
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Resilient memory-resident data objects

Permalink
https://escholarship.org/uc/item/6kh983w0

Authors
Paris, J-F
Long, DDE

Publication Date
1991

DOI
10.1109/pccc.1991.113804

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kh983w0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Resilient Memory-Resident Data Objects

Jehan-Franwis Pais Darrell D. E. Long

Department of Computer Science
University of Houston

Houston, TX 77204-3475

Computer and Information Sciences
University of California
Santa Cruz, CA 95064

Abstract: Data replication has been widely used to build
resilient data objects. These objects normally cansist of
several replicas stored in stable storage and a replication
control protocol managing these replicas. Replicated data
objects incur a significant penalty resulting from the
increased number of disk accesses. We investigate the
ieasibility of replicated data objects consisting of several
memory-resident replicas and one append-only log main-
tained on disk.

We analyze, under standard Markovian hypotheses,
the availability of these data objects when combined with
three of the most popular replication control protocols:
available copy (AC), majority consensus voting (MCV) and
dynamic-linear voting (DLV). We show that replicated
objects consisting of n memory-resident replicas and a
disk-resident log have almost the same availability as
replicated objects having n disk-resident replicas.
Keywords: file replication, replicated databases,

memory-resident databases, majority con-
sensus voting.

1. INTRODUCTION
The last ten years have seen a dramatic reduction of the
cost per bit of semi-conductor memory. As a result, it has
become possible to contemplate the permanent storage of
large files or complete databases in main memory.
Memory-resident files and memory-resident databases are
an attractive alternative to disk-based files and databases
since they do not experience the long delays associated
with disk accesses. This speed advantage is extremely
important for database management systems as much of
the run-time performance bottlenecks within current sys-
tems can be attributed to disk access delays.

Access times are not the only difference between
memory-resident data objects and their disk-resident
counterparts. First, main memory, unlike disk, is a volatile
medium. A memory-resident data object will be com-
pletely lost in case of a power failure. A backup copy of
each file or database must be maintained in stable storage
to allow the restoration of the memory-resident copy.
Second, memory resident data objects can allow simpler
algorithms to be used. The algorithms used to manage
the data structures for memory-resident data objects do
not need to be concerned with minimizing disk accesses
and using disk space efficiently. Studies of the impact of
memory-residency on various components of conventional
database management systems have concluded that the
use of memory-based instead of disk-based systems was
an important factor in the performance of memory-resident
systems [BHT87, DeWi84, Eich87, Hagm86, LeCa86a,
LeCa86b, LeCa87, GMSa88, SaGM891.

Replicated file systems and replicated database
systems are excellent candidates for the usage of

The simplest way to include memory-resident
objects in a replicated file system or a replicated database
system would be to consider each pair (main-memory
copy, back-up copy) as an atomic entity implementing the
abstraction of a non-volatile copy. This approach fails t

objects.

When network partitions are known to be i
ble, the available copy (AC) protocol [BeGo84] and its v

partitions are impossible the replicas that have participated
in all writes must hold the most recent version of the data.
As a result, replicated objects managed by the AC prot
cols can remain available so long as at least one of their

I45
CH2859-5/91/0000/0145$01 .OO 0 1991 IEEE

replicas remains accessible. Data can be read from any
accessible replica, greatly reducing communication costs.
Replicas recovering from a failure can repair immediately if
there is a current version of the data available. After a
failure of all replicas, the recovering sites must wait until
the replica that failed last can be found.

Large local-area networks often consist of several
carrier-sense segments or token rings linked by repeaters
or gateways. Since repeaters and gateways may fail
without halting the operation of the entire communication
network, these networks are just as susceptible to network
partitions as are long-haul point-to-point networks. Repli-
cated data objects having replicas on both sides of a parti-
tion could be left with two sets of mutually inconsistent
replicas. Although various merging algorithms have been
developed to attempt to reconcile these inconsistencies
when the partition is repaired, the safest solution to the
problem is to adopt a replication control protocol based on
quorum consensus.

Quorum consensus protocols, among which majority
consensus voting (MCV) [Elli77, Thom791 and weighted
voting [Giff79], ensure the consistency of replicated data
objects by disallowing all read and write requests that can-
not collect an appropriate quorum of replicas. Different
quorums for read and write operations can be defined and
different weights, including none, assigned to every replica
[Giff79]. Consistency is guaranteed as long as the write
quorum Wis high enough to disallow parallel writes on two
disjoint subsets of replicas, and the read quorum R is high
enough to ensure that read and write quorums always
intersect. These conditions are simple to verify, which
accounts for the conceptual simplicity and the robustness
of voting schemes. The primary disadvantage of voting is
that it requires at least three replicas to be of any practical
use. Even then, quorum requirements tend to disallow a
relatively high number of read and update operations. As
a result, quorum consensus protocols using static
quorums provide reliability and availability figures well
below those provided by available copy protocols
[PaLoSO].

Unlike MCV, the dynamic voting (DV) protocol
[BGS89, DaBu851 automatically adjusts its access quorum
to changes in the state of the network. When some repli-
cas of an object become inaccessible either because of a
site failure or a network partition, the DV protocol checks if
enough replicas remain available to satisfy its current
quorum. If this is the case, these replicas constitute a new
majority block, and a new access quorum is computed. To
enforce mutual exclusion, recovered replicas that do not
belong to the current majority block are not allowed to par-
ticipate in elections so long as they have not been rein-
tegrated. To keep track of the status of the replicated
object, every replica maintains some state information.
This information depends on the implementation, but will
include a version number identifying the last write
recorded by the replica and either a partition vector
[DaBu85], a count representing the number of sites that
participated in the last update [JaMu87], or a partition set
and an operation number [PaLo88] identifying the replicas
belonging to the current majority block.

All quorum-oriented protocols encounter situations
where the number of current replicas within a group of
mutually communicating sites is equal to the number of
current replicas not in communication. The DV protocol
then declares the replicated object to be inaccessible. An
extension proposed by Jajodia [Jajo87], known as
dynamic-linear voting (DLV) resolves these ties by apply-

ing a total ordering to the sites, This simple improvement
greatly enhances the availability of the replicated data.

Like most extant replica control protocols, these four
protocols only apply to replicated objects whose replicas
are stored in stable storage. Gifford’s weighted voting has
a provision for replicas stored in volatile storage but these
weak representatives are always assigned zero votes and
are therefore excluded from quorum computations.

3. REPLICATED MEMORY-RESIDENT OBJECTS
Memory-resident objects are particularly vulnerable to site
failures since these events normally result in the irrecover-
able loss of all memory-resident data. Memory-resident
objects that need to survive site failures must include a
back-up copy in stable storage that reflects the current
value of the object. There have been several recent pro-
posals to organize backups as logs of updates [OuDo89,
SaGM891. One of them, made by Ousterhout and Doughs,
concerns memory-resident file systems. Its authors
observe that the need to record updates in stable storage
is the performance bottleneck of any memory-resident file
system. They propose to use redundant arrays of inex-
pensive disks (RAID) [PGK88] and to represent backups
as append-only logs to maximize write overlaps and to
eliminate seek times. Another proposal by Salem and
Garcia-Molina maintains database backups as a sequence
of checkpoints supplemented by a transaction log. Both
proposals have interesting implications for replication con-
trol since log-structured backups can be regenerated or
continued after a partial failure.

Consider for instance the case of a replicated object
with three memory-resident replicas and two disk-resident
back-ups and assume that the object is managed by some
variant of the MCV protocol. Since five replicas of the
object are present, read and write quorums could be set to
three. This quorum assignment would however allow
writes to proceed when both backups are unavailable and
the three memory-resident replicas remain accessible.
Such a situation should be avoided as it might lead to the
irrecoverable loss of these writes.

A first solution to the problem consists of requiring
all write quorums to include at least one backup copy.
New backups can even be regenerated to replace back-
ups that have become unavailable in the same fashion as
failed replicas are replaced by new ones in Pu’s regenera-
tion algorithm [PNP88]. This approach has the disadvan-
tage of either requiring more than one backup or introduc-
ing delays in write operations while a failing backup is
regenerated.

Log-structured back-ups offer the advantage of
operating in append-only mode. Hence if the site currently
holding the log fails, the log can be continued on any site
that has disk space available. Should this site fail at a
later time, the log could be continued on a third site and so
on. This technique allows access to the replicated object
as long as an operational disk unit can be found to host
the current log. It never requires the transfer to disk of a
full copy of the replicated object and does not delay writes
for more time than it takes for electing a new current log-
ging site for the object. Care must be taken to ensure that
a full log can be reassembled during the recovery stage
after a failure of all memory resident replicas of the data
object. This makes it necessary to start every new log
fragment by a special block identifying the log fragment
and containing a log fragment number as well as a list of
all sites that contain previous fragments of the log.

146

The only availability penalty occurs after the failure
of all memory-resident replicas of the data object when the
complete log is reassembled from all the log fragments
stored at the previous logging sites. This process may
involve waiting for the recovery of all sites that could have
held a log fragment. It can sometimes be accelerated
(i) by keeping a consistent record in stable storage of

the current logging site-using the same techniques
as used by AC protocols to record the last site that
failed-r
by taking checkpoints from time to time of the state
of the replicated object.
For example, we observe that many “failures” are

actually orderly shut-downs for maintenance purposes.
When these occur, the volatile replicas stored at that site
could be written to disk, thus speeding recovery when the
site returns to operation.

Replication control protocols for replicated objects
consisting of n memory-resident replicas and one disk-
based log can be easily derived from extant protocols han-
dling disk-resident replicas by modifying them in the fol-
lowing way:
(i) let the protocol operate exactly as before as long as

at least current logging site and at least one
memory-resident replica remain available;
should the current logging site become unavailable,
search for a new logging site and disable all write
requests until such a site can be found;
should all memory-resident replicas become una-
vailable, suspend the operation of the protocol until
the current value of the replicated object can be
reconstituted and a sufficient number of memory-
resident replicas regenerated to leave the object in
an available state.

Consider for instance the case of a replicated object with n
memory-resident replicas managed by an AC protocol.
Assume that m of the n sites holding a replica of the object
have a disk unit and are capable of acting as the current
logging site. The replicated object will remain available for
reads and writes as long as one of these m sites remains
operational. Should the last one of these m sites fail, the
object will remain available for reads but not for writes as
long as one of the n-m diskless sites unit remains opera-
tional. After a failure of all n memory-resident replicas, the
object will remain unavailable until a new memory-resident
replica can be regenerated. Since this task will require the
reconstitution of a full log of all writes to the object, it may
involve waiting for the recovery of all m sites capable to
have acted as a current logging site.

A DV or MCV protocol using memory-resident repli-
cas would allow read or write access to the replicated
object as long as a quorum of the replicas are present and
there is an available logging site. Read access could con-
tinue as long as a quorum of the replicas was present
even if the logging site were lost. Write access could con-
tinue as soon as a logging site became available. As with
the AC protocol, both DV and MCV might have to wait for
all m logging sites in order to reconstitute the replicated
object in the event of a total failure.

An AC or a DLV protocol modified to handle
memory-resident replicas only need to regenerate one
memory-resident replica of the object. A modified MCV
protocol will have to regenerate a majority of the original
number of replicas.

(ii)

(ii)

(iii)

1

Despite its obvious advantage of requiring only one
disk-based log without incurring any regeneration delays,
the approach we have sketched has a few limitations
which need to be stated. First, it only applies to fully
memory-resident replicated objects. Second, it increases

tributing its single copy of the log among several sites.
this case, it might be prudent to introduce some red
dancy in the log or to have it replicated at more than one
site. This might in turn involve some further refinements of
the DLV protocol to ensure that two disjoint sets of sites
could not independently reconstitute the current state of
the file and establish competing majority blocks. The
problem does not exist with the AC protocol since network
partitions are excluded nor with the MCV protocol since it
uses a static quorum.

4. STOCHASTIC ANALYSIS

mean il and that repairs are exponentially dis
mean p. Irrecoverable errors are specifical
The system is assumed to exist in statistica
and to be characterized by a discrete-state
cess.

than exponential. Thus, this analysis gives an optimistic
view of the availability of the replicated objects under con
siderat ion.
Definition 4.1. The availability of a replicated
consisting of n replicas and managed by a
protocol P, denoted A,(n), is the stationary p
the system being in a state permitting access.

4.1. Available Copy Protocols
As seen on figure 1, the state-transition-rate diagra
replicated object having n disk-resident replica
states [PaLoSO]. The first n states labeled fro

41

Figure 1 : n Disk-Resident Replicas Managed by AC

available; the n other states labeled from 0' to n-1'
represent the states of the replicated object after all repli-
cas have failed and when 0 to n-1 sites holding obsolete
replicas of the object have recovered. All transitions from
primed states to a non-primed state represent the recovery
of the site holding the last available replica of the data
object. Primed states correspond to situations where the
file remains unavailable.

The availability AAc(n) of the replicated object is
given by

with

CO = 1 ,

C, = (n - l) p + I ,

and

f o r k > l .

Figure 2: n Memory-Resident Replicas Managed by
AC or MCV

When the n disk-resident replicas are replaced by n
memory-resident replicas and one disk-resident log, the
replicated object behaves exactly as before as long as one
replica remains available. When that last available replica
has failed, the object will remain unavailable until all sites
holding replicas have recovered and a complete log can
be reassembled. The AC protocol applied to n memory-
resident replicas and one disk-resident log behaves identi-
cally to a naive available copy protocol (NAC) [PaLoSO]
applied to n disk-resident replicas. As seen on figure 2 ,
the new state-transition-rate diagram has the same 2n
states as if the replicas were memory-resident. Transi-
tions between states will be quite similar to those observed

\
\
\

\ 2MR+L

I I I I I
0 0.05 0.10 0.15 0.20

Failure rate to repair rate ratio
Figure 3: Compared Availabilities for AC

before with the exception that the only transition from a
primed unavailable state to a non-primed available state is
from state (n -1) ' to state n.

The availability AAc(n, 1) of a replicated object with
n memory-resident replicas and one disk-resident log is
then given by

where (n - j) ! (j-1)ipj-k
5 (n 'p) = (n-k)! k !

and p = A /p is the failure rate to repair rate ratio [PaLoSO].
The graph on figure 3 displays the compared availa-

bilities of replicated objects managed by the AC protocol
for values of p I 0.2. This upper bound corresponds to the
failure rate to repair rate ratio of a site that would be una-
vailable for four hours every day or for thirty-three hours
and thirty-six minutes every week. Solid lines are used to
represent the availabilities of replicated objects consisting
of two, three or four disk-resident replicas while dotted
lines are used for objects consisting of two, three or four
memory-resident replicas and one disk-resident log. The
graph shows that the availabilities afforded by n memory-
resident replicas and one disk-based log remain compar-
able to these achieved with n disk-resident replicas. This
was not an unexpected result since the AC protocol
applied to n memory-resident replicas and one disk-
resident log was expected to behave exactly as a NAC
protocol (NAC) applied to n disk-resident replicas.

Most of today's computers are characterized by
availabilities well above 0.95 and by values of the failure
rate to repair rate ratio p well below 0.05, which could lead
us to the conclusion that memory-resident replicas supple-
mented by a single disk-resident log would perform as well
as the disk-resident replicas. Besides, observed repair
time distributions are characterized by coefficients of varia-
tion less than one. Under such conditions, sites will tend
to recover in the same order as they failed. The last site to
recover after a total failure will often be the last one that
failed. When this happens, data objects using disk-

148

resident replicas will be unable to recover faster than data
objects using memory-resident replicas.

4.2. Majority Consensus Voting

Figure 4: n Disk-Resident Replicas Managed by MCV

As seen on figure 4, the state-transition-rate diagram for a
replicated object with n disk-resident replicas managed by
the MCV protocol has n states labeled from 0 to n and
denoting the current number of replicas available when the
object is in that state. If pi represents the probability that
the object is in state j , the availability AMcv(n) of the object
is given by

f n 1 -n-i

when n is odd and by
n .i

which simplifies into AMcv(n-l) when n is even [Pari86].
A replicated object consisting of n memory-resident

replicas and one disk-based log managed by the MCV
protocol will remain available so long as a majority of its
replicas remain accessible in order to allow access to the
replicated object. Recovery after a failure of all memory-
resident replicas will be treated in the same fashion as for
the AC protocol since no replica can be repaired until all
sites holding replicas and possible fragments of the disk-
resident log have recovered. Replicated object consisting
of memory-resident replicas and a disk-resident log
managed by the MCV protocol have therefore the same
state-transition-rate diagram as if they were managed by
the AC protocol. Their availability figures are however dif-
ferent since the protocol requires a majority of the replicas
to be accessible.

The graph on figure 4 displays the compared availa-
bilities of replicated objects managed by the MCV protocol.
Solid lines are used to represent the availabilities of repli-
cated objects consisting of three, four or five disk-resident
replicas while dotted lines are used for objects consisting
of three, four or five memory-resident replicas and one
disk-resident log. For all three numbers of replicas investi-
gated, the graph fails to show any significant difference
between the availabilities afforded by n memory-resident
replicas and one disk-based log and those achieved with n
disk-resident replicas. The behavior of configurations
including even numbers of memory-resident replicas are
also be worth mentioning. Configurations consisting of
even numbers of disk-based replicas are known not to per-
form better than configurations consisting of one less repli-
cas because of the need to resolve ties [Pari86]. While
the same ties also occur with configurations consisting of
even numbers of memory-resident replicas, they have a
slightly higher availability than configurations consisting of
one less replica since the presence of one extra replica
decreases the probability of experiencing a simultaneous
failure of all replicas.

0 0.05 0.10 0.15 0.20
Failure rate to repair rate ratio

Figure 5: Compared Availabilities for MCV

4.3. Dynamic-Linear Voting

...

...

As seen on figure 6, the state-transition-rate diagram for a
replicated object consisting of n disk-resident replicas
managed by the DLV protocol has 2n states [PaB
States 1 to n represent the state of the replicated o

that all replicas of the object have failed a

two last accessible replicas of the object fails

protocol is given by

where p, is the probability of being in sta
As seen on figure 7, n-1 new

added to the state transition diagram of
n disk-resident replicas are replaced by n memory-reside

1 49

managed by MCV.

5. CONCLUSION
Memory-resident files and memory-resident databases are
an attractive alternative to disk-based files and databases
since they do not experience the long delays associated
with disk accesses. We have investigated the feasibility of
replicated data objects consisting of several memory-
resident replicas backed-up by a single append-only log
maintained on disk.

First, we have shown that such objects can be
managed by simple variants of the most popular replica-
tion control protocols for disk-resident replicated objects.
Second, we have analyzed, under standard Markovian
hypotheses, the availability of replicated objects consisting
of memory-resident replicas and a single append-only log
on disk and shown that they have almost the same availa-
bility as replicated objects having all their replicas residing
on disk.

Using memory-resident replicas has the advantage
of faster access over disk-resident replicas. The cost in an
increase in recovery time to reconstruct from the log. We
suggested several improvements that could be made to
speed the recovery of our protocols. A more complete
analysis would take these improvements into account.
Even so, our analysis shows that memory-resident repli-
cas provide a level of fault-tolerance comparable to disk-
resident replicas.

Further work is still needed to evaluate the availabil-
ity and reliability of replicated memory-resident data
objects under failure conditions including network part-
tions and to confirm our preliminary conclusion that a sin-
gle disk-resident log seems to provide an acceptable rate
of recovery after a failure of all sites holding replicas.

Acknowledgements
This work was supported in part by a grant from the NCR
Corporation and the University of California MICRO pro-
gram. We are grateful to Elizabeth PBris and Mary Long
for their editorial comments.

The Markov analysis of the availability of the proto-
cols under study has been done with the aid of
MACSYMA, a large symbolic manipulation program
developed at the Massachusetts Institute of Technology
Laboratory for Computer Science. MACSYMA is a trade-
mark of Symbolics, Inc.

References
BGS89 D. Barbara, H. Garcia-Molina, and A. Spauster,

“Increasing Availability Under Mutual Exclusion
Constraints with Dynamic Vote Reassignment,”
ACM Trans. on Computer Systems, 7, 4 (1989),

BeGo84 P.A. Bernstein and N. Goodman, “An Algorithm
for Concurrency Control and Recovery in Repli-
cated Distributed Databases,” AGM Trans. on
Database Systems, 9 (4) (1984) 596-615.
D. Bitton, M. B. Hanrahan and C. Turbyfill, “Per-
formance of Complex Queries in Main Memory
Database Systems,” Proc. 3rd Int. Conf. on
Data Engineering (1987), pp. 72-81.
W. A. Burkhard, B. E. Martin and J.-F. Piris,
“The Gemini Replicated File Test-bed,’’ Informa-
tion Science, 48, 2 (1989), pp. 119-134.

DaBu85 D. Davcev and W. A. Burkhard, “Consistency
and Recovery Control for Replicated Files,”

pp. 394-426.

BHT87

BMP89

... a
a

Figure 7: n Memory-Resident Replicas Managed by DLV

. I

i A 0.96

0.92 0’g41
‘\
‘\ 3DR

1
\ 3MR+L

I
I I I I

-0 0.05 0.1 0.15 0.2
Failure rate to repair rate ratio

Figure 8: Compared Availabilities for DLV

replicas and one disk-based log. These states labeled
from 1” to (n-1)” represent the states of the replicated
object after all replicas have failed and when 1 to n-1
sites holding replicas of the object have recovered. State
U, now relabeled O”, has no outgoing transition to state 1
since the recovery of a replicated object after a total failure
requires the recovery of all sites holding replicas.

The graph on figure 8 displays the compared availa-
bilities of replicated objects managed by the DLV protocol.
Solid lines are used to represent the availabilities of repli-
cated objects consisting of three, four or five disk-resident
replicas while dotted lines are used for objects consisting
of three, four or five memory-resident replicas and one
disk-resident log. As for the MCV protocol, the graph fails
to show any significant difference between the availabili-
ties afforded by n memory-resident replicas and one disk-
based log and those achieved with n disk-resident repli-
cas. A comparative study of figures 5 and 8 also shows
the dramatic improvement of object availability from MCV
to DLV for four replicas. A replicated object with four
memory-resident replicas and one disk-resident log
managed by a DLV protocol has indeed a higher availabil-
ity than a replicated object with five disk-resident replicas

150

Annual Conf. (1 988), pp. 109-1 16.
SaGM89 K. Salem and H. Garcia-Molina, “Checkpoinfing

Memory-Resident Databases,” Proc. 5th Int.
Conf. on Data Engineering (1 989), pp. 452-462.
C. Pu, J. D. Noe and A. Proudfoot, “Regenera-
tion of Replicated Objects: A Technique and its
Eden Implementation,” /E€€ Trans. on Software
,Engineering, SE-I4 (7) (1988), pp. 936-945.
M. Satyanarayanan, J. J. Kistler, P. Kumar, M.
E. Okasaki, E. H. Siege1 and D. C. Steere,
”Coda: A Highly Available File System for a Dis-
tributed Workstation Environment,” /E€€ Trans.
on Computers, 39, 4 (1990), pp. 447-459.

Thom79 R. H. Thomas, “A Majority Consensus Approach
to Concurrency Control,” ACM Trans. on Data-
base Systems 4 (I 979) pp. 180-209.

PNP88

Saty9O

Proc. 10th ACM Symposium on Operating Sys-
tem Principles (1985), pp. 87-96.

DeWi84 D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker and D. Wood, “lmplementa-
tion Techniques for Main Memory Database
Systems,” Proc. ACM SIGMOD 1984 Annual
Conf. (1 984), pp, 1-8.
M. Eich, “A Classification and Comparison of
Main Memory Database Recovery Techniques,”
Proc. 3rd Int. Conf. on Data Engineering (1 987),

Elli77 C. A. Ellis, “Consistency and Correctness of
Duplicate Database Systems,” Operating Sys-
tems Review, (1 1) (1 977).

Hagm86 R. B. Hagman, “A Crash Recovery Scheme for
a Memory-Resident Database System,” /E€€
Trans. on Computers, C-35 (9) (1986), pp. 839-
843.
D. K. Gifford, “Weighted Voting for Replicated
Data,” Proc. 7th ACM Symposium on Operating
System Principles (1 979), pp. 150-1 61.

GMSa88 H. Garcia-Molina and K. Salem, “System M: A
Transaction Processing System for Memory
Resident Data,” Technical Report CS-TR-I 95-
88, Department of Computer Science, Princeton
U. (1988).
S. Jajodia, “Managing Replicated Files in Parti-
tioned Distributed Database Systems,” Proc. 3rd
Int. Conf, on Data Engineering, (1987), pp. 412-
41 8.

JaMu87 S. Jajodia and D. Mutchler. “Dynamic Voting.”

LeCa86a T. J. Lehman and M. J. Carey, “Query Process-
ing in Main Memory Database Management
Systems,” Proc. AGM SIGMOD 1986 Annual
Conf. (1 986), pp. 239-250.

LeCa86b T. J. Lehman and M. J. Carey, “A Study of Index
Structures for Main Memory Database Manage-
ment Systems,” Proc. 12th Int. Conf. on VLDB

Eich87

pp. 332-339.

Giff79

Jajo87

P~oc. ACM SIGMOD, (1987), pp. 227-238.

LeCa87

OuDo89

PaBu86

PaLo88

PaLo9O

Pari86

PGK88

(1 986), bp. 294-303.
T. J. Lehman and M. J. Carey, “A Recovery
Algorithm for a High-Performance Memory-
Resident Database System,” Proc. ACM SIG-
MOD 7987Annual Conf, (1 987), pp. 104-1 16.
J. Ousterhout and F. Douglis, “Beating the I/O
Bottleneck: A Case for Log-Structured File Sys-
tems,’’ Operating Systems Review, 23 (1)

J.-F. PBris and W. A. Burkhard, “On the Availa-
bility of Dynamic Voting Schemes,” Technical
Report CS86-94, Department of CSE, University
of California, San Diego (1 986).
J.-F. PBris and D. D. E. Long, “Efficient Dynamic
Voting Algorithms,” Proc. 4th Int. Conf. on Data
Engineering, (1 988), pp. 268-276.
J.-F. PBris and D. D. E. Long “On the Perfor-
mance of Available Copy Protocols,” Perfor-
mance Evaluation, 1 1 (1 990), pp. 9-30.
J.-F. PBris, “Voting with Witnesses: A Con-
sistency Scheme for Replicated Files,” Pruc. 6th
Int. Conf. on Distributed Computing Systems

D. Patterson, G. Gibson and R. H. Katz, “A
Case for Redundant Arrays of Inexpensive
Disks (RAID),” Proc. ACM SIGMOD 1988

(1 989), pp. 11 -28.

(1 986), pp. 606-61 2.

151

