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Resilient Memory-Resident Data Objects 

Jehan-Franwis Pais Darrell D. E. Long 

Department of Computer Science 
University of Houston 

Houston, TX 77204-3475 

Computer and Information Sciences 
University of California 
Santa Cruz, CA 95064 

Abstract: Data replication has been widely used to build 
resilient data objects. These objects normally cansist of 
several replicas stored in stable storage and a replication 
control protocol managing these replicas. Replicated data 
objects incur a significant penalty resulting from the 
increased number of disk accesses. We investigate the 
ieasibility of replicated data objects consisting of several 
memory-resident replicas and one append-only log main- 
tained on disk. 

We analyze, under standard Markovian hypotheses, 
the availability of these data objects when combined with 
three of the most popular replication control protocols: 
available copy (AC), majority consensus voting (MCV) and 
dynamic-linear voting (DLV). We show that replicated 
objects consisting of n memory-resident replicas and a 
disk-resident log have almost the same availability as 
replicated objects having n disk-resident replicas. 
Keywords: file replication, replicated databases, 

memory-resident databases, majority con- 
sensus voting. 

1. INTRODUCTION 
The last ten years have seen a dramatic reduction of the 
cost per bit of semi-conductor memory. As a result, it has 
become possible to contemplate the permanent storage of 
large files or complete databases in main memory. 
Memory-resident files and memory-resident databases are 
an attractive alternative to disk-based files and databases 
since they do not experience the long delays associated 
with disk accesses. This speed advantage is extremely 
important for database management systems as much of 
the run-time performance bottlenecks within current sys- 
tems can be attributed to disk access delays. 

Access times are not the only difference between 
memory-resident data objects and their disk-resident 
counterparts. First, main memory, unlike disk, is a volatile 
medium. A memory-resident data object will be com- 
pletely lost in case of a power failure. A backup copy of 
each file or database must be maintained in stable storage 
to allow the restoration of the memory-resident copy. 
Second, memory resident data objects can allow simpler 
algorithms to be used. The algorithms used to manage 
the data structures for memory-resident data objects do 
not need to be concerned with minimizing disk accesses 
and using disk space efficiently. Studies of the impact of 
memory-residency on various components of conventional 
database management systems have concluded that the 
use of memory-based instead of disk-based systems was 
an important factor in the performance of memory-resident 
systems [BHT87, DeWi84, Eich87, Hagm86, LeCa86a, 
LeCa86b, LeCa87, GMSa88, SaGM891. 

Replicated file systems and replicated database 
systems are excellent candidates for the usage of 

The simplest way to include memory-resident 
objects in a replicated file system or a replicated database 
system would be to consider each pair (main-memory 
copy, back-up copy) as an atomic entity implementing the 
abstraction of a non-volatile copy. This approach fails t 

objects. 

When network partitions are known to be i 
ble, the available copy (AC) protocol [BeGo84] and its v 

partitions are impossible the replicas that have participated 
in all writes must hold the most recent version of the data. 
As a result, replicated objects managed by the AC prot 
cols can remain available so long as at least one of their 
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replicas remains accessible. Data can be read from any 
accessible replica, greatly reducing communication costs. 
Replicas recovering from a failure can repair immediately if 
there is a current version of the data available. After a 
failure of all replicas, the recovering sites must wait until 
the replica that failed last can be found. 

Large local-area networks often consist of several 
carrier-sense segments or token rings linked by repeaters 
or gateways. Since repeaters and gateways may fail 
without halting the operation of the entire communication 
network, these networks are just as susceptible to network 
partitions as are long-haul point-to-point networks. Repli- 
cated data objects having replicas on both sides of a parti- 
tion could be left with two sets of mutually inconsistent 
replicas. Although various merging algorithms have been 
developed to attempt to reconcile these inconsistencies 
when the partition is repaired, the safest solution to the 
problem is to adopt a replication control protocol based on 
quorum consensus. 

Quorum consensus protocols, among which majority 
consensus voting (MCV) [Elli77, Thom791 and weighted 
voting [Giff79], ensure the consistency of replicated data 
objects by disallowing all read and write requests that can- 
not collect an appropriate quorum of replicas. Different 
quorums for read and write operations can be defined and 
different weights, including none, assigned to every replica 
[Giff79]. Consistency is guaranteed as long as the write 
quorum Wis high enough to disallow parallel writes on two 
disjoint subsets of replicas, and the read quorum R is high 
enough to ensure that read and write quorums always 
intersect. These conditions are simple to verify, which 
accounts for the conceptual simplicity and the robustness 
of voting schemes. The primary disadvantage of voting is 
that it requires at least three replicas to be of any practical 
use. Even then, quorum requirements tend to disallow a 
relatively high number of read and update operations. As 
a result, quorum consensus protocols using static 
quorums provide reliability and availability figures well 
below those provided by available copy protocols 
[PaLoSO]. 

Unlike MCV, the dynamic voting (DV) protocol 
[BGS89, DaBu851 automatically adjusts its access quorum 
to changes in the state of the network. When some repli- 
cas of an object become inaccessible either because of a 
site failure or a network partition, the DV protocol checks if 
enough replicas remain available to satisfy its current 
quorum. If this is the case, these replicas constitute a new 
majority block, and a new access quorum is computed. To 
enforce mutual exclusion, recovered replicas that do not 
belong to the current majority block are not allowed to par- 
ticipate in elections so long as they have not been rein- 
tegrated. To keep track of the status of the replicated 
object, every replica maintains some state information. 
This information depends on the implementation, but will 
include a version number identifying the last write 
recorded by the replica and either a partition vector 
[DaBu85], a count representing the number of sites that 
participated in the last update [JaMu87], or a partition set 
and an operation number [PaLo88] identifying the replicas 
belonging to the current majority block. 

All quorum-oriented protocols encounter situations 
where the number of current replicas within a group of 
mutually communicating sites is equal to the number of 
current replicas not in communication. The DV protocol 
then declares the replicated object to be inaccessible. An 
extension proposed by Jajodia [Jajo87], known as 
dynamic-linear voting (DLV) resolves these ties by apply- 

ing a total ordering to the sites, This simple improvement 
greatly enhances the availability of the replicated data. 

Like most extant replica control protocols, these four 
protocols only apply to replicated objects whose replicas 
are stored in stable storage. Gifford’s weighted voting has 
a provision for replicas stored in volatile storage but these 
weak representatives are always assigned zero votes and 
are therefore excluded from quorum computations. 

3. REPLICATED MEMORY-RESIDENT OBJECTS 
Memory-resident objects are particularly vulnerable to site 
failures since these events normally result in the irrecover- 
able loss of all memory-resident data. Memory-resident 
objects that need to survive site failures must include a 
back-up copy in stable storage that reflects the current 
value of the object. There have been several recent pro- 
posals to organize backups as logs of updates [OuDo89, 
SaGM891. One of them, made by Ousterhout and Doughs, 
concerns memory-resident file systems. Its authors 
observe that the need to record updates in stable storage 
is the performance bottleneck of any memory-resident file 
system. They propose to use redundant arrays of inex- 
pensive disks (RAID) [PGK88] and to represent backups 
as append-only logs to maximize write overlaps and to 
eliminate seek times. Another proposal by Salem and 
Garcia-Molina maintains database backups as a sequence 
of checkpoints supplemented by a transaction log. Both 
proposals have interesting implications for replication con- 
trol since log-structured backups can be regenerated or 
continued after a partial failure. 

Consider for instance the case of a replicated object 
with three memory-resident replicas and two disk-resident 
back-ups and assume that the object is managed by some 
variant of the MCV protocol. Since five replicas of the 
object are present, read and write quorums could be set to 
three. This quorum assignment would however allow 
writes to proceed when both backups are unavailable and 
the three memory-resident replicas remain accessible. 
Such a situation should be avoided as it might lead to the 
irrecoverable loss of these writes. 

A first solution to the problem consists of requiring 
all write quorums to include at least one backup copy. 
New backups can even be regenerated to replace back- 
ups that have become unavailable in the same fashion as 
failed replicas are replaced by new ones in Pu’s regenera- 
tion algorithm [PNP88]. This approach has the disadvan- 
tage of either requiring more than one backup or introduc- 
ing delays in write operations while a failing backup is 
regenerated. 

Log-structured back-ups offer the advantage of 
operating in append-only mode. Hence if the site currently 
holding the log fails, the log can be continued on any site 
that has disk space available. Should this site fail at a 
later time, the log could be continued on a third site and so 
on. This technique allows access to the replicated object 
as long as an operational disk unit can be found to host 
the current log. It never requires the transfer to disk of a 
full copy of the replicated object and does not delay writes 
for more time than it takes for electing a new current log- 
ging site for the object. Care must be taken to ensure that 
a full log can be reassembled during the recovery stage 
after a failure of all memory resident replicas of the data 
object. This makes it necessary to start every new log 
fragment by a special block identifying the log fragment 
and containing a log fragment number as well as a list of 
all sites that contain previous fragments of the log. 
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The only availability penalty occurs after the failure 
of all memory-resident replicas of the data object when the 
complete log is reassembled from all the log fragments 
stored at the previous logging sites. This process may 
involve waiting for the recovery of all sites that could have 
held a log fragment. It can sometimes be accelerated 
(i) by keeping a consistent record in stable storage of 

the current logging site-using the same techniques 
as used by AC protocols to record the last site that 
failed-r 
by taking checkpoints from time to time of the state 
of the replicated object. 
For example, we observe that many “failures” are 

actually orderly shut-downs for maintenance purposes. 
When these occur, the volatile replicas stored at that site 
could be written to disk, thus speeding recovery when the 
site returns to operation. 

Replication control protocols for replicated objects 
consisting of n memory-resident replicas and one disk- 
based log can be easily derived from extant protocols han- 
dling disk-resident replicas by modifying them in the fol- 
lowing way: 
(i) let the protocol operate exactly as before as long as 

at least current logging site and at least one 
memory-resident replica remain available; 
should the current logging site become unavailable, 
search for a new logging site and disable all write 
requests until such a site can be found; 
should all memory-resident replicas become una- 
vailable, suspend the operation of the protocol until 
the current value of the replicated object can be 
reconstituted and a sufficient number of memory- 
resident replicas regenerated to leave the object in 
an available state. 

Consider for instance the case of a replicated object with n 
memory-resident replicas managed by an AC protocol. 
Assume that m of the n sites holding a replica of the object 
have a disk unit and are capable of acting as the current 
logging site. The replicated object will remain available for 
reads and writes as long as one of these m sites remains 
operational. Should the last one of these m sites fail, the 
object will remain available for reads but not for writes as 
long as one of the n-m diskless sites unit remains opera- 
tional. After a failure of all n memory-resident replicas, the 
object will remain unavailable until a new memory-resident 
replica can be regenerated. Since this task will require the 
reconstitution of a full log of all writes to the object, it may 
involve waiting for the recovery of all m sites capable to 
have acted as a current logging site. 

A DV or MCV protocol using memory-resident repli- 
cas would allow read or write access to the replicated 
object as long as a quorum of the replicas are present and 
there is an available logging site. Read access could con- 
tinue as long as a quorum of the replicas was present 
even if the logging site were lost. Write access could con- 
tinue as soon as a logging site became available. As with 
the AC protocol, both DV and MCV might have to wait for 
all m logging sites in order to reconstitute the replicated 
object in the event of a total failure. 

An AC or a DLV protocol modified to handle 
memory-resident replicas only need to regenerate one 
memory-resident replica of the object. A modified MCV 
protocol will have to regenerate a majority of the original 
number of replicas. 

(ii) 

(ii) 

(iii) 

1 

Despite its obvious advantage of requiring only one 
disk-based log without incurring any regeneration delays, 
the approach we have sketched has a few limitations 
which need to be stated. First, it only applies to fully 
memory-resident replicated objects. Second, it increases 

tributing its single copy of the log among several sites. 
this case, it might be prudent to introduce some red 
dancy in the log or to have it replicated at more than one 
site. This might in turn involve some further refinements of 
the DLV protocol to ensure that two disjoint sets of sites 
could not independently reconstitute the current state of 
the file and establish competing majority blocks. The 
problem does not exist with the AC protocol since network 
partitions are excluded nor with the MCV protocol since it 
uses a static quorum. 

4. STOCHASTIC ANALYSIS 

mean il and that repairs are exponentially dis 
mean p. Irrecoverable errors are specifical 
The system is assumed to exist in statistica 
and to be characterized by a discrete-state 
cess. 

than exponential. Thus, this analysis gives an optimistic 
view of the availability of the replicated objects under con 
siderat ion. 
Definition 4.1. The availability of a replicated 
consisting of n replicas and managed by a 
protocol P, denoted A,(n), is the stationary p 
the system being in a state permitting access. 

4.1. Available Copy Protocols 
As seen on figure 1, the state-transition-rate diagra 
replicated object having n disk-resident replica 
states [PaLoSO]. The first n states labeled fro 
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Figure 1 : n Disk-Resident Replicas Managed by AC 

available; the n other states labeled from 0' to n-1' 
represent the states of the replicated object after all repli- 
cas have failed and when 0 to n-1 sites holding obsolete 
replicas of the object have recovered. All transitions from 
primed states to a non-primed state represent the recovery 
of the site holding the last available replica of the data 
object. Primed states correspond to situations where the 
file remains unavailable. 

The availability AAc(n) of the replicated object is 
given by 

with 

CO = 1 ,  

C, = ( n - l ) p + I ,  

and 

f o r k > l .  

Figure 2: n Memory-Resident Replicas Managed by 
AC or MCV 

When the n disk-resident replicas are replaced by n 
memory-resident replicas and one disk-resident log, the 
replicated object behaves exactly as before as long as one 
replica remains available. When that last available replica 
has failed, the object will remain unavailable until all sites 
holding replicas have recovered and a complete log can 
be reassembled. The AC protocol applied to n memory- 
resident replicas and one disk-resident log behaves identi- 
cally to a naive available copy protocol (NAC) [PaLoSO] 
applied to n disk-resident replicas. As seen on figure 2 ,  
the new state-transition-rate diagram has the same 2n 
states as if the replicas were memory-resident. Transi- 
tions between states will be quite similar to those observed 

\ 
\ 
\ 

\ 2MR+L 

I I I I I 
0 0.05 0.10 0.15 0.20 

Failure rate to repair rate ratio 
Figure 3: Compared Availabilities for AC 

before with the exception that the only transition from a 
primed unavailable state to a non-primed available state is 
from state (n -1) ' to  state n. 

The availability AAc(n, 1 )  of a replicated object with 
n memory-resident replicas and one disk-resident log is 
then given by 

where (n - j ) !  (j-1)ipj-k 
5 (n 'p )  = (n-k)! k !  

and p = A  /p is the failure rate to repair rate ratio [PaLoSO]. 
The graph on figure 3 displays the compared availa- 

bilities of replicated objects managed by the AC protocol 
for values of p I 0.2. This upper bound corresponds to the 
failure rate to repair rate ratio of a site that would be una- 
vailable for four hours every day or for thirty-three hours 
and thirty-six minutes every week. Solid lines are used to 
represent the availabilities of replicated objects consisting 
of two, three or four disk-resident replicas while dotted 
lines are used for objects consisting of two, three or four 
memory-resident replicas and one disk-resident log. The 
graph shows that the availabilities afforded by n memory- 
resident replicas and one disk-based log remain compar- 
able to these achieved with n disk-resident replicas. This 
was not an unexpected result since the AC protocol 
applied to n memory-resident replicas and one disk- 
resident log was expected to behave exactly as a NAC 
protocol (NAC) applied to n disk-resident replicas. 

Most of today's computers are characterized by 
availabilities well above 0.95 and by values of the failure 
rate to repair rate ratio p well below 0.05, which could lead 
us to the conclusion that memory-resident replicas supple- 
mented by a single disk-resident log would perform as well 
as the disk-resident replicas. Besides, observed repair 
time distributions are characterized by coefficients of varia- 
tion less than one. Under such conditions, sites will tend 
to recover in the same order as they failed. The last site to 
recover after a total failure will often be the last one that 
failed. When this happens, data objects using disk- 
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resident replicas will be unable to recover faster than data 
objects using memory-resident replicas. 

4.2. Majority Consensus Voting 

Figure 4: n Disk-Resident Replicas Managed by MCV 

As seen on figure 4, the state-transition-rate diagram for a 
replicated object with n disk-resident replicas managed by 
the MCV protocol has n states labeled from 0 to n and 
denoting the current number of replicas available when the 
object is in that state. If pi represents the probability that 
the object is in state j ,  the availability AMcv(n) of the object 
is given by 

f n 1 -n-i 

when n is odd and by 
n .i 

which simplifies into AMcv(n-l) when n is even [Pari86]. 
A replicated object consisting of n memory-resident 

replicas and one disk-based log managed by the MCV 
protocol will remain available so long as a majority of its 
replicas remain accessible in order to allow access to the 
replicated object. Recovery after a failure of all memory- 
resident replicas will be treated in the same fashion as for 
the AC protocol since no replica can be repaired until all 
sites holding replicas and possible fragments of the disk- 
resident log have recovered. Replicated object consisting 
of memory-resident replicas and a disk-resident log 
managed by the MCV protocol have therefore the same 
state-transition-rate diagram as if they were managed by 
the AC protocol. Their availability figures are however dif- 
ferent since the protocol requires a majority of the replicas 
to be accessible. 

The graph on figure 4 displays the compared availa- 
bilities of replicated objects managed by the MCV protocol. 
Solid lines are used to represent the availabilities of repli- 
cated objects consisting of three, four or five disk-resident 
replicas while dotted lines are used for objects consisting 
of three, four or five memory-resident replicas and one 
disk-resident log. For all three numbers of replicas investi- 
gated, the graph fails to show any significant difference 
between the availabilities afforded by n memory-resident 
replicas and one disk-based log and those achieved with n 
disk-resident replicas. The behavior of configurations 
including even numbers of memory-resident replicas are 
also be worth mentioning. Configurations consisting of 
even numbers of disk-based replicas are known not to per- 
form better than configurations consisting of one less repli- 
cas because of the need to resolve ties [Pari86]. While 
the same ties also occur with configurations consisting of 
even numbers of memory-resident replicas, they have a 
slightly higher availability than configurations consisting of 
one less replica since the presence of one extra replica 
decreases the probability of experiencing a simultaneous 
failure of all replicas. 

0 0.05 0.10 0.15 0.20 
Failure rate to repair rate ratio 

Figure 5: Compared Availabilities for MCV 

4.3. Dynamic-Linear Voting 

... 

... 

As seen on figure 6, the state-transition-rate diagram for a 
replicated object consisting of n disk-resident replicas 
managed by the DLV protocol has 2n states [PaB 
States 1 to n represent the state of the replicated o 

that all replicas of the object have failed a 

two last accessible replicas of the object fails 

protocol is given by 

where p, is the probability of being in sta 
As seen on figure 7, n-1 new 

added to the state transition diagram of 
n disk-resident replicas are replaced by n memory-reside 
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managed by MCV. 

5. CONCLUSION 
Memory-resident files and memory-resident databases are 
an attractive alternative to disk-based files and databases 
since they do not experience the long delays associated 
with disk accesses. We have investigated the feasibility of 
replicated data objects consisting of several memory- 
resident replicas backed-up by a single append-only log 
maintained on disk. 

First, we have shown that such objects can be 
managed by simple variants of the most popular replica- 
tion control protocols for disk-resident replicated objects. 
Second, we have analyzed, under standard Markovian 
hypotheses, the availability of replicated objects consisting 
of memory-resident replicas and a single append-only log 
on disk and shown that they have almost the same availa- 
bility as replicated objects having all their replicas residing 
on disk. 

Using memory-resident replicas has the advantage 
of faster access over disk-resident replicas. The cost in an 
increase in recovery time to reconstruct from the log. We 
suggested several improvements that could be made to 
speed the recovery of our protocols. A more complete 
analysis would take these improvements into account. 
Even so, our analysis shows that memory-resident repli- 
cas provide a level of fault-tolerance comparable to disk- 
resident replicas. 

Further work is still needed to evaluate the availabil- 
ity and reliability of replicated memory-resident data 
objects under failure conditions including network part- 
tions and to confirm our preliminary conclusion that a sin- 
gle disk-resident log seems to provide an acceptable rate 
of recovery after a failure of all sites holding replicas. 
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