPPGU employing our proposed fixed and dynamic

multiple candidate motion-vector selection, and finally, we conclude and outline the

future research in Chapter 7.

7

Chapter 2

Background

2.1 H.264/AVC Encoding - Decoding

In video encoding, the compression is executed by compressing residuals between

MBs of the target frames and that of other previously encoded MBs. During the en-

coding process, a prediction of a current MB is created using previously-coded MBs,

either from the same current frame (intra prediction), or from other previously en-

coded frames (inter prediction). The intra-prediction predicts the current MB from

surrounding pixels which are previously encoded. The inter-prediction makes the

prediction from the most resembling blocks of previously encoded frames. A residual

formed by subtracting the prediction from the current MB is further compressed with

three processes: 1) Integer transform, a Discrete Cosine Transform (DCT); 2) Quan-

tization by dividing the coefficients using an integer quantization parameter QP to

8

Figure 2.1: A Typical H.264 Encoding. A residual MB is formed by subtracting its
original MB with a prediction created by intra or inter prediction.

Form prediction

Prediction
MB

Decoded
residual MB

intra

inter

Decoded
MB

+

+

previously
decoded
frames

current
decoded
frame

inverse
Quantize
& transform

coded
stream

Entropy
decoding

Figure 2.2: A Typical H.264 Decoding. Decoded MB is reconstructed by adding the
decoded residual MB to the prediction MB.

reduce non-zero coefficients resulting in more compression; and 3) Context-Adaptive

Variable Length Coding (CAVLC), or Context-Adaptive Binary Adaptive Coding

(CABAC) to produce an efficient compact encoded bit stream, which can be stored

or transmitted. Figure 2.1 illustrates the encoding process of a typical H.264 encoder.

The decoding process is in reverse, in which the decoded residual of a macro-block

is re-created by entropy-decoding, inverse quantization and inverse transform. The

9

GOP0 GOPn
....

F0 F1 F2 Fn
....

slice0
slice1
slice2

slicen

MB0 MB1 MBn...

...

video sequence

frame

group of pictures

slice

macro-block
16x16 pixels

GOP1

Figure 2.3: H.264/AVC Video Data Structure.

decoded macro-blocks and the whole frame is reconstructed by adding the decoded

residual to the prediction MB formed either by intra or inter prediction. Figure

2.2 illustrates the decoding process of a typical H.264 decoder. With a hierarchical

data structure as depicted in Figure 2.3, H.264/AVC has potential parallelisms at

group-of-picture (GOP), frame, slice, and macro-block (MB) levels.

2.2 Parallelization Granularity

2.2.1 GOP-level Parallelism

GOP-level parallelism is coarsest-grained, in which the whole GOP consisting of

many frames, is assigned to a processing unit (PU) or core. As GOPs are independent,

they can be processed in parallel. The processing, however, requires a large number

10

of frames being ready before the processing can start. The GOP-level parallelism

needs a large memory to store frames, and incurs a long latency. It, therefore, well

matches with cluster-based servers as proposed in [13], where machines have abundant

computing resources, and video storing purposes as the latency requirements are not

critical [25]. GOP-level parallelism is not well suited for multi-core architecture [10]

and latency-constrained encoding scheme since it demands huge computing resources.

2.2.2 Frame-level Parallelism

When a video is encoded, frames are typically coded into three frame types;

intra-coded (I), inter-coded (P), and bidirectional-coded (B) frames. Among the

three types, B frame has the highest compression, followed by P and then I frame.

H.264/AVC standard offers many options to choose reference pictures used in inter-

prediction for particular usages. These options will affect compression efficiency,

delay, storage, and parallelism.

1. Base prediction structure employs I.P.P.P GOP pattern, in which there are

only I and P frames. P frame is reconstructed using one previous I or P frame

only. This structure has low compression efficiency, no parallelism. However, it

has minimum delay, and requires minimum memory storage to store reference

pictures. This structure, therefore, is mainly used in video conferences.

2. Classic prediction structure employs I.B.B.P.B.B GOP pattern as shown in

11

Figure 2.4: Classic Prediction Structure: B frames not used as reference frame are
encoded using I(P) & P frames. The display order is from left to right, and the
decoding order is in number .

Figure 2.5: Hierarchical Prediction Structure. After Instantaneous Decoder Refresh
(IDR) frame, B frames used as reference frames are decoded in order. Display order
is from left to right, and decoding order is in number.

Figure 2.4. B frames are reconstructed using previously encoded I and P frames.

This structure has better compression efficiency, but longer delay, and requires

more memory storage. Its parallelism is limited as the number of B frames

between reference frames I and P are small (maximum of 4).

3. Hierarchical prediction structure is where the B frame is also used a reference

frame. This option offers the highest compression efficiency, but causes a longer

delay and requires a large storage. Parallelism is limited since B frames must

be processed in order.

12

Even though the frame-level parallelism is limited, its frame-level load balancing

is scalable in multi-stream decoding where multiple streams are simultaneously de-

coded. Frame-based processing would be suitable with multi-core architecture since

the frame-level processing requires synchronization among processing units due to

inter-dependency among frames. Communication among processing units in multi-

core is much less compared with cluster-based approaches. Frame-based processing

requires less computing resources compared with GOP-level processing so it can be

suitable for multi-stream processing where multiple streams are simultaneously pro-

cessed. GOP-level processing, on the other hand, is suitable with cluster-based [13].

Since GOPs are independently processed (for close GOP), GOP-level processing does

not need synchronization among machines, but it needs a large memory storage, which

are more abundant in clustered-based machines.

2.2.3 Slice-level Parallelism

One of the simple ways to increase parallelism from the encoding side is to encode

frames into multiple independent slices. A decoder can thus decode slices in parallel.

and in any order as there are no dependencies across slices. This approach, however,

has the following drawbacks:

1. It increases bit rate and bandwidth. In [10], authors report that with the same

video quality, the bit rate increases up to 10%, 24%, and 34% for an increase

13

to 8, 32 and 64 slices, respectively.

2. It causes an imbalanced workload and synchronization overhead as slices may

have different processing times

3. It has fixed parallelization opportunities as decoders have no control over the

number of slices made at encoders. H.264/AVC standard allows a maximum of

16 slices in each frame that limits the slice-level parallelism. A combination of

slice level and macro-block level parallelism is employed to increase parallelism

and speedups.

2.2.4 Macro-block-level Parallelism

In macro-block parallelism, MBs as basic data units are scheduled to be simul-

taneously processed at multi-cores. MB-level parallelism is advantageous over GOP,

frame and slice-level parallelisms as it is at the finest level of granularity that provides

the highest parallelism. It is also scalable as the number of independent MBs increases

along with frame resolutions .e.g. HD(1280x720) has 40 as the maximum number of

independent MBs while FHD(1920x1080) has 60. Macro-block level parallelism can

be exploited in two scopes:

1. Intra-frame MB-level parallelism, MBs are decoded inside a frame, frame after

frame

14

2. Inter-frame MB-level parallelism, MBs across multiple frames are considered for

simultaneous processing. MBs in proceeding frames can start processing before

processing of preceding frames is completed.

The inter-frame approach is outside the scope of this dissertation. Interested read-

ers can find it in [10, 47]. Our research focuses on macro-block level parallelism. With

an efficient adaptive dynamic scheduling proposed in this research, thread synchro-

nization overhead and queue access contention can be mitigated, good load-balancing

and cache locality can be achieved.

2.3 Distributed Shared Memory Architecture

Distributed Shared Memory architecture, non-uniform memory access (NUMA),

is a memory design for multiprocessors that provides separate memory node for each

processor. Under NUMA the memory access time depends on the memory location

relative to a processor. A processor can access its own local memory faster than

non-local memory. Cache coherent cc-NUMA maintains consistent memory image

when more than one cache stores the same memory location. As a result, cc-NUMA

may perform poorly when multiple processors attempt to access the same memory

address in rapid succession [36]. Figure 2.6 shows the hierarchical topology of our

8-node cc-NUMA 32 core SGI server. Each NUMA node has two dual-core Itanium 2

Montecito processors [39]. Figure 2.7, provided by numactl –hardware Linux utility,

15

Figure 2.6: Fat-tree Hierarchical Topology of 32-core Atlix 4700 SGI Server. Each
node has 4 cores, 7.5GB of memory accessible to all 32 cores.

Figure 2.7: Distances Between Nodes of 32-core Atlix 4700 SGI Server.

shows distances among 8 nodes of the server that measures efficiency of accessing

memory referring to increased latency and lower bandwidth of off-node memory.

2.4 Graphic Processing Unit (GPU)

Recently, GPU has been highly involved to further release the computation burden

of CPU. General Purpose GPU (GPGPU) offers exciting capabilities for computation

intensive applications with large degree of data parallelism. It is designed to be a sin-

gle instruction multiple data (SIMD) processor, making it very efficient for some parts

16

Figure 2.8: GPGPU Memory Hierarchy.

of the H.264 encoding process. Compared with traditional CPU design philosophy,

GPGPU replaces the complex control logic with a large number of homogeneous cores

to exploit the thread level parallelism. Thus the number of cores inside a GPGPU

maybe in the hundreds or even thousands. Because of the architectural distinctions,

GPGPU provides tremendous computation power compared with the CPU. The basic

processing unit inside a GPGPU is a streaming processor. Depending on different

architectures, a fixed number of streaming processors forms a group called stream-

ing multiprocessor (SM) that runs the same instructions simultaneously. GPGPU

supports several types of memory for designers to optimize their programs. As the

fastest on-chip memory, registers are allocated per thread. The total number of regis-

ters for each SM is fixed. Shared memory is another efficient means for threads in the

same block to share their data at runtime. Constant memory and texture cache are

17

two read-only memory types, but the access time varies. Device memory is used for

transferring data between a device and a host. The access efficiency is low compared

with other memory types, but the size of global memory is relatively larger than

other types. CUDA (Compute Unified Device Architecture) is developed by nVidia

for high performance computation on GPGPU. It enables a CUDA-capable device

to switch from graphical mode into high performance general purpose computation

mode. After switching, the underlying hardware infrastructure remains the same,

but the hardware usages are redefined for general purpose computation. Generally,

CUDA-capable devices are connected with a host CPU, which is used for data trans-

mission and kernel invocation for CUDA devices. CUDA explores a large amount of

data parallelism inside an application and executes them simultaneously by invoking

a huge number of threads at the same time.

18

Chapter 3

Related Research

3.1 Static Encoding Scheduling

3.1.1 Wave-front Parallelization

The data dependencies of an MB with its neighboring MBs as illustrated in Figure

3.1, include intra-dependencies within a frame: a) Motion vector prediction, intra-

prediction; b) De-blocking filter dependencies; and inter-prediction dependencies are

with other reference frames. The encoding of an MB can proceed only after all data

dependencies of the MB are resolved by previously encoded MBs. When a frame is

encoded, its MBs can be encoded in a sequential raster scan order that begins from

the top-left MB, from left to right, row after row. During the encoding process, a

varying number of independent MBs can be simultaneously encoded without violat-

19

Figure 3.1: Intra & Inter MB Dependencies.

ing their dependencies. Figure 3.2 shows groups of independent MBs in diagonals,

which are assigned the same time stamps TS. Parallel scheduling can be static or

dynamic. One of the widely proposed static approaches is wave-front parallelization.

Employing wave-front approach [47, 25], groups of the independent MBs are simul-

taneously encoded, one group after another, starting from the top-left corner, and

moving towards the bottom-right corner in a wave-by-wave fashion. Barrier mecha-

nism is employed to synchronize encoding of a group of the independent MBs. During

the encoding, there is a varying number of independent MBs in diagonals that can

be simultaneously encoded without violating their dependencies. Using wave-front

parallelization [47, 25], encoding of a frame starts from the top-left MB, and spreads

in a wave-front style, towards the bottom-right MB as the last encoded. Figure 3.2

illustrates groups of independent MBs in a diagonal assigned the same time stamp

TS, e.g. TS5, TS6, . . . can be simultaneously encoded. The time stamp TS(x,y)

assigned to each MB(row,column) can be computed using Equation (3.1).

20

Figure 3.2: MB Parallelism. Group of 3 yellow MBs of the time stamp TS5, can be
simultaneously encoded.

TS(x, y) =















x if y = 0

x+ 2y if y ≥ 0

(3.1)

Number of independent MBs M(TS) that can be simultaneously processed at

each time stamp, can be calculated using Equation (3.1.1), in which Wframe, Hframe

are frame width and frame height in MBs, respectively.

M(TS) =















































⌈TS+1

2
⌉ , if TS < Wframe

⌈TS+1

2
⌉ − ⌈

TS−Wframe+1

2
⌉ , if Wframe ≤ TS < 2Hframe

⌈TS+1

2
⌉ − ⌈

TS−Wframe+1

2
⌉ , if TS ≥ 2Hframe

−⌈
TS−2Hframe+1

2
⌉

(3.2)

21

 1

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 90 100 120 140 167 180
N

um
be

r
of

 in
de

pe
nd

en
t M

B
s

Time Stamps

maximum independent MBs

Figure 3.3: Concurrent MBs Over Time Stamp. HD(1280x720) has a maximum
independent MBs of 40.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 4 8 16 24 32

S
pe

ed
up

 r
at

io
 (

tim
es

)

Number of Cores

Wave Front Parallelization

Figure 3.4: Wave Front

Figure 3.3 shows the number of independent MBs M over time stamps TS us-

ing Equation (3.1.1) for HD frame that reaches a maximum of 40. This maximum

parallelism maxM depends on frame size, and is calculated by equation (3.3).

maxM = min (⌈
Wframe

2
⌉, Hframe) (3.3)

For example, a HD(1280x720) frame is partitioned into 3600 (80x45) MBs. Using

22

Equation (3.1) the top left MB(x=0,y=0) is assigned time stamp TS = 0. The

bottom right MB(79,44) is given a latest TS = 167. Assuming each MB had a fixed

processing time, the encoding would sequentially take 3600 time units. However, it

takes only 168 (167+1) time units when all independent MBs of the same time stamp

are simultaneously encoded. These time units are also the maximum synchronization

iterations maxSync that occur and can be calculated using Equation (3.4)

maxSync = Wframe + 2(Hframe − 1) (3.4)

The theoretical MB parallelism speedup S for the HD frame is 21.43 (3600/168)

(assume there are enough cores to simultaneously encode all the independent MBs).

The parallelism speedup S can be computed by Equation (3.5).

S =
Wframe ∗Hframe

Wframe + 2(Hframe − 1)
(3.5)

Assuming encoding functions, which can be parallelized with MB-level paral-

lelism, can account for 96.8% of the total encoding time [16], the maximum encoding

speedups E can be achieved using Amdahl’s law in Equation (3.6)

E =
1

(1− P) + P
S

(3.6)

In Equation (3.6), P = 0.968 is the total processing portion that can be paral-

23

lelized, S is the speedup of the portion P . A maximum utilization U corresponding

to the maximum speedup is computed by Equation (3.7)

U ≈
2 ∗Hframe

Wframe + 2(Hframe − 1)
(3.7)

Table 3.1 shows the theoretical MB-parallelism speedups S, maximum encoding

speedups E, and maximum CPU utilization for standard definition (SD), high def-

inition (HD), full HD (FHD), Quad FHD (QFHD). These speedups E can be used

as performance metrics to evaluate throughput performance of an encoder. With

a corresponding parallelizable portions P for decoding, we can establish maximum

decoding speedups D to evaluate the performance of a video decoder.

Table 3.1: Video Formats and Maximum Encoding Speedups

Video
formats

Resolutions
(pixels)

Macro-
blocks

Max in-
depen-
dent
MBs

Theore.
Parallel.
Speed-up
S

Max.
Encode
Speed-
ups E

Max
CPU
Uti-
lization
U

SD 720x576 45x36 23 14.08 9.92 62.61
HD 1280x720 80x45 40 21.43 12.96 53.57
FHD 1920x1080 120x68 60 32.13 16.09 53.54
QFHD 3840x2160 240x135 120 63.78 21.20 53.15
UHD 7680x4320 480x320 240 127.31 25.25 57.25

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 24 32

S
yn

cr
on

iz
at

io
n

O
ve

rh
ea

d
(%

)

Number of Cores

HD(1280x720)

Figure 3.5: Barrier-based Synchronization Overhead. Percentages of maximum synchro-
nization overhead against total processing time can be as worst as 70%.

3.1.2 Barrier-based Synchronization Overhead

Experimenting on the encoder [25] employing wave-front algorithm on a 32-core

cc-NUMA SGI server, We identified a major drawback of a scalable synchronization

overhead. The reason is that the Wave-front parallelization employs barrier-based

synchronization mechanism to synchronize processing of groups of the independent

MBs. The speedups would reach the maximum speedups shown in Table 3.1 if all

the independent MBs, or at least between the barriers, had the same processing time.

However, in reality, due to varying MB processing time, all encoding threads must

wait for each other at the barrier before starting a next processing wave. This causes a

substantial synchronization overhead that significantly affects the performance. Fig-

ure 3.5 shows percentages of maximum synchronization overhead over processing time

of HD (1280x720) video that could reach 70%. Results in [25] and our experiments

shows the throughput of wave-front static scheduling is saturated at 16 cores. In [16],

25

authors report that barrier-based synchronization overhead accounts for 42% of the

total encoding time. Larger video resolution has more synchronization iterations, e.g.

168 and 254 times using Equation (3.4) for each HD and FHD frame, respectively.

In addition, load balancing among cores and the underlying cache/core topology of

multi-core architecture are not considered.

3.1.3 Related Works

Macro-blocks parallelism has been extensively studied in the literature, and pro-

posed for parallel video processing. In [31] Van der Tol et al. analyze advantages

of processing decomposition at data-level over function-level. The function or task-

level decomposition incurs a significant communication overhead, and load-imbalance

among tasks while data decomposition inherently results poor data locality, and low

scalability without code re-writing. As a basic processing block in video’s hierarchical

structure, MB-level parallelism is proposed for its highest parallelism.

Macro-blocks parallelism can be conducted by static or dynamic scheduling ap-

proaches. In static approaches, the popular wave-front parallelization is proposed to

process independent MBs on diagonals in parallel. In [47, 48], Zhuo et al. propose

wave-front parallelization to encode multiple video frames together as the indepen-

dent MBs can be processed in parallel across multiple frames.

In [16], Seongmin et al propose an analytical model to estimate the H.264 encod-

ing performance on embedded multi-core using OpenMP programming model. The

26

results show data-level parallelism using wave-front parallelization is more efficient

than task-level’s by 41%. The authors also observe that load-balancing is a critical

factor on encoding scalability.

In [26], Seitner et al. employ simulation to evaluate different parallel decoding

approaches at MB level. Their static scheduling splits frames into groups of MBs and

attempt to process them simultaneously.

In [25] A. Rodriguez et. al propose p264, an open platform to design a parallel

encoder. wave-front parallelization achieves a maximum speedup of 4X. The authors

report that combined slice and macro-block parallelism can increase the speedups up

to 7X. Still based on wave-front parallelization approach, the speedup is limited due

to the synchronization overhead. Furthermore, load balancing and the underlying

cache/core topology are not considered.

3.2 Dynamic Decoding Scheduling

3.2.1 Global-Queue Dynamic Scheduling

In dynamic scheduling, the MB data dependencies are simply monitored and up-

dated at each individual MB. As soon as the dependencies of an MB are resolved

by the current processing, the ready MB is submitted to a global/single distribution

LIFO task queue, which is accessed by all threads. This submission-distribution pro-

cess illustrated in Figure 3.6, is dynamically handled at run-time. In this approach,

27

Global Queue

Figure 3.6: Global LIFO-queue Dynamic Scheduling on 8-node 32-core SGI Server. All
cores dynamically submit and fetch MBs from a centralized global queue at run time.

the synchronization barrier is eliminated as all threads no longer wait for each other,

but keep processing any available MBs in the global LIFO shared queue. Employing

Last-in, First-out (LIFO) queue to select newest MBs instead of the oldest, is typi-

cally better for cache locality as the newest task has a better chance of getting cache

hit from the last executed tasks. However, since only one MB at a time can enter or

get fetched from the global queue, an access contention may occur and scale. Higher

resolutions and larger number of cores worsen the contention problem. In the next

sections, we will consider other approaches to mitigate this affect and improve the

throughput.

3.2.2 Dynamic Scheduling using Recursive Tail Submit

One simple and efficient approach to mitigate the access contention bottleneck in

the global shared task queue is reducing the number of MBs entering in the global

queue. Instead of submitting all ready MBs to the global queue, current threads

28

will themselves process these new MBs. This submission strategy resembles a tail

submit recursive function [12], in which the processing recursively jumps back to its

beginning to process the new MBs. The benefits are multi-fold:

1. Avoid further contention to the global queue as not all MBs have to be submitted

to the queue.

2. Take advantage of cache locality as data needed for processing new MBs may

be still available in caches of the current cores.

3. Reduce the submission-fetching overhead at the global queue.

When an MB is processed, at most two neighboring MBs become ready; a right MB

and a left-down one, which are in the next time stamp as shown in Figure 3.2. There

are three possibilities: 1) If only one MB is ready, it will be immediately processed

using tail submit ; 2) If both MBs are ready, there are two processing options: i)

Right-First order processes the right MB and submits the left-down one to the global

queue. ii) Left-Down-First order processes the left-down MB and submits the right

one to the queue; 3) If none is ready, current thread will access its home queue to

fetch any available MBs.

This scheme significantly reduces workload and enhances performance. Employ-

ing the global-queue dynamic scheduling approach, Azevedo et. al. in [10] propose

dynamic 2D-Wave and 3D-Wave for parallelization of intra and inter-frame decoding,

respectively, on cc-NUMA architecture. In their experiments with FHD video bench-

29

mark [2] on 64 dual core cc-NUMA SGI server [20], the authors report speedups of

the 2D-Wave intra-frame decoding reaching a maximum speedup of 9.5X over the

single thread.

The tail-submit dynamic scheduling, which is already much better than the global-

queue dynamic scheduling, may not achieve a best performance because the global task

queue still can cause the access contention, and the tail-submit dynamic scheduling

still does not consider hierarchical cache/core topology of the underlying multi-core

architecture. In the next section, We will further analyze the problem of the global

distribution queue to explore appropriate solutions. A novel tail submit dynamic

scheduling scheme [10] enables the current decoding threads to keep processing the

newly ready MBs.

3.2.3 Global Distribution Task Queue - Two Drawbacks

Scalable Access Contention

In the global distribution task queue design, only one thread at a time can access

the queue, either to submit or fetch MBs. The larger number of threads, the longer a

thread has to wait to access the queue. The larger the number of MBs in the queue,

the worse the contention is as each MB needs an exclusive access to enter and to get

fetched. This problem resembles one of symmetric multiprocessing (SMP), where the

access of multiple processors to the centralized main memory is serialized. To mea-

30

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 F

ra
m

es
, %

number of MBs awaiting in Central Queue

16 threads
24 threads
32 threads

Figure 3.7: Tail Submit. Unprocessed MB in global queue does not decrease as decoder
threads increase.

sure the access contention caused by the global queue, we run decoding experiments

employing the dynamic scheduling on our cc-NUMA multi-core SGI server. Figure

3.7 shows frames percentages with corresponding highest number of MBs awaiting

in the global task queue for 16, 24 and 32 employed cores. The figure shows that

at certain time during the decoding process there exists significant percentages of

frames, up to 80%, that have 5 or higher number of MBs still remaining unprocessed

in the global queue. This number is supposed to decrease when the number of threads

increases. Experiments in [20] shows the global-queue dynamic scheduling scheme on

cc-NUMA multi-cores is no longer efficient when the number of threads exceeds 24.

The observed opposite phenomena indicates that there exists some access contention

problems that compromise the performance. This contention problem among threads

can be mitigated when the global queue is divided into multiple distributed local

queues, which are accessed by a smaller number of local threads. As the MBs sub-

31

mitted to the global queue are ready for processing, they can be divided and sent to

the multiple distributed queues, where the MBs are submitted and fetched in parallel

by groups of small number of local cores.

Unawareness of Cache Locality

Figure 3.8: Undiscriminated Scheduling Scheme. Thread 4 submits MBs to distant
queue 15.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

 (
tim

es
)

Number of Cores

normal distribution scheduling
undiscriminated distribution scheduling

Figure 3.9: Normal Dynamic Scheme Outperforms Undiscriminated Dynamic Scheme.

As any thread can indiscriminately fetch the MBs from the queue, the tail submit

may not be cache-locality aware. The MBs in the global queue are arbitrarily and

indiscriminately fetched by any threads. They may be executed in different cores

32

compared to where the previous MBs were executed. As a result, the cache locality

is lost and time is incurred in transferring these data to the new cache.

To evaluate the impact of cache locality, We design a 2-thread-per-queue decoder,

a multiple distributed task queue scheme, which is described in detail in Section

4. This scheme has 16 queues, each is accessed by two threads. Experiments are

conducted with two schemes:

1. Normal dynamic scheme: all ready MBs are sent to a thread’s home queue,

unless other queues are empty. In this case MBs are sent to a closest empty

neighbor queue;

2. Undiscriminated dynamic scheme: all ready MBs are sent to the farthest queue

based on the distant map. Figure 3.8 illustrates an example, in which thread 4

submits MBs to queue 15, which is accessed by two distant cores 30 & 31.

Figure 3.9 shows the normal scheduling scheme outperforms the undiscriminated

scheduling up to 2.5 times regardless of the number of cores employed. In video pro-

cessing, as MBs also need data from their neighboring MBs, scheduling neighboring

MBs to nearby cores will be significantly advantageous due to the cache locality. In

the next section, We will propose the distributed dynamic scheduling that employs

multiple-distributed task queues and schedules MBs with load-balancing and cache-

locality awareness.

33

3.2.4 Related Work

In the dynamic approach, there are many schemes [3, 4, 10, 12, 20] proposed to

dynamically schedule MBs at runtime. In [3], Amit Guy et al. propose a shared MB

list of the ready MBs, and local-based scheduling, which attempts to improve data

locality by letting each worker thread pop the MB from the MB list that is closest

(in raster scan order) to the previous MB processed by the thread.

In [10, 4], Meenderinck et al. analyze parallelism of static 3D-wave and dynamic

3D-wave scheduling for inter-frame video decoder, in which MBs across consecutive

frames are simultaneously decoded. The authors show that the static wave-front-

based 3D-wave offers a significant parallelism when motion vector range is restricted to

16 pixels, which can not be guaranteed. Extensive simulation experiments employing

dynamic 3D-wave, however, show a significant speedup.

Close to our work are from Maurico Mesa et al. [20], who propose dynamic

scheduling employing a global-distribution-task queue and tail submit tactic on cc-

NUMA architecture. Their work, however, does not address the access contention

problem of the global task queue, and does not consider cc-NUMA with core/cache

topology of the underlying hierarchical cc-NUMA architecture.

Other approaches employ work-stealing scheme to balance work load among cores

such as Cilk [21] MIT’s C language extensions for multi-core, and Thread Building

Block (TBB) template library [15]. Hoogerbrugge et al. in [12] propose a dynamic

34

scheduling with tail submit for Ultra HD on simulated architecture composed of 16

multi-threaded TriMedia cores, which is designed for media-processing. Each multi-

threaded core employs a task queue, which is load-balanced by a distributed task

stealing mechanism. When a core finds its queue empty, it will steal tasks from a

randomly chosen queue.

3.3 Motion Estimation in Video Encoding

3.3.1 Hierarchical Pyramid Search

Figure 3.10: Three-level Pyramid. Level 0-original resolution. Level 2-top level has lowest
resolution.

In video encoding, inter-prediction, the most efficient, creates the prediction from

the most resembling blocks in previously encoded frames. The process of finding

the best match is called motion estimation, which requires heavy computations ac-

counting for 86% of the total encoding time [6]. Block matching algorithms are the

most popular of motion estimation with diverse approaches: full search (FS), which

considers all the possible matching within a search window to find a best matching

35

block, is the most accurate, but also most computationally complex. Heuristic search

is faster but less accurate and, therefore, offers less compression. Hierarchical search

(HS) is widely considered for its low computational complexity and high efficiency.

In this approach, the original frame resolution is down-sampled into multi-resolution

images that stack as a pyramid with lowest resolution on top as illustrated in Figure

3.10. A full or a heuristic search is applied at the top image of lowest resolution for

a quick but crude motion estimate (ME). This result then is expanded for the full

resolution by propagating the initial motion vectors towards the original resolution

at the pyramid’s bottom level for the final ME. This hierarchical search is also called

pyramid search. The multiple resolution images can be constructed by using a low

pass filter. Gaussian lowpass filter reduces errors but with a cost of computational

complexity. Mean intensity [22] can be used to build the images by a simple averaging

Equation (3.8):

gL(p, q) =
⌈1

4

1
∑

u=0

1
∑

v=0

gL−1(2p+ u, 2q + v)
⌉

, 1 ≤ L ≤ 2 (3.8)

where gL(p, q) is grey level at pixel (p, q) of Lth level and g0(p, q) denotes pixel

g(p, q) of the original image. Sub-sampling is another popular resizing method in

which a block of pixels is replaced by one pixel, normally the top left. This method is

36

significantly faster but yields lower quality. Once the images are constructed, either a

heuristic search or FS using block matching algorithm is conducted at the top level to

obtain an initial or crude motion vector estimate. Mean absolute difference (MAD)

or Sum of absolute differences (SAD) are popular matching criteria between blocks.

The later is popularly proposed for H.264 video. The motion estimation cost includes

cost of encoding the residual SAD value and cost for motion vector as in Equation

(3.9)

Cost = SAD + λ ∗ [C(MVx −MVpx) + C(MVy −MVpy)] (3.9)

Where MV (MVx,MVy) is the median of three motion vectors of macro-blocks,

which are on top, left and top right positions of the current macro-block. λ is an

empirically obtained value and C() is the cost of encoding a motion vector differential

of that length. In this paper, We use motion estimation cost and motion estimate

alternately. As the resolution is reduced, the FS is able to cover a large area and

is no longer computationally expensive. To obtain the final motion estimate, the

initial motion vectors must be propagated and refined towards the bottom level at

each consecutive lower level. In the propagation process, the motion vectors of a

higher level are multiplied by the corresponding scaling factor and refined by a search

within a small area to find the best matching for this level. As the initial motion

37

vectors are obtained at the reduced resolution, the final ME results propagated from

these vectors may not be accurate since other motion vectors that even have a greater

motion vector encoding cost may be better when they reach the bottom level. To

solve this error, instead of propagating the single candidate motion vector, multi-

candidate motion vectors are propagated and the best ones are selected. Besides low

computation cost and high quality results, hierarchical search has a large number of

parameters to specify: block size, number of levels, and scaling factors.

3.3.2 GPU-based Hierarchical Search

 5

 10

 50

 100

M
ot

io
n

E
st

im
at

io
n

S
pe

ed
up

 x
 ti

m
es

GPU X264 CPU-Py

GPU-Single Candidate
CPU-Pyramid

X264

Figure 3.11: GPU-based Hierarchical search with Nvida’s Tesla are 50x, 20x and 10x
times faster than CPU-based full search, CPU-based pyramid search and X264 Hexagon
fast search, respectively.

GPGPU embedded with hundreds of SIMD-based cores is most suitable for motion

estimation, especially with the FS approach as the process can be efficiently paral-

lelized. However, the common fundamental drawback of hierarchical search is the

erroneous estimation at the top level of low resolution that may propagate to lower

38

levels causing erroneous or inaccurate final ME. Some solutions have been proposed

for CPU: in the initial motion estimation at the top level image, a couple of candidate

motion vectors are selected for each macro-block. During the propagation process, all

or a selected number of candidates are propagated towards the bottom level. At the

end of the propagation, a lowest ME among the candidate motion vectors is selected

as the final ME.

We run preliminary experiments for motion estimation to compare GPU-based

searches with CPU-based searches. All GPU-based searches dramatically outper-

form CPU-based searches. Figure 3.11 shows speedups of GPU-based hierarchical

searches (single-candidate) outperforms other CPU-based searches. The GPU-based

hierarchical search, in our experimental platform are 50x, 20x and 10x times faster

than CPU-based full search, CPU-based pyramid search and CPU-based Hexagon

fast search, respectively. Although our server is multi-core, in our experiments, all

CPU-based searches are single-threaded.

3.3.3 Major Drawbacks

The recent approaches, however, have failed to reach an optimal performance due

to two major drawbacks:

1. They employ a fixed pyramid model and a fixed number of candidate motion

vectors that may not achieve an optimum performance for all videos, even for

39

a video due to diverse video encoding characteristics.

2. They lack a mechanism to select the most efficient number of candidate mo-

tion vectors that can achieve a highest possible speedup, and provide a lowest

possible ME.

In a recent paper [6], hierarchical search for single candidate motion vector has been

proposed for GPU. To implement the search, a two-level pyramid is built where the

original resolution is down-sampled 2x2 times to make the top-level image. One

CUDA thread is assigned to compute ME for one position in the search window,

and the entire thread block is dedicated to compute ME for one MB. This approach,

however, is a single candidate vector approach that has the issue of inaccuracy as the

initial motion estimate is obtained at reduced resolutions.

3.3.4 Related Work

Hierarchical search has been proposed in the literature [7, 17, 22, 28, 30] for CPU

as a widely studied approach in motion estimation for its low, flexible computational

complexity and high efficiency. However, most of these approaches do not fit GPU

because either their block matching algorithms or optimization initiatives are heuristic

where the number of iterations cannot be known and pre-determined. This kind of

processing that is rich in control and branching, will not fit SIMD architecture, but

causes threads to be serialized that significantly affects GPU’s performance.

40

Authors in [22] proposed mean intensity as down-sampling method to build a

mean pyramid of 3-level pyramid images. After the pyramid is created, a three-step

search (TSS) [29] is applied at the top level image that has the lowest resolution using

Mean Absolute Difference [44] as matching criterion to find the best matching block,

and produce a coarse motion vector estimation. The motion vector is propagated

down to level 1 of higher resolution using a corresponding scaling factor and refined

with the heuristic search, and finally at level 0, where the final motion vector estimate

is achieved. To mitigate the erroneous estimation at top-lowest resolution resulting

in local minimums instead of global minimum, the authors proposed multi-candidate

motion vectors and report that with two candidates, the peak signal-to-noise ratio

(PSNR) is enhanced by half of the difference between TSS and full search (FS).

With 9 candidates in TTS, one at the center of the coordinates, (0, 0), and eight

positions surrounding the center co-ordinate, the PSNR is as good as FS’s while the

computational complexity in increased to half of FS’s. Besides, the three-step search

is heuristic, non-discrimination processing among 9 candidates would be disadvanta-

geous for a large number of candidates.

In an effort to reduce the computational complexity, there are approaches to reduce

the number of candidate vectors or bypass the refining process at the intermediate lev-

els. Chan et al. in [7] propose an adaptive adjustment of the number of candidates at

runtime based on MAD weights among candidates in Equation: Gk =
MADk−MADmin

MADk
,

where MADmin is minimum MAD values among MADk of candidate k. If Gk are

41

closed to 1 for all k, it means the search direction towards the current position with

the minimum motion vector is probably correct. Thus, the search should concentrate

on neighbors of this position. However, if one or more Gk values are close to zero,

more candidates are needed as the accurate search direction is not clear. The authors

report that simulations show their approach is better than TSS and multi-candidate

approaches in both PSNR performance and computational complexity.

K. Lim et al. in [17] propose three candidate motion vectors to restrict excessive

computational complexity. Two candidates are obtained from FS at top level while

the third is obtained from motion vectors of neighboring blocks. The refining pro-

cess of the motion vectors at lower levels that uses FS with reducing search range

for lower levels and increasing pixel interval for higher levels, significantly reduces

computational complexity. The authors report that the PNSR (Peak signal-to-Noise

Ratio) performance is close to that of FS but computational complexity is only 1%

compared with FS’s.

Y. Shi et al. in [28] propose a threshold approach that bypasses the motion vector

propagation and the refining process of remaining intermediate levels when a cur-

rent level satisfies some threshold criterion. The approach is based on an observation

that many motion estimates at lower level are relatively accurate to give a satisfac-

tory motion compensation of the corresponding block at the bottom level of original

resolution. The threshold criterion is obtained by squaring the mean squared error

(MSE) from Equation PNSR = 10log10.
2552

MSE
with a given PNSR. During the prop-

42

agating process towards the bottom level, at any level, when an estimated motion

vector for a block is obtained, a projected motion vector for the bottom level and

accordingly MAD value of the block are computed. If the MAD value is below the

threshold criterion, the propagation process for the block is terminated saving further

propagation. The authors report that extensive experiments show their approach can

reduce processing time up to 20% with the same compression quality as compared

with other fast hierarchical searches. Along with [30] the authors also observe that

two-level pyramid would give a better performance.

Close to our approach using GPU is [6], where motion estimation is obtained by

GPU-based hierarchical search. Different from MAD as proposed in earlier papers,

the authors propose cost of encoding the residuals and motion vectors as matching

criterion. The cost approximately uses Sum of Absolute Different (SAD) consider-

ing motion vectors of neighboring blocks as described in Equation (3.9) A two-level

pyramid is built with the original resolution is down-sampled 2x2 times to make the

top-level image. One CUDA thread is assigned to compute motion estimate cost for

one position in the search window and the entire thread block is dedicated to compute

motion estimate for one MB. The results of the previous kernel is maintained in the

GPU for the next call of the same kernel until the computation is complete and the

final result of motion vectors are sent back to host CPU. Their approach, however, is

a single candidate vector that fails to address the problem of inaccuracy as the initial

motion estimate is obtained at reduced resolutions.

43

Chapter 4

The Design of Distributed

Dynamic Scheduling

4.1 Parallel Processing Model

Dependency
Table

worker
threads

multiple
distributed

LIFO queues

main
thread

Figure 4.1: Parallel Processing Model on a Multi-core Machine. Worker threads update
dependencies of MBs in parallel.

44

Figure 4.1 illustrates the processing model that consists of:

1. A master thread works as a control thread to create designated threads, and

synchronize processing, frame by frame.

2. Distributed LIFO task queues deployed at cc-NUMA processor nodes to admit

and distribute MB tasks, which are directly submitted by all processing threads,

and distributed to local threads only.

3. Distributed dynamic scheduling employs multiple thread pools, one for each

queue. Each pool consists of an equal number of local worker threads. Each

worker thread is bound to a physical core. To minimize the memory access

overhead, cores in the same thread pool will reside in the same processor node

or the same hierarchical memory level.

4. Two-dimension dependency table is employed to simultaneously monitor and

update dependencies of all MBs at run-time.

4.2 Multiple Distributed LIFO Task Queues

Our idea of distributed LIFO local task queues that de-centralize the global task

queue into multiple local queues employed at processor nodes, resembles the ad-

vantageous design concept of distributed shared memory architecture, or non-uniform

memory access (MUMA), where the centralized shared memory is distributed to mul-

45

Figure 4.2: 8-node 32-core SGI Server with 4-thread queue Topology. Threads 4-7 schedule
MBs to any task queue, but fetch MBs from its home queue at node 1 only.

tiple processor nodes. This distributed shared memory architecture is known for bet-

ter performance and scalability over shared memory architecture (SMA), or uniform

memory access architecture (NUMA). Distributed-queue topology design is based on

core/cache topology of underlying distributed memory architecture. We first appro-

priately choose a number queues depending on the number of processor cores, and

assign threads to a queue called threads’ home queue. Each thread is then bound to

a designated core. In this dissertation, thread / core, and MB task / MB are used

interchangeably. Next, we assign the smallest ID in each group to create the queue.

A thread can schedule MBs to any task queue, but fetches MBs from its home queue

only. Last, use a queue-queue distance map to reflect the average communication

overhead between two queues. This distance map can be established through offline

profiling or derived from distances between nodes shown Figure 2.7. Following are

possible distributed-queue topologies that match our 32-core SGI server: 2-thread

queue topology: each queue resides on one processor and there are a total of six-

46

teen queues in the system. This topology has a finest granularity with a minimal

thread/access contention. However, the scheduling overhead on this topology is most

expensive for up to 16 queues. Others are 4,8,16-thread queue topologies. Since dis-

tances among queues in 2,8,16-thread queue topologies do not match node topology,

they are proportionally derived. The global-queue dynamic scheduling scheme is also

considered having 32-thread queue topology, where there is no scheduling overhead,

but worst 32-thread access contention. Figure 4.2 shows the hierarchical topology

of our 8-node 32-core SGI server, which is established with 4-thread queue topology.

There are a total of four task queues. Threads 4-7 schedule MBs to any queues, but

fetch MBs from its home queue at node 1 only.

De-centralizing the global queue with distributed queues and having these queues,

each accessed by a small number of local cores, achieves multi-fold advantages that

significantly improve the throughput:

1. Mitigate the access contention problem with parallel access to multiple queues;

2. Fast data access with data locality and minimum memory access overhead.

Selecting the number of threads per queue that matches core/cache topology can

narrow initial choices. In our SGI machine, selecting 2,4,8,16 threads per queue forms

symmetrical topologies where our scheduling works best.

47

4.3 Distributed Dynamic Scheduling

Figure 4.3: Minimum Weighted-Queue-Length-based Scheduling Algorithm.

In our scheduling design, we aimed at three objectives: 1) Minimize the MBs that

must be scheduled; 2) Load balance to allocate each queue with the same amount of

workload, and; 2) Cache locality awareness to schedule neighboring MBs to nearby

queues so that cache-memory performance is optimal and the communication cost

is minimal. As our target cc-NUMA platform has hierarchical core/cache topology,

the inter-core communication cost is heterogeneous. Thus, a cache-memory locality

aware scheduling can avoid unnecessary communication overhead and contribute to

throughput improvement.

In this proposed scheme, scheduling is distributed to threads, each employs tail

submit and dynamically schedules second ready-MBs to the distributed LIFO queues

using minimum weighted-queue length scheduling algorithm. Weighted-queue length

is defined as the original queue length multiplied by a communication weight factor,

48

which is proportional to the distance between two queues. The scheduling algorithm

is defined as follows: suppose the total number of queues is N , c is MB identifier and

s is the queue identifier. wi and qi are communication weight factor and queue length

of queue i, respectively. If an MB carries an identifier c, for instance, the mapping

function f(c) is then computed as in Equation 4.1. The result shows that this MB

will be scheduled to queue s with corresponding weight factor ws and queue length

qs.

f(c) = s⇔ ws ∗ qs = min
0≤i≤N

(wi ∗ qi) (4.1)

Our scheduling algorithm works as illustrated in Figure 4.3. Suppose thre are four

queues 1,2,3,4 with corresponding queue length q1, q2, q3, q4, and communication

weight factors w1, w2, w3, w4. Each of these factors are normalized for a given

hardware platform depending on the distance from the queue to the home queue so

that whomeQueue = 1. Home queue of a scheduling thread is the queue that the thread

belongs to. In this example, the scheduling thread belongs to queue 2, therefore,

home queue is queue 2 and w2 = 1. Calculate the weighted-queue length for each

queue and choose the queue with a least weighted length to schedule the MB. This

scheduling algorithm achieves load-balancing because MBs are always scheduled to

the least-loaded queue. In addition, as it employs weighted-queue length for workload

comparison, which is aware of the underlying core/cache topology, the possibility of

49

scheduling neighboring MBs to nearby queues is high.

In the next section, we implement our distributed dynamic scheduling on encoding

employing OpenMP, and compare our scheme with existing schemes using extensive

and diverse experiments on real H.264/AVC benchmarks.

50

Chapter 5

Parallel Encoding on Multi-core

5.1 The Implementation of Distributed Dynamic

Scheduling

Each thread executes both encoding and scheduling tasks. In the encoding task,

threads access their home queues when they are not empty, to fetch MBs, one MB

at a time. In the scheduling task, threads access queues selected by the distributed

dynamic algorithm to submit MBs, one MB at a time. This scenario resembles mul-

tiple producer-consumer problem. To implement the dual-task thread on OpenMP,

a dual-lock mechanism as illustrated on Figure 5.1 is employed for each queue that

consists of an outer lock, an inner lock, and queue length at run-time. The outer lock

is available until its queue is empty as determined by its queue length, and available

51

Figure 5.1: Dual-lock Mechanism for Encoding-Decoding Task: The outer lock is available
until its queue is empty. The inner lock serializes access to its queue. During encoding, a
thread accesses its home queue only, while during scheduling, it can also access other local
queues. During the encoding initialization, queue 0 is assigned the top-left MB while all
other queues are empty.

again when a new MB is added to the queue. To fetch an MB for encoding, a thread

must acquire the outer and the inter lock while schedule an MB to a queue, the thread

just needs to acquire the inner lock. The outer lock works partly like a semaphore

while the inner lock works like a mutex, which allows only one thread at a time to

access the queue to submit or fetch the MB tasks.

To monitor and update the data dependencies of all MBs, a two-dimension depen-

dency table is employed. Each table element represents dependencies of an MB on

others that are initially set to 2 as the left and the top-right MB are critical. If these

two MBs have been encoded, all dependencies of the MB are resolved, and it is ready

for encoding. The dependencies of MBs on the first row and the first column are set

to 1 as MBs on the first row and the first column of a video frame do not have left

52

Algorithm 1 Encoding: each thread is bound to a core. Its access is mapped to a
degsinated queue. Repeat command implements Tail submit by recursively performing
encoding as long as one MB becomes ready after each encoding loop.

Require: ThreadID,CoreID
CoreID ← BindThreadtoCore(ThreadID)
homeQueue ← MapCoreIDtohomeQueue(coreID)
while .NOT. End Of MB do
SetOuterLock(homeQueue);SetInnerLock(homeQueue)
SetInnerLock(homeQueue);FetchaMB(homeQueue)
if .NOT.empty(homeQueue) then
UnsetOuterLock(homeQueue);

end if
UnsetInnerLock(homeQueue)
repeat
EncodeMacroblock(MB);UpdateDependency(MB)
if RightMBReady AND LeftDownMBReady then
MB ← RightMB;SubmitMBtoQueue(homeQueue, LeftDownMB)

else if RightMBReady then
MB ← RightMB

else if LeftDownMBReady then
MB ← LeftDownMB

end if
until .NOT.RightMBReady AND .NOT.LeftDownMBReady

end while
return

and top-right MBs, respectively. As mutex of the dependency table is implemented

at table element or MB, the finest-grained level, MB dependencies, therefore, can

be independently and simultaneously updated and hence, MBs can be encoded in

parallel resulting in a significant throughput increase.

Algorithm 1 shows the pseudo code of the encoding task. Each thread ThreadID

is bound to a physical core CoreID, and the thread’s access is mapped to its home

queue homeQueue. As long as its homeQueue is not empty, ThreadID gains the

53

Algorithm 2 SubmitMBtoQueue(): employs distributed dynamic scheduling. To find a
best candidate queue that has a Minimum Weighted Queue Length, the selection process
loops through all queues begining at the nearest one, but closest empty queue takes priority.

Require: homeQueue, MB
selectQueue ← homeQueue
for all queue = nearest to farthest queue do
queueLength ← GetQueueLength(queue)
MinWeightedQueueLength ← 10000
if queueLength == 0 then
SetInnerLock(queue); insertMBtoQueue(queue)
UnsetOuterLock(queue);UnsetInnerLock(queue);
return

end if
WeightedQueueLength ← queueLength ∗DistancetoHomeQueue
if WeightedQueueLength .LT. MinWeightedQueueLength then
MinWeightedQueueLength←WeightedQueueLength
selectQueue ← queue

end if
end for
Set Inner Lock(queue); insert MB to queue(selectQueue)
if GetQueueLength(selectQueue) == 1 then
UnsetOuterLock(queue);

end if
UnsetInnerLock(queue)
return

outer lock using SetOuterLock(), and the inner lock using SetInnerLock() to seri-

alize fetching MBs from its homeQueue for execution. The tail submit recursively

performs encoding EncodeMacroblock() with repeat statement as long as at least

one neighboring MB becomes ready after every encoding. When MBs become ready,

and assuming Right-First order is emplopyed, the left-down MB is scheduled us-

ing SubmitMBtoQueue() and the right MB is immediately executed in the current

thread. If no MBs are ready, the current thread will attempt to access its homeQueue

54

to fetch any available MB. If an MB is the last encoded, the current thread will send

End-of-MB tasks to all threads. Upon accessing the End-of-MB task, threads reach

the barrier of the existing frame and start encoding a new frame. For simplicity, the

end-of-MB handling is not mentioned in the pseudo code.

Algorithm 2 describes the pseudo code of distributed dynamic scheduling to sched-

ule MBs to distributed queues that employ minimum weighted queue length-based

algorithm with load balancing cache-locality awareness. During the scheduling, the

selection process loops through all queues starting from the nearest one including

the current homeQueue to find a best candidate queue SelectQueue, which has a

minimum weighted-queue length MinWeightedQueueLength. The weighted-queue

length WeightedQueueLength of a queue is computed by multiplying the queue’s

queueLength with the distance DistancetoHomeQueue from the queue to homeQueue

of the scheduling thread. Any empty queue (queueLength = 0) first encountered will

be selected, and the selection process is terminated. When a queue is empty, the

queue’s outer lock is yet to be released, the thread will release the outer lock after the

new MB is submitted to the queue using UnsetOuterLock(). To submit a new MB

into selectQueue, the current thread only needs to acquire the queue’s inner lock us-

ing SetInnerLock(queue) to prevent access from other threads. For the global-queue

dynamic scheduling, the implementation is the same, except that there is a single

queue only.

55

5.2 Performance Evaluation

5.2.1 Experimental Setup

We run experiments on 32-core SGI Atlix 4700 sever [27], configured as 8-node

cc-NUMA architecture, as illustrated in Figure 4.2. Each node has two dual-core

Itanium 2 Montecito processors (1.6GHz, 16KB L1, 256KB L2D, 12MB L3) , 7.5cm

GB shared memory [39]. OS is Linux version 2.6.16.27 with gcc 4.6.2. We use HD

(1280x720) VideoBench benchmark [2], which is a collection four H.264 video clips

of diverse characteristics. Each video has 100 frames in YUV 4:2:0 format, 25 fps.

To emulate the incoming streams, video frames are sequentially read from files. We

implement our approach on p264 [25], a modified version of JM-reference software [1].

OpenMP [45] is employed to create and bind threads to cores. Encoding experiments

are conducted employing 4,8,16,24 and 32 cores with three scheduling approaches:

1. Wave-front scheme, the base case.

2. Tail-submit dynamic scheme employs global-queue dynamic scheduling with

tail-submit schemes in Right-First and Left-Down-First orders.

3. Distributed dynamic schemes employ distributed-queue topologies, tail-submit

and load-balancing with core/cache awareness.

To employ a designated number of cores such as 8, 16 cores in the 32-core server, we

run nummactl utility with physcpubind parameter. Results and errors, if applicable,

56

are the average of the three runs.

5.2.2 Tail-Submit Dynamic Scheduling

Figure 5.2 shows encoding speedups E for wave-front parallelization, tail-submit

dynamic scheduling in Right-First order, and Left-Down First order. Achieving the

same performance as reported in [25], the wave-front reaches a 4X speedup, and is

saturated at 16 cores. The reason is when the number of cores exceeds the optimum

threshold, any slower performance of extra threads will drag down the performance.

It is even worse when the barrier-based synchronization will force all other threads to

wait. The dynamic scheduling, however, employs tail submit scheme, and balances

load to other idle cores via the global shared task queue. It achieves a maximum

speedup of 7X or a 1.75X faster than wave-front’s. Monitoring the MB dependencies

at the finest-grained level, the dynamic scheduling has any ready MBs processed

with fastest pace, which results in having more MBs ready, and higher throughout

accordingly. We also observe that there is no throughput difference between Right-

First order and Left-Down First order as selecting any of the two orders would not

affect much the expensive inter-prediction, which accounts for (86%-89%) of total

encoding time [25].

57

5.2.3 Distributed Dynamic Scheduling

Figure 5.3 shows speedups of three distributed-queue topologies (4,8 and 16-thread

queue topologies employing tail submit scheme, Right-First order) that outperforms

the wave-front. The 8-thread queue achieves a highest speedup of 7.9X, which is 200%

(7.9/4) and 120% (7.9/6.4 at 16 cores) of wave-front’s and the tail-submit scheme,

respectively; and over 62% (7.95/12.92) of the maximum encoding speedup E of HD

format shown in Table 3.1. The reason for the significant throughput improvement

is that the distributed scheduling scheme has an efficient scheduling algorithm, and

robust mutex locking mechanism, which is implemented with minimum contention.

In particular, the dependency table is employed with a mutex locking mechanism

at the macro-block level, so that MBs can have their dependencies monitored and

updated simultaneously resulting in a significant throughput increase.

Considering the performance of the three schemes at 8 cores, we can observe

the impact of cache-locality and the access contention when the 4-thread queue has

higher speedup than 8-thread queue and 16-thread queue. It is because employing

8 cores, the 4-thread queue deploys 2 queues, which have better cache-locality and

access contention as two MBs can be simultaneously accessed, and neighboring MBs

are shared among local cores while the scheduling overhead for two queues is low.

The same observation for 16 cores, 4-thread queue and 16-thread queue has the same

speedup while the 8-thread queue has the highest speedup. The best queue topology

58

would be a balance between gain and overhead, in which the underlying core/cache

topology will have a significant impact.

Figure 5.4 shows the best scheme of each approach. The 8-thread queue topol-

ogy achieves highest speedups as expected because it is the best topology of the

distributed-queues. Performance of 2-thread queue is not plotted as it is expected to

have lower speedups compared with the others.

59

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 4 8 16 24 32

S
pe

ed
up

 r
at

io
 (

tim
es

)

Number of Cores

Tail submit - Left-down first
Tail submit - Right first
Wave Front Parallelization

Figure 5.2: Right-First and Left-Down-First Orders Outperform wave-front Scheme.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 4 8 16 24 32

S
pe

ed
up

 r
at

io
 (

tim
es

)

Number of Cores

16 threads per queue
8 threads per queue
4 threads per queue
Wave Front Parallelization

Figure 5.3: 8-thread queue Topology Outperforms All Other Distributed-queue topologies.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 4 8 16 24 32

S
pe

ed
up

 r
at

io
 (

tim
es

)

Number of Cores

8 cores / queue
Tail Submit - Right first
Wave Front Parallelization

Figure 5.4: Best scheme: 8-thread queue topology outperforms tail-submit schemes, other
distributed-queue topologies and wave-front scheme.

60

5.2.4 Load-Balancing and Utilization Performance

Figures 5.5, 5.6, and the 5.7 show CPU utilization of wave-front, tail submit

dynamic scheme and distributed dynamic scheme (using 8-thread queue topology)

when 32 cores are employed, the speedups have been saturated. We observe some

interesting insights. With respect to load balancing, distributed dynamic scheme

using distributed-queue topology is unexpectedly worst, wave-front and global queue

using the global queue are better. This is because, in wave-front and the tail submit

dynamic scheme, every core has an equal chance to get MBs. As a result, the distant

cores, known to have high overhead, will grab MBs from the low overhead cores, whose

load is not yet substantially imbalanced and overloaded, causing low throughput.

Distributed dynamic scheme, on the other hand, only schedule MBs out of their

home queues only when their load is badly imbalanced, otherwise, keep load on low

overhead threads for the sake of high throughput.

In Figure 5.7, cores from 0-15 allocated in 1st and 2nd queues (by 8-thread queue)

are balanced and better utilized as the results of the distributed scheduling algo-

rithm that schedules neighboring MBs to neighboring queues. Cores from 16-23 in

the 3rd queue are almost idle, while cores 24-31 in the 4th queue are imbalanced

as a result of tail submit when current thread keeps encoding ready MBs. This

observation also explains and suggests employing 16 cores will have the best through-

put for HD resolution. In terms of CPU utilization, wave-front approach has high

61

utilization but low speedups. The reason is the wave-front parallelization employs

barrier-synchronization, which is computationally expensive even in an efficient way

[8]. In each HD frame alone, the synchronization across cores iterates 168 times.

Our approach does not use barrier synchronization, but a light weighted scheduling

algorithm.

62

 10

 20

 30

 40

 50

Average Core Utilization, %

32 cores
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0

F
igu

re
5.5:

W
ave-F

ron
t
-
L
oad

is
scattered

all
cores,

in
effi

cien
tly

h
igh

C
P
U

u
tilization

.

 10

 20

 30

 40

 50

Average Core Utilization, %

32 cores

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0

F
igu

re
5.6:

T
ail

S
u
b
m
it
u
sin

g
G
lob

al
Q
u
eu

e
-
L
oad

is
scattered

to
d
istan

t,
h
igh

overh
ead

cores.

 10

 20

 30

 40

 50

Average Core Utilization, %

32 cores

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0

F
igu

re
5.7:

D
istrib

u
ted

D
y
n
am

ic
S
ch
ed

u
lin

g
u
sin

g
D
istrib

u
ted

Q
u
eu

es
-
L
oad

is
b
alan

ced
w
ith

in
effi

cien
t
cores.

63

5.3 Summary

In this chapter, we propose an efficient parallel encoding with distributed dy-

namic scheduling, which consists of distributed LIFO task queues, and load-balancing-

and-cache-locality-aware scheduling that considers underlying multi-core architecture.

Employing the distributed task queues, the access contention at the task queues is

effectively mitigated; MBs are fetched and executed in parallel with fast data access

thanks to data-locality and minimum memory access overhead. Employing the min-

imum weighted-queue length algorithm, the scheduling scheme preferably schedules

neighboring MBs to nearby cores achieving both locality and load balance. We imple-

ment the distributed scheduling using OpenMP with dual-lock mechanism to facilitate

both encoding and distributed scheduling tasks. We carry out extensive experiments

on a 32-core shared memory SGI server with video benchmarks, and compare the

distributed scheduling with wave-front parallelism and tail-submit dynamic schedul-

ing. Our scheme outperforms wave front and the tail-submit by ratios of 200% and

120%, respectively; and achieves 65% to 70% of the maximum encoding speedup.

This research is published at the ICME 2014, in Chendu, China [32].

64

Chapter 6

Parallel Decoding on Multi-core

6.1 Evaluation of Different Dynamic Schemes

6.1.1 Experimental Setup

We employ the same hardware and OS platform as in decoding experiments, (32-

core SGI Atlix 4700 sever and Linux version 2.6.16.57 with gcc 4.1.0). We implement

our approach ffmpeg-2Dwave [11], a modified version of a ffmpeg-H264, and run

experiments with FHD-VideoBench benchmarks [2]. POSIX Threads [38] are used

to create threads and bind threads to cores. POSIX Semaphores and Mutex are

employed to implement submitting and fetching MB tasks from the distributed task

queues. At run time one thread is reserved for control, leaving the rest for decoding

task. We run experiments with four scheduling schemes:

65

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

 (
tim

es
)

Number of Cores

Tail Submit - Right-First
Tail Submit - Left-Down First

Base Case: Gbobal Queue

Figure 6.1: Tail-Submit. Righ-First Order outperforms Left-Down-First order and global-
queue dynamic scheduling base case.

1. Global-queue dynamic scheduling, the base case: all MBs are sent to a global

shared queue.

2. Tail-submit dynamic scheduling: global-queue, dynamic scheduling with tail-

submit scheme in Right-First and Left-Down-First orders.

3. Simple distributed-queue dynamic scheduling: all MBs are scheduled to LIFO

distributed queues.

4. Distributed dynamic scheduling: LIFO distributed-queue topologies, tail-submit

scheme, and load-balancing with core/cache awareness.

Speedups of these approaches are compared against the single-core processing.

Static wave-front parallelization is not presented because of its expected low speedups.

Results and errors, if applicable, are averages of the five runs.

66

6.1.2 Tail-submit Dynamic Scheduling

In tail-submit dynamic scheduling scheme, ready MBs are submitted to the global

queue by either the Left-Down-First order or the Right-First order. Selecting the

right MBs to decode (Right-First order) achieves a substantial speedup over the

(Left-Down-First order). Figure 6.1 shows speedup reaches 7.0X for Left-Down-First

order, and 10.4X for Right-First order. The reason is the de-blocking filter, which re-

moves artifacts between macro-blocks to improve the appearance of the re-constructed

frames, uses left-MB and top-MB, whose data are more available in cache with Right-

First order. In video decoding, the de-blocking filter accounts for 40% [35] of the

decoding time, so that the Right-First order with better de-block filter performance,

will achieve higher speedups than that of the Left-Down-First order. In encoding,

however, both the Right-First and Left-Down-First orders achieve the same speedups

as the de-blocking filter, which accounts less than 1% of the total encoding time [25].

6.1.3 Simple Distributed-Queue Scheduling

In this scheduling scheme, decoding threads submit all ready MBs to their home

queues, unless other queues are empty. In this scenario, the closet empty queue,

based on distance map, will get the priority. Figure 6.2 shows speedups for three

distributed-queue topologies 2, 4, and 8-thread queues. The figure shows the speedups

of all three topologies are higher than that of the global queue dynamic scheme. It

67

indicates that the distributed-queue strategy is advantageous over the global-queue

scheme by dividing the access contention of the global queue into distributed-queues.

Unfortunately, this simple distributed-queue approach is still outperformed by the

tail-submit scheme. The highest speedup of these kinds, as with 2-thread queue

topology, is 5.4X, only about 50% of 10.4X, the highest speedup achieved by tail-

submit scheme in our experiments. The reason is the tail submit scheme reduces

access contention by effectively reducing the number of MBs submitted back to the

global queue while in the simple distributed-queue approach, although access con-

tention is divided into distributed-queues, 100% of MBs are still submitted back to

the queues. Our proposed distributed dynamic scheduling is a combination of MB

submission reduction and access contention division as presented in the next section

will inherit all the advantages.

68

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

 (
tim

es
)

Number of Cores

2 threads per queue - 16 queues
4 threads per queue - 8 queues
8 threads per queue - 4 queues

Base Case: Global queue

Figure 6.2: Simple Distributed Queues: All MBs are scheduled to multi-queues.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

 (
tim

es
)

Number of Cores

16-threads per queue - 2 queues
8-threads per queue - 4 queues

Tail Submit - Right-First Order
4-threads per queue - 8 queues

2-threads per queue - 16 queues

Figure 6.3: Distributed Dynamic Scheduling: distributed Queues, tail submit with load-
balancing and cache-locality awareness.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

 r
at

io
 (

tim
es

)

Number of Cores

Distributed Dynamic Scheme
Tail Submit - Right-First Order

Simple Distributed Queues
Base Case: Global Queue

Figure 6.4: Best Scheme. Distributed dynamic scheme outperforms wave front and simple
distributed-queue schemes.

69

6.1.4 Distributed Dynamic Scheduling

This distributed dynamic scheme combines distributed-queue topology, tail-submit

scheme, Right-First order and schedule load balancing and cache locality awareness.

Figure 6.3 shows speedups of different distributed-queue topologies compared with

the base case. It shows 16-thread queue topology achieves a highest speedup. We

observe that in the simple distributed-queue approach (no tail submit), the smaller

number of threads per queue, the better the performance will be. Figure 6.2 shows

2-thread queue, which results in 16, a largest number of queues, achieves a highest

speedup (in simple distributed-queue category). However, in distributed-queue topol-

ogy combined with tail-submit, the results show the opposite. 8-thread queue and

16-thread queue topologies achieve highest speedups. The reasons are:

1. In the simple distributed-queue approach, as 100% MBs are submitted, the

thread access contention is a serious problem. Therefore, the more queues are

employed, the better the performance is achieved;

2. In the distributed dynamic approach, the contention problem is mitigated, so

that the best queue topology will be a balance between gains and overheads

such as weighted-queue-length based selection process.

Figure 6.4 summarizes speedups of the best cases for each approach with FHD

benchmark 1) the base case is 3.3X; 2) the simple distributed-queue scheme is 5.4X;

3) the tail-submit is 10.4X and; 4) the distributed dynamic approach is 12.6X, an

70

increase of 20% compared with the tail-submit. The figure also shows speedup of

the tail submit saturates at 22 cores while it does not with the distributed approach.

It indicates that our distributed approach scales better than the tail submit. Our

approach would have more improvement impact for higher resolutions (QHD or UHD)

as processing demand is more intensive and the number of simultaneously decodable

MBs is much higher. Figure 6.6 shows percentages of MBs passing through the queues.

The MB percentages in our approach is slightly increasing higher than that of the

tail submit. The reason is the distributed approach reduces the access contention so

that threads can access faster the awaiting MBs in queues. As a result, there are

more cases, in which both right MB and left-down MB are ready so that there is one,

the left-down MB can be sent to the queues. As the number of cores increases, the

theoretical MB-parallelism speedup S increases to the maximum shown in Table 3.1,

while the core utilization decreases as the number of timestamps when all cores are

fully utilized, decreases. The single-core decoder has a highest utilization of 100.

Figure 6.5 shows frame percentages that have MBs awaiting in queues of our

approach is significantly reduced. At 32 threads, less than 5% of frames that has 5 as

the highest number of the waiting MBs while in the global-queue tail submit shown in

Figure 3.7, it is over 80%. This indicates our distributed dynmaic scheduling solution

significantly reduces the access contention.

71

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 F

ra
m

es
, %

Number of MBs awaiting in multiple-queues

16 threads
24 threads
32 threads

Figure 6.5: The Distributed Dynamic Scheduling: frame percentages vs. max. MBs in
queue.

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

P
er

ce
nt

ag
e

of
 M

B
s

in
 q

ue
ue

(s
)

Number of Cores

Distributed Dynamic Scheme
Tail Submit

Figure 6.6: MB Percentages Sent to Queue(s) by Tail Submit vs. Distributed Dynamic
Scheduling.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
el

at
iv

e
S

ta
nd

ar
d

D
ev

ia
tio

n

Number of Cores

Tail Submit
Distributed Dynamic Scheduling

Mutiple Queues

Figure 6.7: Relative Standard Deviation (RSD) of Thread Decoding Time.

72

6.1.5 Load-Balancing Performance

Figure 6.7 shows relative standard deviation (RSD) of decoding time among

threads. As the number of threads increases, the RSDs increase. The global-queue

dynamic scheduling, on one hand, has better RSD as each thread has equal priority

in accessing the central queue. On the other hand, tail submit favors the actively de-

coding threads, which have needed data in their caches, to maximize the throughput.

As a result, tail submit has the highest RSDs. Our distributed dynamic scheduling

approach also employs tail submit, but its load-balancing and cache-locality aware

scheduling efficiently alleviates the imbalance problem of the tail submit scheme. RSD

of the distributed approach is slightly higher than that of the base case but does not

exceed 20% at 32 threads. One interesting observation for tail submit scheme is that

its RSD decreases as the number of threads exceeds 22. This drop can be explained

as follows. As the number of threads goes beyond 22, tail submit causes performance

degradation due to high thread contention. Thus, the RSD reduction results from

the less workload on each thread, as opposed to more balanced workload given the

same amount of workload compared to our scheme.

6.2 Summary

In this chapter, we propose the distributed dynamic scheduling scheme in video de-

coding on multi-core architecture. To evaluate our distributed scheduling scheme, We

73

implement our approach on a 32 core shared-memory SGI server employing POSIX

threads multi-core programming. We carry out extensive experiments using real video

benchmarks comparing with diverse schemes such as global dynamic scheduling, tail-

submit dynamic scheduling, and simple distributed-queue topologies. We observe that

our distributed scheme outperforms tail-submit, one of the best scheduling algorithm,

20%, and achieves lower latency with more balanced workload and less communica-

tion cost. This research has been published in ICME 2012, in Melbourne, Australia

[33]

74

Chapter 7

Parallel Motion Estimation on

GPGPU

7.1 The Design of Dynamic Multi-candidate Motion-

Vector Selection Scheme

7.1.1 Flexible Multiple-level Hierarchical Model

We build the multiple-resolution mean pyramid with 2x2 down-sampling factor.

The macro-block, starting with 16x16 pixels, is down-sized 2x2 times at each hier-

archical level. As a result, the resolution or total number of pixels are reduced, but

the total number of MBs of images at any level is not changed. Our strategy is to

design a flexible pyramid model that can increase the speedup by reducing the com-

75

putational complexity, but keeping the motion estimation cost low. Search window

is the important parameter that significantly affects the complexity. As the motion

vectors are refined with FS as they are propagated towards the lower levels, the size

of the fine-tuning search window, in general, can be reduced without significantly

affecting the search quality as motion estimates are converged towards lower levels

[28]. In particular, to cover the same coverage as in the corresponding FS, the search

window at top level can be reduced proportionally to its down-sampling factor. At

the bottom level, the search window does not need to be as large as the size of that

in the FS. In fact, if the fine-tuning search window at lower levels is not reduced, the

hierarchical search would not bring any benefit since it will be more computationally

expensive than the FS. We introduce variable reducing factor fr that adjusts the

fine-tuning search window size at runtime to increase speedup where applicable. We

will analyze and evaluate the effects of search window size in the complexity analysis

and in the performance evaluation section. In general, the more hierarchical levels a

pyramid model has, the more computational complexity is reduced, but with a trade-

off of motion estimation efficiency due to more levels of down-sampling. Based on the

computational complexity analysis presented in the next section, We select two-level

pyramid model with variable fine-tuning search windows.

76

7.1.2 Computational Complexity Analysis of GPGPU-based

Hierarchical Search

In FS, to find a best matching block in a search window, the SAD-based encod-

ing cost obtained from Equation 3.9, must be exhaustively checked for all possible

positions in the search window. The computational complexity to obtain the motion

estimate (ME) for each macro-block (MB) in the original FS τFS = O(Sw.Sh.Bs),

where Sw and Sh are width and height of search window in pixels, respectively, and

Bs is size of each MB, which is 16x16 pixels. The complexity for the entire frame is

TFS = O(Bw.Bh.Sw.Sh.Bs) [19], where Bw and Bh are the width and height of a

frame in MBs, respectively . In our proposed pyramid search, the complexity to ob-

tain ME for each MB at level l is τl = O(Swl.Shl.Bsl.Gl), where Swl, Shl are width,

height of search window in MBs, Bsl is size of MB in pixels. Gl is the complexity

factor of the lowpass filter. For mean intensity filter in Equation (3.8), Gl = 4. At

the bottom level, the complexity τ0 = O(Sw0.Sh0.Bs0), where G0 does not exist.

For a two-level pyramid, at top level (l = 1), size of the search window and

MB are down-sized 2x2 times, the complexity for each MB is accordingly reduced,

τ1 = O(1
2
Sw.1

2
Sh.1

4
.Bs.Gl) . As Gl =4, the complexity is 25% τFS At this level, the

search window is reduced 2x2 times, but covering the same area and the same number

of MBs as the MB block size is accordingly reduced. At the bottom level (level 0),

to reduce the complexity We can choose a smaller fine-tuning search window using

77

reducing factor fr, such as 1/2, 3/8 or 1/4 of the original size. For fr = 1/2 , the

complexity to fine-tune ME using FS for each candidate motion vector at bottom

level, (l = 0) τ0 = O(Sw
2
.Sh
2
.Bs). We notice that τ1 and each τ0 account the same

25% τFS. For a single-candidate motion vector scheme, the total complexity for each

MB is τ0 + τ1, just 50% τFS. Adding each extra candidate motion vector will increase

the complexity to another τ0, or 25% τFS. Two-candidate approach will be 75% τFS

while three-candidate approach would not be any good since it is already 100% τFS.

For fr = 3/8 and 1/4, the complexity to fine-tune ME for each candidate motion

vector at bottom level τ0 = O(3
8
Sw.3

8
Sh.Bs) and O(1

4
Sw.1

4
Sh.Bs) accounting just

14.063% (9/64)τFS and 6.25% (1/16)τFS, respectively. This allows increasing number

of candidates without exceeding FS complexity. Table 7.1 shows speedups of multi-

candidate schemes (single can., 2 can. . . .) and their percentages of complexity

with respect to the base case FS. In this table, approach with fr = 1/2 has only

two practical multi-candidate schemes; single and two-candidate that offer 200% and

133% speedup (meaning compared with the corresponding FS), respectively, while

approaches with fr = 3/8 and 1/4 factor can have up to four and eight multi-candidate

schemes, respectively, whose speedups are over 100%.

The total computational complexity of a multi-candidate motion vector scheme

would also include the complexity of binary reduction needed to find the minimum

motion estimation cost of the multi-candidate vectors τBn = O(log n), where n is

number of candidate motion vectors. e.g log 2, log 3, .. that is negligent compared

78

Table 7.1: Percentages of Complexity and Speedups of Multi-candidate Motion Vector
Schemes with respect to FS

Schemes one cand. 2 cand. 3 cand. 4 cand. 5 cand. 6 cand. 7 cand. 8 cand.
fr = 1/2 50% 75% 100% N/A N/A N/A N/A N/A
Speedups A1:200% A2:133%A3:100% N/A N/A N/A N/A N/A

fr = 3/8 39% 53% 67% 81% N/A N/A N/A N/A
Speedups B1:256% B2:188%B3:149%B4:123% N/A N/A N/A N/A

fr = 1/4 31% 38% 44% 50% 56% 63% 69% 75%
Speedups C1:320% C2:267%C3:229%C4:200%C5:178%C6:160%C7:145%C8:133%

with total complexity of candidate motion vector τ0, τ1, τ2.

For three-level pyramid, with fr = 1/2, the complexity of top level (level 2), and

each candidate motion vector at level 1 and level 0 are τ2 = O(1
4
Sw.1

4
Sh. 1

16
.Bs.Gl)

or (1.5625%τFS), τ1 = O(1
2
Sw.1

2
Sh.1

4
.Bs.Gl) or (25$τFS), τ0 = O(Sw

2
. sSh

2
.Bs) or

(25%τFS). respectively. The total complexity for single, two and three candidate

scheme will be (τ2, τ1, τ0) or (51.5625%τFS), (τ2, 2τ1, 2τ0) or (101.5625%τFS), and

(τ2, 3τ1, 3τ0) or (151.5625%τFS), respectively. In these schemes, only single-candidate

scheme can provide a useful 193% speedup. However, this scheme has the same search

window size as single candidate scheme of fr = 1/2 factor, named as A-1 scheme in the

next section, but lower speedup. Furthermore, the more levels a pyramid model has,

the more the resolution is reduced causing less-accurate results at bottom level after

the propagation. This explains the reasons authors in [28, 30] recommend two-level

pyramid for a good performance with FS-based hierarchical search.

79

7.1.3 Multi-candidate Pyramid Searches with Variable Fine-

Tuning Search Windows

Based on the complexity analysis, We can increase speedup performance and

number of candidate motion vectors by adjusting fine-tuning search window size at

lower levels, accepting a trade-off of ME increase. Our flexible pyramid model will

have multi-candidate motion vector search schemes with the following reducing factor

fr approaches:

1. Approach A, reducing factor fr = 1/2: there are only two possible schemes;

single-candidate and two-candidate namely, A-1 and A-2 schemes that provide

speedups of 200% and 133%, respectively. The three-candidate scheme A-3 is

not applicable as there is no speedup gain.

2. Approach B, reducing factor fr = 3/8: there are up to four schemes of single-

candidate, two, three and four candidate motion vectors, namely B-1, B-2, B-3,

B-4 schemes that provide speedups of 256%, 188%, 149%, and 123%, respec-

tively.

3. Approach C, reducing factor fr = 1/4: there are up to eight schemes of single-

candidate, two, three . . . , namely C-1, C-2, C-3, C-4, C-5, C-6, C-7 and C-8

schemes that provide speedups of 320%, 267%, 229%, 200%, 178%, 160%, 145%,

133%, respectively.

80

7.1.4 Motion Estimation Efficiency Metric

Motion estimation efficiency E is proposed in Equation (7.1) to determine how

good a scheme is, compared with FS.

E = (1−
C − CFS

CFS

).100% (7.1)

Where C and CFS are motion estimation cost of a scheme and FS, respectively. If a

scheme that has a high speedup e.g. B-1, C-1, and a low motion estimation efficiency

E indicating the resulting ME of the scheme is high, may not be valuable or practical.

The efficiency reaches 100% when a scheme obtains an ME close to that of FS, and

zero percent when the ME is twice that of FS.

7.1.5 Nvida CUDA Implementation

Nvida CUDA is selected to develop parallel programming for Nvida GPU. One

CUDA thread is assigned to compute motion estimate cost for one MB at one search

position in the search window. A Bw.Bh pixel-sized search window will result in

Bw.Bh different search positions for each MB. One Cuda thread block is dedicated

to find the best matching block for one MB. Sequential addressing with non-divergent

branching [9] is employed to avoid shared memory bank conflict and divergent warps

during the thread binary reduction process. Figure 7.1 shows diagram of our GPU-

81

Figure 7.1: Diagram of GPU-based Multi-candidate Hierarchical Search: Multiple initial
best motion vector sets are propagated and fined-tuned with FS to the bottom level. The
final ME results are obtained by GPU binary reduction.

based hierarchical search approach. In the binary reduction process to obtain the

initial MEs at the top level, multiple motion vector sets for all MBs corresponding

to first, second . . . lowest ME cost are obtained. The number of initial motion vector

sets depends on the multi-candidate scheme selected. These motion vector sets are

sequentially propagated and fine-tuned towards the bottom level. At the bottom

level, instead of selecting the set with the smallest total ME costs as the final ME,

our approach obtains the final ME results by using GPU binary reduction, at MB

level, to select the minimum ME cost for each MB. The final ME cost for the whole

frame, as the result, is minimum. Algorithm 3 shows the algorithm in four main

steps:

1. At top-level creating initial motion vectors, runcuda3 kernel produces multiple

82

lowest result sets of motion vectors for all MBs.

2. runcuda kernel sequentially propagates and fine-tunes using FS all multiple

initial motion vector sets to the bottom level.

3. runCudaReduce kernel using Cuda binary reduction obtains the best results

among multiple final result sets.

4. cudaMemcpy kernel copies results back to host memory.

The above are the base steps to compute ME for a multi-candidate motion vector

scheme. To select the best multi-candidate scheme for a video, We propose two

strategies:

1. Profiling-based scheme selection. In this strategy, all faster-FS schemes with

known speedups for a video are profiled. A best scheme, then is selected that

will satisfy a desired speedup or efficiency.

2. Dynamic scheme selection at runtime. In this strategy, using the flexible pyra-

mid model, a best scheme is selected at runtime to encode the next video frame

based on ME results of current frames. These two strategies will be presented

and evaluated in the evaluation section.

83

Algorithm 3 Enhanced Multi-candidate Cuda-Pyramid search

Require: x264 Context
Ensure: motionV ectorX,motionV ectorY
Allocate Cuda memory for current frame - cudaMallocArray
Allocate Cuda memory for reference frame - cudaMallocArray
Copy current frame to Cuda memory - cudaMemcpy2DToArray
Copy reference frame to Cuda memory - cudaMemcpy2DToArray
Obtain multiple best initial motion vector result sets at top-level image–runCuda3
Propagate the initial result sets to bottom level and obtain the final results for
each initial result set -crunCuda
Obtain the best results among multiple final result sets - runCudaReduce
Copy results back to host memory - cudaMemcpy

7.2 Performance Evaluation

7.2.1 Experiment Setup

We evaluate our approaches on bulldozer-based server [40] configured as 8-node

CC-NUMA [36] architecture running Ubuntu Linux 3.0.0-19, Gcc 4.6.1-9. This server

is equipped with one Tesla C2050 NVIDA GPU [37]. The GPU has 448 cores, each

runs at 1.15 Ghz, 2.5 GB total Memory with Fermi aarchitecture[23] that can support

at most 1024 CUDA threads per each thread-block. We implement our approach

on MIT’s experimental open source for hierarchical research on GPU [6]. We use

HD Benchmark library [2] as video benchmarks for the experiments. During the

experiments, 100 raw video frames from a benchmark video are encoded with three

resolutions; 4CIF, HD and FHD, using h264 standard with a standard 16-pixel search

range. A full search with the same search range is used as a base case for evaluations

as it provides the most accurate motion estimate. Experiment results are averages of

84

five runs and relative standard deviations (STDEV) are reported when applicable.

7.2.2 Verification of Computational Complexity

Table 7.2: Processing Times of Top level, 1st., 2nd. and 3rd. candidate of A-3 scheme, the
three-candidate motion vector scheme, match the complexity analysis

Resolution Top 1st 2nd 3rd FS

4CIF (ms) 2.41 2.27 2.19 2.27 9.16
HD (ms) 5.04 4.94 4.85 4.85 19.81
FHD (ms) 11.33 11.62 11.52 11.60 45.66
avg.%FS 25.52% 25.08% 24.53% 24.90% 100%

Theoretical 25% 25% 25% 25% 100%

To verify the correctness of our complexity analysis, We run experiments for A-3

scheme, a three-candidate scheme of approach A, and FS, the base case for three

resolutions on Tesla GPU. According to the complexity analysis, the complexity of

four periods; the initial motion estimation (τ1) at the top level, the first (τ0), the

second (τ0), and the third candidate (τ0) at the bottom level of A-3 scheme, each is

25% of FS’s. Table 7.2, shows processing time (ms) measured for these four periods,

and FS for three video resolutions in columns Top, 1st, 2nd, 3rd, and FS, respectively.

The average percentage of processing time of each period with respect to FS for

the three video resolutions avg.%FS closely matches the theoretical values in our

computation complexity analysis. This correctness is interesting and significant as

it does not only prove the correctness of our complexity analysis, but also helps

determine in advance the speedups of any selected schemes. In other words, when a

85

scheme or multiple schemes are selected to encode a video, We will know exactly how

fast the schemes are compared with the base case FS, or other schemes.

In the verification experiment, to perform FS on GPU, We use 8-pixel search range

that covers a 289-pixel search window (2x8+1)x(2x8+1). In our CUDA implementa-

tion, as one thread block is dedicated to find the best matching block for one MB,

our experimental Tesla GPU with Fermi architecture, capable at most 1024 threads

per thread block, is not used to perform FS for 16-pixel search range since this search

range will cover 1089-pixel search window that needs at least 1089-thread block size.

Instead, the motion estimation cost of the base case FS, used for comparisons, is ob-

tained by a CPU-based FS. To cover the same area as in the base case FS (16-pixel

search range) our GPU-based hierarchical search only needs to search half of the 16-

pixel search range since at top pyramid level, where resolution is reduced 2x2 times,

a 8-pixel search range will cover the same area of 16-pixel search range at original

resolution. With the verified correctness of the computational complexity analysis,

the processing time of the FS on GPU for 16-pixel search range can be approximately

derived. For example, knowing A-3 scheme, the three-candidate scheme in approach

A, will have the same complexity as FS, We can derive processing time of FS on GPU

from the processing time of A-3 scheme.

86

7.2.3 Motion Estimation Performance

Figures 7.2a, 7.2b and 7.2c show ME per MB of three approaches in HD format.

We observe the following:

1. MEs decrease along with schemes that have higher number of candidate motion

vectors while FS has the lowest MEs. This is expected as more number of

candidate vectors will help mitigate the problem of erroneous initial motion

estimation at top level.

2. Schemes that have the same number of motion-vector candidates in approach A,

will have loIr MEs than that of approach B and C, subsequently. For example,

A-1, B-1 and C-1 schemes have one motion-vector candidate, but ME cost of

A-1 is smaller than that of B-1, and C-1. It is explained that the earlier has

larger fine-tuning search window that results in finding better matching blocks

with lower MEs, however, with a trade-off of higher computational complexity.

87

 500

 1000

 2000

 3000

 4000

M
ot

io
n

E
st

im
at

io
n

C
os

t p
er

 M
B

 A-1 A-2 FS

(a) Approach A: single, two candidate motion vector scheme, and FS.

 500

 1000

 2000

 3000

 4000

M
ot

io
n

E
st

im
at

io
n

C
os

t p
er

 M
B

 B-1 B-2 B-3 B-4 FS

(b) Approach B: single, two, three, four candidate motion vector scheme, and FS.

 500

 1000

 2000

 3000

 4000

M
ot

io
n

E
st

im
at

io
n

C
os

t p
er

 M
B

 C-1 C-2 C-4 C-6 FS

(c) Approach C: single, two, four, six candidate motion vector scheme, and FS.

Figure 7.2: ME cost decreases as number of motion-vector candidates increases. ME cost of
schemes with the same number of motion-vectors increase in approach A,B and C as search
windows become smaller.

88

7.2.4 Speedups and Motion Estimation Efficiency Gains.

Figure 7.3, 7.4 and 7.5 show profiling results of average motion estimation effi-

ciency and relative standard deviation on the benchmark video for all schemes of

approach A, B and C. We observe the following:

1. Motion estimation efficiency of schemes with larger search windows (larger

factor fr) are always higher than that of the corresponding schemes, which has

the same speedups and smaller search window (smaller fr). The reason is larger

frs results in larger fine-tuning search windows producing better efficiency.

2. For all approaches, the speedup-efficiency correlation is linear but not 1:1. In

particular, it is 9.5:1. It means that the trade-off of speedup loss is not equally

compensated by the efficiency gain. In each approach, the top performance is

the single-candidate scheme, and any increase in the number of candidates will

improve the efficiency but at multiple-timed loss of speedup.

Figure 7.6 shows processing-time breakdown of three periods in A-2 scheme, the

two-candidate scheme of approach A. This scheme consists of FS for the initial motion

estimation at top level, FS for the first candidate motion vector set, and that for the

second candidate motion vector set at bottom level. It is interesting to observe that

all three periods have nearly the same processing time of 25% of FS as discussed

in the complexity analysis. These three periods constitute 75% of FS and result in

133% (1/0.75) speedup as shown in Table 7.1. The same observation is seen with

89

complexity matches are for B-4 and C-6 schemes of approach B and C, respectively.

This again verifies the correctness of our complexity analysis.

90

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120

 1
33

 2
00

M
ot

io
n

E
st

im
at

io
n

E
ffi

ci
en

cy
 %

Speedup %

A
-1

A
-2

Figure 7.3: Approach A (fr = 1/2): Motion Estimation Efficiencies.

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120

 1
23

 1
49

 1
88

 2
56

M
ot

io
n

E
st

im
at

io
n

E
ffi

ci
en

cy
 %

Speedup %

B
-1

B
-2

B
-3

B
-4

Figure 7.4: Approach B (fr = 3/8): Motion Estimation Efficiencies.

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120

 1
60

 1
78

 2
00

 2
29

 2
67

 3
20

M
ot

io
n

E
st

im
at

io
n

E
ffi

ci
en

cy
 %

Speedup %

C
-1

C
-2

C
-3

C
-4

C
-5

C
-6

Figure 7.5: Approach C (fr = 1/4): Motion Estimation Efficiencies.

91

7.2.5 Fixed Multi-candidate Scheme Selection

To build profiling graph shown in Figure 7.7, efficiencies of all schemes are merged

and arranged in speedup order by removing schemes that have the same speedups but

lower efficiencies. Using this profiling graph we can determine an efficiency, which is

highest, for a video with a desired speedup, or a highest speedup scheme with a desired

efficiency. We can also select a scheme that can balance a satisfied efficiency and a

best possible speedup. For example, with a desired speedup of 200%, We can choose

A-1 scheme that gives 87%, the highest efficiency. With a desired efficiency of 85%

both A-1 and C-3 schemes can satisfy this. However, A-1 scheme (87.03% efficiency)

can achieve 200% speedup, while B-3 scheme (85.84% efficiency) only achieves 149%

speedup. Approach A can offer better motion estimations for a trade-off of reduced

speedups, but it could only offer two schemes at most with the maximum speedup of

only 200% (A-1 scheme). Approach B and C, on the other hand, have many more

schemes. Among these schemes, C-1 scheme, the highest, can achieve 320% speedup.

Using profiling we can select a scheme for the entire video that can meet a desired

efficiency and provide highest possible speedup. However, no fixed scheme would

provide a best speedup and efficiency for all frames in a video due to the dynamic

motion and diverse scene characteristics of a video. For example, in a video scene that

has less motion, if a small fine-tuning search window can obtain the same efficiency

as with a larger search window (A-schemes), then B or C-schemes can be employed

92

to increase the speedups. If there is some scheme selection mechanism that can select

a best multi-candidate scheme for current frames at runtime, the overall performance

of motion estimation will be significantly improved. This observation motivates me

to design a dynamic scheme selection, presented in the next section, to select best

schemes in terms of highest possible speedup and satisfactory efficiency for current

frames at runtime.

93

 0

 20

 40

 60

 80

 100

 120

 140

4C
IF

H
D

F
D

H

P
ro

ce
ss

in
g

tim
e

m
s

2nd Candidate
1st Candidate
Top−level
Overheads

Figure 7.6: Equal processing times at top-level, 1st, and 2nd candidate, each accounts
25% of FS.

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120

 1
23

 1
33

 1
49

 1
60

 1
78

 1
88

 2
00

 2
29

 2
56

 2
67

 3
20

M
ot

io
n

E
st

im
at

io
n

E
ffi

ci
en

cy
 %

Speedup %

A
-1

A
-2

B
-1

B
-2

B
-3

B
-4

C
-1

C
-2

C
-3

C
-5

C
-6

Figure 7.7: Profiling graph of schemes of three approaches in speedup order.

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120

 1
00

 1
33

 2
00

 2
56

 3
20

M
ot

io
n

E
st

im
at

io
n

E
ffi

ci
en

cy
 %

Speedup %

A
-1

A
-2

B
-1

C
-1

F
S

Figure 7.8: Linear scheme model graph is the upper bound of the best schemes (FS,A-
2,A-1,B-1,C-1).

94

7.2.6 Dynamic Multi-candidate Scheme Selection

Figure 7.9: The scheme selection box slides up and down to select highest possible speedup
schemes while satisfying the desired efficiency.

Algorithm 4 Dynamic Multi-candidate Scheme Selection

Require: schemeTable,desireEfficiency,interval
Ensure: schemeSelect

totalSpeedupIncrease, totalEfficiencyReduce← 1
while not.EOF do

if interval number of frames has passed since last FS then

FSCost,MECost ← FS(currFrame);
else

MECost ← hierachcialSearch(currScheme, currFrame);
end if

currEfficiency ← CompEfficiency(MECost, FSCost)
currSpeedup← SpeedupLookup(currScheme)
totalSpeedupIncrease +← (currSpeedup− 100)
diffEfficiency ← currEfficiency − desireEfficiency
totalEfficiencyReduce +← diffEfficiency
nextSpeedup ← currSpeedup+ diffEfficiency. totalSpeedupIncrease

totalEfficiencyReduce

schemeSelect← SchemeLookup(nextSpeedup)
end while

return

From Figures 7.3, 7.4 and 7.5, we observe that in the three approaches, motion es-

95

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

5
10

20

30

40

50

60

70

A
ve

ra
ge

 E
ffi

ci
en

cy
, %

N
um

be
r

of
 F

ra
m

es

FS A-2 A-1 B-1 C-1

Number of schemes
Efficiency

desire efficiency: 85%

Figure 7.10: Efficiencies and number of frames selected by the dynamic selection.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

 20
 40
 60
 80
 100S

pe
ed

up
 %

E
ffi

ci
ce

nc
y

%

Speedup Efficiency

Dynamic Scheme
Fixed Scheme

Figure 7.11: Fixed scheme selection can match the same efficiency of the dynamic selection
but has lower speedup.

timation efficiency of a scheme has linear correlation with speedup within its approach

only e.g. A or B, but not across approaches. When efficiencies of all these schemes are

merged in speedup order as shown in the profiling graph, Figure 7.7, the local mini-

mums, which are schemes with lowest efficiencies, are exposed that causes a non-linear

correlation. Designing a dynamic scheme selection on this non-linear correlation may

need a learning algorithm that is outside the scope of this research. To design a linear

96

scheme selection across approaches we build a linear scheme model that excludes the

local minimums, but includes schemes with maximum efficiencies. The resulting lin-

ear scheme model shown in Figure 7.8 is the upper bound of the profiling graph that

consists of the following schemes: FS(100%), A-2(133%), A-1(200%), B-1(256%), C-

1(320%). Figure 7.9 shows the diagram of a dynamic scheme selection process among

the five candidate schemes from all three approaches. The selection algorithm selects

scheme for the next frame based on the status of motion estimation efficiency of the

current scheme at the current frame. If the acquired efficiency is greater than the de-

sired efficiency, the selection algorithm will select a new scheme with a higher speedup

for the next frame, trading-off its current high efficiency. Otherwise, a scheme with

a lower speedup, expecting a higher efficiency, is selected to meet the desired effi-

ciency. The speedup increment or decrement is proportional to how better and worse

the current efficiency is, compared with the desired value. The diagram illustrates

the dynamic selection process, in which the dynamic scheme selection box slides up

and down from FS to C-1 scheme to get the highest possible speedup schemes while

satisfying the desired efficiency. The selected scheme will be the best since it selects

schemes among the best schemes at runtime. Algorithm 4 shows the pseudo code

of the dynamic scheme selection. The FS is conducted every interval number of

frames since the last FS, to get the FS cost FSCost that is used as a base cost to ap-

proximately determine the current efficiency currEfficiency of the current scheme.

Based on the current efficiency compared with the desired efficiency, the algorithm

97

will determine the nextspeedup for the next frame based on how much increment

or decrement compared with the current speedup. This amount is proportional to

the ratio between the cumulative total speedup increment totalSpeedupIncrease and

the cumulative total efficiency reduction totalEfficiencyReduce. An accurate cur-

rent efficiency can be achieved by conducting other FS on the current frame, but it

will cause an impractical overhead for doubling motion estimation search. Increas-

ing the interval will reduce number of times the FS is used, indirectly increasing

the speedup, but may result in more erroneous efficiency for frames far away from

the frames that use FS. To reduce the effect of inaccurate current efficiency on the

total speedup increment totalSpeedupIncrease and the cumulative total efficiency

reduction totalEfficiencyReduce, these values only accumulate speedup increment

and efficiency reduction within maxframeCtr number of frames after the FS. In the

experiment, we select 25-frame interval that is equivalent to one-second period, and

maxframeCtr = 5. For simplicity, the maxframeCtr parameter is not mentioned

in the pseudo code. Given the proposed next speedup, a corresponding scheme select

is looked up from the linear scheme model.

Figures 7.10 and 7.11 show performance of the dynamic scheme selection at run-

time. Figure 7.10 shows number of frames and average efficiency of schemes selected

with 85% desired efficiency for the experimental video. All selected schemes have

average efficiency higher than the desired value, except C-1 scheme has average effi-

ciency of 84.4%, which is very close to the desired efficiency (85%). To make sure all

98

schemes have efficiencies higher than the desired one, we can select a higher desired

efficiency to compensate for the FS, which has 100% efficiency, must be performed,

at least, every interval number of frames. Figure 7.11 shows comparisons of speedup

and efficiency gains between the two scheme selections. The dynamic scheme selection

offers an overall speedup and efficiency of 249% and 87%, respectively, while with the

fixed scheme selection, A-1 scheme, the best fixed scheme selected, can provide the

same average efficiency, but its known speedup is only 200%. In our experiment, the

dynamic scheme selection outperforms speedup of the fixed scheme selection 25%. In

this research, we propose a design of the flexible pyramid model, fixed and dynamic

scheme based on three reducing factors. More factors can be considered to have a

smoother profiling graph and linear scheme model.

7.2.7 QoS Performance

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165

 1
00

 1
33

 1
50

 2
00

 2
56

 3
00

 3
20

P
er

ce
nt

ag
es

 v
.s

. F
ul

l S
ea

rc
h,

 %

Speedup %

A
-1

A
-2

B
-1

C
-1

F
S

Motion Estimation Efficiency
Bit Rate

PSNR

Figure 7.12: Percentages of bit rate and Peak-Signal-To-Noise Ratio (PSNR) of different
schemes with respect to the full search base case. Bit rate is correlated with speedups,
while PSNR is not much different among the schemes.

99

Figure 7.12 shows percentages of Peak Signal-To-Noise Ratio (PSNR) and bit

rate of different schemes with respect to full search base case FS. Speedup gains for a

trade-off of the bit-rate increase. In particular with our benchmark, scheme A-1, B-1

and C-1 (200%, 256% and 320% speedups) have bit rates increased 25%, 30% and

37%, respectively. Quality of video encoding measured by the PSNR, is less affected

by the speedups. In our experiments, we observe that the PSNR is reduced around 1%

compared to FS and no different among multi-candidate hierarchical search schemes.

Close to our observation, authors in [22, 7, 17, 28] report that PSNR in their hierar-

chical searches are close to that of FS.

7.3 Summary

In this chapter, we propose a design of a flexible pyramid model, which can increase

the speedup by reducing the computational complexity but keep the motion estima-

tion cost low. Based on a correctness verification of the computational complexity of

the multi-candidate motion-vector hierarchical search, we can accurately determine

speedup of a selected motion-estimation hierarchical search scheme. We propose a

motion estimation efficiency metric to evaluate a search scheme as low efficiency indi-

cates a high motion estimate causing a a high bit-rate encoded stream. Based on the

motion estimate efficiency, we propose profiling-based fixed, and a runtime-based dy-

namic multi-candidate scheme selections. The fixed profiling-based selection is able to

100

select a best fixed multi-candidate motion vector scheme while the runtime-based se-

lection is able to dynamically select best candidate motion vector schemes at runtime.

Evaluating our approach using video benchmark, we observe that the runtime-based

selection scheme outperforms the profiling-based fixed scheme selection, which is al-

ready good since it selects the best among schemes. This research has been published

in IPCCC 2012, in Austin, Texas [34].

101

Chapter 8

Conclusion

8.1 Summary

In this dissertation, we address the problem of efficient parallel processing of mul-

timedia on multi-core architectures with a focus on parallel encoding and decoding on

shared memory multi-core architecture, and parallel motion estimation hierarchical

search, one of the most expensive functions (86%) in video encoding, on GPGPU.

We analyze parallelism granularity at GOP, frame, slice, and select macro-block level

parallelism for highest parallelism. Parallel processing scheduling schemes are classi-

fied by static and dynamic approaches, where MBs are scheduled in static order or

dynamically at runtime.

Studying static wave-front parallelization, we can determine maximum process-

ing speedups, which can be used as performance metrics to evaluate an encoder or

102

a decoder. We identify overhead of barrier-based synchronization that significantly

affects the performance of video processing, and reduce CPU utilization. Wave-front

parallelization achieves a maximum speedup of 4X compared with a single-threaded

encoding [25]. A novel dynamic scheduling scheme with tail submit provides a good

throughput performance by alleviating synchronization overhead, and mitigating ac-

cess contention at the shared task queue. In this approach, current threads keep

processing the next ready MBs that significantly reduces workload in the shared

queue and thus alleviates the contention problem. Experiments with video bench-

marks the scheme achieves a maximum speedup of 10.4X. Nevertheless, the dynamic

scheduling still use a global queue, and scheduling is not load-balanced and aware of

cache-locality of the underlying multi-core architecture.

We propose a distributed dynamic scheduling scheme that employs distributed

LIFO queues to reduce the access contention at the global queue, and schedule MB

tasks in a cache-locality and load-balancing fashion using minimum weighted-queue

length algorithm so that neighboring macro-blocks are load-balanced to nearby cores.

We implement our proposed scheduling on an encoder and a decoder using OpenMP

and POSIX threads on a shared memory multi-core SGWe server, and carry out

extensive experiments with video benchmarks. Experiment results shows employing

the distributed dynamic scheduling that our encoder/decoder outperforms wave-front

and tail-submit dynamic scheduling 100% and 20%-25%, respectively.

In motion-estimation hierarchical search on GPGU, we propose a flexible multiple-

103

level hierarchical model with variable sizes of fine-tuning search windows that can

increase speedups by reducing the computational complexity. We also propose an

important motion estimation efficiency metric that evaluates how efficient a multi-

candidate scheme is, compared with FS. A multi-candidate scheme that may provide

a substantial speedup, but would not be worth if its efficiency is insufficient. We

propose profiling-based multi-candidate scheme selection, in which all better-than-

FS multi-candidate schemes are profiled. A best scheme for a video can be selected

that will achieve a highest possible speedup and satisfy a desired efficiency. We also

propose an robust runtime-based multi-candidate scheme selection that dynamically

selects a flexible multi-candidate scheme for the next frame at runtime based on

speedup and efficiency of current scheme. We observe that the runtime-based scheme

selection outperforms the profiling-based fixed scheme selection that is already good

since it selects the best among the schemes.

8.2 Future Research

Our future work will be evaluating the distributed dynamic scheduling with High

Efficiency Video Encoding (HEVC), a recenlty released video compression standard.

Our future work also focuses on GPU-based accelerator, where many parallelizable

functions such as inverse transform, inverse quantization, motion compensation, intra

prediction, de-blocking filter, are off-loaded to GPGPU.

104

Bibliography

[1] H264/avc jm reference software. http://iphome.hhi.de/suehring/tml/, 2014.
[Online; accessed 04-1-2014].

[2] Mauricio Alvarez, Esther Salami, Alex Ramirez, and Mateo Valero. Hd-
videobench. a benchmark for evaluating high definition digital video applications.
InWorkload Characterization, 2007. IISWC 2007. IEEE 10th International Sym-
posium on, pages 120–125. IEEE, 2007.

[3] Guy Amit and Adi Pinhas. Thread-level parallelism: Gains and pitfalls. In
IASTED PDCS. IEEE, 2005.

[4] Juurlink B. Meenderinck et. al. Azevedo, A. A highly scalable parallel implemen-
tation of h.264. In Transactions on High-Performance Embedded Architectures
and Compilers IV, pages 111–134, 2011.

[5] Juan Carlos Arevalo Baeza, William Chen, Eric Christoffersen, Daniel Dinu, and
Barry Friemel. Real-time high definition h. 264 video decode using the xbox 360
gpu. In Optical Engineering+ Applications. International Society for Optics and
Photonics, 2007.

[6] Lawrence Chan, J Lee, Alex Rothberg, and Paul Weaver. Parallelizing h. 264
motion estimation algorithm using cuda. Proc. of Independent Activities Period
(IAP), MIT, 2009.

[7] Y-L et al Chan. Adaptive multiple-candidate hierarchical search for block match-
ing algorithm. Electronics Letters, pages 1637–1639, 1995.

[8] Gabriele Jost Chapman, Barbara and Ruud Van Der Pas. Using openmp:portable
shared memory parallel progamming. The MIT Press, 2008.

[9] W. Chen and H. Hang. H.264/avc motion estimation implementation on com-
pute unified device architecture (cuda). In Multimedia and Expo, 2008 IEEE
International Conference on. IEEE. IEEE, 2008.

105

[10] Meenderinck Cor, Arnaldo Azevedo, Ben Juurlink, Mauricio Alvarez Mesa, and
Alex Ramirez. Parallel scalability of video decoders. Journal of Signal Processing
Systems, 57(2):173–194, 2009.

[11] Azevedo et. al. Ffmpeg-2dwave: A parallel h.264 decoder. http://alvarez.

site.ac.upc.edu/hdvideobench/ffmpeg-2dwave.html, 2014. [Online; ac-
cessed 04-1-2014].

[12] Jiani Guo and Laxmi N. Bhuyan. A multithreaded multicore system for embed-
ded media processing. Transactions on HiPEAC, page 2011, 154-173.

[13] Jiani Guo and Laxmi N Bhuyan. Load balancing in a cluster-based web server for
multimedia applications. Parallel and Distributed Systems, IEEE Transactions
on, 17(11):1321–1334, 2006.

[14] Wen-mei Hwu and David Kirk. Programming massively parallel processors. Spe-
cial Edition, page 92, 2009.

[15] Intel. Thread building block. http://threadingbuildingblocks.org, 2014.
[Online; accessed 04-1-2014].

[16] Seongmin Jo, Song Hyun Jo, and Yong Ho Song. Exploring parallelization tech-
niques based on openmp in h. 264/avc encoder for embedded multi-core proces-
sor. Journal of Systems Architecture, 2012.

[17] J. Ra K. Lim. Improved hierarchical search block matching algorithm by using
multiple motion vector candidates. IEEE Journal of Electroonic Letters, pages
1771–1772, October, 1997.

[18] Peter Lambert, Wesley De Neve, Peter De Neve, Ingrid Moerman, Piet De-
meester, and Rik Van de Walle. Rate-distortion performance of h. 264/avc com-
pared to state-of-the-art video codecs. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 16(1):134–140, 2006.

[19] Marie Cadennes Massanes, Francesc and Jovan G. Brankov. Cuda implementa-
tion of a block-matching algorithm for multiple gpu cards. IIT, Med. Imaging
Research Ctr., 2010.

[20] Mauricio Alvarez Mesa, Alex Ramı́rez, Arnaldo Azevedo, Cor Meenderinck, Ben
Juurlink, and Mateo Valero. Scalability of macroblock-level parallelism for h.
264 decoding. In Parallel and Distributed Systems (ICPADS), 2009 15th Inter-
national Conference on, pages 236–243. IEEE, 2009.

[21] Mit. Cilk project. http://supertech.csail.mit.edu/cilk, 2014. [Online;
accessed 04-1-2014].

106

[22] Joon-Seek Kim Rae-Hong Park Nam, Kwon Moon and Young Serk Shim. A
fast hierarchical motion vector estimation algorithm using mean pyramid. IEEE
Trans. Circuits and Systems for Video Technology, pages 344–351, 1993.

[23] Nvida. Fermi cuda architecture. http://www.nvidia.com/object/fermi-

architecture.html. [Online; accessed 04-1-2014].

[24] Iain E. Richardson. The h.264/avc video coding standard, second edition. John
Wiley and Sons, Ltd, page 12, 2010.

[25] António Rodrigues, Nuno Roma, and Leonel Sousa. p264: open platform for de-
signing parallel h. 264/avc video encoders on multi-core systems. In Proceedings
of the 20th international workshop on Network and operating systems support for
digital audio and video, pages 81–86. ACM, 2010.

[26] Ralf M. Schreier Michael Bleyer Seitner, Florian H. and Margrit Gelautz. Eval-
uation of data-parallel splitting approaches for h.264 decoding. In Proceedings
of Mobile Computing and Multi-media, MoMM, pages 401–404. IEEE, 2008.

[27] SGI. Sgi altix 4700. http://www.sgi.com/products/remarketed/servers/

altix4700.html, 2014. [Online; accessed 04-1-2014].

[28] Yun-Qing Shi and X Xia. A thresholding multiresolution block matching al-
gorithm. Circuits and Systems for Video Technology, IEEE Transactions on,
7(2):437–440, 1997.

[29] A.Hirano T. Koga, K. Linuma. Motion-compensated interframe coding for video
conferencing. In in Proc. Nat. Telecom. Con., pages G5.3.1–G5.3.1–5. IEEE,
1981.

[30] Michael G. Strintzis Tzovaras, Dimitrios and Haralambos Sahinoglou. Evaluation
of multiresolution block matching techniques for motion and disparity estimation.
Signal Processing: Image Communications, pages 56–57, 1994.

[31] Egbert G. Jaspers Van Der Tol, Erik B. and Rob H. Gelderblom. Mapping
of h.264 decoding on a multiprocessor architecture. Electronic Imaging 2003.
International Society for Optics and Photonics, 2003.

[32] Dung Vu, Jeremy Castillo, and Laxmi N. Bhuyan. An adaptive dynamic schedul-
ing scheme for h.264/avc encoding on multicore architecture. In ICME. IEEE,
2014.

[33] Dung Vu, Jilong Kuang, and Laxmi N. Bhuyan. An adaptive dynamic scheduling
scheme for h.264/avc decoding on multicore architecture. In ICME, pages 491–
496. IEEE, 2012.

107

[34] Dung Vu, Yang Yang, and Laxmi N. Bhuyan. An efficient dynamic multiple-
candidate motion vector approach for gpu-based hierarchical motion estimation.
In IPCCC, pages 342–351. IEEE, 2012.

[35] Sung-Wen Wang, Shu-Sian Yang, Hong-Ming Chen, Chia-Lin Yang, and Ja-Ling
Wu. A multi-core architecture based parallel framework for h. 264/avc deblocking
filters. Journal of Signal Processing Systems, 57(2):195–211, 2009.

[36] Wiki. Non-uniform memory access. http://en.wikipedia.org/wiki/Non_

Uniform_Memory_Access. [Online; accessed 04-1-2014].

[37] Wiki. Nvidia tesla. http://en.wikipedia.org/wiki/Nvidia_Tesla. [Online;
accessed 04-1-2014].

[38] Wiki. Posix threads. http://en.wikipedia.org/wiki/POSIX_Threads. [On-
line; accessed 04-1-2014].

[39] Wiki. Moncecito processor. http://en.wikipedia.org/wiki/Montecito_

%28processor%29, 1999. [Online; accessed 04-1-2014].

[40] Wiki. Bulldozer (microarchitecture). http://en.wikipedia.org/wiki/

Bulldozer_(microarchitecture), 2014. [Online; accessed 04-1-2014].

[41] Wiki. Context-adaptive binary arithmetic coding. http://en.wikipedia.org/
wiki/Context-adaptive_binary_arithmetic_coding, 2014. [Online; accessed
04-1-2014].

[42] Wiki. Discrete cosine transform. http://en.wikipedia.org/wiki/Discrete_

cosine_transform, 2014. [Online; accessed 04-1-2014].

[43] Wiki. Divx codec. http://en.wikipedia.org/wiki/DivX, 2014. [Online; ac-
cessed 04-1-2014].

[44] Wiki. Mean absolute difference. http://en.wikipedia.org/wiki/Mean_

absolute_difference, 2014. [Online; accessed 04-1-2014].

[45] Wiki. Openmp threads. http://en.wikipedia.org/wiki/OpenMP, 2014. [On-
line; accessed 04-1-2014].

[46] Wiki. Quantization (image processing). http://en.wikipedia.org/wiki/

Quantization_(image_processin, 2014. [Online; accessed 04-1-2014].

[47] Zhuo Zhao and Ping Liang. Data partition for wavefront parallelization of h. 264
video encoder. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006
IEEE International Symposium on. IEEE, 2006.

108

[48] Zhuo Zhao and Ping Liang. A highly efficient parallel algorithm for h. 264 video
encoder. In Acoustics, Speech and Signal Processingm ICSSP. IEEE, 2006.

109

